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Abstract
Motivation: In the absence of horizontal gene transfer it is possible to reconstruct the history
of gene families from empirically determined orthology relations, which are equivalent to event-
labeled gene trees. Knowledge of the event labels considerably simplifies the problem of reconciling
a gene tree T with a species trees S, relative to the reconciliation problem without prior knowledge
of the event types. It is well-known that optimal reconciliations in the unlabeled case may violate
time-consistency and thus are not biologically feasible. Here we investigate the mathematical
structure of the event labeled reconciliation problem with horizontal transfer.
Results: We investigate the issue of time-consistency for the event-labeled version of the recon-
ciliation problem, provide a convenient axiomatic framework, and derive a complete characteriza-
tion of time-consistent reconciliations. This characterization depends on certain weak conditions
on the event-labeled gene trees that reflect conditions under which evolutionary events are ob-
servable at least in principle. We give an O(|V (T )| log(|V (S)|))-time algorithm to decide whether
a time-consistent reconciliation map exists. It does not require the construction of explicit timing
maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph
is acyclic.
Significance: The combinatorial characterization of time consistency and thus biologically feas-
ible reconciliation is an important step towards the inference of gene family histories with hori-
zontal transfer from orthology data, i.e., without presupposed gene and species trees. The fast
algorithm to decide time consistency is useful in a broader context because it constitutes an
attractive component for all tools that address tree reconciliation problems.
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1 Introduction

Modern molecular biology describes the evolution of species in terms of the evolution of
the genes that collectively form an organism’s genome. In this picture, genes are viewed
as atomic units whose evolutionary history by definition forms a tree. The phylogeny of
species also forms a tree. This species tree is either interpreted as a consensus of the gene
trees or it is inferred from other data. An interesting formal manner to define a species tree
independent of genes and genetic data is discussed e.g. in [7]. In this contribution, we assume
that gene and species trees are given independently of each other. The relationship between
gene and species evolution is therefore given by a reconciliation map that describes how the
gene tree is embedded in the species tree: after all, genes reside in organisms, and thus at
each point in time can be assigned to a species.

From a formal point of view, a reconciliation map µ identifies vertices of a gene tree with
vertices and edges in the species tree in such a way that (partial) ancestor relations given by
the genes are preserved by µ. Vertices in the species tree correspond to speciation events.
Since in this situation genes are faithfully transmitted from the parent species into both (all)
daughter species, some of the vertices in the gene tree correspond to speciation events. Other
important events considered here are gene duplications, in which two copies of a gene keep
residing in the same species, and horizontal gene transfer events (HGT). Here, the original
remains in the parental species, while the offspring copy “jumps” into a different branch of
the species tree. It is customary to define pairwise relations between genes depending on the
event type of their last common ancestor [8, 11, 13].

Most of the literature on this topic assumes that both the gene tree and the species
tree are known. The aim is then to find a mapping of the gene tree T into the species tree
S and, at least implicitly, an event-labeling on the vertices of the gene tree T . Here we
take a different point of view and assume that T and the types of evolutionary events on
T are known. This setting has ample practical relevance because event-labeled gene trees
can be derived from the pairwise orthology relation [15, 13]. These relations in turn can be
estimated directly from sequence data using a variety of algorithmic approaches that are
based on the pairwise best match criterion and hence do not require any a priori knowledge
of the topology of either the gene tree or the species tree, see e.g. [19, 2, 17, 1].

Genes that share a common origin (homologs) can be classified into orthologs, paralogs,
and xenologs depending whether they originated by a speciation, duplication or horizontal
gene transfer (HGT) event [8, 13]. Recent advances in mathematical phylogenetics [10, 11, 15]
have shown that the knowledge of these event-relations (orthologs, paralogs and xenologs)
suffices to construct event-labeled gene trees and, in some case, also a species tree.

Conceptually, both the gene tree and species tree are associated with a timing of each event.
Reconciliation maps must preserve this timing information because there are biologically
infeasible event labeled gene trees that cannot be reconciled with any species tree. In the
absence of HGT, biologically feasibility can be characterized in terms of certain triples (rooted
binary trees on three leaves) that are displayed by the gene trees [16]. In contrast, the timing
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information must be taken into account explicitly in the presence of HGT. In other words,
there are gene trees with HGT that can be mapped to species trees only in such a way that
some genes travels back in time.

There have been several attempts in the literature to handle this issue, see e.g. [6] for a
review. In [18, 5] a single HGT adds timing constraints to a time map for a reconciliation
to be found. Time-consistency is then subsequently defined based on the existence of a
topological order of the digraph reflecting all the time constraints. In [20] NP-hardness was
shown for finding a parsimonious time-consistent reconciliation based on a definition for
time-consistency that essentially is based on considering pairs of HGTs. However, the latter
definitions are explicitly designed for binary gene trees and do not apply to non-binary gene
trees, which are used here to model incomplete knowledge of the exact gene phylogenies.
Different algorithmic approaches for tackling time-consistency exist [6] such as the inclusion
of time-zones known for specific evolutionary events. It is worth noting that a posteriori
modifications of time-inconsistent solutions will in general violate parsimony [18]. So-far, no
results have become available to determine the existence of time-consistent reconciliation
maps given the (undated) species tree and the event-labeled gene tree.

Here, we introduce an axiomatic framework for time-consistent reconciliation maps and
characterize for given event-labeled gene trees and species trees whether there exists a time-
consistent reconciliation map. We provide an algorithm that constructs a time-consistent
reconciliation map if one exists. The algorithms are implemented in C++ using the boost graph
library and are freely available at https://github.com/Nojgaard/tc-recon. In addition,
the proofs and additional information on this paper are provided at this url.

2 Notation and Preliminaries

We consider rooted trees T = (V,E) (on LT ) with root ρT ∈ V and leaf set LT ⊆ V . A
vertex v ∈ V is called a descendant of u ∈ V , v �T u, and u is an ancestor of v, u �T v, if u
lies on the path from ρT to v. As usual, we write v ≺T u and u �T v to mean v �T u and
u 6= v. The partial order �T is known as the ancestor order of T ; the root is the unique
maximal element w.r.t �T . If u �T v or v �T u then u and v are comparable and otherwise,
incomparable. We consider edges of rooted trees to be directed away from the root, that is,
the notation for edges (u, v) of a tree is chosen such that u �T v. If (u, v) is an edge in T ,
then u is called parent of v and v child of u. It will be convenient for the discussion below to
extend the ancestor relation �T on V to the union of the edge and vertex sets of T . More
precisely, for the edge e = (u, v) ∈ E we put x ≺T e if and only if x �T v and e ≺T x if and
only if u �T x. For edges e = (u, v) and f = (a, b) in T we put e �T f if and only if v �T b.
For x ∈ V , we write LT (x) := {y ∈ LT | y �T x} for the set of leaves in the subtree T (x) of
T rooted in x.

For a non-empty subset of leaves A ⊆ L, we define lcaT (A), or the least common ancestor
of A, to be the unique �T -minimal vertex of T that is an ancestor of every vertex in A. In
case A = {u, v}, we put lcaT (u, v) := lcaT ({u, v}). We have in particular u = lcaT (LT (u))
for all u ∈ V . We will also frequently use that for any two non-empty vertex sets A,B of a
tree, it holds that lca(A ∪B) = lca(lca(A), lca(B)).

A phylogenetic tree is a rooted tree such that no interior vertex in v ∈ V \ LT has degree
two, except possibly the root. If LT corresponds to a set of genes G or species S, we call
a phylogenetic tree on LT gene tree or species tree, respectively. In this contribution we
will not restrict the gene or species trees to be binary, although this assumption is made
implicitly or explicitly in much of the literature on the topic. The more general setting allows
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us to model incomplete knowledge of the exact gene or species phylogenies. Of course, all
mathematical results proved here also hold for the special case of binary phylogenetic trees.

In our setting a gene tree T = (V,E) on G is equipped with an event-labeling map
t : V ∪ E → I ∪ {0, 1} with I = {•,�,4,�} that assigns to each interior vertex v of T a
value t(v) ∈ I indicating whether v is a speciation event (•), duplication event (�) or HGT
event (4). It is convenient to use the special label � for the leaves x of T . Moreover, to
each edge e a value t(e) ∈ {0, 1} is added that indicates whether e is a transfer edge (1) or
not (0). Note, only edges (x, y) for which t(x) = 4 might be labeled as transfer edge. We
write E = {e ∈ E | t(e) = 1} for the set of transfer edges in T . We assume here that all edges
labeled “0” transmit the genetic material vertically, that is, from an ancestral species to its
descendants.

We remark that the restriction t|V of t to the vertex set V coincides with the “symbolic
dating maps” introduced in [4]; these have a close relationship with cographs [10, 12, 14].
Furthermore, there is a map σ : G → S that assigns to each gene the species in which it
resides. The set σ(M), M ⊆ G, is the set of species from which the genes M are taken. We
write (T ; t, σ) for the gene tree T = (V,E) with event-labeling t and corresponding map σ.

Removal of the transfer edges from (T ; t, σ) yields a forest TE := (V,E \ E) that inherits
the ancestor order on its connected components, i.e., �TE

iff x �T y and x, y are in same
subtree of TE [20]. Clearly �TE

uniquely defines a root for each subtree and the set of
descendant leaf nodes LTE

(x).
In order to account for duplication events that occurred before the first speciation event,

we need to add an extra vertex and an extra edge “above” the last common ancestor of all
species in the species tree S = (V,E). Hence, we add an additional vertex to V (that is now
the new root ρS of S) and the additional edge (ρS , lcaS(S)) to E. Strictly speaking S is not
a phylogenetic tree in the usual sense, however, it will be convenient to work with these
augmented trees. For simplicity, we omit drawing the augmenting edge (ρS , lcaS(S)) in our
examples.

3 Observable Scenarios

The true history of a gene family, as it is considered here, is an arbitrary sequence of
speciation, duplication, HGT, and gene loss events. The applications we envision for the
theory developed, here, however assume that the gene tree and its event labels are inferred
from (sequence) data, i.e., (T ; t, σ) is restricted to those labeled trees that can be constructed
at least in principle from observable data. The issue here are gene losses that may completely
eradicate the information on parts of the history. Specifically, we require that (T ; t, σ) satisfies
the following three conditions:

(O1) Every internal vertex v has degree at least 3, except possibly the root which has degree
at least 2.

(O2) Every HGT node has at least one transfer edge, t(e) = 1, and at least one non-transfer
edge, t(e) = 0;

(O3) (a) If x is a speciation vertex, then there are at least two distinct children v, w of x
such that the species V and W that contain v and w, resp., are incomparable in S.
(b) If (v, w) is a transfer edge in T , then the species V and W that contain v and w, resp.,
are incomparable in S.

Condition (O1) ensures that every event leaves a historical trace in the sense that there
are at least two children that have survived in at least two of its subtrees. If this were not
the case, no evidence would be left for all but one descendant tree, i.e., we would have no
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evidence that event v ever happened. We note that this condition was used e.g. in [16] for
scenarios without HGT. Condition (O2) ensures that for an HGT event a historical trace
remains of both the transferred and the non-transferred copy. If there is no transfer edge,
we have no evidence to classify v as a HGT node. Conversely, if all edges were transfers,
no evidence of the lineage of origin would be available and any reasonable inference of the
gene tree from data would assume that the gene family was vertically transmitted in at least
one of the lineages in which it is observed. In particular, Condition (O2) implies that for
each internal vertex there is a path consisting entirely of non-transfer edges to some leaf.
This excludes in particular scenarios in which a gene is transferred to a different “host” and
later reverts back to descendants of the original lineage without any surviving offspring in
the intermittent host lineage. Furthermore, a speciation vertex x cannot be observed from
data if it does not “separate” lineages, that is, there are two leaf descendants of distinct
children of x that are in distinct species. However, here we only assume to have the weaker
Condition (O3.a) which ensures that any “observable” speciation vertex x separates at least
locally two lineages. In other words, if all children of x would be contained in species that are
comparable in S or, equivalently, in the same lineage of S, then there is no clear historical
trace that justifies x to be a speciation vertex. In particular, most-likely there are two leaf
descendants of distinct children of x that are in the same species even if only TE is considered.
Hence, x would rather be classified as a duplication than as a speciation upon inference of
the event labels from actual data. Analogously, if (v, w) ∈ E then v signifies the transfer
event itself but w refers to the next (visible) event in the gene tree T . Given that (v, w) is
a HGT-edge in the observable part, in a “true history” v is contained in a species V that
transmits its genetic material (maybe along a path of transfers) to a contemporary species Z
that is an ancestor of the species W containing w. Clearly, the latter allows to have V �S W

which happens if the path of transfers points back to the descendant lineage of V in S. In
this case the transfer edge (v, w) must be placed in the species tree such that µ(v) and µ(w)
are comparable in S. However, then there is no evidence that this transfer ever happened,
and thus v would be rather classified as speciation or duplication vertex.

It can be shown that (O1), (O2) and (O3) imply Lemma 1 as well as two important
properties (Σ1) and (Σ2) of event labeled species trees that play a crucial role for the results
reported here.

I Lemma 1. Let T1, . . . , Tk be the connected components of TE with roots ρ1, . . . , ρk, respect-
ively. If (O2) holds, then, {LTE

(ρ1), . . . , LTE
(ρk)} forms a partition of G.

(Σ1) If t(x) = • then there are distinct children v, w of x in T such that σ(LTE
(v)) ∩

σ(LTE
(w)) = ∅.

Intuitively, (Σ1) is true because within a component TE no genetic material is exchanged
between non-comparable nodes. Thus, a gene separated in a speciation event necessarily
ends up in distinct species in the absence of horizontal transfer. It is important to note that
we do not require the converse: σ(LTE

(y)) ∩ σ(LTE
(y′)) = ∅ does not imply t(lcaT (LTE

(y) ∪
LTE

(y′)) = •, that is, the last common ancestor of two sets of genes from different species is
not necessarily a speciation vertex.

Now consider a transfer edge (v, w) ∈ E , i.e., t(v) = 4. Then TE(v) and TE(w) are
subtrees of distinct connected components of TE . Since HGT amounts to the transfer of
genetic material across distinct species, the genes v and w must be contained in distinct
species X and Y , respectively. Since no genetic material is transferred between contemporary
species X ′ and Y ′ in TE , where X

′ and Y ′ is a descendant of X and Y , respectively we derive

(Σ2) If (v, w) ∈ E then σ(LTE
(v)) ∩ σ(LTE

(w)) = ∅.

WABI 2017
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Figure 1 Left: A “true” evolutionary scenario for a gene tree with leaf set G evolving along the

tube-like species trees is shown. The symbol “x” denotes losses. All speciations along the path from
the root ρT to the leaf a are followed by losses and we omit drawing them.
Middle: The observable gene tree is shown in the upper-left. The orthology graph G = (G, E) (edges
are placed between genes x, y for which t(lca(x, y)) = •) is drawn in the lower part. This graph is
a cograph and the corresponding non-binary gene tree T on G that can be constructed from such
data is given in the upper-right part (cf. [10, 11, 13] for further details).
Right: Shown is species trees S on S = σ(G) with reconciled gene tree T . The reconciliation map µ
for T and S is given implicitly by drawing the gene tree T within S. Note, this reconciliation is not
consistent with DTL-scenarios [20, 3]. A DTL-scenario would require that the duplication vertex
and the leaf a are incomparable in S. for further details.

From here on we simplify the notation a bit and write σTE
(u) := σ(LTE

(u)). We are
aware of the fact that condition (O3) cannot be checked directly for a given event-labeled
gene tree. In contrast, (Σ1) and (Σ2) are easily determined. Hence, in the remainder of this
paper we consider the more general case, that is, gene trees that satisfy (O1), (O2), (Σ1)
and (Σ2).

4 Time-Consistent Reconciliation Maps

The problem of reconciliation between gene trees and species tree is formalized in terms of
so-called DTL-scenarios in the literature [20, 3]. This framework, however, usually assumes
that the event labels t on T are unknown, while a species tree S is given. The “usual” DTL
axioms, furthermore, explicitly refer to binary, fully resolved gene and species trees. We
therefore use a different axiom set here that is a natural generalization of the framework
introduced in [16] for the HGT-free case:

I Definition 2. Let T = (V,E) and S = (W,F ) be phylogenetic trees on G and S, resp.,
σ : G→ S the assignment of genes to species and t : V ∪ E → {•,�,4,�} ∪ {0, 1} an event
labeling on T . A map µ : V →W ∪ F is a reconciliation map if for all v ∈ V it holds that:
(M1) Leaf Constraint. If t(v) = �, then µ(v) = σ(v).
(M2) Event Constraint.

(i) If t(v) = •, then µ(v) = lcaS(σTE
(v)).

(ii) If t(v) ∈ {�,4}, then µ(v) ∈ F .
(iii) If t(v) = 4 and (v, w) ∈ E , then µ(v) and µ(w) are incomparable in S.

(M3) Ancestor Constraint.
Suppose v, w ∈ V with v ≺TE

w.
(i) If t(v), t(w) ∈ {�,4}, then µ(v) �S µ(w),
(ii) otherwise, i.e., at least one of t(v) and t(w) is a speciation •, µ(v) ≺S µ(w).

We say that S is a species tree for (T ; t, σ) if a reconciliation map µ : V →W ∪ F exists.
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Figure 2 Shown are two (tube-like) species trees with reconciled gene trees. The reconciliation
map µ for T and S is given implicitly by drawing the gene tree (upper right to the respective
species tree) within the species tree. In the left example, the map µ is unique. However, µ is not
time-consistent and thus, there is no time consistent reconciliation for T and S. In the example on
the right hand side, µ is time-consistent.

It can be shown that the DTL axioms and the notation used here as in Definition 2 are
equivalent in the case of binary trees. In Figure 1 an example of a biologically plausible
reconciliation of non-binary trees that is valid w.r.t. Definition 2 is shown, however, it does
not satisfy the conditions of a DTL-scenario.

Condition (M1) ensures that each leaf of T , i.e., an extant gene in G, is mapped to the
species in which it resides. Conditions (M2.i) and (M2.ii) ensure that each inner vertex of
T is either mapped to a vertex or an edge in S such that a vertex of T is mapped to an
interior vertex of S if and only if it is a speciation vertex. Condition (M2.i) might seem overly
restrictive, an issue to which we will return below. Condition (M2.iii) satisfies condition
(O3) and maps the vertices of a transfer edge in a way that they are incomparable in the
species tree, since a HGT occurs between distinct (co-existing) species. It becomes void
in the absence of HGT; thus Definition 2 reduces to the definition of reconciliation maps
given in [16] for the HGT-free case. Importantly, condition (M3) refers only to the connected
components of TE since comparability w.r.t. ≺TE

implies that the path between x and y in
T does not contain transfer edges. It ensures that the ancestor order �T of T is preserved
along all paths that do not contain transfer edges.

We will make use of the following bound that effectively restricts how close to the leafs
the image of a vertex in the gene tree can be located.

I Lemma 3. If µ : (T ; t, σ) → S satisfies (M1) and (M3), then µ(u) �S lcaS(σTE
(u)) for

any u ∈ V (T ).

Proof. If u is a leaf, then by Condition (M1) µ(u) = σ(u) and we are done. Thus, let
u be an interior vertex. By Condition (M3), z �S µ(u) for all z ∈ σTE

(u). Hence, if
µ(u) ≺S lcaS(σTE

(u)) or if µ(u) and lcaS(σTE
(u))) are incomparable in S, then there is a

z ∈ σTE
(u) such that z and µ(u) are incomparable; contradicting (M3). J

Condition (M2.i) implies in particular the weaker property “(M2.i’) if t(v) = • then µ(v) ∈W ”.
In the light of Lemma 3, µ(v) = lcaS(σTE

(v)) is the lowest possible choice for the image of a
speciation vertex. Clearly, this restricts the possibly exponentially many reconciliation maps
for which µ(v) �S lcaS(σTE

(v)) for speciation vertices v is allowed to only those that satisfy
(M2.i). However, the latter is justified by the observation that if v is a speciation vertex with
children u,w, then there is only one unique piece of information given by the gene tree to
place µ(v), that is, the unique vertex x in S with children y, z such that σTE

(u) ⊆ LS(y)
and σTE

(w) ⊆ LS(z). The latter arguments easily generalizes to the case that v has more
than two children in T . Moreover, any observable speciation node v′ �T v closer to the root

WABI 2017
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Figure 3 Shown are a gene tree (T ; t, σ) (right) and two identical (tube-like) species trees S (left
and middle). There are two possible reconciliation maps for T and S that are given implicitly by
drawing T within the species tree S. These two reconciliation maps differ only in the choice of placing
the HGT-event either on the edge (lcaS(C,D), C) or on the edge (lcaS({A,B,C,D}), lcaS(C,D)).
In the first case, it is easy to see that µ would not be time-consistent, i.e., there are no time maps τT

and τS that satisfy (C1) and (C2). The reconciliation map µ shown in the middle is time-consistent.

than v must be mapped to a node ancestral to µ(v) due to (M3.ii). Therefore, we require
µ(v) = x = lcaS(σTE

(v)) here.
If S is a species tree for the gene tree (T, t, σ) then there is no freedom in the construction

of a reconciliation map µ on the set {x ∈ V (T ) | t(x) ∈ {•,�}}. The duplication and
HGT vertices of T , however, can be placed differently. As a consequence there is a possibly
exponentially large set of reconciliation maps from (T, t, σ) to S.

From a biological point of view, however, the notion of reconciliation used so far is too
weak. In the absence of HGT, subtrees evolve independently and hence, the linear order
of points along each path from root to leaf is consistent with a global time axis. This
is no longer true in the presence of HGT events, because HGT events imply additional
time-consistency conditions. These stem from the fact that the appearance of the HGT copy
in a distant subtree of S is concurrent with the HGT event. To investigate this issue in detail,
we introduce time maps and the notion of time-consistency, see Figures 2 – 4 for illustrative
examples.

I Definition 4 (Time Map). The map τT : V (T )→ R is a time map for the rooted tree T if
x ≺T y implies τT (x) > τT (y) for all x, y ∈ V (T ).

I Definition 5. A reconciliation map µ from (T ; t, σ) to S is time-consistent if there are
time maps τT for T and τS for S for all u ∈ V (T ) satisfying the following conditions:
(C1) If t(u) ∈ {•,�}, then τT (u) = τS(µ(u)).
(C2) If t(u) ∈ {�,4} and, thus µ(u) = (x, y) ∈ E(S), then τS(y) > τT (u) > τS(x).

Condition (C1) is used to identify the time-points of speciation vertices and leaves u in
the gene tree with the time-points of their respective images µ(u) in the species trees. In
particular, all genes u that reside in the same species must be assigned the same time point
τT (u) = τS(σ(u)). Analogously, all speciation vertices in T that are mapped to the same
speciation in S are assigned matching time stamps, i.e., if t(u) = t(v) = • and µ(u) = µ(v)
then τT (u) = τT (v) = τS(µ(u)).

To understand the intuition behind (C2) consider a duplication or HGT vertex u. By
construction of µ it is mapped to an edge of S, i.e., µ(u) = (x, y) in S. The time point of
u must thus lie between time points of x and y. Now suppose (u, v) ∈ E is a transfer edge.
By construction, u signifies the transfer event itself. The node v, however, refers to the
next (visible) event in the gene tree. Thus τT (u) < τT (v). In particular, τT (v) must not be
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Figure 4 Shown are a gene tree (T ; t, σ) (right) and two identical (tube-like) species trees S
(left and middle). There are two possible reconciliation maps for T and S that are given implicitly
by drawing T within the species tree S. The left reconciliation maps each gene tree vertex as
high as possible into the species tree. However, in this case only the middle reconciliation map is
time-consistent.

misinterpreted as the time of introducing the HGT-duplicate into the new lineage. While
this time of course exists (and in our model coincides with the timing of the transfer event)
it is not marked by a visible event in the new lineage, and hence there is no corresponding
node in the gene tree T .

W.l.o.g. we fix the time axis so that τT (ρT ) = 0 and τS(ρS) = −1. Thus, τS(ρS) <
τT (ρT ) < τT (u) for all u ∈ V (T ) \ {ρT }.

Clearly, a necessary condition to have biologically feasible gene trees is the existence of a
reconciliation map µ. However, not all reconciliation maps are time-consistent, see Fig. 2.

I Definition 6. An event-labeled gene tree (T ; t, σ) is biologically feasible if there exists a
time-consistent reconciliation map from (T ; t, σ) to some species tree S.

As a main result of this contribution, we provide simple conditions that characterize (the
existence of) time-consistent reconciliation maps and thus, provides a first step towards the
characterization of biologically feasible gene trees.

I Theorem 7. Let µ be a reconciliation map from (T ; t, σ) to S. There is a time-consistent
reconciliation map from (T ; t, σ) to S if and only if there are two time-maps τT and τS for T
and S, respectively, such that the following conditions are satisfied for all x ∈ V (S):
(D1) If µ(u) = x, for some u ∈ V (T ) then τT (u) = τS(x).
(D2) If x �S lcaS(σTE

(u)) for some u ∈ V (T ) with t(u) ∈ {�,4}, then τS(x) > τT (u).
(D3) If lcaS(σTE

(u) ∪ σTE
(v)) �S x for some (u, v) ∈ E, then τT (u) > τS(x).

From the algorithmic point of view it is desirable to design methods that allow to check
whether a reconciliation map is time-consistent. Moreover, given a gene tree T and species
tree S we wish to decide whether there exists a time-consistent reconciliation map µ, and if
so, we should be able to construct µ.

To this end, observe that any constraints given by Definition 4, Theorem 7 (D2)–(D3),
and Definition 5 (C2) can be expressed as a total order on V (S)∪V (T ), while the constraints
(C1) and (D1) together suggest that we can treat the preimage of any vertex in the species
tree as a “single vertex”. In fact we can create an auxiliary graph in order to answer questions
that are concerned with time-consistent reconciliation maps.

I Definition 8. Let µ be a reconciliation map from (T ; t, σ) to S. The auxiliary graph A is
defined as a directed graph with a vertex set V (A) = V (S) ∪ V (T ) and an edge-set E(A)
that is constructed as follows:

WABI 2017
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Algorithm 1 Check existence and construct time-consistent reconciliation map
Precondition: S = (W,F ) is a species tree for T = (V,E).
1: ` ← ComputeLcaSigma((T ; t, σ), S)
2: µ(u)← ∅ for all u ∈ V . “∅” means uninitialized
3: for all u ∈ V do
4: if t(u) ∈ {•,�} then µ(u)← `(u)
5: else µ(u)← (p(`(u)), `(u)) . p(`(u)) denotes the parent of `(u)
6: Compute the auxiliary graph A2
7: if A2 contains a cycle then return “No time-consistent reconciliation map exists.”
8: Let τ : V (A2)→ R such that if (x, y) ∈ E(A2) then τ(x) < τ(y)
9: . W.l.o.g. we can assume that τ(x) 6= τ(y) for all x, y ∈ V (A2)

10: τS ← A time map such that τS(x) = τ(x) for all x ∈W
11: τT ← A time map such that τT (u) = τ(µ(u)) if t(u) ∈ {•,�}, otherwise τT (u) = τ(u)

for all u ∈ V .
12: for u ∈ V where t(u) ∈ {�,4} do
13: while it does not hold that τS(x) < τT (u) < τS(y) for (x, y) = µ(u) do
14: µ(u) ← (p(x), x)
15: return µ

(A1) For each (u, v) ∈ E(T ) we have (u′, v′) ∈ E(A), where

u′ =
{
µ(u) if t(u) ∈ {�, •}
u otherwise

, v′ =
{
µ(v) if t(v) ∈ {�, •}
v otherwise

,

(A2) For each (x, y) ∈ E(S) we have (x, y) ∈ E(A).
(A3) For each u ∈ V (T ) with t(u) ∈ {�,4} we have (u, lcaS(σTE

(u))) ∈ E(A).
(A4) For each (u, v) ∈ E we have (lcaS(σTE

(u) ∪ σTE
(v)), u) ∈ E(A)

(A5) For each u ∈ V (T ) with t(u) ∈ {4,�} and µ(u) = (x, y) ∈ E(S) we have (x, u) ∈ E(A)
and (u, y) ∈ E(A).

We define A1 and A2 as the subgraphs of A that contain only the edges defined by (A1),
(A2), (A5) and (A1), (A2), (A3), (A4), respectively.

We note that the edge sets defined by conditions (A1) through (A5) are not necessarily
disjoint. The mapping of vertices in T to edges in S is considered only in condition (A5).
The following two theorems are the key results of this contribution.

I Theorem 9. Let µ be a reconciliation map from (T ; t, σ) to S. The map µ is time-consistent
if and only if the auxiliary graph A1 is a directed acyclic graph (DAG).

I Theorem 10. Assume there is a reconciliation map µ from (T ; t, σ) to S. There is a
time-consistent reconciliation map, possibly different from µ, from (T ; t, σ) to S if and only
if the auxiliary graph A2 (defined on µ) is a DAG.

Naturally, Theorems 9 or 10 can be used to devise algorithms for deciding time-consistency.
To this end, the efficient computation of lcaS(σTE

(u)) for all u ∈ V (T ) is necessary. This
can be achieved with Algorithm 2 in O(|V (T )| log(|V (S)|)). More precisely, we have the
following statement.

I Lemma 11. For a given gene tree (T = (V,E); t, σ) and a species tree S = (W,F ),
Algorithm 2 correctly computes `(u) = lcaS(σTE

(u)) for all u ∈ V (T ) in O(|V | log(|W |))
time.
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Let S be a species tree for (T ; t, σ), that is, there is a valid reconciliation between the two
trees. Algorithm 1 describes a method to construct a time-consistent reconciliation map for
(T ; t, σ) and S, if one exists, else “No time-consistent reconciliation map exists” is returned.
First, an arbitrary reconciliation map µ that satisfies the condition of Def. 2 is computed.
Second, Theorem 10 is utilized and it is checked whether the auxiliary graph A2 is not a
DAG in which case no time-consistent map µ exists for (T ; t, σ) and S. Finally, if A2 is a
DAG, then we continue to adjust µ to become time-consistent.

I Theorem 12. Let S = (W,F ) be species tree for the gene tree (T = (V,E); t, σ). Algorithm 1
correctly determines whether there is a time-consistent reconciliation map µ and in the positive
case, returns such a µ in O(|V | log(|W |)) time.

5 Outlook and Summary

We have characterized here whether a given event-labeled gene tree (T ; t, σ) and species tree
S can be reconciled in a time-consistent manner in terms of two auxiliary graphs A1 and A2
that must be DAGs. These are defined in terms of given reconciliation maps. This condition
yields an O(|V | log(|W |))-time algorithm to check whether a given reconciliation map µ is
time-consistent, and an algorithm with the same time complexity for the construction of a
time-consistent reconciliation maps, provided one exists.

Our results depend on three conditions on the event-labeled gene trees that are motivated
by the fact that event-labels can be assigned to internal vertices of gene trees only if there is
observable information on the event. The question which event-labeled gene trees are actually
observable given an arbitrary, true evolutionary scenario deserves further investigation in
future work. Here we have used conditions that arguable are satisfied when gene trees
are inferred using sequence comparison and synteny information. A more formal theory of
observability is still missing, however.

Our results provide an efficient way of deciding whether a given pair of gene and species
tree can be time-consistently reconciled. There are, however, in general exponentially many
putative species trees. This begs the question whether there is at least one species tree S
for a gene tree and if so, how to construct S. “Informative triples” extracted from the gene
tree answer this question in the absence of HGT [16]. It is plausible that this idea can be
generalized to our current setting to provide at least a partial characterization [9].
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