Supporting Information

Pendant Group Effects on the Optical and Electrical Properties of Carbazole-Diketopyrrolopyrrole Copolymers

Obum Kwon,^a Jang Jo,^b Bright Walker,^c Guillermo C. Bazan,^a and Jung Hwa Seo^{*d}

^aDepartment of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106

^bDepartment of Physics, University of California, Santa Barbara, California 93106

^cDepartment of Interdisciplinary Green Energy, Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea

^dDepartment of Materials Physics, Dong-A University, Busan 614-070, South Korea

Figure S1. Differential Scanning Calorimetry (DSC) traces of P1 and P2.

Figure S2. Thermogravimetric Analysis (TGA) of P1 and P2.

Figure S3. Output curves of P1 FETs (a) at room temperature and (b) annealed at 120°C and P2 FETs (c) at room temperature and (d) annealed at 200°C. Transfer curves of (e) P1 and (f) P2 FETs as a function of annealing temperature.

Table	1.	Summary	of	device	performance	of	P1	and	P2	FETs	with	various	annealing
temperatures.													

Annealing		P1		P2				
Temp. (°C)	μ (cm²/V⋅s)	V _{th} (V)	I _{on} /I _{off}	μ (cm²/V⋅s)	V _{th} (V)	I _{on} /I _{off}		
RT	1.3 × 10 ⁻³	-6.7	1.6 × 10 ⁷	1.6 × 10 ⁻³	-6	2.6 × 10 ⁶		
80	1.2 × 10 ⁻³	-8.5	1.0 × 10 ⁷	1.6 × 10 ⁻³	-3	2.9 × 10 ⁶		
120	1.7 × 10 ⁻³	-11	6.8 × 10 ⁵	1.6 × 10 ⁻³	-16	3.5 × 10⁵		
160	4.3 × 10 ⁻⁴	-9	3.9 × 10⁵	1.4 × 10 ⁻³	-14	6.0 × 10⁵		
200	3.9×10^{-4}	-6	5.7 × 10 ⁶	4.4 × 10 ⁻³	-6	7.5 × 10⁵		
250	8.6 × 10 ⁻⁴	-1	1.7 × 10⁵	7.4 × 10 ⁻⁴	-12	1.6 × 10 ⁶		
300	5.0 × 10 ⁻⁴	-1	1.2 × 10 ⁶	5.3 × 10⁻⁵	-20	1.1 × 10 ⁵		

Figure S4. UV-Vis absorption spectra of P1:PC₇₁BM and P2:PC₇₁BM in solution and film.