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Dispersion Models for Extremes
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Abstract We propose extreme value analogues of natural exponential families and exponential
dispersion models, and introduce the slope function as an analogue of the variance function.
The set of quadratic and power slope functions characterize well-known families such as the
Rayleigh, Gumbel, power, Pareto, logistic, negative exponential, Weibull and Fréchet. We
show a convergence theorem for slope functions, by which we may express the classical extreme
value convergence results in terms of asymptotics for extreme dispersion models. The main
idea is to explore the parallels between location families and natural exponential families, and
between the convolution and minimum operations.
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1 Introduction

In a seminal paper Morris (1982) asked the following question: what do the normal, Poisson, gamma,
binomial, and negative binomial distributions have in common that makes them so special? His answer
was that they are all natural exponential families with quadratic variance functions. This idea has wide-
ranging practical and theoretical ramifications, in particular for generalized linear models (McCullagh
and Nelder, 1989) and exponential dispersion models (Jørgensen, 1987).

Many subsequent authors have used the variance function as a characterization and convergence
tool for natural exponential families and exponential dispersion models, cf. Jørgensen (1997), Casalis
(2000) and references therein. In particular, Tweedie (1984) and several authors independently of him
(Morris, 1981; Hougaard, 1986; Bar-Lev and Enis, 1986), proposed and investigated the class of power
variance functions, corresponding to what we now call the Tweedie class of exponential dispersion models.
Jørgensen et al. (1994) showed that the Tweedie models appear as limits in a class of convergence results
for exponential dispersion models, extending certain classical stable convergence results.

These ideas appear, at first sight, to have little relevance for extreme value theory. Echoing Morris
(1982) we may ask, however, what distributions like the Rayleigh, Gumbel, power, Pareto, logistic and
negative exponential have in common that makes them so special in the context of extremes? Also,
is there an extreme value analogue of power variance functions, perhaps related to the Weibull and
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Fréchet distributions? In the present paper we develop an extreme value dispersion model framework
in the spirit of Jørgensen (1997), leading to constructive answers to these questions. In particular we
find a close parallel between the above-mentioned Tweedie convergence results and the classical extreme
convergence results by Fisher and Tippett (1928) and Gnedenko (1943). See Coles (2001), Kotz and
Nadarajah (2002) and Beirlant et al. (2004) for background material on extremes.

In Section 2 we introduce the rate and slope of a distribution as analogues of the mean and variance,
respectively. In Section 3 hazard location families and slope functions are introduced as analogues of
natural exponential families and variance functions, respectively. In Section 4 we introduce extreme
dispersion models as analogues of exponential dispersion models. In Section 5 we classify quadratic slope
functions in a manner similar to Morris’ (1982) classification of quadratic variance functions. In Section
6 we draw a parallel between generalized extreme value distributions and Tweedie models, having power
slope functions and power variance functions, respectively. In Section 7 a general convergence result
for slope functions is shown, leading to a new proof of the classical extreme value convergence results,
now set in the extreme dispersion model setting. Finally, in Section 8 we consider characterization and
convergence for exponential slope functions.

2 Basic framework

We now introduce the basic setup for the paper, define the notions of rate and slope for a real random
variable Y , and show that they are analogues of the mean and variance, respectively. It is convenient
to use familiar terms from lifetime analysis such as survival function and hazard function, although Y is
not restricted to be positive. It is also convenient to use minimum (min) rather than the conventional
maximum. Results for maxima may be obtained by a reflection in the usual way, see Beirlant et al. (2004,
p. 46).

2.1 Survival, hazard and integrated hazard

We assume that the survival function G(y) = P (Y ≥ y) is twice continuously differentiable on the support
C = (a, b) ⊆ R, continuous at a, and possibly discontinuous at b. Let G denote the set of all G such that
the density function f = −G′ is strictly positive on C, and let G0 denote the subset of G for which 0 ∈ C.

When G(b) > 0 we talk about right censoring at b. In particular we allow a positive probability mass
G(∞) at b = ∞, in which case G represents an improper distribution. In survival analysis G(∞) is the
probability that an individual never experiences the event in question, see e.g. Aalen (1988).

We define the integrated hazard function H : R → [0,∞] and the hazard function h : R → [0,∞]
corresponding to G by H(y) = − logG(y) and h(y) = H ′(y), respectively. It is understood that both
H and h are 0 to the left and ∞ to the right of C, except that H(b) is finite if G(b) > 0. With these
conventions the following relationship holds for all y ∈ R,

H(y) =

∫ y

−∞
h(x) dx. (1)

2.2 Rate, slope and semiinvariants

We now define the rate and slope for Y , and make the connection with the min operation.
By way of motivation, let us recall the derivation of the mean and variance from the moment generating

function. Let the random variable Y have moment generating function M(t) = E
(

etY
)

, with domain
Θ = {t ∈ R : M(t) <∞} such that 0 ∈ intΘ. Consider the cumulant generating function κ = logM
whose derivatives at zero κ(i)(0) are the cumulants. The mean and variance, in particular, are given by

E(Y ) = τ(0) and Var(Y ) = τ ′(0), (2)
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where τ = κ′ is the mean value mapping, which is strictly increasing on intΘ.
We now propose G(y) = E (1Y ≥y) as an analogue of the moment generating function M(t) = E

(

etY
)

,
which in turn makes H and h analogues of the cumulant generating function κ and mean value mapping
τ , respectively. By analogy with (2), we define the rate r and slope s for a random variable Y with
survival function G ∈ G0 by

r(Y ) = h(0) and s(Y ) = h′(0),

respectively. Unlike the variance, however, the slope may be negative as well as positive, and the rate
decreases (increases) under translation in the IFR (DFR) case. In general we define the ith semiinvari-
ant by ki(Y ) = H(i)(0) for i ≥ 1, provided the derivatives exist, analogously to the cumulants. This
terminology alludes to T.N. Thiele’s name half-invariants for the cumulants, cf. Lauritzen (2002, p. 207).

Letting µ = r(Y ), the slope of Y may be written as follows:

s(Y ) = µ {µ− g′ (0)} , (3)

where g = − log f . This result is somewhat analogous to the result Var(Y ) = E(Y 2) − E2(Y ) for the
variance, see also Section 2.3.

Like the cumulants, the semiinvariants satisfy a scale equivariance property ki(cY ) = c−iki(Y ) for
c > 0, which follows from the fact that cY has integrated hazard function H(y/c). In particular the rate
and slope satisfy

r(cY ) = c−1r(Y ) and s(cY ) = c−2s(Y ). (4)

The rate is not, however, translation equivariant, nor is the slope translation invariant, but instead satisfy
r(c+ Y ) = h(−c) and s(c+ Y ) = h′(−c) for c ∈ R.

The min of n independent variables Yi has integrated hazard function H1(y) + · · · + Hn(y), so the
semiinvariants are additive with respect to the min operation ∧, in much the same way that the cumulants
are additive with respect to convolution. In particular

r

(

n
∧

i=1

Yi

)

=

n
∑

i=1

r(Yi) and s

(

n
∧

i=1

Yi

)

=

n
∑

i=1

s(Yi). (5)

We denote the scaled min of n independent and identically distributed (i.i.d.) variables Yi by

Ŷn = n

n
∧

i=1

Yi, (6)

which in many ways behaves like the sample mean. Thus, combining (4) and (5) yields

r
(

Ŷn

)

= µ and s
(

Ŷn

)

=
ς

n
, (7)

where µ is the rate and ς the slope of Yi. Also, the exponential distribution is invariant under the
transformation (6), behaving like a constant does under averaging. This suggest a law of large numbers
involving the exponential distribution, as we shall now see.

2.3 Exponential distribution

Let Eµ denote an exponential variable with rate µ > 0. By a shifted exponential variable we mean a+Eµ

with a < 0, whose support includes 0. For such a variable we find

r (a+ Eµ) = µ and s (a+ Eµ) = 0, (8)

parallel to the form for the mean and variance of a constant. In the notation of (3), note that g′(0) = µ
for the variable a + Eµ, so (3) implies that the slope is a signed measure of the deviation of Y from
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exponentiality, in much the same way that the variance is a measure of the deviation of Y from being
constant.

Since the exponential distribution hence plays the role of constant in the present setup, it is not
surprising that there is a law of large numbers, as suggested by (7) and (8), that involves convergence to
the exponential distribution. In fact, the scaled min Ŷn, after left truncation at 0, has survival function
given, for y > 0, by

Gn (y/n)

Gn (0)
= exp

{

−yµ− ς

2n
y2 + o(n−1)

}

as n→ ∞, (9)

converging to an exponential distribution with rate µ. Here left truncation at 0 means conditioning on
the event Ŷn > 0. The quadratic term suggests a central limit theorem. By removing the term −yµ,
corresponding to an exponential component, and rescaling we obtain for y > 0

Gn (y/
√
n)

Gn (0)
eyµ

√
n = exp

{

− ς
2
y2 + o(1)

}

as n→ ∞. (10)

Provided ς > 0, this gives an asymptotic Rayleigh distribution, which hence plays the role of the normal
distribution in the present setup. Remark 5.1 below makes precise the idea of removing an exponential
component.

3 Hazard location families

3.1 Motivation

We now introduce hazard location families, and show that each such family is characterized by its slope
function, just like a natural exponential family is characterized by its variance function.

Recall that the variance function is defined on Ω = τ(int Θ) by V (µ) = τ ′
(

τ−1(µ)
)

, where τ is the
mean value mapping defined in connection with (2). As pointed out by Morris (1982), V characterizes
is the distribution of Y up to an exponential tilting. This follows since given V , the inverse τ−1 satisfies
the differential equation

dτ−1(µ)

dµ
=

1

V (µ)
, (11)

from which τ−1(µ) may be recovered up to an additive constant −θ, say, corresponding to an exponential
tilting of the density f (not necessarily with respect to Lebesgue measure)

f(y; θ) = f(y) exp {yθ − κ(θ)} . (12)

This is a natural exponential family (NEF), and (12) has mean µ = τ(θ) and variance V (µ), cf. Jørgensen
(1997, Ch. 2).

3.2 Definition

Our analogy implies that the hazard function h should be analogous to the mean value mapping τ . In
order to make the analogy complete, however, we need h, like τ , to be monotone. We thus consider from
now on survival functions in G with monotone hazard rate, in the sense that h is strictly monotone on C,
either increasing (IFR) or decreasing (DFR). This subset of G is denoted G, and we let G0 = G ∩ G0.

Remark 3.1 In the DFR case it is necessary that a > −∞ in order for the integral (1) to converge at
a. In the IFR case G is always proper, since if h is increasing on (a,∞) then the integral (1) diverges at
∞.
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Table 1: The main quadratic hazard slope families and associated NEFs. GHS is the generalized hyper-
bolic secant family.

HL(µ) G(y) C v(µ) Ψ NEF

Rayleigh exp
(

−y2/2
)

R+ 1 R+ Normal
Gumbel exp (−ey) R µ R+ Poisson
Uniform 1 − y (0, 1) µ2 (1,∞) Gamma
Pareto y−1 (1,∞) −µ2 (0, 1) —

Logistic (1 + ey)
−1

R µ(1 − µ) (0, 1) Binomial
Neg. exponential 1 − ey

R− µ(1 + µ) R+ Neg. binomial
Cosine cos y (0, π/2) 1 + µ2

R+ GHS

Remark 3.2 Consider the case Y = logT , where T is a positive survival time, say. Since then C = R,
making a = −∞, only IFR is possible. The derivative of the hazard function for T is

h′(log t) − h(log t)

t2
.

Hence T need not have monotone hazard rate, even though Y does. In this sense, the assumption of
monotone hazard rate is less of a restriction when modelling log survival times.

We now define an analogue of the variance function. For given G ∈ G we let Ψ = h(C) (an open
interval), and define the slope function v : Ψ → R± by

v(µ) = h′
(

h−1(µ)
)

. (13)

Here v maps into R+ in the IFR case and into R− in the DFR case. Analogously to (11) we find that
the inverse hazard function h−1 satisfies

dh−1(µ)

dµ
=

1

v(µ)
. (14)

Proposition 3.1 The slope function v with domain Ψ characterizes the location family G(· − θ) with
θ ∈ R among all location families within G.

Proof: Given v, the solution to (14) is θ + h−1(µ), where θ ∈ R is arbitrary. By inversion, we obtain
the hazard function h(· − θ) corresponding to the location family G(· − θ).

To complete the analogy with natural exponential families we restrict the domain of θ to −C, such
that G(· − θ) ∈ G0. Note that the rate and slope for G(· − θ) are µ = h (−θ) and h′ (−θ) = v(µ). This
leads to the following definition.

Definition 3.1 The hazard location family {HL(µ) : µ ∈ Ψ} ⊆ G0 generated from G ∈ G is defined by
the family of survival functions with support C− h−1(µ) given by

y 7→ G
{

y + h−1(µ)
}

. (15)

Note that the definition of v in (13) is independent of the representation (15) used for the family, so
the slope function represents an intrinsic property of the family.

Table 1 shows some examples of hazard location families corresponding to familiar distributions, all
with quadratic slope functions (polynomials of degree at most two), to be studied in Section 5. Except
for the Pareto distribution, all the families in the table are IFR. These six IFR families have the same
functional form for v as the variance functions for Morris’ (1982) six natural exponential families. In
particular, the Rayleigh distribution has constant slope function, like the variance function of the normal
distribution.

5



3.3 Truncation and censoring

We now study the effect on v of transformations like truncation and censoring.
Left truncation at some point c ∈ C gives rise to a new hazard location model with v restricted to a

subset of Ψ. Similarly, the operation of right censoring at some point c ∈ C corresponds to replacing Y
by Y ∧ c, also known as the limited loss variable in loss modelling (Klugman et al., 2004, p. 30). This
operation reduces C to the subset (a, c) and introduces the probability G(c) in c. We summarize these
considerations in a lemma.

Lemma 3.2 Left truncation at c ∈ C corresponds to restricting the domain of v to the interval between
h(c) and h(b). Right censoring at c ∈ C corresponds to restricting the domain of v to the interval between
h(a) and h(c).

In the DFR case, left truncation thus results in the domain Ψ = (h(b), h(c)), whereas right censoring
gives the domain (h(c), h(a)). The lemma shows that the restriction of v to a subinterval of its domain
is again the slope function for a hazard location family. When looking for a model corresponding to a
given functional form for v, we may hence concentrate on the largest possible domain consistent with a
survival function in G0. Note, however, that restricting the domain of v to a subset of Ψ implies a change
in the distributional form, because the support is changed. By comparison, restricting µ to a subinterval
of Ω in a natural exponential family selects a subset of the family of distributions, without changing the
distributions as such.

4 Extreme dispersion models

4.1 Motivation

We now introduce extreme dispersion models as a parallel to exponential dispersion models, and show
that they satisfy a reproductive property.

Given a natural exponential family (12) with variance function V (µ), the corresponding exponential
dispersion model ED(µ, λ) consists of natural exponential families with variance function λ−1V (µ) pro-
portional to V (µ). The latter is then called the unit variance function. The model ED(µ, λ) has density
function of the form

f(y; θ, λ) = fλ(y) exp [λ {yθ − κ(θ)}] ,
for a suitable function fλ. Here µ = τ(θ) is the mean, in the notation of (2), and σ2 = 1/λ is the
dispersion parameter. The index parameter λ has domain Λ ⊆ R+, which is an additive semigroup (often
R+ or N).

ED(µ, λ) satisfies the following mean reproductive property. The average of n i.i.d. variables Y1, . . . , Yn

from ED(µ, λ) has distribution
Ȳn ∼ ED(µ, nλ), (16)

where the index parameter is proportional to the sample size. This follows from the form of the moment
generating function of ED(µ, λ), which is

t 7→ Mλ(t/λ+ τ−1(µ))

Mλ(τ−1(µ))
, (17)

where M(·) is the moment generating function for f = f1, cf. Jørgensen (1997, Ch. 3).
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4.2 Definition

Definition 4.1 Given a survival function G ∈ G with hazard function h and support C, we define the
extreme dispersion model generated by G, denoted XD(µ, λ), as the family of survival functions in G0

given by
y 7→ Gλ(y/λ+ h−1(µ)) (18)

with rate µ ∈ Ψ, index parameter λ > 0 and support λ
(

C − h−1(µ)
)

.

It is straightforward to see that the model XD(µ, λ) may be generated from any of its members in
this way, up to a rescaling of λ to cλ for some c > 0. In the following we work with the representation
(18) corresponding to a specific choice for G. The corresponding hazard and density functions are for
y ∈ λ

(

C − h−1(µ)
)

given by

h(y;µ, λ) = h(y/λ+ h−1(µ)) (19)

and
f(y;µ, λ) = h(y/λ+ h−1(µ)) exp

[

−λH
{

y/λ+ h−1(µ)
}]

,

respectively. The right extreme of the support is λ(b − h−1(µ)), which has probability Gλ(b).
The parameter µ is the rate for XD(µ, λ) for any value of λ > 0, which follows from (19) by inserting

y = 0, in much the same way that µ is the mean of ED(µ, λ) for all λ. For each fixed value of λ, (18)
corresponds to a hazard location model with slope function λ−1v(µ). Hence v is called the unit slope
function for XD(µ, λ), and by Proposition 3.1 v characterizes XD(µ, λ) up to a rescaling of λ like above.
We call σ2 = 1/λ the dispersion parameter.

The following min reproductive property easily follows from the form of the survival function (18).
For i.i.d. variables Y1, . . . , Yn ∼ XD(µ, λ) the scaled min Ŷn from (6) has distribution

Ŷn ∼ XD(µ, nλ). (20)

This is analogous to the mean reproductive property (16) for exponential dispersion models. It is equiv-
alent to the max-stable property of an exponentiated family of distributions (Nelson and Doganaksoy,
1995; Sarabia and Castillo, 2005; Nadarajah and Kotz, 2006), but the present formulation emphasizes
the fact that the rate is preserved under the scaled min operation. In (20), like (16), the index parameter
is proportional to the sample size.

Let us consider the XD(µ, λ) models generated from first six cases in Table 1, where in fact the
introduction of the index parameter λ corresponds to known generalizations. In the Rayleigh and Gumbel
cases, this adds a scale or location parameter to the models, respectively. The uniform distribution
becomes a shifted power distribution. The Pareto becomes a shifted generalized Pareto distribution.
The logistic becomes a generalized logistic distribution. The negative exponential becomes the negative
exponentiated exponential, see Nadarajah and Kotz (2006).

We note in passing the well-known fact that a transformation of the variable Y ∼ XD(µ, λ) to the
cumulated hazard scale H(Y/λ+ h−1(µ)) gives an exponential variable with parameter λ, possibly right
censored at the point H(b).

4.3 Frailty models

The study of frailty models reveals a certain intimate connection between extreme and exponential
dispersion models. Let the conditional distribution Y |X = x be exponential with parameter x, and let X
be a non-negative random variable with moment generating function M(t). Then the marginal survival
function for Y is M(−y) for y > 0, which is in effect the frailty model of Vaupel et al. (1979).
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In the special case where X ∼ ED(µ, λ) with moment generating function (17) we obtain the following
survival function for Y (Hougaard, 1986):

G(y) =
Mλ(−y/λ+ τ−1(µ))

Mλ(τ−1(µ))
.

This is an extreme dispersion model with hazard function h(y) = τ(−y), and corresponding unit slope
function v(µ) = −V (µ), the negative of the unit variance function for Y . This model is hence DFR.
An example is the generalized Pareto distribution, which is the frailty model corresponding to a gamma
frailty, with slope function −µ2 for µ ∈ (0, 1). As this example illustrates, the domain for v may be a
proper subset of that for V .

In the particular case where X has a positive probability at 0, the distribution of Y becomes improper
with P (Y = ∞) = P (X = 0) > 0. When X follows the Tweedie compound Poisson distribution with
1 < p < 2 (cf. Jørgensen, 1997, Ch. 4), which has a positive probability at 0, an improper distribution
for Y is obtained, as pointed out by Aalen (1988).

4.4 Exponential convergence

We shall now return to the exponential convergence of Section 2.3. By way of motivation, note that an
exponential dispersion variable Y ∼ ED(µ, λ) convergences in probability to µ as λ → ∞, as is clear
from (16). The analogous result for extreme dispersion models involves convergence to the exponential
distribution.

Proposition 4.1 For Y ∼ XD(µ, λ) and c ∈ R the conditional distribution of Y − c given Y > c is
asymptotically exponential with rate µ for λ→ ∞.

Proof: Let λ be large enough to make the support λ
(

C − h−1(µ)
)

contain c. Then the conditional
survival function of Y − c given Y > c is, for y > 0,

Gc(y;µ, λ) =
Gλ((c+ y) /λ+ h−1(µ))

Gλ(c/λ+ h−1(µ))
.

A Taylor expansion of H around c/λ+ h−1(µ) gives

Gc(y;µ, λ) = exp

[

−yh
{

c/λ+ h−1(µ)
}

− y2

2λ
h′
{

cλ y + h−1(µ)
}

]

,

where cλ y is between c/λ and (c+ y) /λ. Letting λ→ ∞ and using the continuity of h and h′, we obtain
the desired result.

5 Quadratic slope functions

We now follow Morris’ (1982) footsteps and classify the set of quadratic slope functions. To this end, we
need to study reflections of slope functions, and the role of exponential components. These transforma-
tions have a somewhat formal nature, but turn out to be useful for the classification result. For the sake
of brevity, certain details in this section are left to the reader.
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Table 2: Some vertically reflected quadratic hazard slopes.
HL(µ) G(y) C v(µ) Ψ

Reflected Gumbel exp (1 − y − e−y) R+ 1 − µ (0, 1)
Reflected Logistic 1/ cosh 1

2y R+

(

1
2 − µ

)

(1
2 + µ) (0, 1

2 )
Reflected neg. exponential 4

(

e−y − e−2y
)

(log 2,∞) (µ− 1) (µ− 2) (0, 1)

5.1 Reflections

We now consider what happens when we subject v to a horizontal or vertical reflection.

Proposition 5.1 Let G ∈ G0 have support C = (a, b) and slope function v. Horizontal reflection: If G is
right censored, then the survival function y 7→ G(b)/G(−y) with support −C has hazard function h(−y)
and slope function −v on Ψ, and is also right censored. Vertical reflection: Assume that (0,m) ⊆ Ψ and
restrict the support to the interval (a0, b0), either (a, h−1(m)) (IFR case) or (h−1(m), b) (DFR case). If G
is right censored at b0 < ∞ then the survival function y 7→ G(−y)/G(b0) exp {−m(y + b0)} with support
(−b0,−a0) has slope function µ 7→ v(m− µ) with domain (0,m), and is right censored if a0 > −∞.

Proof: Horizontal reflection: The survival function G(b)/G(−y) with support −C is easily seen to have
hazard function h(−y) and slope function −v(µ) on Ψ. The value at the right endpoint is G(b)/G(a) > 0,
so the model is right censored. Vertical reflection: The survival function G(−y)/G(b0) exp {−m(y + b0)}
with support (−b0,−a0) is similarly seen to have hazard function m−h(−y) and slope function v(m−µ)
on (0,m). If a0 > −∞ then G(a0)/G(b0) exp {−m(b0 − a0)} > 0, so in this case the model is right
censored.

Table 2 shows three hazard location families with quadratic slope functions obtained by vertical
reflection of families from Table 1.

5.2 Exponential components

Extending the results of Section 2.3, we now show that an exponential component (in the sense of Remark
5.1 below) corresponds to a location change for the slope function.

Proposition 5.2 Let G ∈ G0 with support C = (a, b) have slope function v with domain Ψ = (η, η). If
a > −∞ then for m ≥ −η, the function v(µ−m) with domain m+Ψ is the slope function of the survival
function given by G(y) exp {−m(y − a)} on C.

Proof: The survival function G(y) exp {−m(y − a)} has integrated hazard function

m (y − a) +H(y) (21)

on C, provided m ≥ −η, with hazard function m+ h(y) and slope function v(µ−m) on m+ Ψ.

Remark 5.1 A positive m in (21) corresponds to the variable min {Y, a+ Em}, where the exponential
variable Em is independent of Y . In this case we say that we are introducing an exponential component.
Conversely, when m = −η < 0 we say that we are removing the exponential component, making inf Ψ = 0.
The only model in Table 1 with an exponential component is the uniform distribution. After removing
the exponential component, we obtain

G(y) = ey(1 − y) for y ∈ (0, 1). (22)

The corresponding slope function is (1 + µ)
2

with domain Ψ = R+.
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Note that, using the terminology of Remark 5.1, it is understood in connection with the classification
results below that vertical reflection (Proposition 5.1) is applied only after removing the exponential
component, if necessary, to ensure that inf Ψ = 0.

An example of an exponential component is encountered in connection with the Gumbel family with
unit slope function v(µ) = µ on Ψ = R+. The Gompertz-Makeham distribution is obtained from the
Gumbel by left truncation at 0, restricting v to µ > 1, and then adding an exponential component. This
gives the hazard function h(y) = m + eβy for m,β, y > 0 and unit slope function v(µ) = µ − m for
µ > 1 +m. A horizontal reflection, corresponding to β < 0, yields v(µ) = m− µ for µ ∈ (m,m+ 1).

5.3 Classification

We have now considered several types of transformations of slope functions, including censoring, trun-
cation and reflections. In addition to these, we consider the following three transformations of a given
hazard location family HL(µ) with slope function v and domain Ψ.

1. Location change: removing or adding an exponential component maps v into v(µ−m).

2. Scale transformation: a scale transformation of Y maps v into c−2v(cµ) for c > 0.

3. Multiplication: generating an extreme dispersion model maps v into v/λ for λ > 0.

A combination of these three operations maps v into

γv ((µ− α) /β) , (23)

where γ, β > 0 and µ ∈ α+ βΨ. We refer to (23) as the operation of location and scaling. This leads us
to the main classification theorem.

Theorem 5.3 Up to left truncation, right censoring, reflection, location and scaling, the only hazard
location models with quadratic slope functions are those shown in Table 1.

The next remark will useful for the proof.

Remark 5.2 Consider G ∈ G and c, d ∈ C. The following identity

H(d) −H(c) =

∫ h(d)

h(c)

µ

v(µ)
dµ (24)

follows by the substitution µ = h(x) in the integral (1). It is useful for checking if a given function v
may serve as a slope function. By taking c = a, we find that the continuity of G at a is equivalent to the
integral (24) being convergent at h(a). By taking d = b, we find that right censoring is equivalent to the
integral (24) being convergent at h(b).

Proof: [of Theorem 5.3] By means of the location and scaling operation we may reduce the classification
problem to quadratic slope functions with simple forms like in Table 1, having roots either ±1, 0 or i.
A combination of vertical and horizontal reflections applied to the seven cases of Table 1 then covers
all possible shapes of quadratic slope functions, most of which are right censored (cf. Proposition 5.1).
Regarding the uniform and Pareto distributions, an application of Remark 5.2 shows that neither µ2 nor
−µ2 can be slope functions on Ψ = R+, but only on a subset of R+. It follows that horizontal reflections
of the uniform and Pareto distributions give rise to two separate cases of right censored slope functions
of the form ±µ2, and a further four cases of the form (µ −m)2 that follow by vertical reflection. It is
easily seen that this covers all possible cases.
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Table 3: Summary of generalized extreme value distributions.
EVγ(µ, λ) γ p Support
Weibull γ < −1 p > 2 (1/γ,∞)

Exponential γ = −1 − (−1,∞)
Weibull −1 < γ < 0 p < 1 (1/γ,∞)
Gumbel γ = 0 p = 1 R

Fréchet γ > 0 1 < p < 2 (−∞, 1/γ)

Remark 5.3 There are three cases with inf C = −∞ in Table 1 where a vertical reflection leads to models
that are not right censored, of which typical examples are shown in Table 2.

One could also explore parallels of other classification results for NEFs, such as Letac and Mora’s
(1990) cubic variance functions, but this is outside the scope of the present paper.

6 Generalized extreme value distributions

We now investigate the analogy between the generalized extreme value distribution and the Tweedie
class of exponential dispersion models. The latter is characterized by having unit variance functions of
power form V (µ) = µp, cf. Jørgensen (1997, Ch. 4) and references therein. Here p = 0 corresponds
to the normal distribution with domain R, whereas the remaining cases, namely p < 0 and p ≥ 1, all
have domain R+. The special cases p = 0, 1, 2 all appear in Table 1, and a further simple case is p = 3,
corresponding to the inverse Gaussian distribution.

6.1 Definition

The standard generalized extreme value distribution for minima is defined by

G(y) = exp
{

− (1 − γy)−1/γ
}

,

with support defined by γy < 1. Here γ ∈ R, and the value γ = 0 (defined by continuity) corresponds the
Gumbel distribution. All extreme value distributions except the exponential (γ = −1) have monotone
hazard rates and their slope functions are of power form

v(µ) =
1

2 − p
µp (25)

for µ > 0, where the parameter p ∈ R\ {2} is defined by

p = p(γ) =
1 + 2γ

1 + γ
. (26)

The models are IFR for p < 2 (γ > −1) and DFR for p > 2 (γ < −1). As we saw in the proof of Theorem
5.3 there is no slope function on R+ proportional to µ2. Table 3 summarizes the main cases of generalized
extreme value distributions corresponding to different values of p.

Introducing location and index parameters, the generalized extreme value distributions are seen to be
examples of extreme dispersion models, one for each γ. We thus define the EVγ(µ, λ) to be the extreme
dispersion model given by the survival function

y 7→ exp

{

−λ
(

µ−γ/(1+γ) − γy/λ
)−1/γ

}

,

11



with support defined by γy < λµ−γ/(1+γ), which is a reparametrization of the usual extreme value
distribution. The EVγ(µ, λ) model satisfies the following scaling property

cEVγ(µ, λ) = EVγ(c−1µ, c2−pλ). (27)

6.2 Characterization

The Tweedie models may be characterized as the only exponential dispersion models closed under scale
transformations, cf. Jørgensen (1997, p. 128). We now show, by means of Proposition 3.1 that the extreme
value distributions satisfy a similar property.

Theorem 6.1 Let XD(µ, λ) be such that for some λ > 0 and all µ, c > 0

cXD(µ, λ) = XD(c−1µ, gλ(c)) (28)

for some positive function gλ(c). Then XD(µ, λ) is a generalized extreme value distribution.

Proof: First note that the rate c−1µ on the right-hand side of (28) is consistent with (4). Since c > 0 is
arbitrary this in turn implies that Ψ = R+. Without loss of generality we may take λ = 1. Calculating
the slope function on both sides of (28) gives

c−2v(µ) =
1

g1(c)
v(c−1µ).

This implies that v satisfies the functional equation v(x)v(y) = v(1)v(xy) for x, y > 0. Using the
continuity of v, the solution is v(µ) = cpµ

p, where p ∈ R and cp is an arbitrary non-zero constant that
may depend on p. When p 6= 2 and cp = 1/(2 − p) this characterizes the generalized extreme value
distribution EVγ(µ, λ). Other choices for cp with the same sign correspond to a scale change. Changing
the sign to cp = −1/(2−p) is possible only for a right censored survival function (Proposition 5.1), which
is incompatible with the condition Ψ = R+. The case p = 2, which has been dealt with in Section 5, also
is not compatible with the condition Ψ = R+. It easily follows that gλ(c) = λc2−p, in agreement with
(27).

7 Convergence of extremes

7.1 General convergence theorem

The results of the previous section show that the Tweedie and generalized extreme value distributions
share certain properties due to the common form of their variance and slope functions. We shall now
complete this analogy by showing a convergence theorem for slope functions, which in turn leads to a
new proof of the extreme value convergence theorem, along the same lines as the Tweedie convergence
theorem of Jørgensen et al. (1994).

The use of variance functions for proving convergence for natural exponential families was initiated by
Morris (1982), but a rigorous formulation and proof was first given by Mora (1990). The convergence the-
orem for variance functions says that if a sequence of variance functions converges uniformly on compact
sets, then the corresponding sequence of natural exponential families converges to the family correspond-
ing to the limiting variance function. We have the following analogous result for slope functions. The
proof is given in an Appendix.

12



Theorem 7.1 Let vn, Ψn = (η
n
, ηn) be a sequence of slope functions and their respective domains, all

IFR (DFR), such that Ψ = int (limn→∞ Ψn) exists and is non-empty, where limn→∞ Ψn means that each
of the two sequences of endpoints converges. Assume that vn converges on Ψ, uniformly on compact
subintervals of Ψ, to a function v which is strictly positive (strictly negative) on Ψ. Assume that vn

satisfies the following left tightness condition. For each k > 0 there exists an η ∈ Ψ such that for all n
∫

In(η)

µ

|vn(µ)| dµ < k, (29)

where In(η) = (η
n
, η) (In(η) = (η, ηn)). Then the corresponding sequence of hazard location families

HLn(µ) converges weakly for each µ ∈ Ψ, uniformly on compact subintervals of the support, to the hazard
location family HL(µ) with slope function v.

The tightness condition (29) originates from the identity (24). The following remark shows that a
similar condition is useful for determining if the limiting family is right censored.

Remark 7.1 Under the assumptions of Theorem 7.1, we consider the following right tightness condition.
For each k > 0 there exists an η ∈ Ψ such that for all n

∫

In(η)

µ

|vn(µ)| dµ > k,

where In(η) = (η, ηn) (IFR case) or In(η) = (η
n
, η) (DFR case). Then for every k > 0 there exists

a c ∈ C such that Hn(c) > k for all n. This, in turn, implies that H(c) = limHn(c) > k, and hence
h(b−) = ∞. This implies no right censoring, so in particular the limiting distribution is proper.

7.2 Extreme convergence theorem

Let γ 6= −1 be given, and let p = p(γ) 6= 2, according to (26). Choosing c in the scaling formula (27)
such that n = c2−p is an integer, we obtain

n1/(p−2)EVγ(n1/(p−2)µ, nλ) = EVγ(µ, λ). (30)

Now recall the min reproductive property (20), by which the left-hand side of (30) represents a centering
and scaling of the scaled min Ŷn for a sample of size n from EVγ(µ, λ). In effect (30) represents the
so-called stability postulate for the limiting distribution of extremes, cf. Kotz and Nadarajah (2002, p. 5).
The corresponding domains of attraction correspond to the classical extreme convergence result, which
in the present setup takes the following form.

Theorem 7.2 Let XD(µ, λ) be an extreme dispersion model having unit slope function v with power
asymptotics of the form

v(µ) ∼ 1

2 − p
µp (31)

as µ→ 0 (IFR case with p < 2) or µ→ ∞ (DFR case with p > 2). Then for any µ, λ > 0

n1/(p−2)XD(n1/(p−2)µ, nλ)
w−→ EVγ(µ, λ) as n→ ∞, (32)

where
w−→ denotes weak convergence.

Proof: Consider the IFR case p < 2, where the power asymptotics holds near 0. For fixed values of λ
and n, the left-hand side of (32) is a hazard location family with slope function

vn(µ) =
1

λnp/(p−2)
v(n1/(p−2)µ) −→ 1

λ (2 − p)
µp as n→ ∞,
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where we have used the scaling property of the slope in (4). The pointwise convergence follows from (31).
To show that the convergence is uniform in µ on compact subsets of R+, let 0 < µ < m for given m > 0.
For given ε > 0 let µ0 be such that

∣

∣

∣

∣

v(µ)

µp
− 1

2 − p

∣

∣

∣

∣

< ε

for µ < µ0, by the assumption of power asymptotics. Then for any n large enough to make n1/(p−2) <
µ0/m we find

∣

∣

∣

∣

v(n1/(p−2)µ)

np/(p−2)
− µp

2 − p

∣

∣

∣

∣

= µp

∣

∣

∣

∣

∣

v(n1/(p−2)µ)
(

µn1/(p−2)
)p − 1

2 − p

∣

∣

∣

∣

∣

≤ mpε

for all µ < m, which shows the uniform convergence. Since we are in the IFR case, the tightness condition
(29) involves the integral

∫ η

0

λnp/(p−2)µ

v(n1/(p−2)µ)
dµ.

Since the integrand behaves asymptotically like the power µ1−p, which is integrable on (0, η) for p < 2,
the tightness condition is satisfied. The convergence (32) hence follows from Theorem 7.1. The proof in
the DFR case p > 2 is similar.

Compared with conventional extreme value results, the framework of Theorem 7.2 is very convenient,
albeit under the rather strong conditions of differentiability of the density, and monotone hazard rate.
We note that the condition (31) seamlessly integrates the Gumbel case (p = 1) with the rest, whereas
the exponential case is not included, see Remark 7.3.

We note that the approach leads to the new centering constant θ = −h−1(n1/(p−2)µ), the location
parameter appearing in (18), which corresponds to keeping the rate constant at the value µ throughout
the convergence (32).

In simple cases, like in Table 1, it is very easy to read off the asymptotic behaviour of the slope
function. For example, the asymptotic behaviour of v near 0 for the logistic and negative exponential
distributions is v(µ) ∼ µ, so both are in the domain of attraction of the Gumbel distribution. Further
examples are considered below.

Remark 7.2 The von Mises conditions are sufficient conditions involving the density f for extreme value
convergence. For G ∈ G with support (a, b), the version of the Gumbel condition proposed by Falk and
Marohn (1993) is (keeping in mind that we use min rather than max)

lim
y↓a

f(y)

1 −G(y)
= c

for some c > 0. By l’Hospital’s rule this is equivalent to

lim
y↓a

h′(y)

h(y)
= c. (33)

By inserting y = h−1(µ), we find that (33) is equivalent to (31) with p = 1. The situation for p 6= 1 is,
however, less clear. For a = 0 the Gumbel condition is

lim
y↓0

yf(y)

1 −G(y)
= −γ−1 > 0,

or equivalently, with an application of l’Hospital’s rule,

lim
y↓0

yh′(y)

h(y)
= −1 − γ−1.

This condition apparently cannot be expressed conveniently in terms of the slope function v.
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Remark 7.3 Contrary to conventional extreme value convergence theory, our framework separates out
the case of exponential convergence, and Proposition 4.1 illustrates how exponential convergence is prompted
by left truncation, see also (9). The uniform and Pareto examples from Table 1 illustrate that distribu-
tions in the domain of attraction of the exponential distribution have incomplete Ψ, with inf Ψ > 0 (IFR
case) or sup Ψ <∞ (DFR case). In the case of the uniform distribution with the exponential component
removed (22), the new slope function (1 + µ)2 satisfies (31) with p = 0, and so is in the domain of
attraction of the Rayleigh distribution.

Jørgensen and Mart́ınez (1997) developed Tauberian methods for variance functions, where power
asymptotics for V is replaced by regular variation. This could be developed in the present setting along
the lines of de Haan (1970), but is outside the scope of the present paper.

7.3 Examples

Let us consider two further examples of extreme value convergence that illustrate Theorem 7.2. First
we consider the negative Pareto distribution with survival function G(y) = 1 − (1 − y)

−1
for y < 0.

Straightforward calculations show that the corresponding slope function is

v(µ) = µ
√

µ2 + 4µ for µ > 0, (34)

which behaves like 2µ3/2 near 0. Letting XD(µ, λ) denote the extreme dispersion model corresponding
to G, an application of Theorem 7.2 yields Fréchet convergence,

n−2XD(n−2µ, nλ)
w−→ EV1(µ, λ) as n→ ∞.

It is worth noting that v in (34) is of the so-called Letac form (Jørgensen, 1997, pp. 157–158), a class of
variance functions that has been extensively studied, see e.g. Kokonendji (1994).

Next, we consider the Burr distribution with survival function G(y) = (1 + yα)−1 for y > 0, for some
α > 0, which is DFR for 0 < α ≤ 1. An explicit expression for the slope function may be found in the
case α = 1/2, where

v(µ) = −µ2
(

µ+ 2 +
√

µ2 + 2µ
)

for µ > 0.

The asymptotic behaviour is v(µ) ∼ −2µ3 as µ → ∞. An application of Theorem 7.2 yields Weibull
convergence with γ = −2,

nXD(nµ, nλ)
w−→ EV−2(µ, λ/2) as n→ ∞,

where XD(µ, λ) denotes the extreme dispersion model generated by G. For 0 < α < 1 the behaviour of
v is like −µp with p = (α− 2)/(α− 1) > 2, and (32) applies.

For α > 1 the Burr hazard is not monotone, but is for y near 0. Hence by a suitable right censoring,
we obtain an IFR model with asymptotic behaviour µp for v with p < 1. In general Theorem 7.2 may be
applied in this way to models with non-monotone hazard as long as the hazard is monotone near 0.

8 Exponential slope functions

We now consider characterization and convergence for exponential slope functions, similar to Jørgensen’s
(1997, p. 160) characterization of exponential variance functions. These results have independent interest,
since exponential variance functions correspond to natural exponential families generated by extreme
stable distributions with stability index α = 1.
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8.1 Characterization

Elaborating on the parallel between the Rayleigh and normal distributions, we note that the latter satisfies
the following transformation property:

N(m+ µ, σ2) −m = N(µ, σ2)

for all m ∈ R, imitating (30), but with multiplication replaced by addition. From (10), we would expect
in the Rayleigh IFR case that the term −m corresponds to a left truncation followed by the removal of
an exponential component. More generally, given XD(µ, λ) with unit slope function v on ψ = R+, we
consider the shift transformation, defined by the following two steps.

1. Left truncation (IFR) or right censoring (DFR), which restricts the domain to µ > m, while
maintaining the slope at λ−1v(µ). This gives rise to an exponential component.

2. Removing the exponential component, giving the rate µ > 0 and slope λ−1v(m+ µ).

The result is an extreme dispersion model XDm(µ, λ) with unit slope function v(m + ·). We now
characterize exponential slope functions as fixed points for the shift transformation.

Theorem 8.1 Let XD(µ, λ) have unit slope function v and domain Ψ = R+. If for some λ > 0 there
exists a positive function gλ(m) such that for all m,µ > 0

XDm(µ, gλ(m)) = XD(µ, λ), (35)

then the unit slope function v is either constant or exponential.

Proof: By calculating the slope on both sides of (35) we obtain the equation

1

gλ(m)
v(m+ µ) = λ−1v(µ).

Without loss of generality we may take λ = 1. By letting µ ↓ 0 and using the continuity of v, we find
that the limit v(0+) exists, is positive and finite, and g1(m) = v(m)/v(0+). This, in turn, implies that
v satisfies the functional equation v(0+)v(m + µ) = v(m)v(µ) for all m,µ > 0. Taking into account the
continuity of v, the solution is

v(µ) = v(0+)eβµ (36)

for some β ∈ R, which in turn implies that (35) holds for all λ > 0 with gλ(m) = λeβm.

Besides the Rayleigh case (β = 0) there are two main cases of (36), one IFR and one DFR. The IFR
case has unit slope function v(µ) = e−µ for µ > 0, and corresponds to the extreme dispersion model
generated from the survival function

G(y) = ey (1 + y)
−(1+y)

for y > 0. (37)

The DFR case has unit slope function v(µ) = −eµ for µ > 0, and corresponds to the extreme dispersion
model generated from the survival function

G(y) = e−yyy for 0 < y < 1, (38)

which is right censored at 1.
Note that by applying a suitable location and scaling operation to the power slope function (25) for

p > 2 we obtain

−
(

1 +
µ

p

)p

→ −eµ for p→ ∞,

which shows that the DFR case of (36) is a limiting case of the generalized extreme value family. A
similar result holds in the IFR case.
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8.2 Convergence

We now show a convergence theorem for exponential slope functions, similar to a result for exponential
variance functions (Jørgensen, 1997, p. 164). In effect, the fixed point (35) has a domain of attraction
consisting of models with asymptotically exponential slope functions.

Theorem 8.2 Let XD(µ, λ) denote an extreme dispersion model with unit slope function v and domain
Ψ = R+ having exponential asymptotics of the form

v(µ) ∼ cβe
βµ (39)

for µ → ∞, where cβ = 1 for β ≤ 0 and cβ = −1 for β > 0. Then the shifted model XDm(µ, λeβm)
converges to an extreme dispersion model with exponential slope function for m→ ∞.

Proof: The shifted model XDm(µ, λeβm) has unit slope function

e−βmv(m+ µ) → cβe
βµ for m→ ∞, (40)

pointwise for µ > 0. To show that the convergence is uniform in µ on compact subsets of R+, let
0 < µ < m0 for given m0 > 0. For given ε > 0 let µ0 be such that

∣

∣e−βµv(µ) − cβ
∣

∣ < ε

for µ > µ0, by (39). Then for any m > µ0 we find

∣

∣e−βmv(m+ µ) − cβe
βµ
∣

∣ = eβµ
∣

∣

∣
e−β(m+µ)v(m+ µ) − cβ

∣

∣

∣
≤
(

1 + eβm
)

ε

for all µ < m0, showing uniform convergence. The tightness condition (29) involves the integral
∫

Im(η)

λµ

|e−βmv(m+ µ)| dµ,

where the integrand behaves asymptotically like µe−βµ. For β > 0 the interval of integration is (η,∞),
whereas for β ≤ 0 it is (0, η), so in both cases the tightness condition is satisfied. The result now follows
from Theorem 7.1.

There are three main cases of (40). DFR case. Take β = 1 and let m be such that n = em is an
integer. We may then write the convergence as follows:

XDlog n(µ, λn)
w→ XD−(µ, λ) for n→ ∞, (41)

where XD−(µ, λ) is the model generated by (38). The left-hand side of (41) represents a shift transfor-
mation of the scaled min Ŷn for a sample of size n from XD(µ, λ). Rayleigh case. For β = 0 we obtain
convergence to the Rayleigh distribution,

XDm(µ, λ)
w→ EV− 1

2

(µ, λ) for m→ ∞.

IFR case. Take β = −1 and let t = e−m. Then

XD− log t(µ, λt)
w→ XD+(µ, λ) for t ↓ 0,

where XD+(µ, λ) is the model generated by (37). This in effect involves the asymptotic distribution of
an extremal process Xt for t ↓ 0, much like the infinitely divisible type of convergence of Jørgensen (1997,
p. 149). This follows by noting that to every XD(µ, λ) model there exists an extremal process Xt, in the
sense of Dwass (1964), such that tXt ∼ XD(µ, λt).
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Appendix: Proof of general convergence theorem

The proof of Theorem 7.1 proceeds along the same lines as Jørgensen’s (1997, p. 54) proof of the con-
vergence theorem for variance functions, which in turn is a simplification of Mora’s (1990) proof in the
multivariate case. The idea is to reconstruct the hazard function h from the limiting slope function v
using (14), and in turn use the uniform convergence and tightness to show convergence of the sequence
Hn.

Let K be a given compact subinterval of Ψ. By assumption Ψ = int (lim Ψn), so we may assume that
K ⊆ Ψn from some n0 on. We only need to consider n > n0. Fix a µ0 ∈ intK. Let ψn = h−1

n denote
the inverse hazard function given by ψ′

n (µ) = 1/vn(µ) on Ψn and ψn (µ0) = 0, cf. (14). Let hn, Hn etc.
denote the quantities associated with this parametrization.

Similarly, define ψ : Ψ → R by ψ′ (µ) = 1/v(µ) on Ψ and ψ(µ0) = 0. Then for µ ∈ K

|ψ′
n (µ) − ψ′ (µ)| =

|vn(µ) − v(µ)|
vn(µ)v(µ)

. (42)

By the uniform convergence of vn(µ) to v(µ) onK, it follows that vn(µ) is uniformly bounded onK. Since
v(µ) is bounded on K, it follows from (42) and from the uniform convergence of vn that ψ′

n (µ) → ψ′ (µ)
uniformly on K. This and the fact that ψn (µ0) = ψ(µ0) for all n implies, by a result from Rudin (1976,
Theorem 7.17, p. 152), that ψn (µ) → ψ (µ) uniformly on K.

Let Cn = ψn (Ψn) and C = ψ(Ψ). Then C = int (lim Cn). Let J = ψ(K) ⊆ C and Jn = ψn(K) ⊆ Cn.
Define h : C → Ψ by h(y) = ψ−1(y). Since ψ is strictly monotone and differentiable, the same is the case
for h, and h(y) > 0 on C since Ψ ⊆ R+. Let µ ∈ K be given and let y = ψ(µ) ∈ J and yn = ψn(µ) ∈ Jn.
Since vn(µ) is uniformly bounded on K, there exists an m such that |vn(µ)| ≤ m for all n and µ ∈ K. It
follows that |h′n(y)| ≤ m for all y ∈ J . Since µ = h(y) = hn(yn) we find, using the mean value theorem,
that

|hn(y) − h(y)| = |hn(y) − hn(yn)|
≤ m |y − yn|
= m |ψ(µ) − ψn(µ)| .

This implies that hn(y) → h(y) uniformly in y ∈ J . The above arguments also apply if J is extended to
a larger subinterval of C.

In order to invoke the tightness condition (29), we first consider the IFR case. Using (24) we obtain
for c ∈ C

Hn(c) =

∫ hn(c)

η
n

µ

|vn(µ)| dµ. (43)

For a given η ∈ Ψ we may choose ε > 0 and c ∈ C such that h(c) + ε < η, and from the convergence of
hn(c) to h(c) we obtain η

n
< hn(c) < η for n large enough. Together with (29) this implies that for every

k > 0 there exists a c = c(k) ∈ C such that for all n

0 ≤ Hn(c) ≤ k. (44)

Since all Hn are increasing we can make c(k) an increasing function of k. In the DFR case the inequality
(44) follows similarly by integrating over the interval (hn(c), ηn) in (43).

The condition (44) implies that there exists a c ∈ C such that

lim inf
n→∞

∫ c

−∞
hn(x) dx = lim inf

n→∞
Hn(c) <∞. (45)
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By Fatou’s lemma, (45) implies that
∫ c

−∞ h(x) dx < ∞. We may now define G and H for y ∈ R by

H (y) =
∫ y

−∞ h(x) dx, and G(y) = exp {−H (y)}, where we use the conventions discussed in connection
with (1). Then G is a survival function with support C, and H(inf C) = 0. Using the above-mentioned
result from Rudin once more, we find that for any given d in J , Hn (y)−Hn(d) converges to H (y)−H(d)
uniformly in y ∈ J .

To conclude the proof, we choose a d ∈ J , and show that Hn(d) converges to H(d). The tightness
condition (44) implies that, for given k > 0 and c ≤ c(k), Hn(d) satisfies

Hn(d) −Hn (c) ≤ Hn(d) ≤ Hn(d) −Hn (c) + k.

We may enlarge J to include c. Letting n → ∞ we find that Hn(d) is asymptotically squeezed between
the values H(d) −H (c) and H(d) −H (c) + k, which can be made arbitrarily close to H(d) by choosing
k small, and c close to inf C. Hence Hn(d) converges to H(d). It follows that Hn (y) converges to H (y)
uniformly in y ∈ J , completing the proof.
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