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The polymorphism IL-1b T-31C is associated with a longer overall survival

in patients with multiple myeloma undergoing auto-SCT
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Proinflammatory cytokines are suspected to play a role in
the pathogenesis of multiple myeloma (MM). Therefore,
it is possible that inborn genetic variations leading to a
modified expression of these cytokines will influence the
outcome for these patients. We investigated 348 MM
patients undergoing high-dose melphalan treatment fol-
lowed by Auto-SCT and examined the influence of single
nucleotide polymorphisms (SNPs) in genes involved in the
inflammatory response. We found that the polymorphism
IL-1b T-31C significantly influenced overall survival (OS;
P¼ 0.02) and that carriers of the variant C-allele had a
significantly longer survival than homozygous wild-type
allele TT-carriers (relative risk 0.6 (95% CI¼ 0.5–0.9);
P¼ 0.008). The polymorphisms IL-6 G-174C, IL-10
C592A, PPARc2 Pro12Ala, COX-2 A-1195G, COX-2
T8473C and NFKB1 ins/del did not influence the OS in
this group of patients. Furthermore, homozygous carriers
of the variant allele of IL-1b T-31C were at 1.37-fold
(CI¼ 1.05–1.80) increased risk of MM as compared with
population-based controls (P¼ 0.02). Our results indicate
that IL-1b is involved in the pathogenesis of MM.
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doi:10.1038/bmt.2008.351; published online 10November 2008
Keywords: chemotherapy; cytokines; polymorphism;
multiple myeloma; treatment outcome

Introduction

The interaction between the myeloma cell and the BM
microenvironment is central to the growth and survival of
myeloma cells. The myeloma cell adheres to the BM
microenvironment, and thereby stimulates angiogenesis
and enhances the stimulation of cytokines such as IL-1b,
IL-6 and IL-10. The proinflammatory cytokines released
from the BM microenvironment activate the NF-kB
(nuclear factor-kB) through the classical pathway in both
the malignant myeloma cells and the innate immune
system. This activation leads to further growth, adhesion
and survival of myeloma cells and production of inflam-
matory mediators, such as IL-1b, IL-6 and cyclooxygenase
2 (COX-2).1,2

Another nuclear activation factor involved in the
inflammatory response has been found in B-cell lymphomas
and multiple myeloma (MM) cells.3 The nuclear receptor,
peroxisome proliferator-activated receptor-g (PPARg), is
an important transcription factor and member of the
nuclear hormone receptor superfamily. PPARg regulates
the expression of COX-2, and prostaglandin 15d-PGJ2 is a
natural ligand for the PPARg that induces apoptosis in
myeloma cell lines.3

During the last decade, new treatments with immuno-
modulatory drugs and proteosome inhibitors have been
introduced and have led to improved survival of the
patients. These drugs induce apoptosis of myeloma cells,
interrupt the interaction between myeloma cells and
stromal cells in the BM, inhibit angiogenesis and inhibit
the secretion of IL-1b and IL-6. The treatment effects of the
new drugs support the importance of these key regulators
of the immune response in the pathogenesis of MM. Inborn
genetic variation in these genes may therefore be important
for the risk, prognosis and treatment outcome of MM.
Proinflammatory cytokines, COX-2, NF-kB and PPARg

are important for the regulation of inflammatory response
as well as cancer cell growth. Several studies have shown a
link between polymorphisms in IL-1b, IL-6, IL-10, COX-2,
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NF-kB and PPARg and cancer risk.4–8 They may also be
central to the pathogenesis of MM. New treatment
strategies directed against these targets are being developed,
and inborn variations in these genes may therefore become
essential for the effect of such targeted therapy. In this
study, we address the importance of the polymorphisms
IL-1b T-31C, IL-6 G-174C, IL-10 C-592A, PPARg2
Pro12Ala, COX-2 A-1195G, COX-2 T8473C and NF-KB1-
94ins/delATTG, which are known to affect the transcrip-
tion levels of the genes and are also known to be important
for cancer cell growth, inflammatory response and cancer
risk, and the response to high-dose melphalan treatment.

Materials and methods

Patients, clinical data, response criteria, eligibility criteria
and treatment
Patients, clinical data, response criteria and eligibility
criteria have been described in detail earlier.9 Briefly,
patients diagnosed with MM and treated with high-dose
melphalan and auto-SCT from August 1994 to August
2004 were recruited from four participating centers in
Denmark. A total of 348 patients were included in the
study. Of these, 185 patients were included in the high-dose
treatment protocols including Auto-SCT administrated by
the Nordic Myeloma Study Group (nos. 5/94, 7/98 and
11/00),10–12 whereas the remaining 163 patients were treated
with similar regimens, but not registered in these protocols.
Staging was performed according to Durie and Salmon.
Time to treatment failure (TTF) and overall survival (OS)
were calculated from the date of transplantation to the date
of progression or death. Treatment-related mortality was
3%. Two patients died from malignancies other than MM,
and two patients died because of other causes. The
occurrence of other malignancies and death without
progression was regarded as events not related to progres-
sion. These patients were included in the analysis of OS, but
they were excluded at the time of death in the analysis of
TTF. Time to treatment failure in 68 patients, including
those who died during the transplantation procedure, was
followed for less than 2 years. Induction therapy was three
series VAD (vincristine, doxorubicin and dexamethasone) or
2–3 series of CY 1g/m2 once daily i.v. on day 1 combined
with dexamethasone 40mg daily p.o. on days 1–4 and days
9–11 (total dose 320mg for each series). Peripheral blood
stem cells were harvested at regeneration after CY priming,
and the patients thereafter underwent high-dose chemother-
apy with melphalan (200mg/m2) followed by Auto-SCT and
maintenance therapy with interferon. A random sample of
800 individuals from the Danish Diet, Cancer and Health
cohort was used for comparing the allele frequencies of the
examined MM patients with the corresponding frequencies
observed earlier.13 The study was approved by the Danish
Ethical Committee (01-158/03).

Human tissue samples
Peripheral blood mononuclear cells (PBMCs) were purified
from 292 leukapheresis products by buffy coat preparation.
From 56 patients, 10 times 10 mm sections were collected

from paraffin-embedded BM samples. Material was not
available for 19 patients undergoing Auto-SCT, and
therefore these patients were not included in the study.

DNA purification
DNA for analysis was purified from PBMCs by the salting
out method14 or from paraffin-embedded tissue by phenol
extraction as described.15

Detection of single nucleotide polymorphism (SNPs)
Genotypes were determined on an ABI 7500 using end
point readings. Reactions of 5 ml contained approximately
50 ng DNA, 2.5 ml mastermix (Applied Biosystems,
Birker�d, Denmark), 100 nM of each probe and 900 nM
primers. Controls were included in each run, and repeated
10% subset yielded 100% identical genotypes. Moreover,
for 10 persons, DNA from both BM and leukapheresis
products was genotyped with identical results.

IL-1b T-31C (rs1143627), IL6 G-174C (rs1800795), IL10
C-592T (rs1800872), PPARg2Pro12Ala (rs1801282), COX-2
C8473T (rs5275) and COX-2 A-1195G (rs689466) were
genotyped as described earlier.13 For NF-kB ins/del
(rs28362491), the primer sequences were F: 50-CTATGG
ACCGCATGACTCTATCAG-30 and R: 50-GGGCTC
TGGCTTCCTAGCA-30. Probe sequences were NFKB1
INS: 50-FAM-ACCATTGATTGGGCCCGG-BHQ-30 and
NFKB1-DEL: 50-Yakima Yellow-CCGACCATTGGGC
CCG-BHQ-30.

Statistical methods
SPSS statistical software was used for all calculations
(SPSS for Windows, Rel. 14.0.0.2005, Chicago: SPSS Inc.).
All tests were two-sided, and P-valueso0.05 were regarded
as significant.
Fisher’s exact test was used for comparing categorical

variables and the Mann–Whitney test was used for
comparing continuous and categorical variables. The
Kaplan–Meier method and the log-rank test were used to
compare TTF and OS between groups. The Cox propor-
tional hazards model, log-likelihood statistics, was applied
for univariate analyses of covariates and for multivariate
analysis. Significant variables with a P-value o0.05 by
univariate analysis were included in the multivariate Cox
analyses to identify variables of independent significance.
Analysis of risk was performed as a case–control study. The
frequencies of the different genotypes were compared in the
myeloma patients and in a control group. For significance
testing, Fisher’s exact test was used. The comparison group
was described in a recent publication by Vogel et al.13

Results

SNP
Genotypes of IL-1b T-31C, IL-6 G-174C, IL-10 C592A,
PPARg2 Pro12Ala, COX-2 A-1195G, COX-2 T8473C and
NF-KB1-94ins/del were determined. There was no differ-
ence in the allele frequencies among patients from different
participating centers. The allele frequencies of the examined
MM patients were compared with the corresponding
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frequencies observed earlier in a random control sample.
No difference was found in the distribution of the
genotypes IL-6 G-174C, IL-10 C592A, PPARg2 Pro12Ala,
COX-2 A-1195G and COX-2 T8473C when compared with
the comparison group. Heterozygous carriers of the C-
allele of IL-1b T-31C were at 1.15-fold higher risk of MM
(CI¼ 0.94–1.41), and homozygous carriers were at 1.37-
fold increased risk of MM (CI¼ 1.05–1.80) (P¼ 0.02) than
homozygous carriers of the wild-type allele when compared
with the random sample of 753 persons from the Diet,
Cancer and Health cohort. The effect of the genotypes on
TTF and OS was tested in univariate analysis, and the
results are presented in Table 1. TTF data adjusted for b2-
microglobulin and OS data adjusted for all other survival-
related factors (b2-microglobulin, creatinine and Durie–
Salmon stage) are shown in parentheses.
There was no difference in TTF for any of the

polymorphisms studied. Carriers of the variant C-allele of
IL-1b T-31C had a median OS of 80.1 months when
compared with a median OS of 48.5 months for the
homozygous carriers of the wild-type T-allele (P¼ 0.008;
Figure 1 and Table 1). The correlation was still statistically
significant after adjustment for all other prognostic factors
known to influence OS (b2-microglobulin, creatinine and
Durie–Salmon stage). The correlation of polymorphism in
IL-1b T-31C with OS was even more marked when
analyzed after treatment failure. Analyzed from the time
of progression, carriers of the variant C-allele of IL-1b T
-31C had a median OS of 37.1 months when compared
with a median OS of 16.2 months for the homozygous
carriers of the wild-type T-allele (P¼ 0.002). There was no
correlation between the allele distribution of polymorphism
IL-1b T-31C and treatment outcome either after induction
treatment or after Auto-SCT (Table 2). There was no
effect on patient survival of the polymorphisms IL-6
G-174C, IL-10 C-592A, PPARg2 Pro12Ala, COX-2 A-
1195G, COX-2 T8473C and NF-KB1-94ins/del. There was
no interaction between sex and genotypes in relation to
TTF and survival.

Combination analyses of SNPs
The proinflammatory cytokines studied are known stimu-
lators of myeloma cell growth. The three polymorphisms
IL-1b T-31C, IL-6 G-174C and IL-10 C592A were
combined, and the effect on TTF and OS of these
combinations were investigated in a univariate analysis
(Table 3).
There was no association between IL-1b T-31C, IL-6 G-

174C and IL-10 C592A polymorphisms. No additive effect
on survival was seen when the variant genotype of IL-1b
was combined with the genotypes of IL-6 or IL-10. The
variant alleles of the two COX-2 polymorphisms, COX-2
A-1195G and COX-2 T8473C, are not part of the same
haplotype.16 Consequently, we tested combinations of these
polymorphisms, but no additional effects on TTF or OS
were seen (Table 3).

Multivariate analysis of prognostic markers
The IL-1b T-31C polymorphism was compared with
known prognostic factors (b2-microglobulin, creatinine,

albumin, sex, age and Durie–Salmon stage). No significant
covariance was found (Table 4).
The polymorphism IL-1b T-31C was examined in a

multivariate analysis to see whether it had independent
prognostic value. IL-1b T-31C was tested separately against
the statistically significant parameters from the univariate
analyses to calculate the adjusted hazard ratios and P-
values. In one center, b2-microglobulin was not analyzed
routinely. Therefore, only 240 patients were available in the
multivariate analysis with IL-1b T-31C. The adjusted
hazard ratios and P-values were similar to the unadjusted
hazard ratios (Table 5).
Using a wider range of the commonly used prognostic

variables (age, sex, albumin, creatinine, b2-microglobulin
and Durie–Salmon stage) and a backward stepwise
method, the IL-1b T-31C polymorphism stayed in the
model as a statistically significant prognostic factor
(P¼ 0.04) together with age (P¼ 0.02), sex (P¼ 0.04) and
b2-microglobulin (P¼ 0.0002).

Discussion

Immunological and inflammatory response genes are of
particular interest in hematological malignancies because
these genes both participate in the normal recruitment and
differentiation of hematopoietic cells, the normal immune
response and may be of importance in carcinogenesis.
Several cytokines function as paracrine and autocrine
growth factors and are expressed in both myeloma cells
and in BM stromal cells. In contrast to myeloma cells, BM
stromal cells are expected to have normal regulatory
functions. The myeloma cells home in the BM, where the
interaction with BM stromal cells may be crucial for further
development, growth and resistance to chemotherapy.17 In
this study, we have addressed the question how inborn
variations in genes involved in the immune and inflamma-
tory responses influence the outcome of patients with MM
treated with high-dose melphalan and Auto-SCT. Further-
more, we have analyzed whether any of the examined
polymorphisms are associated with the risk for develop-
ment of MM.
The polymorphism IL-1b T-31C influenced OS. We

found that patients carrying the variant C-allele (CTþCC,
59% of patients) had an increased OS of 80.1 months
compared with 48.5 months for the homozygous carriers of
the wild-type T-allele (TT, 41% of patients) (P¼ 0.008).
The effect on OS was more pronounced when examined
after TTF. Furthermore, IL-1b T-31C was found to be a
statistically significant prognostic marker for prolonged OS
in a Cox multivariate analysis.
IL-1b has several functions in man and is induced by

nearly all microbial and many inflammatory substances
and cytokines. It is expressed mainly by BM stromal cells,
but is also expressed by myeloma cells and, to a lesser
extent, by plasma cells in patients with monoclonal
gammopathy of undetermined significance (MGUS).18–20

IL-1b is important for both regulation of inflammation and
of host defense in man, and it stimulates the production of
IL-6, an important growth factor for MM cells. A recent
study has shown that IL-1b-induced stimulation of IL-6
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Table 1 Univariate analysis of the effect of genotype on TTF and OS

Gene Allele N Median TTF
(months)

P-value HR Median OS
(months)

P-value HR

IL-1b T-31C
TT 125 27.2 — 1 48.5 — 1
CT 134 26.2 0.77 1.0 (0.7–1.3)a 75.2 0.036 0.7 (0.5–1.0)

(0.89) (1.0 (0.7–1.4)) (0.062) (0.7 (0.4–1.0))
CC 49 45.0 0.07 0.6 (0.4–1.0) 85.9 0.014 0.5 (0.3–0.9)

(0.10) (0.6 (0.3–1.1)) (0.035) (0.5 (0.3–1.0))
CT+CC 183 29.9 0.33 0.9 (0.6–1.2) 80.1 0.008 0.6 (0.5–0.9)

(0.42) (0.9 (0.6–1.2)) (0.018) (0.6 (0.4–0.9))

IL-6 G-174C
GG 90 27.8 — 1 73.9 —
CG 167 30.3 0.19 0.8 (0.6–1.1) 68.5 0.92 1.0 (0.7–1.4)

(0.11) (0.7 (0.5–1.1)) (0.78) (1.1 (0.7–1.7))
CC 80 23.6 0.42 1.2 (0.8–1.7) 65.7 0.42 1.2 (0.8–1.8)

(0.19) (1.4 (0.9–2.1)) (0.47) (1.2 (0.7–2.1))
CG+CC 247 27.4 0.54 0.9 (0.7–1.2) 65.9 0.81 1.0 (0.7–1.5)

(0.53) (0.9 (0.6–1.3)) (0.63) (1.1 (0.7–1.7))

IL-10 C-592A
CC 212 28.6 — 1 68.5 — —
AC 117 23.1 0.33 1.2 (0.9–1.6) 64.6 0.68 1.1 (0.8–1.5)

(0.32) (1.2 (0.8–1.7)) (0.67) (1.1 (0.7–1.6))
AA 18 48.6 0.33 0.7 (0.3–1.5) —b 0.16 0.5 (0.2–1.3)

(0.14) (0.5 (0.2–1.3)) (0.062) (0.3 (0.1–1.1))
AC+AA 135 24.6 0.55 1.1 (0.8–1.4) 70.0 0.97 1.0 (0.7–1.3)

(0.69) (1.1 (0.8–1.5)) (0.77) (0.9 (0.6–1.4))

PPARg2 Pro12 Ala
Pro/Pro 241 27.6 — 1 65.6 —
Pro/Ala 102 24.6 0.70 0.9 (0.7–1.3) 74.1 0.33 0.9 (0.6–1.2)

(0.20) (0.8 (0.5–1.1)) (0.13) (0.7 (0.5–1.1))
Ala/Ala 2 50.5 — — —b — —
Ala-carriers 104 24.6 0.71 0.9 (0.7–1.3) 74.1 0.33 0.9 (0.6–1.2)

(0.20) (0.8 (0.5–1.1)) (0.13) (0.7 (0.5–1.1))

COX-2 A-1195G
AA 226 27.7 — 1 73.9 — —
AG 110 25.4 0.91 1.0 (0.8–1.4) 63.1 0.66 1.1 (0.8–1.5)

(0.27) (0.8 (0.5–1.2)) (0.29) (0.8 (0.5–1.2))
GG 12 27.2 0.23 1.5 (0.8–3.0) 45.2 0.13 1.7 (0.9–3.3)

(0.20) (1.7 (0.8–3.6)) (0.035) (2.2 (1.1–4.6))
AG+GG 122 26.6 0.69 1.1 (0.8–1.4) 59.5 0.43 1.1 (0.8–1.5)

(0.49) (0.9 (0.6–1.3)) (0.68) (0.9 (0.6–1.4))

COX-2 T8473C
TT 121 25.4 — 1 63.1 — 1
TC 128 27.6 0.11 0.8 (0.5–1.1) 73.9 0.29 0.8 (0.6–1.2)

(0.27) (0.8 (0.5–1.2)) (0.20) (0.8 (0.5–1.2))
CC 36 27.8 0.46 0.8 (0.5–1.3) 74.1 0.64 0.9 (0.5–1.5)

(0.86) (1.0 (0.5–1.7)) (0.25) (0.7 (0.4–1.3))
TC+CC 164 27.8 0.12 0.8 (0.6–1.1) 73.9 0.31 0.8 (0.6–1.2)

(0.34) (0.8 (0.6–1.2)) (0.14) (0.7 (0.5–1.1))

NF-KB1-94 INS/DEL
INS 110 28.4 — 1 —b — 1
INS/DEL 163 26.4 0.79 1.0 (0.8–1.4) 64.6 0.31 1.2 (0.8–1.7)

(0.66) (1.1 (0.7–1.6)) (0.57) (1.1 (0.7–1.7))
DEL/DEL 55 22.5 0.17 1.3 (0.9–2.0) 65.6 0.10 1.5 (0.9–2.3)

(0.12) (1.5 (0.9–2.4)) (0.39) (1.3 (0.7–2.2))
DEL carriers 218 26.4 0.50 1.1 (0.8–1.5) 64.6 0.17 1.3 (0.9–1.8)

(0.37) (1.2 (0.8–1.7)) (0.44) (1.2 (0.8–1.7))

Abbreviations: CI¼ confidence interval; COX¼ cyclooxygenase; HR¼ hazard ratio; OS¼ overall survival; TTF¼ time to treatment failure.
HR is calculated by COX proportional hazards analysis.
Values in italics are adjusted for prognostic-related factors (TTF: b2-microglobulin. OS: b2-microglobulin, creatinine and Durie–Salmon stage) and are
shown in parentheses.
aValues in parentheses are 95% CI.
bMedian survival not reached.

The polymorphism IL-1b T-31C and multiple myeloma
AJ Vangsted et al

542

Bone Marrow Transplantation



production in BM stromal cells is higher in stromal cells
from patients with myeloma than in stromal cells from
patients with MGUS. The effect on IL-6 production was
inhibited by IL-1 antagonists.20 This finding indicates that
IL-1b is linked with the progression of MGUS to MM. We
found that homozygous carriers of the variant C-allele of
IL-1b T-31C were at increased risk of MM (relative risk of
1.37; CI¼ 1.05–1.80) compared with random samples of
healthy Danes aged 50-64 years.16 The finding suggests that
high IL-1b levels are associated with the increased risk of
MM. However, as cases and comparison groups were not
matched, the observation needs further examination in a
proper case–control study of patients with MGUS and
MM.
The association between IL-1b T-31C and both OS and

risk of MM emphasizes the possible biological importance
of IL-1b in the pathogenesis of MM. There are several
functional SNPs in the promoter region of IL-1b. A

Japanese study of helicobacter pylori-infected patients
showed that homozygous carriers of the variant allele of
the polymorphism IL-1b C-511T had higher IL-1b mucosa
levels than did carriers of the wild-type C-allele and in
patients with systemic inflammatory response syndrome,
high IL-6 blood levels were found in carriers of T-allele.21

Another recent study shows that the two polymorphisms
IL-1b T-31C and C-511T are in complete linkage equili-
brium and that the two variant alleles cosegregate
completely. Thus, the variant allele with the two poly-
morphisms is always present in the same haplotype. The
study showed that although the variant C-allele of T-31C
has less transcriptional activity when analyzed separately,
the haplotype encompassing both variant alleles in posi-
tions �31 and �511 has a higher transcriptional response
to LPS and phorbol 12-myristate 13-acetate (PMA)
stimulation in the human monocytic cell line than the
haplotype encompassing the wild-type alleles.22 This result
is supported by a recent study on lung epithelial cells that
found that the variant allele in position �31 had a lowered
transcription level when analyzed separately.23 We ob-
served increased survival among patients with a higher
inborn IL-1b transcription level and cytokine level. We
found no difference in relation to polymorphism in the IL-
1b gene and TTF after high-dose therapy and in relation to
the response to induction treatment or Auto-SCT (Table 2).
This would mean that IL-1b levels do not influence the
outcome of Auto-SCT, but probably influence other
aspects of the disease or treatment strategy after Auto-
SCT. One possibility is that the high IL-1b levels may delay
the clonal expansion of myeloma cells surviving the high-
dose chemotherapy by representing a biological feature of a
less aggressive disease. The immune system may be a part
of this protection. IL-1b has been shown to be important
for the development of human T-helper cells24 and for the
generation of mature IL-12-producing dendritic cells from
circulating monocytes from MM patients.25,26 Another
possibility is that IL-1b influences the treatment outcome of
new immunomodulating drugs used after the recurrence of
the disease.
There was no effect on TTF and patients’ survival of the

polymorphisms IL-6 G-174C, IL-10 C-592A, PPARg2
Pro12Ala, COX-2 A-1195G, COX-2 T8473C and NF-KB1-
94 ins/del, and we found no correlation between the risk of
MM and the polymorphisms IL-6 G-174C and IL-10
C592A. The results of IL-6G-174C and IL-10 C592A are in
accordance with other smaller studies of MM.27,28 Poly-
morphisms in PPARg2 Pro12Ala, COX-2 A-1195G and
COX-2 T8473C have not been studied in relation to the risk
of MM before. In our study, the polymorphisms COX-2 A-
1195G, COX-2 T8473C and PPARg2 Pro12Ala were not
associated with the risk of MM or outcome of disease.
Therefore, the polymorphisms in these genes cannot
explain the discrepancy in the results of the effect of
COX inhibitors in relation to the risk of disease and
outcome in patients with MM.29 However, our observa-
tions do not exclude important functions of the inflamma-
tory-related genes in the pathogenesis of MM.
Standard treatment for younger patients with MM is

high-dose melphalan treatment and autologous stem cell
support. This treatment improves the survival but will not
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T-31C. The variant haplotype CTþCC (full line) and the wild-type TT
(dashed line) Kaplan–Meier plots of OS. The numbers at risk at 0, 24, 48
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Table 2 IL-1b T-31C allele frequency in relation to response

obtained after induction treatment (A) and after Auto-SCT (B)

IL-1b T-31C CR PR MR NR PD

(A)a

TT 5 (4.7%) 69 (65.1%) 20 (18.9%) 12 (11.3%) 0 (0%)
CT+CC 9 (6.0%) 92 (60.9%) 33 (21.9%) 17 (11.3%) 0 (0%)

(B)b

TT 38 (34.9%) 63 (57.8%) 4 (3.7%) 4 (3.7%) 0 (0%)
CT+CC 68 (42.2%) 80 (49.7%) 7 (4.3%) 5 (3.1%) 1 (0.6%)

Abbreviations: CR¼ complete response; MR¼minor response; NR¼ no
response; PD¼progressive disease; PR¼ partial response.
aP¼ 0.9.
bP¼ 0.7.
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cure the patients.10 Treatment outcome for patients with
MM depends on factors related to the aggressiveness of the
tumor, the tumor burden at diagnosis, choice of treatment
and inherited genetic variations that modify the response to
treatment. We have shown earlier that the treatment
outcome may be influenced by inherited variation in the
individuals’ capacity for DNA repair.9 Polymorphisms in
the DNA repair genes ERCC2, XRCC3 and CD3EAP
significantly influenced the treatment outcome of
patients with MM undergoing high-dose treatment.
There is ample evidence to show that proinflammatory
cytokines are involved in the risk of cancer, but less is
known about their importance for treatment outcome and
survival.
In this study, we found an increased frequency of the

variant allele IL-1b T-31C in MM patients. The IL-1b
T-31C polymorphism did not play any role in the outcome
of treatment with high-dose melphalan and Auto-SCT,
but carriers of the variant C-allele had a significantly
longer survival than did homozygous wild-type allele TT
carriers.

Table 3 Univariate analysis of the effect of combinations of polymorphism on TTF and OS

N Median TTF (months) HR (95% CI) P Median OS (months) HR (95% CI) P

IL-1b T-31C IL-6 G-174C
TT GG 31 27.8 1 — 46.5 1 —
CT+CC GG 51 35.8 0.7 (0.4–1.3) 0.26 73.9 0.6 (0.3–1.2) 0.14
TT CG+CC 92 27.2 0.8 (0.5–1.4) 0.43 48.5 0.9 (0.5–1.6) 0.72
CT+CC CG+CC 129 27.6 0.7 (0.4–1.2) 0.23 81.7 0.6 (0.3–1.0) 0.045

IL-1B T-31C IL-10 C-592A
TT CC 73 26.4 1 — 48.5 1 —
CT+CC CC 115 35.6 0.7 (0.5–1.1) 0.14 83.8 0.6 (0.4–0.9) 0.012
TT AC+AA 51 27.8 0.8 (0.5–1.4) 0.46 48.3 0.8 (0.5–1.3) 0.41
CT+CC AC+AA 68 23.1 0.9 (0.6–1.4) 0.66 76.5 0.6 (0.4–1.0) 0.036

IL-6 G-174C IL-10 C-592A
GG CC 55 30.8 1 — 59.5 —
CG+CC CC 151 28.4 0.9 (0.6–1.4) 0.67 68.5 1.0 (0.7–1.6) 0.87
GG AC+AA 35 24.2 1.1 (0.7–2.0) 0.65 90.1 1.0 (0.5–1.9) 0.98
CG+CC AC+AA 95 23.4 1.0 (0.6–1.5) 1.0 65.9 1.1 (0.7–1.7) 0.82

COX2 T8473C COX2 G-1195A
TT AA 61 22.5 1 — 55.4 1
TC+CC AA 119 27.7 0.8 (0.6–1.3) 0.41 73.9 0.8 (0.5–1.3) 0.36
TT AG+GG 60 28.4 1.1 (0.7–1.7) 0.83 63.1 0.9 (0.6–1.5) 0.80
TC+CC AG+GG 45 26.9 0.7 (0.4–1.2) 0.20 60.5 0.8 (0.5–1.4) 0.44

Abbreviations: CI¼ confidence interval; COX¼ cyclooxygenase; HR¼ hazard ratio.
HR is calculated by COX proportional hazards analysis.
Values in parentheses are 95% CI.

Table 4 Distribution of prognostic markers for MM in relation to polymorphism IL-1b T-31C

IL-1b T-31C wild-type allele TT
Median (range) or frequency (%)

IL-1b T-31C variant carriers CT/CC
Median (range) or frequency (%)

P-value

Age 57 (32–69)a 56 (28–68) 0.7
b2-microglobulin 4.3 (1.3–57)a 3.9 (1.2–23) 0.7
Creatinin 1.1 (0.6–9.4)a 1.1 (0.5–8.6) 0.8
Albumin 3.5 (0.3–5.3)a 3.5 (0.3–5.3) 0.9
Durie–Salmon stage (I/II/II) 13/26/82 (11/21/68)b 16/44/119 (9/25/66) 0.4
ISS (I/II/III) 18/37/36 (20/41/40)b 26/49/47 (21/40/39) 0.9
Sex (male/female) 71/54 (57/43)b 105/78 (57/43) 0.9

aRange.
bPercent.

Table 5 Multivariate analysis of IL-1b T-31C and prognostic

markers

P-value HR

b2-microglobulina 0.050 1.3b (1.0–1.6)

Creatininea 0.59 1.1 (0.8–1.4)

Stage DS 0.09 —
I vs II 2.8 (1.0–7.9)
I vs III 2.6 (0.9–7.1)

IL-1b 0.042 —
TT vs CT 0.7 (0.4–1.0)
TT vs CC 0.5 (0.3–1.0)

Abbreviations: CI¼ confidence interval; HR¼hazard ratio.
These are b2-microglobulin, creatinine and Durie–Salmon stage.
ab2-Microglobulin and creatinine were tested as continuous variables and
log transformed. The hazard ratio indicates risk when values are doubled.
bValues in parentheses are 95% CI.
The hazard ratios of progression for the variants were calculated with
respect to having wild-type in IL-1b T-31C. The P-value is used for all
combinations as a categorical variable.
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