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Abstract

Background: Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic
system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse,
we focus on the effects and interactions among dopaminergic gene variants.

Objective: To study the potential association between allelic variants of dopamine D2 receptor (DRD2), ANKK1 (ankyrin
repeat and kinase domain containing 1), dopamine D4 receptor (DRD4), catechol-O-methyl transferase (COMT) and
dopamine transporter (SLC6A3) genes and heroin dependence in Hungarian patients.

Methods: 303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms
(SNPs) rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955,
rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs) were also genotyped: 120 bp
duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a
multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA).

Findings and conclusions: In single marker analysis the TaqIA (rs1800497) and TaqIB (rs1079597) variants were associated
with heroin dependence. Moreover, –521 C/T SNP (rs1800955) of the DRD4 gene showed nominal association with a
possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that
the minor (A) allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of
the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was
able to reveal an indirect effect of a promoter polymorphism (rs936462) of the DRD4 gene and this effect is mediated
through the –521 C/T (rs1800955) polymorphism in the promoter.
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Introduction

Substance abuse presents a major health and social problem

worldwide. It is broadly accepted that multiple genetic and

environmental risk factors and their interactions may contribute to

the development of drug addiction. However, at present, little is

known about the exact nature of these genetic components.

Family-, twin- and adoption studies have shown that the

heritability of alcoholism is around 40–60% [1], other studies

found similar heritability values in the context of substance use

[2,3,4]. Neurobiological models accentuate the key role of the

brain’s reward system via the dopaminergic mesocorticolimbic

pathway, which is modulated by complex, mutual interactions

with other stimulatory and inhibitory neurotransmitter systems.

Various drugs of abuse act at different points of these systems, but

eventually they all converge into elevated levels of dopamine

released in the nucleus accumbens [5,6].

The dopaminergic system has a key role in the rewarding and

reinforcing mechanisms of the brain [7], which is the most likely

target of drug abuse. Dopamine can be released as a result of using

drugs such as nicotine, cocaine, cannabis and opiates. After heroin

is converted into morphine, it acts as a m-opioid receptor agonist.

Ligand binding decreases the release of GABA from interneurons,

thus reducing the inhibitory effect of GABA on dopaminergic

neurons and as a result a sustained synaptic level of dopamine can

be observed, which is perceived as euphoria [8]. As interindividual

differences in the function of the mesocorticolimbic dopaminergic

reward system have an influence on the drug-induced response of
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the body, genetic variants of the neurotransmitter systems involved

in the reward system - especially dopamine - are the most likely

candidate genes of drug addiction.

Genetic polymorphisms of the dopaminergic system include

single nucleotide polymorphisms (SNPs) and length polymor-

phisms of the receptors, transporters and metabolizing enzymes.

One of the most widely studied candidate genes is the dopamine

D2 receptor (DRD2) characterized previously with TaqIA, TaqIB,

and TaqID SNPs based on restriction digestion of this region with

the TaqI enzyme. Early studies indicated the A1 allele of TaqIA as

a risk factor of substance abuse, alcoholism [9] and heroin

dependence [10], but some studies have failed to replicate these

findings [11,12]. Later it turned out that the TaqIA restriction

fragment length polymorphism (RFLP) is located approximately

10 kilobases downstream from the DRD2 gene, in exon 8 of the

ANKK1 (ankyrin repeat and kinase domain containing 1) gene

[13], which is a member of the serine/threonine kinase family.

The TaqIA polymorphism, causing an amino acid change in

ANKK1 (Glu713Lys), seems to have a significant effect on the

specificity of substrate binding. The protein product of the

ANKK1 gene was considered as a negative regulator of the NF-

kB (Nuclear Factor-KappaB) transcription factor [14]. Moreover,

the expression level of NF-kB-regulated genes was shown to be

altered by TaqIA variants in an in vitro luciferase system [15].

Since DRD2 is regulated by NF-kB [16,17] it could be assumed

that this ANKK1 variant can indirectly affect DRD2 receptor

density. It is also possible, however, that the TaqIA SNP is only a

marker of other functional DRD2 variants associated with

addiction, such as the strongly linked TaqIB [18].

An interesting hypothesis has arisen from the possible role of

decreased dopamine receptor density resulting in Reward

Deficiency Syndrome [5]. It is well known that under normal

conditions dopamine is released into the synapse, binds to

dopamine receptors, inducing euphoria and stress reduction.

Reward Deficiency Syndrome is characterized by a lower basal

dopamine level due to insufficient receptor capacity resulting in a

need of a certain amount of dopamine to feel good (this could be

achieved by rewarding experiences such as drugs, gambling,

alcohol, etc.). Studies on animal models further underline the role

of DRD2 in drug addiction as the rewarding effects of opiates were

found absent in mice lacking the D2 receptor gene [19,20].

Another widely studied polymorphic dopamine receptor is the

dopamine D4 receptor gene (DRD4) with more than 200 SNPs

and several VNTRs. The 48 bp repeat polymorphism is an exonic

variant (48 bp VNTR) changing the length of the third

intracellular loop of the receptor with a possible effect on signaling

efficiency [21]. The DRD4 7 repeat allele seems to show decreased

sensitivity to dopamine compared with the 4 repeat allele [22] and

according to recent neurobiological findings it does not form

heteromers with D2 receptors in the striatum [23]. Carriers of the

‘‘long’’ allele possessing 7 repeats of the 48 bp sequence were

shown to have higher novelty seeking scores compared to non-

carriers assessed by psychological questionnaires [24,25,26,27],

however, replication studies were contradictory (for a review see

Kluger et al., 2002 [28]). It has also been shown that individuals

with high novelty seeking scores are prone to increased substance

use [29,30,31]. Therefore, the DRD4 long allele was considered as

a predictive marker of various addictive behaviors. This hypothesis

was supported in alcoholics [32], heroin dependent patients [33]

and individuals with eating disorders [34], but subsequent

replications were also contradictory (for a review see McGeary,

2009 [35]). One of the possible reasons for unsuccessful replication

studies might be the high genetic variability of the DRD4 gene

including other functional variants beside the exonic 48 bp

VNTR. Molecular effect of DRD4 promoter region polymor-

phisms (120 bp duplication, 2615 A/G, 2616 C/G and 2521

C/T) has been studied by others, as well as in our laboratory

[36,37,38,39,40,41]. Furthermore we previously described a novel

SNP 2615 A/G generating a source of possible misgenotyping of

the adjacent SNP 2616 C/G by conventional methods [42].

Catechol-O-methyl transferase (COMT) plays an important

role in the regulation of synaptic dopamine levels since it is

responsible for the catabolism of dopamine. The Val158Met exonic

SNP (rs4680) of COMT is considered to influence enzyme activity

[43], making this polymorphism a possible marker of genetic

predisposition to addiction [44].

The dopamine transporter is responsible for the re-uptake of

dopamine from the synapse in midbrain dopaminergic neurons

[45], playing a key role in the homeostatic regulation of

dopaminergic neurotransmission. Genetic variants of the dopa-

mine transporter gene (SLC6A3 or commonly DAT) have also

been implicated in human mental disorders such as parkinsonism,

Tourette syndrome, and substance abuse [46].

Here, we present a combined analysis of the key candidate

polymorphisms in the dopaminergic system as possible risk factors

for heroin dependence in a case-control study of Central European

descent (Hungarian). Moreover, we focus on the interactions

among these genetic variants using Bayesian networks in Bayesian

multilevel analysis (for previous applications of BN-BMLA, see

[47,48,49,50]).

Materials and Methods

1. Subjects
Cases. The initial cohort consisted of 307 heroin dependent

patients. Four subjects suffering from a major psychiatric disorder

(schizophrenia and major depression) with possible involvement of

the studied neurotransmitter systems were excluded from the

study. All subjects were unrelated with Hungarian origin. The

final sample included 303 heroin dependent patients (211 (69.6%)

males and 92 females (30.4%)) from three centers, the National

Institute of Psychiatry and Neurology, Budapest; the Dr.

Farkasinszky Terézia Youth Drug Centre, Szeged and the Nyı́rő

Gyula Hospital Drug Outpatient and Prevention Center, Buda-

pest.

Diagnosis was made based on DSM-IV criteria (American

Psychiatric Association, 1994). The age of subjects at diagnosis was

15–70 years (mean age = 28.64 years 66.448). All patients with

heroin dependence reported heroin as their primary drug of

choice. Non-opioid substance use (such as alcohol, cocaine,

marijuana, amphetamine, LSD, benzodiazepine, etc.) was not an

exclusion criterion since heroin dependent patients frequently use

alcohol, cannabis or cocaine as secondary drugs.

Controls. Genotype data of 555 sexually matched healthy

Hungarian control subjects (386 [69.5%] males and 169 females

[30.5%]) was used to construct a large normative sample for

determination of control genotype and allele frequencies. These

subjects did not suffer from psychiatric disorders. Nicotine

dependence was not an exclusion criterion from the control group.

The research protocol has been approved by the Hungarian

National Ethical Committee (TUKEB), as well as the Ethical

Board of Semmelweis University and the Institute of Psychology,

Eötvös Loránd University. All participants were over the age of 18

at the time of inclusion in the study. All participants provided

written informed consent.
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2. Genotyping
A non-invasive DNA sampling method was used to obtain the

sufficient quantity of buccal cells (method is described elsewhere

[51]). Genomic DNA was isolated from buccal swabs [51] or

mouthwash using the DNA-purification kit obtained from Gentra

(Minneapolis, US) and approximately 1 ng DNA was used as

template for each of the tested polymorphisms, performed as

described earlier (DRD4 gene: 2521 C/T SNP [52], 120 bp

duplication [40], DRD4 VNTR [53]). The 2521 C/T polymor-

phism was determined by two independent methods using a newly

designed primer pair [54], and only genotypes with identical

results were accepted. Using this improved method the genotype

distribution of the control population corresponds to the Hardy-

Weinberg equilibrium (see Table 1).

Genotyping methods included restriction fragment length

polymorphism, allele-specific amplification and real-time PCR.

Genotyping procedures for the DRD2/ANKK1 TaqIA

(rs1800497), the DRD2 TaqIB (rs1079597) and TaqID

(rs1800498), the SLC6A3 40 bp VNTR in the 39 untranslated

region, the DRD4 48 bp VNTR in exon 3 and 120 bp duplication

in the promoter region, and the allele-specific amplifications of the

DRD4 2616 C/G (rs747302), 2615 A/G (rs936462), 2521 C/T

(rs1800955) and COMT Val158Met (rs4680) were carried out

using published protocols [53,55,56,57,58,59,60]. The genotype-

phenotype data underlying the present study was deposited in the

Dryad Data Repository (www.datadryad.org) at http://dx.doi.

org/10.5061/dryad.975 kk.

2.1. Restriction fragment length polymorphism. 1 mM

of each primer was used to carry out the amplification (method

developed by Percy et. al. [52]). In the case of COMT the forward

(59-CTC ATC ACC ATC GAG ATC AA-39) and reverse primers

(59-CCT TTT TCC AGG TCT GAC AA-39) were used with 1x

Buffer and Q-solution (Qiagen); 200 mM dATP, dCTP, dGTP

and dTTP; 0.1 U HotStarTaq DNA polymerase and 5 ng

genomic DNA (10 mL final volume). Thermocycling conditions:

95uC for 15 minutes, 40 cycles of 94uC, 30 sec denaturation at

52uC, 30 sec annealing and 1 min at 72uC for extension and

finally a 10-minute polymerization at 72uC. Digestion was carried

Table 1. Results of the case-control analysis.

Gene Marker Genotype
Control
(N)

Control
(%) HWE

Case
(N)

Case
(%)

HWE
p-value

Dominant model
p-value

Dominant model OR
(95% CI)

COMT Val158Met GG 125 22.5% 0.99 75 24.8% 0.993 0.329 1.17 (0.85–1.62)

rs4680 AG 275 49.6% 152 50.4%

AA 155 27.9% 75 24.8%

ANKK1 TaqIA TT 17 3.2% 0.912 18 6.1% 0.757 0.009 1.49 (1.11–2.00)

rs1800497 CT 148 27.9% 100 34.0%

CC 366 68.9% 176 59.9%

DRD2 TaqIB AA 12 2.3% 0.833 13 4.6% 0.869 0.003* 1.61 (1.18–2.21)

rs1079597 AG 123 23.5% 88 31.3%

GG 388 74.2% 180 64.1%

TaqID CC 78 15.8% 0.989 56 19.4% 0.898 0.381 1.15 (0.84–1.56)

rs1800498 CT 239 48.2% 138 47.8%

TT 178 36.0% 95 32.8%

DRD4 2521 C/T CC 111 21.0% 0.989 61 20.2% 0.282 0.007 0.66 (0.48–0.89)

rs1800955 CT 278 52.6% 134 44.4%

TT 140 26.4% 107 35.4%

2615 A/G GG 4 0.8% 0.18 5 1.7% 0.731 0.302 1.18 (0.86–1.63)

rs936462 AG 128 24.2% 80 26.6%

AA 395 75.0% 215 71.7%

2616 C/G GG 120 22.5% 0.927 62 20.5% 0.307 0.610 1.09 (0.79–1.50)

rs747302 CG 271 50.7% 164 54.3%

CC 143 26.8% 76 25.2%

120dup 1-absent 392 70.9% 0.974 211 69.6% 0.851 0.702 1.06 (0.78–1.44)

1-present 161 29.1% 92 30.4%

48 bp VNTR 7-absent 337 62.3% 0.219 195 64.8% 0.977 0.472 0.90 (0.67–1.20)

7-present 204 37.7% 106 35.2%

SLC6A3 40 bp VNTR 9-absent 275 51.2% 0.998 164 56.2% 0.928 0.092 0.78 (0.59–1.04)

9-present 262 48.8% 128 43.8%

intron 8 VNTR 2-absent 343 63.3% 0.852 195 64.8% 0.108 0.664 0.94 (0.70–1.26)

2-present 199 36.7% 106 35.2%

HWE: p value of deviation from Hardy-Weinberg equilibrium.
OR: Odds ratio, CI: confidence interval.
*significant after Bonferroni correction: p,0.0045 (0.05/11) for 11 tests.
doi:10.1371/journal.pone.0066592.t001
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out using NlaIII restriction enzyme. In case of DRD2 we had three

SNP-RFLP polymorphisms: the TaqIA (DRD2/ANKK1), TaqIB

and TaqID. For PCR we used the same method with specific

primer pairs. TaqIA: forward: 59-CCG TCG ACG GCT GGC

CAA GTT GTC TA-39, reverse: 59-CCG TCG ACC CTT CCT

GAG TGT CAT CA-39. TaqIB: forward: 59-GAT ACC CAC

TTC AGG AAG TC-39, reverse: 59-GAT GTG TAG GAA TTA

GCC AGG-39. TaqID: forward: 59-CCC AGC AGG GAG AGG

GAG TA-39, reverse: 59-GAC AAG TAC TTG GTA AGC ATG-

39. For the genotype dependent digestion 1x TaqI Buffer, 2.5 U

Taq restriction enzyme, 5 mL PCR product supplemented with

distilled water to reach the final volume of 10 mL. Digestions were

performed during a 65uC overnight incubation followed by a

fragment separation on 2.5% agarose gel matrix.

2.2. Allele-Specific Amplification (ASA). In the case of

COMT we used an ASA by tetra-primer PCR. A pair of flanking

primers (1: 59-TGC TCA CCT CTC CTC CGT-39, 2: 59-ACA

CCC ATA CAA GCA TTC ATC-39) and two internal primers (1:

59-CAC ACC TTG TCC TTC AC-39, 2: 59 TGG TGG ATT

TCG CTG GCA 39).

DRD4 –521 C/T genotypes were also determined by ASA.

Flanking primers are the following: 59-GGA ATG GAG GAG

GGA GCG GG-39; 59-CGC TCC ACC GTG AGC CCA GTA

T-39. Internal specific primers: 59-GGA GCG GGC GTG GAG

GGC-39; 59-GCC TCG ACC TCG TGC GCA-39. Same thing

with the 2616 C/G SNP. Flanking primers: 59-GAA CCT ACC

CCG GCC TGT CGT-39; 59-AGA CGG GAA TGA AGC GAG

GTG G-39. Internal primers: 59-TGG TCG CGG GGG CTG

AGC-39; 59-CCC CCC MGC AGC CTC TGG YC-39

(M = A+C, Y = C+T, degenerated nucleotides).

As for genotyping of the intron 8 VNTR of the DAT gene we

used a PCR-based method with forward (59-GCTTGGGGAAG-

GAAGGG-39) and reverse primers (59-

TGTGTGCGTGCATGTGG-39). The same method was used

for genotyping the DAT1 40 bp VNTR in the 39 untranslated

region of the gene: forward primer: 59-TGT GGT GTA GGG

AAC GGC CTG AG-39, reverse primer: 59-CTT CCT GGA

GGT CAC GGC TCA AGG-39. In the case of the VNTR

polymorphisms of the DRD4 gene: the 120 bp duplication

primers: forward primer: 59-GTT GGC TGT CTT TTC TCA

TTG TTT CCA TTG-39, reverse primer: 59-GAA GGA GCA

GGC ACC GTG AGC-39; the 48 bp VNTR primers: forward

primer: 59-GCG ACT ACG TGG TCT ACT CG-39, reverse

primer: 59-AGG ACC CTC ATG GCC TTG-39.

3. Statistical Analyses
Our case-control analysis applied a dominant model of minor

alleles, i.e. genotypes were grouped according to the presence or

the absence of the minor allele. For single marker analysis

genotype frequencies were compared by Chi-squared test, using

SPSS 17.0 for Windows (SPSS Inc., Chicago, IL, USA). P-

values,0.05 were considered nominally significant. Correction for

multiple testing was made according to the stringent Bonferroni

correction: the threshold significance was adjusted to p,0.0045,

where 0.0045 = 0.05/11 (since 11 polymorphisms were tested).

Linkage disequilibrium between the ANKK1 and DRD2 SNPs

(TaqIA and TaqIB) was calculated by the HaploView program,

version 4.2. (Daly Lab, Cambridge, MA, USA) [61]. Haplotype

analyses were conducted by likelihood-based association analysis

using UNPHASED [62].

Besides standard association testing we performed a systems-

based association analysis, as well. A central concept in this

approach is strong relevance. A variable is strongly relevant if its

statistical association remains relevant given all the other variables,

i.e. its effect is not mediated by other variables [63]. This concept

can be generalized to multiple variables as follows. A set of

variables is sufficient as explanatory variables for a given target if

all the other variables are not statistically associated, i.e. if these

variables shield the target from the effect of the other variables

[64]. This set of variables X’ (a subset of all variables X) is called a

Markov blanket set (MBS(Y)) of variables with regard to target Y.

For a given variable/factor Xi, being a member of MBS is called

Markov blanket membership (MBM(Y, Xi)). The Bayesian

framework allows us to calculate the posterior probabilities of

these properties by performing a random walk over the set of

possible network structures using a Markov chain Monte Carlo

simulation. We used the method published earlier to calculate the

MBM and MBS posterior probabilities, with the following settings:

8*106 MCMC steps, 106 burn-in steps, 5 maximum parents,

Cooper-Herskovits prior (for the detailed description of the

approach, see [47]).

These posteriors offer a new way to quantify the interaction or

redundancy of the variable set {Xi1, …, Xin} over dataset D.

Redundancy shows us if the effect of a set of variables can be

accounted for by any of the variables in the set, while interaction

shows us effects, which are greater than the effect of the individual

variables. We computed the interaction and redundancy scores R

for pairs of predictors Xi, Xj with the following formula:

Ri,j~
P Xi,Xj(MBS Yð ÞDD
� �

P Xi(MBS Yð ÞDDð Þ � P Xj(MBS Yð ÞDD
� �

By applying this method, we can see whether the differences of

R values from 1 indicate an interaction (R.1) or a redundancy

(R,1). The corresponding Interaction Ratio is then defined by

IR= ln(R), and the Redundancy Ratio by RR= -ln(R).

Results

1. Single Marker Analysis
A sample of 303 heroin dependent patients and 555 controls of

Central European descent were analyzed for 7 SNPs and 4

VNTRs of the dopaminergic system. Main characteristics of SNPs

and VNTRs studied in this work are summarized in Table 2 and

3, respectively. Table 2 shows the gene symbols, alternative

symbols, genomic coordinates, rs numbers and alternative names

of SNPs studied here. Minor allele frequencies (MAF) of our own

data are compared with data of mixed European population from

the ALFRED (The ALlele FREquency Database - http://alfred.

med.yale.edu/) database. Table 3 contains the basic properties of

the length polymorphisms possessing variable numbers of tandem

repeats (VNTRs) assessed in this study.

For testing the linkage disequilibrium (LD) among multiple

polymorphisms of DRD2 (Figure 1A) and DRD4 (Figure 1B)

genes the HaploView program was used. A strong LD was found

between the TaqIA and TaqIB (98%) in the DRD2 gene.

Interestingly, the linkage of the third studied DRD2 SNP (TaqID)

lying in between the strongly linked SNPs (TaqIA and TaqIB)

shows an ambiguous picture: it is linked strongly to TaqIB (98%)

but not to TaqIA (67%). The two adjacent SNPs in the DRD4

gene located in the promoter region with 615 and 616 bp

upstream of the start codon, are strongly linked (98%), as

expected. On the other hand, the 2521 C/T SNP has only a

weak linkage to the previous ones (47%).

Results of our single marker case-control analysis are listed in

Table 1. Both the common names and rs numbers of SNPs are

given for better understanding. The table shows the number of the

Association Study of Heroin Dependence
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individuals (N) and also the percentages (%) in each genotype

category for the control and for the heroin dependent (case)

sample. Observed genotype frequencies are consistent with Hardy-

Weinberg equilibrium (see the p values in column ‘‘HWE’’) in the

control group for all SNPs. In case of length polymorphisms

genotype categories were grouped according to the presence or

absence of the second most frequent allele and the HWE was

calculated for these categories. The complete list of the VNTR

genotypes including all the variants is shown in Table S1.

The frequentist calculation method of case-control analysis was

based on the presence or the absence of the minor allele (dominant

model), all p values showing nominal significance (p,0.05) are

seen in bold in Table 1. According to the data the minor (T) allele

containing genotypes (TT+CT) of TaqIA polymorphism

(rs1800497) in the ANKK1 gene were overrepresented in patients

(6.1%+34%) when compared to the controls (3.2%+27.9%)

suggesting a genetic effect of the T allele on heroin dependence

risk (p = 0.009). A similar effect was found for the strongly linked

TaqIB SNP (rs1079597) of the DRD2 gene: the minor A allele

containing genotypes were overexpressed among heroin depen-

dent patients (4.6%+31.3%) compared to the control group

(2.3%+23.5%, p = 0.003). As seen in Table 1, the odds ratios of

these polymorphisms are relatively high (1.49 and 1.61 for TaqIA

and TaqIB, respectively). Moreover, the –521 C/T polymorphism

of the DRD4 gene and heroin dependence also showed a nominal

association (p = 0.007). Although the two alleles have quite a

similar frequency, the minor C allele seems to have a protective

effect against heroin addiction as both CC and CT have a lower

frequency among heroin dependent patients (20.2%+44.4%) than

controls (21.0%+52.6%). No significant differences were found

between heroin dependent patients and controls in the other

polymorphisms included in this study. After applying the stringent

Bonferroni correction for multiple testing (p,0.0045 [0.05/11] for

the 11 tests), only the effect of the DRD2 TaqIB SNP remained

significant (labeled by an asterisk in Table 1) suggesting that the

presence of the DRD2 TaqIB minor allele is a strongly relevant

component in the genetic background of heroin dependence.

2. Multiple Marker Analysis
Since the Bonferroni correction is one of the stringent methods

for analyzing multiple comparison data, methods of multiple

marker analysis were also applied in order to avoid false negative

findings. As a first step, haplotype analysis was carried out for TaqI

polymorphisms in the DRD2/ANKK1 genes and the results are

presented in Table S2. Although we found nominally significant

associations of haplotypes TaqIA-TaqIB, TaqID-TaqIB and TaqIA-

TaqID-TaqIB (p = 0.0063, p = 0.0136, p = 0.028, respectively) with

heroin addiction, these results might be a simple consequence of

the strongly linked minor risk alleles.

The T,A haplotype of the two strongly linked minor alleles of

TaqIA and TaqIB SNPs was overrepresented in the case group

(19.9%) compared to controls (13.8%), suggesting the association

of T,A haplotype with heroin dependence (p = 0.0063). It should

be noted, however, that the total of the haplotype frequencies of

linked minor alleles (T,A: 13.8% in controls) and linked major

alleles (C,G: 82.9% in controls) is near 97%, and the other

haplotypes are extremely rare. Therefore, the association of T,A

haplotype with heroin dependence might be a direct consequence

of the associating minor alleles. Haplotype frequencies of DRD4

promoter SNPs were also calculated and compared between the

control and heroin dependent samples but no significant

differences were obtained (see: Table S3).

In an independent method for multiple marker analysis, we

applied a Bayesian network based Bayesian multilevel analysis
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(BN-BMLA) in order to evaluate dopaminergic risk factors of

heroin addiction. Using the same set of phenotype and genotype

data as in the above calculations, we summarized the results in a

consensus Bayesian network as seen in Figure 2. Our results

suggest significant effects of ANKK1 (TaqIA), DRD2 (TaqIB) and

DRD4 (–521 C/T) SNPs, which are consistent with the findings of

the single marker analysis without correction for multiple testing,

as seen earlier.

An additional interesting finding of the network analysis is the

effect of another DRD4 promoter polymorphism (2615 A/G),

which has an indirect effect on our target variable (heroin

dependence). According to our results, the effect of the 2615 A/G

polymorphism is manifested through another DRD4 polymor-

phism, the 2521 C/T. The combined effect of these SNPs was

also seen by classical statistical methods, as shown in Table 4. No

difference of the DRD4 2521 C/T genotype distribution was

observed in the presence of the 2615 G allele, while in the

absence of this allele a significant (p = 0.0013) effect of the 2521

C/T polymorphism was demonstrated. These data are in good

agreement with the indirect effect of the DRD4 2615 SNP shown

on Figure 2.

Another interesting finding in the Bayesian analysis is the more

pronounced effect of the TaqIB polymorphism compared to

TaqIA. According to the results of the network analysis there is a

strong redundant effect between the DRD2 and ANKK1 gene

polymorphisms (Redundancy Ratio of 1.201). This means that the

posterior probability of TaqIB or TaqIA being present alone in our

model is more than 3.32 times as likely as both of them being

present in the model. Our model yielded a higher posterior

probability of relevance for the DRD2 TaqIB (P = 0.67), than the

relevance of the ANKK1 TaqIA (P = 0.27) variants (Figure 3),

therefore the effect of the TaqIA seems to be negligible compared

to TaqIB. The probable multivariate models can be seen in

Figure 3 by starting from the left (1.0) empty model. Each step

from the root node of the dendrogram along the edges adds

another variable to the model. The P value under the name of

Table 3. Genetic variants of the dopaminerg system.

Length polymorphisms

Gene symbol and name**
Alternative
names

Chromosomal
location Genomic coordinates Repeat region In gene location

DRD4 Dopamine receptor D4 11p15.5 11:637,304–640,705 120 bp dup 1.2 kb upstream of the
initiation codon

48 bp VNTR exon 3

SLC6A3 Solute carrier
family 6
(neurotransmitter
transporter,
dopamine),
member 3

Dopamine transporter 1
(DAT1)

5p15.33 5:1,392,904–1,445,542 40 bp VNTR 39 UTR

intron 8 VNTR intron 8

**Approved symbol from the HUGO Gene Nomenclature Committee (HGNC) database.
VNTR =Variable number of tandem repeats.
doi:10.1371/journal.pone.0066592.t003

Figure 1. HaploView analysis of pairwise linkage disequilibrium in DRD2 and DRD4. Three marker SNPs are shown in both panel A for
DRD2 and panel B for DRD4. The colors represent the relative D’/LOD scores. Linkage disequilibria are displayed as pairwise D’ values multiplied by
100. Shading represents the magnitude and significance of pairwise LD on a grey-scale (black–high LD; white–low LD).
doi:10.1371/journal.pone.0066592.g001
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each node corresponds to the posterior probability of the model.

The Bayesian network (Figure 2) can be achieved in 3 steps on the

dendrogram. The detailed results of the Bayesian analysis are

shown in Figure S1 showing our findings including relevance,

redundancy and interaction of the studied polymorphisms.

Discussion

Genetic variants of the dopaminergic neurotransmitter system

as possible risk factors for heroin dependence have been

extensively studied but results are contradictory. The subtelomeric

region of chromosome 11p–where the DRD4 gene is located - was

identified in a genome-wide search for quantitative trait loci

influencing substance dependence vulnerability [65]. The DRD4

gene is rich in polymorphisms, including the one of the most

extensively studied 48 bp repeat polymorphism in exon 3 (48 bp

VNTR). Association of substance dependence and the 48 bp

VNTR was first proposed by Kotler et al. [66] and replicated by

others [67,68,69], but contradictory results were also obtained

[70,71,72]. Our data presented here did not show any tendency of

association between the 48 bp repeat and the risk of heroin

dependence in a cohort of 303 cases and 555 controls of Central

European descent. The promoter region of DRD4 is also highly

variable, including the 2521 C/T, the 2616 C/G SNP and the

2615 A/G variants described previously in our laboratory [42]. A

previous association study between the 2521 C/T polymorphism

and heroin abuse conducted on 387 Chinese subjects [72]

reported no significant difference of the 2521 C/T polymor-

phism, although their data showed a small, but non-significant

increase in frequencies of the 2521 C allele and CC genotype in

the injector subgroup. On the contrary, Lai and coworkers

demonstrated a higher T allele frequency among heroin depen-

dent patients (p = 0.0002) suggesting a higher preference for heroin

use in individuals with DRD4 2521 TT genotype [73]. This is in

good agreement with our present finding, which showed a nominal

significance (p = 0.007) of the 2521 TT genotype as a risk factor of

heroin abuse. It also supports our results with heroin [74] and

nicotine dependence [75] published earlier, as well as a recent

study by others [76]. This effect of the 2521 C/T polymorphism

was no longer significant according to the frequentist model if

corrected for multiple testing. Haplotype analysis of the promoter

region did not yield any significant result either. On the other

hand, using the multivariate model implying a Bayesian multilevel

analysis we were able to confirm the association of 2521 C/T

polymorphism and heroin dependence, also demonstrating the

indirect effect of 2615 A/G. The presented results of the

multilevel analysis of the DRD4 promoter polymorphisms clearly

show the possible sources of contradictions obtained by the single

Figure 2. Posterior probabilities for variables in association with heroin use. In this graphic visualization each variable is represented by a
grey oval, while the target variable is the black oval. Variables are nodes in Bayesian networks. The arrows between nodes represent the direct
associations between variables; the thickness of the arrows reflects the posterior probability of the edge being present in the model. The DRD42615
A/G has no direct influence on the target variable, the effect is mediated through the DRD4 2521 C/T.
doi:10.1371/journal.pone.0066592.g002

Table 4. The combined effect of the DRD4 2615 A/G and 2521 C/T SNPs.

DRD4 2521 C/T p-value* OR** (95% CI)

C absent (TT) C present (CC,CT)

DRD4 -615 A/G G-absent (AA) control 114 21.9% 275 52.8% 0.0013 1.77 (1.25–2.50)

addict 91 30.3% 124 41.3%

G-present (AG,GG) control 23 4.4% 109 20.9% 1.0000 0.93 (0.45–1.93)

addict 14 4.7% 71 23.7%

*Pearson Chi-Square Exact Sig. (2-sided).
**OR: Odds ratio, CI: confidence interval.
doi:10.1371/journal.pone.0066592.t004
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marker approach, where interactions cannot be taken into

consideration. Association of 2521 C/T and Novelty Seeking, a

risk factor of drug addiction, was also demonstrated by others and

by our laboratory [77,78]. The replication studies of this

association were also contradictory as in most cases of single

marker analysis, but a meta-analysis provided further support for

the role of 2521 C/T in Novelty Seeking [79]. These previous

results seem to underline our positive findings on the 2521 C/T

SNP obtained by the Bayesian multilevel analysis rather than the

negative results when applying the single marker method with

correction for multiple testing.

The main results of our study are organized around the

dopamine D2 receptor and the neighboring ANKK1 gene,

encompassing the widely studied TaqIA polymorphism previously

thought to belong to the DRD2 gene. In a Spanish study [80] the

possible effect of the TaqIA polymorphism was examined in

methadone-treated substance dependent patients, who marked

heroin as their primary drug. Some of the subjects used other,

non-opioid substances besides heroin, however these were not

excluded from the study since DRD2 is potentially a non-specific

genetic predictor of substance use and dependence. This case-

control study reported a relationship between DRD2 and the

potential risk of developing heroin dependence. Based on the

results the A1A1 (rare) genotype of the TaqIA polymorphism is

associated with heroin dependence regardless of gender, however

the A1 allele showed association only in males. A Chinese study

(2009) carried out on Han Chinese subjects found that the

ANKK1 TaqI A1 allele carriers (genotypes A1A1 and A1A2) were

prone to heroin abuse in models of dominance or co-dominance

[10] in agreement with our findings. Results of association studies

between the TaqIA polymorphism and substance use disorder has

been summarized in a meta-analysis of Young et al (2004)

evaluating the results of 55 previous studies [81]. They concluded

that the A1 allele is a predictive marker of substance misuse and a

partial marker of severe substance use disorders. The statistical

power of this study was fairly strong at that time due to the sample

size of ten thousand, making it a robust meta-analysis. Here we

present a nominally significant association between the ANKK1

TaqIA SNP and heroin dependence (p = 0.009) which was no

longer valid after the stringent Bonferroni correction of multiple

testing. The negative finding between TaqIA and heroin depen-

dence was confirmed by our multilevel analysis, as well, supporting

the importance for multiple correction in this case.

Unlike the widely studied TaqIA, there are only a few

association studies with the TaqIB SNP, located in intron 1 of

the DRD2 gene and substance-related disorders. The possible role

of TaqIB was shown in nicotine addiction [82], cocaine-

dependence [83] and psychostimulant abuse [84], but significant

association with heroin dependence has not been published so far

to the best of our knowledge. According to our single marker

analysis presented here the TaqIB SNP is the only dopaminergic

polymorphism, which remained significant (p = 0.003) after

Bonferroni correction. Our multilevel analysis gave similar results,

demonstrating that the TaqIB SNP of DRD2 gene has the highest

level of relevance to heroin abuse, while a high redundancy or low

relevance was found for the TaqIA SNP (Figure 3), a polymor-

phism in the neighboring gene, which is strongly linked to the

studied DRD2 SNP. Based on these results we hypothesized that it

is rather a DRD2 than an ANKK1 gene variant which has a direct

effect on heroin dependence. One of the limitations of our study is

that we assessed only two SNPs (TaqIB and TaqID) of the DRD2

gene. A higher resolution linkage study might be necessary to

reveal the functional variants of this very important receptor gene,

including the study of the exonic Ser311Cys variant [85] shown as

a risk factor for schizophrenia.

Genes playing a role in the transport (SLC6A3, or DAT1) and

in the catabolism of dopamine (COMT) also seemed to be

challenging candidate genes for heroin abuse. Two length

polymorphisms of SLC6A3 has been related to addictive behaviors

previously, an intronic (intron 8 VNTR) and a 40 bp VNTR

located in the 39UTR. A few studies found positive association

between the 40 bp VNTR and cocaine dependence [86], ADHD

[87] and alcoholism [88]. Here we did not find any positive

relationship between either the 40 bp VNTR or the intron 8

Figure 3. Dendrogram of sub-relevant sets of SNPs. This relevance tree shows the hierarchy of relevant variable subsets. Starting from left to
right, paths starting from the (1.0) node show us the relevance of the subset of variables along the path. The respective posterior probability is shown
in the lower part of the end node. The posterior probability of DRD4 2521 and DRD 2615 both being relevant variables is 0.51. The posterior
probability decreases when increasing the number of variables (nodes) in the model. The TaqIA polymorphism only enters the model when TaqIB is
not present, signifying its redundancy.
doi:10.1371/journal.pone.0066592.g003
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VNTR of the SLC6A3 gene, with any of our calculation methods.

The COMT exonic variant (Val158Met) has been associated with

various psychiatric disorders (for a review see: Hosak, 2007 [89]),

but no positive findings were obtained here with heroin abuse

either with single marker or with multilevel analysis.

As all genetic association studies, the present one also has its

limitations. Type I error of false positive results might arise from

the relatively small sample size and from population heterogeneity.

Our Hungarian sample seems to be homogeneous, where the

genotype frequencies in the control group correspond to Hardy-

Weinberg equilibrium (see: Table S1). Although family-based

analyses are often preferred in order to avoid population

stratification, but this approach is more difficult in case of subjects

with substance abuse as many of these patients are not in touch

with their families. Trying to recruit and searching for patients

with complete and co-operating families might result in a drop out

of the most serious cases, thus distorting the results [90]. A further

limitation of our study is that the history of drug use was collected

from self-reported data without any urine test for drugs.

Additionally, we did not exclude cigarette smokers from our study

since there is a high rate of smoking among heroin dependent

patients despite the fact that the ANKK1 TaqIA A1 allele has been

associated with smoking [91,92]. Therefore, replications on other

homogenous populations, as well as extended studies using a larger

number of subjects would be necessary to further confirm the role

of the 2521 C/T, TaqIA and TaqIB polymorphisms in substance

dependence.

Although numerous groups studied the individual effects of the

dopaminergic candidate genes, little effort was done so far to

reveal the interactions among these genetic variations. The main

advantage of our study is the complex approach of the

dopaminergic candidate genes applying multilevel analysis besides

the single-marker methods to identify interactions and further

contributing factors in the context of heroin dependence. As a

result, the applied Bayesian method confirmed the relevance of

DRD2 TaqIB SNP in heroin dependence and revealed a new

interaction partner in the DRD4 promoter, the 2615 A/G SNP

modulating through the 2521 C/T SNP. Further studies are in

progress to apply these models for other, non-dopaminergic

candidate genes of substance abuse.

Supporting Information

Figure S1 The summary of our findings. The results of the

BN-BMLA method are shown in the inner dark grey ring. The

height of the red columns corresponding to each variable

represents the probability that the variable is present in the

Markov blanket of the target variable. The variables are grouped

in the outer circle based on their respective genes. The

interconnections in the center show the interaction and redun-

dancy scores of the pairs of variables, where the edge thickness

shows the effect’s strength, while red corresponds to interactions,

and blue shows the redundancies.

(TIF)

Table S1 The complete list of the VNTR genotypes
including all DRD4 and DAT variants.

(XLS)

Table S2 Haplotype frequencies of the Taq SNPs in the
DRD2 gene.

(XLS)

Table S3 Haplotype frequencies of the DRD4 promoter
SNPs in controls and heroin dependent patients.

(XLS)
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