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Abstract
We investigate the gauge dynamics of nonsupersymmetric SU(N) gauge theories featuring the

simultaneous presence of fermionic matter transforming according to two distinct representations

of the underlying gauge group. We bound the regions of flavors and colors which can yield a

physical infrared fixed point. As a consistency check we recover the previously investigated con-

formal windows bounds when restricting to a single matter representation. The earlier conformal

windows can be imagined to be part now of the new conformal house. We predict the nonper-

turbative anomalous dimensions at the infrared fixed points. We further investigate the effects of

adding mass terms to the condensates on the conformal house chiral dynamics and construct the

simplest instanton induced effective Lagrangian terms.
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I. INTRODUCTION

Models of dynamical electroweak symmetry breaking constitute one of the best moti-

vated extensions of the Standard Model (SM). A sensible model building requires, how-

ever, a deep knowledge of gauge dynamics in a regime where perturbation theory fails.

It is, hence, of utmost importance to gain information on the nonperturbative dynamics

of non-abelian four dimensional gauge theories.

Recent studies of the dynamics of gauge theories featuring fermions transforming

according to higher dimensional representations of the new gauge group led to several

interesting phenomenological possibilities [1, 2, 3] such as Minimal Walking Technicolor

(MWT) [4] and Ultra Minimal Walking Technicolor (UMT) [5]. We observe that higher

dimensional representations have been used earlier in particle physics phenomenology

and time honored examples are grand unified models. The initial discovery [1] that

theories with fermions transforming according to higher dimensional representations

develop an infrared fixed point (IRFP) for an extremely small number of flavors and

colors has been tested using several analytic methods [1, 3, 6] for SU(N) gauge groups.

The analysis for SO(N) ad Sp(2N) gauge groups has been performed in [7]. This discovery

is important since it permits the construction of several explicit UV-complete models

able to break the electroweak symmetry dynamically while naturally featuring small

contributions to the electroweak precision parameters [4, 8, 9]. Simultaneously it also

helps alleviating the Flavor Changing Neutral Currents while the models also feature

explicit candidates of asymmetric dark matter [4, 5]. These models are economical since

they require the introduction of a very small number of underlying elementary fields and

can feature a light composite Higgs [2, 3, 10]. Recent analyses lend further support to the

latter observation [11, 12, 13].

If a theory develops an IRFP fixed point then at large distances displays a conformal

behavior. One can envision several ways to depart from conformality. For example

one can add a relevant operator such as an explicit fermion mass term or decrease the

number of flavors. If the departure from conformality is soft, meaning that the IRFP is

quasi-reached the gauge coupling constant runs slowly over a long range of energies

and the theory is said to walk [15, 16, 17, 18]. This is, however, not the best way to

define a walking theory since the coupling constant is not a physical quantity. In fact
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one should look at two and higher point correlators and determine the associated scaling

exponents. In a (quasi)-conformal theory the correlators will have a characteristic power

law behavior. Gauge theories developing an IRFP are natural ultraviolet completions of

unparticle [19, 20, 21, 22] models [23, 24]. The effects of the instantons and their interplay

with the fermion-mass operator on the conformal window have been evaluated in [25].

Within the SD approach these effects were investigated in [26].

Non-abelian gauge theories exist in a number of distinct phases which can be classified

according to the characteristic dependence of the potential energy on the distance between

two well separated static sources. The collection of all of these different behaviors, when

represented, for example, in the flavor-color space, constitutes the phase diagram of the

given gauge theory. The phase diagram of SU(N) gauge theories as functions of number

of flavors, colors and matter representation has been investigated in [1, 3, 6, 24, 27].

Interesting applications have been envisioned not only for the LHC phenomenology

[1, 4, 28, 29, 30, 31] but also for Cosmology [5, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. The

nonperturbative dynamics of these models is being investigated via first principles lattice

computations by several groups [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59].

In the literature the reader can also find various attempts to gain information on the

nonperturbative gauge dynamics using gauge-gravity type duality and we cite here only

a few recent efforts [60, 61, 62, 63]. We have also extended the analysis of the zero

temperature and matter density phase diagram to SO(N) and Sp(2N) gauge theories with

matter in a single matter representation [7]. An interesting universal picture emerges

unifying the phase diagrams of the various gauge groups.

Till now the various investigations dealt with fermions in a single representation of

the gauge group. In fact these constitute only a small fraction of all of the possible gauge

theories we can envision built out of fermions in several representations. A priori there

is no reason to exclude these theories from interesting applications. In fact, we have very

recently shown that one of these theories leads to a novel model of dynamical electroweak

symmetry breaking possessing several interesting phenomenological features [5].

The goal of this paper is to initiate the first systematic study of conformal gauge dy-

namics associated to nonsupersymmetric gauge theories featuring matter in two different

representations of the undelying gauge group. The region in flavor/color space bounding

the fraction of the theory developing a conformal behavior at large distances is a three-

4



dimensional volume. Two faces of this volume correspond the the conformal areas of

the gauge theory when on of the flavor numbers is set to zero. These areas are often

referred as conformal windows. It is then natural to indicate the conformal volumes as the

conformal houses whose windows are the two dimensional conformal areas.

What methods can we use to draw the boundary of the conformal houses? The ideal,

would be, to use first principle lattice simulations. Although this is possible, in principle,

it is simply too expensive to unveil the entire phase diagram and one can only explore a

small portion of it. This is especially true for gauge theories with multiple representations

given that the phase diagram is multidimensional. Hence, before launching into a lattice

simulation, one should have an idea of how the phase diagram looks like in order to

select the relevant theories to investigate. We have considered different analytic methods

in our previous studies of the conformal windows. The following table, taken from

[7], neatly summarizes the range of applicability of the three most used methods. They

are the all-orders beta function (BF) [6]; The truncated Schwinger-Dyson equation (SD)

[64, 65, 66] (referred also as the ladder approximation in the literature); The Appelquist-

Cohen-Schmaltz (ACS) conjecture [67] which makes use of the counting of the thermal

degrees of freedom at high and low temperature. In the Table below we compared directly

the various analytical methods. The three plus signs in the second column indicate that

TABLE I: Direct comparison among the various analytic methods

Method Fund. - Rep. Higher Rep. Multiple Rep. Susy γ

BF + + + + +

SD + + - - -

ACS + - - + -

the three analytic methods do constrain the conformal window of SU, Sp and SO gauge

theories with fermions in the fundamental representation. Only BF and SD provide

useful constraints in the case of the higher dimensional representations as summarized

in the third column. When multiple representations participate in the gauge dynamics

the BF constraints can be used directly [5, 6] to determine the extension of the conformal

(hyper)volumes while extra dynamical information and approximations are required in

the SD approach. Since gauge theories with fermions in several representations of the
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underlying gauge group must contain higher dimensional representations the ACS is

less efficient in this case [83]. These results are summarized in the fourth column. The

all-orders beta function reproduces the supersymmetric exact results when going over

the super Yang-Mills case, the ACS conjecture was proved successful when tested against

the supersymmetric conformal window results [67]. However the SD approximation

does not reproduce any supersymmetric result [82]. The results are summarized in the

fifth column. Finally, it is of theoretical and phenomenological interest – for example

to construct sensible UV completions of models of dynamical electroweak symmetry

breaking and unparticles – to compute the anomalous dimension of the mass of the

fermions at the (near) conformal fixed point. Only the all-orders beta function provides a

simple closed form expression as it is summarized in the sixth column.

The table above clearly shows, by direct comparison of the various analytic method

used to analyze the phase diagrams in [7], that the conjectured all-orders bera function for

nonsupersymmetric gauge theories with fermionic matter in arbtriray representations of

the gauge group [6] is the most efficient method. We will henceforth use the BF method.

We will then investigate the effects of adding relevant mass operators on the chiral

dynamics. Following [25] we will also estimate the effects of the instanton induced

interactions on the chiral dynamics.

Our results greatly enlarge the number of gauge theories which can be used to extend

the SM of particle interactions.

II. TURNING THE WINDOW UPSIDE DOWN

The conformal window of non-abelian gauge theories containing matter transform-

ing according to a single specific representation of the gauge group has received much

attention throughout many years [1, 3, 6, 7, 64, 65, 66, 67]. In the past many different

theoretical tools have been developed to estimate its size and shape. By direct comparison

of the predictions stemming from the various methods it has been shown in [7] that the re-

cently conjectured beta function [6] for nonsupersymmetric gauge theories with fermionic

matter allows for useful bounds of the various conformal windows and yields the max-

imum amount of information. The predictions are unambiguous and can be tested. The

conjecture is non-trivially supported by all the recent lattice data [44, 45, 46, 47, 51, 52, 59].
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r T(r) C2(r) d(r)

1
2

N2
−1

2N N

G N N N2
− 1

N+2
2

(N−1)(N+2)
N

N(N+1)
2

N−2
2

(N+1)(N−2)
N

N(N−1)
2

TABLE II: Relevant group factors for the representations used throughout this paper. However,

a complete list of all the group factors for any representation and the way to compute them is

available in Table II and the appendix of [3].

Considering an SU(N) gauge group (the generalization to SO and Sp groups appeared

in [7]) with N f (ri) Dirac flavors belonging to the representation ri, i = 1, . . . , k of the gauge

group the proposed beta function reads

β(g) = −
g3

(4π)2

β0 −
2
3

∑k
i=1 T(ri) N f (ri)γi(g2)

1 − g2

8π2 C2(G)
(
1 +

2β′0
β0

) , (1)

with

β0 =
11
3

C2(G) −
4
3

k∑
i=1

T(ri)N f (ri) and β′0 = C2(G) −
k∑

i=1

T(ri)N f (ri) . (2)

The generators Ta
r , a = 1 . . .N2

− 1 of the gauge group in the representation r are

normalized according to Tr
[
Ta

rTb
r

]
= T(r)δab while the quadratic Casimir C2(r) is given by

Ta
rTa

r = C2(r)I. The trace normalization factor T(r) and the quadratic Casimir are connected

via C2(r)d(r) = T(r)d(G) where d(r) is the dimension of the representation r. The adjoint

representation is denoted by G. For the reader’s convenience we list in Table II the explicit

group factors for the representations used here. A complete list of all of the group factors

for any representation and the way to compute them is available in Table II of [3] and the

associated appendix [84]. For Sp and SO gauge groups one can read off the group factors

in [7].

One should note that the beta function is given in terms of the anomalous dimension

of the fermion mass γ = −d ln m
d lnµ where m is the renormalized mass, similar to the super-

symmetric case [68, 69, 70]. Indeed the construction of the above beta function is inspired

by the one of their supersymmetric cousin theories. At small coupling it coincides with
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the two-loop beta function and in the non-perturbative regime reproduces earlier known

exact results. Similar to the supersymmetric case it allows for a bound of the conformal

window [71]. In the supersymmetric case where additional checks can be made the bound

is actually believed to give the true conformal window. We stress that the predictions of

the conformal window coming from the above beta function are nontrivially supported

by all the recent lattice results [44, 45, 46, 47, 51, 52, 59].

2 4 6 8 10 12 14 16 18
2

3

4

5

6

7

N f

N

FIG. 1: Phase diagram for non-supersymmetric theories with fermions in the: i) fundamental

representation (black), ii) two-indexed antisymmetric representation (blue), iii) two-indexed sym-

metric representation (red), iv) adjoint representation (green) as a function of the number of colors

and number of flavors. The shaded areas depict the corresponding conformal windows stem-

ming from the all-orders beta function. To the right of the shaded ares the theories are no longer

asymptotically free while to the left of the shaded areas the theories are expected to break chiral

symmetry.

Let us review the case of a single representation. The loss of asymptotic freedom occurs

when the first coefficient of the beta function changes sign

11C2(G) = 4T(r)N f (r) . (3)

For a given representation this determines the critical number of colors as a function of

the number of flavors at which asymptotic freedom is lost. Second we note that at the
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zero of the beta function we have

γ =
11C2(G) − 4T(r)N f (r)

2T(r)N f (r)
. (4)

Therefore specifying the value of the anomalous dimensions at the infrared fixed point

yields the last constraint needed to construct the conformal window. Having reached

the zero of the beta function the theory is conformal in the infrared. For a theory to be

conformal the dimension of the non-trivial spinless operators must be larger than one in

order to not contain negative norm states [72, 73, 74]. Since the dimension of the chiral

condensate is 3 − γ we see that γ = 2 yields the maximum possible bound [85]

11C2(G) = 8T(r)N f (r) . (5)

For a given representation this determines the critical number of color as a function of

the minimum number of flavors for which an infrared fixed point can be reached. At

this point one would have reported the graphical representation of the various conformal

windows by keeping the number of flavors on the vertical axis and the number of colors

on the horizontal axis. Given that we have in mind to generalize this bi-dimensional

representation to the case of one more representation it is more convenient to draw it

from the beginning with the number of colors on the vertical axis. This is summarized in

Fig. 1 where we used equations (3) and (5).

III. MOVING IN THE HOUSE

Let us now generalize to multiple representations. First, the loss of asymptotic freedom

is determined by the change of sign in the first coefficient of the beta function. This occurs

when
k∑

i=1

4
11

T(ri)N f (ri) = C2(G) . (6)

Second, we note that at the zero of the beta function we have

k∑
i=1

2
11

T(ri)N f (ri)
(
2 + γi

)
= C2(G) . (7)

Therefore specifying the value of the anomalous dimensions at the infrared fixed point

yields the last constraint needed to construct the conformal region. Having reached the
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zero of the beta function the theory is conformal in the infrared. For a theory to be

conformal the dimension of the non-trivial spinless operators must be larger than one in

order to not contain negative norm states [72, 73, 74]. Since the dimension of each chiral

condensate is 3 − γi we see that γi = 2, for all representations ri, yields the maximum

possible bound

k∑
i=1

8
11

T(ri)N f (ri) = C2(G) . (8)

For two distinct representations the conformal region is a three dimensional volume,

i.e. the conformal house. The windows of the house correspond exactly to the conformal

windows presented in the previous section. In Fig. 2 we plot the bound of the conformal

volume in the case of fundamental and adjoint fermions. For completeness we also

F-Adj
0

3
6

9
12

15

N f @FD

0
1

2
3

N f @GD

2

4

6

8

10

N

FIG. 2: The conformal house for a non-supersymmetric gauge theory containing fundamental and

adjoint fermions. To the right of the right surface the theories are non-asymptotically free while

to the left of the left surface the theories break chiral symmetry. Between the two surfaces the

theories can develop an infrared fixed point.

plot below in Fig. 3 the bound on the conformal house with one species of fermions in

the fundamental representation and the other in the two-index (anti)symmetric in the

(right)left panel. We consider only two-index representations in Fig. 4, more specifically

we consider the adjoint representation together with the two-index (anti)symmetric in

the 4 (right) left panel. Note that to the right of the right surface the theories are non-

asymptotically free while to the left of the left surface the theories break chiral symmetry.
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Between the two surfaces the theories can develop an infrared fixed point. Finally in

F-2S
0 3 6 9

12
15

N f @FD

0
1

2
3

4

N f @2SD

2

4

6

8

10

N
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0
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6

9
12

15

N f @FD

0 1 2 3 4 5 6 7 8

N f @2AD

3
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7
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N

FIG. 3: The conformal house for a non-supersymmetric gauge theory containing fermions in the

fundamental and two-indexed symmetric representations (left) and in the fundamental and two-

indexed antisymmetric representations (right).
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2
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N

FIG. 4: The conformal house for a non-supersymmetric gauge theory containing fermions in the

adjoint and two-indexed symmetric representations (left) and in the adjoint and two-indexed

antisymmetric representations (right).

Fig. 5 we consider the last case in which one representation corresponds to the two-index

symmetric and the other one is the two-index antisymmetric.
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FIG. 5: The conformal house for a non-supersymmetric gauge theory containing fermions in the

two-indexed symmetric and two-indexed antisymmetric representations.

IV. MOVING OUT

Consider again an SU(N) gauge theory with N f (rψ) and N f (rξ) fermionic Dirac flavors

in the representation rψ and rξ respectively. Also assume that we have chosen the number

of flavors in such a way that the theory is conformal in the infrared. Let us first define

with ΛU the scale for which the coupling constant, as we increase the energy, drops by

2/3 of the fixed point value.

Following the single representation case [25] we shall add a small mass term for each

of the fermions and study the behavior of the associated condensates. Denote by ψ fψ
cψ , ψ̃cψ

fψ
,

ξ
fξ
cξ and ξ̃

cξ
fξ

four left transforming Weyl fermions. They are the components of the two

Dirac fermions (ψ, ¯̃ψ) and (ξ, ¯̃ξ) belonging to the representations rψ and rξ respectively.

Here cψ and cξ represent the color indices while fψ and fξ represent the flavor indices. The

two mass operators are:

−mψΛ
γψ
U Tr

[
Oψ̃ψ

]
−mξΛ

γξ
U Tr

[
Oξ̃ξ

]
+ h.c. , (9)

with mψ and mξ being the respective fermion masses and

Oψ̃ψ

f ′ψ
fψ

= ψ̃ f ′ψψ fψ , Oξ̃ξ

f ′ξ
fξ

= ξ̃ f ′ξξ fξ , (10)

are gauge singlet operators of dimension dψ̃ψ = 3 − γψ and dξ̃ξ = 3 − γξ respectively. Also

γψ and γξ are the anomalous dimensions of the respective mass terms. As shown above
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they are both positive numbers less than two at the fixed point. Note that it is reasonable

to keep the leading term in m/ΛU since we are working in the small mass approximation.

We first define the following two flavor singlet operators Oψ and Oξ via Tr
[
Oψ̃ψ

]
=

N f (rψ)Oψ and Tr
[
Oξ̃ξ

]
= N f (rξ)Oξ. For a conformal theory there are no mass terms and

the spectrum is continuous. However having explicitly introduced small quark masses

conformal and chiral symmetry break and a discrete spectrum emerges. We expand 〈Oψ〉

and 〈Oξ〉 in terms of orthornormal single particle states

Oψ(x) =

∞∑
n=1

anδn(x) , Oξ(x) =

∞∑
n=1

bnρn(x) . (11)

Let the discrete tower of massive states be dictated by two mass gaps ∆ψ and ∆ξ in such

a way that the spectrum is spaced according to

M2
ψ,n = ∆2

ψn , M2
ξ,n = ∆2

ξn , (12)

with n an integer number [14]. One can choose another spectral decomposition without

altering our results [7, 14, 23]. The expansion coefficients can then be written as

a2
n = Fdψ̃ψ∆

2
ψ

(
M2

ψ,n

)dψ̃ψ−2
, b2

n = Fdξ̃ξ∆
2
ξ

(
M2

ξ,n

)dξ̃ξ−2
(13)

where Fdψ̃ψ and Fdξ̃ξ are functions depending on the dimensions of the two operators and

the underlying gauge dynamics. Having replaced the continuous spectrum with a tower

of massive single particle states and due to the fictitious mass terms the potential becomes

V = mψΛ
γψ
U N f (rψ)

∞∑
n=1

anδn + mξΛ
γξ
U N f (rξ)

∞∑
n=1

bnρn + h.c.

+

∞∑
n=1

M2
ψ,nδ̄nδn +

∞∑
n=1

M2
ξ,nρ̄nρn . (14)

Minimizing the potential we find

〈δn〉 = −m̄ψΛ
γψ
U N f (rψ)

an

M2
ψ,n

, 〈ρn〉 = −m̄ξΛ
γξ
U N f (rξ)

bn

M2
ξ,n

, (15)

from which we easily deduce

〈Oψ〉 = −m̄ψΛ
γψ
U N f (rψ)Fdψ̃ψ

∞∑
n=1

(
∆2
ψn

)−γψ
∆2
ψ , (16)

〈Oξ〉 = −m̄ξΛ
γξ
U N f (rξ)Fdξ̃ξ

∞∑
n=1

(
∆2
ξn

)−γξ
∆2
ξ . (17)
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Note that we have written the two sums in a suggestive way. Taking the limit when

the artificial mass gaps approach zero the sums become integrals which are evaluated to

yield

〈Oψ〉 = −m̄ψΛ
γψ
U N f (rψ)Fdψ̃ψΩψ [ΛUV,ΛIR] , (18)

〈Oξ〉 = −m̄ξΛ
γξ
U N f (rξ)Fdξ̃ξΩξ [ΛUV,ΛIR] , (19)

with

Ωi [ΛUV,ΛIR] =
1

1 − γi

[
Λ

2(1−γi)
UV −Λ

2(1−γi)
IR

]
, i = ψ, ξ . (20)

The ultraviolet and infrared cutoffs are introduced to tame the integral in the respective

regions. A simple physical interpretation of these cutoffs is the following. At very high

energies, at scales above ΛU, the underlying theory flows to the ultraviolet fixed point and

we have to abandon the description in terms of the composite operator. This immediately

suggests that ΛUV is naturally identified with ΛU. The presence of the mass terms induce

mass gaps, which are the quantities we are trying to determine. It is hence natural to

identify t the infrared cutoff ΛIR with with a linear combination of |〈Oψ〉|
1

3−γψ and |〈Oξ〉|
1

3−γξ .

We take simply ΛIR ∼ |〈Oψ〉|
1

3−γψ + |〈Oξ〉|
1

3−γξ . In this way if any of the two condensates

vanishes the other will cut off the infrared divergence when needed.

Recalling the relations 〈ψ̃ψ〉 ∼ Λ
γψ
U 〈Oψ〉 and 〈ξ̃ξ〉 ∼ Λ

γξ
U 〈Oξ〉 we find the following

dependences on the masses and anomalous dimensions of the two wanted condensates:

0 < γψ < 1:

〈ψ̃ψ〉 ∝ −mψΛ2
U , (21)

〈ξ̃ξ〉 ∝ −mξΛ
2
U , 0 < γξ < 1 , (22)

〈ξ̃ξ〉 ∝ −mξΛ
2
U log

(
ΛU

ΛIR

)2

, γξ → 1 , (23)

〈ξ̃ξ〉 ∝ −mξΛ
2
IR

(
ΛU

ΛIR

)2γξ
, 1 < γξ < 2 . (24)

where ΛIR is function of the condensates itself, i.e. ΛIR

[
〈ξ̃ξ〉, 〈ψ̃ψ〉

]
and one has to solve

the last two equations numerically.
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γψ → 1:

〈ψ̃ψ〉 ∝ −mψΛ2
U log

Λ2
U

Λ2
IR

, (25)

〈ξ̃ξ〉 ∝ −mξΛ
2
U , 0 < γξ < 1 , (26)

〈ξ̃ξ〉 ∝
mξ

mψ
〈ψ̃ψ〉 , γξ → 1 , (27)

〈ξ̃ξ〉 ∝ −mξΛ
2
IR

(
ΛU

ΛIR

)2γξ
, 1 < γξ < 2 . (28)

The case 1 < γψ < 2 can be deduced from the case 0 < γψ < 1 with ξ replaced by ψ in

all the equations.

The effect of the mass terms and the associated condensates is to break the conformal

symmetry and some of the global symmetries. However there is a U(1) global classical

symmetry which is always broken by quantum corrections and we are interested on its

effects on the conformal region. The original investigation for a single representation

was first performed in [24]. In general the anomaly free global symmetry of the massless

theory depends on the representation to which the two species of fermions belong and

can be written as Gψ × Gξ × U(1). Only ψ̃ and ψ are charged under Gψ while only ξ̃ and

ξ are charged under Gξ. More specifically if ψ̃ and ψ belong to a complex representation

we have Gψ = SU(N f (rψ))× SU(N f (rψ))×U(1) while if they belong to a real or pseudoreal

representation Gψ = SU(2N f (rψ)). The same is true for the other set of fermions ξ̃ and ξ.

What is relevant here it the abelian U(1) symmetry under which all the fermions are

charged. It is anomaly free provided the charge Q of the fermions is

Q
[
ψ̃, ψ

]
=

T(rξ)
N f (rψ)

, Q
[
ξ̃, ξ

]
= −

T(rψ)
N f (rξ)

. (29)

Following [24] we take the effects of instantons into account by adding the following term

to the potential

αN f (rψ)Λ4
U

detOψ̃ψ
(
detOξ̃ξ

) T(rξ)
T(rψ)

Λ
dψ̃ψN f (rψ)

U Λ
dξ̃ξÑ f (rξ)
U

+ βN f (rξ)Λ4
U

(
detOψ̃ψ

) T(rψ)

T(rξ) detOξ̃ξ

Λ
dψ̃ψÑ f (rψ)

U Λ
dξ̃ξN f (rξ)
U

+ h.c. , (30)

where we have defined Ñ f (rψ) = N f (rψ)T(rψ)
T(rξ) and Ñ f (rξ) = N f (rξ)

T(rξ)
T(rψ) . The new term in the

Lagrangian is invariant under the intact global symmetry and in the limit N f (rψ)→ 0 (or

N f (rξ) → 0) we recover the instanton induced effective Lagrangian operator introduced
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for the single representation case in [24]. Adding the above instanton induced term to

(14) and making the standard ansatz 〈Oψ̃ψ〉 = 〈Oψ〉1Nf(rψ)×Nf(rψ) and 〈Oξ̃ξ〉 = 〈Oξ〉1Nf(rξ)×Nf(rξ)

the extrema of the potential are at:

〈Oψ〉 = −Fdψ̃ψ

[
N̄ψ + Āψ〈Oψ〉

N f (rψ)−1
〈Oξ〉

Ñ f (rξ) + B̄ψ〈Oψ〉Ñ f (rψ)−1
〈Oξ〉

N f (rξ)
]
Ωψ , (31)

〈Oξ〉 = −Fdξ̃ξ

[
N̄ξ + Āξ〈Oψ〉

N f (rψ)
〈Oξ〉

Ñ f (rξ)−1 + B̄ξ〈Oψ〉Ñ f (rψ)
〈Oξ〉

N f (rξ)−1
]
Ωξ , (32)

where we have taken the limit ∆2
ψ,∆

2
ξ → 0. Also the coefficients are

N̄i = m̄iΛ
γi
UN f (ri) , (33)

Āi = ᾱN f (rψ)N f (ri)
T(ri)
T(rψ)

Λ
4−dψ̃ψN f (rψ)−dξ̃ξÑ f (rξ)

U , (34)

B̄i = β̄N f (ri)N f (rξ)
T(ri)
T(rξ)

Λ
4−dξ̃ξN f (rξ)−dψ̃ψÑ f (rψ)

U , (35)

where i = ψ, ξ. We shall solve the above two coupled equations in various limits. We,

of course, recover the previous results when there is no instanton contribution Āi = B̄i =

0, i = ψ, ξ

〈Oψ〉 = −Fdψ̃ψN̄ψΩψ [ΛUV,ΛIR] , 〈Oξ〉 = −Fdξ̃ξN̄ξΩξ [ΛUV,ΛIR] . (36)

Another interesting limit is when the instanton terms dominate and the extrema equations

simplify to:

0 = N̄ψ + Āψ〈Oψ〉
N f (rψ)−1

〈Oξ〉
Ñ f (rξ) + B̄ψ〈Oψ〉Ñ f (rψ)−1

〈Oξ〉
N f (rξ) , (37)

0 = N̄ξ + Āξ〈Oψ〉
N f (rψ)
〈Oξ〉

Ñ f (rξ)−1 + B̄ξ〈Oψ〉Ñ f (rψ)
〈Oξ〉

N f (rξ)−1 . (38)

These equations cannot be solved in general. Note that the factorFΩ drops out. Whether

the α or β term will dominate depends on the specific representations. Using the fact

that dψ̃ψ, dξ̃ξ > 1 at the infrared fixed point the dimension of the α term is lower than the

dimension of the β term if T(rψ) > T(rξ). Therefore in the instanton dominated (ID) limit

[25] and assuming T(rψ) > T(rξ) we find the following approximate solutions

〈ψ̃ψ〉ID ∝
[
m1−Ñ f (rξ)
ψ mÑ f (rξ)

ξ Λ
3(N f (rψ)+Ñ f (rξ))−4
U

] 1
N f (rψ)+Ñ f (rξ)−1

, (39)

〈ξ̃ξ〉ID ∝
[
mN f (rψ)
ψ m1−N f (rψ)

ξ Λ
3(N f (rψ)+Ñ f (rξ))−4
U

] 1
N f (rψ)+Ñ f (rξ)−1

. (40)

The result above nicely reproduces the one in [25] in case of a single representation and

illustrates that one cannot neglect the instantons when the mass operator becomes large.
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Conversely at very small masses one can neglect the instanton contribution when analyz-

ing the effects on the conformal dynamics also in the case of multiple representations.

The effects of these terms are, nevertheless, important on the chiral dynamics since

they are needed to give masses to pseudogoldstone bosons associated to the anomalous

U(1) symmetry when the theory is used to describe (near) conformal technicolor.

In the discussion above we restricted ourselves to consider complex representations

for the two fermion species. This choice, unfortunately, automatically excludes a wide

class of theories from the analysis. To address this issue we generalize the potential and

the extrema conditions for the case of one real and one pseudoreal representation. This

is the case of the UMT model. To be specific we shall take rψ to be pseudoreal while rξ

is taken to be real. Then Oψ̃ψ and Oξ̃ξ become 2N f (rψ) × 2N f (rψ) and 2N f (rξ) × 2N f (rξ)

matrices respectively. The relevant mass terms are

−mψΛ
γψ
U Tr

[
Oψ̃ψEψ

]
−mξΛ

γξ
U Tr

[
Oξ̃ξEξ

]
+ h.c. (41)

while the instanton induced terms are

αN f (rψ)Λ4
U

Pf Oψ̃ψ
(
detOξ̃ξ

) T(rξ)
2T(rψ)

Λ
dψ̃ψN f (rψ)

U Λ
dξ̃ξÑ f (rξ)
U

+ βN f (rξ)Λ4
U

(
Pf Oψ̃ψ

) 2T(rψ)

T(rξ) detOξ̃ξ

Λ
2dψ̃ψÑ f (rψ)

U Λ
2dξ̃ξN f (rξ)
U

+ h.c. (42)

Here Pf is the Pfaffian and

Eψ =

 0N f (rψ)×N f (rψ) 1N f (rψ)×N f (rψ)

−1N f (rψ)×N f (rψ) 0N f (rψ)×N f (rψ)

 , Eξ =

 0N f (rξ)×N f (rξ) 1N f (rξ)×N f (rξ)

1N f (rξ)×N f (rξ) 0N f (rξ)×N f (rξ)

 (43)

Similar to the case of complex representations we define two flavor singlet operators via

Tr
[
Oψ̃ψEψ

]
= 2N f (rψ)Oψ and Tr

[
Oξ̃ξEξ

]
= 2N f (rξ)Oξ. Extremizing the above potential and

using 〈Oψ̃ψ〉 = −〈Oψ〉Eψ and 〈Oξ̃ξ〉 = 〈Oξ〉Eξ we find

〈Oψ〉 = −Fdψ̃ψ

[
N̄ψ + Āψ〈Oψ〉

N f (rψ)−1
〈Oξ〉

Ñ f (rξ) + B̄ψ〈Oψ〉2Ñ f (rψ)−1
〈Oξ〉

2N f (rξ)
]
Ωψ , (44)

〈Oξ〉 = −Fdξ̃ξ

[
N̄ξ + Āξ〈Oψ〉

N f (rψ)
〈Oξ〉

Ñ f (rξ)−1 + B̄ξ〈Oψ〉2Ñ f (rψ)
〈Oξ〉

2N f (rξ)−1
]
Ωξ , (45)

with

N̄i = 2m̄iΛ
γi
UN f (ri) , (46)

Āi = ᾱ (−1)
N f (rψ)(N f (rψ)−1)+Ñ f (rξ)

2 N f (rψ)N f (ri)
T(ri)
T(rψ)

Λ
4−dψ̃ψN f (rψ)−dξ̃ξÑ f (rξ)

U , (47)

B̄i = β̄2 (−1)
˜N f (rψ)(N f (rψ)−1)+N f (rξ) N f (ri)N f (rξ)

T(ri)
T(rξ)

Λ
4−2dξ̃ξN f (rξ)−2dψ̃ψÑ f (rψ)

U , (48)
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where i = ψ, ξ. Conclusions similar to the ones for complex representations can be drawn.

At this point it is straightforward to generalize the equations above to the case of one

complex and one (pseudo)real representation and investigate the effects of introducing a

source of strong CP violation [25] i.e. the θ angle.

V. CONCLUSIONS

We have investigated the gauge dynamics of nonsupersymmetric SU(N) gauge theo-

ries featuring the simultaneous presence of fermionic matter transforming according to

two distinct representations of the underlying gauge group. We constructed the confor-

mal house and shown that the sides of the houses reduce to the previously investigated

conformal windows. In other words the old conformal windows are now only part of the

house. The actual conformal house can be smaller but cannot be bigger than the one we

predicted here.

Our results can be used for walking technicolor as well as unparticle model building.

An explicit example is the Ultra Minimal Walking technicolor model which makes use of

two different matter representations and it has phenomenological applications relevant

to both LHC physics and cosmology.

[1] F. Sannino and K. Tuominen, “ Orientifold theory dynamics and symmetry breaking, ” Phys.

Rev. D 71, 051901 (2005) [arXiv:hep-ph/0405209].

[2] D. D. Dietrich, F. Sannino and K. Tuominen, “Light composite Higgs from higher represen-

tations versus electroweak precision measurements: Predictions for LHC,” Phys. Rev. D 72,

055001 (2005) [arXiv:hep-ph/0505059].

[3] D. D. Dietrich and F. Sannino, “ Conformal window of SU(N) gauge theories with fermions in

higher dimensional representations.” Phys. Rev. D 75, 085018 (2007) [arXiv:hep-ph/0611341].

The section on the light composite Higgs is only on the archive version of the paper.

[4] R. Foadi, M. T. Frandsen, T. A. Ryttov and F. Sannino, “Minimal Walking Technicolor: Set Up

for Collider Physics,” Phys. Rev. D 76, 055005 (2007) [arXiv:0706.1696 [hep-ph]].

18

http://arxiv.org/abs/hep-ph/0405209
http://arxiv.org/abs/hep-ph/0505059
http://arxiv.org/abs/hep-ph/0611341
http://arxiv.org/abs/0706.1696


[5] T. A. Ryttov and F. Sannino, “Ultra Minimal Technicolor and its Dark Matter TIMP,” Phys.

Rev. D 78, 115010 (2008) [arXiv:0809.0713 [hep-ph]].

[6] T. A. Ryttov and F. Sannino, “Supersymmetry Inspired QCD Beta Function,” Phys. Rev. D 78,

065001 (2008) [arXiv:0711.3745 [hep-th]].

[7] F. Sannino, “Conformal Windows of SP(2N) and SO(N) Gauge Theories,” arXiv:0902.3494

[hep-ph]. Published in Physical Review D.

[8] T. Appelquist and F. Sannino, “The Physical Spectrum of Conformal SU(N) Gauge Theories,”

Phys. Rev. D 59, 067702 (1999) [arXiv:hep-ph/9806409].

[9] M. Kurachi and R. Shrock, “Behavior of the S parameter in the crossover region between

walking and QCD-like regimes of an SU(N) gauge theory,” Phys. Rev. D 74, 056003 (2006)

[arXiv:hep-ph/0607231].

[10] D. K. Hong, S. D. H. Hsu and F. Sannino, “Composite Higgs from higher representations,”

Phys. Lett. B 597, 89 (2004) [arXiv:hep-ph/0406200].

[11] A. Doff and A. A. Natale, “Mass and width of a composite Higgs boson,” arXiv:0902.2379

[hep-ph].

[12] A. Doff, A. A. Natale and P. S. Rodrigues da Silva, “Light composite Higgs from an effective

action for technicolor,” Phys. Rev. D 77, 075012 (2008) [arXiv:0802.1898 [hep-ph]].

[13] A. Doff, A. A. Natale and P. S. R. da Silva, “Light composite Higgs boson from the normalized

Bethe-Salpeter equation,” arXiv:0905.2981 [hep-ph].

[14] M. A. Stephanov, “Deconstruction of Unparticles,” Phys. Rev. D 76, 035008 (2007)

[arXiv:0705.3049 [hep-ph]].

[15] E. Eichten and K. D. Lane, “Dynamical Breaking Of Weak Interaction Symmetries,” Phys.

Lett. B 90, 125 (1980).

[16] B. Holdom, “Raising The Sideways Scale,” Phys. Rev. D 24, 1441 (1981).

[17] K. Yamawaki, M. Bando and K. i. Matumoto, “Scale Invariant Technicolor Model And A

Technidilaton,” Phys. Rev. Lett. 56, 1335 (1986).

[18] T. W. Appelquist, D. Karabali and L. C. R. Wijewardhana, “Chiral Hierarchies and the Flavor

Changing Neutral Current Problem in Technicolor,” Phys. Rev. Lett. 57, 957 (1986).

[19] H. Georgi, “Unparticle Physics,” Phys. Rev. Lett. 98, 221601 (2007) [arXiv:hep-ph/0703260].

[20] H. Georgi, “Another Odd Thing About Unparticle Physics,” Phys. Lett. B 650, 275 (2007)

[arXiv:0704.2457 [hep-ph]].

19

http://arxiv.org/abs/0809.0713
http://arxiv.org/abs/0711.3745
http://arxiv.org/abs/0902.3494
http://arxiv.org/abs/hep-ph/9806409
http://arxiv.org/abs/hep-ph/0607231
http://arxiv.org/abs/hep-ph/0406200
http://arxiv.org/abs/0902.2379
http://arxiv.org/abs/0802.1898
http://arxiv.org/abs/0905.2981
http://arxiv.org/abs/0705.3049
http://arxiv.org/abs/hep-ph/0703260
http://arxiv.org/abs/0704.2457


[21] H. Georgi and Y. Kats, “An Unparticle Example in 2D,” Phys. Rev. Lett. 101, 131603 (2008)

[arXiv:0805.3953 [hep-ph]].

[22] H. Georgi and Y. Kats, “Unparticle self-interactions,” arXiv:0904.1962 [hep-ph].

[23] F. Sannino and R. Zwicky, “Unparticle & Higgs as Composites,” arXiv:0810.2686 [hep-ph].

[24] F. Sannino, “Dynamical Stabilization of the Fermi Scale: Phase Diagram of Strongly Coupled

Theories for (Minimal) Walking Technicolor and Unparticles,” arXiv:0804.0182 [hep-ph].

[25] F. Sannino, “Conformal Chiral Dynamics,” arXiv:0811.0616 [hep-ph].

[26] T. Appelquist and S. B. Selipsky, “Instantons and the chiral phase transition,” Phys. Lett. B

400, 364 (1997) [arXiv:hep-ph/9702404].

[27] T. A. Ryttov and F. Sannino, “Conformal Windows of SU(N) Gauge Theories, Higher Dimen-

sional Representations and The Size of The Unparticle World,” Phys. Rev. D 76, 105004 (2007)

[arXiv:0707.3166 [hep-th]].

[28] A. Belyaev, R. Foadi, M. T. Frandsen, M. Jarvinen, F. Sannino and A. Pukhov, “Technicolor

Walks at the LHC,” arXiv:0809.0793 [hep-ph].

[29] N. D. Christensen and R. Shrock, “Technifermion representations and precision electroweak

constraints,” Phys. Lett. B 632, 92 (2006) [arXiv:hep-ph/0509109].

[30] S. B. Gudnason, T. A. Ryttov and F. Sannino, “Gauge coupling unification via a novel techni-

color model,” Phys. Rev. D 76, 015005 (2007) [arXiv:hep-ph/0612230].

[31] D. D. Dietrich and M. Jarvinen, “Pion masses in quasiconformal gauge field theories,”

arXiv:0901.3528 [hep-ph].

[32] S. Nussinov, “Technocosmology: Could A Technibaryon Excess Provide A ’Natural’ Missing

Mass Candidate?,” Phys. Lett. B 165, 55 (1985).

[33] S. M. Barr, R. S. Chivukula and E. Farhi, “Electroweak fermion number violation and the

production of stable particles in the early universe,” Phys. Lett. B 241, 387 (1990).

[34] R. Foadi, M. T. Frandsen and F. Sannino, “Technicolor Dark Matter,” arXiv:0812.3406 [hep-ph].

[35] E. Nardi, F. Sannino and A. Strumia, “Decaying Dark Matter can explain the electron/positron

excesses,” JCAP 0901, 043 (2009) [arXiv:0811.4153 [hep-ph]].

[36] S. B. Gudnason, C. Kouvaris and F. Sannino, “Dark Matter from new Technicolor Theories,”

Phys. Rev. D 74, 095008 (2006) [arXiv:hep-ph/0608055].

[37] K. Kainulainen, K. Tuominen and J. Virkajarvi, “The WIMP of a minimal technicolor theory,”

Phys. Rev. D 75, 085003 (2007) [arXiv:hep-ph/0612247].

20

http://arxiv.org/abs/0805.3953
http://arxiv.org/abs/0904.1962
http://arxiv.org/abs/0810.2686
http://arxiv.org/abs/0804.0182
http://arxiv.org/abs/0811.0616
http://arxiv.org/abs/hep-ph/9702404
http://arxiv.org/abs/0707.3166
http://arxiv.org/abs/0809.0793
http://arxiv.org/abs/hep-ph/0509109
http://arxiv.org/abs/hep-ph/0612230
http://arxiv.org/abs/0901.3528
http://arxiv.org/abs/0812.3406
http://arxiv.org/abs/0811.4153
http://arxiv.org/abs/hep-ph/0608055
http://arxiv.org/abs/hep-ph/0612247


[38] C. Kouvaris, “Dark Majorana Particles from the Minimal Walking Technicolor,” Phys. Rev. D

76, 015011 (2007) [arXiv:hep-ph/0703266].

[39] J. M. Cline, M. Jarvinen and F. Sannino, “The Electroweak Phase Transition in Nearly Con-

formal Technicolor,” Phys. Rev. D 78, 075027 (2008) [arXiv:0808.1512 [hep-ph]].

[40] Y. Kikukawa, M. Kohda and J. Yasuda, “First-order restoration of SU(Nf) x SU(Nf) chiral

symmetry with large Nf and Electroweak phase transition,” Phys. Rev. D 77, 015014 (2008)

[arXiv:0709.2221 [hep-ph]].

[41] C. Kouvaris, “The Dark Side of Strong Coupled Theories,” Phys. Rev. D 78, 075024 (2008)

[arXiv:0807.3124 [hep-ph]].

[42] M. Jarvinen, T. A. Ryttov and F. Sannino, “Extra Electroweak Phase Transitions from Strong

Dynamics,” arXiv:0901.0496 [hep-ph].

[43] O. Antipin and K. Tuominen, “Discriminating between technicolor and warped extra dimen-

sional model via pp→ ZZ channel,” arXiv:0901.4243 [hep-ph].

[44] S. Catterall and F. Sannino, “Minimal walking on the lattice,” Phys. Rev. D 76, 034504 (2007)

[arXiv:0705.1664 [hep-lat]].

[45] S. Catterall, J. Giedt, F. Sannino and J. Schneible, “Phase diagram of SU(2) with 2 flavors of

dynamical adjoint quarks,” JHEP 0811, 009 (2008) [arXiv:0807.0792 [hep-lat]].

[46] Y. Shamir, B. Svetitsky and T. DeGrand, “Zero of the discrete beta function in SU(3) lattice

gauge theory with color sextet fermions,” Phys. Rev. D 78, 031502 (2008) [arXiv:0803.1707

[hep-lat]].

[47] L. Del Debbio, M. T. Frandsen, H. Panagopoulos and F. Sannino, “Higher representations on

the lattice: perturbative studies,” JHEP 0806, 007 (2008) [arXiv:0802.0891 [hep-lat]].

[48] L. Del Debbio, A. Patella and C. Pica, “Higher representations on the lattice: numerical

simulations. SU(2) with adjoint fermions,” arXiv:0805.2058 [hep-lat].

[49] A. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, “Spectrum of SU(2) gauge

theory with two fermions in the adjoint representation,” PoS LATTICE2008, 065 (2008)

[arXiv:0810.3722 [hep-lat]].

[50] A. J. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, “Spectrum of SU(2) lattice

gauge theory with two adjoint Dirac flavours,” JHEP 0905, 025 (2009) [arXiv:0812.1467 [hep-

lat]].

[51] T. Appelquist, G. T. Fleming and E. T. Neil, “Lattice Study of the Conformal Window in

21

http://arxiv.org/abs/hep-ph/0703266
http://arxiv.org/abs/0808.1512
http://arxiv.org/abs/0709.2221
http://arxiv.org/abs/0807.3124
http://arxiv.org/abs/0901.0496
http://arxiv.org/abs/0901.4243
http://arxiv.org/abs/0705.1664
http://arxiv.org/abs/0807.0792
http://arxiv.org/abs/0803.1707
http://arxiv.org/abs/0802.0891
http://arxiv.org/abs/0805.2058
http://arxiv.org/abs/0810.3722
http://arxiv.org/abs/0812.1467


QCD-like Theories,” Phys. Rev. Lett. 100, 171607 (2008) [arXiv:0712.0609 [hep-ph]].

[52] A. Deuzeman, M. P. Lombardo and E. Pallante, “The physics of eight flavours,” Phys. Lett. B

670, 41 (2008) [arXiv:0804.2905 [hep-lat]].

[53] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, “Probing technicolor theories

with staggered fermions,” arXiv:0809.4890 [hep-lat].

[54] L. Del Debbio, A. Patella and C. Pica, “Fermions in higher representations. Some results about

SU(2) with adjoint fermions,” arXiv:0812.0570 [hep-lat].

[55] T. DeGrand, Y. Shamir and B. Svetitsky, “Phase structure of SU(3) gauge theory with two fla-

vors of symmetric-representation fermions,” Phys. Rev. D 79, 034501 (2009) [arXiv:0812.1427

[hep-lat]].

[56] T. Appelquist, G. T. Fleming and E. T. Neil, “Lattice Study of Conformal Behavior in SU(3)

Yang-Mills Theories,” arXiv:0901.3766 [hep-ph].

[57] A. J. Hietanen, K. Rummukainen and K. Tuominen, “Evolution of the coupling constant in

SU(2) lattice gauge theory with two adjoint fermions,” arXiv:0904.0864 [hep-lat].

[58] A. Deuzeman, M. P. Lombardo and E. Pallante, “Evidence for a conformal phase in SU(N)

gauge theories,” arXiv:0904.4662 [hep-ph].

[59] B. Lucini and G. Moraitis, “Determination of the running coupling in pure SU(4) Yang-Mills

theory,” PoS LAT2007, 058 (2007) [arXiv:0710.1533 [hep-lat]].

[60] J. Hirn, A. Martin and V. Sanz, “Describing viable technicolor scenarios,” Phys. Rev. D 78,

075026 (2008) [arXiv:0807.2465 [hep-ph]].

[61] D. D. Dietrich and C. Kouvaris, “Constraining vectors and axial-vectors in walking techni-

colour by a holographic principle,” Phys. Rev. D 78, 055005 (2008) [arXiv:0805.1503 [hep-ph]].

[62] C. Nunez, I. Papadimitriou and M. Piai, “Walking Dynamics from String Duals,”

arXiv:0812.3655 [hep-th].

[63] O. Mintakevich and J. Sonnenschein, “Holographic technicolor models and their S-

parameter,” arXiv:0905.3284 [hep-th].

[64] T. Appelquist, K. D. Lane and U. Mahanta, “On the ladder approximation for spontaneous

chiral symmetry breaking,” Phys. Rev. Lett. 61, 1553 (1988).

[65] A. G. Cohen and H. Georgi, “Walking Beyond The Rainbow,” Nucl. Phys. B 314, 7 (1989).

[66] V. A. Miransky and K. Yamawaki, “Conformal phase transition in gauge theories,” Phys. Rev.

D 55, 5051 (1997) [Erratum-ibid. D 56, 3768 (1997)] [arXiv:hep-th/9611142].

22

http://arxiv.org/abs/0712.0609
http://arxiv.org/abs/0804.2905
http://arxiv.org/abs/0809.4890
http://arxiv.org/abs/0812.0570
http://arxiv.org/abs/0812.1427
http://arxiv.org/abs/0901.3766
http://arxiv.org/abs/0904.0864
http://arxiv.org/abs/0904.4662
http://arxiv.org/abs/0710.1533
http://arxiv.org/abs/0807.2465
http://arxiv.org/abs/0805.1503
http://arxiv.org/abs/0812.3655
http://arxiv.org/abs/0905.3284
http://arxiv.org/abs/hep-th/9611142


[67] T. Appelquist, A. G. Cohen and M. Schmaltz, “A new constraint on strongly coupled field

theories,” Phys. Rev. D 60, 045003 (1999) [arXiv:hep-th/9901109].

[68] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, “Exact Gell-Mann-Low

Function Of Supersymmetric Yang-Mills Theories From Instanton Calculus,” Nucl. Phys. B

229, 381 (1983).

[69] M. A. Shifman and A. I. Vainshtein, “Solution of the Anomaly Puzzle in SUSY Gauge Theories

and the Wilson Operator Expansion,” Nucl. Phys. B 277, 456 (1986) [Sov. Phys. JETP 64, 428

(1986 ZETFA,91,723-744.1986)].

[70] D. R. T. Jones, “More On The Axial Anomaly In Supersymmetric Yang-Mills Theory,” Phys.

Lett. B 123, 45 (1983).

[71] N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge theories,” Nucl.

Phys. B 435, 129 (1995) [arXiv:hep-th/9411149].

[72] G. Mack, “All Unitary Ray Representations Of The Conformal Group SU(2,2) With Positive

Energy,” Commun. Math. Phys. 55, 1 (1977).

[73] M. Flato and C. Fronsdal, “Representations Of Conformal Supersymmetry,” Lett. Math. Phys.

8, 159 (1984).

[74] V. K. Dobrev and V. B. Petkova, “All Positive Energy Unitary Irreducible Representations Of

Extended Conformal Supersymmetry,” Phys. Lett. B 162, 127 (1985).

[75] T. Banks and A. Zaks, “On The Phase Structure Of Vector-Like Gauge Theories With Massless

Fermions,” Nucl. Phys. B 196, 189 (1982).

[76] H. Pagels, “Departures From Chiral Symmetry: A Review,” Phys. Rept. 16, 219 (1975).

[77] R. Fukuda and T. Kugo, “Schwinger-Dyson Equation For Massless Vector Theory And Ab-

sence Of Fermion Pole,” Nucl. Phys. B 117, 250 (1976).

[78] T. Appelquist, A. G. Cohen, M. Schmaltz and R. Shrock, “New constraints on chiral gauge

theories,” Phys. Lett. B 459, 235 (1999) [arXiv:hep-th/9904172].

[79] T. Appelquist, Z. y. Duan and F. Sannino, “Phases of chiral gauge theories,” Phys. Rev. D 61,

125009 (2000) [arXiv:hep-ph/0001043].

[80] E. Witten, “An SU(2) anomaly,” Phys. Lett. B 117, 324 (1982).

[81] T. Appelquist, J. Terning and L. C. R. Wijewardhana, “Postmodern technicolor,” Phys. Rev.

Lett. 79, 2767 (1997) [arXiv:hep-ph/9706238].

[82] T. Appelquist, A. Nyffeler and S. B. Selipsky, “Analyzing chiral symmetry breaking in super-

23

http://arxiv.org/abs/hep-th/9901109
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-th/9904172
http://arxiv.org/abs/hep-ph/0001043
http://arxiv.org/abs/hep-ph/9706238


symmetric gauge theories,” Phys. Lett. B 425, 300 (1998) [arXiv:hep-th/9709177].

[83] We do not consider super QCD a theory with higher dimensional representations.

[84] The normalization for the generators here is different than the one adopted in [3].

[85] Note that γ ≤ 2 is an exact bound [72, 73, 74], i.e. does not depend on model computations. If

it turns out that dynamically a smaller value of γ actually delimits the conformal window this

value must be less than 2 and hence does not affect our results on the bound of the conformal

windows.

24

http://arxiv.org/abs/hep-th/9709177

	Contents
	Introduction
	Turning the Window Upside Down
	 Moving in the House
	Moving out
	Conclusions
	References

