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Objective:  To determine possible exposure-associated delays in auditory brainstem evoked 

potential (BAEP) latencies as an objective measure of neurobehavioral toxicity in 14-year-old 

children with developmental exposure to MeHg from seafood.  

Study design:   Prospective study of a birth cohort in the Faroe Islands, where 878 of eligible 

children (87%) were examined at age 14 years.  Latencies of BAEP peaks I, III, and V at 20 and 

40 Hz constituted the outcome variables.  Mercury concentrations were determined in cord 

blood and maternal hair, and in the child’s hair at ages 7 and 14. 

Results:   Latencies of peaks III and V increased by about 0.012 ms when the cord-blood 

mercury concentration doubled.  As seen at age 7, this effect appeared mainly within the I-III 

interpeak interval.  Despite lower postnatal exposures, the child’s hair-mercury level at age 14 

years was associated with prolonged III-V interpeak latencies.  All benchmark dose results were 

similar to those obtained for dose-response relationships at age 7 years.  

Conclusions:   The persistence of prolonged I-III interpeak intervals indicates that some 

neurotoxic effects from intrauterine MeHg exposure are irreversible.  A change in vulnerability 

to MeHg toxicity is suggested by the apparent sensitivity of the peak III-V component to recent 

MeHg exposure.  
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BAEP Brainstem auditory evoked potential 

BMD Benchmark dose 

BMDL Benchmark dose level 

BMR Benchmark response 

CV Coefficient of variation 

EP Evoked potential 

MeHg Methylmercury 

NRC National Research Council 

PCB Polychlorinated biphenyl
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Methylmercury (MeHg) is a worldwide contaminant of seafood and freshwater fish.1  MeHg 

toxicity can produce widespread adverse effects within the nervous system, especially when 

exposures occur during brain development.2-3  Early adverse effects have been characterized by 

administering neurobehavioral tests to children exposed in utero from maternal seafood diets.4-6  

Thus, a National Research Council (NRC) committee7 recently concluded that intrauterine MeHg 

exposure was the most critical and emphasized the findings from a prospective birth cohort study 

carried out in the Faroe Islands.5  The damage to the developing nervous system is thought to be 

potentially irreversible.7  The possibility also exists that exposure during postnatal development 

may induce brain lesions; clinical2,8 and experimental9 information suggests that such effects 

would tend to be more focal and particularly involve the sensory cortex and the granular layer of 

the cerebellum.  

 Current advisories on fish consumption issued by national and state authorities differ 

and mainly aim at pregnant women or women of reproductive age groups.1  Because the risk to 

children from dietary MeHg exposure is unclear, some fish advisories in the US also address 

‘young children’,10 or children up to, e.g., 8 years11 or 15 years.12  

 As an indicator of MeHg neurotoxicity, delayed evoked potential (EP) latencies have 

been recorded in poisoning victims13,14 and in laboratory animals.15  In contrast to 

neuropsychological test outcomes, this measure is thought to be independent of socioeconomic 

covariates.16  As illustrated by environmental exposure to lead, EP abnormalities constituted 

important objective evidence on neurotoxic effects in children.17  

 In an extended follow-up of the Faroese birth cohort, we have assessed brainstem 

auditory evoked potentials (BAEPs) at age 14 years.  We previously showed that increased 

intrauterine MeHg exposures were associated with delayed peak III latencies at age 7 years.5,18  

We hypothesized that these delays would remain at age 14 and that BAEP latencies would also 
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be sensitive to MeHg from adolescent seafood diets.  

 

METHODS  

Study Population and Follow-up 

A cohort of 1,022 births was assembled in the Faroe Islands during a 21-month 

period of 1986-1987.19,20  The primary indicator of intrauterine exposure to MeHg was the 

mercury concentration in cord blood, and concentrations in maternal hair at parturition were also 

determined.19  MeHg exposures varied considerably: 15% of the mothers had hair mercury 

concentrations above 10 �g/g, while 4% were below 1 �g/g, a level that corresponds to the 

exposure limit recommended by the NRC committee.7  Concomitant exposure to 

polychlorinated biphenyls (PCBs) was determined from the concentration in umbilical cords from 

438 cohort members.5  The first follow-up examination was carried out seven years later and 

included hair-mercury assessment, evoked potentials and pediatric examination.5,21   

At age 14 years, a total of 878 of 1,010 live cohort members (86.9%) were examined.  

Most examinations took place at the National Hospital in Tórshavn, the capital of the Faroe 

Islands, during April-June of 2000 and 2001.  For families who had moved, examinations were 

also offered in Odense, Denmark in November 2000.  Each day, four children were examined 

during the morning, and four during the afternoon.  The examinations were conducted by a team 

of health professionals who had no access to information on individual exposure levels.  The 

438 boys and 440 girls examined had an average age of 13.83 (SD, 0.32) years.  

Hair samples were again obtained, and the proximal 2-cm segment was analyzed by 

flow-injection cold-vapor atomic absorption spectrometry after digestion of the hair sample in a 

microwave oven.5  The total analytical imprecision for this analysis was estimated to be 4.3% 

and 5.5% at mercury concentrations of 4.7 �g/g and 11.1 �g/g, respectively.  Accuracy was 
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ensured by participation in the Canadian Hair Mercury Quality Control Program; all our results 

were within one SD of the adjusted mean.  The high analytical quality is comparable to previous 

performance.5,19  Results in �g may be converted to nmol by multiplying by 5.0.  

The study protocol was approved by the ethical review committee for the Faroe 

Islands and the institutional review board at the U.S. institution, and parental informed consent 

was obtained.  

 

Neurological examination  

A thorough pediatric examination included otoscopy and assessment of neurological optimality.  

None of the children had current middle ear infection.  A total of 18 children examined had 

neurological disorders thought to be independent of MeHg exposure and were therefore excluded 

from the data analysis: Congenital hypothyreosis, 1; Gilles de la Tourette’s syndrome, 1; dystonia, 

3; epilepsia, 2; polyneuropathy sequelae, 1; mental retardation, 1; psychomotor retardation, 4; 

meningitis sequelae, 1; concussion, 3; and deafness, 1. None of the subjects examined had 

diabetes. The MeHg exposure of these subjects did not differ from that of other cohort members. 

 BAEPs were determined in all participating subjects, except for one refusal (N = 859).  

We used a four-channel electromyograph (Medelec Sapphire-4ME) also employed previously.5,21  

Click signals at an intensity of 65 dB HL (0.1 ms impulses of alternating polarity) were presented 

to the right ear through shielded ear phones at 20 Hz and 40 Hz (sampling time, 0.01 ms); the 

other ear was masked with white noise at an intensity of 45 dB HL.  A frequency of 50 Hz was 

also attempted, but peak I was poorly defined at this click rate.  EPs were recorded using three 

standard EEG electrodes placed on the vertex, the right mastoid ipsilateral to stimulation and the 

left mastoid (ground).  While 1,024 responses were used seven years before,5,21 the number was 

increased to 2,048 to improve the definition of peak I.  Amplification and filtration were 
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unchanged, and one replication of each condition was again carried out for calculation of average 

peak latencies.  The coefficients of variation (CVs) for duplicate assessments remained higher 

for peak I (mean, 8.4 %) than for peaks III and V (means, 4.3 % and 3.7 %, respectively).  As an 

additional part of the quality assurance, latencies from the first 250 children examined in 

Tórshavn in 2000 were scored twice by the same examiner (KM).  The results of this blinded 

scoring-rescoring showed average CVs of 8.9%, 4.4%, and 3.7% for peaks I, III, and V, i.e. 

similar to the duplicate assessments.  Thus, although highly appropriate for latency 

measurement, the study circumstances did not allow accurate assessment of peak amplitudes.  

Peaks I, III, and V are thought to reflect the volume-conducted electric activity from the acoustic 

nerve, pons (superior olivary nucleus), and midbrain (inferior colliculi), respectively.16  

 Audiometry was carried out by a trained nurse using Interacoustics Diagnostic 

Audiometer AD229 with a Peltor H7A headphone in a sound-insulated room.  The 

patient-controlled Hughson-Westlake procedure was used in accordance with ISO 8253-1.  A 

threshold was defined as two out of three correct responses in a procedure with 5 dB increases 

and 10 dB decreases.  Pure-tone air-conduction hearing thresholds were measured at 125, 250, 

500, 750, 1000,1500, 2000, 3000, 4000, 6000, and 8000 Hz.  Two children did not complete 

their audiometry examination.  

 

Data analysis 

Pearson’s correlation coefficients were used to assess bivariate relationships between exposure 

parameters.  Regression analysis was used to determine the association of MeHg exposure with 

the outcome variables.  Age and sex may be important predictors of BAEP latencies16,21 and 

were therefore included as independent variables along with the exposure parameters.  In 

addition, confounders previously included in the analysis of neuropsychological test results5 were 
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screened for possible associations with the outcomes in the present study, but no pattern was 

found.  Further models included as an independent variable the latency result obtained 7 years 

previously along with the age at that examination.  Additional analyses also incorporated PCB 

and postnatal MeHg exposure parameters as explanatory variables.  Because of skewed 

distributions, logarithmic transformation of the contaminant concentrations was used, and the 

mercury regression coefficients therefore correspond to the change in the dependent variable 

associated with a 10-fold increase in MeHg exposure.  Significant exposure effects were further 

explored in generalized additive models, which do not require linearity assumptions while 

providing a smooth nonparametric dose-response curve.22  

 Calculation of the benchmark dose (BMD) is increasingly used for comparison of 

dose-response curves at low dose levels and for determining exposure limits.7,18  The BMD is 

the dose of a substance that increases the risk of an abnormal response by a benchmark response 

(BMR), i.e., from P0 (usually 5%) for an unexposed child to P0 + BMR for a child exposed at the 

BMD.23 The NRC committee used a BMR of 5% so that an exposure at the corresponding BMD 

will double the risk of an abnormal response.7  To take the statistical uncertainty into account, a 

lower 95% confidence limit (BMDL) for the BMD is also determined.  Using linear 

dose-response models, BMDLs expressed as the maternal hair mercury concentration were about 

10 �g/g for the most sensitive neuropsychological and BAEP outcomes in the Faroese children at 

age 7 years.7,18,24  For comparison with these dose-response associations, we used the same 

default settings when calculating BMDL results for BAEP outcomes at age 14 years.  

 

RESULTS  

Prolonged Peak III and Peak V Latencies at Higher Prenatal MeHg Exposures Were Due to 

Increased I-III Intervals That Were Prolonged Already 7 Years Before 
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Hair-mercury concentrations at age 14 years (Table I) indicated that the children’s current MeHg 

exposure had increased since the previous examination (p < 0.001).  Approximately half of the 

children now exceeded the hair-mercury limit of 1 �g/g, but the average corresponded to only 

one-fourth of the concentrations in maternal hair at child birth.  Nonetheless, the different sets of 

exposure biomarkers correlated well.  

 The BAEP latencies were similar to the results obtained at age 7,5,18,21 and again 

differed as expected16 between boys and girls.  Age had no effect within the limited range 

studied.  

 Intrauterine MeHg exposure biomarkers showed several statistically significant 

associations with the BAEP latencies, especially peaks III and V at both frequencies (Table II).  

The same tendency was seen for the interpeak I-III latency, despite being affected by the greater 

imprecision of peak I determinations.  Because peak I and interpeak III-V latencies were clearly 

not associated with the intrauterine exposure level, MeHg appeared to affect mainly the I-III 

interval.  Neither sex nor age was associated with MeHg exposure levels, and confounder 

adjustment therefore did not affect the mercury regression coefficients.  

 Given the more robust findings for the full peak III latency (Figure 1), its better 

precision, and the parallel results for this outcome obtained at age 7 years,5,18 this outcome 

parameter was selected for more detailed calculations.  Inclusion of the postnatal exposure 

biomarkers as additional predictors did not affect the regression coefficients for the prenatal 

exposures.  However, they were almost completely abolished when peak III latencies at age 7 

were incorporated as predictors.  

Current MeHg Exposures Were Associated with Prolonged III-V Interpeak Latencies 

 The regression coefficients also suggested an effect of recent MeHg exposure, but 

only on the III-V interpeak interval (Table II, Fig 2).  This association was not affected by 



 10

inclusion of prenatal exposure biomarkers, and neither did the lower mercury concentrations at 

age 7 seem to affect this outcome parameter.  At the same time, this interpeak variable was 

significantly associated with all other peak latencies, except for the peak I latency.  

 Inclusion of PCB exposure within the subset of the cohort where this parameter was 

available did not affect any of the MeHg regression coefficients.  In addition, the PCB 

parameter did not reach statistical significance in any of the analyses.   

 Audiometry results generally showed normal hearing, and hearing thresholds above 

30 dB(A) were recorded for only about 2% of the children.  Hearing thresholds were not 

associated with MeHg exposure, except for 4 kHz on the right ear (Table III).  The association 

with the peak III latency (Table III) was due to a prolonged latency for peak I at increased 

hearing thresholds, while the interpeak I-III interval was unaffected.  PCB exposure and 

postnatal MeHg exposure were not associated with the audiometry results.  Inclusion of the 

hearing threshold at 4 kHz as a predictor of BAEP latencies changed the mercury regression 

coefficients only marginally.  

Benchmark Dose Results Were Similar to Those Seen at Age 7 Years 

 The relative magnitude of the regression coefficients (Table II) can be judged by 

comparison with the variability of the outcome parameters.  Thus, for peak III latencies, an 

average regression coefficient of about 0.04 corresponds to almost 25% of the SD.   Because a 

logarithmic transformation of the mercury concentrations was used, the effect of a doubling of 

the exposure can be determined by multiplying the regression coefficient by 0.301.  Accordingly, 

a doubling of the prenatal exposure results in a latency prolongation by about 7% of the SD.  

Similarly, a doubling of the current exposure level is associated with a prolongation of the 

interpeak III-V interval by about 5% of the SD.  

 Additional comparisons may be based on benchmark dose calculations. Prenatal 
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BMDL results for peak III at the two frequency conditions corresponded to an average of about 

10 �g/g hair based on either cord blood or maternal hair.  For the III-V interval, postnatal 

BMDLs averaged about 5 �g/g for the child’s hair-mercury concentration at age 14 years. 

 

DISCUSSION 

The developing brain is thought to constitute the most vulnerable organ in regard to MeHg 

exposure.1,7  Emphasis in risk assessment has therefore been placed on neurological functions of 

children with intrauterine exposure to this neurotoxicant, and previous studies have applied 

neuropsychological function as a key measure of adverse effects.4-6  In parallel, 

neurophysiological tests, such as BAEP assessment, have found use in population studies as 

highly standardized, rapid, painless, and inexpensive procedures.16,25  Prolonged BAEP latencies 

have been reported as an effect of exposure to MeHg 13-15 and other neurotoxicants, such as 

lead.17,25  

 In the present study, we report that BAEP latency assessments were highly 

reproducible and that several latencies at age 14 years showed a positive association with MeHg 

exposure.  Intrauterine exposure was mainly associated with delays in peaks III and V, and the 

I-III interpeak interval appeared to be most sensitive.  This result is in accordance with 

previously reported exposure-associated delays in the same cohort examined at age 7 years and in 

a cross-sectional study of 7-year-old children from another North Atlantic fishing population.18,21  

However, the regression coefficients at age 721 were about twice the magnitude observed seven 

years later. Furthermore, adjustment of the most recent peak latency for the result obtained 7 

years previously virtually abolished the mercury effect.  These observations suggest a lasting 

neurotoxic impact of the intrauterine exposure, although the reduced regression coefficient may 

perhaps indicate some degree of compensation.  The peak III results also suggest that this 
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outcome is not affected by postnatal exposures at the levels occurring in this population. 

 More recent MeHg exposure, as reflected by the current hair mercury concentrations 

of the children, was associated with a prolonged interpeak III-V interval.  This observation is 

noteworthy, because the children’s current exposures averaged less than one-fourth of the 

maternal levels during pregnancy, and a single hair analysis probably is a very inaccurate marker 

of the causative postnatal exposure levels.  Although paired mother-child exposure data 

correlated well and thereby suggested relatively stable dietary habits within each household, only 

the recent exposure level was associated with this outcome parameter.  Hair-mercury 

concentrations at age 7 years were the lowest and did not contribute to this association.  

 Despite the delayed BAEP latencies, the audiometry data suggested only limited, if 

any impact of MeHg exposure on hearing thresholds.  These results parallel those obtained at 

age 7 years.26  All BAEP latencies were recorded with a sound pressure adjusted for audiometry 

results; no association between hearing thresholds and BAEP latencies was detected, except for 

peak I at a single sound frequency on one side only.  Although deafness has been reported in 

severe congenital MeHg poisoning cases,2 hearing loss is not a uniform finding in less serious 

childhood poisonings or in adult cases.2,27  

 The MeHg-associated prolongation of BAEP latencies in the present study was subtle 

and comparable to effects associated with lead exposure.17,25  These changes are much less 

extensive than clinical findings in patient groups, such as the abnormal BAEP waves with poorly 

defined or absent peaks III and V in multiple sclerosis, and the markedly prolonged interpeak 

latencies in patients with acoustic neurinoma or diabetes mellitus.28  However, the relative 

change parallels the extent of neuropsychological deficits determined in the cohort children at age 

7 years.5  Thus, in several functional domains, a doubling of the intrauterine MeHg exposure 

showed a decrease in performance by 5-10% of the SD.5,29  Subtle neurotoxic effects, 
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sometimes expressed in terms of IQ points, have important societal implications in regard to 

educational achievement and earning potential.30  

 The BMDL represents a statistically defined point on the dose-response curve that 

allows comparison between low-range toxicity studies.  However, the BMDL should not be 

interpreted as a threshold indicator.  Indeed, significant exposure-related deficits on 

neuropsychological tests at age 7 years were documented at maternal hair-mercury concentrations 

below the BMDL.5  Previous calculations7,12,24,31 based on the most sensitive neurological, 

neuropsychological and neurophysiological endpoints all indicate a BMDL of about 10 �g/g 

maternal hair, i.e., the same level as found for peak III delays at age 14 years.  We found that the 

postnatal BMDL for the prolonged III-V interpeak interval was about one-half of that.  However, 

due to statistical uncertainty, this difference may not necessarily reflect the relative toxic 

potentials of prenatal and postnatal exposures.  

 All observational studies have weaknesses, because all important determinants cannot 

be controlled a priori.  However, the present study involved a large birth cohort that has been 

followed prospectively for 14 years and characterized in substantial detail with regard to 

developmental MeHg exposure levels.  The participation rate at age 14 years was very high, 

thereby reducing the concern that the results may have been affected by differential follow-up 

rates.  An important strength of this study is that the examinations relied on the same 

methodology as 7 years before, and the same examiner, who was blinded in regard to exposure 

data and prior peak latency results.  The validity of the results was supported by extensive 

quality assurance data.  In addition, the outcome measures were confirmed to be independent of 

socioeconomic confounders.  The known16 BAEP peak latency difference between boys and 

girls was replicated, but sex was not associated with MeHg exposure and therefore did not cause 

confounding.  At age 7 years,21 prolongations of the peak I latency occurred as a result of 
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middle ear infection, but at age 14 years this trait was absent.   

 An important limitation is that only few postnatal exposure estimates were obtained 

and that the prenatal and postnatal exposure indicators were highly associated.  Although dietary 

patterns may have been rather stable, the postnatal exposure biomarkers do not necessarily 

represent the magnitude of the toxic exposure at susceptible time windows.  Any exposure 

misclassification would be mostly random and would tend to dilute the associations with the 

outcome variables, although this dilution would be limited by the wide exposure interval covered 

within this cohort.  Despite this bias, the size of the cohort allowed separation of latency 

prolongations associated with intrauterine and recent MeHg exposures.  The fact that peaks III 

and V at both frequencies showed clear associations with two independent indicators of prenatal 

MeHg exposure, and not with indicators of postnatal exposure, suggests that the findings are 

robust and credible for human health risk assessment.  Likewise, although unanticipated, the 

association of the prolonged interpeak III-V interval with recent MeHg exposure only was also 

seen at both frequencies.  

 As previously reported for the results at age 7 years,26 concomitant prenatal exposure 

to PCBs, which occur in whale blubber sometimes eaten in the Faroes, did not influence the 

BAEP outcomes.  Developmental exposure to PCBs is now thought to affect primarily cochlear 

function and impact on BAEP amplitudes rather than latencies.32  In addition, the lead exposures 

were comparatively low and not associated with mercury.19  The generalizability of this study 

would therefore not seem to be limited by concomitant exposures to other neurotoxicants.  

 Although a chance finding in multiple comparisons cannot be ruled out, the 

possibility that prenatal and postnatal MeHg exposure may affect different targets in the brain is 

supported by both experimental and clinical evidence.  Thus, prenatal exposure of rats to toxic 

amounts of MeHg results in severe lesions that include the brainstem, while effects of postnatal 
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treatment are less diffuse and particularly involve the sensory cortex.9  Similarly, 

neuropathological and imaging evidence reveals a greater degree of focal cortical damage with 

postnatal MeHg exposure as compared to congenital cases.2,3,8  The results of this study would 

therefore seem to be plausible, although the specific vulnerability of the interpeak III-V interval 

to postnatal MeHg exposure was not predicted.  While the significance of postnatal MeHg 

exposure needs to be further documented in independent studies with more frequent exposure 

assessments, our results suggest that developmental vulnerability to MeHg neurotoxicity is likely 

to extend into the teenage period. 

 In conclusion, these results on EPs support the notion that intrauterine exposure to 

MeHg from seafood may cause lasting adverse effects on the central nervous system.  They also 

indicate that recent MeHg exposure as assessed at age 14 years is associated with EP delays that 

differ from those incurred from exposure in utero.  The possibility that peak latencies may 

distinguish between effects incurred prenatally and postnatally deserves attention in future studies.  

The potential postnatal vulnerability of the brain would mean that children ought to be protected 

against MeHg exposure to the same extent as pregnant women. 

 

We are grateful to the cohort families for their loyal support, to the highly competent 

clinical staff in Tórshavn, and to Dr David A Otto for advice regarding the quality assurance for 

the BAEP measurements.  
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Table I.   Results of developmental methylmercury exposure biomarkers for 859 birth cohort 

members without neurological disease examined at age 14 years*  

 
 
Biomarker 

 
 

n 
 

  
Geometric 

average 

 
Interquartile 

range 

  
Association with 

cord blood† 

 
Cord blood (µg mercury/L) 

 
835 

  
22.6 

 
13.2-40.8 

  
(1) 

 
Hair (µg mercury/g) 

      

 
  Maternal, parturition 

 
855 

  
4.22 

 
2.55-7.68 

  
0.77 

 
  Child, 7 years 

 
800 

  
0.60 

 
0.34-1.24 

  
0.33 

 
  Child, 14 years 
 

 
839 

  
0.96 

 
0.45-2.29 

  
0.35 

 
*Concentrations in µg may be converted to nmol by multiplying by 5.0. 

†Correlation coefficient after logarithmic transformation.
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Table II.   Mean results and regression coefficients for logarithmic transformations of mercury 

exposure biomarkers as predictors of latencies of brainstem auditory evoked potentials (ms) in 

859 Faroese children at 14 years 

  
 

 
Regression coefficient* (P value) 

 
  

Mean (SD) 
 

Cord blood 
 

 
Maternal hair

 

 
Hair at 7 yrs 

  
Hair at 14 yrs 

  (n=835) (n=855) (n=800)  (n=839) 
 
20 Hz 

      

 
  I 

 
1.770 (0.129) 

 
0.015 (0.213) 

 
0.001 (0.942) 

 
-0.005 (0.622) 

  
0.006 (0.553) 

 
  III 

 
3.952 (0.161) 

 
0.045 (0.002) 

 
0.037 (0.014) 

 
0.012 (0.335) 

  
0.001 (0.907) 

 
  V 

 
5.788 (0.204) 

 
0.049 (0.006) 

 
0.032 (0.085) 

 
-0.002 (0.901) 

  
0.018 (0.159) 

 
  I-III 

 
2.183 (0.152) 

 
0.027 (0.051) 

 
0.036 (0.013) 

 
0.017 (0.150) 

  
-0.004 (0.631) 

 
  III-V 

 
1.835 (0.132) 

 
0.004 (0.722) 

 
-0.005 (0.686) 

 
-0.014 (0.181) 

  
0.017 (0.056) 

 
40 Hz 

      

 
  I 

 
1.806 (0.169) 

 
0.027 (0.089) 

 
0.014 (0.410) 

 
0.007 (0.602) 

  
0.012 (0.293) 

 
  III 

 
4.054 (0.178) 

 
0.032 (0.048) 

 
0.023 (0.169) 

 
0.008 (0.536) 

  
0.002 (0.847) 

 
  V 

 
5.954 (0.214) 

 
0.048 (0.009) 

 
0.036 (0.066) 

 
0.006 (0.686) 

  
0.024 (0.070) 

 
  I-III 

 
2.248 (0.190) 

 
0.004 (0.805) 

 
0.009 (0.614) 

 
0.001 (0.925) 

  
-0.010 (0.430) 

 
  III-V 

 
1,900 (0.148) 

 
0.015 (0.226) 

 
0.013 (0.383) 

 
-0.002 (0.852) 

  
0.022 (0.028) 

 
*Adjusted for sex and age; due to the logarithmic transformation of the mercury concentrations, 

the regression coefficient indicates the change in the dependent variable associated with an 

increase in MeHg exposure by a factor of 10. 
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Table III.   Cord-blood mercury concentration (geometric mean) and peak III latency of the 

brainstem auditory evoked potentials measured at age 14 years (arithmetic means) in 857 Faroese 

cohort children in relation to the hearing threshold at 4kHz on the right ear.  

 
Peak III latency (ms) 

 

 
Hearing 

threshold 
[dB(A)] 

 

  
 

n 
 

 
 

Mercury 
concentration** 

 
 

20Hz*** 
 

 
40 Hz*** 

 
 

<0 
  

158 
 

20.0 
 

3.94 
 

4.03 
 

0 
  

171 
 

20.8 
 

3.92 
 

4.02 
 

5 
  

218 
 

22.8 
 

3.94 
 

4.03 
 

10 
  

161 
 

24.9 
 

3.99 
 

4.09 
 

>10 
 

  
136 

 
25.4 

 
3.98 

 
4.10 

 

P value for association (Spearman’s correlation coefficient) with hearing threshold: 

** <0.01; *** < 0.001  
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Fig 1.   Prenatal dose-effect relationship between maternal hair mercury at birth and the peak III 

latency of the brainstem auditory evoked potentials in 859 Faroese children at 14 years adjusted 

for sex and age. The association is estimated in a generalized additive model analysis in which a 

smooth nonparametric curve (equivalent degrees of freedom, 3) is fitted to the data while 

adjusting for confounders.  The broken lines indicate the pointwise 95% confidence interval for 

the dose-response relationship.  Each vertical line above the horizontal axis represents one 

observation at the exposure level indicated.  To convert to nmol/g, multiply mercury 

concentration in µg/g by 5.0.
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Fig 2.   Postnatal dose-effect relationship between the child’s current hair mercury and the 

interpeak III-V latency of the brainstem auditory evoked potentials in 859 Faroese children at 14 

years adjusted for sex and age. The association is estimated in a generalized additive model 

analysis as in Figure 1, but the horizontal scales differ.  The broken lines indicate the pointwise 

95% confidence interval for the dose-response relationship.  Each vertical line above the 

horizontal axis represents one observation at the exposure level indicated.  To convert to nmol/g, 

multiply mercury concentration in µg/g by 5.0.   


