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Interconnections of Reactive Oxygen Species Homeostasis
and Circadian Rhythm in Neurospora crassa

Norbert Gyöngyösi and Krisztina Káldi

Abstract

Significance: Both circadian rhythm and the production of reactive oxygen species (ROS) are fundamental
features of aerobic eukaryotic cells. The circadian clock enhances the fitness of organisms by enabling them to
anticipate cycling changes in the surroundings. ROS generation in the cell is often altered in response to
environmental changes, but oscillations in ROS levels may also reflect endogenous metabolic fluctuations
governed by the circadian clock. On the other hand, an effective regulation and timing of antioxidant mecha-
nisms may be crucial in the defense of cellular integrity. Thus, an interaction between the circadian timekeeping
machinery and ROS homeostasis or signaling in both directions may be of advantage at all phylogenetic levels.
Recent Advances: The Frequency-White Collar-1 and White Collar-2 oscillator (FWO) of the filamentous fungus
Neurospora crassa is well characterized at the molecular level. Several members of the ROS homeostasis were
found to be controlled by the circadian clock, and ROS levels display circadian rhythm in Neurospora. On the
other hand, multiple data indicate that ROS affect the molecular oscillator. Critical Issues: Increasing evidence
suggests the interplay between ROS homeostasis and oscillators that may be partially or fully independent of the
FWO. In addition, ROS may be part of a complex cellular network synchronizing non-transcriptional oscillators
with timekeeping machineries based on the classical transcription–translation feedback mechanism. Future
Directions: Further investigations are needed to clarify how the different layers of the bidirectional interactions
between ROS homeostasis and circadian regulation are interconnected. Antioxid. Redox Signal. 20, 3007–3023.

Introduction

Circadian timekeeping allows organisms to align their
physiology with regular upcoming events in their sur-

roundings that vary with a daily cycle. The basic mechanisms
enabling endogenous time measuring seem to be highly
conserved among higher and lower eukaryotes. The fila-
mentous fungus Neurospora crassa has proven to be extremely
useful for dissecting the basic organization of the circadian
clock. The Neurospora clock is an attractive model that allows
all layers of molecular investigations to be performed, from
genetic approaches to investigations of gene expression and
molecular interactions.

Besides reflecting physiological fluctuations of the meta-
bolic activity, cellular reactive oxygen species (ROS) levels are
highly elevated under oxidative stress situations. Although
ROS have long been considered deleterious byproducts of
metabolism, increasing evidence suggests that they play

important messenger roles in the regulation of many cell
functions (31, 50, 85, 116, 149). The fundamental function of
ROS was proposed in Neurospora more than 20 years ago, as
elevation of ROS production was found to be a prerequisite of
the morphogenetic transitions of the fungus (62). In the mean-
time many details of ROS-regulated cellular functions have
been described and novel ROS-related signaling pathways
have been identified. Moreover, several data indicate an inter-
relationship between ROS signaling and the circadian rhythm
in Neurospora, that is, ROS levels oscillate in a circadian man-
ner, and vice versa, ROS homeostasis is involved in the control
of the circadian rhythm (16, 61, 180, 181). Very recently, cir-
cadian oxidation cycles of peroxiredoxin were shown in
multiple organisms including Neurospora (47). These data
suggest that, in addition to the well-described transcription–
translation feedback loops (TTFLs), and most probably inter-
acting with them, non-transcriptional oscillations could be
common mechanisms of circadian timekeeping.
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This review summarizes our knowledge of both the
ROS-generating systems and the antioxidant mechanisms of
Neurospora. In addition, we introduce the molecular organi-
zation and environmental control of the Frequency (FRQ)-
based oscillator and discuss rhythms that are independent
of the classic TTFL of the fungus. Finally, we focus on the
oscillations of ROS levels and the data suggesting that the
cellular redox state may feedback on the circadian clock.

Generation of Circadian Rhythm in Neurospora crassa

Circadian rhythm in Neurospora

Since the pioneer work of Pittendrigh et al. (125) the Neu-
rospora clock belongs to the most extensively examined
timekeeping machineries. A variety of Neurospora strains
helped to understand the basic mechanisms of the operation
of circadian rhythm. Primary observations in Neurospora often
provided the initial stimulus for targeted molecular investi-
gations in higher organisms.

Under certain conditions the formation of asexual spores
(macroconidia) is driven by the internal clock in Neurospora.
The race tube assay has proved to be the most useful experi-
mental tool for simple monitorization of this rhythmic process
(8, 131). Race tubes are hollow glass tubes containing solid
agar medium (Fig. 1A). This medium is inoculated with
conidia at one end of the tube, so that the culture will grow
across the agar surface. Typically, after 1 day of growth single
cells of the cultures are synchronized by a light-dark transfer
or temperature shift. This is then followed by incubation ei-
ther under constant conditions or at an entraining cycle (light-
dark or temperature cycle) for several days. During this
period, once a day a developmental switch occurs leading to
the formation of a conidial band. Since the growth rate is more
or less constant throughout the day, by marking the growth
front each day, one can construct a time scale. Conidial den-
sity will be determined along the tube and density changes
will be analyzed as a function of time allowing determina-
tion of period length, phase, or amplitude of the conidiation
rhythm. By using a similar method, as described for the race
tubes, rhythmic spore formation can also be analyzed when
Neurospora cultures grow on plates (16).

This pattern of spore formation, also called banding, is often
masked in wt strains, because an elevation of carbon dioxide
(CO2) levels that is typical in race tubes results in suppression
of conidiation (8, 103, 135). To overcome this problem, series of
mutants have been isolated that allowed better visualization
of rhythmic development (8, 134, 152). The band (bd) strain that
carries a mutation in the ras-1 gene (12) displays very robust
conidiation rhythm in race tubes. For this reason, most strains
used in chronobiological experiments have been generated in
a bd background. Conidiation rhythm in wt can be induced by
elevation of ROS levels, that is, addition of hydrogen peroxide
(H2O2) to the medium or treatment of the cells with the ROS
generator menadione (Fig. 1B) (12, 61). As an alternative
method, the inverted race tube assay has been developed that
allows a better visualization of rhythmic banding by pre-
venting the accumulation of CO2 in the tubes (150).

Recently, the adaptation of the luciferase reporter assay for
use in Neurospora allowed the high-throughput analysis of the
promoter activity of clock and clock-controlled genes (ccgs)
(57, 111).

The molecular clock of Neurospora

In most cases the rhythmic phenotype of Neurospora is de-
pendent on the oscillating expression of the negative clock
component FRQ. Rhythmic expression of frq is governed by
the positive factor White Collar Complex (WCC) consisting of
the GATA-family transcription factors White Collar-1 (WC-1)
and White Collar-2 (WC-2). Based on these main components,
this machinery is also referred to as Frequency-White Collar-1
and White Collar-2 oscillator (FWO; FRQ-WC-1-WC-2 oscil-
lator). Since both the positive and the negative components of
the clock are regulated by phosphorylation, several kinases
and phosphatases are also important constituents of the

FIG. 1. Principles of the race-tube assay. (A) Upper panel:
The glass tube is filled with solid medium that is inoculated
with Neurospora. Following synchronization (e.g., light-dark
transfer) the race tube is incubated in constant darkness for
several days. The growth front is marked every day and
mark time is recorded. Middle panel: Image of a race tube
culture of the bd strain. Black lines are growth front marks.
Lower panel: Densitometrical analysis of the image of the bd
culture as a function of time. Dashed lines indicate every
24 h. The endogenous period of the strain is clearly shorter
than 24 h. Analysis of the race tube was performed with the
ChronOSX 1.0.7 software (T. Roenneberg, LMU Munich).
The figure was adapted from Baker et al. (8). (B) Both the bd
mutation and elevated ROS levels support conidial banding.
Race tubes were inoculated with the indicated strains and
following synchronization incubated at 25�C in constant
darkness. Where indicated, menadione (men, 50 lM) or H2O2

(2 mM) was added to the medium. bd, band; H2O2, hydrogen
peroxide; ROS, reactive oxygen species; sod-1, superoxide-
dismutase-1 mutant. To see this illustration in color, the
reader is referred to the web version of this article at www
.liebertpub.com/ars
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central oscillator. At least five kinases play a role in the
phosphorylation of FRQ, that is, casein kinase-1a and casein
kinase-2 (CK-1a and CK-2), Period-4 (PRD-4), Ca2 + /
calmodulin-dependent protein kinase-1 (CAMK-1), and pro-
tein kinase A (58, 72, 106, 126, 176, 177). The two major
phosphatases, protein phosphatase 1 and 2A and the pro-
tein phosphatase 4 (PP4) have been described as regulators of
FRQ phosphorylation (19, 178). Phosphorylation of the WCC
is dependent on CK-1a and CK-2 and the protein phospha-
tase 2A (PP2A) and PP4 (19, 66, 136, 137). Two chromatin
remodeling enzymes CLOCKSWITCH and chromodomain
helicase DNA-binding that directly control frq transcription
are also important factors of the FWO (12a, 13).

Both FRQ and the WC proteins possess constant interaction
partners. FRQ forms a complex (FRQ–FRQ-interacting RNA
helicase [FRH] complex, FFC) with the FRH that stabilizes it
during the whole circadian cycle (26, 60). WC-1 is only stable
when it interacts with WC-2, and WC-1 is the limiting
component of the WCC (27). The heterodimerization of the
WC-proteins is dependent on the interaction via their Per-
Arnt-Sim (PAS) domains (9, 27, 95, 158).

Figure 2 shows the most important stages of the FWO-
based clock cycle. In the late subjective night (segment of the
free-run period corresponding to the dark segment of a light/
dark [LD] cycle) the WCC starts inducing frq transcription.
Following the increase of frq RNA levels, FRQ protein is

FIG. 2. Cycling molecular events in the FWO. Stage 1: Beginning in the late night, the WCC effectively supports transcription
of frequency (frq). FRQ protein is synthesized with a 4–6-h delay and in complex with the FRH enters the nucleus. Stage 2: By the
mid subjective day, FRQ is accumulated in the nucleus, where it promotes phosphorylation of the WCC and, as a consequence,
frq transcription slows down. Stage 3: In the subjective evening, frq transcription is minimal. FRQ becomes hyperpho-
sphorylated and dominantly localizes to the cytosol, where it supports accumulation of the inactive WCC. Stage 4: During the
night hyperphosphorylated FRQ is degraded. Consequently, dephosphorylation of the WCC dominates over phosphorylation
and the active form of the complex enters the nucleus. ccg, clock-controlled gene; FRH, Frequency-interacting RNA helicase;
FRQ, Frequency; FWO, Frequency-White Collar-1 and - 2 oscillator; P, phosphate; PP, protein phophatase; WCC, White Collar
Complex. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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synthesized with a certain delay, that is, FRQ levels peak 4–6 h
later than RNA levels (4, 52, 108). FRQ forms homodimers (28)
and associates with FRH (26, 60). The FFC then translocates
into the nucleus and promotes inactivation of the WCC.
However, a simple complex formation between the positive
and the negative components is not sufficient for the negative
feedback; even when FRQ levels peak, the WCC is present in
large excess over nuclear FRQ, thus the majority of the WCC
cannot be in complex with FFC (137). Instead, FFC inactivates
the WCC by supporting its phosphorylation by CK-1a and
CK-2 (66, 137). During this period, FRQ also becomes se-
quentially phosphorylated at multiple sites. Phosphorylation
of FRQ on the one hand interferes with its nuclear import,
leading to its accumulation in the cytosol. On the other hand,
phosphorylation—especially that of the N-terminal domain of
FRQ by CK-1a—changes the stability of the protein, most
probably by initiating a conformational change that leads to
the exposition of degradation signals (127, 138). FRQ then
interacts with its ubiquitin ligase F-box WD-40 repeat-
containing protein-1 and becomes degraded by the proteo-
some pathway (68). As a consequence, phosphorylation of the
WCC is not further supported. Instead, dephosphorylation
dependent on both PP4 and PP2A promotes nuclear entry of
the active WCC and thus a new cycle can start (19, 136). As a
result of the precise temporal organization of the above de-
scribed events, the transcriptional activity of the WCC peaks
in the early subjective morning leading to the accumulation of
FRQ during the subjective day, whereas repression of the
WCC reaches its maximum in the late evening.

The negative feedback loop is interconnected with two
positive feedback loops. One of these is an autoregulatory
loop, in which the WCC supports its own expression at the
transcriptional level (76, 117). In the other loop, FRQ posi-
tively controls WCC levels by a mechanism that is most
probably tightly coupled to the negative feedback. This
mechanism is based on the fact that stability of the WCC is
highly dependent on its activity; DNA binding triggers the
degradation of the WCC, a phenomenon also observed for
other transcription factors (80, 136). However, FRQ by pro-
moting phosphorylation of the WCC inhibits both DNA
binding and nuclear import of the positive factor. As a
consequence, especially in later phases of the cycle when
FRQ is hyperphosphorylated and dominantly localized to
the cytosol, WCC also accumulates at high levels in the
cytosol.

Light entrainment of the Neurospora clock

Light input of the Neurospora clock is mediated by the
WCC. All blue-light responses are dependent on WC-1, the
primary blue-light receptor of Neurospora (10). Light promptly
activates the WCC that induces transcription of hundreds of
genes containing light-responsive elements (10, 25, 44, 45, 89,
148). Light activation of the WCC is mediated by the light-
oxygen-voltage-sensing domain (LOV domain, also called
PAS-A domain) of WC-1. The LOV domain is associated with
flavine adenine dinucleotide that, in response to light, cova-
lently binds to a cysteine residue of WC-1 leading to the
formation of a stable light-activated state (29, 67). Light
activation of the WCC is accompanied by two additional
events, that is, hyperphosphorylation of the complex and
formation of homodimers, a process mediated by the LOV

domains (105). Light-dependent phosphorylation of the WCC
is, at least partially, mediated by protein kinase C (51).

When Neurospora is transferred from light to dark, WC-1 is
not able to be reactivated by light for several hours, suggest-
ing that the photocycle of WC-1 is relatively slow (69).
Nonetheless, the mechanism of the regeneration of photo-
activated WCC is still not clear.

Following irradiation, frq levels immediately increase by
peaking within about 5 min. However, the extent of this light
response is gated by the circadian clock, so that similar light
signals are most effective in the subjective morning, when the
light phase would start in natural photoperiods (70, 108).
Similarly, how a light pulse changes the phase of the oscillator
depends on the circadian time. When light is administered in
the late subjective night, the relatively early increase in frq
levels results in an advance of the clock. Conversely, when a
light pulse is received around the subjective dusk when frq
levels are already decreasing, light-induced elevation of frq
expression sets the clock back to earlier times, that is, the
oscillator is delayed (8, 34).

Light entrainment of the clock is modulated by the sec-
ondary photoreceptor VIVID (VVD) (70). VVD is a small
protein consisting of a single LOV-domain similar to that of
WC-1 (144, 184). Expression of VVD is dependent on the ac-
tivation of the WCC by light, that is, following a light-dark
transfer VVD levels gradually decrease (70, 105). VVD acts as
a repressor of light responses by disrupting the WCC dimers,
and thus plays a crucial role in the photoadaptation of Neu-
rospora (23, 74, 105). While in wt Neurospora elevation of light-
induced gene expression is transient and expression levels
stabilize at relatively low levels within 1–2 h, in vvd-deficient
strains enhanced light responses are detected for several
hours (143, 144, 146). As a consequence, vvd mutants are less
sensitive to changes of light intensity (56, 105, 144).

In photocycles, the action of FRQ and VVD is similar, that
is, both support inactivation and accumulation of the WCC.
WC-1 shows a more rapid turnover in light than in dark; on
the one hand, photoactivated and hyperphosphorylated WC-
1 becomes rapidly degraded (88, 158); on the other hand, light
induction of wc-1 ensures replenishment of the WC-1 pool.
These mechanisms and the action of both VVD and FRQ
together ensure that WC-1 levels are stable in constant light.
While FRQ is present in both light and dark, expression of
VVD depends on light and its effect is finely controlled by
light intensity (105).

Although VVD is not essential for clock function, in pho-
tocycles the phase of the oscillator is dependent on VVD (70).
VVD allows the oscillator to run during the daytime and take
phase cues from dusk (48). In addition, VVD contributes to the
robustness of clock functioning. In the dark period, VVD
functions as a molecular memory by transferring information
from the preceding light period and thus protecting the clock
during the night from disturbing light signals of relatively low
intensity (e.g., moonlight) (105).

In the light period of a LD cycle frq levels are high, whereas
they rapidly drop following the LD transition (61, 159). Then,
in the second half of the dark period frq levels rise again,
reflecting the reactivation of the WCC. However, the exact
molecular mechanism of clock functioning under entrained
conditions is still not entirely clear, and the simple transcrip-
tional–translational feedback model is not sufficient to explain
all molecular events. Tan et al. (159) showed that transcription
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and translation of FRQ are dissociated in photocycles (up to a
delay of 6 h) and the delay depends on the light portion of the
cycle. These interesting data suggest that additional post-
transcriptional mechanisms play an important role in clock
regulation under entrained conditions.

Temperature as an input of the circadian clock
in Neurospora

Although the length of the circadian period is temperature-
compensated, temperature shifts reset the phase of the oscil-
lator. Temperature primarily affects FRQ levels; at higher
temperature FRQ levels oscillate around higher mean lev-
els (96). Since the average expression levels of frq and the
amplitude of frq rhythm are similar at low and high tem-
peratures, abundance of FRQ is controlled at the post-
transcriptional level. More specifically, the open reading
frame of frq encodes a large and a short isoform of FRQ (long
Frequency [lFRQ] and short Frequency, respectively). Re-
lative abundances of these isoforms are controlled by tem-
perature-sensitive alternative splicing. At low temperature
(e.g., 15�C) similar levels of both isoforms can be detected,
whereas at higher temperatures (over 20�C) the lFRQ domi-
nates (32, 42). The translation of lFRQ is especially thermo-
sensitive and thus determines the overall level of FRQ at
different ambient temperatures.

The mechanism of clock resetting in response to tempera-
ture shifts is also based on the fact that mean levels of FRQ are
strongly dependent on the temperature. Following a shift to a
higher temperature, the relatively low levels of FRQ are not
sufficient to efficiently repress the WCC, and the clock will be
reset to a phase when FRQ expression is relatively low (sub-
jective dawn). Conversely, when Neurospora is shifted to a
lower temperature, the new phase corresponds to dusk (97).

However, the exact molecular mechanism underlying the
temperature compensation of the circadian period is not fully
understood. Nevertheless, the compensation profile is de-
pendent on the phosphorylation of FRQ by CK-2 and, also the
differential expression of the FRQ isoforms appears to play a
fine tuning role (41, 106). In addition, temperature compen-
sation of the circadian phase is dependent on VVD (73).

Output of the Neurospora clock

The output pathways of the circadian clock mediate time
information from the oscillator to distinct cellular functions
and thereby generate the overt physiological rhythm. During
the last decade technical development has greatly accelerated
the identification of ccgs and helped to uncover molecular
mechanisms by which the oscillator is able to differentially
control specific subsets of genes. Bell-Pedersen and her co-
workers used microarrays representing more than 1400 genes
and found rhythmic expression in 145 cases, suggesting that,
similarly to other organisms, also in Neurospora about 10% of
the genome is controlled by the circadian clock (33). The
proteins encoded by the identified genes represent a wide
range of cellular processes, including signal transduction,
development, metabolism, and stress reactions. In case of
three genes rhythmic expression was demonstrated even in a
frq-deficient strain, indicating the participation of a FRQ-less
oscillator (FLO, see later) in the expression control. Recently,
a genome-wide analysis searching for targets of the light-
activated WCC identified hundreds of possible binding sites

including genes of several transcription factors controlling
important regulatory pathways (148). Although the charac-
terization of these factors for circadian control is still not
complete, some of them have already been revealed as im-
portant outputs of the clock. An attractive example is conidial
separation 1 (CSP-1), a global circadian repressor that mod-
ulates expression of ca. 800 genes in Neurospora (132). Many of
these genes show rhythmic expression by peaking in the
evening and are involved in the regulation of metabolism.
CSP-1 mediates a glucose-dependent feedback on wc-1 ex-
pression and thus contributes to metabolic compensation of
the circadian period (133).

In addition, a genetic screen uncovered the circadian reg-
ulation of the mitogen-activated protein kinase (MAPK)
pathway, a signaling route playing a role in the control of
osmotic stress, sexual development, conidial integrity, and
fungicide sensitivity (168, 169). Expression of the MAPK ki-
nase kinase and the histidyl-phosphotransferase, two impor-
tant regulators of this pathway have been shown to oscillate at
the transcriptional level (84).

As the above data indicate, although the WCC is a direct
activator of a series of output genes, many effects of the core
clock on basic cellular functions are mediated by the WCC
in an indirect way via the control of important regulatory
networks.

FRQ-less rhythms in Neurospora

Under special conditions rhythmic phenotype can be de-
tected even in strains carrying mutations of one or more core
components of the FWO. These rhythms display periods in
the circadian range and include conidiation (3, 46, 59, 81, 82,
104, 107) and molecular or biochemical rhythms (30, 33, 36, 47,
128). However, many of these rhythms are not temperature-
compensated and thus do not fulfill all criteria of a circadian
rhythm. They are often dependent on supplementation of
the growth medium with factors such as farnesol, geraniol,
caffeine, or the ROS generator menadione (16, 59, 82), and/or
are detected in specific single and double mutants (82, 101,
142, 181).

Compared to the FWO, little is known about the molecular
nature of these FLOs. However, two mutations have been
shown to severely affect FRQ-less rhythms: prd-1 and prd-2
(91). Although the products of these genes have not been
identified yet, they are possible candidates for components of
the FLO. Very recently, a mutagenesis screen identified the
UV90 mutation that probably affects a factor required for a
functional FLO (92).

ROS Homeostasis in Neurospora crassa

Source of ROS in Neurospora

ROS represent chemically reactive molecules or free radi-
cals (chemical species with one unpaired electron) containing
oxygen (Fig. 3). This group includes molecules formed by
excitation of O2 (singlet oxygen, 1O2; ozone, O3), superoxide
anion radical (O2

� - ), H2O2, hydroxyl radical (OH�), and ox-
ygen radicals or peroxides with other elements (nitric oxide,
NO�; peroxynitrite, ONOO - ) or compounds (lipoperoxides).

Generally, one of the main sources of ROS is metabolism (5,
53, 147). As in other organisms, in fungi, mitochondrial res-
piration generates O2

� - due to the incomplete reduction of
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oxygen (18, 122, 130). Besides, ROS are accumulated as
intermediate products in reactions involving oxidases such as
xanthine oxidase, or dioxygenases such as microsomal
monooxygenases and lipoxygenases. In addition, ROS can be
produced from thiols, flavins, quinones, and catecholamines
by autoxidation during metabolic processes, and reduction
of xenobiotics is also considered as a source of ROS. Light
also increases the intracellular concentration of ROS (86, 93,
100, 121, 180).

Cellular O2
� - is actively generated by nicotinamide ade-

nine dinucleotide phosphate (NADPH) oxidases (NOXes).
These enzymes use NADPH and O2 to produce O2

� - . Among
them, NOX-1 and NOX-2 have been so far characterized in
N. crassa (17). Fungal NOXes and their role in development
were recently overviewed in different works (1, 2, 157).

Antioxidant system in Neurospora crassa

The antioxidant system in fungi was recently reviewed in
detail (14, 53). In the following section, relevant data provided
from Neurospora crassa are summarized (Fig. 3).

Superoxide-dismutases (SODs) catalyze the dismutation of
O2
� - into H2O2 and O2. Database searches of the Neurospora

genome revealed the existence of two genes encoding Cu/Zn-
SODs and two additional ones encoding Mn-SODs (156).
Only two of the putative SODs have been thoroughly char-
acterized so far (20, 21, 71). The cyanide-sensitive and Cu/Zn-
containing SOD-1 represents most of the SOD activity in cell
extracts and is localized in both the cytosol and the inter-
membrane space of mitochondria. The cyanide-insensitive
Mn/Zn-containing SOD-2 was detected only in the mito-
chondrial matrix. Nevertheless, extracellular SOD activity
was also described in Neurospora (112, 113). In both the conidia
and mycelia of the sod-1rip mutant an upregulation of SOD-2
activity was found suggesting the existence of a compensa-

tory mechanism (20). Beside an increased spontaneous mu-
tation rate, sod-1 mutants show reduced growth rate and
conidial survival and are more sensitive to the O2

� - gener-
ating paraquat and elevated O2 levels. Increased sensitivity of
the growth rate to the ROS generator menadione was also
detected in sod-1rip (author’s unpublished observation).

Catalases (CATs) decompose H2O2 to water and molecular
oxygen. Fungal CATs were reviewed recently (64). Up to now,
four CATs have been identified in Neurospora. CAT-1 and
CAT-3 represent typical large monofunctional CATs (38–40,
43, 109), whereas CAT-2 is a member of the CAT-peroxidase
family. CAT-4 is a small-subunit monofunctional CAT (124,
140). Investigation of the three CAT isoforms CAT-1, CAT-2,
and CAT-3 showed that these proteins are not associated with
any intracellular compartment, that is, they are located in the
cytosol. In addition, CAT-1 and CAT-3 were found to be se-
creted, and, at least partially, bound to the cell wall (109, 110,
140). Although CAT-4 is not at all or only very weakly ex-
pressed under conditions tested so far, overexpressed CAT-4
was also localized to the cytosol. Interestingly, Neurospora
crassa seems to lack CAT-containing peroxisomes (140). As it
was shown in a cat-3rip strain, lack of CAT-3 is not compen-
sated for by any other CATs or H2O2-disposing enzymes
(110). CATs are differentially regulated under stress condi-
tions. This led to the hypothesis that CAT-3 is mainly re-
sponsible for the rapid compensation of stress, whereas
CAT-1 activity is augmented in response to severe stress, that
is, when resistant cell structures such as conidia are formed
(109). CAT-2 activity was found to be related to conditions
when the vacuolization of hyphae is extensive (124).

Carotenoids are known for their antioxidant properties
(167). b-Carotene, neurosporaxanthin, and astaxanthin are the
major carotenoids in fungi. Oxygen, ROS, and light (which is
known to produce ROS) have been shown to stimulate car-
otenogenesis in Neurospora (55, 75, 179). In accordance with

FIG. 3. Formation of ROS in the cell.
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this, the carotene content is elevated in cat-3rip compared to wt
either in dark or light (110). ROS, especially 1O2, were found to
oxidize CAT-1 (99). CAT-1 oxidation, degradation [degrada-
tion of oxidized proteins is generally enhanced (35, 37, 98)],
and synthesis are more apparent in carotenoid mutants dur-
ing germination, also showing that the lack of carotenoids
increases oxidative stress in Neurospora (98).

Peroxiredoxins are ubiquitous antioxidant enzymes cata-
lizing the reduction of peroxides (ROOH) to alcohols (129).
H2O2, ONOO - , and a wide range of organic hydroperoxides
are detoxified by their activity (14, 53, 172). The relationship
of the peroxiredoxin system and the circadian rhythm was
investigated in Neurospora crassa (47) and is discussed later in
this review.

Glutathione exists in both reduced (GSH) and oxidized
states. GSH is able to reduce ROS and then to react with an-
other glutathione molecule to form glutathione-disufide (ox-
idized glutathione [GSSG]). Characteristic changes in the
GSH/GSSG ratio were described in Neurospora during dif-
ferentiation and aging (49).

ROS homeostasis progressively changes
during cell differentiation

A scheme representing important stages of the Neurospora life
cycle is shown in Figure 4. At different stages of the ontogeny
changes in the redox balance and ROS levels have been reported
that coincide with alterations in oxidation of proteins, SOD, and
CAT activities; levels of extractable SH-groups; and the GSH/
GSSG ratio (2, 15, 22, 49, 54, 62, 63, 99, 109, 112, 124, 145).

Contribution of NOXes in the development is common in
the kingdom of fungi (1, 157). In Neurospora, NOX-1 seems to
be essential for the development and maturation of perithecia
(the perithecium is the female sexual reproductive organ, or
fruitbody, which contains the ascospores produced by meio-
sis) (102, 183). Although ascospores of the nox-2 mutant show
wild-type appearance, they fail to germinate, indicating that
NOX-2 is required for sexual spore function. Deletion of nox-1
results in reduced formation of aerial hyphae and conidia, and
a lower growth rate of mycelia. In contrast, in the nox-2
strain the asexual development was not affected. The activity

FIG. 4. Life cycle of Neurospora crassa. The fungus spends most of its life cycle as a haploid organism. A haploid asexual
spore (micro- or macroconidium) germinates and builds up a vegetative mycelium constituted of hyphae. Hyphae have
incomplete cross walls, thus the colony grows as a multinucleate syncytium. Vegetative mycelia produce two types of
vegetative spores or conidia from aerial hyphae, the multinucleate macroconidia and the uninucleate microconidia. Both
types of vegetative spores are able to disperse and repeat the asexual cycle. In the sexual phase, colonies of opposite mating
type interact. Protoperithecia are unfertilized female reproductive organs that can be fertilized by male elements (micro-
conidium, macroconidium or hyphae) of the opposite mating type. After fusion of nuclei, each diploid nucleus undergoes
meiosis and mitosis producing haploid ascospores inside the fruiting bodies called perithecia. Ascospores from asci ger-
minate and produce mycelia forming a new colony. Based on Springer (151). To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub.com/ars
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of both NOX-1 and NOX-2 is regulated by the p67phox or-
tholog NADPH oxidases regulator (NOXs regulator). It is
noteworthy that although the lack of CAT-3 causes an in-
crease in asexual growth, in the double mutant nox-1, cat-3
asexual development was similarly reduced to the nox-1
strain, suggesting that NOX-1 activity is required for en-
hanced development in the cat-3 strain (17).

CATs also participate in the organization of development
in Neurospora. They are regulated differentially during dif-
ferent growth stages (22, 109, 124). Mutants lacking the cat-1
or cat-3 gene show a temperature-dependent increase in the
branch density of the growing hyphae, whereas the branch
density of wt is independent of the temperature (171). In-
volvement of CAT-3 in the morphogenesis of hyphae is also
supported by results showing that the deletion of cat-3 rescues
the morphological change of the hyphae in a mutant lacking
nucleoside diphosphate kinase-1 (87). Lack of the cat-1 gene
also causes a marked reduction in the conidial germination
rate and viability (170). A hyperoxidant state was found to be
present during the germination that leads to the oxidation and
degradation of CAT-1, followed by de novo synthesis and thus
accumulation of cat-1 mRNA (99).

Based on its easily detectable rhythm, the production of
asexual spores is extensively studied in the field of circadian
research. During the conidiation process, the activity of the
actors of ROS homeostasis progressively changes parallel
with ROS levels, and certain phases of conidia formation are
inhibited by antioxidant treatment (63). When mycelia grown
in liquid culture are transferred to air, the hyphae first adhere
to each other followed by the development of aerial hyphae.
Later, the tips of the aerial hyphae start forming conidia (162).
At the start of each morphogenetic transition, a hyperoxidant
state was demonstrated by different methods including the
measurement of protein oxidation and redox balance or de-
tecting ROS levels by low level chemiluminescence, lucigenin
and luminol (63, 163–166). CAT activity was also found to
change with ontogenetic transitions leading to conidiation
(109, 124). CAT-3 activity is high during mycelial growth, and
increases with adhesion of the mycelium, whereas in aerial
hyphae, CAT-1 and CAT-3 display similar activities. In addi-
tion, enhanced hyphal adhesion with intense formation of
aerial hyphae and conidia were found in cat-3rip mutant par-
allel with elevated protein oxidation suggesting that the hy-
peroxidant state promotes ontogenetic transition (110). CAT-1
activity increases and accumulates during the formation of
conidia, where it is mainly bound to the wall of the spore (109).
This CAT seems to be the prime CAT at this state. Total CAT
activity is *60 times higher in conidia than in growing my-
celia. Differences in cat-1 and cat-3 mRNA levels also reflect the
activity changes measured during conidiation. In addition,
progressive and state-dependent oxidation and degradation of
both CAT-1 and CAT-3 were also observed during conidiation
(109). CAT-2 activity is induced parallel with adhesion and
aerial hyphae formation, and is also present in conidia (124).

Regulation of the antioxidant system
in Neurospora crassa

Environmental stressors such as heat, ROS, osmotic stress,
chemical compounds, and metal ions are known among
others to stimulate members of the antioxidant system in
various organisms (53).

Often, stimulation or induction of the antioxidant system
can be observed in parallel with an increase in ROS produc-
tion. In Neurospora, heat shock (48�C) increases both the O2

� -

level and the peroxidase activity but does not influence the
activity of SOD in liquid cultures of mycelia (94). Both the
expression and the activity of CAT-2 and CAT-3 are induced
by heat shock and elevation of ROS levels (78, 109, 173). In line
with the above data, pretreatment with H2O2 increases ther-
motolerance. In contrast to cat-2 and cat-3, cat-1 RNA accu-
mulates only upon nutrient depletion or in the presence of
inadequate carbon source.

Menadione and paraquat (methyl-viologen) are O2
� - gen-

erating compounds. In sod-1 germination of conidia is severely
affected in the presence of paraquat (182). On the other hand,
menadione treatment promotes SOD and CAT activities and
expression of cat-3 (55, 156). Similarly, upon addition of
paraquat both cat-3 RNA level and CAT activity were in-
creased in growing mycelia (109, 173). Further, menadione
induces expression of several genes including oxidoreductases
and factors of the thioredoxin and glutathione system. In
contrast, neither of the four sod genes was induced in response
to the relatively moderate level of menadione (156).

H2O2 increases peroxidase activity in mycelia (77–79) and
induces the expression of genes playing a role in redox ho-
meostasis, such as cat-2, cat-3, thioredoxin, and members of
the glutathione system (109, 156, 161). Parallel to the increase
of RNA levels, CAT-3 activity is also enhanced upon H2O2

treatment of mycelia (109).
Several investigations were performed to examine the sig-

naling pathways that control the antioxidant enzymes in
Neurospora. GNA-1, a Gai protein regulates the sensitivity to
oxidative stress caused by H2O2, most probably by inhibiting
the action and/or expression of enzymes important in the
defense response (175). The activator protein-1 (AP-1) tran-
scription factor controls gene expression in response to
oxidative stress in both yeast and filamentous fungi. An AP-1-
like transcription factor, NcAP-1 is also expressed in Neuro-
spora. Expression analysis based either on microarrays or
quantitative real-time polymerase chain reaction revealed
NcAP-1-dependent induction of several genes after treatment
with menadione. (156). The products of most of these genes
have not been identified yet. However, some of them belong
to the thioredoxin and glutathione system or the family of
oxidoreductases. A set of these genes showed NcAP-1-
dependent induction also in response to H2O2 (161). Another
pathway controlling antioxidant enzymes is the p38 MAPK
homologue OS-2 MAPK pathway in Neurospora crassa (173).
The expression of three CATs, cat-1, cat-3, and cat-4 was found
to be regulated by this pathway (83, 118, 173, 174). Detailed
analysis of available microarray data related to the antioxi-
dant and redox systems of Neurospora is beyond the scope of
this review. However, for example, the transcription factors
VAD-5, CRE-1, and CPC-1 may be regulators of the ROS
homeostasis (153, 154, 160). In addition, mutations in several
serine-threonine protein kinases result in enhanced sensitiv-
ity to oxidative stress, suggesting the involvement of these
kinases in the control of the antioxidant and redox system of
Neurospora (123). Moreover, it is shown that the nucleoside
diphosphate kinase-1 participates in the regulation of CAT-1
and CAT-3 (87, 170, 182).

Finally, mutation of age, a possible regulator of oxidative
stress responses leads to decreased CAT and cyanide-resistant
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SOD activity. The mutation also affects extracellular SOD
activity (112).

ROS enhance light responses in Neurospora crassa:
a common point in light-sensing, ROS effects,
and circadian timekeeping

Light affects several physiological functions in fungi. In
Neurospora crassa the most important light-controlled phe-
nomena include enhancement of carotenoid biosynthesis, in-
duction of conidiation, determination of perithecial polarity,
positive phototropism of perithecial beaks, and phase shift in
the circadian rhythm (24).

The shape of fertilized perithecia culminates with a beak
that points upward under illumination. In contrast, beaks are
randomly directed in cultures kept in darkness (120). How-
ever, in sod-1 the amount of upward perithecial beaks is re-
duced, suggesting that ROS are involved in the determination
of perithecial polarity (179).

Light (including UV, blue, and visible light) is considered to
stimulate generation of ROS. In most cases the antioxidant
system is able to compensate the increased ROS production,
and thus ROS levels are not significantly elevated. However,
when either sod-1 or cat-1 is mutated, light elevates ROS levels
in Neurospora (180). It has been shown that conidia produce
O2
� - , and light enhances this process (155). The product of the

albino (al)-1 gene plays an essential role in carotenogenesis (90,
98) and carotenoids are part of the antioxidant system (see
above). Accordingly, pronounced light-dependent protein
oxidation was found in an al-1 mutant (99). Moreover, in
germinating conidia ROS-evoked oxidation of CAT-1 in-
creases with elevation of the light intensity, suggesting again
that induction of ROS by light plays an important role in
Neurospora in vivo (99). Light treatment reduces conidial ger-
mination rate in cat-1rip more significantly than does in wt,
suggesting that light enhances ROS generation in this case as
well (170). age mutants with defective antioxidant system die
rapidly in light, whereas their lifespan is normal in the dark
(114, 115). cat-1, cat-2, cat-4, and a putative sod are light-
inducible genes, and light increases the overall CAT and
SOD activity (25, 55, 99, 180). All these facts suggest that
illumination—both directly and indirectly—results in the
elevation of ROS production and promotes activity of the
antioxidant system in Neurospora.

Light-activated carotenoid synthesis seems to be intensified
by ROS as suggested by several data. For example, the light-
induced elevation of carotenoid content is higher in air-
exposed hyphae than in mycelia grown in liquid culture, and
a high concentration of O2 further enhances the accumulation
of carotenoids (75). Similarly, both the sod-1mutation and
H2O2 treatment increase the light-stimulated expression of the
different al genes and, as a consequence, the synthesis of ca-
rotenoids (75, 179). When, in turn, mycelia are treated with
antioxidants, light-evoked accumulation of carotenoids and
the al-1 RNA level is reduced as compared with the control
(179). Finally, the high carotenoid production of the cat-3 and
the sod-1 mutant in both light and dark suggests that ROS and
light synergistically affect carotenogenesis (110, 179).

In summary, light is able to promote the activity and/or
expression of various members of the antioxidant system, and
ROS, in turn, can enhance the effect of light and/or mimic the
light action in dark.

Light-induced carotenogenesis is dependent on the WCC,
the main photoreceptor of Neurospora (95). The diminution of
carotenoid synthesis in the double mutants wc-1, sod-1 and
wc-2, sod-1 in both light and dark indicate that certain effects
of ROS on these processes are dependent on the WCC (179). In
addition, ROS also promote transcription of light-dependent
genes that are not involved in carotenogenesis, such as frq,
wc-1, and bli-4 (a mitochondrial short-chain alcohol dehy-
drogenase-like protein) (179, 181). In conclusion, light and
ROS often induce the same physiological responses by acti-
vating pathways that, at least partially, converge on the WCC.

Interactions Between ROS Homeostasis
and the Circadian Clock in Neurospora

Circadian regulation of the actors of ROS homeostasis

In a recent work Yoshida et al. showed that Neurospora
displays rhythmic ROS production in constant darkness (180).
In these experiments, ROS levels were determined in the
growth fronts of race tube cultures by using a lucigenin-
enhanced chemiluminescence assay that is primarily sensitive
to O2

� - . Peak and trough levels can be detected in the middle
of the subjective night and at midday, respectively. Similar
oscillations of ROS have been observed in bd, wt, and the clock
mutants frq10, Dwc-1, and Dwc-2, indicating that a FLO is in-
volved in the regulation. However, average ROS levels are
reduced in the clock mutants as compared with wt. Further,
the ROS rhythm displays a significantly higher amplitude in
bd than in the other strains, suggesting that RAS signaling
affects the regulation of ROS oscillation. Interestingly, al-
though the temporal changes of ROS levels are retained in
12/12 h LD-cycles in wt, peak ROS levels are delayed by about
6 h as compared with constant darkness (DD).

Under free-running conditions on race tubes, NOX-1 ac-
tivity was found to be a major source of ROS and was required
for the oscillation of ROS levels (180). However, cellular NOX
activity does not oscillate, suggesting that the rhythm is likely
to be generated by a ROS-destroying mechanism. Indeed,
cellular CAT activity was found to display a low-amplitude
rhythm and thus may be involved in the generation of ROS
rhythm. It is still unclear which of the four Neurospora CATs
plays a dominant role in this process, and the data are not
fully consistent. cat-1 RNA expression displays a circadian
rhythm that is controlled by the WCC via the OS-2 MAPK
pathway (83, 173). Although the cat-1 expression pattern does
not fit the time-dependent changes in CAT activity, the
dampened ROS oscillation in a cat-1 loss-of-function mutant
suggests that CAT-1 activity is required for maintaining ROS
rhythm. On the other hand, despite the loss of cat-1 rhythm, in
both the wc-1 and the wc-2 mutant oscillating ROS levels can
be detected (180). Under constant conditions the amplitude of
ROS oscillation gradually increases in the first few days,
parallel with reduction of the daily maxima of CAT activity.
This observation indicates again that circadian regulation of
ROS levels is mediated, at least partially, by the oscillating
CAT activity (180).

In constant darkness, when Neurospora displays rhythmic
conidiation, the clear differences in the NAD(P)H:NAD(P)
ratio between band and interband regions also suggest that
circadian timekeeping plays a role in the control of the redox-
balance of the cell (15). In addition, clock mutants have an
altered pattern of CAT and SOD activity during ontogenesis
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(54). However, an important aspect should be considered
when ROS levels are examined on solid media; independent
of the clock effect, both carotenogenesis and CAT activity
change as a function of developmental state. For example, in
the late subjective night, when conidia are formed, the in-
creased cat-1 expression typical for this developmental tran-
sition may be partially responsible for the reduction of ROS
levels (109). During the same period carotenoids are pro-
duced in the conidia that, acting as antioxidants, may also
contribute to the decrease of cellular ROS concentration (7). To
better distinguish between direct and indirect (development-
mediated) effects of the circadian clock on the ROS homeo-
stasis, rhythms of ROS levels and/or CAT activity could be
investigated in strains that develop very few conidia (e.g., the
fluffy mutant) (6, 57).

Chipseq analysis of CSP-1 binding sites and microarray
data with clock (wc-1 and wc-2) and vvd mutants also
reveal the possibility that several genes playing a role in the
ROS homeostasis of Neurospora crassa is under the control of
the FWO (132, 141).

Very recently, rhythmic oxidation of the H2O2-scavenging
protein peroxiredoxin was reported also in Neurospora (47).
The peak levels of oxidized peroxiredoxin coincide well with
the maxima of ROS production determined by Yoshida et al.
(180). This oxidation rhythm does not need a functional FWO;
the phase is, however, altered in the frq-less mutant as com-
pared with wt. Further, in a long-period mutant, peroxir-
edoxin oxidation cycles display a lengthened period, with a
phase reflecting the altered oscillation in FRQ abundance.
These data also suggest a close alignment of the oxidation
rhythm with the FWO. Based on these observations, it is
tempting to speculate that in Neurospora, like in other organ-
isms, a post-translational oscillator based on or coupled to the
peroxiredoxin system may function in the cytosol, although
tightly interconnected with the well-described TTFL, the
FWO (47, 119).

ROS-controlled rhythms in Neurospora

When ROS levels are increased in Neurospora, either by the
addition of the ROS generator menadione or by the mutation
of sod-1, a robust and sustained conidiation rhythm can be
detected in constant darkness, whereas wt does not display a
clear banding pattern under the same conditions (Fig. 1B) (12,
181). However, the self-sustained conidial banding of the sod-
1 mutant depends on the nutritional conditions; it is rhythmic
on minimal medium and on medium complemented with
glycerol, but arrhythmic when the medium contains sucrose
or glucose (61, 181). This suggests that the impact of SOD-1 on
the conidiation rhythm is dependent on the metabolism. sod-1
can be entrained to photocycles with very low light intensities,
in line with the increased light sensitivity of the strain. The
transcription factor Fluffy, a major regulator of conidiation
was proposed as a possible linker between ROS production
and rhythmic conidiation (12, 151). Indeed, the amplitude
of the oscillating fluffy expression is markedly increased in
the sod-1 mutant, in accordance with the more pronounced
banding.

In contrast to the sod-1 mutant, in a sod-1, bd strain no clear
banding was observed (181). However, this strain grew very
slowly and showed excessive conidiation, rendering it more
difficult to evaluate the race tubes. Interestingly, when the

sod-1 mutation was combined with a loss-of-function muta-
tion in frq (frq10), self-sustained conidial banding was ob-
served in constant darkness, indicating the operation of an
FLO (181). However, this rhythm was not tested for temper-
ature compensation and was masked by light during photo-
periods. Thus, under entrained conditions this FLO is not able
to govern the conidiation rhythm.

Similar to the effect of the sod-1 mutation, addition of
menadione in relatively high concentration induces conidia-
tion rhythm in clock mutants, which can be observed in both
DD and constant light (LL). However, it is important to note
that, in contrast to the banding of sod-1, frq10, these rhythms
can only be detected on plates but not on race tubes (16, 61).
This may indicate that the menadione-induced banding has a
high sensitivity to CO2. The mechanisms underlying the
regulation of these rhythms seem to be heterogeneous, that is,
while both bd, frq10 and bd, wc-1 display very short periods (15
and 14 h, respectively), bd, wc-2 is a long period (25 h) mutant.
In addition, while the period of the menadione-induced
rhythm of bd, wc-2 is compensated in a relatively wide tem-
perature range, this range is rather narrow in case of bd, frq10.
Interestingly, in the presence of menadione even bd displayed
rhythmic conidiation in LL. However, the period was very
sensitive to light intensity, varying in the range from 22 to 15 h
(16). Only mutants lacking frq or csp-1 were entrainable to
12/12 h LD-cycles. The other strains including bd produced
two bands in each cycle, one in the dark and then another in
response to light. Thus, menadione apparently strengthens the
masking effect of light. In summary, elevated ROS levels can
induce circadian or circadian-like conidiation rhythms that are
partially independent of the FWO. However, these oscillations
are usually sensitive to the culturing conditions acting proba-
bly via metabolic pathways.

In addition to inducing or strengthening circadian out-
puts, ROS also affect the most important parameters of the
rhythm, that is, the period length in constant darkness and
the phase under entrained conditions (61). Elevation of ROS
levels, particularly that of O2

� - either genetically (sod-1
mutant) or by the addition of a ROS generator (menadione)
results in an advance of the conidiation phase in both photo-
and temperature cycles. In addition, the phase in sod-1 is
more sensitive to menadione than in wt indicating the
dominant role of O2

� - . In contrast to sod-1, mutation of sod-2
has no effect on the phase. Thus, O2

� - accessible for SOD-1
rather than for SOD-2 appears to affect the timing of con-
idiation. On the other hand, reduction of basal ROS levels
delays the phase, indicating that ROS affect circadian time-
keeping even under non-stress conditions. Although CAT-1
was shown to slightly affect rhythmic ROS production
under free run conditions (180), the timing of conidiation in
cat-1 did not differ from that in wt suggesting that CAT-1
activity is not a limiting factor in determination of the phase
in LD cycles. Since nox mutants display phases similar to
that of the control, a NOX independent source of O2

� - , most
probably metabolic activity may regulate the timing of
banding.

In photocycles, temperature differences are reflected by
slight variations of the phase of banding (61). The extent of
this fine-tuning effect of temperature is dependent on the
antioxidant N-acetyl-l-cysteine or the mutation of sod-1 sug-
gesting that differences in ROS production may mediate
temperature effects toward the circadian clock.
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An increased ROS level also advances the phase of frq ex-
pression and shortens the circadian period in Neurospora,
suggesting that ROS affect the molecular oscillator. Elevation
of ROS levels also increases PP2A activity and accelerates
dephosphorylation of the WCC in the dark. These data sug-
gest a model in which ROS-dependent changes in PP2A ac-
tivity results in later or earlier reactivation of the WCC and
thereby advance or delay the oscillator, respectively (61).

However, another plausible and most probably parallel-
acting mechanism of ROS-evoked activation of the WCC was
also proposed. In an in vitro assay, enhanced binding of the
WCC to the clock-box was shown in the presence of H2O2. It
was therefore speculated that ROS may act on the WCC by
promoting the formation of the flavin-cysteinyl adduct and
thus by mimicking the effect of light (180). Future investiga-
tions should clarify whether the other LOV domain-contain-
ing photoreceptor VVD is also involved in the mediation of
ROS-induced responses of the circadian clock.

In summary, the above data indicate that the circadian
oscillator is controlled by cellular ROS levels. Changes in ROS
levels may mediate the effect of even basal fluctuations of the
metabolism to the clock machinery.

Conclusions

A model of the possible interconnections of ROS signaling
and circadian timekeeping is outlined in Figure 5. A classical
circadian oscillator is based on a TTFL mechanism, called
FWO in Neurospora. Several members of ROS homeostasis
are under the control of the TTFL circadian oscillator, and
ROS levels display circadian oscillation. Besides the well-
established oscillations of some actors in the redox system (e.g.,
CAT activity), TTFL may control ROS levels by at least two
additional mechanisms. First, FWO is considered to regulate
certain segments of metabolism, and metabolism is one of the
main sources of ROS. Second, ROS homeostasis changes
progressively during morphogenetic transitions leading to
conidiation, and conidiation is under the control of FWO.
Thus, rhythmic changes of ROS levels may be both directly
and indirectly regulated by the FWO. Light is able to increase
ROS levels and shift the TTFL clock. Light and ROS signaling
converge, at least partially, on the positive factor of the TTFL.
ROS affect the ticking of the TTFL clock and thus contribute
to the determination of the period and, more significantly, of
the phase. ROS were also shown to increase the amplitude
of the FWO. More robustness of the rhythm and thus a bet-
ter adaptive feature of the organism might be of advantage
under stress conditions (in the present case, oxidative stress).
Moreover, ROS can enhance the output of the TTFL clock, but
the exact pathway mediating this effect is not known yet.

ROS also enhance phenotypic expression of non-classical
oscillators in the absence of core clock components. However,
the question arises whether these oscillators are robust en-
ough to prepare the organism for cycling changes of the sur-
roundings under natural conditions.

Peroxiredoxins affect ROS levels due to their ability to reduce
hydroperoxides. Although the oxydation cycle of peroxir-
edoxins is not dependent on the FWO, it is certainly influenced
by the classical TTFL. One can speculate that alterations in ROS
levels—especially in the levels of hydroperoxides—may influ-
ence this process, and vice versa, peroxiredoxin-dependent
changes in ROS levels may feed back on the FWO.

Increasing evidence suggests an intensive interplay be-
tween metabolism and circadian timekeeping (11, 65, 139). A
possible model of this interplay consists of at least two oscil-
lators, one based on a TTFL and another one functioning at a
post-transcriptional level. TTFL drives rhythmic fluctuations
in the metabolism, but simultaneously environmental signals,
for example, changes in the availability of nutrients, rap-
idly modulate or re-entrain metabolic oscillations via post-
translational mechanisms. Interconnections between these
oscillators could enable a gradual and smooth harmonization
between the cogwheels of the different oscillators, a process
required for effective adaptation. ROS may represent bidi-
rectional mediators of this process.
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Abbreviations Used

al¼ albino
AP-1¼ activator protein-1

bd¼ band
CAT¼ catalase

ccg¼ clock-controlled gene
CK-1a¼ casein kinase-1

CK-2¼ casein kinase-2
CO2¼ carbon dioxide

CSP-1¼ conidial separation 1
DD¼ constant darkness

FFC¼ FRQ–FRH complex
FLO¼ FRQ-less oscillator
FRH¼ Frequency-interacting RNA helicase
FRQ¼ Frequency

FWO¼ Frequency-White Collar-1 and -2 oscillator
GSH¼ reduced glutathione

GSSG¼ oxidized glutathione
H2O2¼hydrogen peroxide
lFRQ¼ long frequency

LL¼ constant light
LD¼ light/dark

LOV¼ light-oxygen-voltage
MAPK¼mitogen-activated protein kinase

NADPH¼nicotinamide adenine dinucleotide phosphate
NO�¼nitric oxide
NOX¼NADPH oxidase

1O2¼ singlet oxygen
O2
�-¼ superoxide anion radical

OH� ¼hydroxyl radical
ONOO-¼peroxynitrite

P¼phosphate
PAS¼Per-Arnt-Sim

phox¼phagocyte oxidase
PP¼protein phophatase

PP2A¼protein phosphatase 2A
PP4¼protein phosphatase 4

PRD-4¼Period-4
ROS¼ reactive oxygen species
SOD¼ superoxide-dismutase

TTFL¼ transcription-translation feedback loop
VVD¼Vivid

WC-1¼White Collar-1
WC-2¼White Collar-2
WCC¼White Collar Complex
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