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Nørregaard R, Bødker T, Jensen BL, Stødkilde L, Nielsen
S, Frøkiær J. Increased renal adrenomedullin expression in rats
with ureteral obstruction. Am J Physiol Regul Integr Comp Physiol
296: R185–R192, 2009. First published October 22, 2008;
doi:10.1152/ajpregu.00170.2008.—Ureteral obstruction is character-
ized by decreased renal blood flow that is associated with hypoxia
within the kidney. Adrenomedullin (AM) is a peptide hormone with
tissue-protective capacity that is stimulated through hypoxia. We
tested the hypothesis that ureteral obstruction stimulates expression of
AM and hypoxia-inducible factor-1 (HIF-1�) in kidneys. Rats were
exposed to bilateral ureteral obstruction (BUO) for 2, 6, 12, and 24 h
or sham operation and compared with unilateral obstruction (UUO).
AM mRNA expression was measured by quantitative PCR in cortex
and outer medulla (C�OM) and inner medulla (IM). AM and HIF-1�
protein abundance and localization were determined in rats subjected
to 24-h BUO. AM mRNA expression in C�OM increased signifi-
cantly after 12-h BUO and further increased after 24 h. In IM, AM
mRNA expression increased significantly in response to BUO for 6 h
and further increased after 24 h. AM peptide abundance was enhanced
in C�OM and IM after 24-h BUO. Immunohistochemical labeling of
kidneys showed a wider distribution and more intense AM signal in
24-h BUO compared with Sham. In UUO rats, AM mRNA expression
increased significantly in IM of the obstructed kidney compared with
nonobstructed and Sham kidney whereas AM peptide increased in IM
compared with Sham. HIF-1� protein abundance increased signifi-
cantly in IM after 24-h BUO compared with Sham and HIF-1�
immunoreactive protein colocalized with AM. In summary, AM and
HIF-1� expression increases in response to ureteral obstruction in
agreement with expected oxygen gradients. Hypoxia acting through
HIF-1� accumulation may be an important pathway for the renal
response to ureteral obstruction.

hypoxia-inducible factor-1�; bilateral ureteral obstruction; medullary
hypoxia; inflammation; tumor neurosis factor �

THE VASODILATOR PEPTIDE ADRENOMEDULLIN (AM) was discovered
in human pheochromocytoma cell extracts by its ability to
initiate cAMP production in target cells (26). AM is expressed
in most tissues and released to plasma at a rate that reflects
transcription (22, 42, 48). AM acts primarily in a paracrine
fashion and its effects are mediated through binding to a
specific receptor that comprises a complex between receptor
activity-modifying proteins (RAMPs) and calcitonin receptor-
like receptor (CRLR) (23, 24). AM increases total renal blood
flow and regional flow to cortex and medulla (12, 17, 22, 28,
42, 46, 48). AM induces natriuresis and diuresis by increasing
glomerular filtration rate and fractional sodium excretion and
reducing distal tubular sodium reabsorption (21, 22). AM is

stimulated in a variety of pathophysiological conditions char-
acterized by hypoxia, such as cardiovascular, respiratory, and
renal disorders (2, 4, 43, 45). The hypoxia-induced transcrip-
tion of the AM gene is dependent on the hypoxia-inducible
factor-1� (HIF-1�) transcription factor (38). Under hypoxic
conditions HIF-1� dimerizes with HIF-1�, the other subunit of
HIF-1 (that is not regulated by O2 levels), and this heterodimer
HIF-1 translocates to the nucleus where the activation of target
genes is mediated by binding to hypoxia-response elements (6,
20, 29, 45). HIF-1� displays a hypoxia-dependent distribution
within the kidney (6, 26, 40, 51). Importantly, in patients with
ureteropelvic junction obstruction HIF is stimulated in the
smooth muscles of the urinary tract and in urothelial cells (41).
Moreover, it has been demonstrated that HIF-1� is upregulated
in the bladder in response to partially bladder outlet obstruction
(9). On the basis of these observations it appears that ureteral
obstruction is associated with stimulation of HIF-1� in differ-
ent segments of the urinary tract, but there is currently no data
available on the regulation of HIF-1� and downstream HIF
gene targets such as AM in the kidney in response to ureteral
obstruction. Ureteral obstruction leads to an immediate preglo-
merular, transient vasodilatation followed by a long-lasting
vasoconstriction simultaneous with an increase in the ureteral
pressure (35, 50, 53). In response to 24 h of bilateral ureteral
obstruction (BUO; 24-h BUO), there is a decrease in the outer
cortical perfusion of �20% (16, 47), whereas the total renal
blood flow (RBF) is decreased to 40–70% of control values in
the kidney (15, 34). This leads to decreased O2 delivery and
potentially to subsequent hypoxia in the kidney tissue (54). If
obstruction persists, this in turn leads to interstitial inflamma-
tion, fibrosis, tubular atrophy, and renal failure (1, 47). As
shown for renal vascular disorders (44), AM could also be
involved in a hypoxia-induced protective response in the ob-
structed kidney governed by accumulation of HIF-1�. We
therefore hypothesized that AM mRNA and protein levels
would increase in the kidney in response to ureteral obstruction
in keeping with expected oxygen gradients and depending on
activation of HIF-1�. To address the hypothesis, a kinetic
study was performed, and the temporal and spatial correlation
between changes in renal tissue AM and HIF-1� expression
was determined in renal tissue subjected to bilateral and uni-
lateral ureteral ligation.

MATERIALS AND METHODS

In vivo rat experiments. All animal experiments were conducted in
accordance with the Danish legislation for the care and handling of
animals and also with the guidelines published by the National
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Institutes of Health. Furthermore, the animal protocols were approved
by the board of the Institute of Clinical Medicine, University of
Aarhus, according to the licenses for use of experimental animals
issued by the Danish Ministry of Justice.

Male Munich-Wistar rats (Møllegaard Breeding Centre, Eiby, Den-
mark) initially weighing 220 g were used. They had free access to tap
water and standard feed (Altromin, Lage, Germany). During the
experiments, rats were kept with a 12:12-h light-dark cycle, a tem-
perature of 21 � 2°C, and humidity of 55%. Rats were anesthetized
with a mixture of O2, N2O, and isoflurane in the ratio 4:3:2 and placed
on a heating pad to maintain rectal temperature at 37–38°C. The
abdomen was opened with a midline incision, and two ureters were
exposed and ligated with a 5-0 silk ligature to perform the obstruction.
The abdomen was closed with 2-0 prolene suture and the skin was
closed with 2-0 polysorb. Finally, rats were given 0.1 ml of TemGesic
(0.3 mg/ml, Schering-Plough, Farum, Denmark) for analgesia and
regained consciousness afterward.

All rats were allocated to the protocols below. Weight-matched
sham-operated animals (Sham) were observed and prepared in parallel
with each group as follows.

Protocol 1: 1) BUO was induced for 2 h. Kidneys were prepared
for quantitative PCR (n � 6). 2) Sham-operated controls were pre-
pared in parallel (n � 6).

Protocol 2: 1) BUO was induced for 6 h. Kidneys were prepared
for quantitative PCR (n � 6). 2) Sham-operated controls were pre-
pared in parallel (n � 6).

Protocol 3: 1) BUO was induced for 12 h. Kidneys were prepared
for quantitative PCR (n � 6). 2) Sham-operated controls were pre-
pared in parallel (n � 6).

Protocol 4: BUO was induced for 24 h (n � 18) and the kidneys
were removed and prepared for quantitative PCR, protein isolation
(n � 14), and immunohistochemistry (IHC) (n � 4). For matched
sham-operated control rats (n � 16), kidneys were prepared for
quantitative PCR, protein isolation (n � 12), and IHC (n � 4).

Protocol 5: 1) Unilateral ureteral obstruction (UUO) was induced
for 24 h (n � 16). Kidneys were prepared for quantitative PCR (n �
6), protein isolation (n � 6), and IHC (n � 4) for AM. 2) Sham-
operated controls rats (n � 16) were prepared in parallel for quanti-
tative PCR (n � 6), protein isolation (n � 6), and IHC (n � 4).

RNA extraction and cDNA synthesis. RNA extraction was per-
formed according to the protocol of Qiagen’s RNeasy mini kit.
Approximately 30 mg of kidney tissue was used for isolation, and the
RNA concentration was quantified by measuring the optical density at
260 nM on BioPhotometer 6131, Eppendorf, Hamburg, Germany.
cDNA synthesis was performed with StrataScript First-Strand synthe-
sis system (Stratagene, AH Diagnostics, Aarhus, Denmark) in accor-
dance to the manufacturer’s instructions.

Quantitative PCR. For quantitative PCR, 100 ng cDNA served as
a template for PCR amplification using Brilliant SYBR Green QPCR
Master Mix, according to the manufacturer’s instructions, (Stratagene,
AH Diagnostics, Aarhus, Denmark). Serial dilution (1 ng to 1 fg/�l)
of cDNA was used as a template for generation of a standard curve.
Standards and unknown samples were amplified in duplicate in
96-well plates, and PCR was performed for 40 cycles consisting of
denaturation for 30 s at 95°C followed by annealing and polymeriza-
tion at 60°C for 45 s. Emitted fluorescence was detected during the
annealing/extension step in each cycle. Specificity was ensured by
postrun melting curve analysis. 18S and TATA box binding protein
were used as housekeeping genes for standardization. In this study we
used the following primer sequences: rat AM, sense 5�-GCA GTT
CCG AAA GAA GTG GAA-3�; rat AM, antisense 5�-GCT GCT
GGA CGC TTG TAG TTC-3� (GenBank acc. no. NM_012715); rat
18S, sense 5�-CAT GGC CGT TCT TAG TTG-3�; rat 18S antisense
5�-CAT GCC AGA GTC TCG TTC-3� (GenBank acc. no. M11188);
TATA box binding protein, sense GAC TCC TGT CTC CCC TAC
CC, antisense CTC AGT GCA GAG GAG GGA AC (GenBank acc.
no. NM_001004198).

AM measurements in tissue after 24-h BUO and 24-h UUO. Protein
was isolated by homogenization of tissue in lysis buffer (1 mM
Tris �HCl, 10 mM EDTA, and 1 mM DTT) with protease inhibitor mix
(Mini complete Protease Inhibitor; Roche Diagnostics, Vedbaek,
Denmark at pH 7.2). Subsequently, 10 �l of Triton X-100 [10%
(wt/vol) final concentration] was added followed by centrifugation at
11,000 g at 4°C for 10 min. The supernatant was removed and

Fig. 1. Expression of adrenomedullin (AM) mRNA in cortex � outer medulla
(C�OM) and inner medulla (IM) from sham-operated (Sham) rats and rats
subjected to 2-, 6-, 12-, and 24-h bilateral ureteral obstruction (BUO). Repre-
sentative quantitative PCR (QPCR) for AM/TATA box binding protein (TBP)
mRNA level. QPCR was performed using 100 ng cDNA. Analysis of all the
samples from sham-operated (n � 6) and obstructed kidneys of rats with BUO
(n � 6) revealed that there was an increase of AM mRNA level in C�OM after
12- and 24-h BUO compared with sham-operated rats (A). In IM, AM mRNA
level was increased after 6-, 12-, and 24-h BUO compared with sham-operated
rats (B). Bars represent means � SE. *P 	 0.05 BUO compared with Sham
rats.

Fig. 2. AM protein concentration in C�OM and IM from 24-h BUO (n � 6)
and Sham control (n � 6) rats was measured by ELISA. AM concentration
increases significantly in C�OM and IM in response to 24-h BUO. Bars
represent means � SE. *P 	 0.05 BUO compared with Sham rats.
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centrifuged again at 11,000 g at 4°C for 10 min. Protein concentration
was measured by Pierce BCA protein assay kit (Roche Diagnostics).
The AM protein concentration was measured in the homogenate with
a commercial enzyme immunoassay kit (Phoenix Pharmaceuticals).

Preparation of nuclear extraction. For HIF-1� Western analysis,
nuclear proteins, both snap-frozen cortex and IM, were extracted by
using the Nuclear Extraction Kit according to manufacturer’s protocol
(no. FNN0031; Biosource, San Jose, CA). Protein concentration was
measured by Pierce BCA protein assay kit (Roche Diagnostics).

Western blot analysis. Samples of nuclear fraction from the cortex
and IM were run on a 12% polyacrylamide minigel (Bio-Rad Mini
Protean II). For each gel, an identical gel was run in parallel and
subjected to Coomassie staining. The Coomassie-stained gel was
applied to determine identical loading or to allow for correction for
minor variations in loading.

Protein (50 �g) was loaded on 12% polyacrylamide minigels. Proteins
were transferred to a nitrocellulose membrane (Hybond ECL RPN
3032D, Amersham Pharmacia Biotech, Amersham, UK). Afterward the
blots were blocked with 5% nonfat dry milk in PBS-T (80 mM
Na2HPO4, 20 mM NaH2PO4, 100 mM NaCl, 0.1 Tween 20, adjusted to
pH 7.4). After being washed with PBS-T the blots were incubated with
HIF-1� antibody overnight at 4°C. Antigen-antibody complex was visu-
alized with horseradish peroxidase-conjugated secondary antibodies
(P447, diluted 1:3,000, Dako, Glostrup, Denmark) using enhanced
chemiluminescence system (ECL, Amersham Pharmacia Biotech).

Primary antibody. AM: rabbit anti-AM 1-50 (rat) serum (Phoenix
Pharmaceuticals, cat. no. H-010-08). HIF-1�: mouse anti-HIF-1�
(Novus Biologicals, cat. no. NB 100-105).

IHC. Kidneys from the sham-operated control rats and obstructed
rats were fixated by retrograde perfusion via the abdominal aorta with
3% paraformaldehyde in 0.1 M PBS buffer, pH 7.4. Afterward the
kidneys were immersion fixed for 1 h and washed 3 
 10 min with 0.1
M PBS buffer. The kidney blocks were dehydrated and embedded in
paraffin. The paraffin-embedded tissues were cut in 2-�m sections on
a rotary microtome (Leica Microsystems, Herlev, Denmark). For
immunoperoxidase labeling, the sections were deparaffinized and

rehydrated. Endogenous peroxidase activity was blocked with 5%
H2O2 in absolute methanol for 10 min at room temperature. Kidney
sections were boiled in a target retrieval solution (1 mmol/l Tris, pH
9.0, with 0.5 mM EGTA) for 10 min to expose antigens. After
cooling, nonspecific binding was prevented by incubating the sections
in 50 mM NH4Cl in PBS for 30 min followed by blocking in PBS
containing 1% BSA, 0.05% saponin, and 0.2% gelatin. Sections were
incubated with primary antibody diluted in PBS with 0.1% BSA and
0.3% Triton X-100 overnight at 4°C. After being washed 3 
 10 min
with PBS (supplemented with 0.1% BSA, 0.05% saponin, and 0.2%
gelatin), the sections were incubated with horseradish peroxidase-
conjugated secondary antibody (P448, goat anti-rabbit immunoglob-
ulin, DAKO, Glostrup, Denmark) for 1 h at room temperature. After
being rinsed with PBS wash buffer, the sites of antibody-antigen
reactions were visualized with 0.05% 3,3�-diaminobenzidine tetra-
chloride (Kem-en Tek, Copenhagen, Denmark) dissolved in distilled
water with 0.1% H2O2. Light microscopy was carried out with a Leica
DMRE (Leica Microsystem).

TNF-� measurements in IM after 24-h BUO. Protein was isolated by
homogenization of tissue in homogenization buffer (10 mM HEPES, pH
7.9, 10 mM KCl, 0.1 mM EGTA, 1 mM DTT, and 0.5 mM PMSF). The
homogenate was centrifuged at 3,000 g at 4°C for 15 min. The superna-
tant was removed and the protein concentration was measured by Pierce
BCA protein assay kit (Roche Diagnostics). The TNF-� protein concen-
tration was measured in the homogenate using a commercial enzyme
immunometric assay kit (Assay Designs, Ann Arbor, MI).

Statistics. Values are presented as means � SE. Statistical com-
parisons between experimental groups were made by a standard
unpaired t-test. P values 	 0.05 were considered significant.

RESULTS

Effect of BUO on renal AM expression and localization.
C�OM and IM tissue fraction was harvested at 2, 6, 12, and
24 h after BUO and analyzed for AM mRNA and peptide level.
The expression of AM mRNA first increased significantly in

Fig. 3. Immunohistochemistry for AM in
kidney cortex and IM of 24-h BUO (A and C)
and sham-operated rats (B and D). A: in
cortex from obstructed kidneys, immunola-
beling for AM was associated with proximal
tubuli (PT), connecting tubuli, glomeruli
(Glm), interstitial cells, and cortical collect-
ing ducts (CCD). B: in cortex from control
kidneys, AM immunoreactivity was associ-
ated with connecting tubuli and cortical col-
lecting ducts. C: in IM from obstructed kid-
neys, significant immunoreactivity for AM
was associated with inner medullary collect-
ing ducts (IMCD), thin limbs of Henle’s loop,
papillary epithelium, and interstitial cells. Ar-
rows (A and C) indicate marked labeling in
collecting duct in both cortex and IM.
D: in IM from control kidneys, AM immuno-
reactivity was associated with IMCD and thin
limbs of Henle’s loop. Bar � 50 �m.
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C�OM 12 h after BUO and further increased at 24 h of BUO
compared with Sham (Fig. 1A). In IM, the AM mRNA level
was first increased significantly after 6- and 12-h BUO com-
pared with Sham and further augmented after 24-h BUO (Fig.
1B). There was a significant higher AM peptide tissue concen-
tration in IM from 24-h BUO rats (45.8 � 16.6 pg/mg of
protein) compared with sham-operated control rats (16.8 � 7.3
pg/mg of protein). Also in cortex, the AM concentration was
increased in response to 24-h BUO (43 � 13.1 vs. 27 � 8.5
pg/mg of protein) (Fig. 2).

To address cellular localization of AM, we applied a rabbit
anti-rat AM antibody to sections of perfusion-fixed kidneys
from sham-operated control rats and from rats subjected to
24-h BUO. Immunohistochemical analysis showed more in-
tense labeling of cortex and IM for AM protein in the 24-h
BUO rats (Fig. 3, A and C) compared with Sham (Fig. 3, B and
D). There was no obvious difference in the staining intensity
between obstruction and nonobstructed kidneys in outer me-
dulla (not shown). In kidneys from sham-operated control rats,
AM signals were associated with the connecting tubules and
collecting ducts in cortex (Fig. 3B). In the obstructed kidney,
AM immunoreactivity was more widespread and associated
with the proximal tubules, glomerulus, interstitial cells, and
collecting ducts (Fig. 3A). In the outer medulla, AM immuno-
reactivity was associated with collecting ducts and the thick
ascending limb of Henle’s loop. In the IM of kidneys from
sham-operated control rats, AM was localized in the thin limbs
of Henle’s loop and collecting ducts (Fig. 3D). In kidneys from
BUO rats there was labeling of collecting ducts, thin limbs of
the loop of Henle, and interstitial cells (Fig. 3C).

Effect of UUO on renal AM expression and localization.
Next, the effect of 24-h UUO on AM expression was exam-
ined. In the C�OM tissue fraction, AM mRNA level was
elevated compared with Sham in both the obstructed and
nonobstructed kidneys, and there was no difference between
AM mRNA level in obstructed and nonobstructed kidneys in
rats with UUO (Fig. 4A). AM mRNA level in IM was markedly
increased in the obstructed kidney compared with both the
nonobstructed kidneys and sham-operated rats (Fig. 4A). There
was no difference in AM mRNA expression between nonob-
structed and Sham kidney (Fig. 4A). AM peptide tissue con-
centration in C�OM was not significantly different between
the three groups (Fig. 4B). AM peptide concentration in IM
was significantly higher in the obstructed kidney compared
with Sham. There was no difference in AM concentration
between nonobstructed and obstructed kidney (Fig. 4B).

IHC showed that AM immunoreactivity was associated with
IM collecting ducts, thin limbs of Henle’s loop, and interstitial
cells in obstructed kidney IM compared with faint labeling of
similar renal segments in contralateral kidneys and sham-
operated control rats (Fig. 5). There was no change in labeling
intensity in renal cortex between the obstructed and nonob-
structed kidneys. In general, AM protein immunoreactivity was
stronger in the obstructed and nonobstructed kidneys compared
with kidneys from sham-operated control rats, and the labeling
was associated with the same segments as kidneys from BUO
rats (data not shown).

Effect of BUO for 24 h on renal HIF-1� expression and
localization. Semiquantitative immunoblotting experiments of
nuclear extract from both BUO and sham-operated control rats
for HIF-1� revealed an elevated abundance of HIF-1� protein

in IM in response to 24-h BUO compared with Sham. There
was no difference in HIF-1� expression between the two
groups in cortex (Fig. 6A). Immunohistochemical labeling of
kidney sections for HIF-1� showed that immunoreactive
HIF-1� protein was associated with cell nuclei and cytoplasma
in the medullary collecting ducts, interstitial cells, and thin
limbs of the loop of Henle, and there was a marked increase in
the HIF-1� labeling in the obstructed kidneys (Fig. 6B) com-
pared with sham-operated control rats (Fig. 6C).

To test whether HIF-1� and AM localize in the same kidney
segments in the papillary tip in response to 24-h BUO, con-
secutive tissue sections were stained for HIF-1� and AM. IHC
demonstrated that HIF-1� and AM in two pairs of consecutive
sections was localized in the same kidney segments, namely
medullary colleting ducts, interstitial cells, and thin limbs of
the loop of Henle (Fig. 7).

Fig. 4. Expression of AM mRNA and concentration of AM protein in C�OM
and IM from Sham rats (n � 6) and rats subjected to 24-h unilateral ureteral
obstruction (UUO) (n � 6). A: representative QPCR for AM/18S mRNA level.
QPCR was performed using 100 ng cDNA. Analysis of all the samples from
Sham and obstructed (Obs) kidneys of rats with 24-h UUO revealed that there
was an increase of AM mRNA level in the obstructed and contralateral kidney
compared with Sham rats in C�OM. In IM, AM mRNA level was only
increased in the obstructed kidney compared with both the nonobstructed
(Non-obs) kidney and kidneys from Sham rats. Bars represent means � SE.
*P 	 0.05 obstructed kidney from 24-h UUO compared with Sham rats. $P 	
0.05 nonobstructed kidney from 24-h UUO compared with Sham rats. #P 	
0.05 obstructed kidney compared with nonobstructed kidney from 24-h UUO
rats. B: AM concentration was not changed between the 3 groups in C�OM.
However, in IM the AM concentration was increased significantly in the
obstructed kidney from 24-h UUO compared with Sham rats. Bars represent
means � SE. *P 	 0.05 obstructed kidney from 24-h UUO compared with
Sham rats.
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Increased TNF-� levels in inner medulla in response to 24-h
BUO. TNF-� levels were measured in tissue homogenates
from IM from both BUO and sham-operated control rats.
Results showed that rats subjected to 24-h BUO had an
increase in TNF-� concentration compared with Sham rats
(1.08 � 0.16 vs. 0.61 � 0.07 pg/ml of protein; P 	 0.05).

DISCUSSION

The main results of the present study were that AM mRNA,
protein concentration, and tissue distribution increase in
C�OM fraction and IM of kidneys in response to BUO. UUO
was associated with a differential response: in IM, AM was
increased only in the obstructed kidney whereas in C�OM
fraction AM was increased both in obstructed and contralateral
kidney compared with Sham. The tissue level of HIF-1�
protein increased in the renal inner medulla of rats subjected to
24-h BUO. By immunohistochemical labeling, HIF-1� immu-
noreactive protein was virtually absent in control kidneys. In
response to BUO, HIF-1� was associated predominantly with
medullary collecting duct segments also positive for AM. The
data show that BUO is associated with stimulation of HIF-1�
in a pattern likely to reflect oxygen gradients and colocalization
with AM in accordance with a role of HIF-1� for stimulation
of AM. The present in vivo approach cannot establish whether

this relation is causal. The observation that HIF-1� and AM
responded differentially in the C�OM tissue in response to
obstruction suggests that hypoxia/HIF-1� is less likely to drive
the observed increase in AM in C�OM. AM was elevated in
C�OM in the contralateral, nonobstructed kidney in the UUO
model, which is hyperperfused and not underperfused. Thus
mechanisms not related to hypoxia/HIF-1� are likely to stim-
ulate AM in C�OM.

AM is significantly regulated by tissue O2 pressure. Hypoxic
stimulation of AM has been reported in various cultured cells
(38, 44) and in vivo in kidneys (13, 44), lungs (13), heart (13),
and brain (13). In both normal and hypoxic kidneys there is an
O2 gradient with a progressive decrease toward the IM. This is
due to the very low medullary perfusion coefficient, a high
arteriovenous O2 shunting in the cortical area, and a high O2

extraction, which all converge to a very low partial O2 pressure
in IM (7). It is well known that ureteral obstruction is associ-
ated with a reduction in RBF (11, 16, 53), and since the IM
receives less than 10% of total RBF (49) obstruction of the
ureter leads to a very low partial O2 pressure in IM. The
marked stimulation of HIF-1� and AM in IM compared with
cortex is consistent with the expected oxygen gradient. Immu-
nohistochemical staining showed that HIF-1� was induced in
both the nuclei and cytoplasma in collecting ducts, interstitial

Fig. 5. Immunohistochemistry for AM in
kidney cortex and IM from 24-h UUO rats
(Obs and Non-obs) (A–D) and Sham rats (E
and F). A and B: in the obstructed kidney of
UUO rats, significant AM labeling was asso-
ciated with PT, connecting tubuli, Glm, inter-
stitial cells, and CCD (A) and IMCD, thin
limbs of Henle’s loop, papillary epithelium,
and interstitial cells (B). C and D: in the
nonobstructed kidney of UUO rats AM was
comparable to that seen in obstructed kidneys
in cortex (C). However, in IM from nonob-
structed kidneys of UUO rats the AM label-
ing was comparable to that observed in sham-
operated rats (D). E and F: in cortex from
control kidneys, AM immunoreactivity was
associated with connecting tubuli and cortical
collecting ducts (E), and in the IM AM im-
munoreactivity was associated with IMCD
and thin limbs of Henle’s loop (F). Bar � 50 �m.
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cells, and thin limbs of the loop of Henle of BUO kidneys. This
is consistent with previous studies demonstrating inner med-
ullary HIF-1� expression localized to the collecting ducts,
interstitial cells, and thin limbs of the loop of Henle of hypoxic
and ischemic kidneys (40). Previous findings have demon-
strated that HIF-1� is primarily localized in the nuclei in
response to hypoxia (40). However, we observe HIF-1� local-
ization in both nuclei and cytoplasma in response to 24-h BUO.
This staining pattern for HIF-1� was also observed in response
to chemotherapy using amifostine (27), demonstrating an in-
tense cytoplasmic and nuclear induction of HIF-1� in renal
tubular epithelium after ligation of kidney vessels. The local-
ization of AM and HIF-1� particularly in the collecting ducts

and thin limbs of the loop of Henle is compatible with the
notion that AM transcription could be controlled by HIF-1� in
response to 24-h BUO. AM is locally transcribed in these
segments (45).

In addition to hypoxia, AM production is increased in
conditions with inflammation, and it has been demonstrated
that inflammatory cytokines, such as TNF-� and IL-1� stim-
ulates AM (14, 31, 52, 55). Nitric oxide (NO) directly stimu-
lates AM (14). Ureteral obstruction also leads to an intense
infiltration of inflammatory cells (18, 32, 33). Consistent with
previous studies demonstrating increased TNF-� expression, it
is thus likely that inflammatory cytokines induced by the
obstruction may be involved in the enhanced AM expression in

Fig. 6. Semiquantitative immunoblots of hypoxia
inducible factor-1� (HIF-1�) using nuclear protein
extract isolated from cortex and IM from 24-h BUO
(n � 6) and Sham (n � 6) rats. A total of 50 �g
protein was used for the HIF-1� assay. A: immuno-
blot was reacted with anti-HIF-1� antibody and re-
vealed a single �120-kDa band. Densitometric anal-
yses of all the samples from sham-operated and
obstructed kidneys of rats with 24-h BUO revealed
that there was no difference between control and
obstructed kidneys in cortex. However, HIF-1� pro-
tein expression was increased in IM in 24-h BUO
compared with sham-operated rats. Immunohisto-
chemistry for HIF-1� from kidney inner medulla IM
of 24-h BUO (B) and sham-operated rats (C). *P 	
0.05 BUO compared with sham rats. B: IM from
obstructed kidneys, significant immunoreactivity for
HIF-1� was associated with both nucleus and cytosol
in IMCD, thin limbs of Henle’s loop (TL) and
interstitial cells. CD, Collecting duct. C: IM from
control kidneys showed no HIF-1� immunoreactiv-
ity. Bar � 50 �m.

Fig. 7. Immunohistochemistry for AM (A)
and HIF-1� (B) in 2 pairs of consecutive
sections from IM from rats subjected to 24-h
BUO. Sections were processed such that ad-
jacent surfaces were stained. The almost com-
plete overlap in expression of AM and
HIF-1� in the tubular cells of the 2 sections
should be noted. Bar � 200 �m.
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response to urinary tract obstruction. Enhanced formation of
NO by increased cortical blood flow with larger shear stress or
by inflammatory cytokines could contribute to stimulation of
AM independent of oxygen tension and HIF-1�.

After obstruction, AM immunoreactivity was most promi-
nent in collecting ducts, interstitial cells, and thin limbs of the
loop of Henle. These findings are consistent with findings by
Hofbauer et al. (13), who showed localization of AM protein in
the same segments. Furthermore, they also observed strong
labeling of AM in both human and rat kidneys subjected to
ischemia. AM mediates its effect by binding to its receptor,
which comprises RAMPs and CRLR (23, 24). It has previously
been demonstrated that RAMP1 and 3, as well as CRLR
mRNA levels in whole kidney, is markedly upregulated in
response to 6 and 14 days of UUO. However, these alterations
appear to be ligand independent, since there was no significant
change in the AM gene expression (37).

The present study demonstrated that AM mRNA and protein
are increased in both C�OM and IM in the obstructed kidney
compared with sham-operated rats in response to 24-h UUO.
An interesting finding was that AM was enhanced equally in
C�OM of obstructed and nonobstructed kidney in the UUO
model. UUO decreases GFR and RBF in the obstructed kidney,
and this is associated with compensatory increases in GFR and
RBF in the nonobstructed contralateral kidney (10).

What is the physiological role of AM in obstructive ne-
phropathy? A protective role for AM is likely to counter
endothelial and renal tubular injury in an autocrine/paracrine
manner (3, 25, 39). AM is a vasodilator and lowers renal
vascular resistance (19). AM increases medullary blood flow
and induces diuresis and natriuresis by inhibition of NaCl
reabsorption (5, 22, 36). It is well accepted that GFR and RBF
are consistently reduced after release of 24-h BUO (8, 10, 30).
Furthermore, release of 24-h BUO is associated with a dramat-
ically increased diuresis and natriuresis. It might therefore be
speculated that upregulation of AM in response to urinary tract
obstruction could contribute to preservation of medullary blood
flow in the obstructed kidney. The increased levels of AM
could facilitate the observed diuresis and natriuresis by inhi-
bition of NaCl transport, which lowers oxygen demand (21,
22). Elucidation of these mechanisms awaits pharmacological
tools to manipulate AM or kidney-specific deletion of the AM
gene.

Perspectives and significance of the present findings. The
present study using a targeted proteomics approach demon-
strates that HIF-1� and the HIF target gene product AM exhibit
significantly elevated levels in kidney IM after bilateral and
unilateral ureteral obstruction in keeping with the anticipated
oxygen gradients. The observation of increased levels of
HIF-1� supports the notion that ureteral obstruction is associ-
ated with hypoxia, especially within the renal medulla. Further
studies should clarify whether AM is important for prevention
of tissue injury in response to urinary tract obstruction. Fur-
thermore, it should also be elucidated whether AM expression
is increased in the kidney in response to acute obstruction
likely secondary to obstruction induced HIF-1� induction as a
result of medullary hypoxia.
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