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Magnetic S-parameter

Francesco Sanninor∗
r CP3-Origins, Campusvej 55, DK-5230 Odense M, Denmark.†

We propose a direct test of the existence of gauge duals for nonsupersymmetric asymptotically free
gauge theories developing an infrared fixed point by computing the S-parameter in the electric and
dual magnetic description. In particular we show that at the lower bound of the conformal window
the magnetic S-parameter, i.e. the one determined via the dual magnetic gauge theory, assumes
a simple expression in terms of the elementary magnetic degrees of freedom. The results further
support our recent conjecture of the existence of a universal lower bound on the S parameter and
indicates that it is an ideal operator for counting the active physical degrees of freedom within the
conformal window. Our results can be directly used to unveil possible four dimensional gauge duals
and constitute the first explicit computation of a nonperturbative quantity, in the electric variables,
via nonsupersymmetric gauge duality.

One of the most fascinating possibilities is that generic
asymptotically free gauge theories have magnetic duals.
In fact, in the late nineties, in a series of ground breaking
papers Seiberg [1] provided strong support for the exis-
tence of a consistent picture of such a duality within a su-
persymmetric framework. Using such a duality, Seiberg
has been able to identify the boundary of the confor-
mal window for supersymmetric QCD as function of the
number of flavors and colors.

Arguably the existence of a possible dual of a generic
nonsupersymmetric asymptotically free gauge theory
able to reproduce its infrared dynamics must match the
’t Hooft anomaly conditions [2]. We have exhibited sev-
eral solutions of these conditions for QCD in [3] and
for certain gauge theories with higher dimensional rep-
resentations in [4]. The novelty with respect to these
earlier results [5] are: i) The request that the gauge sin-
glet operators associated to the magnetic baryons should
be interpreted as bound states of ordinary baryons [3];
ii) The fact that the asymptotically free condition for the
dual theory matches the lower bound on the conformal
window obtained using the all orders beta function [6].
These extra constraints help restricting further the num-
ber of possible gauge duals without diminishing the ex-
actness of the associate solutions with respect to the ’t
Hooft anomaly conditions.

In this work we suggest a direct test of the possible
existence of gauge duals using the VV − AA two-point
function determined in the conformal window of the un-
derlying gauge theory upon the introduction of a mass
term for the fermions and in the limit in which the ex-
ternal momentum vanishes at a nonzero value of the
fermion mass [7].

We have shown in [7] that this parameter is exactly cal-
culable, using the electric theory, near the upper limit of
the conformal window. The reason is that there the elec-
tric theory is in a perturbative regime. We argued that the
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results are important for the explorations of the confor-
mal window since they shed light on relevant properties
in this region. The results are also directly applicable to
unparticle extensions of the standard model (SM) [8, 9].
Near the lower bound of the conformal window we can-
not compute analytically in a controllable way this pa-
rameter but we expect the magnetic dual to be weakly
coupled and hence we can derive a closed form expres-
sion for the S there via the gauge dual. We will refer to
it as the magnetic S parameter (Sm).

The oblique [10–13] parameter we use here is the one
defined in [14] and adapted for a theory developing an
infrared fixed point in [7]. As we have demonstrated in
[7], within the conformal window, one must distinguish
between two non-commuting limits once we introduce a
mass term for the fermions. To be precise we have shown
that if we take the fermion mass to zero, at finite external
momentum, then the associated S-parameter vanishes,
viceversa, if we send the external momentum to zero
first the S-parameter never vanishes. We have also ar-
gued that this is the limit which smoothly connects to
the S-parameter in the chirally broken phase relevant for
beyond SM applications. We will therefore concentrate
on:

lim
q2

m2→0
S . (1)

The electric S-parameter (Se) is defined as the one com-
puted using the electrical variables. Of course, if the
magnetic and the electric theory are gauge duals of each
others then Sm = Se. Near the electric (or magnetic)
Banks-Zaks [15] infrared fixed point IRFP this parame-
ter can be computed reliably by means of perturbation
theory [7] . We found that for an electric SU(N) gauge
theory with N f Dirac fermions transforming according
to the representation r of the SU(N) gauge group, and a
sufficiently large number of flavors to be near the upper
line of the conformal window, the leading terms in the
q2/m2 expansion and at the leading perturbative order
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in the gauge coupling constant:

lim
q2

m2→0
Se =

]

6π

[
1 +

1
10x

+
1

70x2 + O(x−3)
]
, (2)

with x = m2

q2 . The associated quantum global sym-
metries of the underlying gauge theory are SUL(N f ) ×
SUR(N f )×UV(1) if the fermion representation is complex
or SU(2N f ) if real or pseudoreal. Here ] = ND d[r] counts
the number of doublets times the dimension of the repre-
sentation d[r] under which the fermions transform. For
example for the fundamental representation d[F] = N,
for an SU(N) gauge group and d[S] = N(N + 1)/2 for the
two-index symmetric representation of the gauge group.
Note that given that we are in the conformal window
the mass to the fermions is given via the standard Higgs
mechanism.

Consider the case of an underlying gauge group SU(3).
The quantum flavor group of the massless theory is:

SUL(N f ) × SUR(N f ) ×UV(1) . (3)

The classical UA(1) symmetry is destroyed at the quan-
tum level by the Adler-Bell-Jackiw anomaly. We indicate
with Qi

α;c the two component left spinor where α = 1, 2
is the spin index, c = 1, ..., 3 is the color index while
i = 1, ...,N f represents the flavor. Q̃α;c

i is the two compo-
nent conjugated right spinor. We summarize the trans-
formation properties in the following table. The global

Fields [SU(3)] SUL(N f ) SUR(N f ) UV(1)
Q 1 1
Q̃ 1 −1

TABLE I: Fermion field content of an SU(3) gauge theory with
quantum global symmetry SUL(N f ) × SUR(N f ) ×UV(1).

anomalies are associated to the triangle diagrams fea-
turing at the vertices three SU(N f ) generators (either all
right or all left), or two SU(N f ) generators (all right or all
left) and one UV(1) charge. We indicate these anomalies
for short with:

SUL/R(N f )3 , SUL/R(N f )2 UV(1) . (4)

For a vector like theory there are no further global
anomalies. The cubic anomaly factor, for fermions in
fundamental representations, is 1 for Q and −1 for Q̃
while the quadratic anomaly factor is 1 for both leading
to

SUL/R(N f )3
∝ ±3 , SUL/R(N f )2UV(1) ∝ ±3 . (5)

We have computed the S-parameter in the pertur-
bative regime of the conformal window, however we

would like now to determine this parameter near the
lower bound of the conformal window. Here perturba-
tion theory fails, in the electric variables, and one has to
resort to other methods. However, if a magnetic gauge
dual exists one expects it to be weakly coupled near the
critical number of flavors below which one breaks large
distance conformality in the electric variables. We can
then determine S near the lower boundary of the confor-
mal window using perturbation theory in the magnetic
variables. Determining a possible unique dual theory
for QCD is, however, not simple given the few math-
ematical constraints at our disposal. The saturation of
the global anomalies is an important tool but is not able
to select out a unique solution. The goal is to find the
explicit expression for Sm in terms of the magnetic vari-
ables by means of the most general expectation for the
structure of the gauge dual.

As argued in [3–5] a candidate gauge dual theory
within the conformal window, saturating the ’t Hooft
anomaly conditions, would be constituted by an SU(X)
gauge group with global symmetry group SUL(N f ) ×
SUR(N f ) × UV(1) featuring magnetic quarks q and q̃ to-
gether with SU(X) gauge singlet fermions identifiable as
baryons built out of the electric quarks Q. Since mesons
do not affect directly global anomaly matching condi-
tions we can add them to the spectrum of the dual theory.
In particular they are needed to let the magnetic quarks
and the gauge singlet fermions interact with each others.
The new mesons will be massless and have no-self po-
tential to respect the conformal invariance of the model
at large distances. We add to the magnetic quarks gauge
singlet Weyl fermions which can be identified with the
baryons of QCD but are, in fact, massless. The generic
dual spectrum is summarized in table II. The wave func-
tions for the gauge singlet fields A, C and S are obtained
by projecting the flavor indices of the following operator

εc1c2c3 Qi1
c1

Qi2
c2

Qi3
c3
, (6)

over the three irreducible representations of SUL(N f ) as
indicated in the table II. These states are all singlets under
the SUR(N f ) flavor group. Similarly one can construct
the only right-transforming baryons Ã, C̃ and S̃ via Q̃.
The B states are made by two Q fields and one right

field Q̃ while the D fields are made by one Q and two Q̃
fermions. y is the, yet to be determined, baryon charge
of the magnetic quarks while the baryon charge of com-
posite states is fixed in units of the QCD quark one. The
`s count the number of times the same baryonic matter
representation appears as part of the spectrum of the the-
ory. Invariance under parity and charge conjugation of
the underlying theory requires `J = ` J̃ with J = A,S, ...,C
and `B = −`D.

The simplest mesonic operator is M j
i and transforms

simultaneously according to the antifundamental rep-
resentation of SUL(N f ) and the fundamental represen-

2



Fields [SU(X)] SUL(N f ) SUR(N f ) UV(1) # of copies
q 1 y 1
q̃ 1 −y 1

A 1 1 3 `A

S 1 1 3 `S

C 1 1 3 `C

BA 1 3 `BA

BS 1 3 `BS

DA 1 3 `DA

DS 1 3 `DS

Ã 1 1 −3 `Ã

S̃ 1 1 −3 `S̃

C̃ 1 1 −3 `C̃

Mi
j 1 0 1

TABLE II: Massless spectrum of magnetic quarks and baryons
and their transformation properties under the global symmetry
group. The last column represents the multiplicity of each state
and each state is a Weyl fermion.

tation of SUR(N f ). These states are not constrained by
anomaly matching conditions and they mediate the in-
teractions between the magnetic quarks and the gauge
singlet fermions via Yukawa-type interactions.

To probe the chiral properties of the theory requires
adding a mass term for the fermions. Near the lower end
of the conformal window the dual theory is expected to
be weakly coupled yielding the following expression for
the magnetic S-parameter:

Sm = Sq + SB + SM , (7)

with

Sq =
ND

6π
X . (8)

We will, however, consider here the case in which we
gauge, with respect to the electroweak interactions, only
the SUL(2) × SUR(2) subgroup where the hypercharge is
the diagonal generator of SU(2)R. In this case only one
doublet contributes directly to the S parameter, i.e, we
can set ND = 1. This parameter is still sensitive to the
whole dynamics. The spectrum of the magnetic quarks,
baryons and mesons naturally splits into representations
of SUL(2)×SUL(N f−2)×SUR(2)×SUR(N f−2)×UV(1). The
magnetic quark q, with respect to this group, transforms
according to:

q→
[
( , 1, 1, 1)y ⊕ (1, , 1, 1)y

]
. (9)

The baryons have the following decomposition under

SUL(2) × SUL(N f − 2) × SUR(2) × SUR(N f − 2) ×UV(1):

A →
[
(1, , 1, 1)3 ⊕ ( , , 1, 1)3 ⊕ (1, , 1, 1)3

]
,

S → [( , 1, 1, 1)3 ⊕ ( , , 1, 1)3 ⊕ ( , , 1, 1)3⊕

, ⊕(1, , 1, 1)3]
C → [( , 1, 1, 1)3 ⊕ (1, , 1, 1)3 ⊕ ( , , 1, 1)3⊕

, ⊕( , , 1, 1)3 ⊕ (1, , 1, 1)3 ⊕ ( , , 1, 1)3

]
BA → [(1, 1, , 1)3 ⊕ (1, 1, 1, )3 ⊕ ( , , , 1)3⊕

, ⊕( , , 1, )3 ⊕ (1, , , 1)3 ⊕ (1, , 1, )3

]
BS → [( , 1, , 1)3 ⊕ ( , 1, 1, )3 ⊕ ( , , , 1)3⊕

, ⊕( , , 1, )3 ⊕ (1, , , 1)3 ⊕ (1, , 1, )3] .
(10)

The decomposition of the charged conjugated baryons
is obtained from the one above by exchanging left with
right.

Since we are gauging with respect to the elec-
troweak theory the first two flavors we provide a
mass term to them as done in [16], i.e. via the in-
troduction of a SM Higgs-type interaction. Since we
are operating within the conformal window this is
the direct way to provide a mass to the fermions.
By symmetry arguments we can pair only the states
which do not transform with respect to SUL(N f −

2) × SUR(N f − 2) but still transform nontrivially un-
der SUL(2) × SUR(2). These states are ( , 1, 1, 1)3 for
the baryon S; ( , 1, 1, 1)3 for C; (1, 1, , 1)3 for BA and
for BS the state ( , 1, , 1)3. We need to consider the
charge conjugated states as well. In terms of the spino-
rial representations of SUL(2) ⊗ SUR(2) the states above
are `S ( 3

2 , 0)3 ⊕ `C ( 1
2 , 0)3 ⊕ `BA (0, 1

2 )3 ⊕ `BS (1, 1
2 )3 with the

` prefactor taking into account the multiplicity of each
state. They will pair with their charged conjugated
fermion via the mass term operator of the typeψHψ̃with
H the standard model Higgs field which transforms ac-
cording to the ( 1

2 ,
1
2 ) representation. Note that we can

only pair states with j2 = j1 ± 1
2 .

Each pair of conjugated fermions transforming accord-
ing to ( j1, j2)λ under SUL(2)×SUR(2)×UV(1) leads to the
following contribution to the Sm parameter [16]:

Sb =
2 db

3π

∑
JJ′

XJ,J′
[
2 f

(
m2

J ,m
2
J′
)

+ g
(
m2

J ,m
2
J′
)]

+

+

 [ j−( j+ + 1)
]2

9π

∑
J

2J + 1
J(J + 1)

 , (11)

with the index b indicating the specific baryon and db its
degeneracy. We also have j− = | j1 − j2|, j+ = j1 + j2 and
j− ≤ J ≤ j+ the total spin for each baryon contribution.
If more than one spinorial representation belongs to the
same baryon b the contributions of all the states must
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be taken into account. The nonvanishing components of
the group theoretical factor XJ,J′ are:

XJ,J =

1 − (
j−( j+ + 1)
J(J + 1)

)2 J(J + 1)(2J + 1)
12

,

XJ,J−1 = XJ−1,J =
−1
12

(
( j+ + 1)2

− J2
) (

J2
− j−2

)
. (12)

The functions f and g read [16]:

f
(
m2

J ,m
2
J′
)

= −6
∫ 1

0
dx x(1 − x) log

xm2
J + (1 − x)m2

J′

µ2

 ,
g
(
m2

J ,m
2
J′
)

= 6
∫ 1

0
dx

x(1 − x)mJmJ′

xm2
J + (1 − x)m2

J′
. (13)

The mass of each fermion is directly proportional to the
electric fermion mass m and depends on the representa-

tion according to the formula mJ = −m J+ 1
2

j1( j1+ 1
2 )

. We have
chosen as a reference energy scale µ = m. The contribu-
tion of the baryon sector is then:

SB =
∑

b

Sb . (14)

The complex scalar meson M decomposes as:

M→
[
( , 1, , 1) ⊕ ( , 1, 1, ) ⊕ (1, , , 1) ⊕ (1, , 1, 1, )

]
.

(15)
Only the first state, ( 1

2 ,
1
2 ), contributes to SM and leads to:

SM =
1

3π

∑
JJ′

f
(
m2

J ,m
2
J′
)
. (16)

with J, J′ = 1, 0, m2
J = m2

0(1 + J(J + 1)). This is a different
mass parameterization than the one given in [16]. We
also have m2

0 ∝ m2. All factors of order unity have been
set to unity and finally set the scaleµ = m0 in the function
f for the scalars. The contribution to SM vanishes unless
there is a mass splitting between the different multiplets
of the unbroken SU(2)V symmetry.

Putting together the various terms we have for the
normalized Sm:

6π
3

Sm =
X
3

+
`C + `BA

3
+

25
729

`BS

(
32 log 2 − 39

)
− 0.14 .

(17)

The explicit dependence on the quark masses disappear
for the Sm parameter in agreement with the expectation
from the leading contribution in q2/m2 to the Se param-
eter. The above is the general expression for Sm near
the lower end of the conformal window corresponding
to the nonperturbative regime in the electric variables.
From this expression is evident that the present defini-
tion of the normalized S-parameter counts the relevant

degrees of freedom as function of the number of flavors.
We estimate Sm using the possible dual provided in [3]
for which X = 2N f − 15, `A = 2, `BA = −2 (we take +2
since we are simply counting the states) with the other
`s vanishing. Asymptotic freedom for the magnetic dual
requires at least N f = 9 for which 6πSm/3 = 1.523 while
if the lower bound of the conformal window occurs for
N f = 10 we obtain 6πSm/3 = 2.19. Of course, only one
of these two values should be considered as the actual
value of the normalized magnetic S parameter near the
lower end of the electric conformal window. Both values
are such that the normalized Sm is always larger than the
electrical one near the upper end of the conformal win-
dow and are close to the one for two flavors QCD which
is around two [17].

These results support our recent conjecture [7] accord-
ing to which the normalized S parameter, obtained in
the limit when the external momentum vanishes at a
nonzero value of the quark mass, is a nondecreasing
function of the number of flavors with respect to the
underlying electric theory satisfying a universal lower
bound corresponding to unity.
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