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1Confounder Sele
tion in Environmental Epidemiology:Assessment of Health E�e
ts of Prenatal Mer
ury ExposurePURPOSE: To 
ompare di�erent approa
hes to identi�
ation of 
onfounders neededfor analyzing observational data. While standard analysis is usually 
ondu
ted as ifthe 
onfounders were known a priori sele
tion un
ertainty must also be taken intoa

ount.METHODS: Confounders were sele
ted using ba
kward elimination, the 
hange inestimate method (CIE), Akaike's information 
riterion (AIC), the Bayesian infor-mation 
riterion (BIC), and an empiri
al approa
h using a priori information. Amodi�ed ridge regression estimator, whi
h shrinks e�e
ts of 
onfounders toward zero,was also 
onsidered. For ea
h 
riterion, the un
ertainty in the estimated exposuree�e
t was assessed using bootstrap simulations where 
onfounders were sele
ted inea
h sample.These methods were illustrated using data on mer
ury neurotoxi
ity in Faroe Islands
hildren. Point estimates and standard errors of mer
ury e�e
ts on 
onfounder-sensitive neurobehavioral out
omes were 
al
ulated for ea
h sele
tion pro
edure.RESULTS: The full model and the empiri
al a priori model showed approximatelythe same pre
ision and these methods were (slightly) inferior only to modi�ed ridgeregression. Lower pre
isions were obtained using ba
kward elimination with a low
ut-o� level, the BIC and the CIE.CONCLUSIONS: Standard analysis ignores model sele
tion un
ertainty and is likelyto yield over-optimisti
 inferen
es. Thus, the traditional ba
kward elimination pro-
edure with p=5% should be avoided. If data-dependent pro
edures are requiredfor 
onfounder identi�
ation, we re
ommend that inferen
es are based on bootstrapstatisti
s to des
ribe the sele
tion pro
ess.KEY WORDS. Confounding Fa
tors (Epidemiology), Regression Analysis, Statisti-
al Models



2Introdu
tionIn observational studies, exposure values are not assigned randomly to the studysubje
ts. Therefore, exposed and unexposed subje
ts are likely to di�er on a numberof variables. If some of these variables are a�e
ting the out
ome, then the 
ruderelation between exposure and out
ome may give a distorted (
onfounded) re�e
tionof the 
ausal exposure e�e
t. The 
ontrol of 
onfounding fa
tors has been one of the
entral issues in epidemiologi
al resear
h, and adjustment is routinely a
hieved bystrati�
ation or by applying some sort of multiple regression analysis.The important question now is how the investigator de
ides whi
h of the potential
onfounders to 
ontrol for and whi
h to ignore. Often prior knowledge about popu-lation relations is weak and the data is used in the 
onfounder identi�
ation pro
ess.Unfortunately, no standard pro
edure is fully satisfa
tory. One approa
h (ba
kwarddeletion) is based on stepwise testing of the e�e
ts of the potential 
onfounders onthe out
ome, while another (
hange-in-estimate) removes potential 
onfounders aslong as the exposure e�e
t does not 
hange too mu
h. Despite the frequent useof su
h automated te
hniques, very little formal knowledge is available about theimpa
t of the sele
tion pro
ess on the subsequent analysis of the exposure e�e
t.Results from simulation studies of the simple situation, where only one potential
onfounder is present, seem to favor the 
hange-in-estimate method over methodsbased on signi�
an
e testing,1,2 and other simulation studies indi
ate that forwardsele
tion pro
edures are of limited value in epidemiology.3 Results from the relatedproblem of �best subset sele
tion� suggest that pre
ision is overestimated, if inferen
eis based on a model sele
ted using stepwise signi�
an
e testing.4,5 Although there isa widespread awareness of this fa
t, the sele
tion pro
ess is almost always ignoredin the �nal analysis, and inferen
es are made as if the sele
ted model was given apriori. Breiman des
ribed this routine pro
edure as a �quiet s
andal�.6In this paper, we 
ompare di�erent strategies for 
onfounder sele
tion using data froman epidemiologi
al study performed in the Faroe Islands to investigate the adverse



3health e�e
ts of prenatal mer
ury exposure. Methylmer
ury is a 
ommon 
ontami-nant in seafood and freshwater �sh. While adverse e�e
ts have been unequivo
allydemonstrated in poisoning in
idents, the impli
ations of lower-level exposures in�sh-eating populations have been 
ontroversial.7 The original analysis of the Faroesedata showed adverse e�e
ts of prenatal mer
ury exposure on 
hildhood 
ognitivedevelopment,8 while a study 
arried out in the Sey
helles did not report any sig-ni�
ant e�e
ts.9 In 1998 the White House therefore arranged a workshop to assessthe quality of the main mer
ury studies. It was 
on
luded that the Faroese studyhad 
hosen an appropriate approa
h to 
onfounder identi�
ation and adjustment.10However, further analysis were outlined in
luding adjustment for new potential 
on-founders. Be
ause of the emphasis on residual 
onfounding and the publi
-healthimpli
ations, these variables have been in
luded in advan
ed analyses presented be-low. The mer
ury e�e
t is estimated using 
onventional 
onfounder sele
tion 
riteriaas well as the method originally used by the Faroese study group.8 Furthermore, ad-justed pre
ision estimates, whi
h take the 
onfounder sele
tion pro
ess into a

ount,are 
al
ulated using the bootstrap method.Subje
ts and MethodsThe Faroese Mer
ury StudyA birth 
ohort of 1022 
hildren was generated in the Faroe Islands during 1986 and1987 and is being studied prospe
tively to examine the possible adverse e�e
ts of pre-natal exposure to methylmer
ury. The Faroese population is exposed to methylmer-
ury mainly through 
onsumption of 
ontaminated pilot whale meat. Informationabout the 
hildren's prenatal exposure was obtained by measuring mer
ury 
on
en-trations in 
ord blood. Just before s
hool entry (i.e. in 1993-1994), the 
hildrenunderwent a detailed neuropsy
hologi
al examination. A total of 917 
hildren weregiven neuropsy
hologi
al tests re�e
ting di�erent domains of brain fun
tion. Of theneuropsy
hologi
al tests administered to all the 
hildren, the Boston Naming Testshowed the strongest asso
iation with prenatal mer
ury exposure. The short-termre
all on the California Verbal Learning Test (CVLT) showed a weaker asso
iation,



4with a p-value just below 0.05.8 In the present paper, we fo
us on these two out
omevariables to illustrate how the estimate of the mer
ury e�e
t depends on the regres-sion model.An important reason why the exposure-response relation may be 
onfounded in thisstudy is that, in the 
apital area of Torshavn, the 
onsumption of pilot whale meatwas below the Faroese average, but at the same time this area also provided easiera

ess to edu
ation and day 
are. Here we shall 
onsider the following list of possible
onfounders. Demography: The 
hild's sex and age are obvious predi
tors of develop-ment status. It was also taken into a

ount whether or not the 
hild was living withhis or hers parents and whether the 
hild was living with younger or older siblings.Health: Major medi
al risk fa
tors for neurobehavioral dysfun
tion obtained at birth(i.e. low birth weight, small-for-date, and history of head trauma and meningitis)were 
ombined into a single risk parameter. Birth weight, gestational age, and shortnursing may also a�e
t 
hildhood development. Examination: Some 
hildren had totravel by ferry to the examination site, and whether the 
hild was tested in the morn-ing or in the afternoon was also re
orded. Maternal: A few (41) of the 
hildren havea mother born in Denmark, whi
h may a�e
t language skills and thereby a�e
t tests
ores. Maternal intelligen
e was measured by her s
ore on Raven's Progressive Ma-tri
es. Maternal age at parturition and maternal smoking habits during pregnan
ymay also predi
t 
hildhood abilities. So
ioe
onomi
: For the so
ially homogeneousFaroese so
iety, we used vo
ational or professional edu
ation of ea
h parent, and theemployment status of the father, as indi
ators of so
ial ba
kground. Furthermore,
hildren in day-
are may have an advantage over other 
hildren. Residen
e: A di-
hotomous 
ovariate (Town7 ) was 
onsidered whi
h indi
ated whether or not the
hild was living in one of the Faroese towns (Torshavn, Klaksvik or Tvaeraa) at thetime of examination.These parameters were sele
ted on the basis of prior knowledge of potential in�uen
eon the out
ome variables, as 
onsidered in the light of the epidemiologi
al setting



5in the Faroe Islands. Most of these variables were thought to be weakly related tomer
ury exposure, whi
h depends on lo
al and variable whale meat availability andpersonal food preferen
es, rather than, say, so
ioe
onomi
 fa
tors. This list of 
o-variates in
ludes the variables previously 
onsidered in the original analysis,8 but hasbeen extended with parameters that re�e
t possible di�eren
es between the majortowns with more than 2,000 inhabitants and the smaller �shing villages. Some ofthese 
hildren had to travel longer by ferry to get to the 
lini
 and 
ould have beentired from the travel. We also in
luded the time of day when the testing took pla
e.Table 1 shows the bivariate asso
iation between the mer
ury 
on
entration in the
ord blood and ea
h of the potential 
onfounders.Confounder sele
tion strategiesThe e�e
t of mer
ury exposure after 
orre
tion for the 
onfounders is determinedby multiple regression analysis. The 
ord blood mer
ury 
on
entrations showed askewed distribution and they were logarithmi
ally transformed mainly to avoid thata few highly exposed 
hildren be
ame overly in�uential in the estimation of the expo-sure e�e
t. With 20 potential 
onfounders and one exposure variable, the full modelin
ludes more than 20 nuisan
e parameters, in addition to the parameter of interest.To gain power in the estimation of the mer
ury 
oe�
ient, standard statisti
al pro-
edures pres
ribe identi�
ation and removal of any unne
essary 
ovariates.11 Several
onfounder sele
tion methods have been suggested, but the inferential properties ofthese strategies are still poorly known, and an optimal pro
edure for 
onfounder se-le
tion has not been identi�ed. We, therefore, 
ompare di�erent variable sele
tionmethods for estimation of the e�e
t of prenatal mer
ury exposure. Be
ause the aimis to estimate the exposure e�e
t, we have restri
ted the sele
tion problem to modelsin
luding the exposure variable.In the original analysis of the Faroese data, Grandjean et al. developed an ad ho

riterion for 
onfounder sele
tion, 
ombining information a
ross di�erent out
omevariables.8 A

ording to this method, the 
hild's sex and age in addition to the ma-



6ternal Raven s
ore were 
onsidered obligatory 
onfounders for all out
ome variables.Additional 
onfounders were sele
ted as follows: for ea
h neuropsy
hologi
al tests
ore, important predi
tors were identi�ed using ba
kward elimination (adjusted forthe obligatory 
ovariates) with p=0.10. Predi
tors that were important for morethan 3 out
omes (out of 17) were then in
luded in the �nal regression model forall out
omes. The results of this method, here denoted PGS (Philippe Grandjeansele
tion), are 
ompared with the results of four 
onventional sele
tion methods.Ba
kward Elimination (BE): This pro
edure is based on signi�
an
e testing, and,despite strong 
riti
ism,12,13 it is still the default solution for model sele
tion. Thestarting point is the full model adjusting for all possible 
onfounders. Then, one 
o-variate at a time is deleted in a stepwise fashion, at ea
h step deleting the 
ovariatewith the highest p-value. The deletion pro
ess stops when the p-value of the leastsigni�
ant 
ovariate is below a 
ertain 
ut-o� level. Thus, this pro
edure rests on thepremise that a given 
ovariate is not a 
onfounder if it does not a�e
t the response.It has been argued1,12 that a signi�
an
e test of the 
ovariate e�e
t pla
es the burdenof proof in the wrong dire
tion, i.e., a 
ovariate is only a

epted for 
ontrol, if itse�e
t on the response is signi�
ant. A

ording to this view, the ba
kward elimina-tion pro
ess may yield biased e�e
t estimates due to under-sele
tion of important
onfounders, unless the 
ut-o� is set mu
h higher than the 
onventional level of 5%.We have therefore investigated this method for 
ut-o� levels of 5%, 10% and 20%.Change-in-Estimate (CIE): As in ba
kward elimination, this pro
edure deletes thepotential 
onfounders in a stepwise fashion with the full model as the starting point.At ea
h step, the 
ovariate that 
auses the smallest 
hange in the exposure e�e
testimate (
ompared to the full model estimate) upon deletion is removed. The pro-
ess stops when deletion of ea
h of the remaining variables 
auses a relative 
hangeof more than a given 
ut-o� level, whi
h is usually set at 10%. The idea here is thatif the most important 
onfounders are taken into a

ount, then the full model esti-mate will have a low bias (though possibly a high varian
e). Whether or not a given



7
ovariate should be 
onsidered an important 
onfounder is de
ided dire
tly from the
hange in the target parameter, 
aused by not adjusting for the variable at hand.This pro
edure has been re
ommended over the p-value based methods.1,14 However,few formal results on the statisti
al properties of the CIE-method are available. Inour investigation, we used the re
ommended 
ut-o� value of 10%.Akaike's Information Criterion (AIC): A

ording to the AIC, the best model is theone with the minimum value of −2 · log(L) + 2 · k, where L denotes the maximumvalue of the likelihood fun
tion and k is the number of free parameters in the model.Akaike derived this pro
edure while trying to identify the optimal model for predi
-tion given that the predi
tion error is determined by the expe
ted Kullba
k-Leiblerdistan
e between the data generating density and the estimated density.15 Burnhamand Anderson strongly re
ommended the AIC for model sele
tion in biologi
al s
i-en
es, mainly be
ause this prin
iple is not dependent upon the unrealisti
 assumptionthat the true model is one of the models 
onsidered.16 However, on the subje
t ofpredi
tion-based sele
tion methods, Greenland appropriately stated that �a good rulefor a predi
tion problem may be a poor rule for 
ausal analysis�,13 underlining thatthe problem of �best subset sele
tion� is not equivalent to the problem of 
onfounderidenti�
ation.The Bayesian Information Criterion (BIC): The BIC sele
tion method is similar tothe AIC, ex
ept that here (minus twi
e the log of) the likelihood fun
tion is penalizedusing the term: k · log(n), where n denotes the number of observations. Thus, instudies with n > 7, larger models are more heavily penalized by the BIC than by theAIC. The BIC was �rst developed by S
hwarz as an asymptoti
 solution to Bayesianmodel sele
tion.17 Rissanen later motivated the BIC from a 
oding theoreti
al pointof view,18,19 while Dawid derived an (asymptoti
ally) equivalent sele
tion 
riterionbased on the predi
tive powers of the proposed models.20,21 Contrary to the othersele
tion methods 
onsidered here, the BIC is 
onsistent; that is, if a sequen
e ofnested models is proposed, and the true model is one of them, then the BIC will



8estimate the dimension of the true model 
onsistently. Thus, using the BIC methodthe probability of under-�tting or over-�tting will 
onverge to zero as the number ofobservations in
reases.Ridge Regression: Rather than sele
ting between 
ovariates, ridge regression uses allpredi
tors, but shrinks their e�e
ts toward zero.22 This approa
h 
an regarded as aBaysian solution to regression analysis, where regression 
oe�
ients a priori are 
on-sidered to be independent normally distributed with mean zero and varian
e σ2

B. Theextent of shrinkage is 
ontroled by a parameter θ, whi
h is equal to σ2/σ2

B, where
σ2 is the residual varian
e of the response given the 
ovariates. From a Bayesianviewpoint, a natural 
hoi
e of θ is given by θ∗ = σ̂2 · p/Σiβ̂

2

i , where p is the numberof 
ovariates and σ̂2 and β̂i, i = 1, ..., p are estimates of the full model. In typi
alappli
ations, study variables are standardized, and the shrinkage parameter is thesame for all 
ovariates. Thus, ridge regression does not distinguish exposures from
onfounders. We therefore 
onsidered a modi�ed version, where only the 
onfoundere�e
ts were shrunken. This estimator 
an be viewed as an empiri
al Bayes estimatorwith a in�nite prior varian
e for the exposure e�e
t, while the prior varian
e for the
onfounders is estimated by σ̂2/θ∗.Bootstrap AnalysisWhen the 
onfounder sele
tion pro
ess is based on data, a two-stage estimator isused in the estimation of the exposure e�e
t: �rst, the 
onfounders are identi�edand then the exposure regression 
oe�
ient is 
al
ulated in the sele
ted model. Forea
h of the sele
tion 
riteria des
ribed, the statisti
al properties of the 
orrespond-ing 
omposite estimator were explored using bootstrap simulations.23 In regressionanalysis the bootstrap 
an be applied in various ways. When studying model un-
ertainty, the non-parametri
 bootstrap pro
edure may seem to be the most natural
hoi
e, be
ause this method is not dependent on one of the models being true. Inthis simple approa
h, the 917 ve
tors 
onsisting of 
ovariate and response values ofthe Faroese 
hildren are re-sampled with repla
ement. In ea
h bootstrap sample, the



9
onfounder sele
tion 
riteria are applied and the mer
ury e�e
t is estimated in �nalmodels. Statisti
al properties of the sele
tion 
riteria 
an then be determined fromthe empiri
al distribution of the e�e
t estimates. All bootstrap investigations werebased on 10,000 re-samples of the Faroese data. This number is in agreement withre
ommendations of Burnham and Anderson,16 who throughly investigated the non-parametri
 bootstrap as method for in
orporating model un
ertainty into statisti
alinferen
e.The resampling was not restri
ted to 
omplete 
ases. The 
omplex PGS 
riterionis based on the results of 17 di�erent out
omes. Restri
ting data to 
hildren with
omplete information on 20 potential 
onfounders and 17 response variables wouldlead to a an una

eptable redu
tion of the available data. Although all 
hildren arere-sampled to obtain 
omparable results between the sele
tion 
riteria in ea
h sam-ple, the 
al
ulations are restri
ted to 
hildren with 
omplete information on the allpotential 
onfounders and the response variable under investigation (i.e. the CVLTor the Boston Naming Test). However, in the 
onfounder identi�
ation part of thePGS method, ea
h of the 17 ba
kward elimination pro
esses were based on 
hildrenwith 
omplete information on the all potential 
onfounders and the response variablein question.Using the non-parametri
 bootstrap, data are re-sampled from the empiri
al dis-tribution of the observations. Thus, no model assumptions are exploited in theresampling, whi
h means that this method may be robust to mis-spe
i�
ations inthe regression models, su
h as heteros
edasti
ity of error terms and non-linearity inthe mean terms.24 A disadvantage of this approa
h is that the matrix of 
ovariatevalues is not 
onstant in di�erent bootstrap data sets. This variation typi
ally resultsin 
onservative estimates of varian
es. However, even in moderately large data sets,this e�e
t is likely to be unimportant.24For one of the Faroese out
ome variables, the nonparametri
 bootstrap yielded a vari-



10an
e estimate whi
h was a little lower than expe
ted for the full model estimator.In further 
al
ulations, the parametri
 bootstrap was therefore used to investigatethe robustness of the 
on
lusions based on the non-parametri
 approa
h. In theparametri
 bootstrap, a new out
ome value is simulated for ea
h 
hild from the dis-tribution estimated in the full model analysis of the original data set. This is doneby �rst 
al
ulating the expe
ted value for ea
h observation based on the full model.Then, a normally distributed residual with a varian
e identi
al to the residual vari-an
e observed in the original data is simulated, and the new out
ome value is givenas the sum of the expe
ted value and the residual. Thus, using this approa
h, thematrix of 
ovariate values is 
onstant, but the estimated varian
es are dependent onthe appropriateness of the full model.ResultsFor ea
h of the potential 
onfounders, Table 1 shows the (bivariate) asso
iation withthe mer
ury exposure. The strongest asso
iations are seen for Ferry, Mother Faroese,and Town7, but asso
iations are also signi�
ant (at the 5%-level) for Older sib, Day-
are, Maternal Raven, and Maternal edu
ation. Most of these asso
iations are theresult of low 
onsumption of whale meat in the 
apital of Torshavn. In a multipleregression analysis with the mer
ury exposure as the dependent variable and all po-tential 
onfounders as independent variables, 13.4% of the exposure variation wasexplained. Thus, although some of the exposure-
ovariate asso
iations are highlysigni�
ant, this study has rather limited multi
ollinearity problems for estimation ofthe mer
ury exposure e�e
t. In other words, variation of mer
ury exposure is poorlyexplained by variables that may a�e
t 
hild development.Naive AnalysisIn this se
tion, the di�eren
es between the results of the sele
tion strategies are de-s
ribed, while ignoring the fa
t that the sele
tion pro
ess may a�e
t the statisti
alproperties of the �nal model estimates. The sele
tion 
riteria were �rst applied tothe s
ores on the CVLT. Table 2 shows the 
ovariates that were in
luded in the �nal



11model, while Table 3 gives the main results of the �nal model inferen
e. For thisout
ome, the sele
tion 
riteria introdu
e important di�eren
es in the subsequent in-feren
e on the e�e
t of prenatal exposure to mer
ury. For the BIC and BE p = 0.05,it is estimated that a 
hild loses almost 0.6 points per 10-fold in
rease in the mer
ury
on
entration (p=0.017). This e�e
t is 17% stronger than the full model estimate,whi
h has a p-value just above 5%. The deletion of Town7 is the main reason for thede-attenuated mer
ury 
oe�
ients for these 
riteria. Children living in towns tendto do better so when this variable is ex
luded this advantage is attributed to havinga low mer
ury exposure, be
ause 
hildren in towns had lower mer
ury 
on
entrationsat birth (Table 1).The CIE method eliminates 17 
ovariates, whi
h is more than for any of the other
riteria. Only when using this 
riterion the 
ovariates Exam time, Paternal employ-ment, and the 
hild's age are ex
luded. These 
ovariates are all strong predi
tors ofthe CVLT s
ore (p<0.0001 for Paternal employment - 
hildren of employed fathersdo better), but be
ause they are weakly asso
iated with the exposure variable (Ta-ble 1), deleting them 
auses only a slight 
hange in the target parameter estimate.However, if the aim of the sele
tion pro
ess is to in
rease pre
ision in the estimatedexposure e�e
t, then strong predi
tors of the out
ome not related to the exposureshould not be ex
luded. This is illustrated by the fa
t that, for the CIE method, the(naive) standard deviation of the mer
ury e�e
t is higher than the 
orrespondingvalue in the full model.For the Boston Naming Test (Table 4 & Table 5), the �nal model inferen
e is lessdependent on the sele
tion 
riterion. No matter whi
h method is used, a highlysigni�
ant mer
ury e�e
t is obtained. The mer
ury 
oe�
ient varies from −1.837 to
−1.625 with p-values that are below 0.2%. Again, the BIC yields the strongest e�e
tand again this is due to the fa
t that this 
riterion is the only one to ex
lude Town7.Surprisingly, the 
riterion whi
h resembles the BIC the most, BE p=0.05, yields theweakest mer
ury e�e
t. However, in addition to 
ontrolling for Town7, this 
riterion



12eliminates the 
ovariate indi
ating whether the 
hild has any older brothers or sisters.Both these de
isions are asso
iated with an attenuation in the mer
ury 
oe�
ient.Overall, fewer 
ovariates are ex
luded for the Boston Naming Test, but the CIEmethod again eliminates 17 of the potential 
onfounders. It may seem surprisingthat this 
riterion is the only one to ex
lude Maternal edu
ation and Day-
are, whi
hare strong predi
tors of the out
ome (sele
ted by the restri
tive BE p=0.05) and also
learly asso
iated with the mer
ury exposure (Table 1). However, Town7 is in
ludedfor 
ontrol by the CIE. When 
orre
ted for this variable, the asso
iations between theexposure and the two potential 
onfounders be
ome less strong, and their deletionsare asso
iated with 
hanges in the target parameter below 4%.In
orporation of model sele
tion un
ertaintyFrom the naive standard deviations of the �nal model mer
ury 
oe�
ients, it ap-pears that the sele
tion methods overall have su

eeded in in
reasing the pre
isionthrough the variable deletions. As 
ould be expe
ted, this tenden
y is strongest forthe predi
tion based methods and 
onventional ba
kward elimination, whi
h are de-signed to provide a model with a low sum of squared residuals. However, when theun
ertainty in the data-dependent sele
tion pro
ess is taken into a

ount, the resultsare less favorable for the sele
tion strategies. For both out
omes, the bootstrap stan-dard deviation of the full model estimate is the third lowest and only slightly higherthan that of the best sele
tion 
riterion. This means that there is no justi�
ationfor redu
ing the full model: the pre
ision of the target parameter is not in
reased,but bias may be introdu
ed after deletion of real 
onfounders. Thus, in these data,the mer
ury e�e
t should be assessed in the full model where the e�e
t estimateis highly signi�
ant for the Boston Naming Test and on the verge of 
onventional5% statisti
al signi�
an
e for the CVLT. Note that this 
on
lusion is rea
hed eventhough the sele
tion 
riteria agree (espe
ially for the CVLT) that a large part of thepotential 
onfounders 
ould have been left out of the analysis.



13The other main �nding here is that, for most of the 
riteria, there is a satisfa
toryagreement between the naive standard deviation and the 
orresponding value ob-tained using the bootstrap. Thus, although the �nal model has been 
hosen from aset of no less than 220 = 1, 048, 576 possible models, the amount of over-optimism innaive pre
ision estimates is not 
riti
al.The performan
e of the modi�ed ridge regression estimator suggests that insteadof deleting potential 
onfounders it is better to keep all of them, and shrink theirestimated e�e
ts. First of all, this method yields mer
ury e�e
ts whi
h are in 
loseagreement with the least squares estimates of the full model, indi
ating that ridgeregression is nearly unbiased. Se
ondly, this estimator provides the lowest bootstrapstandard errors for both out
omes. Thus, in this analysis ridge regression produ
edthe best exposure e�e
t estimator. However, like the sele
tion pro
dures this methodsu�ers from the fa
t that estimation pre
ision is overestimated by the naive standarderrors. For ridge regression, this is not a result of sele
tion un
ertainty, but the biaso

urs be
ause the un
ertainty in 
hoi
e of the shrinkage parameter θ is not takeninto a

ount.The approa
h used by Grandjean et al.8 seems to provide a reasonable alternativeto full model inferen
e. The PGS method yields mer
ury e�e
ts whi
h are 
lose tothe full model estimate, and its bootstrap standard error was beaten only by ridgeregression for the Boston Naming Test, while it 
ame in fourth for the CVLT. Inaddition, a reasonable agreement between the naive and the bootstrap standard er-rors indi
ates, that the (naive) PGS inferen
e has not be
ome overly optimisti
 as aresult of the data-driven model sele
tion.Di�eren
es between the pre
isions of the sele
tion 
riteria are generally small, butsome tenden
ies are 
lear. Based on the naive standard deviation, BE p=0.05 andespe
ially the BIC appear to provide the most pre
ise estimation. However, whenthe sele
tion pro
ess is taken into a

ount, the opposite result is obtained, thus indi-
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ating that, in addition to providing the most variable estimators, these 
riteria arealso asso
iated with the largest amount of over-optimism in the �nal model inferen
e.Together with the fa
t that both methods seem to have indu
ed a substantial amountfor bias (for the CVLT), this �nding illustrates that the BIC and the BE p=0.05 arenot appropriate for 
onfounder identi�
ation. In agreement with re
ommendationsby Dales and Ury,12 it is seen that the statisti
al properties of the BE method arebetter if the level of signi�
an
e is in
reased to 20%.By de�nition, the CIE does not introdu
e mu
h bias. However, be
ause this methodmay ex
lude strong predi
tors of the response, it may yield an impre
ise estimateof the exposure e�e
t. This is the 
ase for the Boston Naming Test, where theCIE is asso
iated with the largest bootstrap standard deviation. However, for theCVLT, the CIE is even better than the full model. This dis
repan
y between CIEresults indi
ates that the pre
ision of the CIE may be strongly dependent on thespe
i�
 
ir
umstan
es in whi
h it is used. Thus, although the CIE may atta
k theproblem of 
onfounder identi�
ation in a more dire
t way than the methods based onsigni�
an
e testing, BE with a p-value of 20% would seem to provide a better option.For the full model, a 
lose agreement was expe
ted between standard deviations ob-tained using the naive estimator and the non-parametri
 bootstrap. Su
h an agree-ment was seen for the CVLT. However, for the Boston Naming Test, the bootstrapestimate was somewhat lower than the naive estimate. The parametri
 bootstrap wastherefore applied to investigate the robustness of the �ndings in the previous se
tionto the 
hoi
e of resampling distribution. Table 5 gives the estimated standard devia-tions using the parametri
 bootstrap. Sin
e the full model is true for the re-sampleddata sets, it is no surprise that the full model standard deviation is now 
lose to thenaive result. For the sele
tion 
riteria, similar in
reases are seen, and the results ofthe non-parametri
 bootstrap are therefore 
on�rmed. Thus, ridge regression andthe PGS method are again seen to provide the most pre
ise e�e
t estimate, while theBIC and espe
ially the CIE are poorest. Contrary to the non-parametri
 approa
h,



15the parametri
 results indi
ate that a small amount of power may be gained usingthe AIC or BE with p=20% 
ompared to the full model inferen
e. However, themain 
on
lusion is un
hanged: in these data, the possible in
rease in power obtainedthrough model redu
tions is too small to justify the use of automati
 variable sele
-tion pro
edures.Dis
ussionIn epidemiology, the resear
her is often fa
ed with the seemingly simple task of esti-mating the e�e
t of one variable (the exposure) on another (the response). However,this task is 
ompli
ated if inferen
e is drawn based on observational data, be
ausethen the e�e
ts of an unknown set of 
onfounding variables have to be taken into a
-
ount. Prior to the statisti
al analysis, it may be possible to develop a set of potential
onfounders, whi
h is assumed to in
lude the true 
onfounders. As biologi
al under-standing is typi
ally limited, the number of anti
ipated 
onfounders may be large.This means that the full model with all the potential 
onfounders 
ontains a largenumber of nuisan
e parameters. To many investigators, it may seem unappealing tobase the exposure inferen
e on a model where some parameters are 
learly insignif-i
ant. Instead, the model is redu
ed usually by using one of the subset sele
tion
riteria des
ribed in this paper, whereupon the exposure e�e
t is estimated in the�nal model. The results presented here indi
ate that often it would have been betterto assess the exposure e�e
t in the full model. Contrary to what is often indi
atedby the naive estimates of pre
ision, the model redu
tions may in
rease estimationvariability in addition to introdu
ing biases in exposure regression 
oe�
ient. This�nding is in agreement with Raab's simulation results on the statisti
al propertiesof forward sele
tion pro
edures.3This 
ase study does not do
ument that full model inferen
e is always superior. Instudies with fewer subje
ts or more potential 
onfounders with stronger asso
iationsto the exposure parameter, it may be possible to gain an important amount of powerthrough variable ex
lusions. However, in su
h studies model sele
tion un
ertainty



16will be stronger, and naive standard errors will be more heavily underestimated thanwas the 
ase in the Faroese mer
ury data. Thus, it will be even more important toadjust for sele
tion un
ertainty in the �nal model inferen
e. Be
ause of the 
omplexnature of the 
omposite sele
tion estimators, no �rm theory is 
urrently availableto perform su
h adjustments. In this regard, it should be noted that Hjort andClaeskens re
ently presented asymptoti
 results for the bias and pre
ision of a 
er-tain 
lass of 
omposite estimators.25 However, these results depend on an assumptionof �lo
al misspe
i�
ation�, whi
h may not be satis�ed, and results on the propertiesin �nite samples are not provided. Therefore, the bootstrap approa
h 
onstitutesthe obvious 
hoi
e for in
orporation of the 
onfounder sele
tion pro
ess into the �nalinferen
e. With today's high-speed 
omputers, this method 
an be applied quiteeasily, thereby leading to better inferen
e regarding the e�e
ts of the exposure.In a given study, it may be helpful �rst to 
ompare the standard error of the e�e
testimate in the full model to the naive standard error estimate in the sele
ted model.If a substantial varian
e redu
tion is not seen, then the full model should be usedfor inferen
e. However, if the naive standard error in the sele
ted model is 
learlylower and if the e�e
t estimate is robust to the variable deletions, this �nding wouldindi
ate that power 
an be gained from 
ovariate deletions. If a sele
tion 
riterionis used, then bootstrap simulations should be 
ondu
ted to quantify the model un-
ertainty, and thereby a
hieve a 
orre
t assessment of the signi�
an
e of the e�e
tof the exposure.An advantage of the 
onventional sele
tion 
riteria is that they have been in
orpo-rated in many statisti
al software pa
kages, whi
h will fa
ilitate the appli
ation ofthe bootstrap. Of these methods, the BIC and ba
kward elimination, with the tradi-tional level of 5%, have been shown to be poorly suited for 
onfounder identi�
ation.With these 
riteria, the risk of deleting important 
onfounders is high, and the es-timation un
ertainty will be underdetermined. The epidemiologi
al CIE also takesinto a

ount the 
ovariate-exposure relation, when a potential 
onfounder is assessed.



17In this way, bias in the exposure 
oe�
ient is limited, but the �nal estimate mayhave a relatively large varian
e. Ba
kward elimination with a p-value of 20% seemsto provide a better estimation. In the original presentation of the Faroese mer
uryresults, a di�erent solution was applied. Prior information was used to identify those
onfounders that were mandatory, although some of them turned out to 
ause veryminimal 
onfounding in this parti
ular study. Be
ause several out
ome variableswere available, and be
ause parameters that a
ted as 
onfounders in regard to oneout
ome would also be expe
ted to 
ause 
onfounding with other out
omes, the em-piri
al data were used to generate a �
onsensus� list of 
onfounders. The analysispresented here indi
ates that this approa
h yields a nearly unbiased estimate of themer
ury e�e
t. Furthermore, the results of the non-parametri
 and the parametri
bootstrap simulations show that, although naive PGS inferen
e may be asso
iatedwith some optimism, the mer
ury e�e
t 
annot be explained as an artifa
t 
ausedby the data-driven model sele
tion pro
ess.As an alternative to variable sele
tion, shrinking of the 
onfounder e�e
ts shouldbe 
onsidered. Here this was a
hieved with a modi�ed version of ridge regression,whi
h ex
luded the exposure parameter from shrinking. The performan
e of thisestimator will depend on the 
hoi
e of shrinkage parameter. If this parameter is low,the exposure e�e
t estimator will be almost identi
al to full model analysis, whilea high degree of shrinkage will 
orrespond to ex
luding all 
onfounders. We used aBayesian estimate for the shrinkage parameter and the 
orresponding e�e
t estima-tor appeared superior to all others 
onsidered. This method therefore deserves moreattention in epidemiology. In a slightly di�erent setting, Greenland advo
ated forthe use of empiri
al Bayes estimators like this, although he refrained from estimat-ing the shrinkage parameter.26 An obvious modi�
ation of the method would be togroup potential 
onfounders a

ording to prior biologi
al importan
e, and then onlyto shrink the e�e
ts of the less important variables. In this way, the risk underesti-mating important 
onfounder e�e
ts may be limited, and the e�e
t of the exposureof interest may therefore be more a

urately assessed.



18The results of this paper are based on the assumption that the full model provides anunbiased estimation of the exposure e�e
t. However, this is unlikely to be the 
ase,if the exposure variable or one or more potential 
onfounders are measured with er-ror. It is well known that measurement error in the exposure variable attenuates thedose-response relation. This attenuation depends on the set of sele
ted 
onfoundersand will be most severe in the full model, where the varian
e of the exposure variablegiven the 
onfounders is minimal.27 Thus, in this situation, a sub-model with fewer
onfounders may seem preferable. However, good inferen
e 
an be drawn only by
orre
ting for the measurement error, and this 
orre
tion may require the full model.Referen
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21TablesTable 1: Per
ent 
hange in the mer
ury 
on
entration, asso
iated with a given dif-fern
e in ea
h of the 
ovariates.Covariate Change in % 95% 
onf. limitAge (1 year in
rease) 6.86 −10.97; 28.26Sex (girl vs boy) −8.59 −18.57; 2.63Lives w. parents (yes vs no) 17.13 −3.67; 42.41Younger sibs (yes vs no) −9.93 −19.87; 1.23Older sibs (yes vs no) 16.59 3.23; 31.68Birth weight (1 kg in
rease) 5.58 −5.41; 17.85Gestational age (1 week in
rease) −0.46 −4.86; 4.15Risk fa
tors for neuro. dysfun
. (yes vs no) 0.31 −15.28; 18.76Short nursing (yes vs no) 8.51 −7.74; 27.63Ferry (yes vs no) 58.71 36.26; 84.86Exam. time (afternoon vs morning) 5.93 −5.65; 18.94Mother Faroese (yes vs no) 131.66 77.71; 202.00Maternal raven (10 point in
rease) −13.00 −18.99;−6.56Maternal age (1 year in
rease) 0.82 −0.26; 1.90Maternal smoking (yes vs no) 7.05 −4.92; 20.53Maternal edu
ation (yes vs no) −14.93 −24.21;−4.51Paternal edu
ation (yes vs no) −3.76 −15.17; 9.18Paternal employment (yes vs no) 10.39 −5.52; 28.98Day 
are (yes vs no) −17.93 −26.85;−7.91Town7 (yes vs no) −30.00 −37.50;−21.60
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Table 2: Ex
luded 
ovariates in the analysis of the CVLT. For the stepwise 
riteria(BE, CIE), the numbers indi
ate the order of the deletions, while ex
luded 
ovariatesare marked with a 
ir
le for the predi
tion based 
riteria (AIC, BIC) and the PGSmethod. Ba
kward Elimination

p = 0.05 p = 0.10 p = 0.20 AIC BIC CIE PGSYounger sibs 3 3 3 © © 5 ©Lives w. parents 5 5 5 © © 3 ©Exam. time 12Ferry 11 11 © 16 ©Birth weight 9 9 9 © © 8 ©Short nursing 2 2 2 © © 2 ©Maternal smoking 4 4 4 © © 9 ©Maternal age 12 12 © 14Gestational age 1 1 1 © © 1 ©Mother Faroese 14 14 © ©Older sibs 8 8 8 © © 4Town7 15 ©Paternal employment 15Paternal edu
ation © 11Maternal edu
ation 6 6 6 © © 10Day 
are 7 7 7 © © 6Risk fa
tors 10 10 © © 7Maternal ravenSex 13 13 © 13Age 17
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Table 3: Inferen
e on the mer
ury e�e
t on the CVLT ignoring (naive analysis) anda

ounting for (bootstrap) 
onfounder sele
tion un
ertainty.Naive analysis∗ Bootstrap†Sele
tion Method β̂Hg ŝ.e. p-value Change in %‡ mean§ ŝ.e.¶Full model −0.4983 0.2570 0.0529 - −0.4948 0.2553BE p = 0.20 −0.5020 0.2555 0.0498 −0.74 −0.5012 0.2597BE p = 0.10 −0.4795 0.2486 0.0542 3.77 −0.5055 0.2631BE p = 0.05 −0.5842 0.2432 0.0165 −17.24 −0.5112 0.2658AIC −0.4998 0.2556 0.0509 −0.30 −0.5027 0.2610BIC −0.5840 0.2438 0.0168 −17.20 −0.5220 0.2679CIE −0.4571 0.2586 0.0775 8.27 −0.4902 0.2551PGS −0.4671 0.2493 0.0613 6.26 −0.4740 0.2587Ridge regression −0.5004 0.2432 0.0396 −0.42 −0.4961 0.2500
∗ Results are based on 789 
hildren with 
omplete information
† Number of bootstrap re-samples was 10,000
‡ Relative di�eren
e between mer
ury 
oe�
ients in full model and in sele
ted model
§ Empiri
al mean of bootstraped mer
ury 
oe�
ients
¶ Empiri
al standard deviation of bootstraped mer
ury 
oe�
ients
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Table 4: Ex
luded 
ovariates in the analysis of the Boston Naming Test. For thestepwise 
riteria (BE, CIE), the numbers indi
ate the order of the deletions, whileex
luded 
ovariates are marked with a 
ir
le for the predi
tion based 
riteria (AIC,BIC) and the PGS method. Ba
kward Elimination

p = 0.05 p = 0.10 p = 0.20 AIC BIC CIE PGSYounger sibs 11 © 11 ©Lives w. parents 2 2 2 © © 2 ©Exam. time 6 6 6 © © 7Ferry 3 3 3 © © 9 ©Birth weight 1 1 1 © © 3 ©Short nursing © 1 ©Maternal smoking 7 7 7 © © 10 ©Maternal age 8 8 8 © © 6Gestational age 4 4 4 © © 4 ©Mother Faroese 5 5 5 © © 14 ©Older sibs 10 © 5Town7 ©Paternal employment 9 © 13Paternal edu
ation © 8Maternal edu
ation 12Day 
are 16Risk fa
tors 15Maternal ravenSex 12 © 17Age
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Table 5: Inferen
e on the mer
ury e�e
t on the Boston Naming Test ignoring (naiveanalysis) and a

ounting for (bootstrap) 
onfounder sele
tion un
ertainty.Naive analysis∗ Bootstrap†Non-parametri
 Parametri
Sele
tion Method β̂Hg ŝ.e. p-value Change in %‡ mean§ ŝ.e.¶ mean§ ŝ.e.¶Full model −1.695 0.5087 0.0009 - −1.692 0.4949 −1.699 0.5086BE p = 0.20 −1.734 0.4917 0.0004 −2.30 −1.703 0.4950 −1.710 0.5076BE p = 0.10 −1.734 0.4917 0.0004 −2.30 −1.714 0.4972 −1.720 0.5086BE p = 0.05 −1.625 0.4923 0.0010 4.13 −1.725 0.4991 −1.731 0.5107AIC −1.734 0.4917 0.0004 −2.30 −1.706 0.4959 −1.712 0.5074BIC −1.837 0.4873 0.0002 −8.38 −1.756 0.5011 −1.759 0.5139CIE −1.699 0.5069 0.0008 0.24 −1.686 0.5077 −1.677 0.5220PGS −1.722 0.4938 0.0005 −1.57 −1.712 0.4932 −1.717 0.5054Rigde regression −1.708 0.4846 0.0004 −0.74 −1.703 0.4874 −1.709 0.5033
∗ Results are based on 782 
hildren with 
omplete information
† Number of bootstrap re-samples was 10,000
‡ Relative di�eren
e between mer
ury 
oe�
ients in full model and in sele
ted model
§ Empiri
al mean of bootstraped mer
ury 
oe�
ients
¶ Empiri
al standard deviation of bootstraped mer
ury 
oe�
ients


