Supporting Information

High-Efficiency Polymer Solar Cells with a Cost-Effective Quinoxaline Polymer through Nanoscale Morphology Control Induced by Practical Processing Additives

Yiho Kim,[‡] Hye Rim Yeom,[‡] Jin Young Kim*, and Changduk Yang*

Interdisciplinary School of Green Energy, KIER-UNIST Advanced Center for Energy, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea.

Table of Contents	Page number
• UV-Vis absorption spectra and cyclic voltammetry of TQ1	S2
• J-V characteristics of PSCs based on TQ1:PC71BM	\$3
• <i>J-V</i> characteristics and (b) IPCE of the inverted TQ1:PC ₇₁ BM PSCs	\$3
• Statistical data analysis of PCEs with the devices	S 3

Figure S1. (a) UV-Vis absorption spectra of TQ1 in dilute chloroform solution and thin films on glass plate. (b) Cyclic voltammograms of TQ1 in the films.

Figure S2. J-V characteristics of PSCs based on TQ1:PC71BM without or with various additives.

Figure S3. (a) *J*-*V* characteristics and (b) IPCE of the inverted TQ1:PC₇₁BM PSCs using Au. $J_{SC} = 9.40 \text{ mA/cm}^2$, $V_{OC} = 0.85 \text{ V}$, FF = 0.67, PCE = 5.35%.

Figure S4. Statistical data analysis of PCEs with the devices (TQ1:PC₇₁BM = 1:2 (w/w) with 5% CN).