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Abstract
Aims/hypothesis Microarray-based studies of skeletal mus-
cle from patients with type 2 diabetes and high-risk
individuals have demonstrated that insulin resistance and
reduced mitochondrial biogenesis co-exist early in the
pathogenesis of type 2 diabetes independently of hyper-
glycaemia and obesity. It is unknown whether reduced
mitochondrial biogenesis or other transcriptional alterations
co-exist with impaired insulin responsiveness in primary
human muscle cells from patients with type 2 diabetes.

Methods Using cDNA microarray technology and global
pathway analysis with the Gene Map Annotator and
Pathway Profiler (GenMapp 2.1) and Gene Set Enrichment
Analysis (GSEA 2.0.1), we examined transcript levels in
myotubes established from obese patients with type 2
diabetes and matched obese healthy participants, who had
been extensively metabolically characterised both in vivo
and in vitro. We have previously reported reduced basal
lipid oxidation and impaired insulin-stimulated glycogen
synthesis and glucose oxidation in these diabetic myotubes.
Results No single gene was differently expressed after
correction for multiple testing, and no biological pathway
was differently expressed using either method of global
pathway analysis. In particular, we found no evidence for
differential expression of genes involved in mitochondrial
oxidative metabolism. Consistently, there was no difference
in mRNA levels of genes known to mediate the transcrip-
tional control of mitochondrial biogenesis (PPARGC1A and
NRF1) or in mitochondrial mass between diabetic and
control myotubes.
Conclusions/interpretation These results support the hy-
pothesis that impaired mitochondrial biogenesis is not a
primary defect in the sequence of events leading to insulin
resistance and type 2 diabetes.
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NRF1 nuclear respiratory factor 1
OXPHOS oxidative phosphorylation
PGC-1α peroxisome proliferator-activated receptor γ

coactivator 1α

Introduction

Insulin resistance in skeletal muscle is a hallmark of type 2
diabetes and is characterised by increased intramyocellular
lipid content, and several abnormalities in the biological
response to insulin, including decreased glucose transport,
glucose oxidation and glycogen synthesis [1–4]. Based on
twin studies and epidemiological evidence, it is generally
accepted that both genetic and environmental factors
contribute to insulin resistance and subsequent development
of type 2 diabetes [5]. This is supported by studies showing
impaired insulin-stimulated glucose uptake and glycogen
synthesis in glucose-tolerant first-degree relatives of
patients with type 2 diabetes [6] and in primary human
muscle cells (myotubes) from patients with type 2 diabetes
[7–9]. Consistently, impaired insulin activation of phospha-
tidylinositol 3-kinase and glycogen synthase has been
demonstrated in muscle of patients with type 2 diabetes
[2,10], their first-degree relatives [6] and diabetic myotubes
[7, 8, 11, 12]. It is still uncertain whether most of the
abnormalities observed in vivo represent adaptive responses
at the cellular level or are the consequences of a genetic
defect. Hence, the primary molecular mechanisms underly-
ing insulin resistance in human skeletal muscle remain
largely unknown.

There is increasing evidence for a link between insulin
resistance and impaired mitochondrial oxidative phosphor-
ylation (OXPHOS) in human skeletal muscle in vivo. Most
studies suggest that mitochondrial dysfunction in type 2
diabetes is primarily due to a lower content of muscle
mitochondria [13, 14], whereas a role for decreased
functional capacity per mitochondrion needs to be further
explored [15–17]. Consistently, several microarray-based
studies of skeletal muscle have reported coordinated
downregulation of OXPHOS genes (mitochondrial biogen-
esis) in patients with type 2 diabetes and high-risk
individuals [18–21], and that reduced expression of the
genes encoding transcriptional coactivator peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α)
and nuclear respiratory factor 1 (NRF1) could play a key
role in these transcriptional changes [19–21]. Studies using
magnetic resonance spectroscopy have shown lower rates
of mitochondrial ATP production and substrate oxidation in
lean, severely insulin-resistant first-degree relatives of
patients with type 2 diabetes [22–23]. Thus, mitochondrial
dysfunction and insulin resistance co-exist at an early point

in the development of type 2 diabetes. However, it is clear
that both insulin resistance and mitochondrial dysfunction
in skeletal muscle are highly influenced by hyperglycaemia,
physical activity, ageing, obesity and fibre type composi-
tion [13, 14, 17, 18, 24, 25]. Thus, it is difficult to
determine the extent to which these abnormalities are
primary or secondary to environmental factors and meta-
bolic changes associated with diabetes and prediabetic
states.

Cultured human myotubes display the morphological,
metabolic and biochemical properties of adult skeletal
muscle [26] and offer a unique model to distinguish
between genetic and environmental factors in the aetiology
of insulin resistance and type 2 diabetes. We and others
have reported a number of potential intrinsic defects in
myotubes established from patients with type 2 diabetes,
including lower basal palmitate oxidation and impaired
insulin-stimulated glycogen synthesis and glucose oxida-
tion [9, 27]. Whether these abnormalities co-exist with
impaired mitochondrial biogenesis in diabetic myotubes is
at present unknown.

To identify potential changes in the transcriptional
profile associated with impaired insulin-responsiveness in
diabetic myotubes, we compared microarray data from
myotubes established and harvested under normoglycaemic
and normoinsulinaemic conditions from a cohort of obese
patients with type 2 diabetes and obese non-diabetic
participants who had been extensively metabolically char-
acterised in vivo and in vitro.

Methods

Materials DMEM, FCS, penicillin–streptomycin–ampho-
tericin B and trypsin were obtained from Life Technologies
(Paisley, UK). Ultroser G was purchased from Pall Biosepra
(Cergy-Saint-Christophe, France). Uridine 5′-diphosphate-
[14C]glucose (10.63 GBq mol−1) was obtained from
DuPont NEN (Boston, MA, USA). A protein assay kit
was purchased from Bio-Rad (Copenhagen, Denmark).
Glycogen, pepstatin, leupeptin, phenylmethylsulfonyl fluo-
ride and ECM gel were purchased from Sigma Chemical
(St Louis, MO, USA). Insulin Actrapid was from Novo
Nordisk (Bagsvaerd, Denmark).

Study participants Ten obese patients with type 2 diabetes
and ten healthy control participants, matched according to
age and BMI, participated in the study (Table 1). Only
sedentary male participants were recruited. Patients with
type 2 diabetes were either treated by diet alone or diet in
combination with sulfonylurea or metformin, which were
withdrawn 1 week prior to the study. The patients were all
negative for glutamic acid decarboxylase antibody and
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without signs of diabetic retinopathy, nephropathy, neu-
ropathy or macrovascular complications. The control
participants had normal glucose tolerance and no family
history of diabetes. All participants had normal results of
screening blood tests of hepatic and renal function.
Informed consent was obtained from all participants
before participation. The study was approved by the local
ethics committee and was performed in accordance with
the Declaration of Helsinki II.

In vivo characteristics Total glucose disposal rate and rates
of glucose and lipid oxidation were assessed by euglycae-
mic–hyperinsulinaemic clamp studies (equilibration for 2 h
followed by insulin infusion for 4 h, 40 mU min−1 m−2)
combined with indirect calorimetry as described in detail
previously [2, 28]. Non-oxidative glucose disposal was
calculated as the difference between the rates of total
glucose disposal and glucose oxidation. Plasma glucose,
serum insulin, NEFA and triacylglycerol were measured as
described previously [29]. Skeletal muscle biopsies were
obtained in the basal steady-state period of the clamp from
the vastus lateralis muscle using a modified Bergström
needle with suction under local anaesthesia.

Cell culture Cell cultures were established as described
previously [8, 26]. In brief, muscle tissue was minced,
washed and dissociated for 60 min by three treatments with
0.05% trypsin–EDTA. The harvested cells were pooled and
FCS was added to stop trypsinisation. The cells obtained
were seeded for upscaling on ECM gel-coated dishes after
30 min of preplating. Cell cultures were established in
DMEM medium supplemented with 10% FCS, 50 U ml−1

penicillin, 50 μg ml−1 streptomycin and 1.25 μg ml−1

amphotericin B. After 24 h cell debris and non-adherent
cells were removed by change of growth medium to
DMEM supplemented with 2% FCS, 2% Ultroser G,
50 U ml−1 penicillin, 50 μg ml−1 streptomycin and
1.25 μg ml−1 amphotericin B. Cells were subcultured twice
before final seeding. At 75% confluence the growth
medium was replaced by basal medium (DMEM supple-
mented with 2% FCS, 50 U ml−1 penicillin, 50 μg ml−1

streptomycin, 1.25 μg ml−1 amphotericin B and 25 pmol l−1

insulin) in order to induce differentiation. The cells were
cultured in a humidified 5% CO2 atmosphere at 37°C, and
medium was changed every 2–3 days. Human myotubes
established from controls and participants with type 2
diabetes were allowed to differentiate under physiological

Table 1 In vivo and in vitro characteristics

Characteristic Control participants (n=10) Diabetic participants (n=10)

In vivo characteristics
Age (years) 51.1±2.0 50.4±1.6
BMI (kg m−2) 29.6±0.9 31.1±1.1
HbA1c (%) 5.1±0.1 6.9±0.5**
Fasting plasma triacylglycerol (mmol l−1) 1.4±0.2 3.4±0.8*
Fasting plasma glucose (mmol l−1) 5.5±0.1 10.3±1.1**
Fasting serum insulin (pmol l−1) 40±5 69±9*
Fasting serum NEFA (mmol l−1) 0.49±0.06 0.47±0.05
Glucose disposal rate, basal (mmol min−1 m−2) 0.41±0.02 0.49±0.02
Glucose disposal rate, insulin (mmol min−1 m−2) 1.61±0.14 1.00±0.15**
Glucose oxidation, basal (mmol min−1 m−2)a 0.24±0.02 0.29±0.05
Glucose oxidation, insulin (mmol min−1 m−2)a 0.58±0.02 0.43±0.05*
Lipid oxidation, basal (nmol min−1 m−2)a 56±2 58±5
Lipid oxidation, insulin (nmol min−1 m−2)a 27±3 43±4*
Non-oxidative glucose disposal, basal (mmol min−1 m−2)a 0.15±0.02 0.20±0.04
Non-oxidative glucose disposal, insulin (mmol min−1 m−2)a 1.09±0.12 0.66±0.13*
In vitro characteristics (myotubes)
Glucose oxidation, basal (pmol [mg protein]−1 min−1) 382±42 429±41
Glucose oxidation, insulin (pmol [mg protein]−1 min−1) 531±46 423±38*
Lipid oxidation, basal (pmol [mg protein]−1 min−1) 24.4±1.5 18.1±1.9*
Lipid oxidation, insulin (pmol [mg protein]−1 min−1) 24.5±2.4 18.0±2.1*
Glycogen synthesis, basal (pmol [mg protein]−1 min−1) 68±12 50±8
Glycogen synthesis, insulin (pmol [mg protein]−1 min−1) 141±22 87±12*

The table shows characteristics of type 2 diabetic and control participants in the basal and insulin-stimulated states as reported previously [2, 9,
27]. Data are mean±SEM
*p<0.05 and **p<0.01 vs control
aBased on indirect calorimetry in eight control and nine diabetic participants
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conditions of insulin (25 pmol l−1) and glucose (5.5 mmol
l−1) for 8 days. All myotube cultures were used for analysis
on day 8 after onset of differentiation.

In vitro characteristics Results of glycogen synthesis,
glucose oxidation and lipid oxidation under basal and
insulin-stimulated conditions in myotubes established from
the diabetic and control participants included in this study
have been reported previously [9, 27]. In brief, differentiated
myotubes were exposed to either radiolabelled palmitic acid
(0.6 mmol l−1) or glucose (5.5 mmol l−1), and either 25 pmol
l−1 (basal) or 1 μmol l−1 insulin in serum-free DMEM for 4 h
[9, 27]. Refer to these papers for further details.

Sample preparation Total RNA was prepared from muscle
cell cultures using RNeasy (Qiagen, Hilden, Germany) and
microarray analysis was performed using Human Genome
U95Av2 GeneChips (Affymetrix, Santa Clara, CA, USA).
Total RNA isolated from cultured human myotubes was
reverse-transcribed using the SuperScript Choice system for
cDNA synthesis (Life Technologies) according to the
protocol recommended by Affymetrix (GeneChip Expres-
sion Analysis: Technical Manual [2001], p. 2.1.14–2.1.16).
The sequence of the oligonucleotide used for priming was
5′-GGCCAGTGAATTGTAATACGACTCACTATAGG
GAGGCGG-(T)24-3′ (Genset Oligo, Paris, France) as
recommended by Affymetrix. Double-stranded cDNA was
cleaned by phenol–chloroform extraction and the aqueous
phase was removed by centrifugation through Phase-lock
Gel (Eppendorf, Hamburg, Germany). In vitro transcription
was performed on 1 μg of cDNA using the Enzo BioArray
high-yield RNA transcript labelling kit (Enzo Diagnostics,
Farmindale, NY, USA) following the manufacturer’s
protocol. The cRNA was cleaned using RNAeasy clean-up
columns (Qiagen). To improve recovery from the columns,
the elution water was spun into the matrix at 27 g and then
left for 1 min prior to the standard 8,000 g centrifugation
recommended by Qiagen. This low-speed wetting step
gave us nearly double the yield of eluted RNA. The cRNA
was fragmented by heating in 1× fragmentation buffer
(40 mmol l−1 Tris–acetate, pH 8.1, 100 mmol l−1 KOAc,
30 mmol l−1 MgOAc) as recommended by Affymetrix. Ten
micrograms of fragmented cRNA was hybridised to a
U95Av2 GeneChip (Affymetrix) using the manufacturer’s
standard procedure (45°C, 16 h). Washing and staining
were performed in a Fluidics Station 400 (Affymetrix) using
the protocol EukGE-WS2v4 and scanned in an Affymetrix
GeneChip 2500 scanner.

Data analysis Microarray normalisation and calculation of
expression measures were performed using Robust Multi-
array Average [30], implemented in the statistical package
R provided by Bioconductor (Seattle, WA, USA) [31]. The

expression values were log 2 transformed to obtain a
normal distribution across arrays and samples. Before
analysing the expression data we removed Affymetrix
control probes, resulting in a total of 12,558 probes.

Supervised analysis The ComparativeMarker Selection suite
in the GenePattern analysis environment (http://www.broad.
mit.edu/genepattern) was used to find genes that could
discriminate between diabetic and control myotubes. A
total of 1,000 permutations were performed for the es-
timation of nominal p values, which were then corrected
for multiple hypothesis testing using the false discovery
rate (FDR) and the familywise error rate (FWER). FDR
<0.01 and FWER <0.05 were considered significant in our
study.

Global pathway analysis Gene Set Enrichment Analysis
(GSEA) and Gene Map Annotator Profiler (GenMAPP
2.1) were used to evaluate the contributions of gene
pathways to the transcriptional differentiation of samples.
In GSEA, all genes were ranked by signal-to-noise ratio. A
total of 513 gene sets were applied using the gene set
browser module (MSigDB) in the GSEA software. This
included 456 gene sets defined by Curated (Collection),
Generic (Organism), Gene symbol (CHIP) and contributed
by Biocarta, GenMAPP, SIGNALING Transduction KE,
SIGNALINGAlliance, SigmaAldrich, GO and GEArray
(CONTRIBUTOR). In addition, 57 gene sets defined by
Curated, Human, Gene symbol and contributed by the
Broad Institute and Vamsi Mootha were included. An
enrichment score was generated for each gene set, and
statistical significance was estimated using phenotype-based
permutations. In this analysis, 2,000 permutations were used
to obtain the nominal p values, and FDR <0.25 and FWER
<0.05 was considered significant after correction for
multiple hypothesis testing.

The MAPPFinder 2.1 tool in GenMAPP 2.1 was used to
determine whether any gene sets or pathways were
significantly up- or downregulated in the diabetic vs control
myotubes. We used all contributed human pathways
available in the MAPP archives. A fold change of >1.05
or <−1.05 and p<0.05 (unadjusted) were used as the criteria
for gene expression changes between diabetic and control
myotubes. The statistical rating of the relative gene
expression activity was provided by the z score. The z
score was based on the number of genes (N) linked to local
MAPPs and the number of these genes (R) meeting the
criteria for change in expression. A pathway with a z score
>2.0 was considered significantly regulated. A non-para-
metric statistic, based on 2,000 permutations, was applied to
access the statistical significance of the z score (permute P).
To account for multiple hypothesis testing, the FWER was
calculated for each pathway (www.GenMAPP.org). Under-
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scoring between words in the text and Tables 2 and 3
indicates names of gene sets in GenMAPP GSEA.

Total RNA isolation and RT-PCR analysis Total RNA was
isolated from human myotubes using a single-step method
with Trizol (Invitrogen, Tastrup, Denmark) according to the
manufacturer’s instructions. The integrity and purity of total
RNA were verified spectrophotometrically and by gel
electrophoresis on 0.8% SeaKem agarose (BMA, Hellerup,
Denmark). cDNA was synthesised from 5 μg of total RNA
using a Revertaid H Minus First Strand cDNA Synthesis Kit
(Fermentas, Copenhagen, Denmark) according to the manu-
facturer’s instructions. RT-PCR was performed using the
iCycler IQ detection system (Bio-Rad, Herlev, Denmark) by
using SYBR Green I as a double-strand DNA-specific
binding dye. Thermocycling was performed in a final volume
of 20 μl containing 3 μl of cDNA sample (diluted 1:20),
20 pmol of each primer and 2× iQ SYBR Green Supermix
(Bio-Rad). The following human specific primers were used:
NRF1 forward, 5′-AACAAAATTGGGCCACGTTACA-3′;
NRF1 reverse, 5′-TCTGGACCAGGCCATTAGCA-3′;
PPARGC1A forward, 5′-GCTTTCTGGGTGGACTCAAGT-3′;
PPARGC1A reverse, 5′-TCTAGTGTCTCTGTGAGGACTG-3′.
Quantifications of each target gene and β-actin mRNA
were performed in separate tubes. Gene expression levels
for each target gene were calculated using the comparative

Ct method formula (1/[2ΔCt]), where ΔCt is the difference
between Ct target and Ct reference after normalisation to
β-actin mRNA (PerkinElmer User Bulletin No. 2). Data
were analysed using optical system software version 3.1
(Bio-Rad) and Microsoft Excel 2000 to generate relative
expression values.

Mitochondrial mass For the quantification of mitochondrial
mass, we used MitoTracker Green Probe (Molecular
Probes, Eugene, OR, USA), which preferentially accumu-
lates in mitochondria regardless of the mitochondrial
membrane potential and gives an assessment of the
mitochondrial mass. Myotubes were incubated at 37°C for
30 min with 200 nmol l−1 MitoTracker Green in DMEM
and subsequently washed with PBS. Fluorescence intensity
was determined on a Victor plate reader model 1420-050
(PerkinElmer, Turku, Finland) with excitation and emission
wavelengths of 485 and 535 nm, respectively. Values were
corrected for protein and expressed as arbitrary units.

Results

In vivo and in vitro characteristics As reported previously
[2], the diabetic patients had increased fasting levels of
HbA1c, plasma glucose, serum insulin and plasma triacyl-

Table 2 The ten most up- and downregulated gene sets analysed with GSEA

Name Size ES NES NOM p value FDR q value FWER p value

Downregulated in diabetic myotubes
Cholesterol_biosynthesis 17 −0.73 −1.54 0.05 1.00 0.87
Rac1pathway 38 −0.48 −1.49 0.03 1.00 0.96
Pitx2pathway 21 −0.57 −1.47 0.07 1.00 0.97
Erk5pathway 24 −0.69 −1.45 0.07 1.00 0.98
Inositol_phosphate_metabolism 33 −0.49 −1.43 0.06 1.00 0.99
Calcium_regulation_in_cardiac_cells 180 −0.34 −1.41 0.01 1.00 1.00
Ctla4pathway 27 −0.56 −1.38 0.13 1.00 1.00
Mitochondrial_fatty_acid_oxidation 15 −0.57 −1.37 0.11 1.00 1.00
P53hypoxiapathway 38 −0.50 −1.37 0.06 1.00 1.00
Carm_Erpathway 36 −0.46 −1.33 0.14 1.00 1.00
Upregulated in diabetic myotubes
Phenylalanine_metabolism 22 0.71 1.84 <0.001 0.12 0.08
Tyrosine_metabolism 36 0.76 1.79 <0.001 0.14 0.16
Prostaglandin_and_leukotriene_metabolism 31 0.72 1.66 <0.01 0.46 0.52
Electron_transporter_activity 121 0.48 1.65 <0.01 0.40 0.56
DNA_replication_reactome 57 0.52 1.59 0.03 0.64 0.77
Glycerolipid_metabolism 44 0.64 1.57 0.01 0.63 0.81
Eicosanoid_synthesis 21 0.77 1.52 0.02 0.83 0.91
Tryptophan_metabolism 72 0.44 1.52 0.02 0.78 0.93
St_interferon_gamma_pathway 16 0.76 1.50 0.03 0.77 0.95
Butanoate_metabolism 27 0.48 1.50 <0.01 0.70 0.95

All genes on the chip were ranked by difference in expression between diabetic and control myotubes using the t test
ES, enrichment score; NES, enrichment score normalised for differences in gene set size; NOM, nominal
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glycerol, whereas plasma NEFA levels were similar
(Table 1). The insulin-stimulated glucose disposal rate
was 38% lower in diabetic patients than in controls, and
this was primarily accounted for by a 40% reduction in
non-oxidative glucose disposal, but also by a 25% decrease
in glucose oxidation. Moreover, the ability of insulin to
suppress lipid oxidation during the clamp was significantly
impaired in diabetic patients.

Myotubes established from diabetic and control participants
were inspected visually under phase-contrast microscopy, and
did not differ in appearance. As reported previously [9, 27],
diabetic myotubes showed reduced insulin-mediated glucose
oxidation (20%) and glycogen synthesis (38%), whereas lipid
oxidation, measured as production of CO2 in response to
palmitate exposure, was decreased by 26% under both basal
and insulin-stimulated conditions (Table 1).

Quality control of microarrays To confirm the quality of
the microarray data we made a box plot of the expression
values after normalisation. The box plot showed that

median expression values for all arrays were on the same
level and were evenly distributed after normalisation.

Supervised analysis Using the Comparative Marker Selec-
tion suite in GenePattern, we observed that none of 12,558
probe sets could discriminate between diabetic and control
myotubes when corrected for multiple hypothesis testing
using either FDR <0.01 or FWER <0.05 (data not shown).

Global pathway analysis Using phenotype-based permuta-
tions on the 513 gene sets included in the GSEA analysis,
no pathways were downregulated, whereas two gene sets,
phenylalanine_metabolism and tyrosine_metabolism, were
upregulated in diabetic vs control myotubes using FDR
<0.25 as the criterion. However, when applying the more
stringent FWER <0.05 as the criterion, no gene sets were
differently regulated between diabetic and control myotubes
(Table 2). The gene sets electron_transport_chain, oxidati-
ve_phosphorylation, and Mootha_voxphos, were not dif-
ferentially regulated (all FDR >0.9, and FWER=1.00).

Table 3 The ten most up- and downregulated gene sets analysed with MAPPFinder

MAPP name Changed
(n)a

Measured
(n)b

On MAPP
(n)c

Changed
(%)d

z score Permuted
p value

FWER
p value

Downregulated in diabetic myotubes
Integrin-mediated_cell_adhesion 7 87 99 8.0 2.9 <0.01 0.59
Fatty_acid_omega_oxidation 2 15 15 13.3 2.4 0.08 0.87
Focal_adhesion 10 169 187 5.9 2.4 0.02 0.87
Nucleotide_metabolism 2 16 17 12.5 2.3 0.08 0.91
Pentose_phosphate_pathway 1 5 7 20.0 2.3 0.15 0.94
RNA_transcription_reactome 3 32 40 9.4 2.2 0.05 0.95
Nuclear_receptors_in_lipid_metabolism_and_toxicity 3 32 33 9.4 2.2 0.05 0.95
S1P_signaling 2 20 25 10.0 1.9 0.12 0.99
Heme_biosynthesis 1 9 9 11.1 1.5 0.24 1.00
MAPK_signaling_pathway 7 145 162 4.8 1.4 0.21 1.00
Upregulated in diabetic myotubes
Smooth_muscle_contraction 11 138 156 8.0 3.3 <0.001 0.41
Triacylglyceride_synthesis 3 18 24 16.7 3.3 0.02 0.44
Irinotecan_pathway 2 12 12 16.7 2.7 0.06 0.73
Oxidative_stress 3 24 28 12.5 2.6 0.03 0.74
Calcium_regulation_in_cardiac_cells 9 127 149 7.1 2.6 0.01 0.74
Fatty_acid_omega_oxidation 2 15 15 13.3 2.3 0.08 0.90
Biogenic_amine_synthesis 2 15 15 13.3 2.3 0.08 0.90
Prostaglandin_synthesis_regulation 3 30 31 10.0 2.2 0.07 0.91
Synthesis_and_degradation_of_ketone_bodies 1 5 5 20.0 2.2 0.17 0.94
Small_ligand_GPCRs 2 17 18 11.8 2.0 0.10 0.97

A fold change >1.05 or less than −1.05 and a p value <0.05 (unadjusted) were used as the criteria for gene expression changes between diabetic
and control myotubes. Among the 2,544 genes linked to local MAPPS, R=74 and R=80 genes met the criteria for up- and downregulation,
respectively (see “Methods”)
aNumber of genes changed
bNumber of genes measured on the chip
cNumber of genes on the MAPP
dNumber changed divided by number measured
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Using the MAPPFinder tool in GenMAPP on human
pathways, significant z scores (FDR <0.01) were observed
for downregulation of integrin_mediated_cell_adhesion and
upregulation of smooth_muscle_contraction in diabetic vs
control myotubes. However, when controlling for multiple
hypothesis testing using FWER <0.05, no pathways were
significantly regulated (Table 3). The Electron_trans-
port_chain showed FDR >0.38 and FWER=1.00 in both
analyses. In fact, only one of the 85 genes measured met
the criteria for up- and downregulation, respectively.

Evaluating the results from both GSEA and GenMAPP,
there were no pathways that were consistently down- or
upregulated in diabetic vs control myotubes. In both
analyses, we found no evidence for differential regulation
of the pathways representing OXPHOS.

RT-PCR and mitochondrial mass To validate our results,
we examined gene expression of PPARGC1A and NRF1,
which are known to be involved in the transcriptional
control of mitochondrial biogenesis. There was no differ-
ence in mRNA levels of PGC-1α (p=0.89) or NRF1 (p=
0.26) between diabetic and control myotubes (Fig. 1a, b).
Moreover, in a subset of the diabetic (n=5) and control
myotubes (n=6), we could not detect any difference in
mitochondrial mass (p=0.32) (Fig. 1c).

Discussion

Cultured human myotubes represent a well-characterised in
vitro model system of skeletal muscle in which the
extracellular environment can be controlled precisely and
kept constant over time [26]. In the present study, we took
advantage of this model to compare the transcript levels of
muscle genes required for basal homeostasis in myotubes
established from obese patients with type 2 diabetes and
matched healthy control participants. As in studies of
muscle transcript levels in patients with type 2 diabetes in
vivo [18–20], we could not find any single gene that was
significantly regulated after correction for multiple hypoth-
esis testing in diabetic myotubes. To search for gene sets
enriched in diabetic vs control myotubes, we used two
different methods for global pathway analysis, GenMAPP
and GSEA, which are well-established tools used to
identify novel biological pathways of interest in the
pathogenesis of complex disorders such as insulin resis-
tance [19–21]. In contrast to recent in vivo studies [18–20],
we could not find evidence for differential gene expression
in any biological pathways in diabetic vs control myotubes,
and, in particular, genes and pathways representing mito-
chondrial OXPHOS displayed almost no variability. Con-
sistently, we observed no difference in mRNA levels of
PGC-1α and NRF1, which are known to mediate the

transcriptional control of mitochondrial biogenesis, or in
mitochondrial mass between diabetic and control myotubes.
These data indicate that under basal conditions there are no
intrinsic (inborn) errors in the factors controlling transcrip-
tional regulation and mitochondrial biogenesis in diabetic
muscle.

A number of studies have provided support for the
hypothesis of a link between mitochondrial dysfunction and
insulin resistance in human skeletal muscle [13–24, 32],
and that these abnormalities co-exist at an early point in the
development of type 2 diabetes [21–23]. The lack of
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Fig. 1 PPARGC1A (translated into PGC-1α) (a) and NRF1 (b)
mRNA levels determined by quantitative real-time PCR in myotubes
established from control participants (n=10) and patients with type 2
diabetes (n=10), expressed relative to β-actin. c Mitochondrial mass
was determined by MitoTracker Green fluorescence in myotubes from
a subset of the control (n=6) and diabetic participants (n=5). All data
are mean±SEM. There were no significant differences between
control and diabetic participants
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transcriptional alterations in diabetic myotubes in our study,
however, suggests that the downregulation of mitochondrial
OXPHOS genes observed in insulin-resistant skeletal
muscle in vivo is caused by differences in the magnitude
of or response to factors outside the muscle cell, such as
neuronal regulation, blood flow and circulating levels of
substrates, cytokines and hormones. This idea is supported
by several recent studies, which have indicated that both
absolute and relative insulinopenia (insulin resistance),
hyperglycaemia and circulating levels of NEFA are possible
factors contributing to impaired mitochondrial biogenesis in
vivo [14, 17, 18, 32–34]. Accordingly, none of the present
human studies have been able to prove a cause-and-effect
relationship between mitochondrial dysfunction and insulin
resistance in vivo [13–24]. Further studies in human
myotubes are warranted to study the effects of these factors
separately, e.g. whether an abnormal transcriptional response
to palmitate exposure could contribute to the impaired lipid
oxidation observed in diabetic myotubes [27].

In vivo, skeletal muscle takes up and stores the most of
the glucose during insulin stimulation, and the response to
this hormonal factor is reduced in patients with type 2
diabetes [2]. This insulin-resistant phenotype can also be
found in diabetic myotubes [7–9], indicating that at least
insulin resistance could be a primary defect. It is likely that
the maintenance of mitochondria in vivo involves a normal
adaptation to the repeated bursts of physiological hyper-
insulinaemia elicited by food intake. Recent microarray-
based studies of skeletal muscle from healthy humans have
shown that most genes upregulated in response to acute
insulin infusion are involved in transcriptional and transla-
tional regulation as well as a number of genes involved in
mitochondrial processes such as lipid oxidation, the citric
acid cycle and OXPHOS [35–36]. Hence, an intrinsic
defect in the adaptation to insulin in muscle may affect gene
transcription and mitochondrial biogenesis. In support of
this idea, the ability of insulin to stimulate ATP production
and OXPHOS gene expression in skeletal muscle is
impaired in patients with type 2 diabetes and their first-
degree relatives [37–39]. Our study cannot exclude the
possibility that a primary defect in insulin action on the
muscle cell causes mitochondrial dysfunction, and that if
myotubes were studied under conditions similar to those
observed in vivo we would find reduced mitochondrial
biogenesis. On the other hand, it is known that muscle cells
in culture are quite different from skeletal muscle regarding
their oxidative capacities, mitochondrial content and sub-
cellular distribution of mitochondria. We have shown
previously that insulin may regulate different pools of genes
in skeletal muscle in vivo and cultured muscle cells in vitro
[40–41]. Using diabetic and control myotubes stimulated with
supraphysiological insulin levels (1 μmol l−1), none of the

144 genes that responded differentially to insulin in diabetic
vs control myotubes were OXPHOS genes [41]. These data
argue against impaired insulin-mediated transcriptional regu-
lation of OXPHOS genes in diabetic myotubes.

In another study from our group, we found no difference
in maximal ADP-stimulated respiration between myotubes
established from lean, obese and type 2 diabetic participants
[42]. Together with the lack of abnormalities in mRNA
levels of PGC-1α and NRF1 and mitochondrial mass in the
present study, these data indicate that an insulin-resistant
phenotype is present in a human muscle cell model of type
2 diabetes without alterations in the transcriptional levels of
OXPHOS genes, mitochondrial content and function.
Although most studies of human skeletal muscle in vivo
have reported the co-existence of impaired insulin sensitiv-
ity and reduced expression of OXPHOS genes and
mitochondrial content/function [13–24], there is so far no
clear evidence for a mechanistic link or even strong
correlation between these parameters. In fact, two recent
studies have provided evidence for disassociation between
mitochondrial dysfunction and insulin resistance in skeletal
muscle of mice and humans [43, 44].

In summary, we tested the hypothesis that alterations in the
transcriptional profile contribute to the diabetic phenotype of
myotubes established from patients with type 2 diabetes.
Despite clear defects in insulin-stimulated glucose metabo-
lism both in vivo and in vitro, and an impaired ability to
oxidise lipids during palmitate exposure in vitro, we did not
demonstrate the existence of differential transcript levels of
muscle genes between diabetic and control myotubes. In
particular, there were no changes in genes and pathways
representing the mitochondrial OXPHOS. This is in contrast
to most in vivo data, and indicates that, at least under basal
conditions, no major primary defect in gene transcription or
mitochondrial biogenesis precedes or co-exists with the
abnormalities in insulin-stimulated glucose metabolism.
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