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Introduction
Genetic information in eukaryotes is organized in chromatin, a 

highly conserved structural polymer that supports and controls 

crucial functions of the genome. Chromatin undergoes dynamic 

changes, including massive structural reorganization, during 

genetic processes such as DNA replication and cell division, 

transcription, DNA repair, and recombination. Histones and 

particularly their N-terminal tails are modulated by a large num-

ber of posttranslational modifi cations, including lysine methyl-

ations that influence these fundamental biological processes 

(Kouzarides, 2007).

The contribution from the chromatin environment to DNA 

replication and DNA damage response processes is only starting 

to become evident. Recently, a link between histone lysine 

methylation and the DNA damage responses have been uncovered. 

The checkpoint mediator 53BP1 is directly recruited to chro-

matin regions flanking DNA double-strand breaks (DSBs). 

This occurs via interaction with histone H4 that is specifi cally 

mono- or dimethylated at Lys20 or with histone H3 dimethylated 

at Lys79 (Huyen et al., 2004; Botuyan et al., 2006). 53BP1 plays an 

important role in the cellular response to DNA damage by acting 

as an adaptor in the repair of DNA DSBs (Ward et al., 2006).

Histone H4 Lys20 (H4-K20) can be mono-, di-, or tri-

methylated, and SET8 (also known as PR-Set7 and SETD8) can 

catalyze the monomethylation (Fang et al., 2002; Nishioka et al., 

2002; Couture et al., 2005; Xiao et al., 2005). Previously, the 

expression of SET8 in mammalian cells has been shown to in-

crease during S phase until mitosis (Rice et al., 2002); however, 

the functional role of SET8 remains poorly understood. Key is-

sues such as the consequences of SET8 depletion have not been 

reported. The fl y SET8 homologue PR-Set7 has been deleted in 

Drosophila melanogaster larvae, in which tissues with higher 

rates of cell divisions were severely affected. In this organism, 

progression through early mitosis was delayed, and levels of the 

essential mitotic regulator cyclin B was reduced (Sakaguchi and 

Steward, 2007).

In this study, we have analyzed the functional role of 

human H4-K20 methyltransferase SET8. We establish that it 

is important for proper progression through the cell cycle. 

Inhibition of SET8 expression by siRNA results in the massive 

accumulation of DNA damage that subsequently activates a 
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hromatin structure and function is infl uenced by 

histone posttranslational modifi cations. SET8 (also 

known as PR-Set7 and SETD8) is a histone methyl-

transferase that monomethylates histonfe H4-K20. How-

ever, a function for SET8 in mammalian cell proliferation 

has not been determined. We show that small interfering 

RNA inhibition of SET8 expression leads to decreased cell 

proliferation and accumulation of cells in S phase. This is 

accompanied by DNA double-strand break (DSB) induc-

tion and recruitment of the DNA repair proteins replica-

tion protein A, Rad51, and 53BP1 to damaged regions. 

SET8 depletion causes DNA damage specifi cally during 

replication, which induces a Chk1-mediated S-phase check-

point. Furthermore, we fi nd that SET8 interacts with prolif-

erating cell nuclear antigen through a conserved motif, and 

SET8 is required for DNA replication fork progression. 

Finally, codepletion of Rad51, an important homologous 

recombination repair protein, abrogates the DNA dam-

age after SET8 depletion. Overall, we show that SET8 is 

essential for genomic stability in mammalian cells and that 

decreased expression of SET8 results in DNA damage and 

Chk1-dependent S-phase arrest.
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Chk1-dependent checkpoint. This leads to slower progression 

through S phase and decreased proliferation. We also show that 

SET8 interacts with proliferating cell nuclear antigen (PCNA) 

through a PCNA interaction motif and that there is a requirement 

for SET8 during replication fork progression. Collectively, our data 

suggest that SET8 plays an important role in securing the accurate 

completion of DNA replication and, for the fi rst time, demon-

strates such a role for a histone methyltransferase in protecting 

against genomic instability.

Results and discussion
Depletion of SET8 prevents cell 
proliferation and causes cell cycle delay in 
S phase
To investigate the role of SET8 depletion in cell cycle pro-

gression, we transfected U2OS cells with siRNA against SET8. 

U2OS cells are human osteosarcoma cells that are widely used 

in cell cycle studies. Cells were counted 48 and 96 h after siRNA 

treatment, and the SET8-depleted cells proliferated signifi cantly 

slower than mock-treated cells (Fig. 1 A). We have not observed 

marked sub-G1 peaks or accumulating debris indicative of 

apoptosis/cell death at these time points. Depletion of SET8 

also induced morphological alterations of the cells (Fig. 1 B), as 

depleted cells increased the size of their cytoplasm.

To explore the nature of the cell cycle delay observed dur-

ing SET8 depletion, cells were analyzed by fl ow cytometry 

(FACS). Addition of the mitotic spindle inhibitor nocodazole 

16 h before harvesting resulted in the accumulation of cells in 

M phase in the mock-treated sample (Fig. 2 A). In contrast, inhibi-

tion of SET8 expression led to a signifi cant accumulation of the 

cells in S phase, a defect that became more visible in the presence 

of nocodazole (Fig. 2 A). Western blotting of SET8-depleted 

cells supported the notion that SET8 is required for normal 

S-phase progression. These results were reproduced by two differ-

ent individual siRNA as well as SMARTpool siRNA targeting 

SET8 (Fig. S1, A and B; available at http://www.jcb.org/cgi/

content/full/jcb.200706150/DC1). As shown in Fig. 2 B, the levels 

of histone H3 Ser10 phosphorylation, a marker of mitotic cells, 

were low in SET8-depleted cells compared with mock cells. 

Consistently, the levels of cyclin A2, which is known to accu-

mulate from the G1/S transition to G2 phase and is degraded in 

metaphase cells, were higher in SET8-depleted cells compared 

with mock cells.

Next, we wanted to determine whether decreasing SET8 

levels would affect DNA replication. U2OS cells treated with 

SET8 or mock siRNA were pulse labeled with BrdU and anal-

yzed by FACS. Remarkably, a significant fraction of cells in 

S phase were not incorporating BrdU (Fig. 2 C). Collectively, 

these data show that DNA replication is impaired in SET8-

depleted cells, resulting in S-phase delay and, consequently, 

decreased cell proliferation.

Inhibition of SET8 expression results 
in DSBs
Next, we investigated whether the slower progression through 

S phase might be related to DNA replication–associated lesions. 

To address this, we stained U2OS cells using an antibody against 

Figure 1. Removal of SET8 results in reduced cell proliferation. (A) U2OS cells were treated with either mock siRNA or siRNA against SET8. Cells were 
counted 48 and 96 h after siRNA treatment. Every time point represents three independent samples, and the experiment was repeated three times with similar 
results. (B) Pictures were taken of representative areas of the cell dishes before harvest. A fraction of the cells from A was collected and processed for Western 
blotting. MCM7 is a loading control. Molecular weights are indicated on the left side. Error bars represent SD. Bars: (top) 25 μm; (bottom) 4 μm.
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phosphorylated H2AX (γ-H2AX), a well-established marker 

for DNA DSBs (Pilch et al., 2003). As shown in Fig. 3 A, inhibi-

tion of SET8 expression led to a dramatic increase in γ-H2AX–

positive cells as early as 24 h after siRNA transfection, suggesting 

that SET8 depletion leads to massive DNA damage. To further 

corroborate these fi ndings, we analyzed and quantifi ed γ-H2AX 

levels in a FACS-based assay. Again, SET8 silencing lead to 

marked DNA damage (Fig. 3 B). Cells with DNA damage were 

negative for H4-K20 monomethylation, which is consistent with 

the concomitant loss of the monomethylase function of SET8 in 

these cells (Figs. 3 C and S1 C). γ-H2AX foci formation after 

SET8 depletion was also observed in HeLa cells (Fig. S1 D) as 

well as by direct analysis of DNA strand breaks using pulsed-

fi eld gel electrophoresis (Fig. 4 D). Collectively, our data dem-

onstrate that SET8 has a critical role in maintaining correct 

genomic structure.

We reasoned that massive DNA damage observed after 

SET8 depletion could result from the inhibition of vital DNA 

repair processes because SET8 status could affect the recruit-

ment of 53BP1 as well as other proteins to sites of DNA damage. 

53BP1 is a checkpoint mediator involved in the initial sensing and 

signaling of DNA strand breaks (Ward et al., 2006). The protein 

has been suggested to be recruited to DNA DSBs via interaction 

with dimethylated histone H3-K79 and mono- or  dimethylated 

Figure 2. SET8 depletion leads to a delay in S-phase 
 progression. (A) SET8 was depleted in U2OS cells using 
siRNA for 52 h. Nocodazole was added 16 h before har-
vest to the indicated samples. The samples were stained 
with PI and analyzed by fl ow cytometry analysis (FACS). 
(B) Cells were collected from a similar experiment as in A 
and were processed for immunoblotting. (C) U2OS cells 
were treated with siRNA against SET8 or mock for 48 and 
72 h. Cells were pulsed with BrdU for 5 min, fi xed, stained 
for BrdU and PI, and analyzed by FACS. The distribution 
of cells corresponding to the boxed areas is presented in 
the table beneath the graph. A fraction of the cells was 
collected and processed for immunoblotting.
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H4-K20, and this interaction has been suggested to be dependent 

on SET8 (Botuyan et al., 2006). To understand whether the 

inhibition of SET8 expression affected the recruitment of key 

DNA repair proteins to sites of DNA damage, we investigated the 

nuclear accumulation of these proteins by confocal microscopy. 

As demonstrated in Fig. 3 (C and D), decreased SET8 expres-

sion lead to 53BP1 recruitment to sites of DNA damage and a 

marked increase in Rad51 and replication protein A (RPA) foci. 

Thus, inhibition of SET8 expression and reduction of H4-K20 

monomethylation led to an increased recruitment of 53BP1. 

To test whether SET8 would be required for 53BP1 recruitment 

after exogenously induced DSB, we also treated SET8-depleted 

cells with ionizing irradiation. Yet again, 53BP1 readily re-

located to radiation-induced DNA damage foci (Fig. S1 D). This 

strongly indicates that the presence of SET8 is not essential 

for the recruitment of 53BP1. 53BP1 was found primarily to 

bind dimethylated H4-K20, and we noticed that dimethylated 

H4-K20 persists after SET8 silencing (Fig. S2 A, available 

Figure 3. SET8 depletion leads to DSBs and checkpoint activation in S-phase cells. (A) SET8 was depleted in U2OS cells for 24 and 48 h. Cells were pre-
extracted and fi xed before staining with antibody toward γ-H2AX and Rad51. (B) U2OS cells were treated as in A and were fi xed and stained for γ-H2AX 
and PI followed by FACS analysis. (C) Cells were treated as in A and stained with antibodies recognizing γ-H2AX and monomethylated H4 Lys20. Cells 
were also collected and processed for Western blotting with the indicated antibodies. Reduction of H4 Lys20 monomethylation upon SET8 depletion is 
quantifi ed and indicated below the immunoblot. (D) Cells were treated as in A and were stained with 53BP1 and RPA antibodies. Bars, 10 μm.
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at http://www.jcb.org/cgi/content/full/jcb.200706150/DC1). 

This indicates that 53BP1 is recruited via persisting dimethyl-

ated H4-K20 or via interaction with accessible dimethylated 

H3-K79 or γ-H2AX (Huyen et al., 2004; Ward et al., 2006).

The S-phase delay in SET8-depleted cells is 
Chk1 mediated
DNA replication can cease for a variety of reasons before sched-

uled termination, including progression into areas with DNA 

damage lesions. Chk1 is a key regulator of the cellular response 

induced by stalled replication forks, a response that leads to the 

inhibition of DNA replication initiation at origins of replication 

(Feijoo et al., 2001). Therefore, we investigated whether Chk1 

is activated in SET8-depleted cells. To do this, we transfected 

cells with SET8 siRNA. Nocodazole was added during the last 

16 h, and cells were processed for immunoblotting analysis. 

The inhibition of SET8 expression led to a dramatic activa-

tion of Chk1 as measured by the phosphorylation of Ser317 on 

Chk1 (Fig. 4 A; Zhao and Piwnica-Worms, 2001). Phosphoryla-

tion of RPA was also markedly increased when SET8 was 

depleted. RPA is required for activation of the ataxia telangi-

ectasia  related kinase, which activates Chk1 in the presence of 

DNA damage (Zou et al., 2003). The activation of Chk1 sug-

gested a role for the checkpoint kinase in mediating the cell 

cycle delay in SET8-depleted cells. To explore this, Chk1 was 

specifi cally long-term depleted using siRNA in combination 

with SET8 depletion. Inhibition of Chk1 prevented the delay 

in S phase (Fig. 4 B). Similar data were obtained with the Chk1 

inhibitors Gö6976 (Fig. 4 C; Kohn et al., 2003), CEP-3891 

(Sorensen et al., 2003), and UCN-01 (Sarkaria et al., 1999; 

and unpublished data). These cells progress through the cell 

cycle with markedly damaged DNA as judged by quantitative 

γ-H2AX FACS analysis (Figs. 4 C and S2 B) and pulsed-fi eld 

gel electrophoresis (Figs. 4 D and S2 C). This is consistent with 

a critical role for Chk1 in restraining cell cycle progression after 

DNA damage.

Figure 4. SET8 depletion leads to replication-dependent DNA damage that activates Chk1. (A) SET8 was depleted in U2OS cells using siRNA for 52 h. 
Nocodazole was added for the last 16 h as indicated. Cells were collected and processed for immunoblotting. (B) U2OS cells were treated with siRNA 
against mock, SET8, or Chk1 for 48 h. Nocodazole was added 13 h before harvest. Cells were fi xed, stained with PI, and analyzed by FACS. A graph 
was generated by overlaying the FACS profi les from SET8-depleted cells and cells codepleted for SET8 and Chk1. (C) SET8 was depleted in U2OS cells using 
siRNA for 52 h. Nocodazole (16 h) and the Chk1 inhibitor Gö6976 (3 h) were added before harvest. Samples were fi xed, stained with PI, and analyzed 
by FACS. (B and C) A fraction of the cells was collected and processed for immunoblotting. (D) 48 h after SET8 siRNA transfection, cells were treated with 5 μM 
aphidicolin and/or the Chk1 inhibitor CEP-3891 for an additional 24 h. Cells were then processed for pulsed-fi eld gel electrophoresis. (E) U2OS cells were 
treated with siRNA against mock, SET8, Cdc45, or Rad51 for 48 h. Cells were then fi xed and stained for γ-H2AX and PI followed by FACS analysis.
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Figure 5. SET8 interacts with PCNA and is required for replication fork progression. (A) U2OS cells were transfected with siRNA against mock or SET8 
and treated with thymidine for 30 h. Cells in the bottom panel were released from G1 arrest by the addition of new media. Nocodazole was added as the 
cells were released 10 h before harvest. (B) 48 h after SET8 siRNA transfection, cells were pulse labeled with [3H]thymidine for 30 min and were allowed to 
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DNA damage occurring after SET8 
depletion requires replication and the 
functional homologous recombination 
repair pathway
We next wanted to address whether the lesions generated by 

SET8 silencing were dependent on DNA replication. Importantly, 

as shown in Fig. 4 D, the DNA replication inhibitor aphidicolin 

abrogated the DNA damage induced by SET8 depletion, sug-

gesting that the lesions depend on ongoing DNA replication 

(Fig. 4 D). To corroborate this, we cosilenced several genes with 

an important role in DNA replication. Rapid accumulation of 

γ-H2AX foci was not observed by individual depletion of other 

replication-associated proteins such as Cdc45 (Syljuasen et al., 

2005) and MCM4, which are both essential for the initiation of 

DNA replication (Fig. 4 E and not depicted; Bell and Dutta, 

2002; Pacek and Walter, 2004). When codepleted with SET8, 

these proteins all reduced the DNA damage. This confi rmed that 

DNA replication is necessary for SET8 silencing to cause DNA 

damage. The homologous recombination repair pathway plays 

an important role in the repair of DNA damage occurring during 

DNA replication (Saintigny et al., 2001; Helleday et al., 2007). 

Depletion of Rad51, a key component of this repair pathway, 

did not cause such massive DNA damage at the time points ana-

lyzed (Fig. 4 E). At such early time points, cells depleted for 

Rad51 were still viable and progressed through S phase like 

control depleted cells (Fig. S3 C, available at http://www.jcb

.org/cgi/content/full/jcb.200706150/DC1). Notably, Rad51 

depletion blocked DNA damage after SET8 depletion. We sug-

gest that SET8 in unperturbed cells is involved downstream of 

Rad51 in resolving recombination structures forming spontane-

ously in cells during DNA replication. When SET8 is depleted, 

these structures are collapsed into DSBs.

Recent results have suggested that Drosophila PR-Set7 

function is required for chromosome condensation and mitosis 

(Sakaguchi and Steward, 2007). Thus, to investigate whether 

the S-phase checkpoint observed in mammalian cells is depen-

dent on progression through mitosis, we arrested cells at the 

G1/S transition by addition of the DNA replication inhibitor 

thymidine. At the same time, SET8 was depleted using siRNA, 

and cells were released 30 h after arrest and analyzed by FACS. 

As seen in Fig. 5 A, cells released from the thymidine arrest 

were also affected by the depletion of SET8, as these cells pro-

gressed slower through S phase compared with mock-treated 

cells. Therefore, we conclude that the S-phase delay in response 

to SET8 silencing can occur independently of progression 

through mitosis.

Our results suggest that depletion of SET8 in the Drosophila 

and mammalian organisms may have different outcomes. This can 

partly be explained by the fact that Drosophila PR-Set7 and human 

SET8 only are moderately homologous. However, the different 

phenotypes could also be a consequence of the experimental ap-

proaches used. In the Drosophila study (Sakaguchi and Steward, 

2007), the investigators used cells from PR-Set7 knockout fl ies. 

The cells originated from third instar larvae fl ies and, thus, had 

progressed through several cell cycles before analysis. In con-

trast, we used mammalian cells and investigated the defects 

of SET8 depletion after cells were released from a G1/S block. 

We cannot eliminate the possibility that cells depleted for SET8 

experience defects in progression through M phase; however, 

such defects were not detected in our study.

SET8 is required for replication fork 
progression and interacts with PCNA
Having established that DNA damage after SET8 depletion is 

dependent on DNA replication, we further investigated whether 

SET8 plays a direct role in DNA replication. To achieve this, 

we monitored replication fork progression using a previously 

described method in which newly synthesized DNA is labeled 

with [3H]thymidine (Johansson et al., 2004). The assay is based 

on the principle that each replication fork consists of a pair of 

single-stranded ends. These ends become unwound in alkaline 

solution. If replication elongation is inhibited, the labeled DNA 

will be present in the single-stranded DNA fraction. On the con-

trary, replication elongation will lead to the presence of the 

labeled DNA in the double-stranded DNA fraction. Thus, 100% 

labeled single-stranded DNA is equivalent to no fork progres-

sion (Fig. S3 D). Using this assay, we found that replication 

progression was slowed signifi cantly by SET8 depletion (Fig. 5 B), 

confi rming that SET8 is required for effi cient DNA replication. 

Fork progression was not increased by the coinhibition of Chk1; 

rather, this inhibition lead to further replication inhibition. This indi-

cates that SET8 and Chk1 function on separate pathways to reg-

ulate replication fork progression.

Stimulated by this fi nding, we performed detailed sequence 

analysis of SET8 in Scan Prosite searching for conserved motifs 

that could link SET8 with DNA replication. Remarkably, we 

found a conserved PIP box in SET8, which is a short sequence 

that mediates binding to PCNA (Warbrick, 1998). The SET8 

PIP-box sequence is N-X-X-L-X-X-F-Y, which is located from 

amino acid residues 178–185 in human SET8. To investigate 

the interaction between PCNA and SET8, we fi rst performed 

immunofl uorescence staining. This indeed revealed colocaliza-

tion between SET8 and PCNA (Fig. 5 C). Next, we determined 

whether the two proteins could interact. As shown in Fig. 5 D, 

SET8 and PCNA interact in a manner dependent on a functional 

PIP box. We also detected an interaction at endogenous protein 

levels (Fig. 5 E), which, altogether, links SET8 directly with the 

replication machinery.

progress with and without Chk1 inhibitor CEP-3891 for the indicated times. Replication fork elongation from the incorporated [3H]thymidine was then 
measured as described in Fig. S3 D. 100% labeled single-stranded DNA (ssDNA) is equivalent to no fork progression. (C) Colocalization between 
HA-FLAG–tagged SET8 and YFP-PCNA transfected in U2OS cells. Cells were preextracted before fi xation and processed for immunostaining with HA antibody. 
(D) Immunoprecipitation of HA-FLAG–tagged SET8 wild type and PIP-box mutant (LTDFY mutated to ATDAA) from HEK293 cells. Cells were transfected with 
the indicated constructs followed by lysis, immunoprecipitation, and immunoblotting. (E) Endogenous SET8 from HEK293 cells was immunoprecipitated and 
processed for immunoblotting. Bars, 10 μm.
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 Collectively, we propose that SET8 supports the organiza-

tion and maintenance of chromatin structures to facilitate DNA 

replication and effi cient DNA repair. SET8 may also play a tran-

scriptional role in regulating the expression of genes critical for 

S-phase progression; however, we have not observed abnormali-

ties in the expression of the DNA replication–associated pro-

teins analyzed so far. In conclusion, our results demonstrate that 

SET8 is required for normal S-phase progression. Inhibition of 

SET8 expression leads to a dramatic increase in Chk1 activity, 

resulting in Chk1-dependent inhibition of DNA replication.

Materials and methods
Cell culture and chemicals
The human U2-OS osteosarcoma cell line was grown in DME medium 
with 10% FBS. For siRNA-mediated ablation, cells were transfected using 
OligofectAMINE (Invitrogen) according to the manufacturer’s protocol. 
The following oligonucleotide sequences were used: 5′-P A C U U C A U G G C-
G C U C C G U A C U U -3′ and 5′-P G A U U U G U C U C U C U A G U U G C U U -3′ (SET8 
siRNA). Chk1 siRNA were purchased from Dharmacon (SMARTpool re-
agents M-003255-02; four siRNAs combined into a single pool). A con-
trol oligonucleotide targeting cyclophilin was also purchased from 
Dharmacon. Experiments with siRNA-transfected cells were performed 
as indicated in the fi gure legends. The PCNA construct was a gift from 
C. Lukas (Danish Cancer Society, Copenhagen, Denmark). Nocodazole 
(Sigma-Aldrich) was used at 100 ng/ml. Inhibition of Chk1 activity was 
achieved by the addition of 100 nM Gö6976 (Calbiochem). Thymidine 
and 2-deoxycytidine-HCl were purchased from Sigma-Aldrich and used at 
2 mM and 24 μM, respectively.

FACS
Cells pulse labeled with 10 μM BrdU (Roche) for 5 min were analyzed 
according to standard protocols. In brief, cells were fi xed in 70% ethanol 
and incubated in 2 M HCl for 30 min. Cells were stained with mouse 
antibody to BrdU (1:100) for 1 h followed by 1-h incubation with conju-
gated anti–mouse IgG (AlexaFluor488 at 1:1,000). DNA was then counter-
stained with 0.1 mg/ml propidium iodide (PI) containing RNase for 30 min 
at 37°C. γ-H2AX, Cdc45, and Rad51 were stained as described above 
for BrdU except for the omission of HCl treatment. Analysis was performed 
on a FACSCalibur (BD Biosciences) using CellQuest software (Becton 
Dickinson). Quantifi cations were performed using Modfi t LT software (Verity 
Software House).

Microscopy and immunofl uorescence
Cells were grown on coverslips and treated as indicated in the fi gure 
legends. The coverslips were then washed briefl y in PBS followed by ex-
traction for 10 min on ice with Triton buffer (0.5% Triton X-100 in 20 mM 
Hepes, pH 7.4, 50 mM NaCl, 3 mM MgCl, and 300 mM sucrose) and fi x-
ation for 10 min with 4% PFA. Samples were incubated with primary anti-
bodies in PBS/1% FCS for 1 h at room temperature, washed in PBS/1% 
FCS three times for 10 min, and incubated with AlexaFluor488– or 594–
conjugated secondary antibodies (1:1,000; Invitrogen) for 1 h at room 
temperature. Cells were washed in PBS three times for 10 min and mounted 
using Vectashield mounting medium containing DAPI (Vector Laboratories). 
Pictures were acquired on a microscope (Axiovert 200M LSM 510; Carl 
Zeiss, Inc.) using a 40× c-Apochromat objective with an NA of 1.2 in 
H2O. Pictures were taken at room temperature using LSM 510 META soft-
ware and LSM image examiner software (Carl Zeiss, Inc.). Brightfi eld pic-
tures were taken with a microscope (Axiovert 135; Carl Zeiss, Inc.) using 
a 10× Achroplan objective with an NA of 0.25. Pictures were acquired 
at room temperature with a camera (CoolSNAP cf2; Photometrics) using 
MetaMorph software (MDS Analytical Technologies). All pictures were ex-
ported in preparation for printing using Photoshop (Adobe).

Immunoprecipitation
Antibodies for immunoprecipitation were coupled to protein A beads for 
1 h at 4°C. Extracts for immunoprecipitation were prepared using immuno-
precipitation buffer (50 mM Hepes, pH 7.5, 150 mM NaCl, 1 mM EDTA, 
2.5 mM EGTA, 10% glycerol, 0.1% Tween 20, and protease inhibitors leu-
peptin, aprotinin, and PMSF). The lysis mixture was incubated on ice for 
15 min, sonicated three times with a digital sonifi er for 3 s (20%; S250; 

Branson), and microfuged for 10 min at 4°C. Extracts were precleared with 
20 μl of protein A–Sepharose and 2 μg of normal IgG. After microcentrifu-
gation, 20 μl of protein A–Sepharose conjugated with 1 μg of antibody 
was added and allowed to precipitate for 1.5 h at 4°C with rotation. The im-
mune complexes were pelleted by gentle centrifugation and washed four times 
with 1 ml of immunoprecipitation buffer. After a fi nal wash with immuno-
precipitation buffer, the buffer was aspirated completely, and beads were 
resuspended in laemmli buffer. Immunoblotting was performed as indi-
cated in the next section.

Immunoblotting and antibodies
In brief, cells were lysed on ice in radioimmunoprecipitation assay buffer 
(50 mM Hepes, pH 7.5, 150 mM NaCl, 1 mM EDTA, 2.5 mM EGTA, 10% 
glycerol, 1% IgePal630, 1% deoxycholic acid [sodium salt], 0.1% SDS, 
1 mM PMSF, 5 μg/ml leupeptin, 1% vol/vol aprotinin, 50 mM NaF, and 
1 mM DTT). Proteins were separated on an SDS-PAGE gel and transferred to 
a nitrocellulose membrane. The membranes were incubated in primary anti-
body diluted in 5% milk as indicated in the fi gures followed by incubation 
with secondary antibody (peroxidase-labeled anti–mouse or –rabbit IgG; 
1:10,000; Vector Laboratories). Films were developed using an x-ray 
machine (Valsoe; Ferrania). Phospho-Chk1 antibody (Chk1-pSer317) was 
purchased from Cell Signaling Technology. Antibodies to MCM7 (DCS-141) 
and Chk1 (DCS-310) have been described previously (Sorensen et al., 
2005). Cdc25A (F-6), cyclin A1 (H-432), Rad51 (H-92), and 53BP1 
(H-300) were obtained from Santa Cruz Biotechnology, Inc. Phosphory-
lated H2AX (JBW103), monomethylated histone H4 Lys20, and phosphor-
ylated histone H3 Ser10 were purchased from Millipore. SET8 (ab3744) 
and PCNA (PC10) were purchased from Abcam, and RPA (Ab-3) was pur-
chased from EMD.

Pulsed-fi eld gel electrophoresis
48 h after SET8 siRNA transfection, cells were treated with 5 μM aphidi-
colin (Fluka) and/or 500 nM CEP-3891 (Cephalon) for an additional 24 h. 
106 cells were inserted into 10 mg/ml InCert agarose (Cambrex) plugs 
and incubated for 48 h in 0.5 M EDTA, 1% N-laurylsarcosyl, and 2 mg/ml 
proteinase K at 20°C in darkness. After washing of plugs four times in Tris-
EDTA buffer, separation was performed for 20 h as described previously 
(Lundin et al., 2005) on a 1% certifi ed megabase agarose (Bio-Rad Labo-
ratories) gel. The gel was then stained overnight with ethidium bromide. 
Three independent experiments were performed.

Replication fork elongation
Analysis of replication fork elongation was performed as described previ-
ously (Johansson et al., 2004). Basically, [3H]thymidine was incorporated 
in ongoing forks, and, after labeling, the fork progressed from the labeled 
area. In alkaline solution, unwinding was initiated from the single-stranded 
ends of the fork; thus, the amount of labeled single-stranded DNA is greater 
the slower the fork is moving. 24 h after SET8 siRNA transfection, cells 
were replated in 24-well plates (105 cells/well) and allowed to grow for an 
additional 24 h. Cells were then pulse labeled with 37 kBq/ml [3H]thymidine 
(GE Healthcare) in DME at 37°C with 5% CO2 for 30 min, washed, and 
incubated with prewarmed media ±500 nM CEP-3891 at 37°C with 5% 
CO2 for the indicated times. After incubation, replication was terminated 
by rinsing the cells with ice-cold 0.15 M NaCl before the addition of 0.5 ml 
of ice-cold 0.15 M NaCl and 0.03 M NaOH unwinding solution. After 
30-min incubation on ice in darkness, unwinding was terminated by the 
addition of 1 ml of 0.02-M NaH2PO4. DNA was fragmented to �3 kb by 
sonication (B-12 sonifi er with micro-tip; Branson) for 15 s, and SDS was 
added to a fi nal concentration of 0.25%. After overnight storage at −20°C, 
single- and double-stranded DNA was separated on hydroxy apatite col-
umns at 60°C. Three independent experiments were performed.

Online supplemental material
Fig. S1 shows the specifi city of SET8 removal by RNAi, the inverse relationship 
between γ-H2AX and H4-K20me1–positive cells, and the recruitment of 
53BP1 in γ-irradiated HeLa cells during SET8 depletion. Fig. S2 shows the 
unchanged level of H4-K20me2 in U2OS cells after the depletion of SET8, 
a quantifi cation of DNA damage during removal of SET8 combined with 
the inhibition of Chk1 using CEP-3891, and a quantifi cation of replication-
dependent DNA damage after SET8 depletion from Fig. 4 D. Fig. S3 
shows the down-regulation of SET8, Rad51, and Cdc45 corresponding to 
Fig. 4 E, the progression of U2OS cells through the cell cycle after deple-
tion of Rad51 for 48 h, and a schematic presentation of the replication fork 
progression assay. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200706150/DC1.
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