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On the origin and diffusion of BRCA1 c.5266dupC
(5382insC) in European populations

Nancy Hamel1,2, Bing-Jian Feng3, Lenka Foretova4, Dominique Stoppa-Lyonnet5,6, Steven A Narod7,
Evgeny Imyanitov8, Olga Sinilnikova9,10, Laima Tihomirova11, Jan Lubinski12, Jacek Gronwald12,
Bohdan Gorski12, Thomas v O Hansen13, Finn C Nielsen13, Mads Thomassen14, Drakoulis Yannoukakos15,
Irene Konstantopoulou15, Vladimir Zajac16, Sona Ciernikova16, Fergus J Couch17, Celia MT Greenwood18,
David E Goldgar3 and William D Foulkes*,1,2

The BRCA1 mutation c.5266dupC was originally described as a founder mutation in the Ashkenazi Jewish (AJ) population.

However, this mutation is also present at appreciable frequency in several European countries, which raises intriguing questions

about the origins of the mutation. We genotyped 245 carrier families from 14 different population groups (Russian, Latvian,

Ukrainian, Czech, Slovak, Polish, Danish, Dutch, French, German, Italian, Greek, Brazilian and AJ) for seven microsatellite

markers and confirmed that all mutation carriers share a common haplotype from a single founder individual. Using a maximum

likelihood method that allows for both recombination and mutational events of marker loci, we estimated that the mutation

arose some 1800 years ago in either Scandinavia or what is now northern Russia and subsequently spread to the various

populations we genotyped during the following centuries, including the AJ population. Age estimates and the molecular

evolution profile of the most common linked haplotype in the carrier populations studied further suggest that c.5266dupC

likely entered the AJ gene pool in Poland approximately 400–500 years ago. Our results illustrate that (1) BRCA1 c.5266dupC

originated from a single common ancestor and was a common European mutation long before becoming an AJ founder

mutation and (2) the mutation is likely present in many additional European countries where genetic screening of BRCA1

may not yet be common practice.
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INTRODUCTION

Germline mutations in the breast cancer predisposition genes
BRCA1 and BRCA2 account for a substantial fraction of hereditary
breast cancer. Founder populations such as the French Canadian (FC)
population of Quebec, the Icelandic population and the Ashkenazi
Jewish (AJ) population have relatively frequent, well characterized
founder mutations in the BRCA genes.1

According to the Breast Cancer Information Core database,2 the
two most frequently reported mutations in BRCA1 are BRCA1:
c.68_69delAG (traditionally known as 185delAG or 187delAG, 1980
reports) and c.5266dupC (also known as 5382insC or 5385insC, 1063
reports). Both mutations are known founders in the AJ population,
with c.68_69delAG being the most frequent with approximately 0.9%
of all AJ individuals being carriers.3 BRCA1:c.68_69delAG is found

most frequently in individuals of AJ descent but is also observed in
some Hispanic populations, likely owing to historical gene flow
between these two populations in Europe and America.4 In contrast,
c.5266dupC is less frequent in the AJ population (0.13%)5 and is also
observed in a wide range of other populations, primarily in Europe.
Historically, AJ individuals rarely married outside their faith, raising
the question of whether the mutation arose independently multiple
times in the course of history or whether all mutation carriers share a
single common ancestor. Neuhausen et al6 reported early on that
21 mutation carrier families, including some families with Jewish
ancestry, shared a common haplotype at markers near BRCA1,
favouring the second hypothesis.

The age of a founder mutation can theoretically be estimated
by determining the size of the conserved region surrounding the
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mutation. In the case of a recent founder mutation, carriers will
typically share a relatively large region of DNA surrounding the
mutation where identical alleles will be observed at many loci in all
carriers. As time passes, recombination events will create different
chromosomal arrangements in selected individuals, and the region of
shared homology around the mutation among carriers will become
progressively smaller. In this study, we set out to first confirm using a
large cohort of mutation carriers whether all c.5266dupC carriers
indeed share a common haplotype background. Using the genetic
information collected, we then attempted to estimate the number of
generations since the appearance of the mutation in each population
studied in the hopes of gaining some insight into where and when
c.5266dupC arose and how the mutation may have spread throughout
Europe to reach its current distribution, including its designation
as an AJ founder.

METHODS

Subjects
A total of 390 DNA samples derived from c.5266dupC carrier families were

genotyped, representing 245 families. For each participating family, a sample

from one mutation carrier (index carrier, n¼245) and available relatives

(n¼145) were obtained from collaborating research centers in Greece, Slovakia,

Latvia, the Czech Republic, Russia, France, Poland, Denmark and Canada. All

participants provided informed consent for use of their genetic material in

research as well as self-reported population group membership. A summary of

the participating subjects is presented in Table 1.

Genotyping
We initially genotyped a subset of 130 index cases and 75 of their relatives

for 15 microsatellite markers (short tandem repeat markers, or STRs) and

performed a series of preliminary analyses. Characteristics of the region studied

and markers analyzed are presented in Table 2. From these initial analyses it was

evident that some markers were too far from BRCA1 to contribute useful

information, whereas others were in partial linkage disequilibrium with nearby

markers and provided mostly duplicate information. Thus, we selected a subset

of seven STR markers covering 5.2 cM in 6.98 Mb of DNA that were highly

heterozygous and which captured the haplotype diversity. These seven markers

were then genotyped in a further 185 samples that were obtained subsequent to

the original data collection and analysis. Genotyping data are presented in

Supplementary Table 1. All genotyping was performed by deCODE genetics

(Reykjavik, Iceland).

Age estimates using the maximum likelihood method
In order to estimate the age of the mutation (or more precisely, the number

of generations since the most recent common ancestor, MRCA), we used the

method that was first used to estimate the age of several BRCA1 mutations

including c.5266dupC6 and was then extended and applied to BRCA2 muta-

tions.7 This method uses maximum likelihood and allows for both recombina-

tion and mutational events at the marker loci as means of altering a presumed

ancestral haplotype. Phased haplotypes were used if these could be inferred

from available family data; otherwise, all possible haplotypes were constructed

from multilocus genotype data and weighted according to their probability. For

each value of G (the number of Generations since the MRCA), the relative

likelihood that each haplotype is descended from the ancestral haplo-

type through mutation and recombination is calculated compared with the

Table 1 Mutation carrier families genotyped

Population

group

Number of

families

Number of

samples

Contributing

centres

Russian 26 28 St-Petersburg

Latvian 25 25 Riga

Ukrainian 5 6 Toronto

Czech 53 111 Brno

Slovak 5 8 Bratislava

Polish 27 81 Szczecin, Paris, Toronto

Ashkenazi Jewish 27 34 Toronto, Montreal, Paris

Danish 22 37 Copenhagen, Odense

Dutch 2 2 Toronto

French 41 41 Paris

German/Italian 2 4 Toronto

Greek 7 10 Athens, Toronto

Braziliana 3 3 Toronto

245 390

aFamilies were recruited in Brazil and the samples are housed in Toronto.

Table 2 Microsatellite markers genotyped in carrier families

STR marker Genomic position (GRCh37-hg19) Distance to mutation (bp) No. Alleles observed Reported heterozygositya

D17S1795 47925162 6 715 879 9 0.71

D17S1827 46638614 5 429 331 12 0.82

D17S931b 44995888 3 786 605 8 0.73

D17S934 43057681 1 848 398 11 0.84

D17S1804 43015297 1 806 014 9 NA

D17S1861b,c 42807097 1 597 814 12 0.82

D17S951b,c 41820209 610 926 10 0.77

D17S1327 41375525 166 242 13 NA

c.5266dupC 41209283 — — —

D17S855b,d 41204819 4464 9 0.82

D17S1147 40780067 429 216 7 NA

D17S1801b,c 40415909 793 374 9 0.63

D17S1299b,c 38994464 2 214 819 7 0.70

D17S1814b 38118881 3 090 402 10 0.78

D17S1818 37163238 4 046 045 13 0.84

D17S1867 35379550 5 829 733 8 0.67

Abbreviation: NA, not available.
aValues from GeneLoc Marker Cards (http://genecards.weizmann.ac.il/geneloc/index.shtml).
bSTRs used for maximum likelihood age estimates are shown in bold.
cSTRs used for single marker age estimates.
dSTR located in intron 20 of BRCA1.
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likelihood that it is a totally independent haplotype (ie, an independent

recurrent c.5266dupC mutation on a different haplotype background). The

value of G which maximizes this likelihood is obtained through iterative search.

In all, 95% support intervals were constructed by identifying those points GL

and GU where the likelihood differed from the maximum by 0.86 (correspond-

ing to a w2 likelihood ratio statistic of 3.84, eg, P¼0.05). In order to examine the

likely genetic history of the c.5266dupC mutation, we analyzed separately each

of several defined subgroups in which a sufficient number of samples were

available for analysis: (a) AJ; (b) Russian (St Petersburg); (c) Polish (Szczecin

and Paris only); (d) French; (e) Danish; (f) Czech/Slovak; (g) Latvia; (h) other.

Assumed genetic map
The recombination rates between markers were assumed to be those estimated

in Kong et al.8 Physical positions of the STRs and SNPs were those from the

Human Reference sequence, build 3.7. For markers present on the deCODE

map, we used the genetic positions in centimorgans as reported there, whereas

for those not on the deCODE map, we estimated the genetic position from the

proportion of physical distance between the known markers and then trans-

lated this to the genetic scale. This has the effect of using locally defined

relationships between physical and genetic distance and thus can accommodate

the reported recombination suppression in this region.9

Marker mutation rates
As a baseline we used the rates for the six dinucleotide and single tetranucleo-

tide microsatellite markers as estimated from CEPH data by Weber and Wong10

of 0.0006 and 0.002, respectively, for a mutation of a single repeat unit. We

assumed the probability of changes of n repeat units in a given meiosis was

(0.0006 or 0.002)n for n¼2,3,4 and that for more than four repeats was taken

to be equal to that for four repeats units. Because of the imprecision of these

rates (and model) we introduced another parameter into the likelihood and

jointly estimated the number of generations and a multiplier of the assumed

marker-mutation rates described above. Thus, to a certain extent, we let the

data inform the proper marker mutation rates. In addition to the true

underlying marker mutation rates, this also allows for potential genotyping

errors to be accounted for in the model. We found that the best fit to our data

was when the recombination rate was 2.75� that of Weber and Wong.10

Allele frequencies
Our method uses marker allele frequencies in the calculation of the likelihood

(Supplementary Table 2). We estimated frequencies from the unlinked allele of

the chromosomes in the sample. Because the AJ population often has different

allele frequencies at many genetic markers, the AJ frequencies were separately

estimated from a sample of 30 controls and used for the likelihood calculations

of the AJ multi-locus genotype/haplotype data.

Age estimates using single markers method
In an attempt to corroborate age estimate results obtained using the maximum

likelihood method described above, we also estimated the time since MCRA

using four markers (D17S1299, D17S1801, D17S951 and D17S1861) analyzed

individually in three populations (Czech/Slovak, Polish and Danes) where we

had the largest number of families with known phase for the markers linked to

the mutation. The single marker method was implemented as described

previously in Greenwood et al.11 The Labuda correction for population-growth

rate was assumed to be 1.5 and applied as previously described. Because this

method does not consider marker mutations, which likely have a significant

role in a region where there is documented recombination suppression such as

BRCA1,9 this method will not be as well-suited to our dataset as the maximum

likelihood method, but can nevertheless serve to test the robustness of our

original estimates.

RESULTS

Literature review of the frequency, distribution and morbidity
of BRCA1:5266dupC
Figure 1 provides a comprehensive summary of the distribution and
relative frequency of c. 5266dupC throughout Europe as reported in

the literature over the past 15 years. In an attempt to obtain as
accurate an estimate of relative frequency as possible for each
population, we focused on reports where the entire BRCA1 gene
was screened for mutations using methods such as SSCP, dHPLC and
sequencing, and did not include studies where only selected mutations
were tested. For several countries, indicated in the figure legend, there
were limited data available in the literature and frequency estimates
may not accurately reflect actual mutation frequencies. Nevertheless,
the compiled data clearly shows that BRCA1:c.5266dupC is not merely
an AJ founder mutation but in fact appears to be the most common
BRCA1 mutation in several European countries.

While reviewing the literature, we also compiled available data from
reports investigating mutation frequencies in unselected or consecu-
tive cohorts of breast and/or ovarian cancer cases in an attempt to
estimate the contribution of c.5266dupC to the incidence of breast
and ovarian cancer. These data are presented in Table 3 and show that
in Slavic countries,12 where the frequency of the mutation is highest
(Figure 1), carrier status of this single mutation is associated with a
remarkably high proportion of reported ovarian cancers (9.4%) and a
lesser, but still notable, percentage of breast cancers (2.2%).

Common ancestry of mutation carriers
Genotyping of index carriers was performed in two phases. We
initially genotyped 15 STR markers within and flanking BRCA1 over
a total region of 12.5 Mb in 130 index carriers and 75 of their relatives
(see Table 2 for marker information). Population/ethnic groups
represented included AJ individuals, Czechs, Slovaks, Latvians, Greeks
as well as a small number of Dutch, Ukrainian, Germans, Italians and
Brazilians (Table 1). Genotypes from relatives were used to assign
allelic phase and identify the haplotype in cis with the mutation in
index carriers. Although evidence of recombination at markers further
away from BRCA1 was observed, there was clear conservation imme-
diately flanking the mutation in all mutation carriers that was
consistent with the theory that all c.5266dupC carriers share a single
common ancestor. In individuals where phase could not be confirmed,
genotypes consistent with a single conserved linked haplotype were
always present. Based on these preliminary results, we used the seven
most informative markers to genotype 115 additional index carriers
and 70 of their relatives from regions of Europe where the presence of
c.5266dupC was well documented (France, Poland, Denmark and
Russia) and that were not represented the first phase of genotyping.
These additional data confirmed that the common ancestry of
c.5266dupC extends to all populations studied.

Origins of c.5266dupC
The number of generations since the last common shared ancestor was
estimated using the maximum likelihood method for all index carriers
combined, as well as for several defined subgroups where there were
sufficient numbers of individuals to allow for separate analysis. Results
are presented in Table 4 and suggest that c.5266dupC most likely
originated in Northern Europe, specifically Russia or possibly
Denmark, between 1800 and 1500 years ago (72 and 61 generations
of 25 years, 95% CI: 49–107 and 40–89, respectively). Overlapping
confidence intervals associated with the age estimates prevent us from
establishing a conclusive chronology of exactly how the mutation
spread among European countries. However, the conserved haplotype
found within the AJ population is significantly younger (27 genera-
tions, 95% CI: 10–31), consistent with the mutation entering the AJ
population more recently. Using the premise that molecular evolution
from the original founder haplotype to the haplotypes observed in
each population should be achieved using a minimal number of
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proposed marker mutation and recombination events, we attempted
to reconstruct the most likely molecular evolution scenario of how the
mutation spread from Russia or Scandinavia to other carrier popu-
lations (Figure 2a). Based on this reconstruction, the haplotype
observed in the AJ population is most consistent with having its
origin in Poland 400–500 years ago.

In addition, we tested the robustness of the above estimates using
an average of single marker likelihoods in the Czech/Slovak, Polish
and Danish population groups, where the largest numbers of pro-
bands with confirmed haplotypes were available. We obtained values
of 43.5, 78.2 and 106.7 generations (averaged over four markers for
each group) compared with 53 (95% CI: 42–66), 45 (95% CI: 30–64)

and 61 (95% CI: 40–89) generations using the maximum likelihood
method. These results are in general agreement in that the Danish
haplotype remains clearly older than the other haplotypes. In addition,
estimates using the two methods are consistent for the Czech
population, where 48 probands had phase information for at least
two of the four markers tested, compared with only 16 and 13
probands with partial- or complete-phase information for the Polish
and Danish groups, respectively, where more divergent results were
obtained.

Figure 1 Map of Europe showing the proportion of all BRCA1 mutations reported in the population accounted for by c.5266dupC per country. Only studies
where the entire gene was screened for mutations were included. Countries marked * have between 20–50 total BRCA1 mutations reported in the literature

whereas countries marked ** have less than 20 total BRCA1 mutations reported; therefore, frequency values for these countries have a high degree of

uncertainty and should not be considered definitive values. *Slovakia 41,42; Czech Republic 43–48; Russia 49–53; **Estonia 54; Poland 55–63; **Yugoslavia 64;

**Austria 65; **Hungary 66,67; **Lithuania 68; *Latvia 69,70; Germany 71–78; Italy 79–89; *Greece 90–94; Netherlands 95,96; Belgium 97–99; *Norway 100;

Sweden 101–106; Denmark 107–109; **Finland 110–112; Spain113–119; **Portugal 120; France 121–126; **Algeria 127; *Turkey 128–133. The references cited in

this legend (41–133) are available in Appendix 1 as Supplementary Material.

Table 3 Contribution of BRCA1:c.5266dupC to cancer incidence per

region

Country/

Region

5266dupC/BC

cases tested %

5266dupC/OC

cases tested % Publications

Scandinaviaa 1/823 0.12 2/606 0.33 21–24

Slavic Countriesb 52/2322 2.2 81/864 9.4 25–34

Germany 8/800 1.0 NA — 35

Hungary 7/500 1.4 1/90 1.1 36

Greece 13/1049 1.2 NA — 37,38

Turkey 0/63 0 2/122 1.6 39,40

Abbreviations: BC, breast cancer; NA, not available; OC, ovarian cancer.
aNetherlands; Denmark; Norway; Sweden.
bEastern Slavic: Russia, Latvia; Western Slavic: Lithuania, Poland, Czech Republic.12

Table 4 Estimated time to most recent common ancestor for

c.5266dupC

Population group Number of families Number of generations 95% CI

Russia 26 72 49–107

Denmark 22 61 40–89

Czech/Slovak 58 53 42–66

Latvia 25 49 33–72

France 41 49 35–68

Poland 24 45 30–64

Ashkenazi Jewish 27 19 10–31

Other 22 68 44–101

Combineda 245 62 55–69

Abbreviation: CI, confidence interval.
Estimates obtained using the maximum likelihood method.
aEstimates obtained under best estimate of marker mutation rate¼2.75� the rate in Weber and
Wong.10 One generation is approximately 25 years.
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DISCUSSION

c. 5266dupC originated in Northern Europe between 200–500
common era
In the first centuries of the Common Era (CE), borders in Northern
Europe were ill defined. Scandinavia encompassed sparsely populated
north-eastern regions including present-day Norway, Denmark and
Sweden as well as Finland and Iceland (uninhabited at the time),
whereas the region that is now Russia, Central Asia and Ukraine had
been occupied by Scythian tribes for several centuries. The following
600 years saw the Scythians conquered by the passage of Huns, Goths
and Turks, leaving surviving Slavic tribes to spread throughout Central
and Eastern Europe. Slavic tribes were also periodically harassed by
Northmen, but the extent of potential genetic exchanges between
Scandinavian and Slavic tribes during this period, whether through
raids or trade, is not known. Russia’s documented history only begins
in the ninth century after Rurik, the ‘great ruler of Novgorod’, founded
the first Russian dynasty. Historians suggest Rurik may in fact have
been a Viking hailing from Sweden, creating further genetic ties
between Scandinavians and Russians.13 It is thus ethnically and
geographically challenging to pinpoint the first c.5266dupC carrier,
and overlapping confidence intervals surrounding our age estimates
do not allow us to conclusively establish which of the Russian or
Danish haplotypes preceded the other.

Regardless of its precise origin, the best fit molecular scenario
suggested by our data and requiring the smallest number of mutation/
recombination events as shown in Figure 2a favours a sequence of
events where the mutation slowly spread west and south to the rest of
Europe from the Russian plains with the Slavic migrations.14 Although

the spread of the mutation to adjacent areas such as Latvia or Poland
through marriages seems a natural development, it is more difficult to
comprehend how the mutation could have passively spread from
Russia over such a short period of time to countries as distant as
France or Turkey at frequencies high enough to become established in
these populations and persist to this day. One possibility is that today’s
mutation carriers in these countries represent a subset of the popula-
tion who relatively recently emigrated from Slavic countries, bringing
the mutation with them; however, this explanation cannot satisfacto-
rily explain how the mutation appears to have spread so thoroughly
throughout Europe.

History suggests an alternate scenario. By the end of the 8th century,
Viking seamen, who were essentially Scandinavian merchants turned
to opportunistic looting, were raiding Christian communities and
monasteries far and wide and could easily have spread the mutation
directly and simultaneously to all corners of Europe.15,16 For instance,
c.5266dupC is also observed in the Yorkshire region of Northern
England (GR Taylor, personal communication) where Vikings raids
had been routine well before England came under the rule of Norman
kings in 1066 CE. The Normans were themselves descendants of a
group of Viking raiders that were allowed to settle in Northern France
(Normandy) in 911 CE against the promise of protection from further
raids on the local population, thereby providing several avenues for
direct genetic admixture between Scandinavians and French and
English locals.17,18 Although historically highly plausible, our genotype
data make this second scenario appear less likely because it requires
a two allele slip at marker D17S1299 (from allele 4 in the Danes to
allele 2 in the French, Figure 2b) rather than a single, stepwise-allele

Figure 2 Reconstructed history of the c.5266dupC mutation based on age estimates from the maximum likelihood model. Underlined are potential

recombination events (n¼2), and highlighted bold are presumed stepwise marker mutations (n¼3). *marks the position of the c.5266dupC mutation.

(a) ‘Best fit’ reconstruction based on molecular data. The model uses the most common haplotype observed in each population group and relies on the

smallest number of potential recombination and stepwise marker mutation events to account for existing observed haplotypes. (b) Alternate scenario based

on historical considerations where the mutation could have been carried by Viking raiders to distant countries such as France. An additional, biologically
unlikely two-step marker mutation from allele 4 (encircled) of the Danish haplotype to allele 2 of the French haplotype is introduced and would argue against

this scenario. However, Danish allele 4 is linked in 42% of our mutation carriers, whereas Danish allele 3 is linked in 25%. Similarly, French allele 3 is

linked in 43% of mutation carriers, compared with French allele 2 in 57%. Thus, allele 3 is the second most commonly linked allele in both populations

today and could have been a common allele transmitted from the Danish ancestor to the French ancestor in 785 CE before both population groups

continued to diverge, making this an alternate scenario worth considering.
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change from the Russian allele 3 to the Polish/French allele 2, the latter
being far more likely genetic. However, it is important to note that
although allele 4 is the allele most commonly linked to the mutation in
today’s Danish population, only 42% of our mutation carriers carry
this allele, whereas allele 3 is also represented at appreciable frequency
in this population (25%) as well as in the French population (43%,
compared with 57% who carry allele 2). Thus, allele 3 may well have
existed at higher frequency in ancestors from both population groups
back in 785 CE before diverging in later years. Investigation of
haplotype data in mutation carriers from intervening countries such
as Italy, Germany, Austria and Hungary, and of course from other
countries such as England, Sweden and Norway, would be of great
interest to refine the molecular data and attempt to elucidate this
question.

It is interesting to note that the mutation does not appear to have
been carried to North America by French colonists as was the case for
several other well-characterized founder mutations found today in the
FC population.19 One possible explanation is that c.5266dupC was
restricted to a subset of the French population who did not participate
in the colonization process to the America in the 16th century.
Another possibility is that settlers did bring the mutation to North
America, but that in this instance founder effect acted to remove it
from the genetic pool so that it did not become established in later
generations.

c.5266dupC entered the AJ population in Poland near
1500–1600 CE
Despite the uncertainty regarding its origin and the manner in which
the mutation spread throughout Europe, one clear conclusion emer-
ging from our data is that c.5266dupC entered the AJ population
much more recently, around 1500–1600 CE. In addition, the domi-
nant AJ haplotype is identical to the dominant Polish haplotype,
suggesting the mutation was likely acquired through admixture in
Poland. This is a highly plausible scenario historically. Jews were a
minority everywhere and were culturally and genetically isolated in
medieval Europe where all rulers were Christians. In the year 1500 CE,
there were perhaps 50 000 Jews living in Poland and Lithuania, but in
the following years, Jews who were expelled from surrounding
Christian countries such as England, Germany, Italy, Portugal and
Spain were welcomed to Poland, thanks to their strong contribution to
the Polish economy. By 1650, Poland counted many settled Jewish
communities and in spite of often difficult relations between Christian
and Jewish Poles, the Polish Jewish population had grown to 500 000,
nearly 30% of the world’s Jewish population.20 This rapid population
expansion would have significantly improved the odds of admixture
with the local Polish population, even for an otherwise relatively
genetically isolated group, and conceivably facilitated the acquisition
of c.5266dupC in the Jewish gene pool where it persisted and became
established as a low frequency founder mutation alongside the
more frequent Jewish mutations BRCA1:c.68_69delAG and BRCA2:
c.5946delT (traditionally known as 6174delT).

CONCLUSIONS

As demonstrated recently in a study of three AJ founder mutations,
age estimate results are strongly dependent on assumptions made
about recombination and mutation history that cannot be verified,
and results may vary depending on the method used, especially in the
case of older mutations such as the one studied here.11 By using a
method relying on molecular mutation and recombination rates
informed partly by the data itself, we attempted to minimize the
number of assumptions used in our model to get as accurate a picture

of the molecular history of the mutation as possible. Although the
exact origin and manner of dissemination of BRCA1:c.5266dupC may
never be precisely elucidated, we were able to establish conclusively
that all mutation carriers inherited the mutated chromosome from a
single common ancestor who lived well before the establishment
of current political boundaries. In addition, the current frequency
distribution of the mutation coincides well with expectations from
historical records. It is therefore likely that it will be found in several
additional European countries sharing ancestries with the populations
studied here, but where genetic testing and reporting in the literature
has not been commonly performed to date. Furthermore, given the
significant contribution of this mutation to the ovarian cancer burden
in countries where it is found at high frequency, systematic screening
of all ovarian cancer cases for BRCA1:c.5266dupC would be highly
beneficial to the risk management of affected families.
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