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OBJECTIVE—The aim of this study was to determine whether
the type 2 diabetes–associated T-allele of transcription factor
7-like 2 (TCF7L2) rs7903146 associates with impaired insulin
secretion to compensate for insulin resistance induced by bed
rest.

RESEARCH DESIGN AND METHODS—A total of 38 healthy
young Caucasian men were studied before and after bed rest
using the hyperinsulinemic-euglycemic clamp technique com-
bined with indirect calorimetry preceded by an intravenous
glucose tolerance test. The TCF7L2 rs7903146 was genotyped
using allelic discrimination performed with an ABI 7900 system.
The genetic analyses were done assuming a dominant model of
inheritance.

RESULTS—The first-phase insulin response (FPIR) was signif-
icantly lower in carriers of the T-allele compared with carriers of
the CC genotype before bed rest, with and without correction for
insulin resistance. The incremental rise of FPIR in response to
insulin resistance induced by bed rest was lower in carriers of
the T-allele (P � 0.001). Fasting plasma glucagon levels were
significantly lower in carriers of the T-allele before and after bed
rest. While carriers of the CC genotype developed increased
hepatic insulin resistance, the TCF7L2 rs7903146 did not influ-
ence peripheral insulin action or the rate of lipolysis before or
after bed rest.

CONCLUSIONS—Healthy carriers of the T-allele of TCF7L2

rs7903146 exhibit a diminished increase of insulin secretion in
response to intravenous glucose to compensate for insulin resis-
tance as induced by bed rest. Reduced paracrine glucagon
stimulation may contribute to the impairment of �-cell function
in the carriers TCF7L2 rs7903146 T-allele associated with in-
creased risk of type 2 diabetes. Diabetes 59:836–843, 2010

T
ype 2 diabetes is caused by a complicated inter-
play between genetic and environmental factors
acting on glucose and fat metabolism involving
multiple defects of peripheral (muscle) and he-

patic insulin action, insulin secretion, adipose tissue me-
tabolism, whole-body lipolysis, and possibly a range of
additional metabolic defects in a number of other organs
(1). Nevertheless, the manifestation of overt diabetes is a
direct result of a metabolic state when pancreatic insulin
secretion fails to compensate for insulin resistance.

The transcription factor 7-like 2 (TCF7L2) is a member
of the T-cell transcription factor family, which, through
regulation of cell proliferation and differentiation, plays a
critical role in the WNT signaling pathway (2). During
embryonic growth in humans, WNT signaling is required
for the development and maturation of the pancreas,
including the islets of Langerhans (3). Recent studies
(4–9) have established TCF7L2 as the most significant
type 2 diabetes susceptibility gene so far. Thus, each
T-allele of TCF7L2 rs7903146 increases type 2 diabetes
risk with an odds ratio of 1.37, even in the presence of a
reduced body weight (4,6,10–14). The diabetogenic impact
of the rs7903146 TCF7L2 variant or its linked causative
variant appears to be mediated through decreased insulin
secretion and/or through defects in insulin processing,
reduced effects of glucagon-like peptide (GLP)-1, and
increased hepatic glucose production (15–17).

Recently, Wegner et al. (18) showed that the T-allele of
TCF7L2 rs7903146 risk associated with an absolute and
relative impairment of insulin secretion and with in-
creased peripheral insulin sensitivity in elderly twins.
Similarly, in a study of young and healthy glucose tolerant
men, Pilgaard et al. (19) demonstrated that the same
variant associated with reduced insulin secretion relative
to the glucose level during a mixed-meal test and with an
elevated rate of endogenous glucose production in the
basal state as well as following in vivo insulin infusion. In
the present study, we performed detailed metabolic char-
acterization of young healthy men to determine whether
the T-allele of TCF7L2 rs7903146 is associated with im-
paired insulin secretion and/or insulin action in response
to 9 days of bed rest.

RESEARCH DESIGN AND METHODS

A total of 38 healthy young Caucasian men completed the study. Subjects were
recruited from a cohort of young men with low birth weight and normal birth
weight via the Danish National Birth Registry. Low birth weight was defined
as the lowest 10 percentile, and the control subjects were recruited from the
50–75 birth weight percentiles. Twenty-one subjects were carriers of the
T-allele of TCF7L2 rs7903146 (combined TT and CT alleles), and 17 subjects
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were carriers of the CC genotype. The number of subjects with low birth
weight was 11 in the group of carriers of the T-allele and 10 in carriers of the
CC genotype. No impact of, or association between, birth weight and genotype
were observed.
Ethics approval. The study was approved by the regional ethical committee
(ref. no. 01-262546), and all procedures were performed in accordance with
the guidelines of the Declaration of Helsinki. Informed written consent was
obtained from all the subjects before participation.
Experimental protocol control period. Subjects were requested to abstain
from strenuous physical activity and from consuming alcohol 3 days prior to
examination. To ensure standardized conditions, all subjects were provided
with an isocaloric nutritionally standardized diet 3 days prior to the first study
day and during the bed rest, with adjusted caloric content to ensure weight
stability. Body composition as well as fat-free mass and fat mass was
determined by dual-energy X-ray absorptiometry scan as previously described
(20).
Bed rest challenge. All subjects were admitted to the Steno Diabetes Center
for 9 days and were not permitted to deviate from a half-recumbent position
during this period. Toilet visits were limited to 15 min per day. Study subjects
were allowed to use a laptop, watch television, and to read in the bed.

Blood samples for measurements of fasting plasma insulin and fasting
plasma C-peptide were taken at the 1st, 2nd, 3rd, 5th, 7th, and 9th day of bed
rest. Body weight of all subjects was recorded every morning throughout the
intervention to ensure weight stability.
Hyperinsulinemic-euglycemic clamp combined with stable isotope in-

fusion and indirect calorimetry. Identical in vivo experiments were per-
formed before and after the bed rest intervention, as previously described in
details (20). A schematic presentation of the experimental day is presented in
Fig. 1.
Analytical procedures. Blood samples for plasma insulin, plasma C-peptide,
and for glucose and glycerol enrichment determination were performed as
previously described (20). Glucagon concentrations were measured after
extraction of plasma with 70% ethanol (vol/vol, final concentration). The
antibody used was directed against the C-terminus of the glucagon molecule
and therefore mainly measured glucagon of pancreatic origin (21). Standard
was human glucagon, and tracer was monoiodinated human glucagon (both
gifts from NovoNordisk, Bagsværd, Denmark). Sensitivity and detection limit
is �1 pmol/l, intra-assay coefficient of variation �6% at 20–30 pmol/l, and
recovery of standard, added to plasma before extraction, �100% when
corrected for losses inherent in the plasma extraction procedure. Plasma
triglyceride concentration was determined with Triglyceride GPO-PAP (Roche
Diagnostics, Mannheim, Germany). Total and HDL cholesterol were analyzed
with an enzymatic colorimetric test (Roche Diagnostics). LDL cholesterol was
calculated from the Friedewald formula (22), and VLDL cholesterol was
calculated as plasma triglycerides divided by 2.2. Glucose and glycerol
enrichment samples were measured as previously described in details (23,24).
Genotyping. Genomic DNA was extracted from blood using conventional
methods. TCF7L2 rs7903146 was genotyped using allelic discrimination
performed with an ABI 7900 system (KBioscience, Herts, U.K.) as previously
described (18). The overall genotyping success rate was �96%.
Calculations. Intravenous glucose tolerance test (�-cell test). The incremen-
tal first-phase insulin response (FPIR) during the intravenous glucose toler-
ance test (IVGTT) was calculated as the incremental area under the curve
(AUC) (AUCinsulin [0–10 min] � AUCbasal [insulin 0–10]). The second-phase
insulin secretion during IVGTT was calculated as AUCinsulin (10–30 min). The
total AUC was calculated using a trapezoidal method for glucose and insulin
during 30 min as (AUCinsulin [0–30 min]/AUCglucose [0–30 min]).

The disposition index expressing the inverse hyperbolic relationship
between insulin secretion and insulin action is an estimate of the “true” in vivo
pancreatic �-cell insulin secretion capacity. The peripheral disposition index
(Di-peripheral) was calculated as (FPIR � M) and the hepatic disposition index
(Di-hepatic) as (FPIR/hepatic insulin resistance [HIR]). The HIR was calculated
as the product of fasting plasma insulin concentration and the basal hepatic
glucose production as previously described (25).
Hyperinsulinemic-euglycemic clamp and indirect calorimetry. Glucose
infusion rates were calculated as the mean of steady-state glucose infusion
rates during the predefined insulin-stimulated steady-state period from 330 to
360 min. Basal and insulin-stimulated rates of glucose and lipid oxidation as
well as nonoxidative glucose oxidation rate were calculated according to the
methods of Frayn (26).
Stable isotope tracer calculations. Tracer-to-tracee ratios for both glucose
and glycerol were calculated as previously described (20).
Statistics. Statistical analysis was performed with the SAS statistical analysis
package (version 9.1; SAS Institute, Cary, NC). Due to the low number of
subjects, TT and CT genotypes were pooled and a dominant model was
applied. The selection of the dominant model for this locus is arbitrary and
one of convenience, as most of the evidence published on rs7903146 indicates
an additive model of risk transmission. One-way ANOVA analyses were
performed to test for differences between groups before and after bed rest.
The paired-sample t test was used to detect statistically significant differences
within groups in response to bed rest. The Kolmogorov-Smirnov test was used
to test whether data were normally distributed and whether logarithmic
transformation of non–normally distributed data rendered them normally
distributed. P values of �0.05 were considered as significant, and data are
presented as means � SD. In a post hoc power calculation with the first-phase
insulin secretion data as the end point, we had an 80% chance of detecting
differences between carriers of the T-allele and carriers of the CC genotype of
�66% after bed rest with a group 1 size of 21 subjects and a group 2 size of 17
subjects.

RESULTS

Clinical characteristics of study participants. As pre-
sented in Table 1, we found no significant differences in
age, weight, height, systolic and diastolic blood pressure,
maximal oxygen uptake (VO2max), total fat mass, fat per-
centage, trunk fat mass–to–total fat mass ratio, leg fat
mass–to–total fat mass ratio, plasma triglycerides, plasma
cholesterol, and plasma concentration of other lipopro-
teins between TT/CT carriers and CC carriers prior to bed
rest. We demonstrated a significant decrease in VO2max,
plasma total cholesterol, and plasma HDL concentrations
in carriers of the CC but not the TT/CT genotypes follow-
ing 9 days of bed rest. However, we observed a similar BMI
in carriers of the T-allele compared with carriers of the CC
genotype before and after bed rest.

No differences were observed between TT/CT and CC
carriers with regard to age, weight, height, systolic and
diastolic blood pressure, VO2max, total fat mass, fat per-
centage, trunk fat mass–to–total fat mass ratio, leg fat

IVGTT[5H2] - glycerol

[2H2] - glucose

0 min 150 min 180 min 360 min

Hyperinsulinemic euglycemic clamp;
(80 mU/m2/min)

FIG. 1. Schematic presentation of the experimental day(s). Whole-body glucose metabolism was measured by a hyperinsulinemic-euglycemic
clamp technique. Steady-state measurements of plasma glucose and plasma glycerol enrichments were performed during the basal period (before
the insulin stimulation) to determine hepatic glucose production and whole-body lipolysis rate. Arrows show points for collecting of blood
samples for basal-state determination of stable isotope kinetics.
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mass–to–total fat mass or plasma concentrations of trig-
lycerides, total cholesterol, LDL, and VLDL after bed rest.
Impact of the T-allele of rs7903146 on insulin secre-
tion during IVGTT. As presented in Table 2, first-phase
insulin secretion (FPIR) was significantly diminished in
carriers of the T-allele compared with carriers of the CC
genotype before as well as after 9 days of bed rest. The
decreased FPIR in carriers of the T-allele remained signif-
icant after correction for BMI before (P � 0.01) and after
(P � 0.0001) bed rest. We showed a significantly lower
insulin secretion during the time period from 10 to 30 min
after glucose infusion (i.e., AUC10–30 min), to some extent
reflecting a reduced late or second-phase insulin secretion
in carriers of the T-allele compared with carriers of the CC
genotype after bed rest (P � 0.001). The estimates of
second-phase insulin secretion data are included also in
Table 2. The AUC during IVGTT, AUC0–10 min, for plasma
insulin and C-peptide were similar in TT/CT and CC
genotype carriers before bed rest (Fig. 2). However, we
unmasked a significantly lower the AUC during IVGTT,
AUC

0–10 min
, for plasma insulin and C-peptide in carriers of

the T-allele compared with carriers of the CC genotype
after bed rest (Fig. 3).

Fasting plasma insulin and C-peptide levels were signif-
icantly decreased in the TT/CT genotype as compared with
the CC genotype carriers on day 9 during the bed rest
experiments (Fig. 4). Furthermore, carriers of the T-allele
had significantly reduced fasting plasma glucagon concen-
trations in the basal state before and after bed rest
compared with carriers of the CC allele, as presented in
Table 2. FPIR increased significantly in response to bed
rest in both groups, but the increment in FPIR was
significantly lower in carriers of the T-allele compared
with carriers of the CC genotype (P � 0.001).

The total AUC (AUCtotal) was significantly lower in
carriers of the T-allele compared with carriers of the CC
genotype after bed rest. Furthermore, in response to bed
rest we demonstrated a significant increase in AUCtotal in
CC carriers but not in carriers of the risk T-allele (Table 2).

Impact of the T-allele of rs7903146 on hepatic and

peripheral insulin sensitivity. As seen in Table 2, fast-
ing plasma insulin and glucose concentrations were simi-
lar between genotypes before as well as after bed rest. The
peripheral (muscle) insulin action, measured by the
hyperinsulinemic-euglycemic clamp, was significantly de-
creased in response to bed rest without differences be-
tween the genotype groups. Despite decreased peripheral
insulin action in all subjects in response to bed rest,
carriers of the T-allele tended to be more insulin sensitive
after bed rest as determined by the homeostasis model
assessment (HOMA) index. Furthermore, carriers of the
T-allele demonstrated a similar decrease in the M value, as
measured by the hyperinsulinemic-euglycemic clamp tech-
nique, compared with carriers of the CC genotype.

Estimates of insulin secretion adjusted for peripheral
insulin sensitivity (i.e., peripheral and hepatic disposition
index) were lower in carriers of the T-allele before bed
rest. Notably, the peripheral disposition index, but not the
hepatic disposition index, was also significantly decreased
in carriers of the T-allele compared with carriers of the CC
genotype after bed rest.

As presented in Table 3, carriers of the CC genotype, but
not carriers of the T-allele, developed a significant in-
crease in the HIR index (P � 0.01) in response to bed rest.
However, we found no significant differences in rate of
appearance of glucose and glycerol between genotype
groups neither before nor after bed rest.
Impact of the T-allele of rs7903146 T-allele on gas-
eous exchange measurements. Basal glucose oxidation
increased and basal fat oxidation decreased significantly
in response to bed rest in the both genotype groups as
presented in Table 2. The glucose and fat oxidation rates
during insulin infusion were not significantly affected by
bed rest in any of the genotype groups. The insulin-
stimulated nonoxidative glucose metabolism decreased
significantly in carriers of the CC genotype as well as in
carriers of the T-allele (all P � 0.01), with no differences
between the groups before and after bed rest.

TABLE 1
Clinical characteristics of male study participants according to the TCF7L2 rs7903146 genotype before and after bed rest

rs7903146
Before bed rest After bed rest

TT/CT CC TT/CT CC

n 21 17 21 17
Age (years) 25.6 � 2.0 25.2 � 2 25.6 � 2.0 25.2 � 2.1
Weight (kg) 75.6 � 11.7 82.4 � 11.8 76.8 � 10.4 81.5 � 12.2
Height (m) 1.81 � 0.06 1.82 � 0.06 1.81 � 0.06 1.82 � 0.06
BMI (kg/m2) 23.0 � 2.7 24.4 � 3.1 23.2 � 2.5 24.5 � 3.0
Vo2 max (ml � min�1 � kg�1) 43.0 � 6.8 43.7 � 7.8 42.9 � 7.1 40.7 � 7.8*
Systolic blood pressure (mmHg) 125 � 10 129 � 14 124 � 11 127 � 10
Diastolic blood pressure (mmHg) 69 � 8 70 � 10 70 � 5 70 � 8
Waist-to-hip ratio 0.85 � 0.05 0.86 � 0.05 0.85 � 0.06 0.87 � 0.06
Total fat mass (kg) 12.6 � 6.6 16.7 � 8.3 12.9 � 6.9 17.2 � 8.8
Whole-body fat percentage (%) 16.5 � 6.5 19.8 � 7.5 16.2 � 6.6 20.3 � 7.8
Trunk fat mass-to-total fat mass ratio 0.50 � 0.04 0.51 � 0.04 0.50 � 0.05 0.52 � 0.05
Leg fat mass-to-total fat mass ratio† 0.36 � 0.04 0.35 � 0.03 0.35 � 0.04 0.35 � 0.04
Percent trunk fat mass-to-leg fat mass ratio 1.41 � 0.29 1.48 � 0.30 1.46 � 0.35 1.53 � 0.33
Triglycerides (mmol/l) 0.9 � 0.3 1.1 � 0.9 0.9 � 0.3 1.2 � 0.6
Cholesterol (mmol/l) 3.8 � 0.6 4.2 � 1.0 3.8 � 1.0 3.8 � 1.0*
HDL (mmol/l) 1.2 � 0.2 1.3 � 0.5 1.2 � 0.2 1.1 � 0.4*
LDL (mmol/l) 2.1 � 0.5 2.3 � 1.0 2.2 � 0.6 2.0 � 0.6
VLDL (mmol/l) 0.4 � 0.2 0.5 � 0.4 0.4 � 0.2 0.5 � 0.3

Data are means � SD. *Significant difference before versus after bed rest; P � 0.05. †Log-transformed data.
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DISCUSSION

Previous studies (27–29) have demonstrated that the
mechanisms by which the T-allele of TCF7L2 rs7903146 is
a marker for increased risk of type 2 diabetes most
probably involve impairment at various steps of insulin
biosynthesis and release. The most important finding from
the present study is that young healthy carriers of the risk
T-allele exhibit a diminished compensatory increase in
glucose-stimulated plasma insulin and plasma C-peptide
secretion during 9 days of bed rest, indicating a greater
vulnerability to bed rest compared with carriers of the
low-risk CC genotype.

Previous results from the Diabetes Prevention Program
as well as from the Finnish Diabetes Prevention Study
suggested an increased risk of type 2 diabetes in less
physically active carriers of the TCF7L2 rs7903146 (28,30).
In this study, we document that this significant adverse
gene-environment interaction mechanistically may be
caused by an inability of the carriers of the T-allele of
TCF7L2 rs7903146 to increase insulin secretion to com-
pensate for insulin resistance when exposed to physical
inactivity. The extent to which other lifestyle factors,
including diet, sleep deprivation, stress, etc., may interact
with distinct susceptibility genotypes increasing the risk
of developing overt type 2 diabetes remain to be
documented.

It is generally recognized that in vivo insulin secretion
should be corrected for the ambient degree of whole-body
insulin sensitivity and expressed as a disposition index,
taking into account the ability of the normal pancreatic
�-cell to adapt insulin secretion to the level of insulin
sensitivity (31). Lyssenko et al. (29) demonstrated reduced
insulin secretion after correction for the degree of insulin
action in response to oral glucose ingestion in glucose-
tolerant carriers of the T-allele of TCF7L2 rs7903146,
while no difference in the absolute insulin secretion ca-
pacity (AUCinsulin OGTT and AUCinsulin IVGTT) was seen
between different genotype carriers. In addition, in glu-
cose-tolerant individuals, no difference in arginin-stimu-
lated insulin secretion was demonstrated between carriers
of the CC genotype and carriers of the T-allele (29).

In the present extensive metabolic study, we unmasked
a disproportionately reduced insulin secretion in response
to an intravenous glucose infusion after bed rest in young
healthy carriers of the T-allele of TCF7L2 rs7903146
compared with carriers of the CC genotype (Fig. 3).
Furthermore, we demonstrated an impaired insulin secre-
tion in carriers of the T-allele when corrected for the
ambient level of peripheral insulin sensitivity before and,
in particular, after bed rest (Table 2). Our finding provides
direct evidence for an impaired pancreatic insulin secre-
tion relative to the level of peripheral insulin resistance in

TABLE 2
Data on IVGTT, hyperinsulinemic-euglycemic clamp, and indirect calorimetry in male study participants according to TCF7L2

rs7903146 genotype before and after bed rest

rs7903146
Before bed rest After bed rest

TT/CT CC TT/CT CC

n 21 17 21 17
Plasma glucose (mmol/l)

Basal 4.6 � 0.4 4.6 � 0.5 4.6 � 0.4 4.6 � 0.4
Insulin-stimulated state 5.0 � 0.2 5.0 � 0.2 5.0 � 0.4 5.1 � 0.4

Plasma insulin (pmol/l)*
Basal 26 � 14 33 � 23 30 � 11 47 � 27†‡
Insulin-stimulated state 745 � 151 848 � 258 821 � 186 837 � 192

Plasma glucagon (pmol/l)
Basal 6.7 � 2.9 10.5 � 4.3§ 6.7 � 3.6 9.4 � 4.0†

HOMA-IR	 (10�6 � mmol�1 � l�1 � mmol�1 � l�1)*
Basal 5.3 � 3.2 6.9 � 5.2 6.1 � 2.5 9.7 � 5.8†‡

M value (mg � min�1 � kg fat-free mass�1)
Insulin-stimulated state 14.0 � 1.9 14.0 � 1.8 11.0 � 1.7‡ 10.0 � 2.5‡

Glucose oxidation rate (mg � min�1 � kg�1 fat-free mass)
Basal 1.6 � 0.4 1.4 � 0.4 2.3 � 0.9‡ 2.8 � 0.7‡
Insulin-stimulated state 4.2 � 0.6 4.3 � 0.6 4.5 � 0.6 4.2 � 0.7

Fat oxidation rate (mg � min�1 � kg�1 fat-free mass)
Basal 1.0 � 0.3 1.1 � 0.4 0.7 � 0.4‡ 0.5 � 0.3‡
Insulin-stimulated state 0.1 � 0.2 0.2 � 0.4 �0.1 � 0.3 0.1 � 0.3

Nonoxidative glucose oxidation rate (mg � min�1 � kg�1

fat-free mass)
Insulin-stimulated state 9.9 � 1.7 9.7 � 2.0 6.5 � 1.5‡ 6.4 � 1.8‡

FPIR (pmol�1 � l�1 � min�1)* 1,559 � 1,330 2,122 � 1,464§ 2,108 � 1,339‡ 3,503 � 1,670†‡
Second-phase insulin response (pmol�1 � l�1 � min�1)* 2,671 � 2,954 2,618 � 602 2,632 � 1,012 4,960 � 2,778†‡
AUCtotal (pmol�1 � l�1 � min�1)* 4,469 � 3,905 5,032 � 2,985 5,026 � 2,190 8,946 � 4,063†‡
Di-peripheral (10�3 � pmol � ml�1 � min�1 � mg�1 � min�1 �

kg fat-free mass�1)*
Insulin-stimulated state 21.9 � 20.4 30.4 � 21.5§ 24.0 � 16.2 34.3 � 17.7†

Di-hepatic (pmol � l�1 � min�1 � 
mol�1 � min�1 � kg
fat-free mass�1 � pmol�1 � l�1)*

Insulin-stimulated state 6.6 � 6.4 14.2 � 18.1� 7.8 � 5.6 9.4 � 6.0

Data are means � SD. *Log-transformed data. †Significant difference between the TT/CT and CC groups after bed rest, P � 0.05. ‡Significant
difference before versus after bed rest; P � 0.05. Significant difference between the TT/CT and CC groups before bed rest, §P � 0.05 and �P �
0.05.
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young healthy carriers of the risk T-allele. Importantly, we
show that carriers of the T-allele of TCF7L2 rs7903146
were unable to increase pancreatic insulin secretion to
compensate appropriately for peripheral insulin resistance
as induced by physical inactivity, providing proof of con-
cept for an adverse interaction between genotype and an
important lifestyle determinant such as physical inactivity
on risk of developing type 2 diabetes. Furthermore, we
confirmed our previous finding of significantly lower fast-
ing plasma glucagon levels in carriers of the T-allele of
TCF7L2 rs7903146 prior to and after bed rest (19). As
discussed in this report by Pilgaard et al. (19), this may be
explained by reduced expression of proglucagon in the
�-cells or by altered posttranslational processing of pro-
glucagon to glucagon. Importantly, our confirmation of
reduced plasma glucagon in the context of a documented
reduced insulin secretion in response to intravenous glu-
cose supports the idea of impaired paracrine glucagon
stimulation playing a significant role in the development of

impaired �-cell function in carriers of the T-allele of
TCF7L2 rs7903146.

Carriers of the T-allele of TCF7L2 have an increased
risk of nonalcoholic liver steatosis and fibrosis (32), and
other studies (18,19,29) report that the T-allele of TCF7L2
is associated with an increased rate of endogenous glu-
cose production in the basal state and during insulin
infusion. In this study, the slightly elevated rate of hepatic
glucose production in carriers of the T-allele (P � 0.10) at
baseline did not reach statistical significance. Further-
more, carriers of the T-allele exhibited a significantly, and
paradoxically, decreased HIR index compared with carri-
ers of the CC genotype after bed rest (Table 3). This
interesting reversal of phenotype according to hepatic
glucose production and hepatic insulin sensitivity is most
likely to be explained by the clear separation of the fasting
plasma insulin and C-peptide levels in the two study
groups with increasing duration of bed rest (Fig. 4). These
curves illustrate the unmasking effects of bed rest on a
significant type 2 diabetes abnormality of reduced insulin
secretion, even in the fasting state, in carriers of the
T-allele. In that situation, the apparently increased hepatic
insulin sensitivity in the carriers of the T-allele is due only
to reduced fasting plasma insulin levels and the question
may therefore be raised to which extent this calculated
sensitivity index is a true biological phenomenon or a
result of an inadequate estimate of hepatic insulin sensi-
tivity calculated from peripheral and not portal plasma
insulin levels. However, the parallel differences of circu-
lating plasma insulin as well as plasma C-peptide levels
suggest that this is not only a result of altered hepatic
insulin extraction. Although the lower fasting plasma
glucagon levels may contribute to the lower HIR in carri-
ers of the T-allele after bed rest, this is unlikely to be the
full explanation. Thus, in agreement with the data from
Pilgaard et al. (19), fasting plasma glucagon levels were
reduced to the same extent in carriers of the T-allele prior
to bed rest when HIR was not reduced in these subjects.

Wegner et al. (18) demonstrated a reduced insulin
secretion in response to intravenous glucose in the abso-
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FIG. 2. AUC0–10 min for plasma insulin during IVGTT before bed rest.
Data are presented as means � SE in carriers of the risk T-allele (F)
and carriers of low-risk CC genotype (E) and AUC0–10 min for plasma
C-peptide during IVGTT before bed rest. Data are presented as
means � SE in carriers of the risk T-allele (�) and carriers of low-risk
CC genotype (‚).
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FIG. 4. Plasma insulin concentration during 9 days of bed rest; *P <
0.05. Data are presented as means � SE in carriers of the risk T-allele
(‚) and carriers of low-risk CC genotype (�). PANOVAday1 � 0.93;
Pday2 � 0.41; Pday3 � 0.75; Pday5 � 0.15; Pday7 � 0.24; Pday9 � 0.02.
Plasma C-peptide concentration during 9 days of bed rest; *P < 0.05.
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0.24; Pday3 � 0.39; Pday5 � 0.14; Pday7 � 0.39; Pday9 � 0.02.

BED REST IMPACT IN CARRIERS OF TCF7L2 T-ALLELE

840 DIABETES, VOL. 59, APRIL 2010 diabetes.diabetesjournals.org



lute sense as well as an increased peripheral insulin
sensitivity with no difference in the peripheral disposition
index in elderly carriers of the T-allele of TCF7L2
rs7903146 in a twin study. We speculated that the rela-
tively increased peripheral insulin action in the elderly
nondiabetic twins carrying the T-allele might be the result
of an increase of peripheral (muscle) insulin action to
compensate for a primary and long-lasting genuine impair-
ment of insulin secretion (18). Along with this line of
thinking, the relatively decreased HOMA, as well as pe-
ripheral insulin action, after bed rest in carriers of the
T-allele of TCF7L2 rs7903146 may not be unexpected
(Table 2). Although the conventional view is that the
pancreatic insulin secretion senses and compensates for
the ambient degree of both hepatic and peripheral insulin
action, the present results support the view that the
plasma insulin level, per se, is playing a significant role for
the ambient degree of insulin action and that the compen-
satory interaction between insulin action and insulin se-
cretion might work in both ways to preserve the metabolic
homeostasis. In support of this view, we recently demon-
strated that increased circulating insulin levels precedes
the development of peripheral insulin resistance in re-
sponse to short-term high-fat feeding in vivo in young and
healthy men (33).

When including hepatic insulin action in the calcula-
tion of insulin secretion relative to insulin action, we
found a lower insulin secretion hepatic disposition
index in carriers of the T-allele prior to, but not after,
bed rest. The similar level of insulin secretion hepatic
disposition index after bed rest between carriers of
different genotypes of TCF7L2 is likely to be caused by
the elevated HIR in carriers of the CC genotype in
response to bed rest.

Previous studies (19,34,35) suggested that the decreased
insulin secretion in carriers of the T-allele might be
explained by a reduced gut hormone incretin effect and,
more specifically, a reduced insulinotropic effect of GLP-1.
The finding of impaired insulin secretion in response to an
IVGTT in carriers of the T-allele, bypassing the impact of
gut incretin hormones, does not support the view that an
impaired incretin effect may fully explain the decreased
insulin secretion in carriers of the T-allele. Thus, the
accumulated physiological evidence suggests that carriers
of the T-allele of TCF7L2 rs7903146 exhibit reduced
insulin secretion as a result of a combination of impaired
incretin effect and impaired intrinsic pancreatic �-cell
function and/or �-cell mass. To this end, impaired para-
crine effect of glucagon to stimulate insulin secretion
may count as a part of the intrinsic pancreatic �-cell
dysfunction.

Correction for BMI being nonsignificantly lower in car-

riers of the at risk T-allele of TCF7L2 rs7903146 did not
change the finding of a significantly reduced insulin secre-
tion as well as a higher in vivo insulin action in these
subjects as compared with carriers of the CC genotype
after bed rest. In previous studies from our group (18,19),
we also found trends toward a lower BMI in carriers of the
T-allele, which in turn theoretically could be due to
reduced insulin secretion.

The detailed and significant number of metabolic param-
eters measured in the study subjects were not corrected
for multiple comparisons, which would have resulted in
loss of statistical power and less significant differences
between the two groups. The rationale for not correcting
for multiple comparisons includes the fact that previous
studies (19,28–30) have suggested different degrees of
evidence for the different defects of metabolism with
defective insulin secretion, increased hepatic glucose pro-
duction, and reduced plasma glucagon levels being some
of the most prominent defects previously reported in
carriers of the T-allele of the TCF7L2 rs7903146. Indeed,
these defects were the ones most likely to become un-
masked by exposure to insulin resistance as induced by
physical inactivity.

In another recent publication from our group (20), we
reported that insulin-resistant first-degree relatives of pa-
tients with type 2 diabetes were more susceptible to
develop HIR when exposed to bed rest as compared with
control subjects without first-degree relatives. To avoid
further genetic admixture of type 2 diabetes susceptibility
genes in this study, subjects with first-degree relatives
were not included. However, it is interesting that the
currently most important type 2 diabetes susceptibility
gene TCF7L2 is indeed very common among subjects
without a genetic predisposition to diabetes and further-
more that the phenotypic appearance, including the re-
sponse to bed rest, differs markedly between subjects with
first-degree relatives and carriers of the most significant
known susceptibility gene, with the latter representing a
primary defective pancreatic insulin secretion. This sug-
gests that other more significant, and currently unknown,
insulin resistance genes are involved or alternatively that
environmental factors clustering in families of patients
with type 2 diabetes plays a more significant role in the
phenotypic appearance.

In conclusion, young healthy men who are carriers
of the type 2 diabetes–associated T-allele of TCF7L2

rs7903146 and who are exposed to 9 days of physical
inactivity develop an insulin response to intravenous glu-
cose that is insufficient to compensate for the induced
insulin resistance.

TABLE 3
The rate of hepatic insulin action and whole-body lipolysis in male study participants according to TCF7L2 rs7903146 genotype in
response to bed rest

rs7903146
Before bed rest After bed rest

TT/CT CC TT/CT CC

n 21 17 21 17
Ra glucose (
mol � min�1 � kg fat-free mass�1) 10.5 � 2.3 8.9 � 3.7 10.7 � 3.3 11.2 � 3.4
HIR index* 267 � 156 282 � 165 310 � 123 540 � 369†‡
Ra glycerol (
mol � min�1 � kg fat-free mass�1)* 3.9 � 2.8 3.3 � 2.0 2.7 � 1.6 3.0 � 2.0

Data are means � SD. *Log-transformed data. †Significant difference between TT/CT and CC group after bed rest, P � 0.05. ‡Significant
difference before versus after bed rest; P � 0.05. Ra glucose, glucose rate of appearance; Ra glycerol, glycerol rate of appearance of glycerol.
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