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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL - Audencia Group

https://core.ac.uk/display/50619329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00771829


Small Sample Properties of Alternative

Tests for Martingale Difference Hypothesis
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Abstract

A Monte Carlo experiment is conducted to compare power properties of al-

ternative tests for the martingale difference hypothesis. Overall, we find that the

wild bootstrap automatic variance ratio test shows the highest power against lin-

ear dependence; while the generalized spectral test performs most desirably under

nonlinear dependence.
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1 Introduction

Testing for the martingale difference hypothesis (MDH) is central in many economic and

finance studies, such as market efficiency, rational expectations, and optimal consumption

smoothing. A martingale difference sequence (MDS) has no dependence in mean, condi-

tional on its own history, implying that it is purely non-predictable from its own past.

Escanciano and Lobato (2009b) provides an informative review of the statistical tests

for the MDH. The tests widely used in empirical applications include the portmanteau

test (Ljung and Box, 1978) and variance ratio test (Lo and MacKinlay, 1988), which

are based on the linear measures of dependence. Notable recent contributions to this

category of the MDH tests include the automatic portmanteau (AQ) test of Escanciano

and Lobato (2009a); and automatic variance ratio (AVR) test of Kim (2009) extending

the earlier work of Choi (1999). The other category of the MDH tests adopts nonlinear

measures of dependence, which include the generalized spectral (GS) test of Escanciano

and Velasco (2006) and the consistent tests of Dominguez and Lobato (2003; DL tests).

In this paper, we conduct an extensive Monte Carlo study to compare small sample

properties of these alternative tests. We aim to provide a guideline as to which tests

should be preferred in practical applications. We compare their power properties under

a wide range of linear and nonlinear models. The next section provides a brief review of

these tests, and Section 3 reports the Monte Carlo results.

2 Tests for Martingale Difference Hypothesis

To conserve space, only brief details of the tests are provided. Let {Yt}∞−∞ denote a

real-valued stationary time series. Under the MDH, E[Yt|It−1] = µ; or equivalently

E[(Yt− µ)ω(It−1)] = 0, where It = {Yt, Yt−1, ...} is the information set at time t and ω(·)
is a weighting function. Here, ω(It−1) represents any linear or nonlinear transformation

of the past. Depending on the choice of this weighting function, the tests are classified

into those based on linear or nonlinear measures of dependence.
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2.1 Tests based on linear measures of dependence

When the weighting function takes the linear form, i.e., ω(It−1) = Yt−i for some i ≥ 1, the

MDH implies γi ≡ E[(Yt−µ)(Yt−i−µ)] = 0. The most popular tests are the portmanteau

and variance ratio tests for H0 : ρ(i) ≡ γi/γ0 = 0. The original portmanteau test statistic

is written as

Qp = T

p∑
i=1

ρ̂2(i), (1)

where ρ̂(i) is the sample estimate of ρ(i) and T is the sample size. When Yt has conditional

heteroscedasticity, Lobato et al. (2001) propose the robustified statistic of the form

Q∗
p = T

p∑
i=1

ρ̃2(i), (2)

where ρ̃(i) = γ̂2(i)/τ̂(i), γ̂(i) is the sample autocovariance of Yt, and τ̂(i) is the sample

autocovariance of Y 2
t .

To avoid an ad hoc selection of p, Escanciano and Lobato (2009a) propose an auto-

matic test where the optimal value of p is determined by a fully data-dependent procedure.

The test statistic, which asymptotically follows the χ2
1 distribution, is written as

AQ = Q∗
ep (3)

where p̃ = min{p : 1 ≤ p ≤ d; Lp ≥ Lh, h = 1, 2, ..., d} and d is a fixed upper bound, while

Lp = Q∗
p − π(p, T ), where the penalty term π(p, T, q) = p log(T ) if max1≤i≤d

√
T |ρ̃(i)| ≤√

2.4 log(T ) and π(p, T, q) = 2p if otherwise. Note that the penalty term is a balance

between AIC and BIC.

The variance ratio test can be written as

V̂ R(k) = 1 + 2
k−1∑
i=1

(1− i

k
)ρ̂(i), (4)

where k denotes the holding period. Choi (1999) proposes an automatic variance ratio

(AVR) test where k is chosen optimally using a fully data-dependent method based on

Andrews (1991). Kim (2009) finds that small sample properties of Choi’s (1999) test can

be substantially improved, by employing the wild bootstrap. Let the AVR test statistic
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with the optimal choice of k be denoted as AV R(k∗). Kim’s (2009) wild bootstrap AVR

test is conducted in three stages as follows:

1. Form a bootstrap sample of size T as Y ∗
t = ηtYt (t = 1, ..., T ), where ηt is random

variable with zero mean and unit variance;

2. Calculate AV R∗(k∗), the AV R(k∗) statistic calculated from {Y ∗
t }T

t=1;

3. Repeat 1 and 2 B times, to produce the bootstrap distribution of the AVR statistic

{AV R∗(k∗; j)}B
j=1.

To test for H0 against the two-tailed alternative, the bootstrap p-value is calculated

as the proportion of the absolute values of {AV R∗(k∗; j)}B
j=1 greater than the absolute

value of the observed statistic AV R(k∗). For ηt, we use the two point distribution given

in Escanciano and Velasco (2006; p.164).

Note that the AQ and AV R tests can be inconsistent against nonlinear alternatives.

The latter include a time series which are serially uncorrelated but dependent. The

AV R test also has a serious theoretical limitation of being inconsistent even for some

linear models, which occurs when the autocorrelations of different signs cancel out (see

Escanciano and Lobato; 2009b, p.979). The VR test statistic in (4) is not robust to het-

eroskedasticity, although its wild bootstrap version provides statistical inference robust

to heteroskedasticity (see, Kim; 2006).

2.2 Tests based on nonlinear measures of dependence

For the case of general nonlinear weighting function, popular choices have been expo-

nential function and indicator function. The former is to detect the general nonlinear

conditional mean dependence, and the latter to test for no directional predictability.

Escanciano and Velasco (2006) express the null of the MDH in a form of pairwise

regression function. That is, H0 : mj(y) = 0, where mj(y) = E(Yt − µ|Yt−j = y), against

H1 : P [mj(y) 6= 0] > 0 for some j. They note that the above null hypothesis is consistent

with the exponential weighting function such that

γj(x) ≡ E[(Yt − µ)eixYt−j ] = 0,
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where γj(x) represents an autocovariance measure in a nonlinear framework with x being

any real number. Escanciano and Velasco (2006) propose the use of the generalized

spectral distribution function, whose sample estimate is written as

Ĥ(λ, x) = γ̂0(x)λ + 2
∞∑

j=1

(1− j

T
)γ̂j(x)

sin(jπλ)

jπ
,

where γ̂j(x) = (T−j)−1
∑T

t=1+j(Yt−Y T−j)e
ixYt−j and Y T−j = (T−j)−1

∑T
t=1+j Yt. Under

the null hypothesis, Ĥ(λ, x) = γ̂0(x)λ ≡ Ĥ0(λ, x), and the test statistic for H0 is written

as

ST (λ, x) = (0.5T )1/2{Ĥ(λ, x)− Ĥ0(λ, x)}

=
T−1∑
j=1

(T − j)0.5γ̂j(x)

√
2 sin(jπx)

jπ
.

To evaluate the value of ST for all possible values of λ and x, Escanciano and Velasco

(2006) use the Cramer-von Mises norm to obtain the statistic

D2
T =

T−1∑
j=1

(T − j)

(jπ)2

T∑
t=j+1

T∑
s=j+1

exp(−0.5(Yt−j − Ys−j)
2). (5)

Dominguez and Lobato (2003) consider the case of indicator weighting function and

propose the (DL) tests based on Cramer-von Mises (CvM) and Kolmogorov-Smirnov

(KS) statistics, which can be written as

CvMT,p =
1

σ̂2T 2

T∑
j=1

[
T∑

t=1

(Yt − Y )1(Ỹt,p ≤ Ỹj,p)]
2; (6)

KST,p = max
1≤i≤T

| 1

σ̂
√

T

T∑
t=1

(Yt − Y )1(Ỹt,p ≤ Ỹj,p)|, (7)

where Ỹt,p = (Yt−1, ..., Yt−p) and p is a positive integer.

The GS and DL test statistics given in (5) to (7) do not possess the standard asymp-

totic distributions. To implement the tests in finite samples, the above authors recom-

mend the use of the wild bootstrap. That is, the p-value of the test can be obtained from

the wild bootstrap distribution, as described in Section 2.1 for the AVR test. The DL

tests are conditional on finite-dimensional information set, requiring the choice of lag or-

der p; while the GS exploits infinite-dimensional information set. As noted in Escanciano
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and Velasco (2006), the GS test is only pairwise consistent, but is inconsistent against

pairwise MDS which are non-MDS.

3 Monte Carlo Simulations

We only report power properties (the probability of rejection under H1), because we

find no evidence of size distortion for all tests, except for the AQ test which is slightly

oversized only when the sample size is as small as 100. We consider a number of linear

and nonlinear models. For the former,

• AR(1) model: Yt = 0.1Yt−1 + Zt, and Yt = 0.1Yt−1 + Vt

• ARFIMA model: (1− L)0.1Yt = Zt; and (1− L)0.1Yt = Vt;

• The sum of a white noise and the first difference of a stationary au-

toregressive process of order one (NDAR): Yt = εt + Xt − Xt−1 with Xt =

0.85Xt−1 + ut,

where Zt = εtσt with σ2
t = 0.001 + 0.90σ2

t−1 + 0.09ε2
t−1 (i.e. GARCH(1,1) errors);

Vt = exp(0.5ht)εt with ht = 0.95ht−1 + ut (i.e. stochastic volatility (SV) errors);

εt and ut are independent i.i.d. N(0,1). For nonlinear models, we consider four models

used by Escanciano and Velasco (2006), which include

• Bilinear model: Yt = εt + 0.25εt−1Yt−1 + 0.15εt−1Yt−2;

• TAR(1) model: Yt = −0.5Yt−1 + εt if Yt ≥ 1 and Yt = 0.4Yt−1 + εt if Yt < 1;

• Non-linear moving average model (NLMA): Yt = εt−1εt−2(εt−2 + εt + 1); and

• First order exponential autoregressive model (EXP(1)): Yt = 0.6Yt−1 exp(−0.5Y 2
t−1)+

εt.

The sample size considered are 100, 300, and 500. The number of bootstrap iterations

(B) for the AVR, DL and GS tests are set to 500, and the number of Monte Carlo trials

to 1000. For the DL tests, we only report the case where p = 1, since they show lower

power when p > 1.
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Table 1 reports the power of the linear tests under linear models. The AVR and AQ

tests perform similarly, but the former shows higher power in most cases. Table 2 reports

the power of the nonlinear tests under linear models. Under GARCH errors, the GS test

shows higher power than the DL tests, but the DL tests are more powerful under the

SV errors. Table 3 reports the power of the linear tests under nonlinear models. The

AVR test performs much better than the AQ test, showing high power especially for the

bilinear, EXP(1) and TAR(1) models. Table 4 reports the power of the nonlinear tests

under nonlinear models. The GS test is more powerful than the DL for the bilinear and

TAR(1) models. For NLMA and EXP(1), both perform similarly, but the DL tests tend

to show higher power. As expected, the nonlinear tests are more powerful than the linear

tests under nonlinear models; but the reverse tends to be the case under linear models.

Overall, it is found that the AVR and GS tests show excellent power against a wide

range of linear and nonlinear models, with no size distortion. The DL tests also show

satisfactory performance, being more powerful than the GS test under SV errors. Al-

though the AVR test is not designed to detect nonlinear dependency, it shows good power

properties against a range of nonlinear models. Since it is often uncertain in practice

whether the nature of dependency is linear or nonlinear, the use of the AVR, along with

the DL and GS tests, is strongly recommended. As a further note, we find that wild

bootstrapping does not improve the power of the AQ test (the details are not reported).
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