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The transfer–messenger RNA (tmRNA)-mediated trans-translation
mechanism is highly conserved in bacteria and functions
primarily as a system for the rescue of stalled ribosomes and
the removal of aberrantly produced proteins. Here, we show
that in the antibiotic-producing soil bacterium Streptomyces
coelicolor, trans-translation has a specialized role in stress
management. Analysis of proteins that were carboxy-terminally
His8-tagged by a recombinant tmRNA identified only 10 targets,
including the stress proteins: DnaK heat-shock protein 70,
thiostrepton-induced protein A, universal stress protein A,
elongation factor Tu3, and the cell-cycle control proteins DasR,
SsgA, SsgF and SsgR. Although tmRNA-tagged proteins are
degraded swiftly, the translation of dnaK and dasR messenger
RNAs (mRNAs) depends fully on tmRNA, whereas transcription is
unaffected. The data unveil a surprisingly dedicated functionality
for tmRNA, promoting the translation of the same mRNA it
targets, at the expense of sacrificing the first nascent protein. In
streptomycetes, tmRNA has evolved into a dedicated task force
that ensures the instantaneous response to the exposure to stress.
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INTRODUCTION
Survival under stress conditions is a constant challenge in life, and
cells have various defence mechanisms to cope with the
consequences of exposure to among others radicals, chemicals,
nutrient deprivation, desiccation, and temperature or salt shock.

One consequence is the accumulation of incorrectly folded
proteins and damaged messenger RNAs (mRNAs). Ribosomes
translating truncated transcripts become stalled because of the

lack of a stop codon, causing rapid depletion of the ribosome
pool. Bacteria have an elegant quality-control mechanism, trans-
translation, to solve this problem (Moore & Sauer, 2007).
A chimeric transfer–messenger RNA (tmRNA) encoded by the
ssrA gene mimics transfer RNA (tRNA) and mRNA successively
(Retallack & Friedman, 1995; Karzai et al, 2000). The tRNA-like
structure of tmRNA enters the ribosomal A site and after alanine
transfer a peptidyl-tmRNA is formed. Next, the ribosome switches
template, translates the coding region of tmRNA, which encodes a
degradation tag, and terminates on the tmRNA-specified stop
codon (Keiler et al, 1996). Furthermore, more specific functions
in gene regulation have been reported for tmRNA, such as
controlling the levels of active Lac repressor (Abo et al, 2000), or
cell-cycle control in Caulobacter crescentus, mediating the
removal of the response regulator CtrA (Keiler & Shapiro, 2003).

Streptomycetes are Gram-positive soil bacteria that produce a
mycelium and propagate through sporulation. Their development
is intricately controlled (Flärdh & Buttner, 2009). Streptomycetes
face a diverse set of stresses in the soil, such as heat, desiccation
and competing organisms. Perhaps the ultimate stress response is
development; after nutrient depletion, the underlying vegetative
mycelium or substrate mycelium is degraded autolytically to yield
the necessary building blocks for the aerial mycelium and spores.
Several studies have suggested a function of tmRNA in stress
control, such as oxidative stress, heat shock and exposure to
antibiotics, although the mechanisms and triggers have not been
uncovered (Paget et al, 2001; Braud et al, 2006; Paleckova et al,
2006; Yang & Glover, 2009). In this study, we show that in
streptomycetes, specific control of gene expression is the main
role of tmRNA, with tmRNA-mediated trans-translation tagging
almost exclusively the main stress or developmental proteins,
which suggests that tmRNA-mediated protein tagging has evolved
into a specialized translational control system in these organisms.

RESULTS AND DISCUSSION
Mutation and expression of Streptomyces coelicolor ssrA
An ssrA mutant of S. coelicolor was created by removing
nucleotide positions 3226924–3227376 of the S. coelicolor
M600 genome (Methods and supplementary Fig S1 online).
A total of 16 ssrA mutants were obtained with similar phenotypes—
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small colonies and inhibited development—and enhanced stress
sensitivity. Besides the known sensitivity to hygromycin and heat
shock (Yang & Glover, 2009), we also observed strongly increased
sensitivity of ssrA-null mutants to the antibiotics thiostrepton and
rifampicin, as well as to diamine, which causes oxidative stress and
was previously shown to induce ssrA transcription (Paget et al, 2001;
supplementary Fig S2 online). As predicted from the small colony
size, the growth rate of the ssrA mutant was strongly reduced,
particularly at challenging temperatures.

For the expression of tmRNA variants, two low-copy
constructs were generated, namely pSsrA expressing wild-type
tmRNA and pSsrAHis that expresses a variant of tmRNA
designated tmRNA-His. The latter encodes the modified and
protease-resistant His8-tag sequence ANTKRDSSHHHHHHHH
(instead of the wild-type tag ANTKRDSSQQAFALAA), and thus
results in carboxy-terminally His8-tagged proteins that might be
purified using Ni2þ affinity chromatography. Compensatory
mutations were introduced to ensure that the secondary structure
of the recombinant tmRNA-His was maintained (supplementary
Fig S3 online). Biochemical analysis revealed that the tmRNA-His
variant is fully functional and efficiently aminoacylated by alanyl-
tRNA synthetase, and binds to elongation factor (EF)-Tu�GTP
and SmpB (supplementary Fig S4 online). Steady-state levels of
tmRNA were determined by quantitative reverse transcriptase PCR
(RT–PCR), which demonstrated its proper expression from these
constructs (supplementary Fig S1 online). As the negative control
we used pDssrA, which contains the flanking regions but not ssrA
itself. Introduction of pSsrA and pSsrAHis—but not control
plasmids pHJL401 and pDssrA—restored normal growth and full
development of the ssrA mutant.

Low complexity of the tmRNA-tagged proteome
For analysis of tmRNA tagging in S. coelicolor, samples obtained
from ssrA mutants harbouring pSsrAHis were separated by two-
dimensional gel electrophoresis and analysed by western
blotting using His antibodies. This revealed a surprisingly small
number of protein spots (Fig 1). A similar experiment in Escherichia
coli revealed hundreds of proteins (Roche & Sauer, 2001),
whereas the E. coli genome encodes far fewer proteins than that of
S. coelicolor. For detailed identification of the tmRNA-tagged
proteins, samples were denatured and His-rich proteins were purified
by successive rounds of Ni2þ affinity chromatography. The protein
samples were digested with trypsin and analysed by capillary liquid
chromatography–tandem mass spectrometry (LC-MS/MS), followed
by protein identification (Beck et al, 2006). Only 12 His-rich
proteins (out of around 7,850 encoded by the genome) were purified,
including the naturally occurring His-rich proteins SCO1858
and SCO6549, which were also purified from wild-type cells
without tmRNA-His. Thus, only 10 proteins were found to be tagged
specifically by tmRNA under the given growth conditions. These
were DasR (development of aerial mycelium and spores regulator),
DnaK heat-shock protein 70 (Hsp70), SsgA (sporulation of Strepto-
myces griseus A), SsgF, SsgR, thiostrepton-induced protein A (TipA),
universal stress protein A (UspA), EF-Tu3, cystathionine g-synthase
(SCO1294) and a protease (SCO2582) that belongs to the same family
as the heat-shock protease HtpX (Pfam PF01435). As a test, several
spots were excised from the two-dimensional gel and analysed,
and this again identified DasR, SsgR, SCO1858 and SCO6549.

Interestingly, many of the tmRNA targets link directly to
observed defects for the tmRNA mutant. The main chaperone and
stress control protein DnaK Hsp70 links to reduced growth rates
and heat-shock sensitivity (Wickner et al, 1991; Bucca et al, 2003;
Guisbert et al, 2004), the drug-resistance regulators TipA and
UspA to antibiotic sensitivity (Nystrom & Neidhardt, 1992;
Kahmann et al, 2003), the cell-division activator SsgA and its
specific transcriptional activator SsgR to developmental defects
(van Wezel et al, 2000; Traag et al, 2004; Noens et al, 2007), the
alternative translation factor EF-Tu3 to nutrient stress (van Wezel
et al, 1995) and the global transcriptional regulator and nutrient
sensory DasR to oxidative stress, programmed cell death and
antibiotic production (Rigali et al, 2006, 2008). Transcription of
tmRNA is possibly induced by oxidative stress (Paget et al, 2001)
in S. coelicolor, as are dnaK, tipA and dasR (Paget et al,
2001; Paleckova et al, 2006; S.B., B.A.T. and G.P.vW., unpublished
data). For most of the identified proteins—with the exception of
DnaK—we found good peptide coverage for full-length proteins,
strongly suggesting that tagging took place at or near the
C-terminal end (Table 1). With the exception of DnaK, none of
the identified proteins are products of genes that are highly
expressed. Another exception is that dnaK is expressed in an
operon. Transcription of the operon is the same in wild-type
and ssrA mutant cells, but considering the dependence of dnaK
translation on tmRNA, the tmRNA-mediated control might also
affect the translation of the downstream-located gene encoding
nucleotide exchange factor GrpE (SCO3670). However, GrpE was
not identified as a direct target of tmRNA tagging. Finally, DnaK
has a clear two-domain structure (Harrison et al, 1997), and
we only identified peptides matching the amino-terminal nucleo-
tide-binding (ATPase) domain (coverage up to amino acid 285).
The peculiarities relating to the tmRNA-mediated control
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Fig 1 | Specific tagging by tmRNA in Streptomyces coelicolor.
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of dnaK—and perhaps also grpE—should be investigated in
more detail.

Translation of dnaK and dasR transcripts depends on tmRNA
The unexpected outcome that only a few stress and cell-cycle
control proteins are tagged and that most proteins are tagged at or
near the end of the full-length amino-acid sequence, prompted an
investigation into the fate of the tagged proteins in vivo. For this,
steady-state levels of the main tmRNA targets DasR and DnaK
were analysed by western blotting, using samples isolated from
exponentially growing liquid cultures. Much to our surprise, both
proteins were hardly detectable in a tmRNA-deficient strain,
whereas wild-type protein levels were observed in extracts
obtained from ssrA mutants complemented by the expression of

wild-type tmRNA or tmRNA-His (Fig 2A). Streptomycetes can
survive depletion of DnaK, but the protein is essential for
germination and under heat-shock conditions (Bucca et al,
2003). In line with this, ssrA mutants cannot survive elevated
temperatures (39 1C or higher) and tmRNA tagging strongly
increases during development. Quantitative RT–PCR was per-
formed on RNA samples prepared from the same cultures as those
used for western analysis, with two different primer pairs for both
dnaK and dasR, recognizing sections near the 50 and 30 ends of the
transcripts, respectively. Thus, steady-state transcript levels were
not affected, suggesting that the translation of dasR and dnaK
transcripts is defective in ssrA mutants (Fig 2B).

To assess whether, similarly to other bacteria, tmRNA-tagged
proteins are rapidly degraded in streptomycetes, we used glucose

Table 1 |Main targets for tmRNA-mediated tagging in Streptomyces coelicolor

ScoDB
annotation

Protein
name

Protein function and comments Hits* in
sample

Pz Sequence
coverage
(%)

Last residue
identifiedy

Reference
(for function)

1 2 3

Stress-related functions
Development and antibiotic production

SCO3925 SsgR Transcriptional activator of SsgA 11 29 28 23 56.8 223/241 (231) Traag et al (2004)

SCO3926 SsgA Activator of sporulation-specific cell division 5 6 5 5 43.4 89/136 (127) van Wezel et al (2000)

SCO7175 SsgF Regulator of sporulation 2 2 — 3 21.8 156/156 (156) Noens et al (2005)

SCO5231 DasR Pleiotropic repressor of antibiotic production
and N-acetylglucosamine metabolism;
nutrient-sensing protein

5 10 4 11 43.7 235/254 (250) Rigali et al (2006, 2008)

SCO3413 TipA Thiostrepton antibiotic-induced regulator 6 4 7 10 44.7 250/253 (250) Kahmann et al (2003)

Stress proteins

SCO3671 DnaK Heat-shock protein 70 (chaperone) 2 3 2 5 10.7 285/618 (614) Bucca et al (2003);
Wickner et al (1991)

SCO0200 UspA Starvation-related — 3 — 3 16.3 247/301 (273) Nystrom &
Neidhardt (1992)

SCO1321 EF-Tu3 Induced by stress conditions and relating
to antibiotic resistance

— 2 1 3 10.7 334/392 (381) van Wezel et al (1994)

Other

SCO1294 Cystathionine
g-synthase

Cys/Met metabolism; selenate tolerance — 8 1 7 25.3 352/407 (405)

SCO2582 Peptidase Peptidase M48, Ste24 family; highly
conserved in actinomycetes

— 5 4 5 9.7 335/402 (399)

Non-specific binding (naturally His-rich proteins, which were also found in the control strain)

SCO1858 Hypothetical
protein

Unknown function; His-rich carboxy-terminus 7 29 10 21 66.6 272/305 (272)

SCO6549 Hypothetical
protein

Unknown function; His-rich amino-terminus 2 2 3 4 20.7 264/314 (296)

Proteins were identified by capillary LC-MS/MS. Most proteins that are His-tagged by the tmRNA-mediated trans-translation mechanism in a strain expressing the tmRNA-His
variant are important cell-cycle control or stress-related proteins. All targets are highly conserved in all streptomycetes.
*Total number of tandem mass spectra matched to the protein as rank 1 hits by Sequest (sample 1) or Mascot (samples 2 and 3).
zTotal sum of unique peptides (that is, not sharing the same sequence) found in the three LC-MS/MS runs; only proteins identified with X3 unique peptides in these three runs
are reported.
yPosition of the last identified residue compared with the full length of the protein; the position before the last trypsin cleavage site in the protein is given in brackets.
EF-Tu3, elongation factor Tu3; LC-MS/MS, liquid chromatography–tandem mass spectrometry; ScoDB, Streptomyces coelicolor database; Ssg, sporulation of Streptomyces
griseus; TipA, thiostrepton antibiotic-induced protein; tmRNA, transfer–messenger RNA; Usp, universal stress protein
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kinase (Glk, encoded by glkA) as a reporter system. The glkA gene
was engineered by gene synthesis so as to fuse the S. coelicolor
ssrA tag sequence (including the stop codon) directly downstream
from the last codon of the glkA mRNA. In this way, a fusion
product of Glk, designated GlkAA, is expressed with the wild-type
tmRNA tag sequence at its C-terminal end. As a control, we
synthesized a similar glkA–ssrA tag fusion gene but encoding a tag
ending with two aspartates (GlkDD), which should be resistant to
degradation (Keiler et al, 1996). Western analysis of cellular
extracts prepared from S. coelicolorM600 DglkA and S. coelicolor
M600 DglkA/DssrA (B.A.T and G.P.vW., unpublished data),
expressing Glk, GlkAA or GlkDD, showed that GlkAA was readily
degraded, whereas steady-state levels of GlkDD were much higher
(Fig 2C). This indicates that tmRNA-tagged proteins are degraded
in a canonical manner in streptomycetes.

The experiment above suggested that the signal for tmRNA
rescue somehow lies in the C-terminal (termination) region of the
target genes. To test this hypothesis, we created the reporter
construct pGWS537 through gene synthesis, by fusing the
termination region of dasR (nucleotide positions þ 180/þ 180
relative to the stop codon) behind the gene for enhanced green
fluorescent protein (EGFP), with the fusion gene expressed from
the ftsZ promoter (the DNA sequence of the insert of pGWS537
is shown in supplementary Fig S5 online). Excitingly, EGFP
now became tmRNA dependent, as there was abundant
EGFP expression in the wild-type strain S. coelicolor M600, but
low levels in the ssrA mutant (Fig 3). With relative fluorescence of
32.6±4.0 for expression in M600 and 6.3±0.4 for M600 DssrA
(Po0.005), expression was 5–6 times lower in the absence of
tmRNA. In a control experiment, EGFP was expressed without
the dasR 30 untranslated region. Expectedly, in the absence of the
dasR termination region, EGFP was expressed at comparable
levels in wild-type (36.8±2.3) and in tmRNA mutant cells
(27.8±1.2), or a 1.3-fold decrease in the mutant (in total, 100
individual spots were measured in 10 hyphae (Po0.005).

To analyse what proportion of the target proteins is tagged by
tmRNA, a pulldown assay was performed using Ni2þ–nitrilotriacetic
acid affinity chromatography on cell extracts of S. coelicolor DssrA
complemented with tmRNA-His (Fig 4). Probing with His
antibodies indicated complete binding of all tagged proteins
(Fig 4A, lanes 2 and 3), and in a second control experiment,
in which a large amount of purified EF-Tu1–(His)6 was used,
demonstrating that even for such large amounts of His-tagged
protein the column capacity was not limiting. Nonetheless,
the amount of DasR protein in the bound fraction was below
the detection limit in a pulldown assay with DasR antibodies,
which shows that only a minute fraction of the total DasR protein
pool is tagged by tmRNA in vivo (Fig 4B). Thus, only a small
proportion of DasR is tagged by tmRNA during translation and
subsequently degraded.

In summary, our data strongly suggest a new tmRNA-based
suicide rescue mechanism that allows an instantaneous response to
stress conditions. A transcript pre-loaded with ribosomes provides a
jump start for a rapid response to changing conditions, circumventing
the need for the rate-limiting processes of translation initiation
(in the order of minutes) and translation elongation (at least 40 s for a
dnaK transcript at the rate of 15 codons/s). In addition, polysomes
will protect the transcripts from degradation. This mechanism might
also explain specific translational control mechanisms that are
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active in other bacteria, such as the situation in E. coli in which
translation of the stress RNA polymerase-s factor RpoS depends on
the presence of tmRNA (Ranquet & Gottesman, 2007).

A speculative model
The main question that remains unanswered is what causes the
unprecedented specificity of the tmRNA system in streptomycetes.
We propose a structural element that affects the stalling of
ribosomes near the 30 end of the mRNAs, mediated by binding of a
protein or small non-coding RNA. Such a structural element in the
mRNA would be removed during trans-translation through ‘edge
cleavage’, which probably cleaves the mRNA 10–20 bases 30 to
the A site (Sunohara et al, 2004; Li et al, 2006). During stress
tmRNA is induced, and after trans-translation the first ribosome is
removed. This and the removal of the proposed structural element
allow a rapid burst of translation by already loaded and translation-
committed polysomes (Fig 5). The exact mechanism that forces the
stalling of ribosomes specifically on mRNAs of important cell-cycle
and stress-control proteins is under investigation.

METHODS
Strains and culturing conditions. E. coli JM109 (Sambrook et al,
1989) and ET12567 (Kieser et al, 2000) were used for routine
cloning procedures. S. coelicolor M600 was obtained from the
John Innes Centre, Norwich, UK. All media and routine
Streptomyces techniques are described in the Streptomyces
manual (Kieser et al, 2000). SFM (soy flower mannitol) agar plates
were used for making spore suspensions, R2YE (regeneration
media with yeast extract) agar plates for selecting recombinants
and YEME (yeast extract/malt extract), tryptone soy broth and
minimal media for Streptomyces cultivation and plasmid isolation
(Kieser et al, 2000).

Plasmids and gene replacement. The tmRNA disruption con-
struct, pDssrA, contains the �1333/�13 and þ 441/þ 1605
regions relative to the start of ssrA in pSET151 (Kieser et al,
2000; supplementary Fig S1 and Table S1 online). pssrA-(His)8
was constructed by fusion PCRs using strep1 and strep5-3, and
strep2 and strep4-3, producing a 2,950 bp fragment encompassing
a mutated ssrA gene and approximately 1350 bp upstream and
approximately 1200 bp downstream region in pSET151 (for gene
disruption) or into the low-copy vector pHJL401 (for complemen-
tation; Kieser et al, 2000). pDssrA was conjugated to S. coelicolor
M600 and double recombination events were screened by loss
of thiostrepton resistance. The mutants were checked by PCR
using strep6 and strep9 and by Southern hybridization with a
32P-labelled PCR fragment (oligonucleotides strep14 and strep15)
as probe (supplementary Fig S1 online). For details about
construction of pGWS537, see supplementary information online.
Western analysis. Samples (1ml) were taken from transition
phase liquid cultures, sonicated and proteins detected by western
blot analysis using His (TebuBio, Paris, France), EF-Tu1, DasR,
DnaK and Glk antibodies (van Wezel et al, 2007).
Protein sample preparation and LC-MS. S. coelicolor DssrA
expressing wild-type tmRNA or tmRNA-His were grown in

Fluorescence microscopy
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TSBS with 5 mg/ml thiostrepton until mid-log phase. Cells were
collected, sonicated in buffer (0.1M NaH2PO4, 10mM Tris-base,
8M urea; pH adjusted to 8.0) and cleared supernatant bound to
Ni2þ–nitrilotriacetic acid. The beads were subsequently washed
rigorously four times with 15ml of buffer (pH 6.3) and eluted with
the same buffer at pH 5.5 or pH 4.5. The fractions were pooled,
pH set to 8.0 and purification was repeated under identical
conditions. Detailed procedures for proteomics experiments and
LC-MS analysis are presented in the supplementary information
online. The LC-MS/MS analysis of proteins was performed as
described previously (Beck et al, 2006).
RT–PCR. The RNA was extracted from cells grown in liquid
cultures as described by the supplier (Promega, Madison, WI,
USA). Primers for quantitative RT–PCR (Invitrogen, Carlsbad,
CA, USA) for the detection of dasR and dnaK mRNAs and for the
control 16S ribosomal RNA are listed in supplementary Table S1
online. For the detection of tmRNA, quantitative RT–PCR was
performed using primers strep19 and strep20 that hybridized to
the tmRNA extremities.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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