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Abstract

Purpose: Quantifying chromosomal instability (CIN) has both prognostic and predictive clinical utility in breast cancer. In
order to establish a robust and clinically applicable gene expression-based measure of CIN, we assessed the ability of four
qPCR quantified genes selected from the 70-gene Chromosomal Instability (CIN70) expression signature to stratify outcome
in patients with grade 2 breast cancer.

Methods: AURKA, FOXM1, TOP2A and TPX2 (CIN4), were selected from the CIN70 signature due to their high level of
correlation with histological grade and mean CIN70 signature expression in silico. We assessed the ability of CIN4 to stratify
outcome in an independent cohort of patients diagnosed between 1999 and 2002. 185 formalin-fixed, paraffin-embedded
(FFPE) samples were included in the qPCR measurement of CIN4 expression. In parallel, ploidy status of tumors was assessed
by flow cytometry. We investigated whether the categorical CIN4 score derived from the CIN4 signature was correlated with
recurrence-free survival (RFS) and ploidy status in this cohort.

Results: We observed a significant association of tumor proliferation, defined by Ki67 and mitotic index (MI), with both CIN4
expression and aneuploidy. The CIN4 score stratified grade 2 carcinomas into good and poor prognostic cohorts (mean RFS:
83.864.9 and 69.468.2 months, respectively, p = 0.016) and its predictive power was confirmed by multivariate analysis
outperforming MI and Ki67 expression.

Conclusions: The first clinically applicable qPCR derived measure of tumor aneuploidy from FFPE tissue, stratifies grade 2
tumors into good and poor prognosis groups.
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Introduction

Chromosomal instability (CIN) is a key determinant of

biological behavior of breast cancer [1], yet remains challenging

to determine using high throughput methodologies [2]. We and

others have shown that CIN may play a role in determining

response to taxane treatment in ovarian cancer [3] and intrinsic

multidrug resistance in colon cancer [4] and it also appears to be

an important determinant of breast cancer prognosis [5,6]. While

direct determination of CIN by counting centromeres in a

sufficient number of breast cancer cells or measuring DNA index

is possible [7], it is technically challenging and time-consuming

[8,9]. Consequently, a simple measure of CIN, based on for

example qPCR measurement of a handful of genes, would greatly

facilitate its introduction into general oncological practice.

Therefore, we decided to investigate whether a clinically

implementable a qPCR-based gene expression based CIN

measure could be created. The ability of such signatures to reflect

CGH based genomic instability has been previously demonstrated

[5].
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The potential utility of a gene expression based measure of CIN

is further emphasized by its complex relationship with histological

grade [10]. It has been known for many years that grade 2 tumors

classified by the Nottingham grading system display heterogeneous

characteristics in terms of clinical outcome [11,12]. It has also

been shown that relatively simple gene expression based methods

were able to stratify grade 2 cases into low risk and high risk

patients in a robust fashion [13]. Genes intimately involved with

CIN prominently featured in such gene expression signatures, but

it has become clear recently that quantifying ploidy has improved

prognostic potential than stratifying intermediate histological

grade in terms of clinical outcome. The vast majority of hormone

receptor negative cases (ER-/PgR-/HER2-) fall into histological

grade 3 category [14], but even within those, the level of CIN may

define subgroups of patients with distinct clinical outcomes [5].

Therefore in this study, we determined a minimal gene set that

seems to capture the information contained in the previously

published CIN70 signature, tested its correlation with directly

quantified CIN and verified its ability to stratify grade 2 breast

carcinomas according to good and poor clinical outcome in

routine formalin-fixed, paraffin-embedded (FFPE) pathological

samples. We compared the predictive power of the resulting

signature to mitotic index and Ki67 expression.

Materials and Methods

In silico selection of CIN genes for expression analysis
All microarray data sets used in this analysis were normalized by

robust multi-array average (RMA) [15]. Probe sets to represent

each gene in the various signatures (CIN70 [1], NKI70 [16], 21-

gene Recurrence Score (DX21) [17], intrinsic subtype [18],

Ivshina’s molecular grade [11], Ma’s 5-gene HOXB13:IL17BR

ratio (Ma5) [19], Sotiriou’s Genomic Grade Index (GGI) [20])

analyzed were selected by Jetset as described previously [21]. If no

reliable probe set was found for a given gene that was excluded

from further analysis. The data sets are displayed in Table S1.

Tissue samples
Focusing on histological grade, we evaluated 185 invasive breast

carcinomas consisting of 63 grade 1, 62 grade 2 and 60 grade 3

FFPE tissue samples regardless of other pathological features from

the Buda MÁV Hospital (1999–2002), diagnosed and graded by a

single pathologist (J.K.). Recurrence-free survival (RFS) time was

defined either by loco-regional relapse or the appearance of a

distant metastasis, and whichever shorter if both applicable. The

study was a retrospective analysis. General written consent was

obtained from all patients at time of surgery. The samples were

anonymised for the study. The study was approved by the Ethical

Committee of the Semmelweis University (IKEB #7/2008 and

#7-1/2008).

Patient characteristics
In line with bioinformatics, the clinicopathological properties of

the selected 185 breast cancer patients were analyzed. The mean

age of patients was 58.8612.8 years (59.9611.8 years, 59.2613.0

years, 56.5613.7 years in grade 1, 2 and 3 tumor groups,

respectively). Among the histological types, invasive ductal

carcinoma was the most common overall (65.9%), but less

frequent types of cancer were also included in the analysis

(8.1%): 1 papillary, 1 tubular, 1 micropapillary and 3 mucinous

carcinomas in the grade 1 group; 1 micropapillary and 1

mucionous in grade 2; and 4 with medullary features, 2

metaplastic and 1 micropapillary carcinomas in grade 3 cancers.

Tumor size, frequency of vascular invasion, presence of necrosis,

Nottingham Prognostic Index (NPI) and number of relapses

showed an increase, while ER, PgR expression and RFS decreased

with higher grade (Table 1). When characterizing tumors

according to immunophenotype, expression of ER, PgR and

Her2 were evaluated and fluorescence in situ hybridisation (FISH)

was performed to assess Her2 amplification. ER and PgR

expressing tumors with lower than 20% Ki67 expression were

considered as Luminal A (LumA). For ER or PgR and Her2

positive tumors and ER and PgR expressing tumors with more

than 20% Ki67 index, Luminal B subtype (LumB) was assigned

[22]. Her2 expressing and/or Her2 amplified and ER and PgR

negative tumors were considered as the Her2 subgroup (none were

treated with trastuzumab at that time). Triple negative breast

cancers (TNBC) were ER, PgR, Her2 negative tumors with no

Her2 amplification. The disease free survival of patients in the

different grade- and immunophenotype groups were plotted on

Kaplan-Meier graphs (Figure S1).

RNA purification and qPCR
Five to ten 5 mm thick sections were used from each case for

RNA purification after assessment of cellularity on HE stained

slides (minimum of 70% tumor cell content was required). RNA

was extracted with Qiagen FFPE RNeasy kit according to the

manufacturer’s protocol (Qiagen, Venlo, The Netherlands). High

Capacity RNA-to-cDNA kit was used to reverse transcribe

1000 ng of RNA (Applied Biosystems, Foster City, CA, USA).

The Eppendorf epMotion 5070 robotic system was used to

transfer samples and reagents to 384-well full-skirted white plates

(Eppendorf, Hamburg, Germany). The qPCR was performed in

duplicates with TaqmanH Assays (Table S2) in Gene Expression

Master Mix (all from Applied Biosystems) according to the

manufacturer’s protocol. The reactions were run in Roche

LightCycler 480 real-time PCR system (Roche Diagnostics,

Mannheim, Germany). The CIN4 signature resulting from the

qPCR measurement was assessed based on the average expression

of the four genes (AURKA, FOXM1, TOP2A, TPX2) normalized

to the average expression of the three control genes. In order to

find robust internal reference control genes for clinical evaluation

of CIN4 by qPCR in formalin-fixed tumor tissue, we chose three

known housekeeping genes which bare consistently low variance in

the microarray profiles of all breast cancer datasets as normalizing

genes: B4GALT3, SLC9A3R2 [23] and PUM1 [24].

Flow cytometry
Flow cytometry was performed for the analysis of ploidy.

Briefly, a 50 mm section was cut from all the FFPE blocks. A scroll

of tissue was placed in a microcentrifuge tube and xylene was

added to remove the paraffin wax. The tissue was then serially re-

hydrated through 100%, 95%, 70% and 50% ethanol for

5 minutes respectively at room temperature. The tissue was

washed twice with distilled water. A suspension of nuclei was made

by incubating the tissue in a 0.5% pepsin solution (Sigma-Aldrich,

Dorset, UK) prepared in 0.9% saline at pH 1.5. Incubation was

carried out at 37uC for 30 minutes. The nuclei were washed once

with PBS, stained with propidium-iodine and analyzed using the

Calibur 1 FACS mashine and CellQuest software (Beckman

Coulter, Buckinghamshire, UK). DNA index was assigned as

follows: diploids were ‘1.0’, a tumor with a DNA index greater

than 1.10 was classified as aneuploid [25].

Statistics
The assignment of each patient into two cohorts using the CIN4

expression signature was performed in the R statistical environ-

ment (R, version 2.10.1) using the package Prediction Analysis for

CIN4 Signature Stratifies Outcome in Breast Cancer
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Microarrays (PAM, version 2.19) as described previously [26]. By

performing a soft thresholding to produce a shrunken centroid,

which allows the weighting and ranking of genes with high

predictive potential, PAM is capable to classify the samples into

two cohorts. After this assignment, Kaplan-Meier curves were

used to plot the efficiency of the prediction on recurrence-free

survival. Chi-squared test was performed to test relation of qPCR

and FACS assigned cohorts and clinicopathological variables

grouped into categorical variables. Continuous variables were

compared with student’s t-test. Regression models and Cox

multivariate regression analysis was performed using SPSS 15.0

(SPSS Inc., Chicago, IL, USA) and R (version 2.10.1, Vienna,

Austria). We used two-sided tests and set a significance level of

0.05 for accepting the test p-values.

Results

CIN4 signature derived from in silico ranking of CIN70
genes also reflects histological grade

In order to select a more limited set of genes that optimally

reflect the CIN70 signature we retrieved expression profiles for the

CIN70 signature genes from 10 publicly available breast cancer

datasets [1].

The CIN70 genes were then ranked by Pearson’s correlation

coefficients to the CIN score (mean CIN70 expression) within

these breast cancer microarray cohorts [supplementary referenc-

es]. In order to derive a clinically applicable qPCR expression

signature for use in FFPE tissue, containing fewer genes with

equivalent information reflecting mean CIN70 expression [1],

Correlation with grade was not used in selecting the PCR

quantified CIN genes, those were selected purely based on their

highest average correlation coefficients to tumor CIN score. These

four genes (AURKA, FOXM1, TOP2A, TPX2) were termed the

CIN4 signature.

For 5 of the 10 breast cancer microarray cohorts histological

grade was also available. The above listed 4 genes were also highly

correlated with histological grade (Pearson correlation coefficient

above 0.7).

Next, we assessed the association individually on data sets

between the mean-expression level of CIN4 and clinical outcome

across the same 10 cohorts containing expression data from 1928

breast cancers. We observed significant discriminative power

(p,0.05, for all) by CIN4 for the stratification of good from poor

clinical outcome in all of the breast cancer cohorts [supplementary

references]. Therefore, the expression of CIN4 appears almost as

efficient at predicting cancer outcome as the extended CIN25 and

CIN70 signatures. We were able to compare the performance in

silico of the CIN4 signature to a number of previously published

predictors of outcome such as CIN25, CIN70 [1], Ki67, Ivshina’s

molecular grade [11], Ma5 [19], GGI [20], DX21 [17] and

NKI70 [16] in 3 datasets (GIS [11], JBI [20], JBI1 [20,27]). CIN4

performed almost as well as CIN25. The univariate model based

on which the meta analysis performed clearly suggested the HR of

CIN4 is slightly better than the other predictors (Figure S2a),

however, we wanted to know if CIN4 classification adds any

predictive power to existing classifiers (predictorX). In another

analysis, testing the additive power from CIN4 to a given predictor

we determined the following model: survival = CIN4+predic-

torX+CIN4:predictorX. If CIN4 adds any predictive power, the

benefit is represented by a significant interaction (CIN4:predic-

torX). However, we did find that even though CIN4 has a higher

HR in the univariate model it does not add significant predictive

power to other signatures (Figure S2b).

Identification of control genes in datasets and their
variability in the tissue samples

B4GALT3, SLC9A3R2 and PUM1 were previously chosen

based on their low variability in gene expression datasets described

previously [23,24]. The three genes showed low variation between

the investigated samples as well (Table S3).

Table 1. Clinicopathological data of the 185 breast cancer patients included in the analysis.

Groups according to grade 1 2 3 All

Patients (n) 63 62 60 185

Age – years/mean, (range)/ 59.9 (35–95) 59.2 (23–87) 56.5 (29–87) 58.8 (23–95)

Histology (n, %) IDC 45 (71.4%) 37 (59.6%) 40 (66.6%) 122 (65.9%)

ILC 4 (6.3%) 3 (4.8%) 1 (1.6%) 8 (4.3%)

Mixed 8 (12.6%) 20 (32.2%) 12 (20.0%) 40 (21.6%)

Other 6 (9.5%) 2 (3.2%) 7 (11.6%) 15 (8.1%)

Tumour size - mm (mean 6 SE) 20.4961.10 26.8161.54 28.5561.92 25.13613.87

Vascular invasion/n (%)/ 34 (55.5%) 46 (74.1%) 49 (81.6%) 129 (69.7%)

Necrosis/n (%)/ 8 (12.6%) 16 (25.8%) 35 (58.3%) 59 (31.8%)

NPI (mean 6 SE) 3.0060.11 4.3960.13 5.5860.15 4.3961.39

Immunophenotype (n, %) Lum A 55 (87.3%) 40 (64.5%) 22 (36.6%) 117 (63.2%)

Lum B 4 (6.3%) 8 (12.9%) 15 (25.0%) 27 (14.5%)

HER2 0 3 (4.8%) 7 (11.6%) 10 (5.4%)

TNBC 4 (6.3%) 11 (17.7%) 16 (26.6%) 31 (16.7%)

Recurrence (n, %) Local relapse 8 (12.6%) 5 (8.1%) 7 (11.6%) 20 (10.8%)

Distant metastasis 8 (12.6%) 21 (33.8%) 21 (35.0%) 50 (27.0%)

RFS – months/mean (range)/ 85.9 (12–122) 75.9 (0–123) 74.1 (0–119) 78.8 (0–123)

doi:10.1371/journal.pone.0056707.t001
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CIN4 stratifies outcome in grade 2 tumors in a cohort of
185 breast cancers

Expression of CIN4 was assessed in a retrospective cohort of

185 patients for which we had FFPE primary breast cancer

samples available from Buda MÁV hospital, treated between 1999

and 2002 (Table 1). Kaplan-Meier curves of the pathological

evaluation of Ki67 expression and mitotic index performances on

prognosis are shown in Figure S3.

In order to define a threshold for CIN4 expression for distinct

outcome groups, we trained the PAM algorithm using the

continuous CIN4 gene expression signature to discriminate clinical

outcome of 63 patients with grade 1 breast cancer compared to the

poorer outcome associated with 60 grade 3 breast cancers from

within this cohort of 185 patients. Using this CIN4 expression

threshold that best distinguished grade 1 compared to grade 3

breast cancers, the PAM defined CIN4 score was established, and

we assessed the ability of this CIN4 score to stratify cancer

outcome in the remaining 62 patients with grade 2 breast cancer

from this 185 patient cohort.

Using this threshold, the CIN4 score was able to stratify patients

with grade 2 breast cancers into good (44 patients) and poor (18

patients) prognostic groups (mean, relapse-free survival: 83.8 months

[95%CI: 73.6–94.2] and 69.4 months [95%CI: 55.1–90.6],

respectively [p = 0.016], HR = 2.155[1.007–4.612]) (Figure 1A).

Performance of the components of the CIN4 signature/
score regardless of immunophenotype

For the identified genes that have been previously described to

be of prognostic value, we have evaluated the prognostic power of

AURKA, FOXM1, TOP2A, and TPX2 separately. Although, in

public breast cancer datasets (grade 2, follow-up: 10 years,

n = 497, split at median) all the genes showed strong predictive

potential (AURKA: p = 0.047, HR = 1.33[1.00–1.78]; FOXM1:

p,0.001, HR = 1.69[1.26–2.27]; TOP2A: p,0.001,

HR = 1.68[1.26–2.25]; TPX2: p,0.001, HR = 1.64[1.23–2.18]

for relapse-free survival (Figure S4), the data generated by qPCR

was unable to distinguish prognostic subgroups for AURKA,

FOXM1, and TPX2 at 10, 25, 75, 90 percentiles, median or

average expression in our limited number of patients (Table S4).

While TOP2A was already able to split prognostic subgroups at 25

percentile and median expression by itself (Table S4). The gain in

performance is presented in the same table when considering all

the four (CIN4) genes simultaneously.

Performance of CIN4 in ER positive breast tumors
We assessed the performance of the CIN4 score in ER+/

HER22 tumors classified by immunohistochemistry. This cohort

was also stratified into good and poor prognostic groups with

reasonable confidence (p = 0.009, HR = 2.269[1.117–5.486],

Figure 1B), suggesting that the CIN4 score-defined group with

poor outcome is not driven by the worse outcome of the HER2+
subgroup diagnosed and treated before the introduction of

trastuzumab. Other subtypes were under-represented and com-

parison could not be made in the herein investigated cohort.

CIN4 expression signature reflects aneuploidy directly
quantified by FACS analysis

We assessed tumor DNA index through flow cytometry,

classifying cancers into aneuploid and diploid categories according

to standard threshold (threshold = 1.10 [25]). We evaluated the

relationship of DNA index and the CIN4 expression by regression

analysis. The variables showed a significant relationship between

CIN4 expression and increasing DNA index (p = 0.036, Figure 2A).

From Fig. 2A, a substantial proportion of tumors with high CIN4

scores have a normal DNA ploidy (diploid cases: 44 below, 48

above mean expression of CIN4 signature; aneuploid cases: 34

below, 50 above mean expression of CIN4 signanture). In this

cohort, aneuploid tumors defined by flow cytometry were

relatively enriched within the grade 3 tumor group (Figure 2B).

As expected, when all breast tumors were considered, ploidy status

correlated with histological grade (p = 0.004).

CIN4 expression signature and DNA index correlates with
clinicopathological variables

Using regression analysis, considering all 185 patients, the CIN4

expression signature was significantly correlated with mitotic index

Figure 1. CIN4 is prognostic in the evaluated patients’ samples.
A) The 4-gene signature based, PAM designated CIN4 score showing
discrimination between grade 2 good and poor prognostic groups
plotted on Kaplan-Meier curve in the validation group (p = 0.017): 45
cases (38 ER+, 7 ER2) in low CIN4 score group and 17 cases (10 ER+, 7
ER2) in high CIN4 score group. B) The CIN4 score performing in ER+
tumors only: 38 cases in low CIN4 score group and 10 cases in high
CIN4 score group (p = 0.009).
doi:10.1371/journal.pone.0056707.g001
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(p = 0.001, Figure 3A) and Ki67 expression (p = 0.005, Figure 3C),

suggesting that proliferation is correlated with tumor aneuploidy

(p = 0.014, p = 0.023, respectively; Figure 3B and D). The

Nottingham Prognostic Index (Figure 3E and F) or tumor size

(Figure 3G and H) showed a trend only towards correlation with

CIN4 signature or with DNA index.

Estrogen and progesterone receptor expression as measured by

IHC inversely correlated with CIN4 expression (p = 0.012,

p = 0.017, respectively, Figure S5A and S5B). HER2 expression

and HER2/C17 FISH counts correlated with CIN4 expression

(p = 0.001, p = 0.013, respectively, Figure S5C and S5D), indicat-

ing that ER negativity and HER2 positivity are associated with

higher CIN4 expression. The data derived from a qPCR

assessment of CIN4 mRNA expression from FFPE breast cancers,

confirms that the expression of this signature appears to be

relatively enriched within ER negative and HER2 positive breast

cancers (Figure S6).

CIN4 outperforms known clinical clinicopathological
parameters in multivariate outcome models

CIN4 score and clinicopathological variables were tested for

their correlation in grade 2 cancers (Table S5). Cox multivariate

regression analysis was then performed in grade 2 breast

carcinomas: in multiple models CIN4 outperformed clinicopath-

ological variables including hormone receptor status, tumor size,

Figure 2. CIN4 expression correlates with ploidy. A) Regression curve showing relation of CIN4 expression signature and DNA index (p = 0.036).
B) Bar graph showing numbers of diploid and aneuploid cases grouped according to histological grade: grade 3 tumors are relatively enriched in
aneuploid cancers.
doi:10.1371/journal.pone.0056707.g002

Figure 3. CIN4 and ploidy and their relation to pathological variables. Relation of CIN4 and DNA index to A) and B) mitotic index, C) and D)
Ki67 expression, E) and F) Nottingham Prognostic Index and G) and H) tumor size displayed with regression curves (coefficients and p-values on
graphs).
doi:10.1371/journal.pone.0056707.g003
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NPI, mitotic index and Ki67 index, although, when considering

concordance indices the models’ quality is only modest (Table 2).

Discussion

In this study, we developed a 4 gene-based measure of CIN

applicable to FFPE material demonstrating clinical utility as a

fairly robust marker of breast cancer prognosis. Aneuploidy

determined by FACS-based DNA index correlated with the CIN4

signature, indicating that the CIN4 signature may in fact serve as a

surrogate method to determine tumor aneuploidy status.

These data derived from a qPCR assessment of CIN4 mRNA

expression from FFPE breast cancers, seems to confirm our

previous analysis from microarray expression datasets [5], that

CIN signature expression appears to be relatively enriched within

ER negative breast cancers as well.

Directly or indirectly quantifying CIN in human tumor biopsies

may hold significant potential for clinical practice [2,7,10,28,29].

The aim of the current work has been to establish such a gene

expression based indirect measure and validate its utility in an

already existing retrospective FFPE cohort. In multivariate

regression analysis the CIN4 signature confers prognostic power

in comparisons across grade 2 cancers specifically. ER status and

vascular invasion showed predictive power, while the CIN4 score

seems to outperform mitotic index and Ki67 expression in

multivariate analysis.

The CIN4 signature performed comparably to previously

published gene signatures in similar cohorts. For example, the

previously published Genomic Grade Index was further simplified

and converted into a qPCR-based test from formalin-fixed,

paraffin-embedded tissues [13,20]. It examines the expression of

4 genes, CDC2, CDC20, KPNA2 and MYBL2 and its utility has

been demonstrated to predict outcome following tamoxifen

treatment. A 5-gene assay was also developed quantifying the

expression of CHDH, HOXB13, IL17BR, MIB1 and MKI67 to

identify a subgroup of early stage estrogen receptor–positive breast

cancer patients with very poor outcome despite endocrine therapy

[19]. Considering the previously published correlation between

Genomic Grade Index and CIN [1,20], it is reassuring to see that

both CIN4 and the 4-gene Genomic Grade Index signature yield

similar results [13,30], indicating that replacing histological grade

2 with gene expression based low and high risk cases could be

considered in prospective studies.

Interestingly, in the study we identified a group of samples with

a diploid DNA index which have a wide range of CIN scores.

There might be several explanations behind this phenomenon

including tumor heterogeneity or the presence of yet unknown

other compensatory mechanisms [31]. Clearly, a substantial

proportion of tumors with high CIN4 scores have a normal

DNA ploidy, indicating that the CIN4 score likely reflects factors

in addition to DNA copy number. In these cases, it is possible that

highly proliferative cells, although with relatively stable genomes,

may have high levels of the genes comprising the signature

While establishing a qPCR-based simple test to improve

histological classification is an important clinical goal, – following

further validation – the CIN4 signature as a quantifier of CIN is

expected to serve as a potential marker of other clinical

characteristics as well. Most prominently, the putative role of

CIN in determining taxane response would suggest that the

predictive role of CIN4 should be tested in the neoadjuvant setting

when comparing response to therapy with or without taxanes in

the treatment of hormone receptor negative breast cancer.
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positive tumors.

(TIFF)

Table S1 The public datasets analysed in the study and
their supplementary references.

(XLS)

Table S2 The probes used for the qPCR evaluation in
the study.

(XLS)

Table S3 Expression of control genes in the breast
cancer tissue samples according to grade.

(XLS)

Table S4 Performance of the individual components of
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The authors thank Márta Jäckel MD, PhD for providing the tissue blocks,

the assistance of Erzsébet Azumah, Csilla Jaczó, Magdolna Pekár, and
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