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The impact of disease-related changes in the extracellular matrix
(ECM) on the mechanical properties of human resistance arteries
largely remains to be established. Resistance arteries from both pig
and human parietal pericardium (PRA) display a different ECM
microarchitecture compared with frequently used rodent mesenteric
arteries. We hypothesized that the biaxial mechanics of PRA mirror
pressure-induced changes in the ECM microarchitecture. This was
tested using isolated pig PRA as a model system, integrating vital
imaging, pressure myography, and mathematical modeling. Collage-
nase and elastase digestions were applied to evaluate the load-bearing
roles of collagen and elastin, respectively. The incremental elastic
modulus linearly related to the straightness of adventitial collagen
fibers circumferentially and longitudinally (both R2 � 0.99), whereas
there was a nonlinear relationship to the internal elastic lamina elastin
fiber branching angles. Mathematical modeling suggested a collagen
recruitment strain (means � SE) of 1.1 � 0.2 circumferentially and
0.20 � 0.01 longitudinally, corresponding to a pressure of ~40
mmHg, a finding supported by the vital imaging. The integrated
method was tested on human PRA to confirm its validity. These
showed limited circumferential distensibility and elongation and a
collagen recruitment strain of 0.8 � 0.1 circumferentially and
0.06 � 0.02 longitudinally, reached at a distending pressure below 20
mmHg. This was confirmed by vital imaging showing negligible
microarchitectural changes of elastin and collagen upon pressuriza-
tion. In conclusion, we show here, for the first time in resistance
arteries, a quantitative relationship between pressure-induced changes
in the extracellular matrix and the arterial wall mechanics. The
strength of the integrated methods invites for future detailed studies of
microvascular pathologies.

NEW & NOTEWORTHY This is the first study to quantitatively
relate pressure-induced microstructural changes in resistance arteries

to the mechanics of their wall. Principal findings using a pig model
system were confirmed in human arteries. The combined methods
provide a strong tool for future hypothesis-driven studies of micro-
vascular pathologies.

incremental elastic (Young’s) modulus; extracellular matrix; two-
photon excitation fluorescence microscopy; collagen recruitment

COLLAGEN, ELASTIN, AND GLYCOPROTEINS, the main constituents of
the extracellular matrix (ECM), are major determinants of the
mechanical properties of arteries. Detailed quantitative infor-
mation on the relationship between the mechanics and the
microarchitecture of the ECM in resistance arteries is lacking
in human health and disease. Elastin dominates the compliant
segment of the passive pressure-diameter curve at low distend-
ing pressures, whereas wall stress at higher pressures is in-
creasingly borne by the more rigid collagen fibers (21, 32, 38,
66, 67). The spatial distribution of elastin is reported to define
the biaxial wall mechanics in resistance arteries (17). Essential
hypertension is associated with inward remodeling of the
resistance arteries in humans as well as in experimental animal
models (43, 47, 48, 64, 65). By sensing the circumferential
wall stress on the ECM, smooth muscle cells (SMC) stimulate
removal, rearrangement, and de novo synthesis of the ECM
(38). In essential hypertension, remodeling of the arterial wall
is associated with an increased collagen-to-elastin ratio and
significantly increased wall stiffness (2, 40, 41). This is sup-
ported by studies in elastin-deficient mice (elastin�/�) (68) and
mice with a compromised elastin fiber integrity (fibulin-5�/�),
which both exhibit an increased stiffness of the arterial wall (8,
27). Not only the content and quality of elastin but also a local
redistribution of elastin within the internal elastic lamina (IEL)
is associated with an increased incremental elastic (Young’s)
modulus (Einc) of the arterial wall and with the development of
hypertension (12, 30). Cross-linking of collagen by transglu-
taminases (4, 5) further increases the stiffness of the arterial
wall. A recent paper by Bell et al. (6) has opened discussion of
the mechanobiology of vascular remodeling in human subcu-
taneous resistance arteries, reporting a reorganization of fi-
brous proteins upon increasing pressure.
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We have previously reported that the microarchitecture of
elastin in human patient and pig pericardial resistance arteries
(hPRA and pPRA, respectively) differs markedly from that of
elastin in rat mesenteric arteries (rMA) (9), a frequently used
animal model of essential hypertension. In rMA, the external
elastic lamina (EEL) is a dense network of interconnected
fibers, whereas the IEL has the structure of a sheet with holes
(1, 12, 17, 30, 31, 53). In contrast, hPRA and pPRA lack a
prominent EEL, and the IEL is composed of sparse longitudi-
nally aligned elastin bundles interconnected by thinner elastin
fibers. This structure of the IEL is similar to the one described
for human subcutaneous resistance arteries (hSCAs) (6, 32).
Finding a different microarchitecture of elastin in human re-
sistance arteries raises questions on how the different micro-
architecture of elastin is reflected in the arterial wall mechan-
ics. This question is addressed in this work. We tested the
hypothesis that the biaxial mechanics of resistance arteries
mirror pressure-induced changes in the microarchitectures of
collagen and elastin. We used pPRA for the initial develop-
ment of methods for biomechanical testing, image acquisition,
and data analyses. Furthermore, a mathematical model was
applied to characterize the elastin and collagen components of
the arterial wall with respect to intrinsic stiffness and to
estimate the collagen recruitment strains (3, 66). Next, PRAs
from patients with cardiovascular diseases were included to
confirm the validity of the method, and future extensions and
applications of the integrated approach are discussed.

MATERIALS AND METHODS

Ethical approval. Biopsies of the human parietal pericardium were
collected after written informed consent, as previously described (9).
The study of human tissues conformed with the principles outlined in
the Declaration of Helsinki (70) and was approved by The Regional
Committees on Health Research Ethics for Southern Denmark
(S-20100044 and S-20140202) and the Danish Data Protection Agency.

Pig parietal pericardia were collected at a local abattoir. The
collection and use of the pig tissue, regarded as waste, does not
require ethical approval in Denmark.

Chemicals and reagents. Porcine pancreatic elastase (7.5 U/mg,
catalog no. 324682, lot no. D00147595, Calbiochem, San Diego,
CA) and phosphate buffered (pH 6.9) 4% formaldehyde solution
(1.00496.9010) were from Merck Millipore (Hellerup, Denmark).
Collagenase type 2 was from Worthington Biochemical (no. 4,174,
250 U/mg, batch 44C14824A, Lakewood, NJ). Endothelin-1 was
obtained from Bachem (Weil am Rhein, Germany). 9,11-Dideoxy-
9a,11a-methanoepoxy prostaglandin F2� (U46619) was from Tocris
Bioscience (Bristol, UK). All other chemicals were from Sigma-
Aldrich (Brøndby, Denmark).

Biopsies. Human parietal pericardia were collected during coronary
artery bypass grafting or valve replacement surgeries at the Odense
University Hospital. Tissues were stored in sterile, ice-cold physio-
logical salt solution [PSS; composed of (in mM) 115 NaCl, 25
NaHCO3, 2.5 K2HPO4, 1.2 MgSO4, 5.5 glucose, 10 HEPES, and 1.3
CaCl2] at pH 7.4, as previously described (9). Resistance-sized arter-
ies (�200 �m lumen diameter) were microdissected after overnight
(16–20 h) storage at 4°C. Human PRA did not visibly recoil longi-
tudinally upon excision from the pericardium (n � 20).

Domestic pig (Sus scrofa domesticus, Landrace/Yorkshire/Duroc
strain) parietal pericardia were collected at a local abattoir. The
storage and handling of pig tissue were identical to those of human
tissue. Longitudinal recoiling of the arteries upon excision from the
tissue was measured under a dissection microscope (branch to branch
distance before and after excision).

Pressure myography. Arteries were dissected free of adipose tissue
and mounted on glass capillaries (diameter: 60–70 �m) in a pressure
myograph system (110P, Danish Myo Technology, Aarhus, Den-
mark). Arteries were equilibrated for 30 min at 37°C and minimal
distending pressure (5 mmHg) before the first experiment. Pressure-
diameter and length-longitudinal force measurements were registered
under longitudinally isotonic conditions (zero axial force). Transmural
pressure was subsequently increased to 100 mmHg in steps of 5–20
mmHg, with an inlet-outlet pressure gradient of 20 mmHg. Arteries
were left to equilibrate for at least 5 min after each increase in pressure
to ensure a stable diameter and longitudinal force. All experiments
were conducted at 37°C. Arterial viability was tested before fixation,
and only data from contractile arteries were included for analyses. All
arteries were fixed at 100 mmHg in 4% formaldehyde at the end of the
experiments and stored at 4°C until imaging for the determination of
elastin/collagen volume densities.

Mechanical properties of pPRA were evaluated in normal PSS, as
these arteries showed no signs of myogenic activity (constriction upon
sudden or gradually increased pressure from 20 to 100 mmHg).
Human PRAs were mounted in normal PSS and pressurized up to 20
mmHg, as described for pig PRAs. At 20 mmHg, PSS was exchanged
by isotonic high-K� PSS (containing 20 mM NaCl and 95 mM KCl
instead of 115 mM NaCl) to test for the ability of the artery to
constrict in response to depolarization. Next, the subsequent pressure-
diameter and length-longitudinal force measurements were conducted
in Ca2�-free PSS supplemented with 3 �M EGTA and 3 �M sodium
nitroprusside (SNP) to avoid myogenic activity of these arteries.

Enzymatic treatment of pPRA at 20 and 70 mmHg was performed
by exposing the arteries ablumenally, for 20 min, to either 1 U/ml
elastase or 0.5 mg/ml collagenase in PSS. Use of higher concentra-
tions of the enzymes resulted in either leakage or loss of contractility.
After treatment at 20 mmHg, arteries were rinsed three times in
Ca2�-free PSS containing 3 �M SNP and 3 �M EGTA, and pressure
was increased to 100 mmHg in steps of 20 mmHg, as described above.

Calculations of structural and mechanical parameters. Structural
parameters were calculated as previously described (12, 13, 50). Wall
thickness (WT; in �m) was calculated as follows:

WT � 0.5Aout � 0.5Ain (1)

where Øout and Øin are the outer and inner diameters of the artery,
respectively. Wall cross-sectional area (CSAwall; in �m2) was calcu-
lated as follows:

CSAwall �
�(A

out

2 � Ain
2 )

4
(2)

The wall thickness-to-lumen diameter ratio (W/L) was calculated as
follows:

W/L �
2WT

Ain
(3)

Calculations of stresses, strains, and other mechanical properties
were performed as previously described (34, 55) under the thin wall
assumption.

Circumferential properties [circumferential stretch ratio (�	), cir-
cumferential strain (ε	), and circumferential stress (
	; in Pa)] were
defined and calculated as follows:

�� �
Ain

Ain,0 mmHg
(4)

�� �
Ain � Ain,0 mmHg

Ain,0 mmHg
(5)

	� �
PAin

2WT
(6)

where P is pressure.
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Longitudinal properties [longitudinal stretch ratio (�z), longitudinal
strain (εz), longitudinal stress (
z; in Pa), and longitudinal force (Fz;
in N)] were defined and calculated as follows:

�z �
L

L0
(7)

�z �
L � L0

L0
(8)

	z �
Fz

CSAwall
(9)

Fz �
P�Ain

2

4

 F(z,red) (10)

where L is length.
Fz in this study simplifies to

Fz �
P�Ain

2

4
(11)

as reduced axial force (Fz,red) was maintained at 0.
Mathematical modeling and calculations. Incremental elastic mod-

uli were determined circumferentially, as well as longitudinally.
Generally, the incremental elastic modulus (Einc; in Pa) was calculated
as follows:

Einc �
d	

d�
� 	0�e�� � �	 (12)

and thus

Einc,� � 	��� (13)

and

Einc,z � 	z�z (14)

�-values were estimated by fitting the following single-exponential
equation to the measured stress-strain relationship:

	 � 	0e�� (15)

The goodness of fit was evaluated by looking at the residuals plot
along with the R2 of the fit. �-Values were included for the calculation
of Einc for fits with R2 � 0.7 and randomly distributed residuals.

Circumferential stress-strain data for hPRA and pPRA (only those
not treated with elastase or collagenase) were fitted with the following
three-parameter mathematical model according to Ref. 3:

	 � Eelastin � � 
 Ecollagen � max�� � �ho, 0� (16)

This method was used to estimate the elasticity of elastin and collagen
in the arterial wall and to estimate the strain (εho) at which collagen is
engaged [“hook on” (66)]. Errors between measured wall stress and
model-predicted wall stress were quantified by the normalized root
mean square error (NRMSE), as given by:

NRMSE �
1

	��,meas
�� 1

N�
i�1

N

�	�,meas,i � 	�,Bakker,i�2 � 100%

(17)

where 	��,meas is equal to the average measured circumferential wall
stress and 
	,meas,i and 
	,Bakker,i are the measured wall stress and
model-predicted wall stress, respectively, resulting from fitting the
mathematical function, as previously described (3). N is the num-
ber of data points.

Two-photon excitation fluorescence microscopy of isolated vital
arteries for the determination of IEL branching angles and collagen
straightness. Arteries were dissected free of periarterial adipose tissue
and mounted on capillaries (diameter: 60–70 �m) in a custom-built

pressure myograph (subject to DK patent no. 201200167, University
of Southern Denmark, J. Schoubo, V. Jensen, F. Jensen, and T. R.
Uhrenholt) designed for vital imaging using a custom-built two-
photon excitation fluorescence microscopy setup on a Nikon TI
Eclipse platform (10). The objective was a 60 water immersion
objective (numerical aperture: 1.29). Excitation light was 820 nm
(HPeMaiTai DeepSee, Spectra Physics, Mountain View, CA). Emis-
sion was split by a ChromaET 460 nm long-pass dichroic and
collected in two channels at 520/35 and 402/15 nm (Semrock FF01-
520/35-25 BrightLine filter and Chroma ET402/15 band-pass filter,
respectively) using Hamamatsu H7422P-40 PMTs (Ballerup, Den-
mark). Dichroic and band-pass filters were from AHF analysentechnik
AG (Tübingen, Germany).

Imaging experiments were conducted in HEPES-buffered PSS (36)
[composed of (in mM) 144 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2
KH2PO4, 14.9 HEPES, and 5.5 glucose] adjusted to pH 7.4 with
NaOH at 37°C. Arteries were equilibrated at a transmural pressure of
20 mmHg for 30 min before any imaging was conducted. Pressuriza-
tion was performed under longitudinally isotonic conditions (zero
axial force) by adjusting the length of the artery, according to the
changes in longitudinal force. After equilibration at 20 mmHg, pres-
sure was increased gradually in steps of 20 mmHg to 100 mmHg.
Equilibration for at least 10 min at each step was allowed before
z-imaging stacks were obtained.

Branching angles of the elastin fibers in the IEL were measured by
manual markup on maximum intensity projections of two to seven
consecutive images from z-image stacks of the IEL using the angle
tool in FIJI (56). Seven to 30 angles were measured for each sample
and each pressure step, with an average number of observations of
13/18/21 (pPRA) and 13/10/14 (hPRA) at 20/40/100 mmHg, respec-
tively.

Collagen straightness was determined using the FIJI NeuronJ
plugin (46), as previously described by Rezakhaniha and Agianniotis
(51). Individual images of the adventitial collagen in close proximity
to the external elastic lamina/tunica media were analyzed. A ratio of
L0/Lf [collagen fiber bundle end-to-end length via a straight line
(L0)/full length (Lf)] close to 1 indicates an almost straight collagen
fiber. Five to 26 individual fibers were analyzed for each sample at
each pressure step, with an average number of observations 16/15/12
(pPRA) and 9/10/16 (hPRA) at 20/40/100 mmHg, respectively.

Two-photon excitation fluorescence microscopy of fixed arteries
and ilastik image analyses of elastin/collagen volume densities. Col-
lagen and elastin volume densities were determined in two or three
image stacks per isolated pressure-fixed artery (n � 8 pPRAs and n �
9 hPRAs). Only arteries not exposed to collagenase or elastase were
included. Imaging was performed using an Olympus FluoView 1000
microscope equipped with a XLPLN 25 W (numerical aperture:
1.05) objective lens. Excitation light (MaiTai, Spectra Physics, Moun-
tain View, CA) was 820 nm for elastin and 990 nm for collagen (to
avoid any excitation of elastin and other autofluorescent proteins).
Emission was split between detectors using a DM505 dichroic mirror.
Collagen second harmonic generation was picked up at 495 nm using
a BA420-500 filter, and elastin autofluorescence was picked up using
a BA495-540HQ filter. Image stacks were acquired at 1,024  1,024
pixel density with 1 �m/section in z, with the field of view spanning
the width of the individual artery. Image data were analyzed using
ilastik software (61). TIFF image stacks were first converted to HDF5
format using FIJI (56), and quantitative data processing of results
from ilastik was performed using MatLab (R2015b, MathWorks,
Natick, MA). Data on elastin and collagen were analyzed separately in
ilastik. The results were for all image stacks verified by visual
comparison between the final image masks and the raw image files.
For a few image stacks with unsatisfactory results, the ilastik masks
were optimized, and the images were reanalyzed. Intra-assay (within
artery) variability was 25% and 21% for pPRA and hPRA, respec-
tively.
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Statistics. All data are presented as means � SE with the number of
observations (n) indicated. Where applicable, dot plots are used for
clarity. Statistical analyses were conducted using GraphPad Prism for
Windows (version 6.05). We aimed at adhering to the advisory
guidelines on statistical reporting recently emphasized by the Journal
of Physiology and other journals (22–26). All tests were performed for
the null hypothesis (H0), stating that the given treatment or change in
conditions was inducing no effect, and the alternative hypothesis (HA,
to be accepted in case the null hypothesis is rejected) stating that the
treatment effect or change is significant, with the predicted direction
of change included for one-tailed tests. The GraphPad Prism inbuilt
D’Agostino and Pearson omnibus normality test was included for
sample sizes � 20 and when P � 0.05, data were log10 transformed,
and normal distribution was then met. For statistical analyses, where
sample sizes were smaller than 20, normality was assumed as was an
equal variance between samples to be compared. P values are reported
as calculated, with the difference between means immediately after,
followed by the computed 95% confidence interval (CI) for the
difference between the group means. The level of significance was
0.05. Pressure-dependent changes in the microarchitecture of collagen
and elastin (Fig. 3, A and B) were analyzed using repeated-measures
one-way ANOVA with the Greenhouse-Geisser correction for viola-
tion of sphericity (as sphericity was not assumed). The relationship
between Einc and collagen straightness or IEL elastin fiber branching
angles (Fig. 3, C and D) was assessed by fitting the plotted data with
a linear regression. The data shown in Figs. 4 and 7 were analyzed
using a paired t-test (	 vs. z) under the assumption of normal
distribution. The effect of enzymatic treatment (Fig. 5) on diameter
and wall thickness was tested using paired two-tailed t-tests. One-
tailed t-tests were used for evaluating the impact on length of the
enzymatic treatments (H0: Lafter � Lbefore  0 and HA: Lafter � Lbefore

� 0) and, for comparison, between the enzymatic treatments (H0:
valuecollagenase � valueelastase 0 and HA: valuecollagenase – valueelas-

tase � 0). The effect of enzymatic treatment at 20 mmHg on the
circumferential and longitudinal stretches during pressurization to 100
mmHg (Fig. 6, A and B) was analyzed by repeated-measures two-way
ANOVA followed by Dunnett’s multiple-comparison test with main
treatment (enzyme) effect for data obtained after enzymatic treatment
only (i.e., 20–100 mmHg). Statistical analyses of the hPRA collagen
straightness and IEL branching angles (Fig. 10) were performed using
one-way ANOVA.

RESULTS

Biaxial mechanics of pPRA. pPRA were used for the devel-
opment of protocols and methods and for initial testing of the
hypothesis. Pigs were a mixture of ~7-mo-old castrated males
and females, and the PRA from these were used to establish the
relationship between the microarchitecture and mechanics of
the PRA and to evaluate the load-bearing roles of collagen and
elastin. Longitudinal recoil of the pPRA averaged 21 � 1%
(n � 31) upon excision from the parietal pericardium, reflect-
ing an in vivo axial stretch ratio of �z � 1.27 � 0.1. Upon
pressurization to 100 mmHg, the internal diameter of the pPRA
(n � 20) approximately doubled to reach an internal diameter
at 100 mmHg of 217 � 17 �m, whereas length increased by
35 � 5% (Fig. 1). Wall thickness decreased from 51 � 4 to
31 � 2 �m and the resulting wall-to-lumen ratio at 100 mmHg
was 29 � 1%. Circumferential (hereafter noted by subscript
“	”) wall stress reached 47 � 2 kPa, whereas longitudinal

Fig. 1. Structural and mechanical characteristics of pig pericardial resistance arteries (pPRAs) as a function of increasing transmural pressure. A: pressure-
diameter, B: pressure-length, C: circumferential stress (
	)-strain (ε	) and D: longitudinal stress (
z)-strain (εz) relationships from 20 individual pPRAs. Øout and
Øin are the outer and inner diameters of the artery.
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(hereafter noted by subscript “z”) stress, on average, reached
21 � 1 kPa. Incremental elastic (Young’s) moduli [Einc, i.e.,
geometry-independent measures of wall stiffness (21)] were
determined by first fitting the stress-strain relationships of the
individual arteries to the single-exponential function 
 � 
0e�ε

(least-squares method, R�
2: 0.95 � 0.01 (20) and range	: 0.78–

1.0; Rz
2: 0.97 � 0.004 (20) and rangez: 0.90–0.99), as previ-

ously described (21, 31), followed by the calculation of
Einc � 
� at the different distending pressures. By this
method, mean Einc,	 and Einc,z at 100 mmHg were 283 � 32
kPa (range: 99–580) and 313 � 99 kPa (median: 162.9 and
range: 85–2,139), respectively (dot plots of individual �-values
and Einc are shown in Fig. 4).

Microarchitecture of the ECM is reflected in arterial wall
mechanics. The microarchitecture of the ECM in pPRA was
approached by the branching angles of the elastin fibers in the
IEL and by the straightness of adventitial collagen fibers (51).
Representative images of a pPRA are shown in Fig. 2. The
“baseline” microarchitecture of the arteries was determined at
20 mmHg (Fig. 2, A–D), and additional measurements were
performed at transmural pressures of 40 mmHg (Fig. 2, E–H)
and 100 mmHg (Fig. 2, I–L). Quantitative measures of the
straightness of adventitial collagen and the IEL elastin fiber
branching angles are shown in Fig. 3, A and B, respectively.
The straightness of the adventitial collagen bundles, deter-
mined for 6 pPRAs that were subjected to vital imaging, was

positively and linearly related to both the circumferential and
longitudinal incremental elastic modulus of the arterial wall of
20 other pPRAs subjected to pressure myography (R�

2 � 0.99
and y � 1,750x � 1,389; Rz

2 � 0.99 and y � 1,934x � 1,533;
Fig. 3C). The IEL branching angles showed a nonlinear rela-
tionship with the incremental elastic moduli, where both
changed more dramatically between 20 and 40 mmHg com-
pared with the changes between 40 and 100 mmHg (Fig. 3D).

Mathematical modeling of biomechanical data for the esti-
mation of collagen and elastin stiffness and collagen recruit-
ment strain. To assess the stiffness of the elastin and collagen
components of the arterial wall, we applied a mathematical
model (3, 66). This relatively simple model allows extraction
of three important measures: the stiffness of collagen, the
stiffness of elastin, and the collagen recruitment strain, i.e., the
strain of the arterial wall, where collagen fibers start to limit
further expansion of the artery with increasing pressure. These
three parameters are important for future comparative studies,
e.g., between hypertensive and normotensive patients, or in
studies of hypertensive animal models. Important for the in-
terpretation of the model estimates, especially when comparing
subgroups, is the establishment of the elastin/collagen volume
density by three-dimensional imaging of the entire thickness of
the vascular wall. In pPRA, this was 40 � 7% (n � 8), with a
95% CI of 31–64% (Fig. 4D). The findings from the mathe-
matical modeling are shown in Fig. 4. The three-parameter

Fig. 2. Microarchitecture of the extracellular matrix of pPRAs as a function of increasing transmural pressure. Two-photon excitation fluorescence microscopy
images of collagen (green) and elastin (magenta) at 20 mmHg (A–D), 40 mmHg (E–H), and 100 mmHg (I–L) in the tunica adventitia (A, E, and I), external elastic
lamina (EEL; B, F, and J), tunica media (C, G, and K), and internal elastic lamina (IEL; D, H, and L) are shown. The image series is representative of six
independent experiments. Scale bars � 10 �m.
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mathematical modeling of the pPRA circumferential stress-
strain relationships showed, as expected, a significantly lower
elastic modulus of the elastin part of the wall (Eelastin,	) com-
pared with the collagen part of the wall [Ecollagen,	, difference
between means Ecollagen,	 � Eelastin,	 � log 1.176 (0.96–1.39),
P � 0.0001]. Likewise, longitudinally, the elastic modulus of
collagen (Ecollagen,z) in pPRAs was significantly higher com-
pared with Eelastin,	 [difference of log 0.52 (0.32–0.73), P �
0.0001]. The longitudinal stress-strain relationships differed
from those of the circumference. The pPRA showed markedly
higher strains circumferentially than longitudinally [difference
in strain at 100 mmHg (	 � z): 0.9 (0.6�1.3), P � 0.0001; Fig.
1, C and D]. When data on Eelastin and Ecollagen for the
circumference were compared with data for the longitudinal
direction (Fig. 4E), the values for Eelastin,z were higher com-
pared with Eelastin,	 [log mean difference: 0.44 (0.23–0.65), P
� 0.0001 by two-tailed t-test]. Neither the data nor a statistical
analysis provided conclusive evidence for a difference between
Ecollagen,	 and Ecollagen,z [mean difference: 0.21 (0.0–0.42),
P � 0.061] despite a tendency toward Ecollagen,z being lower
compared with Ecollagen,	. The final parameter obtained from
the three-parameter mathematical modeling was an estimate
of the strain where collagen is engaged [“hook-on strain”
(66)]. For the pPRA, collagen was engaged circumferen-
tially at a significantly higher strain (1.1 � 0.2) than longi-
tudinally [0.2 � 0.01, mean difference: 0.87 (0.5–1.2), P �
0.0001; Fig. 4F]. It should be noted that the NRMSE, the
error between measured wall stress and model-predicted
wall stress, showed a higher variability circumferentially
than longitudinally (Fig. 4G).

Elastin plays a prominent role in bearing longitudinal
stress. Elastase and collagenase were applied ablumenally for
20 min on pressurized pPRA to evaluate the load-bearing roles
of elastin and collagen, respectively. Both treatments, at 70
mmHg, resulted in significant lengthening of the pPRA
(�Lelastase � 8 � 2%, P � 0.0026, and �Lcollagenase � 13 �
3%, P � 0.0005), whereas arterial diameter and wall thickness
remained unchanged (Fig. 5, C and D). Similar observations
were made after enzymatic treatment at 20 mmHg, at which
both elastase and collagenase treatment increased the length of
the pPRA significantly (�Lelastase � 20 � 4%, P � 0.0007, and
�Lcollagenase � 6 � 2%, P � 0.0021; Fig. 5, A and B). Elastase
treatment at 20 mmHg increased the length of the treated
arteries to a larger extent than collagenase treatment [differ-
ence: 14% (4–24%), P � 0.0043], whereas the enzyme-
induced changes in length at 70 mmHg were not different
between treatments (P � 0.10). Collagenase treatment at 20
mmHg, furthermore, induced a significant permanent increase
in the arterial lumen diameter (�Øin � 14 � 4%, P � 0.004).
Consequently, after collagenase treatment at 20 mmHg, the
pressure-diameter curve shifted significantly upward over the
entire pressure range of 20–100 mmHg (Fig. 6A), whereas
elastase and, to a lesser extent, collagenase treatment induced
an upward shift of the pressure-length curve (Fig. 6B). As
shown in the stress-strain curves for the enzyme-treated arter-
ies (Fig. 6, C and D), elastase treatment shifted the circumfer-
ential stress-strain curve leftward, whereas collagenase treat-
ment shifted the circumferential stress-strain curve rightward.
Longitudinally, elastase shifted the stress-strain curve right-
ward, whereas collagenase treatment, rather than changing the

Fig. 3. Microstructural changes in adventitial collagen
and the IEL in relation to the circumferential and lon-
gitudinal incremental elastic moduli (Einc). A: straight-
ness L0/Lf [collagen fiber bundle end-to-end length via a
straight line (L0)/full length (Lf)] of collagen fibers
present at the border between the EEL and tunica
adventitia. B: branching angles for elastin fibers in the
IEL determined for six individual arteries. P values and
corresponding F values were determined using repeated-
measures one-way ANOVA [P/F values: 0.0014/24.18
(A) and 0.0002/37.38 (B)]. C: mean collagen straight-
ness, determined for six pPRAs subjected to vital im-
aging, correlated linearly with mean Einc calculated for
20 other pPRAs subjected to pressure myography, both
circumferentially (R2 � 0.99, y � 1,750x � 1,389) and
longitudinally (R2 � 0.99, y � 1,934x � 1,533). D:
mean IEL branching angles of the six pPRAs correlated
nonlinearly with mean Einc calculated for the 20 other
pPRAs subjected to pressure myography.
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shape of the curve, extended it toward higher strains and
stresses. Curve fitting and mathematical modeling of the stress-
strain relationships of arteries treated with the enzymes at 20
mmHg were not performed due to the discontinuity in the data
(enzyme treatments were performed at 20 mmHg, i.e., data at
0–20 mmHg are for untreated arteries, whereas data points at
20–100 mmHg are for enzyme-treated arteries). Arteries ex-
posed to elastase or collagenase remained responsive to a
vasoconstrictor; however, endothelium-dependent vasodilation
in response to 1 �M bradykinin was impaired, in particular, for
collagenase-treated arteries (data not shown). Imaging during
enzyme digestions suggested qualitative rather than quantita-
tive changes upon the enzyme treatments. Elastin fibers were
still found after elastase treatement when the imaging condi-
tions were optimized and spot-wise larger, longitudinally
aligned disruptions were observed in collagen post collagenase
treatment rather than with general removal of the matrix. An
effect of the elastase on other components of the ECM cannot
be excluded, as collagen, normally not showing autofluores-
cence, showed autofluorescence after elastase digestion (data
not shown).

hPRAs display limited elongation upon pressurization to
100 mmHg. hPRAs were included in the study to confirm the
validity of the integrated methodological approach. hPRAs
were obtained from patients with cardiovascular diseases, an
interesting group for future detailed studies of human resis-
tance artery mechanobiology in diseased states. Patients were
recruited before coronary artery bypass grafting and valve
replacement surgeries. They were, on average, 64 � 2-yr-old
(range: 50–80) men (n � 7) and women (n � 5). Ten of the

twelve patients received antihypertensive medication (for one
patient, information was not available; another patient was not
diagnosed with hypertension). Upon pressurization to 100
mmHg, the mean diameter of hPRA increased from 102 � 13
to 184 � 16 �m (Fig. 7). Wall thickness decreased from
50 � 4 to 30 � 2 �m and the corresponding wall-to-lumen
ratio at 100 mmHg was 17.8 � 2.4%. Interestingly, 6 of 12
hPRA showed no change in length upon pressurization to 100
mmHg, and the remaining 6 hPRAs showed limited length
changes only (9.6 � 2%), resulting in an average longitudinal
strain at 100 mmHg of only 0.05 � 0.02 (Fig. 7D), in agree-
ment with no measureable recoiling of the hPRA upon excision
from the tissue. Circumferential and longitudinal wall stress at
100 mmHg were 43 � 4 and 19 � 2 kPa, respectively (Fig. 7,
C and D). Exponential fitting of the stress-strain relationships
to determine the geometry-independent measure of wall stiff-
ness, the �-value (Fig. 8B, proportional to Einc, Fig. 8C), was
performed for all 12 hPRA circumferentially, but only data
from 6 of 12 hPRA showed a biphasic stress-strain relationship
longitudinally. The goodness of the exponential fits was R�

2:
0.93 � 0.02 and range	: 0.80–1.00 and Rz

2: 0.83 � 0.03 (n �
6) and rangez: 0.73–0.93. As a consequence, Einc at 100 mmHg
can only be calculated for the longitudinal component of the
arterial wall for these six individuals. Because of the low
number of observations and the large degree of variability
between group variances, statistical analyses must be inter-
preted with caution. Under the assumption of normal distribu-
tion, paired t-testing (	 vs. z) supported that the hPRA shows
a significantly higher �-value longitudinally (mean difference:

Fig. 4. Parameter estimates from fitting the stress-strain relationships and mathematical modeling of the pPRA. A: stress-strain relationship with the mathematical
model (dotted lines) superimposed on the original data points [circumference (	): �; longitude (z): Œ]. B: individual �-values. C: calculated Einc at a transmural
pressure of 100 mmHg. D: elastin-to-collagen volume ratios were calculated from imaging data. E: elastin (Eln) and collagen (Col) stiffness in the circumferential
and longitudinal directions, respectively. F: collagen recruitment strain, estimated from the mathematical model. G: normalized root mean square error (NRMSE),
a measure of the errors between measured wall stress and model-predicted wall stress.
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64 � 40, P � 0.023), whereas the obtained data did not
support a statistically significant difference in Einc at 100
mmHg (P � 0.095). hPRA Einc,	 and Einc,z were 436 � 76 kPa
(10) and 996 � 243 kPa (6), respectively.

Mathematical modeling shows that collagen is recruited at
low strain in hPRAs. Similarly, as done for the pPRA, we
applied a mathematical model to estimate the stiffness of
collagen and elastin in the arterial wall and determined whether
our prediction on the basis of the above observations of a very
low collagen recruitment strain could be confirmed (Fig. 8A).
Imaging was also performed of the segments from the pressure
myograph to determine the elastin/collagen volume density in
the arterial wall. The elastin-to-collagen ratio was 40 � 20%
(95% CI: 25–56; Fig. 8D). Circumferentially, the hPRA
showed, like the pPRA, that Eelastin,	 was significantly smaller
than Ecollagen,	 [log mean difference: 1.59 (1.28–1.89), P �
0.0001; Fig. 8E]. As described above, six of the hPRA did not
change axial geometry at all and, as such, did not fulfill the
prerequisites for the three-parameter fitting method. The re-
maining six hPRAs did fulfill the requirements for fitting,
although the results were highly variable between the individ-
ual hPRAs (Fig. 8, E–G). The variation in the data for Eelastin,z

was large, whereas the data for Ecollagen,z showed a smaller
variability. Taking this into account, the data indicated that
Ecollagen,z is higher compared with Eelastin,z, but, because of the
low number of observations and the large degree of variability
between group variances, statistical testing was not performed.
It can be immediately seen in Fig. 8E that the estimated
stiffness for collagen circumferentially and longitudinally
showed little within-group variability when compared, and
Ecollagen,	 was significantly smaller compared with Ecollagen,z

(log mean difference: �0.21 � 0.04, P � 0.006). Collagen
engagement strain for the hPRA was also significantly larger
circumferentially (0.78 � 0.08) than longitudinally (0.06 �
0.02, mean difference: 0.77 � 0.09, P � 0.0004; Fig. 8F). It is
important to note that the NRMSE showed quite some vari-
ability between the individual hPRA samples (Fig. 8G), espe-
cially longitudinally.

Vital imaging confirms collagen recruitment at low strains
in hPRAs. The above findings led us to investigate whether
there was a lack of microarchitectural changes in the ECM of
hPRAs in response to increasing pressure. The microarchitec-
ture of both elastin and collagen fibers in the hPRA, visualized
using vital imaging, did not noticeably change during pressur-

Fig. 5. Effects of elastase and collagenase treatment on diameter, wall thickness, and length of pPRAs. A: effect of elastase treatment at 20 mmHg, B: collagenase
treatment at 20 mmHg, C: elastase treatment at 70 mmHg, and D: collagenase treatment at 70 mmHg on the diameter (a), wall thickness (b), and length (c),
respectively, and the accompanying length increase as a percentage (d). Paired two-tailed t-tests were used for analyses with the exception that tests for increases
in length upon enzymatic treatments were one-tailed.
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ization from 20 to 100 mmHg (Fig. 9). The majority of
collagen fibers were straight already at a pressure of 20 mmHg
(Fig. 9, A and B), and elastin fibers of the IEL remained parallel
during pressurization (Fig. 9, D, H, L), supporting the above
observations of the hPRA being highly limited geometrically
due to the microarchitecture and mechanical properties of the
ECM. Quantitative analyses underlined the observations that
collagen is straight at low pressures and that the structural
changes in the IEL with increasing pressure are limited (Fig.
10). Compared with the pPRA, which showed a collagen
straightness of ~0.8 at 20 mmHg, hPRA collagen straightness
was �0.95 already at 20 mmHg, and IEL branching angles
were at maximum ~30° at 100 mmHg, whereas pPRA IEL
angles reached 60° at 100 mmHg.

DISCUSSION

With pressure myography and vital imaging, we confirmed
the hypothesis that the vascular wall mechanics mirror the
pressure-induced changes in the microarchitecture of collagen
and elastin in PRAs. pPRAs were used for initial testing of the
hypothesis and for testing the load-bearing roles of collagen
and elastin. In these arteries, pressure induces an increase in the
straightness of the adventitial collagen fibers linearly related to
the circumferential as well as longitudinal incremental elastic
moduli. In contrast, there is a nonlinear relationship of the
incremental elastic modulus, both radially and axially, to the

pressure-induced increase in the IEL elastin fiber branching
angles.

Next, we applied the integrated method to hPRAs isolated
from patients with cardiovascular diseases. hPRAs showed
little pressure-induced radial distension and elongation but
reached similar diameters at 100 mmHg as pPRA, suggest-
ing that the circumferential recoiling must be lower for the
hPRA compared with the pPRA (similar to the lack of
longitudinal recoiling upon excision). These findings are
supported by mathematical modeling of the stress-strain
relationships showing that collagen is engaged at signifi-
cantly lower strains in hPRA than in pPRA. Furthermore,
the elastic modulus of the elastin component of the hPRA
arterial wall was significantly lower than that of pPRA,
whereas that of collagen was significantly higher. Vital
imaging, including quantitative measurements of the micro-
architecture of the adventitial collagen and the IEL, supports
that the microarchitecture of collagen in the hPRA, being
almost straight at low transmural pressure and strain, re-
strains the geometry of the hPRA significantly.

Combined imaging and mechanical studies have sup-
ported the development of microstructurally motivated
mathematical models of the arterial wall. However, the
majority of these studies were conducted on large, elastic
conduit arteries (15, 16, 28, 58, 71). A recent paper (6) has
opened the discussion of the mechanobiology of vascular

Fig. 6. Effect of elastase and collagenase treatment at 20 mmHg on the structural and mechanical properties of pPRAs as a function of increasing pressure. A:
pressure-diameter stretch ratio. B: pressure-length stretch ratio. C: circumferential stress-strain relationships. D: longitudinal stress-strain relationships. Adjusted
P values (A and B) were determined by repeated-measures two-way ANOVA followed by Dunnett’s multiple-comparisons test with main treatment (enzyme)
effect for data obtained.
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remodeling in human resistance arteries, addressing the
pressure-induced reorganization of the IEL and adventitial
collagen, including a multilayer analytical model to calcu-
late the stiffness and stress in each layer of the arterial wall.
In that study (6), hSCAs were obtained from healthy vol-
unteers, and the arteries were studied between 0 and 50
mmHg, with structures and related stresses reported for 3
and 30 mmHg, respectively. Our study illustrates the poten-
tial of applying imaging and biomechanical testing inte-
grated with constitutive mathematical modeling to improve
understanding of the relationships between arterial wall
mechanics and the microarchitecture of the ECM in healthy
and diseased resistance arteries. Although simple compared
with other mathematical models, taking into account also
the spatial distribution of collagen and elastin fibers (7, 28,
69), the applied mathematical model provides useful in-
sights in the structure and function of resistance arteries.
Importantly, we provide evidence that in the PRA from
patients with cardiovascular disease, collagen constrains
axial as well as radial changes in structure with increasing
pressure. In particular, it was a surprise that the hPRA
axially showed such a large variation in deformation, with
half of the investigated arteries not changing length at all
upon pressurization (0�100 mmHg). Whether this is a
consequence of aging or the presence of cardiovascular
disease remains to be investigated.

The PRA resides in the parietal pericardium, a fibrous tissue
rich in collagen with only a few elastin fibers (9). The role of

the pericardium is to support the heart and prevent it from
overstretching during diastole (37). Both pig and human PRAs
show a sparse but distinct EEL and an IEL comprising longi-
tudinally aligned elastin fibers interconnected with thinner
fibers (9). The pPRA EEL visually appears structurally similar
to that of the EEL in rat cremaster arteries (17). Previous
studies have shown that arteries residing in tissues subject to
longitudinal stretches show a distinct EEL, recoil significantly
upon excision, and lengthen considerably (35%) upon elastase
digestion while the pressure-diameter curve is left shifted at
lower pressures after elastase treatment (17). Treatment of
these arteries with collagenase, on the other hand, did not affect
their length but shifted the pressure-diameter curve upward
(17). Other studies in rMA have reported considerable effects
of elastase treatment on diameter and stiffness (12, 30), ac-
complished by a significant decrease in adventitial elastin fiber
content and increased IEL fenestrae area (12, 30). In contrast,
rat cerebral arteries, protected from longitudinal stretching due
to the brain being protected by the skull, show no EEL and no
lengthening upon elastase treatment (17). In the pPRA, we
confirmed a role for elastin in bearing longitudinal stress (17).
The concentrations of enzymes used in our study were titrated
to keep the individual arteries from leaking and to remain
contractile. The lengthening of the pPRA upon elastase treat-
ment was not as pronounced, as reported for rat cremaster
arteries (17), and the considerable upward shift in the pressure-
diameter curve of collagenase-treated arteries was much larger
than reported for rat cremaster and mesenteric arteries (12, 17,

Fig. 7. Structural and mechanical characteristics of human pericardial resistance arteries (hPRAs) as a function of increasing transmural pressure. A:
pressure-diameter, B: pressure-length, C: circumferential stress-strain, and D: longitudinal stress-strain relationships from 12 individual patients’ pericardial
resistance arteries. The layout of this figure was intentionally designed similar to that of Fig. 1 for comparison.
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30). Our findings are in line with previous reports stating a
dominant role of elastin primarily at lower pressures while the
wall stress increasingly is borne by the more rigid collagen at
higher pressures and wall strains (21, 32, 38, 66, 67), also
referred to as the progressive “hook on” or recruitment of
collagen fibers (3, 66). Whether the arteries in the pericardium
are subject to longitudinal stretching within the tissue remains
to be elucidated. Clinically, the parietal pericardium appears
rigid (37), an observation supported by its collagenous com-
position.

The hPRA in our study showed very small circumferential
distensibility and elongation. We compared lumen diameters,
wall thicknesses, wall cross-sectional area, and wall-to-lumen
ratios at 100 mmHg to previously reported findings in hSCAs.
These vessels are frequently used for studies of human resis-
tance artery remodeling (14, 18–20, 33, 39, 42, 44, 57).
Importantly, our observations on geometry, as well as the
�-values, proportional to Einc, are within the range of previ-
ously published observations in hSCAs studied under similar
conditions (33, 39, 57). This supports that the hPRA is a
valuable addition for clinically relevant investigations of the
reactivity and the mechanobiology of the human microcircu-
lation from aged, diseased patients.

The most important finding in our study is that acute
pressure-induced structural changes of the hPRA are small,
strongly supported by imaging data and mathematical mod-
eling, suggesting that the microarchitecture (straightness)
and increased stiffness of collagen are the limiting factors.
It has previously been shown in the pig thoracic aorta that
elevated stiffness is observed consistently for regions with

sharper and earlier collagen recruitment and less undulation
in collagen fibers (71). Recent studies have shown by means
of constitutive modeling of in vivo ultrasound pressure-area
data on human carotid arteries an age-related shift in pres-
sure-load bearing from elastin to collagen, caused by a
decrease in elastin stiffness and a considerable increase in
collagen recruitment in human carotid arteries (49, 62).
Furthermore, as recently suggested by Gautieri et al. (29),
nonenzymatic glycation of collagen reduces tissue vis-
coelasticity by severely limiting collagen fiber-fiber and
fibril-fibril sliding. The molecular nature of the arterial wall
explaining the observed recruitment of collagen already at
low transmural pressure and strain as well as the lack of
change in the microarchitecture with pressure in the hPRA
remains to be determined. It is generally accepted that
essential hypertension, diabetes, and the metabolic syn-
drome are associated with significant remodeling of the
arterial wall, including compositional changes of the ECM
(11, 35, 52, 54, 65). Our use of arteries from patients
undergoing cardiothoracic surgeries allows investigations in
vessels from individuals of different sex, disease history
(e.g., diabetes), pharmacological treatments, and age. How-
ever, deciphering the influences of each of these variables
requires a large number of patients and their arteries, com-
parisons between randomized groups, and multifactorial
analyses.

Future extension of the integrated approach. In our study, we
focused on the passive mechanical properties of the arterial wall,
considering only the ECM as a key element. However, not only
the quantity but also the quality, integrity, and structural organi-

Fig. 8. Parameter estimates from fitting the stress-strain relationships and mathematical modeling of the hPRA. A: stress-strain relationship with the mathematical
model (dotted lines) superimposed on the original data points [circumference (	): �; longitude (z): Œ]. B and C: individual �-values (B) and calculated Einc (C)
at a transmural pressure of 100 mmHg. D: elastin-to-collagen volume ratios calculated from imaging data. E: elastin (Eln) and collagen (Col) stiffness in the
circumferential and longitudinal directions, respectively. F: collagen recruitment strain, estimated from the mathematical model. G: NRMSE, a measure of the
errors between measured wall stress and model-predicted wall stress. The layout of this figure was intentionally designed similar to that of Fig. 4 for comparison.
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zation and interaction of the different constituents of the ECM,
including live cells, have an impact on the stiffness of the arterial
wall (8, 12, 27, 28, 30, 68). Recent evidence suggests that the
stiffness of SMCs should also be taken into account (59, 60).
Furthermore, the relationship between the arterial mechanics
and vasomotor tone should be addressed through studies of
mechanotransduction, the response of the arteries to increased
shear and wall stresses. Before doing so, an active SMC
component must be added to the mathematical model, and its
contribution to the biaxial mechanics must be verified (63).
Finally, not only the orientation and distribution of SMC but

also the orientation and distribution of endothelial cells may be
a qualified addition (45).

Conclusions. To the best of our knowledge, this report is the
first to demonstrate the integrated use of imaging, biomechani-
cal testing, and mathematical modeling to improve our under-
standing of the relationship between the arterial wall mechan-
ics and microarchitecture of the ECM in resistance arteries
from an animal model translated to the diseased human micro-
vasculature.

Our integrated approach invites detailed and integrative
studies of the relationship between the microarchitecture of the

Fig. 9. Microarchitecture of the extracellular matrix of a hPRA as a function of increasing pressure. Two-photon excitation fluorescence microscopy images of
collagen (green) and elastin (magenta) at 20 mmHg (A–D), 40 mmHg (E–H), and 100 mmHg (I–L) in the tunica adventitia (A, E, and I), EEL (B, F, and J), tunica
media (C, G, and K), and IEL (D, H, and L) are shown. The image series is representative of three independent experiments. Scale bars � 10 �m.

Fig. 10. Microstructural changes in adventitial collagen and
the IEL in hPRAs are limited. A: straightness L0/Lf [colla-
gen fiber bundle end-to-end length via a straight line (L0)/
full length (Lf)] of collagen fibers present at the border
between the EEL and tunica adventitia. B: branching angles
for elastin fibers in the IEL, each determined for three
individual arteries (at 20 mmHg, n � 2).
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ECM and remodeling of resistance arteries to improve our
understanding of the mechanobiology of the microcirculation
in aging and cardiovascular disease.
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