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Comparisons of elastic and creep deformation
linearly dependent upon stress

G. W. Greenwood*

The theory of linear elasticity provides a complete description of reversible deformation under

small stresses for both isotropic and anisotropic solids. At elevated temperatures, creep

deformation sometimes occurs at a rate that is linearly dependent upon stress. When this form of

creep arises from vacancy movement, there is possibility of anisotropic behaviour through the

orientational dependence of average grain dimensions. This indicates that the elasticity theory

may be utilised to provide comparable descriptions of such creep deformation, with creep strain

built up of equal increments of strain occurring in equal intervals of time. The extent of this analogy

is explored with the conclusion that its usefulness is substantial when grains are small in relation to

geometrical features of the component but it is no longer applicable when the grains approach

the size of these features and where there is a high gradient of stress.

Keywords: Elasticity, Anisotropy, Creep, Deformation geometry

Introduction

The theory of linear elasticity is well established and
continues to provide an invaluable tool for the design of
structures and the selection of materials. At elevated
temperatures, creep may occur under low stresses at a rate
that varies linearly with stress. This suggests that analyses
of elastic response to stress might be carried over to predict
the effects of this form of creep behaviour under multiaxial
stresses. The use of such analogies may be of particular
value when the material is anisotropic so that, in the creep
case, coefficients may be defined in a way that is analogous
to the designation of compliance coefficients in elasticity. A
detailed examination of such similarities is undertaken here
that identifies the extent to which the theory of elasticity
may be employed to predict behaviour in the creep regime
both for isotropic and anisotropic materials. Notably, for
the creep situation where a linear dependence of creep rate
on stress is indicative of a diffusional creep process, linking
with elastic behaviour through the concept of an effective
relaxation time provides valuable new insights. However,
such an analogy breaks down and the concept becomes
inapplicable when there is a high stress gradient and when
the grain dimensions are of a size approaching the smallest
geometrical feature of the component under stress. It is
then necessary to evaluate the different patterns of atomic
flux in individual grains for which there is no elastic
analogue.

Formal representations of elasticity and
creep linearly dependent on stress

Linear elastic behaviour is governed by Hooke’s law,
whereby in the simplest situation, a small reversible

elastic strain e is induced in a solid in the direction of an

applied tensile stress s such that

e~(1=E)s (1)

where E is Young’s modulus of the material.

Correspondingly, if an elastic shear strain c is induced
by a shear stress t, the relationship is written

c~(1=G)t (2)

where G is the shear modulus.

While elasticity is a manifestation of reversible change

in atomic spacing, at elevated temperatures atomic

movement is facilitated and deformation becomes time

dependent and irreversible. This leads to the creep of

solids which in the steady state, is often described1 by

the Norton equation de/dt5Ksn where n is the stress

exponent and K is dependent on the material and its

microstructure and on temperature.

At low stresses, for many solids, it is found2 that n<1

so that the creep rate is linearly dependent on stress, thus

providing a formal analogy with equation (1). This

behaviour is often referred to as Newtonian flow, where

the strain rate v. stress relationship is

de=dt~Ks (3)

When linked to flow rate under shear, such behaviour is

familiar in formulation of the viscous flow of liquids

where the flow rate dc/dt under shear stress t is written

dc=dt~(1=g)t (4)

where g is the coefficient of dynamical viscosity.

Equations (2) and (4) allow a relationship3 between g
and G that can be written in the form

g~Gtr (5)

by the identification of a relaxation time tr that
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corresponds to the time period over which the increment
of non-reversible flow is equal to the elastically induced
strain.

Although solid and liquid phases can generally be
considered distinct, it is acknowledged3 that for materi-
als without a sharp melting temperature, it is only
possible to ascribe the characteristics of solid or liquid
behaviour by arbitrarily selecting a specific value of the
viscosity g generally taken to be above or below
1014 Pa s. An effective viscosity can similarly be defined
for crystalline materials under low stresses, reflecting the
wide applicability of these considerations.

Some features of Newtonian flow

A variety of mechanisms,4–8 that have been extensively
debated,9–18 may lead to the linear strain rate v. stress
relationship that characterises Newtonian flow in solids.
For some materials, there is evidence to suggest that a
stress directed diffusional process, first proposed by
Nabarro,4 can be operative whereby vacancies diffuse
between and along grain boundaries that act as vacancy
sources and sinks depending on their orientation with
respect to the stress. This mechanism has a sound
theoretical basis that is supported by experimental data,
for several but not all materials, through identification
of the effects of temperature and of grain size and shape
as well as by confirmatory observations19 of predicted
microstructural changes. Results on some other materi-
als including aluminium6 have shown different relation-
ships suggesting that alternative mechanisms may be
operative. These results, however, have proved difficult
to reproduce over an extensive range. It has also been
pointed out15 that for significant strains, there might be
a parabolic rather than linear strain rate v. stress
relationship, which would take this area outside the
scope of the present considerations.

When a diffusional process is operative, resulting in
the stress directed diffusion of vacancies between
differently oriented grain boundaries, there is a counter
flow of atoms so that creep occurs at a rate that is
linearly dependent upon stress. Analysis of this process,8

when the temperature is sufficiently high for lattice
diffusion to be predominant, leads to a formula for
creep rate under a tensile stress

de=dt~(BDV=kTd2)s (6)

where D is the lattice diffusion coefficient, d is the grain
size, V is the atomic volume, k is Boltzmann’s constant,
T is absolute temperature and B is a dimensionless
constant. This can readily be put in terms of shear stress
and strain rate by noting that the flow of plastically
deforming solids occurs at constant volume. In this case,
an analogous Poisson’s ratio n50?5 can be ascribed. The
elastic analogy here is that E52G(1zn)53G and so, it
follows that (de/dt)/s5(dc/dt)/3t. Hence, introducing the
new constant B1 (53B), equation (6) takes the form

dc=dt~(B1DV=kTd2)t (7)

It follows from equations (4), (5) and (7) that an
increment of creep strain reaches the magnitude of the
elastic strain in a time tr where

tr~kTd2=B1GDV (8)

The similarity of this form of creep in solids with viscous

flow in liquids now becomes apparent. If a liquid
is regarded essentially as an amorphous solid with
grain dimensions reduced to the size of single atoms
with atomic spacing b, then d<b and V<b3, so that
the viscous flow of a liquid becomes comparable
with the process of diffusional creep. Following the
notations in equations (2) and (7), the relaxation
time for the liquid trL5kT/B1G DLb, where DL is now
the self-diffusion coefficient of the liquid. From this, we
arrive at the equation for viscosity that followed from
the work of Einstein and was presented by Frenkel20 in
the form

g~GtrL~kT=6pDLb (9)

The dimensionless coefficient B in equation (6) is
calculated21 to be y8 so that B153B<24 which is close
to the value of 6p<19 in equation (9) to confirm the
validity of this comparison.

The extent of this analogy between diffusional creep
in solids and viscous flow in liquids will not be pursued
further but it illustrates the underlying basis of the
present approach and the concept of relaxation time that
it will be considered later in relation to the limits of its
applicability.

Since equation (9) relates to liquid behaviour, there is
no indication of factors that may lead to anisotropy.
This is a distinguishing feature from the diffusional
creep of solids where anisotropy may be introduced into
equation (7) through modification of the grain dimen-
sional term d when its value may not be the same in all
directions.21 A viable interpretation of this aspect is
important since it opens the opportunity to utilise the
theory of anisotropic elasticity to assist in the evaluation
of the effects of the time dependent process of
diffusional creep.

Analogies between diffusional creep and
elasticity in non-isotropic materials

Representation of elastic anisotropy
The well established theory of elasticity22,23 can
incorporate the effects of both multiaxial stresses
designated skl and anisotropy of the material to induce
corresponding strains eij. These terms can be linked
through compliance coefficients23 that in the general
case, form the components of a fourth rank tensor Sijkl

such that

eij~Sijklskl (i, j, k, l~1{3) (10)

Writing equation (10) in expanded form leads to nine
equations, each with nine terms with the requirement of
81 constants in total. However, eij and skl are symmetric
tensors from which it follows that Sijkl5Sijlk. Because of
this symmetry, only 36 of the compliance coefficients
are independent and distinct terms. These terms can
be defined in a 666 compliance matrix and adopting
a simpler notation, the following can be written to
represent the six equations contained within the
matrix

ei ~
X

6

j~1

Sij sj (i~1� 6) (11)

Further simplifications can be made by considering a
material with aligned grains of orthorhombic symmetry

Greenwood Comparisons of elastic and creep deformation
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such that there are three mutually perpendicular mirror

planes. With the axes of loading normal to these mirror

planes, we can make use of the relationships of

orthotropic symmetry so that the compliance matrix

can be reduced to 12 compliance coefficients and written

in the form

Sij ~

S11 S12 S13

S21 S22 S23

S31 S32 S33

S44

S55

S66

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

(12)

Further reduction ensues since Sij5Sji. Thus in the

compliance matrix equation (12), only nine of the

coefficients are independent.

Perpendicular to the mirror planes, the respective

values of Young’s moduli E1, E2 and E3 are then

represented by S1151/E1, S2251/E2 and S3351/E3. The

three shear moduli are correspondingly given by G235

1/S44, G3151/S55 and G1251/S66.

Poisson’s ratio nij is defined as the negative of

the strain in the j direction divided by the strain

resulting from the stress in the (perpendicular) i

direction so that n1252S21/S11. Recalling that

reciprocal conditions require that S215S12, it follows

that n12/E15n21/E2.

These considerations, involving both the orientation

dependent Young’s and shear moduli, now allow the

influence of multiaxial stresses and the response of

material that is elastically anisotropic to be determined,

as described by the following compliance matrix for a

material with orthotropic symmetry

Sij ~

1
E1

{n21
E2

{n31
E3

{n12
E1

1
E2

{n32
E3

{n13
E1

{n23
E2

1
E3

1
G23

1
G31

1
G12

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(13)

In utilising the above relationships and noting geome-

trical representation in Cartesian coordinates, the three

equations relating the tensile stresses and strains can be

illustrated by taking sx (to replace s1) and ex (to replace

e1), etc. Similarly, the shear stresses and strains can be

written respectively with tyz (replacing s4) and cyz
(replacing e4), etc.

With orthogonal stresses sx, sy and sz acting along

these axes, it follows from equation (13) that the strain

in the x direction is given by

ex~sx=E1{syn21=E2{szn31=E3

~(1=E1)(sx{syn12{szn13) (14)

It is now relevant to enquire about the usefulness of

these firmly based features of elasticity theory to the

analysis of creep at a rate that is linearly dependent on

stress.

Formal representation of anisotropy in
diffusional creep
It is often found experimentally that the resistance to

creep at low stresses is the greatest when the largest

principal stress is aligned with the longest grain

dimensions.24

In considering such dimensions, orthotropic symme-

try provides a useful and valid, though oversimplified,

description of anisotropic grain shape. Such a descrip-

tion, however, is convenient since for polycrystalline

materials under conditions in which a diffusional creep

process is expected to operate, it allows a direct

appraisal of the possible representation of behaviour

through equations that are analogous to those of

equations (12) and (13).

For diffusional creep in which the average grain

dimensions (small in comparison with the specimen

dimensions) in the x, y and z directions are respectively

X, Y and Z, aligned with the principal stress directions

as illustrated in Fig. 1, it has been shown25 that at

sufficiently high temperatures where lattice diffusion

predominates, a corresponding matrix can be estab-

lished, analogous to that in equation (13)

Sij ~

K1

(Y 2
zZ2 )
b

{Z2

b
{Y2

b

{Z2

b
(Z2

zX 2 )
b

{X2

b

{Y2

b
{X2

b
(X 2

zY 2 )
b

4
(Y 2 zZ2 )

4
(Z2 zX 2 )

4
(X 2 zY 2 )

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(15)

where K1512DV/kT and b5X2Y2
zY2Z2

zZ2X2.

If stresses sx, sy and sz act along these axes, it follows

from equation (15) that the rate of creep in the x

direction is given by

1 To illustrate the notation throughout the paper, an idea-

lised embedded grain is shown with dimensions X, Y

and Z lying respectively in directions of the x, y and z

axes

(15)

Greenwood Comparisons of elastic and creep deformation
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(de=dt)x~

K1½sx(Y
2
zZ2){syZ

2
{szY

2�=(X 2Y 2
zY 2Z2

zZ2X 2)

(16)

Thus, there is a direct analogue with the elastic situation
seen by comparing equations (14) and (16) where
Young’s modulus E1 in the x direction corresponds to
the term (X2Y2

zY2Z2
zZ2X2)/K1(Y

2
zZ2) in the creep

equation.
This can be simplified if we only wish to compare the

relative strengths in different directions. In the elastic
case, this involves determination of the ratios E1/E2, E2/
E3 and E3/E1 and in the creep situation, to the ratios of
creep strength in the x and y, y and z, and z and x
directions. In the latter case, the creep strength ratios are
dependent only on the average grain dimensions in the
directions under consideration as indicated in Table 1.

Similarly, the ratios of the shear strengths can be
considered in the different directions. These are eval-
uated from the corresponding terms in equations (13)
and (15) and are listed in Table 2.

A diffusional creep analogue to Poisson’s ratio in the
elastic condition can further be identified that can
completely be evaluated numerically in terms of the
grain dimensions, without the need for further informa-
tion. Comparing the elastic and diffusional creep
matrices, exemplified by equations (13) and (15) respec-
tively, it is noted that n21/E2 corresponds to K1Z

2/b and
E2 corresponds to b/K1(Z

2
zX2) so that n21 can be

equated to Z2/(Z2
zX2). Similarly, this is reflected in the

relationships that are listed for all the n values as in
Table 3.

On this basis, it is apparent that the extensive
theoretical analyses relevant to problems in anisotropic
elasticity may be transferred to comparable problems
where the creep of materials with anisotropic grain
shapes is governed by the stress directed diffusion of
vacancies. Before enquiring about any limits to this
transferability, the effects of grain boundaries will next
be considered.

Influence of grain boundaries

Grain boundaries and free surfaces play a major role in
diffusional creep and it is implicit in the theory of this
mechanism that they are required to act as perfect
vacancy sources and sinks26 whereby the time for
emission or absorption of a vacancy at a grain boundary
or free surface is negligible compared with the time for
diffusion between the source and the sink. This role has
not been clearly established in all materials. While there
is substantial evidence of this behaviour in copper,
magnesium, nickel and several other materials, there is
no definitive evidence of a similar property of grain
boundaries in some materials including aluminium. The
present analysis is applicable only to those materials in
which there is perfect vacancy source and sink action.

There is a further important property of the grain

boundaries and surfaces for consideration, where below

some temperature, they provide diffusion paths for

vacancy fluxes5 that predominate over those provided by

lattice diffusion.

While this alteration of diffusion paths influences the

compliance coefficients in diffusional creep, it does not

change the overall conclusions about the analogy with

linear elasticity or the conditions under which there is a

deviation from such analogy.

There is need for some modification of the pre-

vious analysis, based on lattice diffusion, that is

necessary in analysing cases where grain boundary

diffusion dominates.

For fluxes confined to the grain boundaries, a matrix

similar to that of equation (15) can be compiled23 to

evaluate Sij that incorporates the modified values of the

compliance coefficients that are represented as in

equation (12). This now takes the form

Sij~

K2

(Y 2
zZ2)
w

{Z2

w
{Y 2

w

{Z2

w
(Z2

zX 2)
w

{X 2

w

{Y 2

w
{X 2

w
(X 2

zY 2)
w

4
YZ(YzZ)

4
ZX (ZzX )

4
XY (XzY )

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(17)

where K2524DgwV/kT and w5XYZ(XYzYZzZX).

Dg is the grain boundary diffusion coefficient and w

the grain boundary width. (It will be shown later that

any one of the three coefficients corresponding to S44,

S55 and S66 in the bottom right of the matrix,

representative of shear resistance, becomes less accurate

if the grain dimension parallel to the shear axis is

significantly less than the other grain dimensions. It is

then replaced by a modified term. This special case is

dealt with in the Appendix.)

Table 1 Comparisons of directional Young’s moduli and
tensile creep strengths

Ratio of directional

Young’s moduli

Ratio of tensile creep strengths

determined by grain shape

E1/E2 (Z2
zX

2)/(Y2
zZ

2)
E2/E3 (X2

zY
2)/(Z2

zX
2)

E3/E1 (Y2
zZ

2)/(X2
zY

2)

Table 2 Comparisons of directional shear moduli with
creep strengths in shear when lattice diffusion is
predominant

Ratio of directional

shear moduli

Ratio of creep strengths

in shear determined by

grain shape

G12/G23 (X2
zY

2)/(Y2
zZ

2)

G23/G31 (Y2
zZ

2)/(Z2
zX

2)

G31/G12 (Z2
zX

2)/(X2
zY

2)

Table 3 The creep analogue of Poission’s ratio and
influence of grain shape

Creep analogue of

Poisson’s ratio

Dependence on

grain shape

n12 Z
2/(Y2

zZ
2)

n13 Y
2/(Y2

zZ
2)

n23 X
2/(Z2

zX
2)

n21 Z
2/(Z2

zX
2)

n31 Y
2/(X2

zY
2)

n32 X
2/(X2

zY
2)

(17)

Greenwood Comparisons of elastic and creep deformation
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Equation (17) provides an analogous formulation to
that in equation (15) with these two equations repre-
senting respectively the situations where the fluxes are
controlled by lattice and by grain boundary diffusion.
There are differences in their terms but they all remain
analogues of compliance coefficients familiar in the
theory of linear elasticity. It is noted that the numerators
of the terms representing the tensile coefficients are the
same in both these equations. It follows that Table 1,
giving the creep strength ratios in different directions,
and Table 3, providing the values of the creep analogue
to Poisson’s ratio, are independent of whether the
vacancy flux is predominantly through the crystal lattice
or through the grain boundaries. Hence, these Tables 1
and 3 are valid in both cases. There is some difference,
however, for the shear coefficients and so, for the case
where grain boundary diffusion predominates, Table 4
below replaces Table 2.

Limits to analogy between elasticity and
creep linearly dependent on stress

Our analysis, so far, indicates that deformation by
diffusional creep can reproduce essentially the same

macroscopic change of overall shape, in both isotropic

and non-isotropic materials as that created (albeit on a

strictly limited scale) by elastic deformation.

Some small differences may first be noted. There is the

influence of Poisson’s ratio n. For isotropic materials

undergoing elastic deformation, its value is typically in

the range 0?25–0?33. In contrast, during creep, the

volume remains almost constant and this implies that

for isotropic materials, the corresponding value of n is

0?5. There are comparable differences between the

elastic and creep situations in the value of n in the case

of anisotropic materials but the situation becomes more

complex. Six values of n are then required to describe

both the elastic and creep responses, as listed in Table 3.

The formal matrix representations however remain

similar for both cases although the numerical values

will differ. In the elasticity case, the values of n depend

upon the relative strengths of the atomic bonds but in

the diffusional creep analogue, they are determined by

the grain shape anisotropy.

Other, rather more significant, departures from the

correspondence become apparent when some specific

cases are examined. This can be demonstrated, for

example, on wires with bamboo grain structures in

experiments along the lines that led to the first

experimental support for the predicted operation of

the diffusional creep mechanism. It is seen from Fig. 2

that when a bamboo structured wire is under a small

tensile stress at elevated temperature, elongation of the

wire by diffusional creep is accompanied by preferential

thinning in the regions close to grain boundaries. The

lack of uniformity in the reduction of diameter, in

Table 4 Comparisons of directional shear moduli with
creep strengths in shear when grain boundary
diffusion predominates

Ratio of directional

shear moduli

Ratio of creep strengths

in shear determined by

grain shape

G12/G23 X(XzY)/Z(YzZ)

G23/G31 Y(YzZ)/X(ZzX)

G31/G12 Z(ZzX)/Y(XzY)

2 Surface profile, after creep, of a copper wire (50 mm in

diameter) with bamboo type microstructure formed by

grains of length y65 mm along wire axis. A strain of

5?6% was achieved at 1263 K at a strain rate of

1?161027 s21 under an applied stress of 190 kPa. The

zero creep stress was 40 kPa. Note the non-uniform

contraction of the wire diameter with the minima

centred at grain boundaries that are perpendicular to

axis

3 Schematic illustration of the pattern of vacancy flux

underlying the form of deformation observed in Fig. 2.

It is noted that the flux to the surface is greatest in the

regions of the grain boundaries to account for the

greatest reduction in wire diameter in these regions

Greenwood Comparisons of elastic and creep deformation
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contrast with the uniformity of elastic deformation, is a
consequence of the pattern of vacancy fluxes, illustrated
schematically in Fig. 3, since vacancy sinks at the free
surfaces are not constrained to accept equal numbers of
vacancies per unit area over the entire cylindrical
surface. For specimens in which the grain dimensions
are substantially less than the wire diameter, this effect is
negligible since behaviour is then dominated by the
effect of the internal grain boundaries that are con-
strained by the need for maintaining contact between
neighbouring grains. There is then complete correspon-
dence between the elastic and creep deformation
geometries except for the numerical differences arising
from the effect of Poisson’s ratio.

For an internal grain that is small compared with
specimen dimensions, vacancy flux patterns within it are
subject to boundary conditions imposed by the need to
maintain grain contact. For real grain shapes, this aspect
gives rise to substantial complexity in modelling but for
some simple idealised shapes, analytical solutions can
be readily derived. Notably, for a small internally
embedded cubic grain in a large specimen under plain
strain conditions, lines of vacancy equipotential with
corresponding orthogonal lines of vacancy flux have a
simply defined geometrical pattern as illustrated in
Fig. 4. Here, there is no influence of Poisson’s ratio
with a consequent identical geometry of deformation for
both the elastic and creep situations. It is further noted
that the flux lines are two-dimensional and are
independent of the grain dimension in the z direction.
This flux pattern is linked to the internal stress
distribution that exists on the pairs of grain faces where
there is a parabolic variation of stress that is respectively
tensile and compressive.

It is noted that throughout the above discussions, the
external stress has been applied uniformly. It is recalled
that the applications of the theory of elasticity are
independent of this condition. It is now important to
enquire ‘does diffusional creep strength have a similar
independence?’. This question will next be considered.

Non-uniform loading

The bending of a beam represents a simple situation of
non-uniform loading. In the elastic condition, a thin
beam with second moment of area I bends to a radius R
under a bending moment M where

R~EI=M (18)

I5sh3/12 where s is the beam dimension parallel to the
bending axis and h is the beam thickness, so the curvature
1/R is related to the beam dimensions3 such that

I=R~12M=Esh3 (19)

The strain parallel to the beam length is tensile at the
convex surface and compressive on the concave side and
is determined by e5s/E where s represents the tensile
stress. Correspondingly, in the creep situation, the rate
of change of curvature is given by d/dt(1/R)5M(de/dt)/
Is. When the grain size is small compared to the beam
thickness, we can substitute for de/dt and s from
equation (6) to obtain

d=dt(1=R)~12BMDV=kTd2sh3 (20)

It is noted that the beam dimensions s and h have the

same effect on the rate of change of curvature by
diffusional creep as they have on the curvature that is
induced by elastic deformation27 described respectively
by equations (20) and (19). It is clear that the two
situations can alternatively relate elasticity and
Newtonian creep through the concept of a relaxation
time tr as in equation (8). The above problem can be
approached in this alternative way and shown to lead to
the same conclusion where the relaxation time has the
value kTd2/BDEV.

Further consideration, however, will show that such a
relationship does not cover all situations. It is now
apparent (as first pointed out for grain boundary
diffusion28) that in some circumstances, diffusional
creep, although at a rate linear to stress, can produce a
shape change that is entirely different from the geometry
that results from elastic deformation. Such a case arises
in extreme form when a bending moment is applied to a
thin beam comprising a bicrystal with its grain boundary
perpendicular to the beam length (Fig. 5). There is then

4 Schematic illustration of vacancy flux pattern in an

idealised embedded cubic grain with equal tensile and

compressive stresses applied perpendicularly to two

pairs of faces. Here the geometry of deformation in dif-

fusional creep is identical to that which would be pro-

duced elastically with each elastic increment of strain

reproduced after a specific relaxation time. The lines of

flux are two-dimensional and so, are independent of

the grain dimension in the z direction. These lines take

the form of rectangular hyperbolae that are orthogonal

to lines of vacancy equipotential. There is internal

stress redistribution with a parabolic stress variation

that is tensile on grain boundaries perpendicular to the

tensile stress and compressive on boundaries perpen-

dicular to the compressive stress

Greenwood Comparisons of elastic and creep deformation
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a continuous variation of stress across the boundary

creating the maximum tensile strain, normal to the

boundary, at the convex surface decreasing to maximum

compressive strain at the concave surface. Vacancy

movement is associated with an internal stress redis-

tribution across the grain boundary and a vacancy flux,

centred on the grain boundary and perpendicular to the

lines of vacancy equipotential, is illustrated in the lower

diagram in Fig. 5. When the temperature is sufficiently

high for lattice diffusion to predominate, this flux

induces rotation29 between the adjacent grains at a rate

dh/dt given by

dh=dt~aLMDV=kTsh4 (21)

where aL is a dimensionless numerical constant and the

value of s and the dimensions of each grain perpendi-

cular to their common boundary are all substantially

greater than h.

Considering the situation described by equation (21),

a beam containing several such grain boundaries that

are parallel and at an average distance x (much greater

than h) apart with the bending moment similarly

applied, then there is rotation between each of the

grains, with an effective hinge at their common grain

boundaries separating the straight segments. This
leads27 to an effective overall rate of change of curvature
d/dt(1/R) of the beam given by

d=dt(1=R)~(dh=dt)=x~aLMDV=kTsh4 (22)

It follows from equation (22) that under a given bending
moment, this rate of change of curvature is determined
by beam dimensions and is inversely related to h4, in
contrast with the elastic condition in equation (21)
where the rate is inversely related to h3. This demon-
strates the impossibility of analysing such a creep
situation through the concept of a relaxation time and
illustrates that there is no way in which the accumula-
tion with time of increments of elastic deformation can
replicate the geometrical dependence that can arise
through diffusional creep.

This difference in the elastic and creep relationships is
magnified at lower temperatures when grain boundary
diffusion predominates, since it can be shown that

d=dt(1=R)~agMDgwV=kTsh
5 (23)

where ag is a dimensionless numerical constant.

It is instructive to examine these differences by
comparing equations (22) and (23) with equation (20).
The origin of their differences lies in the variation of the
patterns of diffusional fluxes when grain dimensions
approach the thickness of the beam. When many grains
are contained within the thickness of the beam, then
diffusional creep produces a mode of deformation
similar to that which can be progressively built up by
an accumulation of elastic strain increments. This is not
the case when only few grains lie across the thickness of
the beam.

Analyses of this kind can employ numerical methods
to cover other beam geometries. A notable example is
the case where the beam is of circular cross-section with
a bamboo grain structure. Here, the internal stress
across each grain boundary, at a temperature where
grain boundary diffusion predominates, has been
calculated.30 Since a wire with such microstructure and
geometry can be prepared for experimental study, this
theoretical analysis now allows determination of grain
boundary self-diffusion coefficients on materials for
which a measurement of this property may otherwise be
difficult.

In general, where one or only a few grains lie across
the beam thickness, the stress gradient across individual
boundaries creates diffusional fluxes along the grain
boundary regions that exceed the fluxes that are routed
between boundaries of differing orientation. There is no
elastic analogue to this situation.

In contrast, when the grain size is sufficiently small for
many grains to be encompassed within the beam
thickness, the variation in stress across any individual
grain boundary is much less than the variation that is
created between boundaries of different orientation. It is
then appropriate to consider the vacancy source and
sink action of differently oriented grain boundaries
under the influence of the tensile and compressive
stresses acting respectively in the upper and lower parts
of the beam. This is the mechanism envisaged in the
derivation of equation (6) that underlies the derivation
of equation (21). The concept of a relaxation time
linking elastic and creep deformation can be employed
in dealing with this situation.

5 Upper diagram shows bending of a thin but wide beam

comprising a bicrystal with the common grain bound-

ary parallel to the axis of bending. Lower diagram

shows the pattern of vacancy flux orthogonal to the

vacancy equipotential lines in the grain boundary

region. Note that the upper and lower surfaces, as well

as the grain boundary, act as vacancy sources and

sinks. There is no elastic analogue to this situation

Greenwood Comparisons of elastic and creep deformation
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Comparison of equations (22) and (23) with equa-
tion (21) highlights the change in formulation that is
required by difference in grain size in relation to beam
dimensions. In equation (21), it is noted that the effect
of beam dimensions on creep rate is the same as its effect
on the extent of elastic deflection. This is in contrast with
the result of equation (22) where the beam thickness has
a larger effect in diffusional creep than in elastic deflec-
tion. The effect is further enhanced, as in equation (23)
when grain boundary diffusion predominates. It is
apparent that when the grain dimensions approach the
size of the minimum dimension of the deforming
material, the elastic analogy breaks down. Then, there
is no way in which the characteristics of deformation can
be considered in terms of a relaxation time.

The above considerations have significant conse-
quences, for they assist in answering the question ‘when
can the extensive analyses available to deal with
problems in elasticity be confidently applied to the creep
condition?’. This question becomes of further impor-
tance when matters of anisotropy are considered. Since
the theory of anisotropic elasticity has been extensively
and rigorously developed over many years, it is pertinent
to ask ‘to what extent can this development be applied to
evaluate the effect of grain shape anisotropy on dif-
fusional creep?’. It is apparent that the analogies of
elastic and creep linearly dependent on stress can be
usefully applied but only when the largest grain
dimensions are much less than geometrical features of
the component.

Conclusions

The well established theory of linear elasticity enables
the prediction of the reversible, time independent defor-
mation that occurs under stress below some specific
value. This can be of particular importance when it
is required to evaluate the effects of a complex,
multiaxial stress system. It is applicable to materials of
all shapes and also, to those whose elastic properties are
anisotropic.

Under low stresses and at elevated temperatures,
permanent deformation by creep can occur at a constant
rate that can be linearly dependent on stress. Thus, there
is an immediate analogy with elastic behaviour but with
creep continuously producing additive permanent
strains. Sometimes, it is convenient to consider the time
interval over which an increment of creep strain is
induced that is of similar magnitude to the elastic strain.

There is substantial understanding of such creep when
it is governed by the stress directed flow of vacancies and
this has been extended to include the influence of
multiaxial stresses and to materials with anisotropic
grain shapes. This allows coefficients in creep to be
determined that are analogous to the compliance
coefficients familiar in the theory of anisotropic elasti-
city theory. They can similarly be incorporated into
matrices to assist in their practical application.

From exploration of the analogy between this form of
creep and linear elastic deformation, the detailed
characteristics of both these processes can be compared.

Such comparison identifies the situations where the
theories of linear elastic deformation and of creep rate
linearly dependent on stress can be mutually helpful, but
it also leads to a clear recognition of cases in which there
is a marked divergence, where it would be entirely wrong

to invoke the assistance of elasticity theory to evaluate

the form of deformation induced by diffusional creep.

The conclusions may be summarised as follows.

1. Where the largest grain dimension is substantially

less than the smallest dimension of the component in

question, there is almost complete correspondence

between the geometrical form of deformation that is

induced by elastic stressing and at elevated tempera-

tures, by diffusional creep. They can both be analysed in

terms of effective compliance coefficients arranged in a

convenient matrix form. There is the ability in creep to

reproduce continually, as permanent deformation over

equal increments of time, additive increments of strain

that are each equal to the elastic strain. The concept of a

relaxation time can be useful in this respect. Only a small

geometrical difference between the effects of these two

different forms of deformation occurs from the numer-

ical influence of an effective Poisson’s ratio. This ratio is

a material constant related to atomic bonding in

elasticity theory but arises in creep from the requirement

to preserve constant volume and is influenced by

the average grain dimensions and their orientation

dependence.

2. When grain dimensions approach the size of the

smallest geometrical feature of the component in which

they are a constituent and particularly, where substan-

tial stress gradients are imposed, the analogies between

elasticity and diffusional creep break down. The shape

changes produced by the two forms of deformation are

fundamentally different. It is then no longer possible to

employ the concept of a relaxation time or to utilise

parameters in creep in the form of compliance coeffi-

cients to analyse the form of deformation that diffu-

sional creep produces. There is a need to determine the

individual flux patterns in the constituent grains.

Appendix

The analysis, for the grain boundary diffusion case,

leading to equation (17) becomes inaccurate when the

shear stress acts on a material with grain dimensions

perpendicular to the shear plane smaller than the other

two orthogonal grain dimensions.

A more complete analysis23 for the shear terms, where

grain boundary diffusion is predominant and Z is the

grain dimension perpendicular to the shear plane, takes

the form

2(2)1=2(Y 2
z2Z2)(X 2

z2Z2)=

XYZ(XYzYZzZX )½(Y 2
z2Z2)2z(X 2

z2Z2)2�1=2

(24)

When Z is larger than X and Y, this expression reduces

to 4/XY(XzY) which is the term listed in the matrix

in equation (17). However, if Z is significantly less

than X and Y, the full expression reduces to the form

2(2)1/2/Z(X4
zY4)1/2 and it is then more appropriate to

use this latter formulation. The physical significance of

this situation is clear because when there is a large

number (inversely proportional to Z) of grain boundary

paths in the shear plane, diffusional flux has more easy

pathways on which to flow.

It is instructive to consider the limiting situation for

the hypothetical case where the Z dimension decreases

to the width w of the grain boundary, since the equations

Greenwood Comparisons of elastic and creep deformation
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for lattice and grain boundary diffusion should then
converge. Taking a shear term in equation (15) for
lattice diffusion

S44~(12DV=kT)½4=(X 2
zY 2)� (25)

This can now be compared with the grain boundary case
by putting Z<w in the shear term, to obtain

S44~(24DgV=kT)½2(2)1=2=(X 4
zY 4)1=2� (26)

The derivation of equation (26) involves the contribution
of two grain boundaries perpendicular to Z but there is
only one boundary, in the limit effectively comprising a
single grain, contributing to the flux in equation (25).
Noting also that DRDg, the expressions 24(2)1/2/
(X4

zY4)1/2 and 48/(X2
zY2) are now compared. It is

seen that their numerical values are equal when X5Y,
thus demonstrating compatibility between the analyses of
roles of lattice and of grain boundary by their conver-
gence when the grain dimension perpendicular to the axis
of shear is reduced to atomic dimensions.

References
1. R. W. Evans and B. Wilshire: ‘Introduction to creep’, 22; 1993,

London, Institute of Materials.

2. H. J. Frost and M. F. Ashby: ‘Deformation mechanism maps’;

1982, New York, Pergamon Press.

3. A. H. Cottrell: ‘Mechanical properties of matter’, 196; 1964, New

York, Wiley.

4. F. R. N. Nabarro: ‘Report on the conference on the strength of

solids’, 75; 1948, London, The Physical Society.

5. R. L. Coble: J. Appl. Phys., 1963, 34, 1679.

6. J. Harper and J. E. Dorn: Acta Metall., 1957, 5, 654.

7. J. R. Springarn and W. D. Nix: Acta Metall., 1979, 27, 171.

8. B. Burton: ‘Diffusional creep in polycrystalline materials’; 1977,

Aedermannsdorf, Trans. Tech. Publications.

9. O. A. Ruano, J. Wadsworth, J. Wolfenstine and O. D. Sherby:

Mater. Sci. Eng. A, 1993, A165, 133.

10. W. Blum and W. Maier: Phys. Stat. Sol. (a), 1999, 61, 182.

11. F. R. N. Nabarro: Metall. Mater. Trans. A, 2002, 33A, 213.

12. T. J. Ginter and F. A. Mohammed:Mater. Sci. Eng. A, 2002, A322,

148.

13. K. R. McNee, H. Jones and G. W. Greenwood: in ‘Creep and

fracture of engineering materials and structures’, (ed. J. D. Parker),

185; 2001, London, Institute of Materials.

14. T. G. Langdon: Mater. Sci. Eng. A, 2000, A283, 266.

15. P. Kumar, M. E. Kassner and T. G. Langdon: J. Mater. Sci., 2007,

42, 409.

16. B. Wilshire and C. J. Palmer: Scr. Mater., 2002, 436, 483.

17. F. A. Mohamed: Mater. Sci. Eng. A, 2007, A463, 177.

18. B. Burton and G. L. Reynolds: Mater. Sci. Eng. A, 1995, A191,

135.

19. K. R. McNee, G. W. Greenwood and H. Jones: Philos. Mag., 2002,

82, 2773.

20. J. Frenkel: ‘Kinetic theory of liquids’, 193; 1955, New York, Dover

Publications Inc.

21. G. W. Greenwood: Philos. Mag., 1985, 51, 537.

22. T. C. T. Ting: ‘Anisotropic elasticity’; 1996, Oxford, Oxford

University Press.

23. R. F. S. Hearmon: ‘An introduction to applied anisotropic

elasticity’; 1961, Oxford, Oxford University Press.

24. B. A. Wilcox and A. H. Clauer: Acta Metall., 1972, 20, 743.

25. G. W. Greenwood: Proc. R. Soc. Lond. A, 1992, 436A, 187.

26. J. B. Bilde-Sorensen and P. A. Thorsen: ‘Creep behaviour of

advanced materials for the 21st century’, (ed. R. S. Mishra et al.);

1999, Warrendale, PA, TMS Publication.

27. V. Srivastava, H. Jones and G. W. Greenwood: Proc. R. Soc. Lond.

A, 2006, 462A, 2863.

28. B. Burton: Philos. Mag., 2002, 82, 51.

29. B. Burton: Philos. Mag., 2003, 83, 2715.

30. B. Burton: Mater. Sci. Technol., 2004, 20, 1215.

Greenwood Comparisons of elastic and creep deformation

Materials Science and Technology 2009 VOL 25 NO 4 541

http://www.ingentaconnect.com/content/external-references?article=0267-0836(2004)20L.1215[aid=6372209]
http://www.ingentaconnect.com/content/external-references?article=1364-5021(2006)462L.2863[aid=8728017]
http://www.ingentaconnect.com/content/external-references?article=1364-5021(2006)462L.2863[aid=8728017]
http://www.ingentaconnect.com/content/external-references?article=1364-5021(1992)436L.187[aid=8728018]
http://www.ingentaconnect.com/content/external-references?article=1364-5021(1992)436L.187[aid=8728018]
http://www.ingentaconnect.com/content/external-references?article=1364-5021(1992)436L.187[aid=8728018]
http://www.ingentaconnect.com/content/external-references?article=0001-6160(1972)20L.743[aid=5300345]
http://www.ingentaconnect.com/content/external-references?article=0001-6160(1972)20L.743[aid=5300345]
http://www.ingentaconnect.com/content/external-references?article=0001-6160(1972)20L.743[aid=5300345]
http://www.ingentaconnect.com/content/external-references?article=0022-2461(2007)42L.409[aid=8728022]
http://www.ingentaconnect.com/content/external-references?article=0022-2461(2007)42L.409[aid=8728022]
http://www.ingentaconnect.com/content/external-references?article=0022-2461(2007)42L.409[aid=8728022]
http://www.ingentaconnect.com/content/external-references?article=1073-5623(2002)33L.213[aid=7135151]
http://www.ingentaconnect.com/content/external-references?article=0001-6160(1979)27L.171[aid=4949636]
http://www.ingentaconnect.com/content/external-references?article=0001-6160(1979)27L.171[aid=4949636]
http://www.ingentaconnect.com/content/external-references?article=0001-6160(1979)27L.171[aid=4949636]
http://www.ingentaconnect.com/content/external-references?article=0001-6160(1957)5L.654[aid=4767100]
http://www.ingentaconnect.com/content/external-references?article=0021-8979(1963)34L.1679[aid=4818993]
http://www.ingentaconnect.com/content/external-references?article=0921-5093(1995)191L.135[aid=3499567]
http://www.ingentaconnect.com/content/external-references?article=0921-5093(1995)191L.135[aid=3499567]
http://www.ingentaconnect.com/content/external-references?article=0921-5093(2007)463L.177[aid=8728024]
http://www.ingentaconnect.com/content/external-references?article=0921-5093(2000)283L.266[aid=6751674]
http://www.ingentaconnect.com/content/external-references?article=0921-5093(2002)322L.148[aid=8728025]
http://www.ingentaconnect.com/content/external-references?article=0921-5093(2002)322L.148[aid=8728025]
http://www.ingentaconnect.com/content/external-references?article=0921-5093(1993)165L.133[aid=8728026]

