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1Confounder Seletion in Environmental Epidemiology:Assessment of Health E�ets of Prenatal Merury ExposurePURPOSE: To ompare di�erent approahes to identi�ation of onfounders neededfor analyzing observational data. While standard analysis is usually onduted as ifthe onfounders were known a priori seletion unertainty must also be taken intoaount.METHODS: Confounders were seleted using bakward elimination, the hange inestimate method (CIE), Akaike's information riterion (AIC), the Bayesian infor-mation riterion (BIC), and an empirial approah using a priori information. Amodi�ed ridge regression estimator, whih shrinks e�ets of onfounders toward zero,was also onsidered. For eah riterion, the unertainty in the estimated exposuree�et was assessed using bootstrap simulations where onfounders were seleted ineah sample.These methods were illustrated using data on merury neurotoxiity in Faroe Islandshildren. Point estimates and standard errors of merury e�ets on onfounder-sensitive neurobehavioral outomes were alulated for eah seletion proedure.RESULTS: The full model and the empirial a priori model showed approximatelythe same preision and these methods were (slightly) inferior only to modi�ed ridgeregression. Lower preisions were obtained using bakward elimination with a lowut-o� level, the BIC and the CIE.CONCLUSIONS: Standard analysis ignores model seletion unertainty and is likelyto yield over-optimisti inferenes. Thus, the traditional bakward elimination pro-edure with p=5% should be avoided. If data-dependent proedures are requiredfor onfounder identi�ation, we reommend that inferenes are based on bootstrapstatistis to desribe the seletion proess.KEY WORDS. Confounding Fators (Epidemiology), Regression Analysis, Statisti-al Models



2IntrodutionIn observational studies, exposure values are not assigned randomly to the studysubjets. Therefore, exposed and unexposed subjets are likely to di�er on a numberof variables. If some of these variables are a�eting the outome, then the ruderelation between exposure and outome may give a distorted (onfounded) re�etionof the ausal exposure e�et. The ontrol of onfounding fators has been one of theentral issues in epidemiologial researh, and adjustment is routinely ahieved bystrati�ation or by applying some sort of multiple regression analysis.The important question now is how the investigator deides whih of the potentialonfounders to ontrol for and whih to ignore. Often prior knowledge about popu-lation relations is weak and the data is used in the onfounder identi�ation proess.Unfortunately, no standard proedure is fully satisfatory. One approah (bakwarddeletion) is based on stepwise testing of the e�ets of the potential onfounders onthe outome, while another (hange-in-estimate) removes potential onfounders aslong as the exposure e�et does not hange too muh. Despite the frequent useof suh automated tehniques, very little formal knowledge is available about theimpat of the seletion proess on the subsequent analysis of the exposure e�et.Results from simulation studies of the simple situation, where only one potentialonfounder is present, seem to favor the hange-in-estimate method over methodsbased on signi�ane testing,1,2 and other simulation studies indiate that forwardseletion proedures are of limited value in epidemiology.3 Results from the relatedproblem of �best subset seletion� suggest that preision is overestimated, if infereneis based on a model seleted using stepwise signi�ane testing.4,5 Although there isa widespread awareness of this fat, the seletion proess is almost always ignoredin the �nal analysis, and inferenes are made as if the seleted model was given apriori. Breiman desribed this routine proedure as a �quiet sandal�.6In this paper, we ompare di�erent strategies for onfounder seletion using data froman epidemiologial study performed in the Faroe Islands to investigate the adverse



3health e�ets of prenatal merury exposure. Methylmerury is a ommon ontami-nant in seafood and freshwater �sh. While adverse e�ets have been unequivoallydemonstrated in poisoning inidents, the impliations of lower-level exposures in�sh-eating populations have been ontroversial.7 The original analysis of the Faroesedata showed adverse e�ets of prenatal merury exposure on hildhood ognitivedevelopment,8 while a study arried out in the Seyhelles did not report any sig-ni�ant e�ets.9 In 1998 the White House therefore arranged a workshop to assessthe quality of the main merury studies. It was onluded that the Faroese studyhad hosen an appropriate approah to onfounder identi�ation and adjustment.10However, further analysis were outlined inluding adjustment for new potential on-founders. Beause of the emphasis on residual onfounding and the publi-healthimpliations, these variables have been inluded in advaned analyses presented be-low. The merury e�et is estimated using onventional onfounder seletion riteriaas well as the method originally used by the Faroese study group.8 Furthermore, ad-justed preision estimates, whih take the onfounder seletion proess into aount,are alulated using the bootstrap method.Subjets and MethodsThe Faroese Merury StudyA birth ohort of 1022 hildren was generated in the Faroe Islands during 1986 and1987 and is being studied prospetively to examine the possible adverse e�ets of pre-natal exposure to methylmerury. The Faroese population is exposed to methylmer-ury mainly through onsumption of ontaminated pilot whale meat. Informationabout the hildren's prenatal exposure was obtained by measuring merury onen-trations in ord blood. Just before shool entry (i.e. in 1993-1994), the hildrenunderwent a detailed neuropsyhologial examination. A total of 917 hildren weregiven neuropsyhologial tests re�eting di�erent domains of brain funtion. Of theneuropsyhologial tests administered to all the hildren, the Boston Naming Testshowed the strongest assoiation with prenatal merury exposure. The short-termreall on the California Verbal Learning Test (CVLT) showed a weaker assoiation,



4with a p-value just below 0.05.8 In the present paper, we fous on these two outomevariables to illustrate how the estimate of the merury e�et depends on the regres-sion model.An important reason why the exposure-response relation may be onfounded in thisstudy is that, in the apital area of Torshavn, the onsumption of pilot whale meatwas below the Faroese average, but at the same time this area also provided easieraess to eduation and day are. Here we shall onsider the following list of possibleonfounders. Demography: The hild's sex and age are obvious preditors of develop-ment status. It was also taken into aount whether or not the hild was living withhis or hers parents and whether the hild was living with younger or older siblings.Health: Major medial risk fators for neurobehavioral dysfuntion obtained at birth(i.e. low birth weight, small-for-date, and history of head trauma and meningitis)were ombined into a single risk parameter. Birth weight, gestational age, and shortnursing may also a�et hildhood development. Examination: Some hildren had totravel by ferry to the examination site, and whether the hild was tested in the morn-ing or in the afternoon was also reorded. Maternal: A few (41) of the hildren havea mother born in Denmark, whih may a�et language skills and thereby a�et testsores. Maternal intelligene was measured by her sore on Raven's Progressive Ma-tries. Maternal age at parturition and maternal smoking habits during pregnanymay also predit hildhood abilities. Soioeonomi: For the soially homogeneousFaroese soiety, we used voational or professional eduation of eah parent, and theemployment status of the father, as indiators of soial bakground. Furthermore,hildren in day-are may have an advantage over other hildren. Residene: A di-hotomous ovariate (Town7 ) was onsidered whih indiated whether or not thehild was living in one of the Faroese towns (Torshavn, Klaksvik or Tvaeraa) at thetime of examination.These parameters were seleted on the basis of prior knowledge of potential in�ueneon the outome variables, as onsidered in the light of the epidemiologial setting



5in the Faroe Islands. Most of these variables were thought to be weakly related tomerury exposure, whih depends on loal and variable whale meat availability andpersonal food preferenes, rather than, say, soioeonomi fators. This list of o-variates inludes the variables previously onsidered in the original analysis,8 but hasbeen extended with parameters that re�et possible di�erenes between the majortowns with more than 2,000 inhabitants and the smaller �shing villages. Some ofthese hildren had to travel longer by ferry to get to the lini and ould have beentired from the travel. We also inluded the time of day when the testing took plae.Table 1 shows the bivariate assoiation between the merury onentration in theord blood and eah of the potential onfounders.Confounder seletion strategiesThe e�et of merury exposure after orretion for the onfounders is determinedby multiple regression analysis. The ord blood merury onentrations showed askewed distribution and they were logarithmially transformed mainly to avoid thata few highly exposed hildren beame overly in�uential in the estimation of the expo-sure e�et. With 20 potential onfounders and one exposure variable, the full modelinludes more than 20 nuisane parameters, in addition to the parameter of interest.To gain power in the estimation of the merury oe�ient, standard statistial pro-edures presribe identi�ation and removal of any unneessary ovariates.11 Severalonfounder seletion methods have been suggested, but the inferential properties ofthese strategies are still poorly known, and an optimal proedure for onfounder se-letion has not been identi�ed. We, therefore, ompare di�erent variable seletionmethods for estimation of the e�et of prenatal merury exposure. Beause the aimis to estimate the exposure e�et, we have restrited the seletion problem to modelsinluding the exposure variable.In the original analysis of the Faroese data, Grandjean et al. developed an ad horiterion for onfounder seletion, ombining information aross di�erent outomevariables.8 Aording to this method, the hild's sex and age in addition to the ma-



6ternal Raven sore were onsidered obligatory onfounders for all outome variables.Additional onfounders were seleted as follows: for eah neuropsyhologial testsore, important preditors were identi�ed using bakward elimination (adjusted forthe obligatory ovariates) with p=0.10. Preditors that were important for morethan 3 outomes (out of 17) were then inluded in the �nal regression model forall outomes. The results of this method, here denoted PGS (Philippe Grandjeanseletion), are ompared with the results of four onventional seletion methods.Bakward Elimination (BE): This proedure is based on signi�ane testing, and,despite strong ritiism,12,13 it is still the default solution for model seletion. Thestarting point is the full model adjusting for all possible onfounders. Then, one o-variate at a time is deleted in a stepwise fashion, at eah step deleting the ovariatewith the highest p-value. The deletion proess stops when the p-value of the leastsigni�ant ovariate is below a ertain ut-o� level. Thus, this proedure rests on thepremise that a given ovariate is not a onfounder if it does not a�et the response.It has been argued1,12 that a signi�ane test of the ovariate e�et plaes the burdenof proof in the wrong diretion, i.e., a ovariate is only aepted for ontrol, if itse�et on the response is signi�ant. Aording to this view, the bakward elimina-tion proess may yield biased e�et estimates due to under-seletion of importantonfounders, unless the ut-o� is set muh higher than the onventional level of 5%.We have therefore investigated this method for ut-o� levels of 5%, 10% and 20%.Change-in-Estimate (CIE): As in bakward elimination, this proedure deletes thepotential onfounders in a stepwise fashion with the full model as the starting point.At eah step, the ovariate that auses the smallest hange in the exposure e�etestimate (ompared to the full model estimate) upon deletion is removed. The pro-ess stops when deletion of eah of the remaining variables auses a relative hangeof more than a given ut-o� level, whih is usually set at 10%. The idea here is thatif the most important onfounders are taken into aount, then the full model esti-mate will have a low bias (though possibly a high variane). Whether or not a given



7ovariate should be onsidered an important onfounder is deided diretly from thehange in the target parameter, aused by not adjusting for the variable at hand.This proedure has been reommended over the p-value based methods.1,14 However,few formal results on the statistial properties of the CIE-method are available. Inour investigation, we used the reommended ut-o� value of 10%.Akaike's Information Criterion (AIC): Aording to the AIC, the best model is theone with the minimum value of −2 · log(L) + 2 · k, where L denotes the maximumvalue of the likelihood funtion and k is the number of free parameters in the model.Akaike derived this proedure while trying to identify the optimal model for predi-tion given that the predition error is determined by the expeted Kullbak-Leiblerdistane between the data generating density and the estimated density.15 Burnhamand Anderson strongly reommended the AIC for model seletion in biologial si-enes, mainly beause this priniple is not dependent upon the unrealisti assumptionthat the true model is one of the models onsidered.16 However, on the subjet ofpredition-based seletion methods, Greenland appropriately stated that �a good rulefor a predition problem may be a poor rule for ausal analysis�,13 underlining thatthe problem of �best subset seletion� is not equivalent to the problem of onfounderidenti�ation.The Bayesian Information Criterion (BIC): The BIC seletion method is similar tothe AIC, exept that here (minus twie the log of) the likelihood funtion is penalizedusing the term: k · log(n), where n denotes the number of observations. Thus, instudies with n > 7, larger models are more heavily penalized by the BIC than by theAIC. The BIC was �rst developed by Shwarz as an asymptoti solution to Bayesianmodel seletion.17 Rissanen later motivated the BIC from a oding theoretial pointof view,18,19 while Dawid derived an (asymptotially) equivalent seletion riterionbased on the preditive powers of the proposed models.20,21 Contrary to the otherseletion methods onsidered here, the BIC is onsistent; that is, if a sequene ofnested models is proposed, and the true model is one of them, then the BIC will



8estimate the dimension of the true model onsistently. Thus, using the BIC methodthe probability of under-�tting or over-�tting will onverge to zero as the number ofobservations inreases.Ridge Regression: Rather than seleting between ovariates, ridge regression uses allpreditors, but shrinks their e�ets toward zero.22 This approah an regarded as aBaysian solution to regression analysis, where regression oe�ients a priori are on-sidered to be independent normally distributed with mean zero and variane σ2

B. Theextent of shrinkage is ontroled by a parameter θ, whih is equal to σ2/σ2

B, where
σ2 is the residual variane of the response given the ovariates. From a Bayesianviewpoint, a natural hoie of θ is given by θ∗ = σ̂2 · p/Σiβ̂

2

i , where p is the numberof ovariates and σ̂2 and β̂i, i = 1, ..., p are estimates of the full model. In typialappliations, study variables are standardized, and the shrinkage parameter is thesame for all ovariates. Thus, ridge regression does not distinguish exposures fromonfounders. We therefore onsidered a modi�ed version, where only the onfoundere�ets were shrunken. This estimator an be viewed as an empirial Bayes estimatorwith a in�nite prior variane for the exposure e�et, while the prior variane for theonfounders is estimated by σ̂2/θ∗.Bootstrap AnalysisWhen the onfounder seletion proess is based on data, a two-stage estimator isused in the estimation of the exposure e�et: �rst, the onfounders are identi�edand then the exposure regression oe�ient is alulated in the seleted model. Foreah of the seletion riteria desribed, the statistial properties of the orrespond-ing omposite estimator were explored using bootstrap simulations.23 In regressionanalysis the bootstrap an be applied in various ways. When studying model un-ertainty, the non-parametri bootstrap proedure may seem to be the most naturalhoie, beause this method is not dependent on one of the models being true. Inthis simple approah, the 917 vetors onsisting of ovariate and response values ofthe Faroese hildren are re-sampled with replaement. In eah bootstrap sample, the



9onfounder seletion riteria are applied and the merury e�et is estimated in �nalmodels. Statistial properties of the seletion riteria an then be determined fromthe empirial distribution of the e�et estimates. All bootstrap investigations werebased on 10,000 re-samples of the Faroese data. This number is in agreement withreommendations of Burnham and Anderson,16 who throughly investigated the non-parametri bootstrap as method for inorporating model unertainty into statistialinferene.The resampling was not restrited to omplete ases. The omplex PGS riterionis based on the results of 17 di�erent outomes. Restriting data to hildren withomplete information on 20 potential onfounders and 17 response variables wouldlead to a an unaeptable redution of the available data. Although all hildren arere-sampled to obtain omparable results between the seletion riteria in eah sam-ple, the alulations are restrited to hildren with omplete information on the allpotential onfounders and the response variable under investigation (i.e. the CVLTor the Boston Naming Test). However, in the onfounder identi�ation part of thePGS method, eah of the 17 bakward elimination proesses were based on hildrenwith omplete information on the all potential onfounders and the response variablein question.Using the non-parametri bootstrap, data are re-sampled from the empirial dis-tribution of the observations. Thus, no model assumptions are exploited in theresampling, whih means that this method may be robust to mis-spei�ations inthe regression models, suh as heterosedastiity of error terms and non-linearity inthe mean terms.24 A disadvantage of this approah is that the matrix of ovariatevalues is not onstant in di�erent bootstrap data sets. This variation typially resultsin onservative estimates of varianes. However, even in moderately large data sets,this e�et is likely to be unimportant.24For one of the Faroese outome variables, the nonparametri bootstrap yielded a vari-



10ane estimate whih was a little lower than expeted for the full model estimator.In further alulations, the parametri bootstrap was therefore used to investigatethe robustness of the onlusions based on the non-parametri approah. In theparametri bootstrap, a new outome value is simulated for eah hild from the dis-tribution estimated in the full model analysis of the original data set. This is doneby �rst alulating the expeted value for eah observation based on the full model.Then, a normally distributed residual with a variane idential to the residual vari-ane observed in the original data is simulated, and the new outome value is givenas the sum of the expeted value and the residual. Thus, using this approah, thematrix of ovariate values is onstant, but the estimated varianes are dependent onthe appropriateness of the full model.ResultsFor eah of the potential onfounders, Table 1 shows the (bivariate) assoiation withthe merury exposure. The strongest assoiations are seen for Ferry, Mother Faroese,and Town7, but assoiations are also signi�ant (at the 5%-level) for Older sib, Day-are, Maternal Raven, and Maternal eduation. Most of these assoiations are theresult of low onsumption of whale meat in the apital of Torshavn. In a multipleregression analysis with the merury exposure as the dependent variable and all po-tential onfounders as independent variables, 13.4% of the exposure variation wasexplained. Thus, although some of the exposure-ovariate assoiations are highlysigni�ant, this study has rather limited multiollinearity problems for estimation ofthe merury exposure e�et. In other words, variation of merury exposure is poorlyexplained by variables that may a�et hild development.Naive AnalysisIn this setion, the di�erenes between the results of the seletion strategies are de-sribed, while ignoring the fat that the seletion proess may a�et the statistialproperties of the �nal model estimates. The seletion riteria were �rst applied tothe sores on the CVLT. Table 2 shows the ovariates that were inluded in the �nal



11model, while Table 3 gives the main results of the �nal model inferene. For thisoutome, the seletion riteria introdue important di�erenes in the subsequent in-ferene on the e�et of prenatal exposure to merury. For the BIC and BE p = 0.05,it is estimated that a hild loses almost 0.6 points per 10-fold inrease in the meruryonentration (p=0.017). This e�et is 17% stronger than the full model estimate,whih has a p-value just above 5%. The deletion of Town7 is the main reason for thede-attenuated merury oe�ients for these riteria. Children living in towns tendto do better so when this variable is exluded this advantage is attributed to havinga low merury exposure, beause hildren in towns had lower merury onentrationsat birth (Table 1).The CIE method eliminates 17 ovariates, whih is more than for any of the otherriteria. Only when using this riterion the ovariates Exam time, Paternal employ-ment, and the hild's age are exluded. These ovariates are all strong preditors ofthe CVLT sore (p<0.0001 for Paternal employment - hildren of employed fathersdo better), but beause they are weakly assoiated with the exposure variable (Ta-ble 1), deleting them auses only a slight hange in the target parameter estimate.However, if the aim of the seletion proess is to inrease preision in the estimatedexposure e�et, then strong preditors of the outome not related to the exposureshould not be exluded. This is illustrated by the fat that, for the CIE method, the(naive) standard deviation of the merury e�et is higher than the orrespondingvalue in the full model.For the Boston Naming Test (Table 4 & Table 5), the �nal model inferene is lessdependent on the seletion riterion. No matter whih method is used, a highlysigni�ant merury e�et is obtained. The merury oe�ient varies from −1.837 to
−1.625 with p-values that are below 0.2%. Again, the BIC yields the strongest e�etand again this is due to the fat that this riterion is the only one to exlude Town7.Surprisingly, the riterion whih resembles the BIC the most, BE p=0.05, yields theweakest merury e�et. However, in addition to ontrolling for Town7, this riterion



12eliminates the ovariate indiating whether the hild has any older brothers or sisters.Both these deisions are assoiated with an attenuation in the merury oe�ient.Overall, fewer ovariates are exluded for the Boston Naming Test, but the CIEmethod again eliminates 17 of the potential onfounders. It may seem surprisingthat this riterion is the only one to exlude Maternal eduation and Day-are, whihare strong preditors of the outome (seleted by the restritive BE p=0.05) and alsolearly assoiated with the merury exposure (Table 1). However, Town7 is inludedfor ontrol by the CIE. When orreted for this variable, the assoiations between theexposure and the two potential onfounders beome less strong, and their deletionsare assoiated with hanges in the target parameter below 4%.Inorporation of model seletion unertaintyFrom the naive standard deviations of the �nal model merury oe�ients, it ap-pears that the seletion methods overall have sueeded in inreasing the preisionthrough the variable deletions. As ould be expeted, this tendeny is strongest forthe predition based methods and onventional bakward elimination, whih are de-signed to provide a model with a low sum of squared residuals. However, when theunertainty in the data-dependent seletion proess is taken into aount, the resultsare less favorable for the seletion strategies. For both outomes, the bootstrap stan-dard deviation of the full model estimate is the third lowest and only slightly higherthan that of the best seletion riterion. This means that there is no justi�ationfor reduing the full model: the preision of the target parameter is not inreased,but bias may be introdued after deletion of real onfounders. Thus, in these data,the merury e�et should be assessed in the full model where the e�et estimateis highly signi�ant for the Boston Naming Test and on the verge of onventional5% statistial signi�ane for the CVLT. Note that this onlusion is reahed eventhough the seletion riteria agree (espeially for the CVLT) that a large part of thepotential onfounders ould have been left out of the analysis.



13The other main �nding here is that, for most of the riteria, there is a satisfatoryagreement between the naive standard deviation and the orresponding value ob-tained using the bootstrap. Thus, although the �nal model has been hosen from aset of no less than 220 = 1, 048, 576 possible models, the amount of over-optimism innaive preision estimates is not ritial.The performane of the modi�ed ridge regression estimator suggests that insteadof deleting potential onfounders it is better to keep all of them, and shrink theirestimated e�ets. First of all, this method yields merury e�ets whih are in loseagreement with the least squares estimates of the full model, indiating that ridgeregression is nearly unbiased. Seondly, this estimator provides the lowest bootstrapstandard errors for both outomes. Thus, in this analysis ridge regression produedthe best exposure e�et estimator. However, like the seletion produres this methodsu�ers from the fat that estimation preision is overestimated by the naive standarderrors. For ridge regression, this is not a result of seletion unertainty, but the biasours beause the unertainty in hoie of the shrinkage parameter θ is not takeninto aount.The approah used by Grandjean et al.8 seems to provide a reasonable alternativeto full model inferene. The PGS method yields merury e�ets whih are lose tothe full model estimate, and its bootstrap standard error was beaten only by ridgeregression for the Boston Naming Test, while it ame in fourth for the CVLT. Inaddition, a reasonable agreement between the naive and the bootstrap standard er-rors indiates, that the (naive) PGS inferene has not beome overly optimisti as aresult of the data-driven model seletion.Di�erenes between the preisions of the seletion riteria are generally small, butsome tendenies are lear. Based on the naive standard deviation, BE p=0.05 andespeially the BIC appear to provide the most preise estimation. However, whenthe seletion proess is taken into aount, the opposite result is obtained, thus indi-



14ating that, in addition to providing the most variable estimators, these riteria arealso assoiated with the largest amount of over-optimism in the �nal model inferene.Together with the fat that both methods seem to have indued a substantial amountfor bias (for the CVLT), this �nding illustrates that the BIC and the BE p=0.05 arenot appropriate for onfounder identi�ation. In agreement with reommendationsby Dales and Ury,12 it is seen that the statistial properties of the BE method arebetter if the level of signi�ane is inreased to 20%.By de�nition, the CIE does not introdue muh bias. However, beause this methodmay exlude strong preditors of the response, it may yield an impreise estimateof the exposure e�et. This is the ase for the Boston Naming Test, where theCIE is assoiated with the largest bootstrap standard deviation. However, for theCVLT, the CIE is even better than the full model. This disrepany between CIEresults indiates that the preision of the CIE may be strongly dependent on thespei� irumstanes in whih it is used. Thus, although the CIE may attak theproblem of onfounder identi�ation in a more diret way than the methods based onsigni�ane testing, BE with a p-value of 20% would seem to provide a better option.For the full model, a lose agreement was expeted between standard deviations ob-tained using the naive estimator and the non-parametri bootstrap. Suh an agree-ment was seen for the CVLT. However, for the Boston Naming Test, the bootstrapestimate was somewhat lower than the naive estimate. The parametri bootstrap wastherefore applied to investigate the robustness of the �ndings in the previous setionto the hoie of resampling distribution. Table 5 gives the estimated standard devia-tions using the parametri bootstrap. Sine the full model is true for the re-sampleddata sets, it is no surprise that the full model standard deviation is now lose to thenaive result. For the seletion riteria, similar inreases are seen, and the results ofthe non-parametri bootstrap are therefore on�rmed. Thus, ridge regression andthe PGS method are again seen to provide the most preise e�et estimate, while theBIC and espeially the CIE are poorest. Contrary to the non-parametri approah,



15the parametri results indiate that a small amount of power may be gained usingthe AIC or BE with p=20% ompared to the full model inferene. However, themain onlusion is unhanged: in these data, the possible inrease in power obtainedthrough model redutions is too small to justify the use of automati variable sele-tion proedures.DisussionIn epidemiology, the researher is often faed with the seemingly simple task of esti-mating the e�et of one variable (the exposure) on another (the response). However,this task is ompliated if inferene is drawn based on observational data, beausethen the e�ets of an unknown set of onfounding variables have to be taken into a-ount. Prior to the statistial analysis, it may be possible to develop a set of potentialonfounders, whih is assumed to inlude the true onfounders. As biologial under-standing is typially limited, the number of antiipated onfounders may be large.This means that the full model with all the potential onfounders ontains a largenumber of nuisane parameters. To many investigators, it may seem unappealing tobase the exposure inferene on a model where some parameters are learly insignif-iant. Instead, the model is redued usually by using one of the subset seletionriteria desribed in this paper, whereupon the exposure e�et is estimated in the�nal model. The results presented here indiate that often it would have been betterto assess the exposure e�et in the full model. Contrary to what is often indiatedby the naive estimates of preision, the model redutions may inrease estimationvariability in addition to introduing biases in exposure regression oe�ient. This�nding is in agreement with Raab's simulation results on the statistial propertiesof forward seletion proedures.3This ase study does not doument that full model inferene is always superior. Instudies with fewer subjets or more potential onfounders with stronger assoiationsto the exposure parameter, it may be possible to gain an important amount of powerthrough variable exlusions. However, in suh studies model seletion unertainty



16will be stronger, and naive standard errors will be more heavily underestimated thanwas the ase in the Faroese merury data. Thus, it will be even more important toadjust for seletion unertainty in the �nal model inferene. Beause of the omplexnature of the omposite seletion estimators, no �rm theory is urrently availableto perform suh adjustments. In this regard, it should be noted that Hjort andClaeskens reently presented asymptoti results for the bias and preision of a er-tain lass of omposite estimators.25 However, these results depend on an assumptionof �loal misspei�ation�, whih may not be satis�ed, and results on the propertiesin �nite samples are not provided. Therefore, the bootstrap approah onstitutesthe obvious hoie for inorporation of the onfounder seletion proess into the �nalinferene. With today's high-speed omputers, this method an be applied quiteeasily, thereby leading to better inferene regarding the e�ets of the exposure.In a given study, it may be helpful �rst to ompare the standard error of the e�etestimate in the full model to the naive standard error estimate in the seleted model.If a substantial variane redution is not seen, then the full model should be usedfor inferene. However, if the naive standard error in the seleted model is learlylower and if the e�et estimate is robust to the variable deletions, this �nding wouldindiate that power an be gained from ovariate deletions. If a seletion riterionis used, then bootstrap simulations should be onduted to quantify the model un-ertainty, and thereby ahieve a orret assessment of the signi�ane of the e�etof the exposure.An advantage of the onventional seletion riteria is that they have been inorpo-rated in many statistial software pakages, whih will failitate the appliation ofthe bootstrap. Of these methods, the BIC and bakward elimination, with the tradi-tional level of 5%, have been shown to be poorly suited for onfounder identi�ation.With these riteria, the risk of deleting important onfounders is high, and the es-timation unertainty will be underdetermined. The epidemiologial CIE also takesinto aount the ovariate-exposure relation, when a potential onfounder is assessed.



17In this way, bias in the exposure oe�ient is limited, but the �nal estimate mayhave a relatively large variane. Bakward elimination with a p-value of 20% seemsto provide a better estimation. In the original presentation of the Faroese meruryresults, a di�erent solution was applied. Prior information was used to identify thoseonfounders that were mandatory, although some of them turned out to ause veryminimal onfounding in this partiular study. Beause several outome variableswere available, and beause parameters that ated as onfounders in regard to oneoutome would also be expeted to ause onfounding with other outomes, the em-pirial data were used to generate a �onsensus� list of onfounders. The analysispresented here indiates that this approah yields a nearly unbiased estimate of themerury e�et. Furthermore, the results of the non-parametri and the parametribootstrap simulations show that, although naive PGS inferene may be assoiatedwith some optimism, the merury e�et annot be explained as an artifat ausedby the data-driven model seletion proess.As an alternative to variable seletion, shrinking of the onfounder e�ets shouldbe onsidered. Here this was ahieved with a modi�ed version of ridge regression,whih exluded the exposure parameter from shrinking. The performane of thisestimator will depend on the hoie of shrinkage parameter. If this parameter is low,the exposure e�et estimator will be almost idential to full model analysis, whilea high degree of shrinkage will orrespond to exluding all onfounders. We used aBayesian estimate for the shrinkage parameter and the orresponding e�et estima-tor appeared superior to all others onsidered. This method therefore deserves moreattention in epidemiology. In a slightly di�erent setting, Greenland advoated forthe use of empirial Bayes estimators like this, although he refrained from estimat-ing the shrinkage parameter.26 An obvious modi�ation of the method would be togroup potential onfounders aording to prior biologial importane, and then onlyto shrink the e�ets of the less important variables. In this way, the risk underesti-mating important onfounder e�ets may be limited, and the e�et of the exposureof interest may therefore be more aurately assessed.
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21TablesTable 1: Perent hange in the merury onentration, assoiated with a given dif-ferne in eah of the ovariates.Covariate Change in % 95% onf. limitAge (1 year inrease) 6.86 −10.97; 28.26Sex (girl vs boy) −8.59 −18.57; 2.63Lives w. parents (yes vs no) 17.13 −3.67; 42.41Younger sibs (yes vs no) −9.93 −19.87; 1.23Older sibs (yes vs no) 16.59 3.23; 31.68Birth weight (1 kg inrease) 5.58 −5.41; 17.85Gestational age (1 week inrease) −0.46 −4.86; 4.15Risk fators for neuro. dysfun. (yes vs no) 0.31 −15.28; 18.76Short nursing (yes vs no) 8.51 −7.74; 27.63Ferry (yes vs no) 58.71 36.26; 84.86Exam. time (afternoon vs morning) 5.93 −5.65; 18.94Mother Faroese (yes vs no) 131.66 77.71; 202.00Maternal raven (10 point inrease) −13.00 −18.99;−6.56Maternal age (1 year inrease) 0.82 −0.26; 1.90Maternal smoking (yes vs no) 7.05 −4.92; 20.53Maternal eduation (yes vs no) −14.93 −24.21;−4.51Paternal eduation (yes vs no) −3.76 −15.17; 9.18Paternal employment (yes vs no) 10.39 −5.52; 28.98Day are (yes vs no) −17.93 −26.85;−7.91Town7 (yes vs no) −30.00 −37.50;−21.60
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Table 2: Exluded ovariates in the analysis of the CVLT. For the stepwise riteria(BE, CIE), the numbers indiate the order of the deletions, while exluded ovariatesare marked with a irle for the predition based riteria (AIC, BIC) and the PGSmethod. Bakward Elimination

p = 0.05 p = 0.10 p = 0.20 AIC BIC CIE PGSYounger sibs 3 3 3 © © 5 ©Lives w. parents 5 5 5 © © 3 ©Exam. time 12Ferry 11 11 © 16 ©Birth weight 9 9 9 © © 8 ©Short nursing 2 2 2 © © 2 ©Maternal smoking 4 4 4 © © 9 ©Maternal age 12 12 © 14Gestational age 1 1 1 © © 1 ©Mother Faroese 14 14 © ©Older sibs 8 8 8 © © 4Town7 15 ©Paternal employment 15Paternal eduation © 11Maternal eduation 6 6 6 © © 10Day are 7 7 7 © © 6Risk fators 10 10 © © 7Maternal ravenSex 13 13 © 13Age 17
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Table 3: Inferene on the merury e�et on the CVLT ignoring (naive analysis) andaounting for (bootstrap) onfounder seletion unertainty.Naive analysis∗ Bootstrap†Seletion Method β̂Hg ŝ.e. p-value Change in %‡ mean§ ŝ.e.¶Full model −0.4983 0.2570 0.0529 - −0.4948 0.2553BE p = 0.20 −0.5020 0.2555 0.0498 −0.74 −0.5012 0.2597BE p = 0.10 −0.4795 0.2486 0.0542 3.77 −0.5055 0.2631BE p = 0.05 −0.5842 0.2432 0.0165 −17.24 −0.5112 0.2658AIC −0.4998 0.2556 0.0509 −0.30 −0.5027 0.2610BIC −0.5840 0.2438 0.0168 −17.20 −0.5220 0.2679CIE −0.4571 0.2586 0.0775 8.27 −0.4902 0.2551PGS −0.4671 0.2493 0.0613 6.26 −0.4740 0.2587Ridge regression −0.5004 0.2432 0.0396 −0.42 −0.4961 0.2500
∗ Results are based on 789 hildren with omplete information
† Number of bootstrap re-samples was 10,000
‡ Relative di�erene between merury oe�ients in full model and in seleted model
§ Empirial mean of bootstraped merury oe�ients
¶ Empirial standard deviation of bootstraped merury oe�ients
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Table 4: Exluded ovariates in the analysis of the Boston Naming Test. For thestepwise riteria (BE, CIE), the numbers indiate the order of the deletions, whileexluded ovariates are marked with a irle for the predition based riteria (AIC,BIC) and the PGS method. Bakward Elimination

p = 0.05 p = 0.10 p = 0.20 AIC BIC CIE PGSYounger sibs 11 © 11 ©Lives w. parents 2 2 2 © © 2 ©Exam. time 6 6 6 © © 7Ferry 3 3 3 © © 9 ©Birth weight 1 1 1 © © 3 ©Short nursing © 1 ©Maternal smoking 7 7 7 © © 10 ©Maternal age 8 8 8 © © 6Gestational age 4 4 4 © © 4 ©Mother Faroese 5 5 5 © © 14 ©Older sibs 10 © 5Town7 ©Paternal employment 9 © 13Paternal eduation © 8Maternal eduation 12Day are 16Risk fators 15Maternal ravenSex 12 © 17Age
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Table 5: Inferene on the merury e�et on the Boston Naming Test ignoring (naiveanalysis) and aounting for (bootstrap) onfounder seletion unertainty.Naive analysis∗ Bootstrap†Non-parametri ParametriSeletion Method β̂Hg ŝ.e. p-value Change in %‡ mean§ ŝ.e.¶ mean§ ŝ.e.¶Full model −1.695 0.5087 0.0009 - −1.692 0.4949 −1.699 0.5086BE p = 0.20 −1.734 0.4917 0.0004 −2.30 −1.703 0.4950 −1.710 0.5076BE p = 0.10 −1.734 0.4917 0.0004 −2.30 −1.714 0.4972 −1.720 0.5086BE p = 0.05 −1.625 0.4923 0.0010 4.13 −1.725 0.4991 −1.731 0.5107AIC −1.734 0.4917 0.0004 −2.30 −1.706 0.4959 −1.712 0.5074BIC −1.837 0.4873 0.0002 −8.38 −1.756 0.5011 −1.759 0.5139CIE −1.699 0.5069 0.0008 0.24 −1.686 0.5077 −1.677 0.5220PGS −1.722 0.4938 0.0005 −1.57 −1.712 0.4932 −1.717 0.5054Rigde regression −1.708 0.4846 0.0004 −0.74 −1.703 0.4874 −1.709 0.5033
∗ Results are based on 782 hildren with omplete information
† Number of bootstrap re-samples was 10,000
‡ Relative di�erene between merury oe�ients in full model and in seleted model
§ Empirial mean of bootstraped merury oe�ients
¶ Empirial standard deviation of bootstraped merury oe�ients


