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Confounder Selection in Environmental Epidemiology:

Assessment of Health Effects of Prenatal Mercury Exposure

PURPOSE: To compare different approaches to identification of confounders needed
for analyzing observational data. While standard analysis is usually conducted as if
the confounders were known a priori selection uncertainty must also be taken into
account.

METHODS: Confounders were selected using backward elimination, the change in
estimate method (CIE), Akaike’s information criterion (AIC), the Bayesian infor-
mation criterion (BIC), and an empirical approach using a priori information. A
modified ridge regression estimator, which shrinks effects of confounders toward zero,
was also considered. For each criterion, the uncertainty in the estimated exposure
effect was assessed using bootstrap simulations where confounders were selected in
each sample.

These methods were illustrated using data on mercury neurotoxicity in Faroe Islands
children. Point estimates and standard errors of mercury effects on confounder-
sensitive neurobehavioral outcomes were calculated for each selection procedure.
RESULTS: The full model and the empirical a priori model showed approximately
the same precision and these methods were (slightly) inferior only to modified ridge
regression. Lower precisions were obtained using backward elimination with a low
cut-off level, the BIC and the CIE.

CONCLUSIONS: Standard analysis ignores model selection uncertainty and is likely
to yield over-optimistic inferences. Thus, the traditional backward elimination pro-
cedure with p—5% should be avoided. If data-dependent procedures are required
for confounder identification, we recommend that inferences are based on bootstrap
statistics to describe the selection process.

KEY WORDS. Confounding Factors (Epidemiology), Regression Analysis, Statisti-
cal Models



Introduction

In observational studies, exposure values are not assigned randomly to the study
subjects. Therefore, exposed and unexposed subjects are likely to differ on a number
of variables. If some of these variables are affecting the outcome, then the crude
relation between exposure and outcome may give a distorted (confounded) reflection
of the causal exposure effect. The control of confounding factors has been one of the
central issues in epidemiological research, and adjustment is routinely achieved by

stratification or by applying some sort of multiple regression analysis.

The important question now is how the investigator decides which of the potential
confounders to control for and which to ignore. Often prior knowledge about popu-
lation relations is weak and the data is used in the confounder identification process.
Unfortunately, no standard procedure is fully satisfactory. One approach (backward
deletion) is based on stepwise testing of the effects of the potential confounders on
the outcome, while another (change-in-estimate) removes potential confounders as
long as the exposure effect does not change too much. Despite the frequent use
of such automated techniques, very little formal knowledge is available about the
impact of the selection process on the subsequent analysis of the exposure effect.
Results from simulation studies of the simple situation, where only one potential
confounder is present, seem to favor the change-in-estimate method over methods
based on significance testing,? and other simulation studies indicate that forward
selection procedures are of limited value in epidemiology.® Results from the related
problem of “best subset selection” suggest that precision is overestimated, if inference
is based on a model selected using stepwise significance testing.*® Although there is
a widespread awareness of this fact, the selection process is almost always ignored
in the final analysis, and inferences are made as if the selected model was given a

priori. Breiman described this routine procedure as a “quiet scandal”.®

In this paper, we compare different strategies for confounder selection using data from

an epidemiological study performed in the Faroe Islands to investigate the adverse



health effects of prenatal mercury exposure. Methylmercury is a common contami-
nant in seafood and freshwater fish. While adverse effects have been unequivocally
demonstrated in poisoning incidents, the implications of lower-level exposures in
fish-eating populations have been controversial.” The original analysis of the Faroese
data showed adverse effects of prenatal mercury exposure on childhood cognitive
development,® while a study carried out in the Seychelles did not report any sig-
nificant effects.” In 1998 the White House therefore arranged a workshop to assess
the quality of the main mercury studies. It was concluded that the Faroese study
had chosen an appropriate approach to confounder identification and adjustment.!°
However, further analysis were outlined including adjustment for new potential con-
founders. Because of the emphasis on residual confounding and the public-health
implications, these variables have been included in advanced analyses presented be-
low. The mercury effect is estimated using conventional confounder selection criteria
as well as the method originally used by the Faroese study group.® Furthermore, ad-
justed precision estimates, which take the confounder selection process into account,

are calculated using the bootstrap method.

Subjects and Methods

THE FAROESE MERCURY STUDY

A birth cohort of 1022 children was generated in the Faroe Islands during 1986 and
1987 and is being studied prospectively to examine the possible adverse effects of pre-
natal exposure to methylmercury. The Faroese population is exposed to methylmer-
cury mainly through consumption of contaminated pilot whale meat. Information
about the children’s prenatal exposure was obtained by measuring mercury concen-
trations in cord blood. Just before school entry (i.e. in 1993-1994), the children
underwent a detailed neuropsychological examination. A total of 917 children were
given neuropsychological tests reflecting different domains of brain function. Of the
neuropsychological tests administered to all the children, the Boston Naming Test
showed the strongest association with prenatal mercury exposure. The short-term

recall on the California Verbal Learning Test (CVLT) showed a weaker association,



with a p-value just below 0.05.8 In the present paper, we focus on these two outcome
variables to illustrate how the estimate of the mercury effect depends on the regres-

sion model.

An important reason why the exposure-response relation may be confounded in this
study is that, in the capital area of Torshavn, the consumption of pilot whale meat
was below the Faroese average, but at the same time this area also provided easier
access to education and day care. Here we shall consider the following list of possible
confounders. Demography: The child’s sex and age are obvious predictors of develop-
ment status. It was also taken into account whether or not the child was living with
his or hers parents and whether the child was living with younger or older siblings.
Health: Major medical risk factors for neurobehavioral dysfunction obtained at birth
(i.e. low birth weight, small-for-date, and history of head trauma and meningitis)
were combined into a single risk parameter. Birth weight, gestational age, and short
nursing may also affect childhood development. Ezamination: Some children had to
travel by ferry to the examination site, and whether the child was tested in the morn-
ing or in the afternoon was also recorded. Maternal: A few (41) of the children have
a mother born in Denmark, which may affect language skills and thereby affect test
scores. Maternal intelligence was measured by her score on Raven’s Progressive Ma-
trices. Maternal age at parturition and maternal smoking habits during pregnancy
may also predict childhood abilities. Socioeconomic: For the socially homogeneous
Faroese society, we used vocational or professional education of each parent, and the
employment status of the father, as indicators of social background. Furthermore,
children in day-care may have an advantage over other children. Residence: A di-
chotomous covariate (Town?7) was considered which indicated whether or not the
child was living in one of the Faroese towns (Torshavn, Klaksvik or Tvaeraa) at the

time of examination.

These parameters were selected on the basis of prior knowledge of potential influence

on the outcome variables, as considered in the light of the epidemiological setting



in the Faroe Islands. Most of these variables were thought to be weakly related to
mercury exposure, which depends on local and variable whale meat availability and
personal food preferences, rather than, say, socioeconomic factors. This list of co-
variates includes the variables previously considered in the original analysis,® but has
been extended with parameters that reflect possible differences between the major
towns with more than 2,000 inhabitants and the smaller fishing villages. Some of
these children had to travel longer by ferry to get to the clinic and could have been
tired from the travel. We also included the time of day when the testing took place.
Table 1 shows the bivariate association between the mercury concentration in the

cord blood and each of the potential confounders.

CONFOUNDER SELECTION STRATEGIES

The effect of mercury exposure after correction for the confounders is determined
by multiple regression analysis. The cord blood mercury concentrations showed a
skewed distribution and they were logarithmically transformed mainly to avoid that
a few highly exposed children became overly influential in the estimation of the expo-
sure effect. With 20 potential confounders and one exposure variable, the full model
includes more than 20 nuisance parameters, in addition to the parameter of interest.
To gain power in the estimation of the mercury coefficient, standard statistical pro-
cedures prescribe identification and removal of any unnecessary covariates.'! Several
confounder selection methods have been suggested, but the inferential properties of
these strategies are still poorly known, and an optimal procedure for confounder se-
lection has not been identified. We, therefore, compare different variable selection
methods for estimation of the effect of prenatal mercury exposure. Because the aim
is to estimate the exposure effect, we have restricted the selection problem to models

including the exposure variable.

In the original analysis of the Faroese data, Grandjean et al. developed an ad hoc
criterion for confounder selection, combining information across different outcome

variables.® According to this method, the child’s sex and age in addition to the ma-



ternal Raven score were considered obligatory confounders for all outcome variables.
Additional confounders were selected as follows: for each neuropsychological test
score, important predictors were identified using backward elimination (adjusted for
the obligatory covariates) with p=0.10. Predictors that were important for more
than 3 outcomes (out of 17) were then included in the final regression model for
all outcomes. The results of this method, here denoted PGS (Philippe Grandjean

selection), are compared with the results of four conventional selection methods.

Backward Elimination (BE): This procedure is based on significance testing, and,

12,13 it is still the default solution for model selection. The

despite strong criticism,
starting point is the full model adjusting for all possible confounders. Then, one co-
variate at a time is deleted in a stepwise fashion, at each step deleting the covariate
with the highest p-value. The deletion process stops when the p-value of the least
significant covariate is below a certain cut-off level. Thus, this procedure rests on the
premise that a given covariate is not a confounder if it does not affect the response.
It has been argued!!? that a significance test of the covariate effect places the burden
of proof in the wrong direction, i.e., a covariate is only accepted for control, if its
effect on the response is significant. According to this view, the backward elimina-
tion process may yield biased effect estimates due to under-selection of important

confounders, unless the cut-off is set much higher than the conventional level of 5%.

We have therefore investigated this method for cut-off levels of 5%, 10% and 20%.

Change-in-Estimate (CIE): As in backward elimination, this procedure deletes the
potential confounders in a stepwise fashion with the full model as the starting point.
At each step, the covariate that causes the smallest change in the exposure effect
estimate (compared to the full model estimate) upon deletion is removed. The pro-
cess stops when deletion of each of the remaining variables causes a relative change
of more than a given cut-off level, which is usually set at 10%. The idea here is that
if the most important confounders are taken into account, then the full model esti-

mate will have a low bias (though possibly a high variance). Whether or not a given



covariate should be considered an important confounder is decided directly from the
change in the target parameter, caused by not adjusting for the variable at hand.
This procedure has been recommended over the p-value based methods."'* However,
few formal results on the statistical properties of the CIE-method are available. In

our investigation, we used the recommended cut-off value of 10%.

Akaike’s Information Criterion (AIC): According to the AIC, the best model is the
one with the minimum value of —2 -log(L) 4+ 2 - k, where L denotes the maximum
value of the likelihood function and k is the number of free parameters in the model.
Akaike derived this procedure while trying to identify the optimal model for predic-
tion given that the prediction error is determined by the expected Kullback-Leibler
distance between the data generating density and the estimated density.!® Burnham
and Anderson strongly recommended the AIC for model selection in biological sci-
ences, mainly because this principle is not dependent upon the unrealistic assumption
that the true model is one of the models considered.!® However, on the subject of
prediction-based selection methods, Greenland appropriately stated that “a good rule
for a prediction problem may be a poor rule for causal analysis”,'® underlining that

the problem of “best subset selection” is not equivalent to the problem of confounder

identification.

The Bayesian Information Criterion (BIC): The BIC selection method is similar to
the AIC, except that here (minus twice the log of) the likelihood function is penalized
using the term: k - log(n), where n denotes the number of observations. Thus, in
studies with n > 7, larger models are more heavily penalized by the BIC than by the
AIC. The BIC was first developed by Schwarz as an asymptotic solution to Bayesian
model selection.!” Rissanen later motivated the BIC from a coding theoretical point

18,19 while Dawid derived an (asymptotically) equivalent selection criterion

of view,
based on the predictive powers of the proposed models.?>?! Contrary to the other
selection methods considered here, the BIC is consistent; that is, if a sequence of

nested models is proposed, and the true model is one of them, then the BIC will



estimate the dimension of the true model consistently. Thus, using the BIC method
the probability of under-fitting or over-fitting will converge to zero as the number of

observations increases.

Ridge Regression: Rather than selecting between covariates, ridge regression uses all
predictors, but shrinks their effects toward zero.?? This approach can regarded as a
Baysian solution to regression analysis, where regression coefficients a priori are con-
sidered to be independent normally distributed with mean zero and variance 0%. The
extent of shrinkage is controled by a parameter 6, which is equal to 0?/0%, where
o? is the residual variance of the response given the covariates. From a Bayesian
viewpoint, a natural choice of 6 is given by 6* = 52 -p/ZiBf, where p is the number
of covariates and o2 and Bi,i = 1,...,p are estimates of the full model. In typical
applications, study variables are standardized, and the shrinkage parameter is the
same for all covariates. Thus, ridge regression does not distinguish exposures from
confounders. We therefore considered a modified version, where only the confounder
effects were shrunken. This estimator can be viewed as an empirical Bayes estimator
with a infinite prior variance for the exposure effect, while the prior variance for the

confounders is estimated by 52 /6*.

BOOTSTRAP ANALYSIS

When the confounder selection process is based on data, a two-stage estimator is
used in the estimation of the exposure effect: first, the confounders are identified
and then the exposure regression coefficient is calculated in the selected model. For
each of the selection criteria described, the statistical properties of the correspond-
ing composite estimator were explored using bootstrap simulations.?® In regression
analysis the bootstrap can be applied in various ways. When studying model un-
certainty, the non-parametric bootstrap procedure may seem to be the most natural
choice, because this method is not dependent on one of the models being true. In
this simple approach, the 917 vectors consisting of covariate and response values of

the Faroese children are re-sampled with replacement. In each bootstrap sample, the



confounder selection criteria are applied and the mercury effect is estimated in final
models. Statistical properties of the selection criteria can then be determined from
the empirical distribution of the effect estimates. All bootstrap investigations were
based on 10,000 re-samples of the Faroese data. This number is in agreement with
recommendations of Burnham and Anderson,'® who throughly investigated the non-
parametric bootstrap as method for incorporating model uncertainty into statistical

inference.

The resampling was not restricted to complete cases. The complex PGS criterion
is based on the results of 17 different outcomes. Restricting data to children with
complete information on 20 potential confounders and 17 response variables would
lead to a an unacceptable reduction of the available data. Although all children are
re-sampled to obtain comparable results between the selection criteria in each sam-
ple, the calculations are restricted to children with complete information on the all
potential confounders and the response variable under investigation (i.e. the CVLT
or the Boston Naming Test). However, in the confounder identification part of the
PGS method, each of the 17 backward elimination processes were based on children
with complete information on the all potential confounders and the response variable

in question.

Using the non-parametric bootstrap, data are re-sampled from the empirical dis-
tribution of the observations. Thus, no model assumptions are exploited in the
resampling, which means that this method may be robust to mis-specifications in
the regression models, such as heteroscedasticity of error terms and non-linearity in
the mean terms.?* A disadvantage of this approach is that the matrix of covariate
values is not constant in different bootstrap data sets. This variation typically results
in conservative estimates of variances. However, even in moderately large data sets,

this effect is likely to be unimportant.*

For one of the Faroese outcome variables, the nonparametric bootstrap yielded a vari-
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ance estimate which was a little lower than expected for the full model estimator.
In further calculations, the parametric bootstrap was therefore used to investigate
the robustness of the conclusions based on the non-parametric approach. In the
parametric bootstrap, a new outcome value is simulated for each child from the dis-
tribution estimated in the full model analysis of the original data set. This is done
by first calculating the expected value for each observation based on the full model.
Then, a normally distributed residual with a variance identical to the residual vari-
ance observed in the original data is simulated, and the new outcome value is given
as the sum of the expected value and the residual. Thus, using this approach, the
matrix of covariate values is constant, but the estimated variances are dependent on

the appropriateness of the full model.

Results

For each of the potential confounders, Table 1 shows the (bivariate) association with
the mercury exposure. The strongest associations are seen for Ferry, Mother Faroese,
and Town7, but associations are also significant (at the 5%-level) for Older sib, Day-
care, Maternal Raven, and Maternal education. Most of these associations are the
result of low consumption of whale meat in the capital of Torshavn. In a multiple
regression analysis with the mercury exposure as the dependent variable and all po-
tential confounders as independent variables, 13.4% of the exposure variation was
explained. Thus, although some of the exposure-covariate associations are highly
significant, this study has rather limited multicollinearity problems for estimation of
the mercury exposure effect. In other words, variation of mercury exposure is poorly

explained by variables that may affect child development.

NAIVE ANALYSIS

In this section, the differences between the results of the selection strategies are de-
scribed, while ignoring the fact that the selection process may affect the statistical
properties of the final model estimates. The selection criteria were first applied to

the scores on the CVLT. Table 2 shows the covariates that were included in the final
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model, while Table 3 gives the main results of the final model inference. For this
outcome, the selection criteria introduce important differences in the subsequent in-
ference on the effect of prenatal exposure to mercury. For the BIC and BE p = 0.05,
it is estimated that a child loses almost 0.6 points per 10-fold increase in the mercury
concentration (p=0.017). This effect is 17% stronger than the full model estimate,
which has a p-value just above 5%. The deletion of T'own7 is the main reason for the
de-attenuated mercury coefficients for these criteria. Children living in towns tend
to do better so when this variable is excluded this advantage is attributed to having

a low mercury exposure, because children in towns had lower mercury concentrations

at birth (Table 1).

The CIE method eliminates 17 covariates, which is more than for any of the other
criteria. Only when using this criterion the covariates Exam time, Paternal employ-
ment, and the child’s age are excluded. These covariates are all strong predictors of
the CVLT score (p<<0.0001 for Paternal employment - children of employed fathers
do better), but because they are weakly associated with the exposure variable (Ta-
ble 1), deleting them causes only a slight change in the target parameter estimate.
However, if the aim of the selection process is to increase precision in the estimated
exposure effect, then strong predictors of the outcome not related to the exposure
should not be excluded. This is illustrated by the fact that, for the CIE method, the
(naive) standard deviation of the mercury effect is higher than the corresponding

value in the full model.

For the Boston Naming Test (Table 4 & Table 5), the final model inference is less
dependent on the selection criterion. No matter which method is used, a highly
significant mercury effect is obtained. The mercury coefficient varies from —1.837 to
—1.625 with p-values that are below 0.2%. Again, the BIC yields the strongest effect
and again this is due to the fact that this criterion is the only one to exclude T'own?.
Surprisingly, the criterion which resembles the BIC the most, BE p=0.05, yields the

weakest mercury effect. However, in addition to controlling for T'own7, this criterion
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eliminates the covariate indicating whether the child has any older brothers or sisters.

Both these decisions are associated with an attenuation in the mercury coefficient.

Overall, fewer covariates are excluded for the Boston Naming Test, but the CIE
method again eliminates 17 of the potential confounders. It may seem surprising
that this criterion is the only one to exclude Maternal education and Day-care, which
are strong predictors of the outcome (selected by the restrictive BE p=0.05) and also
clearly associated with the mercury exposure (Table 1). However, T'own7 is included
for control by the CIE. When corrected for this variable, the associations between the
exposure and the two potential confounders become less strong, and their deletions

are associated with changes in the target parameter below 4%.

INCORPORATION OF MODEL SELECTION UNCERTAINTY

From the naive standard deviations of the final model mercury coefficients, it ap-
pears that the selection methods overall have succeeded in increasing the precision
through the variable deletions. As could be expected, this tendency is strongest for
the prediction based methods and conventional backward elimination, which are de-
signed to provide a model with a low sum of squared residuals. However, when the
uncertainty in the data-dependent selection process is taken into account, the results
are less favorable for the selection strategies. For both outcomes, the bootstrap stan-
dard deviation of the full model estimate is the third lowest and only slightly higher
than that of the best selection criterion. This means that there is no justification
for reducing the full model: the precision of the target parameter is not increased,
but bias may be introduced after deletion of real confounders. Thus, in these data,
the mercury effect should be assessed in the full model where the effect estimate
is highly significant for the Boston Naming Test and on the verge of conventional
5% statistical significance for the CVLT. Note that this conclusion is reached even
though the selection criteria agree (especially for the CVLT) that a large part of the

potential confounders could have been left out of the analysis.
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The other main finding here is that, for most of the criteria, there is a satisfactory
agreement between the naive standard deviation and the corresponding value ob-
tained using the bootstrap. Thus, although the final model has been chosen from a
set of no less than 220 = 1,048, 576 possible models, the amount of over-optimism in

naive precision estimates is not critical.

The performance of the modified ridge regression estimator suggests that instead
of deleting potential confounders it is better to keep all of them, and shrink their
estimated effects. First of all, this method yields mercury effects which are in close
agreement with the least squares estimates of the full model, indicating that ridge
regression is nearly unbiased. Secondly, this estimator provides the lowest bootstrap
standard errors for both outcomes. Thus, in this analysis ridge regression produced
the best exposure effect estimator. However, like the selection procdures this method
suffers from the fact that estimation precision is overestimated by the naive standard
errors. For ridge regression, this is not a result of selection uncertainty, but the bias
occurs because the uncertainty in choice of the shrinkage parameter 6 is not taken

into account.

The approach used by Grandjean et al.® seems to provide a reasonable alternative
to full model inference. The PGS method yields mercury effects which are close to
the full model estimate, and its bootstrap standard error was beaten only by ridge
regression for the Boston Naming Test, while it came in fourth for the CVLT. In
addition, a reasonable agreement between the naive and the bootstrap standard er-
rors indicates, that the (naive) PGS inference has not become overly optimistic as a

result of the data-driven model selection.

Differences between the precisions of the selection criteria are generally small, but
some tendencies are clear. Based on the naive standard deviation, BE p=0.05 and
especially the BIC appear to provide the most precise estimation. However, when

the selection process is taken into account, the opposite result is obtained, thus indi-
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cating that, in addition to providing the most variable estimators, these criteria are
also associated with the largest amount of over-optimism in the final model inference.
Together with the fact that both methods seem to have induced a substantial amount
for bias (for the CVLT), this finding illustrates that the BIC and the BE p=0.05 are
not appropriate for confounder identification. In agreement with recommendations
by Dales and Ury,'? it is seen that the statistical properties of the BE method are

better if the level of significance is increased to 20%.

By definition, the CIE does not introduce much bias. However, because this method
may exclude strong predictors of the response, it may yield an imprecise estimate
of the exposure effect. This is the case for the Boston Naming Test, where the
CIE is associated with the largest bootstrap standard deviation. However, for the
CVLT, the CIE is even better than the full model. This discrepancy between CIE
results indicates that the precision of the CIE may be strongly dependent on the
specific circumstances in which it is used. Thus, although the CIE may attack the
problem of confounder identification in a more direct way than the methods based on

significance testing, BE with a p-value of 20% would seem to provide a better option.

For the full model, a close agreement was expected between standard deviations ob-
tained using the naive estimator and the non-parametric bootstrap. Such an agree-
ment was seen for the CVLT. However, for the Boston Naming Test, the bootstrap
estimate was somewhat lower than the naive estimate. The parametric bootstrap was
therefore applied to investigate the robustness of the findings in the previous section
to the choice of resampling distribution. Table 5 gives the estimated standard devia-
tions using the parametric bootstrap. Since the full model is true for the re-sampled
data sets, it is no surprise that the full model standard deviation is now close to the
naive result. For the selection criteria, similar increases are seen, and the results of
the non-parametric bootstrap are therefore confirmed. Thus, ridge regression and
the PGS method are again seen to provide the most precise effect estimate, while the

BIC and especially the CIE are poorest. Contrary to the non-parametric approach,
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the parametric results indicate that a small amount of power may be gained using
the AIC or BE with p—20% compared to the full model inference. However, the
main conclusion is unchanged: in these data, the possible increase in power obtained
through model reductions is too small to justify the use of automatic variable selec-

tion procedures.

Discussion

In epidemiology, the researcher is often faced with the seemingly simple task of esti-
mating the effect of one variable (the exposure) on another (the response). However,
this task is complicated if inference is drawn based on observational data, because
then the effects of an unknown set of confounding variables have to be taken into ac-
count. Prior to the statistical analysis, it may be possible to develop a set of potential
confounders, which is assumed to include the true confounders. As biological under-
standing is typically limited, the number of anticipated confounders may be large.
This means that the full model with all the potential confounders contains a large
number of nuisance parameters. To many investigators, it may seem unappealing to
base the exposure inference on a model where some parameters are clearly insignif-
icant. Instead, the model is reduced usually by using one of the subset selection
criteria described in this paper, whereupon the exposure effect is estimated in the
final model. The results presented here indicate that often it would have been better
to assess the exposure effect in the full model. Contrary to what is often indicated
by the naive estimates of precision, the model reductions may increase estimation
variability in addition to introducing biases in exposure regression coefficient. This
finding is in agreement with Raab’s simulation results on the statistical properties

of forward selection procedures.?

This case study does not document that full model inference is always superior. In
studies with fewer subjects or more potential confounders with stronger associations
to the exposure parameter, it may be possible to gain an important amount of power

through variable exclusions. However, in such studies model selection uncertainty
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will be stronger, and naive standard errors will be more heavily underestimated than
was the case in the Faroese mercury data. Thus, it will be even more important to
adjust for selection uncertainty in the final model inference. Because of the complex
nature of the composite selection estimators, no firm theory is currently available
to perform such adjustments. In this regard, it should be noted that Hjort and
Claeskens recently presented asymptotic results for the bias and precision of a cer-
tain class of composite estimators.?> However, these results depend on an assumption
of "local misspecification”, which may not be satisfied, and results on the properties
in finite samples are not provided. Therefore, the bootstrap approach constitutes
the obvious choice for incorporation of the confounder selection process into the final
inference. With today’s high-speed computers, this method can be applied quite

easily, thereby leading to better inference regarding the effects of the exposure.

In a given study, it may be helpful first to compare the standard error of the effect
estimate in the full model to the naive standard error estimate in the selected model.
If a substantial variance reduction is not seen, then the full model should be used
for inference. However, if the naive standard error in the selected model is clearly
lower and if the effect estimate is robust to the variable deletions, this finding would
indicate that power can be gained from covariate deletions. If a selection criterion
is used, then bootstrap simulations should be conducted to quantify the model un-
certainty, and thereby achieve a correct assessment of the significance of the effect

of the exposure.

An advantage of the conventional selection criteria is that they have been incorpo-
rated in many statistical software packages, which will facilitate the application of
the bootstrap. Of these methods, the BIC and backward elimination, with the tradi-
tional level of 5%, have been shown to be poorly suited for confounder identification.
With these criteria, the risk of deleting important confounders is high, and the es-
timation uncertainty will be underdetermined. The epidemiological CIE also takes

into account the covariate-exposure relation, when a potential confounder is assessed.
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In this way, bias in the exposure coefficient is limited, but the final estimate may
have a relatively large variance. Backward elimination with a p-value of 20% seems
to provide a better estimation. In the original presentation of the Faroese mercury
results, a different solution was applied. Prior information was used to identify those
confounders that were mandatory, although some of them turned out to cause very
minimal confounding in this particular study. Because several outcome variables
were available, and because parameters that acted as confounders in regard to one
outcome would also be expected to cause confounding with other outcomes, the em-
pirical data were used to generate a "consensus” list of confounders. The analysis
presented here indicates that this approach yields a nearly unbiased estimate of the
mercury effect. Furthermore, the results of the non-parametric and the parametric
bootstrap simulations show that, although naive PGS inference may be associated
with some optimism, the mercury effect cannot be explained as an artifact caused

by the data-driven model selection process.

As an alternative to variable selection, shrinking of the confounder effects should
be considered. Here this was achieved with a modified version of ridge regression,
which excluded the exposure parameter from shrinking. The performance of this
estimator will depend on the choice of shrinkage parameter. If this parameter is low,
the exposure effect estimator will be almost identical to full model analysis, while
a high degree of shrinkage will correspond to excluding all confounders. We used a
Bayesian estimate for the shrinkage parameter and the corresponding effect estima-
tor appeared superior to all others considered. This method therefore deserves more
attention in epidemiology. In a slightly different setting, Greenland advocated for
the use of empirical Bayes estimators like this, although he refrained from estimat-
ing the shrinkage parameter.?6 An obvious modification of the method would be to
group potential confounders according to prior biological importance, and then only
to shrink the effects of the less important variables. In this way, the risk underesti-
mating important confounder effects may be limited, and the effect of the exposure

of interest may therefore be more accurately assessed.
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The results of this paper are based on the assumption that the full model provides an
unbiased estimation of the exposure effect. However, this is unlikely to be the case,
if the exposure variable or one or more potential confounders are measured with er-
ror. It is well known that measurement error in the exposure variable attenuates the
dose-response relation. This attenuation depends on the set of selected confounders
and will be most severe in the full model, where the variance of the exposure variable
given the confounders is minimal.2” Thus, in this situation, a sub-model with fewer
confounders may seem preferable. However, good inference can be drawn only by

correcting for the measurement error, and this correction may require the full model.
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Tables

Table 1: Percent change in the mercury concentration, associated with a given dif-

fernce in each of the covariates.

Covariate Change in % 95% conf. limit
Age (1 year increase) 6.86 —10.97; 28.26
Sez (girl vs boy) —8.59 —18.57;2.63
Lives w. parents (yes vs no) 17.13 —3.67;42.41
Younger sibs (yes vs no) —9.93 —19.87;1.23
Older sibs (yes vs no) 16.59 3.23; 31.68
Birth weight (1 kg increase) 5.58 —5.41;17.85
Gestational age (1 week increase) —0.46 —4.86;4.15
Risk factors for neuro. dysfunc. (yes vs no) 0.31 —15.28;18.76
Short nursing (yes vs no) 8.51 —7.74;27.63
Ferry (yes vs no) 58.71 36.26; 84.86
Ezam. time (afternoon vs morning) 5.93 —5.65;18.94
Mother Faroese (yes vs no) 131.66 77.71; 202.00
Maternal raven (10 point increase) —13.00 —18.99; —6.56
Maternal age (1 year increase) 0.82 —0.26;1.90
Maternal smoking (yes vs no) 7.05 —4.92;20.53
Maternal education (yes vs no) —14.93 —24.21; —4.51
Paternal education (yes vs no) —3.76 —15.17;9.18
Paternal employment (yes vs 1no) 10.39 —5.52;28.98
Day care (yes vs no) —17.93 —26.85; —7.91

Town7 (yes vs no) —30.00 —37.50; —21.60
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Table 2: Excluded covariates in the analysis of the CVLT. For the stepwise criteria
(BE, CIE), the numbers indicate the order of the deletions, while excluded covariates

are marked with a circle for the prediction based criteria (AIC, BIC) and the PGS

method.
Backward Elimination
p=005 p=010 p=0.20 AIC BIC CIE PGS
Younger sibs 3 3 3 O O 5 O
Lives w. parents 5 5 5 O O 3 O
Exam. time 12
Ferry 11 11 O 16 O
Birth weight 9 9 9 O O 8 O
Short nursing 2 2 2 O O 2 O
Maternal smoking 4 4 4 O O 9 O
Maternal age 12 12 O 14
Gestational age 1 1 1 O O 1 O
Mother Faroese 14 14 O O
Older sibs 8 8 8 O O 4
Town7 15 O
Paternal employment 15
Paternal education O 11
Maternal education 6 6 6 O O 10
Day care 7 7 7 O O 6
Risk factors 10 10 O O 7
Maternal raven
Sex 13 13 O 13

Age 17
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Table 3: Inference on the mercury effect on the CVLT ignoring (naive analysis) and

accounting for (bootstrap) confounder selection uncertainty.

Naive analysis* Bootstrap'

Selection Method EHQ s.e.  p-value Change in %* mean® sef

Full model —0.4983 0.2570 0.0529 - —0.4948 0.2553
BE p=0.20 —0.5020 0.2555 0.0498 —0.74 —0.5012 0.2597
BE p=0.10 —0.4795 0.2486 0.0542 3.77 —0.5055 0.2631
BE p=0.05 —0.5842 0.2432 0.0165 —17.24 —0.5112  0.2658
AIC —0.4998 0.2556  0.0509 —0.30 —0.5027 0.2610
BIC —0.5840 0.2438 0.0168 —17.20 —0.5220 0.2679
CIE —0.4571 0.2586 0.0775 8.27 —0.4902 0.2551
PGS —0.4671 0.2493 0.0613 6.26 —0.4740 0.2587
Ridge regression =~ —0.5004 0.2432 0.0396 —0.42 —0.4961 0.2500

* Results are based on 789 children with complete information

t Number of bootstrap re-samples was 10,000

I Relative difference between mercury coefficients in full model and in selected model
§ Empirical mean of bootstraped mercury coefficients

¥ Empirical standard deviation of bootstraped mercury coefficients
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Table 4: Excluded covariates in the analysis of the Boston Naming Test. For the
stepwise criteria (BE, CIE), the numbers indicate the order of the deletions, while
excluded covariates are marked with a circle for the prediction based criteria (AIC,

BIC) and the PGS method.

Backward Elimination

p=0.05 p=010 p=020 AIC BIC CIE PGS

Younger sibs 11 O 11 O
Lives w. parents 2 2 2 O O 2 O
Exam. time 6 6 6 O O 7

Ferry 3 3 3 O O 9 O
Birth weight 1 1 1 O O 3 O
Short nursing O 1 O
Maternal smoking 7 7 7 O O 10 O
Maternal age 8 8 8 O O 6
Gestational age 4 4 4 O O 4 O
Mother Faroese 5 5 5 O O 14 O
Older sibs 10 O 5
Town7 O

Paternal employment 9 O 13
Paternal education O 8
Maternal education 12

Day care 16

Risk factors 15

Maternal raven
Ser 12 O 17
Age
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Table 5: Inference on the mercury effect on the Boston Naming Test ignoring (naive

analysis) and accounting for (bootstrap) confounder selection uncertainty.

Naive analysis* Bootstrap!
Non-parametric Parametric

Selection Method BHg s.e.  p-value Changein %' mean’ 5e¥9 meant se9

Full model —1.695 0.5087 0.0009 - —1.692 0.4949 -1.699 0.5086
BE p =0.20 —1.734 0.4917 0.0004 —2.30 —1.703 0.4950 -1.710 0.5076
BE p =0.10 —1.734 0.4917 0.0004 —2.30 —-1.714 04972 -1.720 0.5086
BE p =0.05 —1.625 0.4923 0.0010 4.13 —-1.725 04991 -1.731 0.5107
AIC —1.734 0.4917 0.0004 —2.30 —1.706 0.4959 —-1.712 0.5074
BIC —1.837 0.4873 0.0002 —8.38 —1.756 0.5011 —1.759 0.5139
CIE —1.699 0.5069 0.0008 0.24 —1.686 0.5077 —1.677 0.5220
PGS —1.722  0.4938 0.0005 —1.57 —-1.712 04932 —-1.717 0.5054
Rigde regression  —1.708 0.4846 0.0004 —-0.74 —1.703 04874 —1.709 0.5033

* Results are based on 782 children with complete information

T Number of bootstrap re-samples was 10,000

I Relative difference between mercury coefficients in full model and in selected model

§ Empirical mean of bootstraped mercury coefficients

¥ Empirical standard deviation of bootstraped mercury coefficients



