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The estrogen receptor (ER)α drives growth in two-thirds of all breast
cancers. Several targeted therapies, collectively termed endocrine
therapy, impinge on estrogen-induced ERα activation to block tumor
growth. However, half of ERα-positive breast cancers are tolerant or
acquire resistance to endocrine therapy. We demonstrate that ge-
nome-wide reprogramming of the chromatin landscape, defined by
epigenomic maps for regulatory elements or transcriptional activa-
tion and chromatin openness, underlies resistance to endocrine ther-
apy. This annotation reveals endocrine therapy-response specific
regulatory networks where NOTCH pathway is overactivated in re-
sistant breast cancer cells, whereas classical ERα signaling is epige-
netically disengaged. Blocking NOTCH signaling abrogates growth
of resistant breast cancer cells. Its activation state in primary breast
tumors is a prognostic factor of resistance in endocrine treated
patients. Overall, our work demonstrates that chromatin landscape
reprogramming underlies changes in regulatory networks driving
endocrine therapy resistance in breast cancer.

open chromatin | histone modification | drug resistance | epigenetic |
transcriptional regulation

Over two-thirds of breast cancers rely on the estrogen receptor
alpha (ERα) for growth. This transcription factor binds dis-

tant regulatory elements upon activation by estrogen (1, 2) to
promote a transcriptional program typical of good outcome tumors
(3, 4). This is facilitated by pioneer factors, including FOXA1,
PBX1, TLE1, and AP2γ, which interact with epigenetic mod-
ifications, including the mono- and dimethylation of lysine 4 on
histone H3 (H3K4me1/me2) (5–8), to locally maintain chromatin
open, enabling ERα binding (7, 9–12).
Estrogen receptor (ER) ERα-positive tumors are treated with

endocrine therapies (ETs) that block the estrogen-induced ERα
activation. These consist of selective ER modulators (e.g., ta-
moxifen), interfering with estrogen binding to ERα; aromatase
inhibitors (e.g., letrozole), blocking estrogen biosynthesis; or se-
lective ERdown-regulators (SERDs) (e.g., fulvestrant), promoting
receptor degradation (13). Approximately half of the tumors are
tolerant or acquire resistance to these therapies (14, 15), leading to
poor outcome (1). This is true for all ET including SERDs (16–18),
suggesting that resistance can arise through ERα-independent
mechanisms.
Reprogramming of the chromatin landscape, through epigenetic

modifications or changes in chromatin openness (19), is an integral
component of cellular differentiation that favors lineage-specific
transcriptional programs (20–23). Acquisition of ET resistance
(ETR) is a long-term sequential process accompanied by extensive
transcriptional reprogramming reminiscent of cell fate commit-
ment (24–28). This suggests that reprogramming of the chromatin
landscapemay play a central role in ETR. Previous reports focused
on the UBE2C locus demonstrate that epigenetic reprogramming
promotes ETR in prostate cancer (8). Here, we investigate the

extent of reprogramming to the chromatin landscape occurring
across the genome of breast cancer cells as they acquire ETR,
delineating its impact on transcriptional network to identify the
functional biology and targets for therapeutic intervention.

Results
Epigenetic Reprogramming Within Transcriptional Units Characterizes
Response to Endocrine Therapy. The transcriptional programs differ
significantly between ET-resistant and -responsive breast cancer
cells (27–29), including ET-responsive MCF7 and ET-resistant
MCF7–long-term estrogen-deprived (LTED) cells, which gradually
acquire resistance upon culture in estrogen/steroid-free conditions
modeling aromatase inhibitor resistance (26, 30–32). Indeed, ex-
pression profiling identified 3,230 genes preferentially expressed in
LTED and 3,794 genes preferentially expressed in parental MCF7
cells (cutoff at P < 5 × e−2) (Fig. 1A and SI Appendix, Table S1).
This parallels distinct genome-wide distributions between LTED
and MCF7 breast cancer cells for the histone H3 lysine 36 trime-
thylation (H3K36me3), an epigenetic hallmark of transcriptional
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elongation (33–35) (Fig. 1B and SI Appendix, Fig. S1A). Indeed,
micrococcal nuclease (MNase)–ChIP-seq assays against this mark
revealed over 50,000 sites specific to either cell types (Fig. 1B).
Only ∼12% of H3K36me3 sites were shared between MCF7 and
LTED cells (Fig. 1B and SI Appendix, Fig. S1A). Importantly, the
H3K36me3 signal from LTED cells was stronger than the signal
fromMCF7 cells across the body of genes preferentially expressed
in LTED cells detected bymicroarray expression profiling and vice
versa (Fig. 1C).
Oncomine Concepts Map analysis (36) revealed that genes

preferentially expressed in LTED cells are significantly associated
with signatures of genes overexpressed in high-grade or poor-
outcome tumors in vivo (P < 0.01; odds ratio, >1.5) (Fig. 1D).
Conversely, genes preferentially expressed in MCF7 cells associ-
ate with expression signatures from low-grade (Fig. 1D). Overall,
this suggests that the transcriptional programs that characterize
ET-resistant breast cancer cells are correlated with changes in
histone modifications and preferentially associate with genes
expressed in breast tumors with poor prognosis and more likely to
relapse (37, 38).

Reprogramming of Regulatory ElementsMarks Resistance to Endocrine
Therapy.Cell type- and tissue-specific transcriptional programs are
strongly driven by lineage-specific regulatory elements, such as
enhancers. Epigenomic maps for H3K4me2 can readily identify

these regulatory elements (5, 20, 39–47). We profiled this modi-
fication using MNase–ChIP-seq assays in MCF7 and LTED cells
to determine whether the distinct transcriptional program of ET-
resistant vs. -responsive breast cancer cells relies on global reprog-
ramming of regulatory elements. This identifies a total of 27,354
and 15,439 sites specific to LTED and MCF7 cells, respectively,
whereas 30,026 sites are shared (Fig. 2A and SI Appendix, Fig. S1B).
H3K4me2 sites specific to either MCF7 or LTED cells maps pref-
erentially outside of promoters compared with shared sites (91%,
87%, and 77%, respectively) (Fig. 2A).
The presence of the H3K4me2 mark is insufficient to discrim-

inate active from poised functional regulatory elements. To re-
solve this, we measured open chromatin (6, 48), through
formaldehyde assisted isolation of regulatory elements (FAIRE)-
seq assays (49). This reveals that 85% of open chromatin sites are
cell type-specific and lie away from promoters. Only a minority of
sites is shared between responsive and resistant cells (∼15%) (Fig.
2B and SI Appendix, Fig. S1C), suggesting that significant changes
in the open chromatin landscape discriminate ET response in
breast cancer cells (Fig. 2B).

Resistant Cell Lines Disengage from Classical ERα Signaling. ERα is
highly expressed in most ET-resistant breast tumors and model
cell lines (SI Appendix, Fig. S1D) (50, 51). Whether this is in-
dicative of its active contribution to ETR is still unclear. Presence

Fig. 1. Distinct transcriptional programs typify ET response. (A) Microarray-based expression profiling in ET-resistant LTED and -responsive MCF7 breast
cancer cells reveals distinct transcriptional profiles. (B) MNase–ChIP-seq profiling of H3K36me3 in LTED (blue) and MCF7 (red) cells over a 4-kb window around
called peaks (Left). The proportion (%) of H3K36me3 sites mapping to promoters (prom), intragenic (intra), or extragenic (extra) regions are presented for the
unique or shared sites between MCF7 and LTED cells (Right). (C) ChIP-seq enrichment for H3K36me3 from either MCF7 (red line) or LTED (blue line) cells across
genes specifically expressed in MCF7 (Upper) or LTED (Lower) cells based on the microarray expression profile. (D) Oncomine Concepts Map analysis com-
paring genes overexpressed in LTED (>twofold ratio vs. MCF7) or in MCF7 (>twofold ratio vs. LTED) cells and expression signatures from high-grade, low-
grade, or poor-outcome breast tumors are presented.
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of the estrogen response elements (EREs) that are recognized by
ERα in open chromatin or H3K4me2-marked genomic regions is
a proxy for estrogen-dependent ERα binding (52). This motif is
significantly enriched in the H3K4me2, FAIRE, and FAIRE-
H3K4me2 epigenomic maps specific to MCF7 (Fig. 2C). It is also
enriched in extragenic H3K36me3 sites specific to MCF7 cells
(Fig. 2C), in agreement with the enrichment of this histone mark
at active distant regulatory elements (48). In contrast, the ERE
motif is not enriched in FAIRE, FAIRE-H3K4me2, or extragenic
H3K36me3 sites and is reduced in H3K4me2 sites specific to
LTED or shared with MCF7 cells (Fig. 2C). This suggests that
classical ERα signaling through ERE-enriched regions is reduced in
ET-resistant breast cancer cells. In agreement, overlap analysis
performed using the Genome Structure Correction (GSC) tool (40)
comparing epigenomic maps with estrogen-induced ERα cistromes
derived from two independent studies (53, 54) reveals the prefer-

ential overlap of estrogen-induced ERα cistrome with MCF7
compared with LTED epigenetically marked regions (14.7%, 5.8%,
and 13.1% vs. 5.2%, 1.1%, and 11.4% for FAIRE, FAIRE-
H3K4me2, or H3K4me2 regions, respectively) (SI Appendix, Fig.
S1 E and F).
Recently, ERα cistromes from ET-responsive (good-outcome)

and ET-resistant (poor-outcome) breast tumors have identified
gene signatures specific to responsive or resistant breast tumors
(55). Median expression of genes that are part of the resistant
signature, such as RACGAP1, ERBB2, and TMEM97, is higher
in ET-resistant cells, whereas median expression is higher in
MCF7 cells for genes, such as LOXL1, TAF1C, and PRKCSH,
that are part of the responsive signature (Fig. 2D and SI Appendix,
Fig. S2 A and B). To determine whether the expression of these
genes relies on ERα signaling, we measured their expression in
ET-responsive and -resistant breast cancer cells upon ERα si-

Fig. 2. ERα-dependent signaling is reduced in ET-resistant breast cancer cells. (A) MNase–ChIP-seq against H3K4me2 in MCF7 and LTED cells. Results are presented
as in Fig. 1B. (B) Genome-wide analysis of open chromatin regions (FAIRE-seq) from MCF7 and LTED are presented as in Fig. 1B. (C) Enrichment of the ERE within
epigenetically defined regions (H3K4me2, FAIRE, and H3K36me3) from LTED and MCF7 cells. (D) Expression level based on microarray analysis in LTED (blue) and
MCF7 (red) cells of genes discriminating ET response based on ERα-binding profiles in good-outcome (responsive) and poor-outcome (resistant) primary breast
tumors. (E) Transcriptional analysis of a selected list of genes discriminating good- and poor-outcome breast tumors (55) in response to ERα silencing in MCF7 or
ET-resistant breast cancer cell line models. Expression is presented as mRNA fold change comparing siERα to control (siCTRL). The central circle indicates ERα-
silencing efficiency. (F) Growth assays using two different siRNA targeting ERα are represented. Cell number is plotted as a ratio against day 0.
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lencing. This included two tamoxifen-resistant (TMX2-11 and
TMX2-28) (56) and three aromatase inhibitor-resistant cells
(MCF7-LTED LM 6mo, LM >12mo, and HA) (27, 57). Estab-
lished estrogen-target genes, namely TFF1, XBP1, CA12, and
RARA (10, 58, 59), were also included as controls. This reveals
that ERα depletion alters the expression of all tested genes in
ET-responsive MCF7 breast cancer cells but only affects a small
subset of these genes in resistant cells (Fig. 2E and SI Appendix,
Fig. S2 A and B). Growth assays using the same cells and the
additional tamoxifen-resistant (TMX2-4) (52, 56), aromatase
inhibitor-resistant (MCF7-LTED ME and T47D-LTED ME)
(10, 27, 57–59), and fulvestrant-resistant cells (MCF7-FulR-KN)
(60) reveal the requirement for ERα only in responsive breast
cancer cells (Fig. 2F). Altogether, these data suggest that clas-
sical ERα signaling does not significantly contribute to ETR in
breast cancer.

Reprogramming of the Chromatin Landscape Promotes NOTCH Signaling
in Resistant Breast Cancer. We performed a Genomic Region En-
richment of Annotation Tool (GREAT) analysis to identify the

biological networks engaged in regulating transcription in ET-
resistant breast cancer cells (61). This revealed the enrichment
of the NOTCH pathway in epigenomic maps of LTED-specific
enhancers (Fig. 3A) where the majority of genes defining this
pathway (62) are preferentially expressed in LTED compared
with MCF7 cells (Fig. 3B). This includes the three γ-secretase
complex subunit PSEN1, PSEN2, and APH1 (Fig. 3B and SI
Appendix, Fig. S3 A and B). Cleavage of NOTCH proteins by the
γ-secretase complex drives its activation (63), suggesting that
increased secretase activity may account for an increased
NOTCH signaling in ET-resistant breast cancer cells. Kaplan–
Meier analysis integrating 21 breast cancer datasets (64) shows
that NOTCH3 is the only family member whose expression
discriminates progression in ERα-positive breast cancer (Fig. 3C
and SI Appendix, Fig. S3 C–E). A patient’s stratification is
detected within the first 5 y from diagnosis, which corresponds
to the time frame with the highest risk of recurrence and me-
tastasis in ERα-positive breast cancer (14, 65, 66) (SI Appendix,
Fig. S4 A and B). Growth assays following NOTCH family
members (NOTCH1, -2, -3, or -4) depletion using specific siR-

Fig. 3. NOTCH pathway is critical for growth of resistant cells. (A) Enriched pathway analysis using GREAT reveals the significant enrichment of the NOTCH
pathway in H3K4me2, FAIRE, or extragenic H3K36me3 regions specific to LTED compared with MCF7 cells. (B) Expression level based on microarray analysis in
LTED and MCF7 cells of genes defining the NOTCH pathway [Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway]. (C) Kaplan–Meier analysis for the
NOTCH family members against ERα-positive breast tumors. (D) Growth assays using two different siRNA targeting NOTCH3 are represented. Cell number is
plotted as a ratio against day 0.
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NAs (SI Appendix, Fig. S4 C–E) demonstrate defects in all re-
sistant cell lines only upon NOTCH3 silencing (Fig. 3D), sup-
porting a central role for NOTCH3 signaling in these cells.
NOTCH3 depletion also reduced growth of MCF7 cells (Fig.
3D), suggesting that this specific signaling pathway may have
already primed ERα-positive breast cancer cells for resistance
to ET.

PBX1 Mediates NOTCH3 Signaling in Resistant Breast Cancer Cells.
NOTCH3 controls a large number of downstream target genes
such as the pioneer factor PBX1 (67). We recently demonstrated
that PBX1 expression in ERα-positive primary breast tumors
stratifies patients for metastasis-free survival (7). Expression of
PBX1 is dependent on NOTCH3 expression in ET-resistant cells
(SI Appendix, Fig. S5 A and B). Confocal imaging proves the nu-
clear localization of PBX1 in these cells (SI Appendix, Fig. S5C).
Compared with ET-responsive cells, PBX1 mRNA expression is

higher in most resistant cells (SI Appendix, Fig. S5D) and in breast
primary and metastatic lesions compared with normal tissue (SI
Appendix, Fig. S5 E and F). Moreover, PBX1 knockdown abro-
gates the growth of PBX1-positive ET-responsive or -resistant
breast cancer cell lines (Fig. 4A) (7, 67), whereas it had no effect
on breast cancer cells with low PBX1 expression (SI Appendix, Fig.
S6A). Notably, PBX1 overexpression rescue MCF7 cells from
proliferation defects induced by NOTCH3 silencing (SI Appendix,
Fig. S6B).
PBX1 activity in ET-responsive cells guides the expression of

genes typical of breast tumors that fail to respond to ET (7). To
determine whether PBX1 maintained the expression of these
genes in resistant cells, we conducted expression-profiling assays in
cells depleted or not of PBX1 and identified 439 genes dependent
on PBX1 for their expression in ET-resistant breast cancer cells, of
which 153 were common with ET-responsive cells (Fig. 4B and SI
Appendix, Fig. S6C and Table S2). A total of 650 genes are de-

Fig. 4. PBX1 contributes to ETR regulating a unique transcriptional program. (A) Growth assays using two different siRNA targeting PBX1 are represented.
Cell number is plotted as a ratio against day 0. (B) Microarray analysis comparing PBX1-dependent expressed genes in MCF7 and LTED cells and the expression
levels of the one shared between both cell lines. (C ) ChIP-seq for PBX1 around the PBX1-dependent expressed genes shared between MCF7 and LTED cells
(±20 kb from transcription start site). Motif search analysis was conducted on the unique and shared PBX1-binding sites. (D) Microarray analysis for the
transcription factors recognizing the motifs identified in C. (E ) qRT-PCR of PKNOX1 mRNA levels upon siRNA treatment. (F ) Growth assays using two
different siRNA targeting PKNOX1 are represented. Cell number is plotted as a ratio against day 0.
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pendent on PBX1 for their repression in resistant LTED cells, of
which 167 are common with ET-responsive cells (SI Appendix, Fig.
S6D and Table S2). Kaplan–Meier analyses indicate that the ex-
pression level in primary breast tumors of PBX1-dependent genes
unique to either responsive or resistant cells cannot discriminate
response to ET (SI Appendix, Fig. S7A). However, genes commonly
regulated by PBX1 in resistant and responsive cells discriminate
the response to ET (SI Appendix, Fig. S7B). ThemRNAabundance
for most genes dependent on PBX1 for their expression is higher in
ET-resistant compared with -responsive cells (Fig. 4B). Taken to-
gether, these results suggest that PBX1 gains in activity in ET-re-
sistant breast cancer cells increasing the expression of a subset of
genes highly expressed in breast tumors that fail to respond to ET.
Considering its role as a pioneer factor in responsive breast

cancer cells (7), we performed ChIP-seq assays against PBX1.
This identifies over 25,000 sites in LTED and MCF7 cells with
6,834 sites shared (SI Appendix, Fig. S7C). DNA-recognition
motif analysis reveals enrichment for the PKNOX1 motif in
PBX1 bound sites specific to resistant LTED cells proximal (±20
kb from the transcription start site) to the 153 PBX1-dependent
genes common to responsive and resistant cells (Fig. 4C). The
same analysis identifies the AP-1 motif enrichment in the PBX1-
bound sites specific to responsive MCF7 cells near these same
genes (Fig. 4C). Heterodimerizing homeodomain protein part-

ners, such as PKNOX1, guide PBX1 binding to the chromatin
(68). PKNOX1 and components of the AP-1 complex (FOSL2,
FOS, JUN, and JUND) are, respectively, expressed and re-
pressed in LTED compared with MCF7 cells (Fig. 4D). Similarly,
PKNOX1 is overexpressed in ERα-positive primary breast
tumors and in metastatic lesions compared with normal breast
(SI Appendix, Fig. S8 A and B). Moreover, PKNOX1 is up-
regulated in all ET-resistant cell lines (SI Appendix, Fig. S8C).
Growth assays following PKNOX1 depletion using siRNA
transfection in MCF7 and LTED cells demonstrate that it is
required for growth of ET-resistant LTED but not MCF7 cells
(Fig. 5 E and F). Overall, this suggests that PKNOX1 contributes
to ETR in breast cancer.

Inhibition of NOTCH Signaling Antagonizes PBX1 Activity and Blocks
ETR. NOTCH proteins are activated upon cleavage of their in-
tracellular portions by a γ-secretase complex (69). This rate-lim-
iting step can be targeted by γ-secretase inhibitors (GSIs) (70, 71).
Treatment with GSIs reduces PBX1 expression and hinders
growth of ETR cell lines (Fig. 5A and SI Appendix, Fig. S8D). GSI
treatment significantly alters the transcriptional program of LTED
cells (Fig. 5B). Genes up-regulated upon GSI treatment (Fig. 5B)
are not associated with poor-outcome or high-grade breast tumors
gene signatures. In contrast, genes whose expression is decreased

Fig. 5. GSI MRK003 antagonizes ET-resistant breast cancer cells through down-regulation of PBX1. (A) Growth assays in GSI-treated (MRK003 for HA-LTED
and MK0572 for all other cell lines) or control-treated (CTRL) ET-resistant cells. (B) Microarray-based expression-profile analysis in LTED cells treated with the
MRK003 GSI (Right) or transfected with siPBX1 (Left) are presented compared with their respective controls. All three replicates are shown. Genes whose
expression is affected by both the MRK003 GSI and siPBX1 are presented (Center). (C) Oncomine Concepts Map analysis comparing the list of genes whose
expression is down-regulated by both the MRK003 GSI and siPBX1 to expression signatures associated with breast tumors with poor outcome.
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in LTED cells upon GSI treatment are associated with 51 and 30
distinct expression signatures characterizing patients with poor-
outcome and high-grade breast tumors, respectively (SI Appendix,
Fig. S9A). This parallels the association between these poor-out-
come or high-grade expression signatures from breast tumors and
genes whose expression is dependent on PBX1 in LTED cells (SI
Appendix, Fig. S9A). In fact, 137 genes dependent on PBX1 for
their expression are also repressed upon GSI treatment in LTED
cells (MRK003-PBX1 gene list), revealing a strong overlap be-
tween these two gene sets (Fig. 5B and SI Appendix, Table S3).
On the other hand, a total of 29 genes repressed by PBX1 are up-
regulated upon GSI treatment in LTED cells (Fig. 5B). In-
terestingly, there are 120 binding sites for PBX1 near MRK003-
PBX1 genes in LTED cells (compared with 50 in MCF7, 2.4-fold
increase). Increased binding is not dependent on the total
number of sites (>37,000 in MCF7 compared with >25,000 in
LTED). However, the PKNOX1 DNA-recognition motif is not

enriched in the 120 PBX1-binding sites from LTED cells. This
suggests that PKNOX1 alone cannot account for PBX1 binding
at these sites.
The MRK003-PBX1 gene list is associated with expression

signatures consisting of genes overexpressed in poor-outcome or
high-grade breast tumors (Fig. 5C and SI Appendix, Fig. S9B).
These genes are also associated with expression signatures
characterizing triple negative and ERBB2-positive breast tumors
(SI Appendix, Fig. S9C) and are underexpressed in ERα-positive
breast tumors (SI Appendix, Fig. S9D). Taken together, our data
demonstrate that GSI treatment can antagonize the expression
of genes typical of NOTCH signaling through PBX1 and arrest
the growth of ET-resistant breast cancer cells.

NOTCH-PBX1 Signaling Discriminates Response to Endocrine Therapy in
ERα Primary Breast Tumors.A total of 24 genes from the MRK003-
PBX1 gene list are common to at least 10% of all poor outcome

Fig. 6. NOTCH-PBX1–driven transcriptional program predicts patient outcomes. (A) Kaplan–Meier analysis for recurrent events using the NOTCH-PBX1 gene
signature consisting of PBX1 and the 24 genes whose expression is affected by MRK003 and siPBX1 in LTED cells that are found in at least 10% of all breast
cancer poor-outcome expression signatures. Both the 5 and +15 y analysis is presented. (B) Kaplan–Meier analysis for metastatic events for 5 or +15 y analysis
is presented as in A. (C) Schematic representation of changes in pathway addiction based on epigenetic reprogramming between ET-responsive and -resistant
breast cancer cells.
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breast tumor expression signatures (SI Appendix, Table S4). In-
terestingly, 22 of these genes are PBX1-dependent in both MCF7
and LTED cells but preferentially expressed in LTED cells. Using
a Kaplan–Meier analysis approach against a database of publicly
available breast cancer samples (64), we demonstrate that the
expression of this core list of 24 genes in combination with PBX1
expression (NOTCH-PBX1 signature) is a significant prognostic
factor in ERα-positive breast cancer treated with ET (hazard ratios
of 2.4 and 2.5 for recurrence and metastatic-free survival, re-
spectively) (Fig. 6 A and B). Significant discrimination is also
achieved based on the 5 y following diagnosis (Fig. 6 A and B). To
exclude that the NOTCH-PBX1 signature simply identifies high-
grade, high-proliferative ERα-positive breast cancer, we compared
it against the genomic-grade index signature (GGI) (72). NOTCH-
PBX1 signature outperformed the GGI signature to discriminate
ERα breast cancer patients and high-grade (grade 3) ERα-positive
patients (SI Appendix, Fig. S10 A and B). In addition, the NOTCH-
PBX1 signature appears to be specific to ERα-positive breast
tumors because it could not discriminate outcome in other cancer
types (colorectal, ovarian, or gastric cancer) nor in other breast
cancer subtypes (SI Appendix, Fig. S11 A and B). Altogether, our
results demonstrate that the NOTCH-PBX1 signature defined in
ET-resistant breast cancer cells has a significant prognostic value in
discriminating outcome of breast cancer patients treated with ETs.

Discussion
ETR represents a major challenge in the treatment of ERα-positive
breast cancer patients. Numerous events can promote resistance,
including overexpression of ERBB2, activation of the PI3K/AKT
pathway, high expression of AIB1, AP-1, and the CYP2D6 ge-
notype (8, 15, 36, 38, 73–76). The majority of these alternative
pathways impinge on ERα, although clinical data suggest that
ERα plays a reduced role in resistant breast tumors (77). This
highlights the need to further investigate the molecular mecha-
nisms that contribute to resistance. Transcriptional profiles have
previously helped identify druggable pathways in cancer (78–81),
and recent sequencing efforts have identified mutated molecular
pathways involved in ETR in breast cancer (77). However, epi-
genetic reprogramming of regulatory elements is increasingly
being recognized for its contribution to cancer development (82).
Here, we demonstrate that ET-resistant breast cancer cells un-
dergo changes in the chromatin landscape that can be captured
by epigenomic mapping of enhancer-specific histone mod-
ifications and chromatin openness. Using this strategy, we reveal
a switch between ERα andNOTCH signaling as breast cancer cells
acquire resistance to ET (summarized in Fig. 6C and SI Appendix,
Fig. S12). This parallels results focused on theUBE2C locus in ET-
resistant prostate cancer where epigenetic reprogramming at
enhancers control the expression of the UBE2C gene (8).
In agreement with previous work based on model systems (27,

83–85) or clinical trials (16–18, 86), our results suggest that, in some
cases, ERα signaling is not essential for the growth of breast cancer
cells that have acquired ETR. This does not exclude a role for ERα
in the initial steps leading to resistance. Indeed, previous in vitro
studies conducted with LTED models have reported contrasting
results (refs. 32 and 87 vs. refs. 27, 57, 60, 84, and 88). Such dif-
ference may be the results of the conditions under which cell lines
are originated. ERα is maintained in most ETR cell lines and
∼80% of ETR tumors. Our results suggest that ERα expression is
uncoupled from its transcriptional activity, in agreement with the
limited clinical benefits observed in fulvestrant-treated ETR breast
cancers (16–18, 86, 89). This needs to be taken into account for
prognostic purposes, considering that the assessment of ERα
abundance is used as a standard biomarker for ET response.
Epigenetic mapping also reveals the importance of the NOTCH

pathway in ET-resistant breast cancer cells. This pathway confers
resistance to PI3K inhibitors (90) currently tested against ETR (57).
It also promotes ERBB2-induced growth of breast tumors (91), and

its activity is increased by tamoxifen treatment and in tamoxifen and
fulvestrant-resistant MCF7 breast cancer cells (52, 60, 92). Phar-
maceutical approaches aimed to interfere with NOTCH signaling
(GSI) (29) emerge then as an interesting therapeutic avenue in the
context of ETR breast cancer.
Our results also highlight the cooperative nature of NOTCH3,

PBX1, and PKNOX1 to promote ETR in breast cancers. In-
teraction between these factors was reported previously to pro-
mote gene expression (93). Our results show that NOTCH3 and
PBX1 control the expression of a large amount of genes associated
with ETR in resistant breast cancer cells. Whereas these factors
are required for ET-responsive breast cancer cell growth (7, 67),
PBX1 potential collaborator PKNOX1 is not. Future investigation
will dwell more on the putative interaction between these two
homeodomain proteins in relation to ETR breast cancer. How-
ever, targeting PBX1 directly or its interaction with the DNAmay
represent a more viable strategy in the short term (94, 95). Finally,
we introduce an expression signature with significant predictive
power to stratify breast cancer patients a priori as ET-responsive
or -nonresponsive. If validated in a clinical context, this signature
could determine predisposition to NOTCH signaling and may be
used to assign patients to GSI-ET adjuvant therapy.

Materials and Methods
siRNA Transfection, Ectopic Expression, and Proliferation Studies of Breast
Cancer Cells. MCF7 and ET-resistant breast cancer cell lines were maintained
in phenol red-free medium (Invitrogen) supplemented with 10% charcoal
dextran treated-FBS as described previously (5) before transfection. Cells were
transfected with siERα #1 or #2 (Invitrogen), siPBX1 #1 (Darmacon) or siPBX1 #2
(Invitrogen), siNOTCH3 #1 or #2 (Invitrogen), and siPKNOX1 #1 or #2 (Invi-
trogen). siRNA against Luciferase was used as a negative control (5). Trans-
fection was performed using Lipofectamine 2000 according to the
manufacturer’s instructions (Invitrogen). Transfection efficiency was similar
between MCF7 and LTED (monitored as percentage of knockdown of ERα,
NOTCH3, PBX1, and PKNOX1). PBX1 rescue experiments were conducted by
ectopically expressing PBX1 in MCF7 cells. This was achieved by transfecting
0.4 μg of PBX1 (pcDNA3.1/PBX1 or pcDNA6/PBX1) or empty vector
(pcDNA3.1 and pcDNA6) in parallel with siRNA against NOTCH using Lip-
ofectamine 2000 (Invitrogen). Cell number was assessed 3 d after siRNA-
DNA transfection. For GSI treatment, cells were treated with 5 μM of
MRK003, MK0572, or DMSO (control). For cell-proliferation assays, cell
number was determined every 24 h after transfection by counting live cells
(trypan blue staining) on a hemocytometer.

ChIP–Quantitative PCR and Western Blot. ChIP–quantitative (q) PCR was per-
formed as described previously (5). Antibodies against PBX1 (Abnova),
H3K4me2 (Abcam), and H3K36me3 (Abcam) were used in these assays. Sta-
tistically significant differences were established using a Student t test com-
parison for unpaired data vs. an internal negative control. Primer sequences
used in this assay are found in SI Appendix, Table S5. Western blots used
antibodies against NOTCH1 (Abcam; ab52627), NOTCH2 (Cell Signaling;
D67C8), NOTCH3 (Abcam; ab23426), and NOTCH4 (Millipore; 07-189).

ChIP-Seq. ChIP assays were conducted as described above. Library preparation
for next-generation sequencing was performed according to the manu-
facturer’s instructions, starting with 5 ng of material (Illumina). Single paired
libraries were sequenced using the GAIIx (Illumina): (i) PBX1 (MCF7: ∼20
million reads, 95% aligned; LTED: ∼21 million reads, 94% aligned); (ii)
H3K4me2 (MCF7: ∼10.5 million reads, 97% aligned; LTED: ∼2 million reads,
90% aligned); (iii) H3K36me3 (MCF7: ∼37 million reads, 70% aligned; LTED:
∼15 million, 92% aligned); and (iv) FAIRE (LTED: ∼30 million reads, 92%
aligned). Raw sequences across the various experiments were consistently
aligned to the human reference genome using the Bowtie software. Peaks
were called using model-based analysis of ChIP-Seq (MACS) (default settings:
significant threshold of P < 10−5). H3K4me2, H3K36me3, and PBX1 data are
accessible in the Gene Expression Omnibus (GEO) database (accession
no. GSE37323).

FAIRE-qPCR and FAIRE-Seq. FAIRE-qPCR and FAIRE-seq were performed as
described previously (6). The MACS peak-calling algorithm was used to call
significantly enriched peaks using default settings (significant threshold of P <
10−5). The data are accessible in the GEO database (accession no. GSE39418).
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Epigenetic Enrichment. Enrichment for H3K36me3 along gene bodies was
calculatedusing EpiChIP (96). Pathwayenrichmentwas performedusingGREAT
(61) using the whole genome as background region and “single nearest gene”
default settings. Overlap analysis between ERα and the epigenomic maps was
calculated using the GSC tool developed by Encyclopedia of DNA Elements
(ENCODE) project (40).

Motif Discovery. Cell type-specific sites were identified using the BedTools
software (http://code.google.com/p/bedtools). Motif analysis was performed
using the “Integrative Analysis–SeqPos motif tool” function available on the
Cistrome Web site using default settings and the curated database (97).

Correlation Analysis. Expression correlation between PBX1-dependent genes
(LTED, shared, and MCF7) or PBX1/MRK003 datasets vs. clinical outcome/
molecular subtype/pathological staining was performed using the Oncomine
Concepts Map tool (www.oncomine.com).

Microarray. RNA samples from siControl- or siPBX1-treated MCF7 and LTED
cells, as well as DMSO- orMRK003-treated LTED cells, were hybridized onHT12
human beads array (Illumina). Analyseswere performed using BRB-Array Tools
Version 3.8.1. Raw intensity data were log2-transformed, median-normalized,
and filtered to remove nondetected spots as determined by Illumina software.
The normalization was performed by computing a gene-by-gene difference
between each array and the median (reference) array and subtracting the
median difference from the log intensities on that array, so that the gene-by-
gene difference between the normalized array and the reference array is zero.

Two-class nonpaired comparison analyses were performed by computing
a t test for each gene using normalized log intensities. Differentially expressed
genes were determined at a significance level of P < 0.05. A four-class ANOVA
at P< 0.05was also performed to identify genes expressed differentially across
the four groups. Hierarchical clustering was performed by using a Euclidean
distance measure to generate heat maps for subsets of significant genes using
the open-source software Cluster/Treeview. The data can be accessed in the
GEO database under SuperSeries accession no. GSE39418.

Kaplan–Meier Curves. Kaplan–Meier curves were generated using the KMplot
software, using a database of public microarray datasets (64) (http://kmplot.com/
analysis). Altogether, results from 3,597 patients were collected; of these, 1,862
were ERα-positive by immunohistochemistry. Kaplan–Meier plots were gener-
ated after averaging the probes. Patients were divided according to the median
expression value, and only ERα, luminal A, luminal B, endocrine-treated, ERα-
negative, or basal subtype patients were included in the analysis, as indicated.
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