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1. Introduction

The earliest models of technicolor [1, 2] have problems with the electroweak (EW) precision

data [3, 4, 5, 6]. Technicolor models must be extended in order to give mass to the

standard model (SM) fermions [7, 8]. In these extensions one, typically, expects potentially

large flavor changing neutral current (FCNC) processes. Using near conformal dynamics

alleviates the FCNC problem [9, 10, 11]. For over a decade it was hoped that such a near

conformal dynamics could strongly reduce the tension with precision data even if one had

a large number of technidoublets gauged under the electroweak (EW) symmetry. However

very recently it has been shown [12, 13, 14] that to be phenomenologically viable the near

conformal models should contain the most minimal number of flavors gauged under the

EW symmetry.

The simplest models of this type which are shown to pass the precision tests, or have

the smallest deviation from the precision data, while still providing a (near) conformal

behavior were put forward recently in [15, 16, 17, 18, 19, 20, 22, 21]. Among these, the

Minimal Walking Technicolor (MWT) features the most economical particle content.
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In MWT the gauge group is SU(2)TC × SU(3)C × SU(2)L × U(1)Y and the field

content of the technicolor sector is constituted by two flavors of techni-fermions and one

techni-gluon all in the adjoint representation of SU(2)TC . The model features also a pair of

Dirac leptons, whose left-handed components are assembled in a weak doublet, necessary to

cancel the Witten anomaly [23] arising when gauging the new technifermions with respect

to the weak interactions.

The model requires, however, still additional ingredients in order to give mass to

the standard model (SM) fermions. For example, one may postulate the existence of an

Extended Technicolor (ETC) sector, traditionally featuring new gauge interactions linking

the SM fermions to the techniquarks, which can generate mass terms for the SM fermions

(as well as for the techni-mesons and -baryons) via a new dynamical mechanism. Interesting

developments recently appeared in the literature [24, 25, 26, 27, 28, 29]. Nonperturbative

chiral gauge theories dynamics is expected to play a relevant role in models of ETC since it

allows, at least in principle, the self breaking of the gauge symmetry. Recent progress on the

phase diagrams of these theories has appeared in [30]. Another alternative is to reintroduce

new bosons (bosonic technicolor) [31, 32, 33, 34, 35] able to give masses to the SM fermions

using standard Yukawa interactions. Eventhough these models are phenomenologically

viable, they suffer from a SM-like fine tuning and are therefore unnatural. Supersymmetric

technicolor has been considered [36, 37] as a way to naturalize bosonic technicolor. Another

possibility would be to imagine the new scalars also to be composite of some new strong

dynamics.

In [38] we made the observation that the techni-fermions and techni-gluons of the

Minimal Walking Technicolor fit perfectly in an N = 4 supermultiplet, provided that

we also include three scalar superpartners. In fact the SU(4) global symmetry of MWT

is nothing but the well known SU(4)R R symmetry of the N = 4 Super Yang Mills

(4SYM) theory. This is the global quantum symmetry that does not commute with the

supersymmetry transformations.

Supersymmetrizing MWT in this way leads to an approximate N = 4 supersymmetry

of the technicolor sector that is broken only by EW gauge and Yukawa interactions. Due

to approximate N = 4 invariance the beta function of the technicolor gauge coupling is

zero at one loop, i.e. the associated technicolor model is approximately conformal. We

called this model Minimal Supersymmetric Conformal Technicolor (MSCT).

This model can also be viewed as the first extension of the SM featuring maximal

supersymmetry in four dimensions when neglecting the EW gauging of the R-symmetry.

MSCT constitutes an interesting theoretical as well as phenomenological model to explore

since it naturally allows to investigate different regimes according to how strongly coupled

the maximally supersymmetric Yang-Mills theory is taken to be. In this phenomenological

work we analyze the situation in which such a theory is weakly coupled at the EW scale.

To determine the spectrum of the theory we first analyze the ground state and after-

wards compute the masses. We will show that at tree level all the states are massive except

for the lightest CP-even and -odd Higgses that will acquire mass at one loop.

We find that the physical spectrum is phenomenologically viable and can be investi-

gated for possible discovery at the Large Hadron Collider (LHC) and the Tevatron.

2



Particle Physics & Origin of Mass

CP  - Origins3

We have also analyzed the running of the gauge and Yukawa couplings and discov-

ered that the price to pay for having a heavier spectrum is to substantially shrink the

perturbative region, in energy, of the model associated with the Yukawa couplings.

The paper is organized as follows: We recall the model details in Section 2 and in 3

we impose the minimization conditions on the scalar potential and derive the additional

conditions for the stability of a non-trivial vacuum. In Section 4 we present the mass

spectrum of MSCT in the perturbative regime (pMSCT), including the one-loop correction

for the physical massless states, and finally in Section 5 we study the viability of pMSCT

based on these results.

2. The Model

The fermionic particle content of the MWT is given explicitly as

QaL =

(
Ua

Da

)
L

, UaR , Da
R, a = 1, 2, 3 ; LL =

(
N

E

)
L

, NR , ER , (2.1)

where U and D are techni-fermions in the adjoint representation of SU(2)TC , whose left-

handed components form a doublet under SU(2)L, and the chiral leptons required to

cancel the Witten anomaly are denoted by N and E. The following generic hypercharge

assignment is free from gauge anomalies:

Y (QL) =
y

2
, Y (UR, DR) =

(
y + 1

2
,
y − 1

2

)
,

Y (LL) =− 3
y

2
, Y (NR, ER) =

(
−3y + 1

2
,
−3y − 1

2

)
. (2.2)

The global symmetry of the technicolor theory, per se, is SU(4) which breaks explicitly to

SU(2)L×U(1)Y by the natural choice of the electroweak embedding [15, 17]. The vacuum

choice is stable against the SM quantum corrections [39].

To build MSCT we set y = 1 in Eqs. (2.2) so that D̄a
R is a singlet under EW symmetry

and can play the role of the techni-gaugino.1 We define the N = 4 supermultiplet in terms

N = 1 superfields, whose scalar and fermionic components are expressed by:(
ŨL, UL

)
∈ Φ1,

(
D̃L, DL

)
∈ Φ2,

(
˜̄UR, ŪR

)
∈ Φ3,

(
G, D̄R

)
∈ V, (2.3)

where we used a tilde to label the scalar superpartner of each fermion. We indicated with

Φi, i = 1, 2, 3 the three chiral superfields of 4SYM and with V the vector superfield. The

superfields associated with the remaining MWT fermions N and E are given by:(
ÑL, NL

)
∈ Λ1,

(
ẼL, EL

)
∈ Λ2,

(
˜̄NR, N̄R

)
∈ N,

(
˜̄ER, ĒR

)
∈ E. (2.4)

The quantum numbers of the superfields in Eqs.(2.3,2.4) and of those labeled by H and

H ′, which contain each a Higgs scalar weak doublet, are given in Table 1.

1In Section 5 we briefly comment on the alternative choice of y = −1.

3



Particle Physics & Origin of Mass

CP  - Origins3

Superfield SU(2)TC SU(3)c SU(2)L U(1)Y

Φ1,2 Adj 1 � 1/2

Φ3 Adj 1 1 -1

V Adj 1 1 0

Λ1,2 1 1 � -3/2

N 1 1 1 1

E 1 1 1 2

H 1 1 � 1/2

H ′ 1 1 � -1/2

Table 1: MSCT N = 1 superfields

The renormalizable lepton and baryon number2 conserving superpotential for the

MSCT is

P = PMSSM + PTC , (2.5)

where PMSSM is the minimal supersymmetric standard model (MSSM) superpotential,

and

PTC = − gTC
3
√

2
εijkε

abcΦa
iΦ

b
jΦ

c
k + yU εijΦ

a
iHjΦ

a
3 + yN εijΛiHjN + yEεijΛiH

′
jE + yREΦa

3Φa
3.

(2.6)

In the last equation Φa
i = Qai , i = 1, 2, with a the technicolor index. Gauge invariance

alone does not ensure the Yukawa coupling of the first term to be equal to gTC , however,

setting it to this value amounts to the N = 4 limit. We have also investigated in Appendix

C the independent running of a more general Yukawa coupling and shown that it tends

towards the gTC value at low energies. This result further justifies our choice to set it equal

to the technicolor gauge coupling itself.

The Lagrangian of the MSCT is

L = LMSSM + LTC , (2.7)

where the supertechnicolor Lagrangian LTC , by following the notation of Wess and Bagger

[40], can be written in the form:

LTC =
1

2
Tr
(
WαWα|θθ + W̄α̇W̄

α̇|θ̄θ̄
)

+ Φ†f exp (2gXVX) Φf |θθθ̄θ̄ + (PTC |θθ + h.c.) , (2.8)

In the last equation

Wα = − 1

4g
D̄D̄ exp (−2gV )Dα exp (2gV ) , V = V aT aA, (T aA)bc = −ifabc, (2.9)

and

Φf = Q,Φ3,Λ, N,E; X = TC,L, Y . (2.10)

2We assume all the superfields in Table 1 to have both lepton and baryon numbers equal to zero.
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The product gXVX is assumed to include the gauge charge of the superfield on which it

acts. The charge is Y for U(1)Y , and 1 (0) for a multiplet (singlet) of a generic group

SU(N). The technicolor vector superfield VTC is identified with V defined in Eq.(2.3).

The remaining vector superfields are those already defined in the MSSM [41] while the

superpotential PTC is given in Eq.(2.6). We have written the Lagrangian LTC in terms of

elementary fields in Appendix A. The full MSSM Lagrangian LMSSM can be found in [41]

and references therein.

3. Vacua and Stability Conditions

The gauge group breaking of pMSCT (excluding the color group) follows the pattern

SU(2)TC × SU(2)L × U(1)Y → U(1)EM × U(1)TC , were the first U(1) on the right de-

termines the conservation of the ordinary electromagnetic (EM) charge. Even though the

breaking involves also the TC group, besides the EW one, we will still refer to it simply as

EWSB.

Because of the symmetry of the Lagrangian, we are free to choose the vacuum of the

techni-Higgs scalar to be aligned in the third direction of the SU(2)TC gauge space. We

define the vacuum expectation values (vev)s of the scalar fields neutral under the residual

symmetry by 〈
D̃3
L

〉
=
vTC√

2
,
〈
H̃0

〉
= sβ

vH√
2
,
〈
H̃ ′0

〉
= cβ

vH√
2
, (3.1)

where all the vevs are chosen to be real, sβ = sinβ, and cβ = cosβ.3 The vacuum

expectation values of the remaining fields is chosen to be zero so that U(1)EM is conserved.

The scalar potential is obtained from the D, F , and soft terms of the Lagrangian given

in Appendix A, and by the corresponding MSSM scalar potential. The potential is:

Vin = M2
Q|D̃3

L|2 +
(
m2
u + |µ|2

)
|H̃0|2 +

(
m2
d + |µ|2

)
|H̃ ′0|2 −

(
bH̃0H̃

′
0 + c.c.

)
+

1

8

(
g2
L + g2

Y

) (
|D̃3

L|2 − |H̃ ′0|2 + |H̃0|2
)2
. (3.2)

The terms depending on the phase of the different fields are the b term and its conjugate.

As in the MSSM invariance under the U(1)Y symmetry together with the fact that H̃ and

H̃ ′ have opposite hypercharges allow to redefine their vevs and b parameter to be real. The

quartic terms in this potential cancel when |D̃3
L|2 = |H̃ ′0|2 − |H̃0|2. To make the potential

bound from below we impose the Hessian of Vin to be semi-definite positive along this D

flat plane, which gives the conditions:(
m2
u + |µ|2 −M2

Q

) (
m2
d + |µ|2 +M2

Q

)
> b2, 2|µ|2 +m2

u +m2
d > 0 . (3.3)

At the minimum Vin satisfies the equations

∂D̃3
L
Vin|φ=<φ> = 0, ∂H̃0

Vin|φ=<φ> = 0, ∂H̃′0
Vin|φ=<φ> = 0 . (3.4)

3Notice that, consistently with the rest of the paper, we indicated the scalar component of each Higgs

weak doublet superfield with a tilde.
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These equations can be solved with respect to the vevs and used to express the soft SUSY

breaking parameters according to:

M2
Q = −1

8

(
g2
L + g2

Y

) (
v2
TC − c2βv

2
H

)
, (3.5)

m2
u = −1

8

(
g2
L + g2

Y

) (
v2
TC − c2βv

2
H

)
− |µ|2 + b t−1

β , (3.6)

m2
d =

1

8

(
g2
L + g2

Y

) (
v2
TC − c2βv

2
H

)
− |µ|2 + b tβ, (3.7)

where tβ = tanβ. We impose the trivial vacuum to be unstable, both on the |H̃ ′0|, |H̃0|
plane and the |D̃3

L| direction so that both vTC , vH > 0, by requiring the corresponding

Hessian of Vin evaluated at the origin of the moduli space to have (at least) one negative

eigenvalue. This translates to the conditions

M2
Q < 0,

(
m2
u + |µ|2

) (
m2
d + |µ|2

)
< b2. (3.8)

Finally, requiring the potential to be stable at the vacuum point determines the extra

conditions

m2
h01
> 0 , m2

A1
> 0 , (3.9)

where mh01
, mA0 are defined in Eqs.(4.16,4.17,4.4). Without loss of generality one can

choose 0 < β < π/2. After plugging Eqs.(3.5,3.6,3.7) in (3.3,3.8,3.9) all these conditions

are satisfied for

0 < b <
t2β
16

(
g2
L + g2

Y

) (
v2
TC − c2βv

2
H

)
, c2βv

2
H < v2

TC , 0 < β <
π

4
, (3.10)

or

b > 0, π/4 6 β < π/2 . (3.11)

We will investigate in the following the region of parameter space defined by the conditions

(3.11) since, as it will become clear in in Section 5, this is the one which is phenomenolog-

ically appealing.

4. Mass Spectrum

The superpotential in Eq.(2.6) and the soft SUSY-breaking terms in Eq.(A.13) conserve

both lepton L and baryon B numbers. From Eqs.(A.5,A.6) one can see that the terms

generated by the superpotential respect the same conservation laws. This is true also for

the remaining contributions to the Lagrangian given in Eqs.(A.2,A.3,A.4). Moreover, after

EWSB the MSCT Lagrangian is still invariant under the residual U(1)EM × U(1)TC .
4

We can therefore write the gauge boson, fermion, and scalar (squared) mass matrices in

block diagonal form in the basis of EM- and TC-charges and L and B numbers. The mass

matrices of all the SM fermions and their superpartners assume the same form, in terms

of the Higgs vevs, as of those obtained in the MSSM and can be found for example in

[41]. The EW gauginos, Higgs scalar doublets and their superpartners mix with the N = 4

technicolor sector. Finally the fields NL, N̄R, and their scalar superpartners will not mix at

tree level with other SM fields with EM charge QEM = 1 (where we defined QEM = T 3
L+Y )

by constuction.
4We can neglect SU(3)C , since none of the fields presented here carries color charge.
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4.1 Gauge Bosons

After EWSB has occurred some techni-gluons and EW gauge bosons acquire mass. The

corresponding sector of the MSCT Lagrangian can be written as a function of the mass

eigenstates as:

−Lg-mass = g2
TCv

2
TCG

+
µG
−µ+

g2
L

2

(
v2
TC + v2

H

)
W+
µ W

−µ+
g2
L + g2

Y

4

(
v2
TC + v2

H

)
ZµZ

µ (4.1)

where

G±µ =
1√
2

(
G1
µ ∓ iG2

µ

)
, W±µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, Zµ = cwW

3
µ − swB , tw =

gY
gL
. (4.2)

The ± exponent of the techni-gluon refers to the U(1)TC charge, while the ± exponent on

the EW gauge bosons refer to the usual EM charge. The remaining, massless states are

the techni-photon and the EW photon:

Gµ = G3
µ , Aµ = swW

3
µ + cwB . (4.3)

The phenomenological constraints on a new U(1) massless gauge boson were studied in

[42] and found to be phenomenologically viable. The tree-level masses of G, W and Z can

be read off from Eq.(4.1):

mG = gTCvTC , mW =
gL
2

√
v2
TC + v2

H , mZ =
mW

cw
. (4.4)

From these masses and the eigenstates in Eq.(4.2) it is immediate to evaluate the EW

oblique parameters at tree level by using the formulas in [43]: we find S = T = U = 0 at

tree level.

4.2 Fermions

The fermion mass terms are:

−Lf -mass =
1

2

(
χ0
)TMnχ

0 +
(
χ+
tc

)TMtcχ
−
tc +

(
χ+
)TMcχ

−

+ mtc-c

(
χ++
tc

)T
χ−−tc + m̄tc-c

(
χ+−
tc

)T
χ−+
tc +mccχ

++χ−− + c.c. , (4.5)

where5

χ0 =
(
H2, H

′
1, W̃3, B̃,D

3
L, D̄

3
R

)
, χ±tc =

(
D1
L ∓ iD2

L√
2

,
D̄1
R ∓ i D̄2

R√
2

)
,

χ+ =

(
H1,

W̃1 − i W̃2√
2

, U3
L, N̄R

)
, χ− =

(
H ′2,

W̃1 + i W̃2√
2

, Ū3
L, NL

)
,

χ±+
tc =

U1
L ∓ i U2

L√
2

, χ±−tc =
Ū1
R ∓ i Ū2

R√
2

, χ++ = ĒR, χ
−− = EL, (4.6)

5Notice that a tc subscript here and in the following indicates that the leftmost superscript ± refers to

the techni-charge under U(1)TC
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and, at tree-level,

Mn =
1

2



0 −2µ isβgLvH −isβgY vH 0 0

−2µ 0 −icβgLvH icβgY vH 0 0

isβgLvH −icβgLvH 2MW̃ 0 igLvTC 0

−isβgY vH icβgY vH 0 2MB̃ −igY vTC 0

0 0 igLvTC −igY vTC 0 0

0 0 0 0 0 2MD


, (4.7)

Mtc =

(
0 igTCvTC

−igTCvTC MD

)
, (4.8)

Mc =
1√
2


√

2µ −isβgLvH −yUvTC 0

−icβgLvH
√

2MW̃ 0 0

0 −igLvTC yUsβvH 0

0 0 0 yNsβvH

 , (4.9)

mtc-c = −igTCvTC +
yUsβvH√

2
, mcc =

yEcβvH√
2

. (4.10)

In the previous equations with the labels n, tc, c, tc-c, cc, we referred to, respectively,

neutralinos, techni-neutralinos, charginos, techni-charginos, and doubly-charged chargino.

Furthermore the barred fields indicate Hermitian conjugation while a tilde indicates the

fermion superpartner of the corresponding gauge boson. MW̃ and MB̃ correspond to the

wino and the bino soft masses, respectively. It is important for the phenomenological

bounds on MSCT to notice that at tree-level, from the last equation,

mt =
yt
yE
tβmcc , (4.11)

where the subscript t here refers to the top quark.

The squared masses are obtained diagonalizingMpM†p, p = n, tc, c. We note that D̄3
R

has become the gaugino of the residual U(1)TC with mass MD. For illustration we provide

the explicit form of the techni-neutralino masses obtained diagonalizing the seesaw-like

matrix in Eq.(4.8):

mtc0,1 =

√
M2
D

4
+ g2

TCv
2
TC ∓

MD

2
. (4.12)

4.3 Scalars

4.3.1 Tree-Level

The complete potential is given by

V = VTC + VMSSM , VTC = −LD − LF − Lsoft −
(

1

2
MDD̄

a
RD̄

a
R + c.c.

)
, (4.13)

where VMSSM can be found in [41], while LD,LF , and Lsoft, are given in Appendix A. As

for the SM fermions also the scalar superpartners do not mix, at the tree-level, with the
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N = 4 techni-scalars or heavy scalar leptons. Therefore their mass spectrum assumes the

same form as in the MSSM. The Higgs scalar fields, H̃ and H̃ ′, on the other hand, mix

with the techni-scalars. The squared mass matrices of the CP-even and -odd EM neutral

Higgs scalars are given by, respectively,

M2
h =

1

4


(
g2
L + g2

Y

)
s2
βv

2
H + 4bt−1

β −cβ
(
g2
L + g2

Y

)
sβv

2
H − 4b

(
g2
L + g2

Y

)
sβvHvTC

−cβ
(
g2
L + g2

Y

)
sβv

2
H − 4b c2

β

(
g2
L + g2

Y

)
v2
H + 4btβ −cβ

(
g2
L + g2

Y

)
vHvTC(

g2
L + g2

Y

)
sβvHvTC −cβ

(
g2
L + g2

Y

)
vHvTC

(
g2
L + g2

Y

)
v2
TC

 ,

(
M2

h

)
ij

=
∂2V

∂φhi ∂φ
h
j

∣∣∣∣∣
φ=〈φ〉

, φh = <
(
H̃2, H̃

′
1, D̃

3
L

)
, (4.14)

and

M2
A =

 bt−1
β b 0

b btβ 0

0 0 0

 ,
(
M2

A

)
ij

=
∂2V

∂φAi ∂φ
A
j

∣∣∣∣∣
φ=〈φ〉

, φA = =
(
H̃2, H̃

′
1, D̃

3
L

)
(4.15)

From Eqs.(4.14,4.15) the squared masses of the CP-even and -odd Higgs scalars are

m2
h00

= m2
A0

= 0, m2
h01,2

=
1

2

(
m2
A1

+m2
Z ∓

√(
m2
A1
−m2

Z

)2
+ 4m2

A1
m2
Bs

2
2β

)
, m2

A1
=

2b

s2β
,

(4.16)

where we have defined the quantity:

m2
B =

g2
Y + g2

L

4
v2
H (4.17)

which does not correspond to any particle. In the limit vTC = 0, however, mB = mZ and

one recovers the MSSM results for the masses of the CP-even Higgs scalars.

The massless eigenstates h0
0, πZ (the longitudinal degree of freedom of the Z boson),

and A0, are expressed by

h0
0 =Nh (sβvTC , cβvTC , c2βvH) · φh , N−2

h = v2
TC + c2

2βv
2
H , (4.18)

πZ =NZ (sβvH ,−cβvH , vTC) · φA , N−2
Z = v2

TC + v2
H , (4.19)

A0 =NA (sβvTC ,−cβvTC ,−vH) · φA , N−2
A = v2

TC + v2
H , (4.20)

with φh,A defined respectively in Eqs. (4.14,4.15). The masslessness of h0
0 and A0 will not

survive at the one-loop level.

The remaining scalar squared mass matrices are given in Appendix B. By using these

results and those given in Eqs.(4.4,4.7,4.14,4.15), and taking into account the multiplicities

of each mass matrix, we can calculate the supertrace of the tree level squared mass matrices,

defined by

STrM2 =
∑
j

(−1)2j (2j + 1) TrM2
j , j = 0,

1

2
, 1 , (4.21)
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where Mj are the complete squared mass matrices of scalars, femions, and gauge bosons.

We obtain:

STrM2 = 2
(
−M2

B̃
− 3M2

W̃
− 3M2

D + 2m2
d + 2m2

u + 2M2
L +M2

N +M2
E + 6M2

Q + 3M2
U

)
,

(4.22)

where the numerical factors in front of the SUSY breaking squared mass parameters reflect

the degrees of freedom of the corresponding fields. The equation above shows that the

SUSY invariant contributions to the squared mass matrices cancel out, as they should.

4.3.2 One-Loop

We calculate the one-loop contributions to the CP-even and -odd neutral (both under

U(1)EM and U(1)TC) scalars. We expect the lightest eigenstates, h0
0 and A0, that are

accidentally massless at tree level, to receive non-zero contributions to their masses from

the one-loop effective potential. The one loop potential is [44]:

∆V1 =
1

64π2
STr

[
M4 (φ)

(
ln
M2 (φ)

µ2
r

− 3

2

)
+ 2M2 (φ)µ2

r

]
, (4.23)

where M2 (φ) are field-dependent mass matrices not evaluated at their vevs, defined by:

(
M2 (φ)

)
ij

=
∂2V

∂φi∂φj
, (4.24)

and µr is the renormalization scale. The last term in Eq.(4.23) renormalizes the one-loop

contributions to the scalar masses to zero when µ2
r =M2 (〈φ〉).6 The last term in Eq.(4.23)

gives a very small contribution to ∆V1 since only the SUSY breaking terms (generally small

to avoid a large fine tuning) do not cancel in the supertrace, and therefore we neglect it.

To minimize the correction from higher order contributions to V, we take µr equal to the

mass of the heaviest particle among the eigenstates presented in Sections 4.1, 4.2, and the

last subsection.

The one-loop mass matrix correction, ∆M2
a, for any real field a with n components can

be extracted from ∆V1 by numerically evaluating the derivatives of the mass eigenvalues

with respect to the fields evaluated on the vevs [45], where

(∆M2
a)ij =

∂2∆V1(a)

∂ai∂aj

∣∣∣∣
a=〈a〉

+ ∆M2
ij , (4.25)

∂2∆V1(a)

∂ai∂aj

∣∣∣∣
a=〈a〉

=
∑
k

1

32π2

∂m2
k

∂ai

∂m2
k

∂aj
ln
m2
k

µ2
r

∣∣∣∣
a=〈a〉

+
∑
k

1

32π2
m2
k

∂2m2
k

∂ai∂aj

(
ln
m2
k

µ2
r

− 1

)∣∣∣∣
a=〈a〉

,

∆M2
ij = −δij

φhi

∂∆V1(φh)

∂φhi

∣∣∣∣
φh=〈φh〉

= −
∑
k

1

32π2
m2
k

δij

φhi

∂m2
k

∂φhi

(
ln
m2
k

µ2
r

− 1

)∣∣∣∣
φh=〈φh〉

. (4.26)

6In case there is more than one field, one should use different scales µr for each contribution to the

supertrace to get an exactly vanishing one-loop correction to the mass.
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The second term in Eq.(4.25) takes into account the shift in the minimization conditions

(see [45]), and m2
k is the set of mass eigenvalues of the field dependent mass matrixM2 (φ).

Notice that ∆M2
ij has to be included in the expression of (∆M2

a)ij only when ai are the

CP-even or -odd Higgses, since ∆M2
ij gives the shift of the soft mass parameters of the

scalar fields that develop a non-zero vev. The Goldstone bosons do not contribute to ∆M2
a.

In this first estimate we compute ∆M2 for the neutral Higgses neglecting the contri-

butions from top-stop mass splitting. We consider the fields given in Table 1, plus the W

and B bosons and their superpartners. In this way the supertrace receives contributions

only from the soft mass terms. We therefore consider our results for the one-loop masses of

the CP-even and -odd Higgses an estimate of the values that can be obtained when taking

into account the full MSCT spectrum.

It is seen that except for the ordinary EM neutral Goldstone boson which can be

interpreted as the longitudinal component of the Z boson no other neutral scalar is massless.

The mass of the lightest physical states, h0
0 and A0, has a strong dependence on the size

of the Yukawa couplings in the superpotential, Eq.(2.6). A random scan of the parameter

space, with the constraint that the SUSY breaking scale, given in Eqs.(A.13,3.2), is around

the TeV region and with π/4 < β < π/2, gives:7:

mh00
= 10.6± 5.5 GeV , gTC = yU = yN = yE = yR = 1 ,

mh00
= 125± 54 GeV , gTC = yU = yN = yE = yR = π . (4.27)

From the scan we read off the central value for the mass of the lightest Higgs and the

associated standard deviation. The latter represents the spread in the distributions of the

values of the parameters. We have also tried to reach a larger value of the masses by

optimizing the search around the maximum value of the initial sample of parameters and

obtain in this case mmax
h00

= 30.5 GeV and mmax
h00

= 276 GeV for the same choice of Yukawas

above.

The mass of A0 for the parameter values that maximize mh00
is mA0 = 8 (27) GeV for

gTC = ... = 1 (π). It is interesting to notice also that mA0 = 0 for aTC = 0: consequentially

in the following we take the soft parameter aTC to be rather large (though still within

the TeV region). In the following section we impose the experimental bounds on the mass

spectrum to determine its phenomenological viability and use the renormalization group

equations to determine the perturbative range of our results.

5. Phenomenological Viability

The lower bounds on the mass of the lightest neutralino and chargino are [47]:

mχ0
0
> 46 GeV , mχ±0

> 94 GeV . (5.1)

These limits refer to the MSSM, but are rather general, since they are extracted mostly

from the Z decay to neutralino-antineutralino pair the former, and from photo-production

7We have checked that the potential is actually at a minimum and have considered two sample values

of the Yukawa couplings.
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of a chargino-antichargino pair at LEPII the latter. We can therefore assume these limits

to hold also for the MSCT. Because of their generality and independence from the coupling

strength (as long as it is not negligible), we use the lower bound on the chargino mass also

for the mass of the doubly-charged chargino E.

The presence of the term proportional to yR in the superpotential, Eq.(2.6) allows it to

decay into singly charged ordinary particles. Therefore it escapes cosmological constraints

on charged stable particles. The techni-gaugino D̄3
R is an EW singlet fermion and therefore

is a right-handed neutrino, which can be very light. Because of this, and the fact that the

mass of the lightest techineutralino, Eq.(4.12), is a monotonically decreasing function of

the mass of D̄3
R, we assume MD to be small with respect to the gTCvTC energy scale.

Other useful limits on the parameters are obtained by using the fact that the smallest

eigenvalue of a semi-positive definite square matrix is smaller or equal to any eigenvalue

of the principal submatrices. From the absolute square of the neutralino mass matrix,

Eq.(4.7), we get

M2
B̃
> (46 GeV)2 −

g2
Y

4

(
v2
H + v2

TC

)
= (13.5 GeV)2 , µ > 46 GeV ,

vTC > 2
46 GeV√
g2
L + g2

Y

= 124 GeV , vH < 213 GeV , (5.2)

where we used, from Eq.(4.4), √
v2
H + v2

TC = 246 GeV. (5.3)

From the absolute square of the chargino mass matrix and the doubly-charged chargino

mass, Eqs.(4.9,4.10), we get

M2
W̃
> (94 GeV)2 − 1

2
c2
βg

2
Lv

2
H = (63.5 GeV)2 ,

yEcβvH√
2

> 94 GeV . (5.4)

From Eq.(4.11), with mt = 173 GeV, and the bounds (5.2,5.4), it follows that

yt >
173

213

√√√√ 1
1
2 −

942

y2E2132

. (5.5)

This last bound is plotted in Figure 1, where the shaded area shows the values of yt and

yE excluded by the experiment: it is evident from the plot in Figure 1 that either yt or yE
is constrained to be larger than about 1.3.8

One of our goals is to determine if the perturbative MSCT mass spectrum is phe-

nomenologically viable. The other is to determine the range of energy where the model

remains perturbative. We anticipate that the Yukawa couplings are the ones driving the

model towards a strongly coupled regime.

8Had we chosen the hypercharge parameter y=-1 rather than 1, the constraints in Eqs.(5.2,5.4,5.5) would

be the same with yE and yN interchanged. although a more detailed study would be necessary, we expect

that the choice y = −1 produces the same general results and conclusions that we present in this paper for

y=1.
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Figure 1: Shaded area shows experimentally excluded values of the Yukawa couplings yt and yE .

By using the couplings renormalization group equations (RGE) given in Appendix

C we find that a phenomenologically reasonable compromise for the values of yt and yE
allowing perturbativity at the energy scale of a few TeVs, for the elementary processes

occurring at the LHC, is respectively, 1.65 and 2.2. The value of the lightest chargino

mass is controlled mainly by yU , which we take equal to yt, while yTC = yN = 1.19,

since they are less constrained to be large. In Figure 2 are plotted yTC , yU , yt, yN , yE as a

function of the renormalization scale M : the couplings are normalized for M = mZ to yt =

yU = 1.65, yE = 2.2, yN = yTC = 1.1. Having shown that the Yukawa couplings enter the

nonperturbative region very early in energy scale we cannot discuss perturbative unification

of the couplings in this model since we should take into account the nonperturbative effects

of this sector on the running of the gauge couplings.

By maximizing the minimum eigenvalue of Mn · M†n on the parameter space allowed

by the bounds (5.2,5.4,5.5) with yt = 1.65 and yE = 2.2, we obtain

mmax
χ0
0

= 46 GeV , mχ±0
= 60 GeV, (5.6)

where mχ±0
is calculated at the point in parameter space that maximizes mχ0

0
. With these

chosen values of the Yukawa couplings at the EW scale, a Landau pole for the Yukawas

arises around 2.3 TeV and the chargino mass is light compared to the experimental bounds

Eqs.(5.2,5.4). A scan of the allowed parameter space, with the same values of the Yukawa

couplings shows that it is not possible to satisfy both constraints in Eq.(5.1) simultaneously.

However, by further lowering the Landau pole scale we can achieve a phenomenologically

viable spectrum:

mmax
χ0
0

= 47 GeV , mmax
χ±0

= 96 GeV , mh00
= 95 GeV , mA0 = 32 GeV ,

Mpole = 400 GeV . (5.7)

9In calculating the RGE we assumed a generic coupling yTC in place of gTC in Eq.(2.6). Amusingly yTC

quickly converges , when running towards the infrared, to the assumed value of gTC in agreement with the

findings in [46]. Therefore it is a good approximation to assume the technicolor sector to be N = 4 SUSY

by taking yTC = gTC at low energies, no matter what the value of yTC is at higher energies.
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Figure 2: Plot of yTC , yU , yt, yN , yE as a function of the renormalization scale M : the couplings

are normalized for M = mZ to yt = yU = 1.65, yE = 2.2, yN = yTC = 1.2.

The results correspond to having chosen at the EW scale the values yN = 1.8, yt = gTC =

yU = 2.3, yE = 2.4.10

6. Conclusions and Outlook

We have investigated the perturbative regime of MSCT and shown that it allows for a

stable vacuum correctly breaking the EW symmetry, and also that the particle spectrum

is richer than the MSSM one. This occurs since the model features several new particles

stemming out from the N = 4 sector of the theory.

The MSCT, in the perturbative regime, satisfies the current experimental constraints

for the mass spectrum of the model which in turn requires Yukawa couplings larger than

the ones in the (MS)SM. By running the renormalization group equation we observed that

the Yukawa sector becomes nonperturbative close to the TeV scale.

We have also initiated a preliminary study of the parameter space of the model and

reduced it by imposing naturality of the couplings and masses, one loop vacuum stability,

perturbativity of the model at the EW scale as well as phenomenological constraints.

Our preliminary results on the spectrum of the MSCT model indicate that the Tevatron

and the LHC can rule out a significant portion of the parameter space of this model. Part of

the particle spectrum is very similar to the one of the MSSM, however, MSCT also features

several new light states, with respect to the EW scale, such as doubly charged particles.

Therefore an interesting experimental signature would be the discovery of a doubly charged

particle together with a very light chargino and/or neutralino. Finally, since the Yukawa

couplings are larger than the SM ones we expect 100% increase of several production cross

sections such as the Higgs scalar (h0
0) one via the gluon-gluon fusion process.

10Viable masses for χ0
0 and χ±0 can be obtained for a Landau pole energy arising at as high an energy as

1 TeV.
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Another characteristic of the model relevant for collider experiments is that due to the

presence of one extra Higgs-type particle sector, coming from the supertechnicolor sector,

the spectrum features scalars and pseudoscalars lighter than in the MSSM case. These

states will also yield interesting signatures at collider experiments. We plan to explore,

in the future, in detail the processes relevant at colliders experiments, as well as the dark

matter phenomenology which will be substantially different than in the MSSM.

Since our model features, at the EW scale, a new N = 4 supertechnicolor sector,

collider experiments have the possibility to explore directly string theory. This is so since

the new scalars coming from this sector can be directly identified with the extra six space

coordinates of ten dimensional supergravity. This link is even more clear when considering

the present supertechnicolor sector in the nonperturbative regime which can be investigated

using AdS/CFT techniques and will be investigated elsewhere.
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A. MSCT Lagrangian

The Lagrangian of a supersymmetric theory can, in general, be defined by

L = Lkin + Lg−Y uk + LD + LF + LP−Y uk + Lsoft, (A.1)

where the labels refer to the kinetic terms, the Yukawa ones given by gauge and super-

potential interactions, the D and F scalar interaction terms, and the soft SUSY breaking

ones. All these terms can be expressed in function of the elementary fields of the theory

with the help of the following equations:

Lkin = −1

4
Fµνaj F ajµν − iλ̄aj σ̄µDµλ

a
j −Dµφa†i Dµφ

a
i − iχ̄ai σ̄µDµχ

a
i , (A.2)

Lg−Y uk =
∑
j

i
√

2gj

(
φ†iT

a
j χiλ

a
j − λ̄aj χ̄iT aj φi

)
, (A.3)

LD = −1

2

∑
j

g2
j

(
φ†iT

a
j φi

)2
, (A.4)

LF = −
∣∣∣∣ ∂P∂φai

∣∣∣∣2 , (A.5)

LP−Y uk = −1

2

[
∂2P

∂φai ∂φ
b
l

χai χ
b
l + h.c.

]
, (A.6)

where i, l run over all the scalar field labels, while j runs over all the gauge group labels, and

a, b are the corresponding gauge group indices. Furthermore, we normalize the generators

in the usual way, by taking the index T (F ) = 1
2 , where

TrT aRT
b
R = T (R)δab,

with R here referring to the representation (F=fundamental). The SUSY breaking soft

terms, moreover, are obtained by re-writing the superpotential in function of the scalar

fields alone, and by adding to it its Hermitian conjugate and the mass terms for the

gauginos and the scalar fields.

We refer to [41] and references therein for the explicit form of LMSSM in terms of the

elementary fields of the MSSM, and focus here only on LTC . The kinetic terms are trivial

and therefore we do not write them here. The gauge Yukawa terms are given by

Lg−Y uk =
√

2gTC

(
˜̄U bLU

c
LD̄

a
R −Da

RŪ
b
LŨ

c
L + ˜̄Db

LD
c
LD̄

a
R −Da

RD̄
b
LD̃

c
L + Ũ bRŪ

c
RD̄

a
R −Da

RU
b
R

˜̄U cR

)
εabc

+ i
gL√

2

(
˜̄QiLQ

j
LW̃

k − ˜̄W kQ̄iLQ̃
j
L + ˜̄LiLL

j
LW̃

k − ˜̄W kL̄iLL̃
j
L

)
σkij

+ i
√

2gY
∑
p

Yp

(
˜̄χpχpB̃ − ˜̄Bχ̄pχ̃p

)
, χp = UaL, D

a
L, Ū

a
R, NL, EL, N̄R, ĒR , (A.7)

where W̃ k and B̃ are respectively the wino and the bino, σk the Pauli matrices, i, j =

1, 2; k, a, b, c = 1, 2, 3; and the hypercharge Yp is given for each field χp in Table 1.
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The D terms are given by

LD = −1

2

(
g2
TCD

a
TCD

a
TC + g2

LD
k
LD

k
L + g2

YDYDY

)
+

1

2

(
g2
LD

k
LD

k
L + g2

YDYDY

)
MSSM

,

(A.8)

where

Da
TC = −iεabc

(
˜̄U bLŨ

c
L + ˜̄Db

LD̃
c
L + Ũ bR

˜̄U cR

)
, Dk

L =
σkij
2

(
˜̄Qi aL Q̃

j a
L + ˜̄LiLL̃

j
L

)
+Dk

L,MSSM

DY =
∑
p

Yp ˜̄χpχ̃p +DY,MSSM . (A.9)

In these equations the Dk
L,MSSM and DY,MSSM auxiliary fields are assumed to be expressed

in function of the MSSM elementary fields [41]. The rest of the scalar interaction terms11

is given by

LF = −g2
TC

[(
Ũ bL

˜̄U bL + D̃b
L

˜̄Db
L + ˜̄U bRŨ

b
R

)2
−
(
Ũ bL

˜̄U cL + D̃b
L

˜̄Dc
L + ˜̄U bRŨ

c
R

)(
˜̄U bLŨ

c
L + ˜̄Db

LD̃
c
L

+ Ũ bR
˜̄U cR

)]
− y2

U

[(
H̃1D̃

a
L − H̃2Ũ

a
L

)(
˜̄H1

˜̄Da
L − ˜̄H2

˜̄UaL

)
+ ŨaR

˜̄UaR

(
H̃1

˜̄H1 + H̃2
˜̄H2

)
+ ŨaR

˜̄U bR

(
˜̄UaLŨ

b
L + ˜̄Da

LD̃
b
L

)]
− y2

N

[(
˜̄NL

˜̄H2 − ˜̄EL
˜̄H1

)(
ÑLH̃2 − ẼLH̃1

)
+ ÑR

˜̄NR

(
H̃1

˜̄H1 + H̃2
˜̄H2 + ÑL

˜̄NL + ẼL
˜̄EL

)]
− y2

E

[(
˜̄NL

˜̄H ′2 − ˜̄EL
˜̄H ′1

)(
ÑLH̃

′
2 − ẼLH̃ ′1

)
+ ẼR

˜̄ER

(
H̃ ′1

˜̄H ′1 + H̃ ′2
˜̄H ′2 + ÑL

˜̄NL + ẼL
˜̄EL

)]
− y2

R

(
ŨaRŨ

a
R

˜̄U bR
˜̄U bR + 4 ˜̄UaRŨ

a
R

˜̄ERẼR

)
+
{√

2yUgTCε
abc
[
Ũ bLD̃

c
L

(
˜̄H1

˜̄Da
L − ˜̄H2

˜̄UaL

)
+ ŨaR

˜̄U bR

(
Ũ cL

˜̄H1 + D̃c
L

˜̄H2

)]
− yUyN Ũ

a
R

˜̄NR

(
˜̄UaLÑL + ˜̄Da

LẼL

)
− yNyE ÑR

˜̄ER

(
˜̄H1H̃

′
1 + ˜̄H2H̃

′
2

)
+ yR

˜̄UaR

[
2
√

2gTCε
abc ˜̄U bL

˜̄Dc
L

˜̄ER + 2yU
˜̄ER

(
˜̄Da
L

˜̄H1 − ˜̄UaL
˜̄H2

)
+ yE

˜̄UaR

(
˜̄EL

˜̄H ′1 − ˜̄NL
˜̄H ′2

)]
+ h.c.}+ Lmix, (A.10)

with Lmix defined in function of the F auxiliary fields associated with the MSSM two Higgs

super-doublets:

Lmix = −
∑
φp

(
Fφp,TCF

†
φp,MSSM + h.c.

)
, φp = H ′1, H

′
2, H1, H1, FH′1,TC = −yEẼL ˜̄ER,

FH′2,TC = yEÑL
˜̄ER, FH1,TC = −yUD̃a

L
˜̄UaR − yN ẼL ˜̄NR, FH2,TC = yU Ũ

a
L

˜̄UaR + yN ÑL
˜̄NR.

(A.11)

The corresponding MSSM auxiliary fields F can be found in [41] and references therein.

Also, in the Eqs.(A.10,A.11) we used H̃ and H̃ ′ to indicate the scalar Higgs doublets, for

consistency with the rest of the notation where the tilde identifies the scalar component

of a chiral superfield or the fermionic component of a vector superfield. The remaining

11We consider the constants in the superpotential to be real to avoid the contribution of CP violating

terms.
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Yukawa interaction terms are determined by the superpotential, and can be expressed as

LP−Y uk =
√

2gTCε
abc
(
UaLD

b
L

˜̄U cR + UaLD̃
b
LŪ

c
R + ŨaLD

b
LŪ

c
R

)
+ yU

[
(H1D

a
L −H2U

a
L) ˜̄UaR

+
(
H̃1D

a
L − H̃2U

a
L

)
ŪaR +

(
H1D̃

a
L −H2Ũ

a
L

)
ŪaR

]
+ yN

[
(H1EL −H2NL) ˜̄NR

+
(
H1ẼL −H2ÑL

)
N̄R +

(
H̃1EL − H̃2NL

)
N̄R

]
+ yE

[(
H ′1EL −H ′2NL

) ˜̄ER

+
(
H ′1ẼL −H ′2ÑL

)
ĒR +

(
H̃ ′1EL − H̃ ′2NL

)
ĒR

]
− yRŪaR

(
ŪaR

˜̄ER + ¯̃UaRĒR

)
+ h.c.. (A.12)

The soft SUSY breaking terms, finally, can be written straightforwardly starting from the

superpotential in Eq.(2.6), to which we add the techni-gaugino and scalar mass terms as

well:

Lsoft = −
[
aTCε

abcŨaLD̃
b
L

˜̄U cR + aU

(
H̃1D̃

a
L − H̃2Ũ

a
L

)
˜̄UaR + aN

(
H̃1ẼL − H̃2ÑL

)
˜̄NR

+ aE

(
H̃ ′1ẼL − H̃ ′2ÑL

)
˜̄ER + aR

˜̄UaR
˜̄UaR

˜̄ER +
1

2
MDD̄

a
RD̄

a
R + c.c.

]
−M2

Q
˜̄QaLQ̃

a
L

− M2
U

˜̄UaRŨ
a
R −M2

L
˜̄LLL̃L −M2

N
˜̄NRÑR −M2

E
˜̄ERẼR. (A.13)

B. Scalar Squared Mass Matrices

The techni-Higgs squared mass matrix is

M2
tc-h =

1

2

(
g2
TCv

2
TC −g2

TCv
2
TC

−g2
TCv

2
TC g2

TCv
2
TC

)
,
(
M2

tc-h

)
ij

=
∂2V

∂φtc-hi ∂φtc-hj

∣∣∣∣∣
φ=〈φ〉

,

φtc-h = <

(
D̃1
L − iD̃2

L√
2

,
D̃1
L + iD̃2

L√
2

)
,mhTC = gTCvTC . (B.1)

The massless eigenstate in the last matrix is the longitudinal degree of freedom of the

techni-photon G in Eq.(4.3):

πTC =
1√
2

(1, 1) · φtc-h . (B.2)

The charged-Higgs squared mass matrix is

M2
h± =

(
M2

hc 0

0 M2
hl

)
, (B.3)
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(
M2

hc

)
11

=
1

4

(
4bctβ + c2

βg
2
Lv

2
H − v2

TC

(
g2
L − 2y2

U

))
,
(
M2

hc

)
12

= b+
1

4
cβg

2
Lv

2
Hsβ(

M2
hc

)
13

=
1

4
vHsβvTC

(
g2
L − 2y2

U

)
,
(
M2

hc

)
14

= −aUvTC√
2

,(
M2

hc

)
22

= btβ +
1

4
g2
L

(
v2
Hs

2
β + v2

TC

)
,
(
M2

hc

)
23

=
1

4
cβg

2
LvHvTC ,(

M2
hc

)
24

= −µvTCyU√
2

,
(
M2

hc

)
33

=
1

4
v2
H

(
c2βg

2
L + 2s2

βy
2
U

)
,(

M2
hc

)
34

=
1√
2
vH (aUsβ − µcβyU ) ,(

M2
hc

)
44

=
1

4

(
g2
Y

(
c2βv

2
H − v2

TC

)
+ 2y2

U

(
v2
Hs

2
β + v2

TC

)
+ 4M2

U

)
,(

M2
hl

)
11

= M2
L +

1

2
s2
βv

2
Hy

2
N +

1

8

(
g2
L + 3g2

Y

) (
c2βv

2
H − v2

TC

)
,(

M2
hl

)
12

=
1√
2
vH (aNsβ − µcβyN ) ,(

M2
hl

)
22

= M2
N +

1

4
g2
Y v

2
TC +

1

4
v2
H

(
y2
N − c2β

(
g2
Y + y2

N

))
, (B.4)

(
M2

h±
)
ij

=
∂2V

∂φh
±
i ∂φh

±
j

∣∣∣∣∣
φ=〈φ〉

, φh
±

= <
(
H̃1, H̃

′
2, Ũ

3
L,

˜̄U3
R, ÑL,

˜̄NR,
)
. (B.5)

The massless eigenstate in the Hermitian matrix M2
hc, Eq(B.4), is the longitudinal degree

of freedom of the W gauge boson:

πW = NW (sβvH ,−cβvH , vTC) · φh± , N−2
W = v2

TC + v2
H . (B.6)

The remaining eigenvalues of M2
hc and those of M2

hl are all non-zero: they have rather

lengthy and not particularly instructive expressions, and therefore we do not write them

here.

The techni-charged Higgs squared mass matrix is

M2
tc-h± =

(
M2

d −M2
o

M2
o M2

d

)
, (B.7)

(
M2

d

)
11

=
1

4
c2βg

2
Lv

2
H +

1

2
s2
βy

2
Uv

2
H −

1

4

(
g2
L − 4g2

TC

)
v2
TC ,

(
M2

d

)
12

=
1√
2
vH (aUsβ − µcβyU )(

M2
d

)
22

= M2
U +

1

4

(
4g2
TC − g2

Y

)
v2
TC +

1

4
v2
Hy

2
U +

1

4
c2βv

2
H

(
g2
Y − y2

U

)
,

(
M2

o

)
ij

=
1√
2
aTCvV Cεij ,

(
M2

tc-h±
)
ij

=
∂2V

∂φtc-h
±

i ∂φtc-h
±

j

∣∣∣∣∣
φ=〈φ〉

,

φtc-h
±

= <

(
Ũ1
L − iŨ2

L√
2

,
˜̄U1
R + i ˜̄U2

R√
2

)⋃
=

(
Ũ1
L − iŨ2

L√
2

,
˜̄U1
R + i ˜̄U2

R√
2

)
. (B.8)
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The doubly charged-Higgs squared mass matrix is

(
M2

h2±
)

11
= M2

L +
1

2
c2
βv

2
Hy

2
E −

1

8

(
g2
L − 3g2

Y

) (
c2βv

2
H − v2

TC

)
, (B.9)(

M2
h2±
)

12
=

1√
2
vH (µsβyE − aEcβ) ,

(
M2

h2±
)

22
=

1

2

(
v2

TC −
1

2
c2βv

2
H

)
g2
Y +M2

E +
1

2
c2
βv

2
Hy

2
E

(
M2

h2±
)
ij

=
∂2V

∂φh
2±
i ∂φh

2±
j

∣∣∣∣∣
φ=〈φ〉

, φh
2±

= <
(
ẼL,

˜̄ER,
)
. (B.10)

The eigenvalues of M2
h2± and M2

tc-h± are all non-zero: they have rather lengthy and not

particularly instructive expressions, and therefore we do not write them here.

C. Renormalization Group Equations

We now compute the running of the Yukawa couplings. The effects of the top Yukawa

coupling are included but the other MSSM Yukawa couplings are neglected. We explicitly

consider an SU(2) technicolor gauge group and the hypercharge assignment for the new

fields as given in the Table 1. However we denote the number of technicolors by N and

the hypercharges of the non MSSM fields by Y (Φ), Y (3), Y (Λ), Y (N), and Y (E) (where

the first two hypercharges refer to the weak doublet with components Φ1,2 and to Φ3) to

better identify the source of the different numerical factors in the expressions below:12

βyTC = yTC (2γΦ + γ3)

βyU = yU (γΦ + γ3 + γU )

βyN = yN (γΛ + γU + γN )

βyE = yE (γΛ + γD + γE)

βyt = yt (γU + γt + γq)

12We neglect in this context the coupling yR since it does not give any contribution to the masses at tree

level and can be taken to be negligibly small.
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with

γΦ =
1

16π2

(
2N(y2

TC − g2
TC) + y2

U −
3

2
g2
L − 2

3

5
Y (Φ)2g2

Y

)
γ3 =

1

16π2

(
2N(y2

TC − g2
TC) + 2y2

U − 2
3

5
Y (3)2g2

Y

)
γU =

1

16π2

(
(N2 − 1)y2

U + 3y2
t + y2

N −
3

2
g2
L −

3

10
g2
Y

)
γD =

1

16π2

(
y2
E −

3

2
g2
L −

3

10
g2
Y

)
γΛ =

1

16π2

(
y2
N + y2

E −
3

2
g2
L − 2

3

5
Y (Λ)2g2

Y

)
γN =

1

16π2

(
2y2
N − 2

3

5
Y (N)2g2

Y

)
γE =

1

16π2

(
2y2
E − 2

3

5
Y (E)2g2

Y

)
γt =

1

16π2

(
2y2
t −

8

15
g2
Y −

8

3
g2

3

)
γq =

1

16π2

(
y2
t −

3

2
g2
L −

1

30
g2
Y −

8

3
g2

3

)
The one loop running of the gauge couplings is given by:

βga =
1

16π2
g3
a [ΣiIa(i)− 3Ca(G)]

where Ia(i) is the Dynkin index of the superfield i (1/2 for each fundamental of SU(N),

3Y (i)/5 for U(1)Y , where Y (i) gives the hypercharge of the superfield i) and obtain:

βgY =
15

16π2
g3
Y , βgL =

3

16π2
g3
L , βg3 =

−3

16π2
g3

3 .
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