Electronic Supporting Information (ESI) for

Improvement of dye-sensitized solar cells toward the broader light harvesting of solar spectrum †

Suresh Kannan Balasingam,^{‡a}Minoh Lee,^{‡a}Man Gu Kang^{*b} and Yongseok Jun^{*a}

^aInterdisciplinary School of Green Energy and KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea. Fax: +82-52-217-2909; Tel: +82-52-217-2919; E-mail: yjun@unist.ac.kr

^bAdvanced Solar Technology Research Team, Electronics and Telecommunications Research Institute (ETRI), Gajeongno 218, Yuseong, Daejeon, Republic of Korea. Fax: +82-42-860-6495;

Tel: +82-42-860-6817; E-mail: 10009kang@etri.re.kr

‡ These authors contributed equally to this work

Table1. List of the most efficient dyes tested in dye-sensitized solar cells. The bar chart representation is shown in the manuscript. (R- Ruthenium based dyes, O- Organic dyes and P- Porphyrin dyes).

No.	Compound	Wavelength (nm)	$\lambda max/nm$ ($\epsilon M^{-1} cm^{-1}$)	Jsc [mA/cm ²]	Voc [V]	FF	PCE [%]	Ref.
R1	HOOC HOOC S CeH13 CeH13 CeH13 CeH13 CeH13 CeH13	350~700	546(21700)	14.7	0.756	0.695	7.70	1
R2		350-750	550(18700)	18.28	0.749	0.772	10.57	2
R3	HOOC HOOC HOOC HOOC HOOC HOOC HOOC HOOC	350-800	424(16600) 519(12200)	21.6	0.714	0.652	10.05	3
R4		350-800	518(6500)	19.81	0.677	0.721	9.66	4

R5	HOOC NaOOC	350-800	550(18400)	18.09	0.748	0.744	10.06	5
R6	H CONTRACTOR	350-725	433(17500) 533(17400)	15.73	0.708	0.669	7.45	6
R7	HOOC	350-700	381(14700) 514(9600)	17.3	0.64	0.65	7.2	7
R8	SCN N N O	350-650	377(N/A), 505(N/A)	15.65	0.703	0.712	7.83	8
R9		350-700	418(27340) 525(15580)	18.32	0.68	0.72	9.03	9
R10	$\begin{array}{c} HOOC \\ NaOOC \\ S = C^{-N} \\ S \\ $	350-700	550(20500)	18.35	0.760	0.748	10.4	10
R11	HOOC HOOC N RU SCN SCN SCN SCN SCN	350~700	378(42600) 522(15640)	18.60	0.72	0.71	9.54	11

R12	HOOC HOOC HOOC HOOC HOOC HOOC HOOC HOOC	350~700	383(39500) 520(12600)	18.3	0.73	0.71	9.5	12
R13	HOOC HOOC HOOC HOOC HOOC HOOC HOOC HOOC	350~650	424(23400) 460(21900) 533(16400)	17.15	0.820	0.678	9.54	13
R14	HOOC $HOOC$	350~750	412(43000) 551(21900)	17.4	0.788	0.654	8.96	14
R15		350~650	391(19800), 527(18000)	19.63	0.74	0.72	10.39	15
R16	HOOC HOOC HOOC SCN K	350~800	556(11200)	20.8	0.72	0.71	10.7	16
R17	$C_{\theta}H_{13}$ $C_{\theta}H_{13}$	350~800	404(29000) 555(26000)	16.3	0.66	0.68	7.3	17
R18		350~750	421(29424) 540(13892)	16.21	0.71	0.70	8.01	18

R19	OH HO HO RU RU RU CH ₂) ₇ CH ₃	350~800	442(11000) 535(9000)	20.0	0.730	0.664	9.69	19
R20		350~750	397(16000) 539(17500)	11.83	0.778	0.78	7.25	20
R21	$HO - V - RU - N - RU - V - S - C_6H_{13}$	350~800	426(21956) 513(21890)	21.39	0.76	0.660	10.7	21
R22	HOOC N HOOC S-(2-hexylthiophene)	350-750	513(11568)	19.0	0.710	0.681	9.21	22
R23	HOOC HOOC S HOOC S HOOC S HOOC S COO'+N(C4H9)4	350~750	537(8005)	15.08	0.737	0.69	7.7	23
R24	HOOC S COOTNa ⁺	350~750	548(16000)	14.8	0.71	0.72	7.6	24

O13		350-620	514(18620)	14.05	0.66	0.75	7.0	40
O14	C_9H_{19} N C_9H_{19} C_9H_{19} C_9H_{19} C_9H_{19}	350-600	463(12614)	16.8	0.75	0.70	8.71	41
015	S C COOH	350-700	478(29300)	15.2	0.691	0.70	7.44	42
O16		350~500	420(42200)	15.58	0.787	0.67	8.22	43
017		350~700	506(29300)	13.79	0.77	0.72	7.64	44
O18		350~650	493(57500)	14.96	0.693	0.736	7.6	45
O19	COOH C _e H ₁₃	350~650	500(20300)	13.09	0.80	0.70	7.40	46
O20	N S S CN H ₃ CH ₂ C CH ₂ CH ₃	350~700	548(50000)	14.28	0.793	0.70	8	47
O21	H ₁ C (cH ₂) n H ₁ C	350~600	368(45090) 447(36630)	15.43	0.74	0.74	8.39	48

P4	$NC - \begin{pmatrix} C_{12}H_{25}O \\ C_{12$	350~750	465(390000) 670(110000)	11.3	0.680	0.70	5.5	57
Р5	$- \underbrace{\left(\begin{array}{c} + Bu \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	350~700	438(150000) 572(8000) 634(16000)	16.2	0.66	0.65	6.9	58

Compound	Wavelength (nm)	$\lambda max/nm$ ($\epsilon M^{-1}cm^{-1}$)	Jsc [mA/cm ²]	Voc [V]	FF	PCE [%]	Ref.
H_3C CH_3	350-500	401(74000)	9.56	0.71	0.756	5.13	59
HOOC NC S NC S NC S NC S NC S NC S NC S NC	350~600	384(134800) 463(90100)	10.8	0.690	0.61	4.54	60
	350-500	433(46100)	13.83	0.677	0.692	6.49	61
$HOOC - \begin{pmatrix} COO^{-1} N(C_4 H_5)_4 \\ F \\ $	350-750	426(24800) 563(23200)	15.8	0.66	0.73	7.6	62

Table 2. List of the efficient dyes tested in dye-sensitized solar cells

$F_{b} = DTS-Ph_{2}$	350~600	369(53500) 459(24100)	13.9	0.739	0.73	7.50	63
Print	350~850	284(33000) 369(12000) 493(7600)	13.2	0.761	0.77	7.8	64
CifPR (3) : R1 = H, R2 = methyl, R3 = 3,5-diffuorobenzyl	350~800	384(8800) 537(6000)	13.44	0.770	0.700	7.24	65
С ₆ H ₁₃ -О С ₆ H ₁₃ -О	350~600	472(21000)	15.5	0.697	0.65	7.02	66
Second Cool Cool Cool Cool Cool Cool Cool Coo	350~800	555(22400)	17.9	0.703	0.74	9.4	67

-C+ NZn COOH	350~700	415(199000) 563(14000) 615(9000)	13.1	0.72	0.69	6.5	68
$\begin{array}{c} Ar^2 \\ H \\ $	350~650	415(183700) 458(56200) 578(13600) 622(12600)	13.2	0.71	0.67	6.3	69
СN N-С)-С S-С)-СООН ;P	400-550	445(37400)	16.34	0.68	0.55	6.05	70
HO + + + + + + + + + + + + + + + + + + +	550-700	662(319000)	11.3	0.667	0.72	5.4	71
fBu Ar N Zn N- fBu Ar 5	400-500	448(19400) 601(8300) 654(29700)	13.60	0.701	0.629	6.0	72
	N/A	448(40500)	16.34	0.72	0.61	7.21	73

R_{r} R_{r	350~700	370(14600) 520(12400)	15.44	0.68	0.66	6.93	107
$\frac{NC}{Bu}$	350~600	358(24200) 464(44900)	15.5	0.543	0.67	5.65	108
H H H H H H H H H H H H H H H H H H H	350~630	496(45000)	14.6	0.70	0.76	7.8	109
$C_{\theta}H_{13} = O$ Br $G_{\theta}H_{13} = O$ $C_{\theta}H_{13} = O$ $C_{\theta}H_{13} = O$ $C_{\theta}H_{13} = O$ $C_{\theta}H_{13} = O$ $KS32$	350~600	355(29000) 472(22000)	11.9	0.713	0.67	5.68	110
NC COOH	N/A	555(55000)	10.90	0.860	0.69	6.5	111
$\int_{N-C} \int_{Z} \int_{Z} \int_{CN} \int_{CN} Z = Se: MK-49$	N/A	490(33400)	11.92	0.599	0.763	5.44	112
	350~550	429(21000)	7.12	0.939	0.781	5.22	113

HOOC NC S S S S S S S S S S S S S S S S S S	350~650	449(35300)	9.26	0.717	53.5	3.56	125
Соон SC-3	350~550	370(30000) 430(54000)	8.20	0.71	0.7	4.05	126
Bu Bu G F F F F F F F F F F F F F F F F F F	500~700	643(86200)	13.64	0.480	0.57	3.75	127
КМ-1	350-520	437(66700)	7.8	0.60	0.705	3.3	128
$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	350-600	359(41500) 510(46900)	9.32	0.659	0.69	4.21	129

соон	350~800	523(10023)	10.40	0.684	0.77	5.40	136
R^{1} R^{2} R^{2} $COOH$ $R^{1} = Ph_{2}N, R^{2} = CN (1)$	350~570	490(67000) 521(72000)	7.8	0.74	0.71	4.1	137
ноос- _{CN} 1 ⁵ - (S- 8	350~700	484(111900)	12.27	0.61	0.63	4.73	138
$EWG = (o \cdot NO_2Ph)$	350~700	416(37100)	9.91	0.58	0.70	4.05	139
HO HO 4b	350~470	400(23000)	9.40	0.660	0.65	4.03	140
H CTPAR2 S CTPAR2 S COOH	350~600	491(28702)	12.70	0.598	0.61	4.63	141

- 1. A. Anthonysamy, Y. Lee, B. Karunagaran, V. Ganapathy, S. W. Rhee, S. Karthikeyan, K. S. Kim, M. J. Ko, N. G. Park, M. J. Ju and J. K. Kim, *J. Mater. Chem.*, 2011, **21**, 12389.
- 2. Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao and P. Wang, J. Phys. Chem. C, 2009, 113, 6290.
- 3. B. S. Chen, K. Chen, Y. H. Hong, W. H. Liu, T. H. Li, C. H. Lai, P. T. Chou, Y. Chi and G. H. Lee, *Chem. Commun.*, 2009, 5844.
- 4. T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, K. Kasuga, Y. Kawanishi and H. Sugihara, *Chem. Lett.*, 2009, **38**, 62.
- 5. F. Gao, Y. Cheng, Q. Yu, S. Liu, D. Shi, Y. Li and P. Wang, *Inorg. Chem.*, 2009, 48, 2664.
- 6. S. R. Jang, J. H. Yum, C. Klein, K. J. Kim, P. Wagner, D. Officer, M. Grätzel and M. K. Nazeeruddin, *J. Phys. Chem. C*, 2009, **113**, 1998.
- Z. Jin, H. Masuda, N. Yamanaka, M. Minami, T. Nakamura and Y. Nishikitani, *Chem. Lett.*, 2009, 38, 44.
- Z. Jin, H. Masuda, N. Yamanaka, M. Minami, T. Nakamura and Y. Nishikitani, J. Phys. Chem. C, 2009, 113, 2618.
- 9. J. J. Kim, H. Choi, C. Kim, M. S. Kang, H. S. Kang and J. Ko, *Chem. Mater.*, 2009, **21**, 5719.
- 10. Q. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang and P. Wang, J. Phys. Chem. C, 2009, 113, 14559.
- 11. J. J. Kim, K. Lim, H. Choi, S. Fan, M. S. Kang, G. Gao, H. S. Kang and J. Ko, *Inorg. Chem.*, 2010, **49**, 8351.
- 12. J. F. Yin, J. G. Chen, Z. Z. Lu, K. C. Ho, H. C. Lin and K. L. Lu, *Chem. Mater.*, 2010, 22, 4392.
- K. L. Wu, H. C. Hsu, K. Chen, Y. Chi, M. W. Chung, W. H. Liu and P. T. Chou, *Chem. Commun.*, 2010, 46, 5124.
- J. Y. Li, C. Y. Chen, J. G. Chen, C. J. Tan, K. M. Lee, S. J. Wu, Y. L. Tung, H. H. Tsai, K. C. Ho and C. G. Wu, *J. Mater. Chem.*, 2010, 20, 7158.
- 15. J. J. Kim, H. Choi, S. Paek, C. Kim, K. Lim, M. J. Ju, H. S. Kang, M. S. Kang and J. Ko, *Inorg. Chem.*, 2011, **50**, 11340.
- 16. T. Funaki, H. Funakoshi, O. Kitao, N. Onozawa-Komatsuzaki, K. Kasuga, K. Sayama and H. Sugihara, *Angew. Chem., Int. Ed.*, 2012, **51**, 7528.
- 17. P. G. Bomben, T. J. Gordon, E. Schott and C. P. Berlinguette, Angew. Chem., Int. Ed., 2011, 50, 10682.
- 18. S. Q. Fan, C. Kim, B. Fang, K. X. Liao, G. J. Yang, C. J. Li, J. J. Kim and J. Ko, *J. Phys. Chem. C*, 2011, **115**, 7747.
- 19. W. C. Chang, H. S. Chen, T. Y. Li, N. M. Hsu, Y. S. Tingare, C. Y. Li, Y. C. Liu, C. Su and W. R. Li, *Angew. Chem., Int. Ed.*, 2010, **49**, 8161.
- 20. A. J. Hallett and J. E. Jones, *Dalton Trans.*, 2011, **40**, 3871.
- 21. C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, *Angew. Chem.*, *Int. Ed.*, 2011, **50**, 2054.
- 22. K. L. Wu, C. H. Li, Y. Chi, J. N. Clifford, L. Cabau, E. Palomares, Y. M. Cheng, H. A. Pan and P. T. Chou, *J. Am. Chem. Soc.*, 2012, **134**, 7488.
- 23. W. K. Huang, C. W. Cheng, S. M. Chang, Y. P. Lee and E. W. G. Diau, *Chem. Commun.*, 2010, **46**, 8992.
- 24. A. Mishra, N. Pootrakulchote, M. Wang, S. J. Moon, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, *Adv. Funct. Mater.*, 2011, **21**, 963.
- 25. S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, Angew. Chem., Int. Ed., 2011, 50, 8270.
- 26. M. Chandrasekharam, T. Suresh, S. P. Singh, B. Priyanka, K. Bhanuprakash, A. Islam, L. Han and M. Lakshmi Kantam, *Dalton Trans.*, 2012, **41**, 8770.
- 27. X. Zong, M. Liang, C. Fan, K. Tang, G. Li, Z. Sun and S. Xue, J. Phys. Chem. C, 2012, 116, 11241.
- 28. H. Choi, I. Raabe, D. Kim, F. Teocoli, C. Kim, K. Song, J. H. Yum, J. Ko, M. K. Nazeeruddin and M. Grätzel, *Chem. Eur. J.*, 2010, **16**, 1193.
- 29. C. Baik, D. Kim, M. S. Kang, K. Song, S. O. Kang and J. Ko, *Tetrahedron*, 2009, 65, 5302.
- 30. D. Kim, K. Song, M. S. Kang, J. W. Lee, S. O. Kang and J. Ko, *J. Photochem. Photobiol.*, *A*, 2009, **201**, 102.
- 31. R. Li, X. Lv, D. Shi, D. Zhou, Y. Cheng, G. Zhang and P. Wang, J. Phys. Chem. C, 2009, 113, 7469.

- 32. J. T. Lin, P. C. Chen, Y. S. Yen, Y. C. Hsu, H. H. Chou and M. C. P. Yeh, Org. Lett., 2009, 11, 97.
- 33. B. Liu, W. Zhu, Q. Zhang, W. Wu, M. Xu, Z. Ning, Y. Xie and H. Tian, *Chem. Commun.*, 2009, 1766.
- 34. M. Xu, S. Wenger, H. Bala, D. Shi, R. Li, Y. Zhou, S. M. Zakeeruddin, M. Grätzel and P. Wang, *J. Phys. Chem. C*, 2009, **113**, 2966.
- 35. J. H. Yum, D. P. Hagberg, S. J. Moon, K. M. Karlsson, T. Marinado, L. Sun, A. Hagfeldt, M. K. Nazeeruddin and M. Grätzel, *Angew. Chem., Int. Ed.*, 2009, **48**, 1576.
- 36. X. H. Zhang, Z. S. Wang, Y. Cui, N. Koumura, A. Furube and K. Hara, *J. Phys. Chem. C*, 2009, **113**, 13409.
- 37. S. Paek, H. Choi, H. Choi, C. W. Lee, M. S. Kang, K. Song, M. K. Nazeeruddin and J. Ko, *J. Phys. Chem. C*, 2010, **114**, 14646.
- 38. S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian and L. Han, Chem. Commun., 2012, 48, 6972.
- 39. K. Guo, K. Yan, X. Lu, Y. Qiu, Z. Liu, J. Sun, F. Yan, W. Guo and S. Yang, Org. Lett., 2012, 14, 2214.
- 40. Y. Hao, X. Yang, J. Cong, A. Hagfeldt and L. Sun, *Tetrahedron*, 2012, **68**, 552.
- 41. K. Do, D. Kim, N. Cho, S. Paek, K. Song and J. Ko, Org. Lett., 2012, 14, 222.
- 42. M. Marszalek, S. Nagane, A. Ichake, R. Humphry-Baker, V. Paul, S. M. Zakeeruddin and M. Grätzel, *J. Mater. Chem.*, 2012, **22**, 889.
- B. S. Chen, D. Y. Chen, C. L. Chen, C. W. Hsu, H. C. Hsu, K. L. Wu, S. H. Liu, P. T. Chou and Y. Chi, J. Mater. Chem., 2011, 21, 1937.
- 44. L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, C. C. Wu, S. H. Chou, F. Lin, S. H. Chen and A. I. Tsai, *J. Mater. Chem.*, 2011, **21**, 5950.
- W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, *Chem. Mater.*, 2010, 22, 1915.
- K. M. Karlsson, X. Jiang, S. K. Eriksson, E. Gabrielsson, H. Rensmo, A. Hagfeldt and L. Sun, *Chem. Eur. J.*, 2011, 17, 6415.
- 47. D. Zhou, N. Cai, H. Long, M. Zhang, Y. Wang and P. Wang, J. Phys. Chem. C, 2011, 115, 3163.
- 48. S. Kim, D. Kim, H. Choi, M. S. Kang, K. Song, S. O. Kang and J. Ko, Chem. Commun., 2008, 4951.
- 49. J. J. Kim, H. Choi, J. W. Lee, M. S. Kang, K. Song, S. O. Kang and J. Ko, *J. Mater. Chem.*, 2008, **18**, 5223.
- 50. G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and P. Wang, *Chem. Commun.*, 2009, 2198.
- 51. M. Xu, D. Zhou, N. Cai, J. Liu, R. Li and P. Wang, *Energy Environ. Sci.*, 2011, 4, 4735.
- 52. H. Tian, X. Yang, J. Cong, R. Chen, J. Liu, Y. Hao, A. Hagfeldt and L. Sun, *Chem. Commun.*, 2009, 6288.
- 53. H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt and L. Sun, Chem. Commun., 2007, 3741.
- 54. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, *Science*, 2011, **334**, 629.
- 55. C. P. Hsieh, H. P. Lu, C. L. Chiu, C. W. Lee, S. H. Chuang, C. L. Mai, W. N. Yen, S. J. Hsu, E. W. G. Diau and C. Y. Yeh, *J. Mater. Chem.*, 2010, **20**, 1127.
- 56. C. F. Lo, S. J. Hsu, C. L. Wang, Y. H. Cheng, H. P. Lu, E. W. G. Diau and C. Y. Lin, *J. Phys. Chem. C*, 2010, **114**, 12018.
- 57. C. Y. Lee, C. She, N. C. Jeong and J. T. Hupp, Chem. Commun., 2010, 46, 6090.
- 58. S. Mathew, H. Iijima, Y. Toude, T. Umeyama, Y. Matano, S. Ito, N. V. Tkachenko, H. Lemmetyinen and H. Imahori, *J. Phys. Chem. C*, 2011, **115**, 14415.
- H. Chen, H. Huang, X. Huang, J. N. Clifford, A. Forneli, E. Palomares, X. Zheng, L. Zheng, X. Wang, P. Shen, B. Zhao and S. Tan, *J. Phys. Chem. C*, 2010, **114**, 3280.
- 60. L. Zhang, Y. Liu, Z. Wang, M. Liang, Z. Sun and S. Xue, *Tetrahedron*, 2010, 66, 3318.
- 61. H. Im, S. Kim, C. Park, S. H. Jang, C. J. Kim, K. Kim, N. G. Park and C. Kim, *Chem. Commun.*, 2010, **46**, 1335.
- 62. A. Mishra, N. Pootrakulchote, M. K. R. Fischer, C. Klein, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Bäuerle and M. Grätzel, *Chem. Commun.*, 2009, 7146.
- 63. S. Ko, H. Choi, M. S. Kang, H. Hwang, H. Ji, J. Kim, J. Ko and Y. Kang, *J. Mater. Chem.*, 2010, **20**, 2391.

- 64. I. Stengel, A. Mishra, N. Pootrakulchote, S. J. Moon, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, *J. Mater. Chem.*, 2011, **21**, 3726.
- 65. H. S. Chen, W. C. Chang, C. Su, T. Y. Li, N. M. Hsu, Y. S. Tingare, C. Y. Li, J. H. Shie and W. R. Li, *Dalton Trans.*, 2011, **40**, 6765.
- H. Han, M. Liang, K. Tang, X. Cheng, X. Zong, Z. Sun and S. Xue, J. Photochem. Photobiol., A, 2011, 225, 8.
- 67. C. Y. Chen, N. Pootrakulchote, T. H. Hung, C. J. Tan, H. H. Tsai, S. M. Zakeeruddin, C. G. Wu and M. Grätzel, *J. Phys. Chem. C*, 2011, **115**, 20043.
- 68. H. Imahori, Y. Matsubara, H. Iijima, T. Umeyama, Y. Matano, S. Ito, M. Niemi, N. V. Tkachenko and H. Lemmetyinen, *J. Phys. Chem. C*, 2010, **114**, 10656.
- 69. A. Kira, Y. Matsubara, H. Iijima, T. Umeyama, Y. Matano, S. Ito, M. Niemi, N. V. Tkachenko, H. Lemmetyinen and H. Imahori, *J. Phys. Chem. C*, 2010, **114**, 11293.
- 70. Y. J. Chang and T. J. Chow, *Tetrahedron*, 2009, **65**, 9626.
- 71. T. Geiger, S. Kuster, J. H. Yum, S. J. Moon, M. K. Nazeeruddin, M. Grätzel and F. Nüesch, *Adv. Funct. Mater.*, 2009, **19**, 2720.
- 72. C. W. Lee, H. P. Lu, C. M. Lan, Y. L. Huang, Y. R. Liang, W. N. Yen, Y. C. Liu, Y. S. Lin, E. W. G. Diau and C. Y. Yeh, *Chem. Eur. J.*, 2009, **15**, 1403.
- 73. Q. Li, L. Lu, C. Zhong, J. Huang, Q. Huang, J. Shi, X. Jin, T. Peng, J. Qin and Z. Li, *Chem. Eur. J.*, 2009, **15**, 9664.
- 74. J. Pei, S. Peng, J. Shi, Y. Liang, Z. Tao, J. Liang and J. Chen, J. Power Sources, 2009, 187, 620.
- 75. H. Y. Yang, Y. S. Yen, Y. C. Hsu, H. H. Chou and J. T. Lin, Org. Lett., 2010, 12, 16.
- 76. M. K. R. Fischer, S. Wenger, M. Wang, A. Mishra, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, *Chem. Mater.*, 2010, **22**, 1836.
- C. Teng, X. Yang, C. Yang, H. Tian, S. Li, X. Wang, A. Hagfeldt and L. Sun, *J. Phys. Chem. C*, 2010, 114, 11305.
- 78. C. Teng, X. Yang, C. Yang, S. Li, M. Cheng, A. Hagfeldt and L. Sun, J. Phys. Chem. C, 2010, **114**, 9101.
- 79. Z. M. Tang, T. Lei, K. J. Jiang, Y. L. Song and J. Pei, *Chem. Asian J.*, 2010, 5, 1911.
- 80. J. A. Mikroyannidis, M. S. Roy and G. D. Sharma, J. Power Sources, 2010, 195, 5391.
- 81. J. A. Mikroyannidis, A. Kabanakis, P. Balraju and G. D. Sharma, J. Phys. Chem. C, 2010, 114, 12355.
- 82. Z. Kong, H. Zhou, J. Cui, T. Ma, X. Yang and L. Sun, J. Photochem. Photobiol., A, 2010, 213, 152.
- 83. H. H. Chou, C. Y. Hsu, Y. C. Hsu, Y. S. Lin, J. T. Lin and C. Tsai, *Tetrahedron*, 2012, 68, 767.
- 84. W. Lee, Y. Yang, N. Cho, J. Ko and J. I. Hong, Tetrahedron, 2012, 68, 5590.
- H. H. Chou, Y. C. Chen, H. J. Huang, T. H. Lee, J. T. Lin, C. Tsai and K. Chen, *J. Mater. Chem.*, 2012, 22, 10929.
- 86. Y. J. Chang, P. T. Chou, S. Y. Lin, M. Watanabe, Z. Q. Liu, J. L. Lin, K. Y. Chen, S. S. Sun, C. Y. Liu and T. J. Chow, *Chem. Asian J.*, 2012, **7**, 572.
- M. D. Zhang, H. Pan, X. H. Ju, Y. J. Ji, L. Qin, H. G. Zheng and X. F. Zhou, *Phys. Chem. Chem. Phys.*, 2012, 14, 2809.
- W. S. Han, J. K. Han, H. Y. Kim, M. J. Choi, Y. S. Kang, C. Pac and S. O. Kang, *Inorg. Chem.*, 2011, 50, 3271.
- C. Kim, H. Choi, S. Paek, J. J. Kim, K. Song, M. S. Kang and J. Ko, *J. Photochem. Photobiol.*, *A*, 2011, 225, 17.
- 90. H. Lai, J. Hong, P. Liu, C. Yuan, Y. Li and Q. Fang, *RSC Advances*, 2012, 2, 2427.
- 91. S. Franco, J. Garín, N. Martínez De Baroja, R. Pérez-Tejada, J. Orduna, Y. Yu and M. Lira-Cantú, *Org. Lett.*, 2012, **14**, 752.
- 92. W. Lee, N. Cho, J. Kwon, J. Ko and J. I. Hong, Chem. Asian J., 2012, 7, 343.
- 93. B. Liu, R. Wang, W. Mi, X. Li and H. Yu, J. Mater. Chem., 2012, 22, 15379.
- 94. S. Higashijima, Y. Inoue, H. Miura, Y. Kubota, K. Funabiki, T. Yoshida and M. Matsui, *RSC Advances*, 2012, **2**, 2721.
- 95. C. J. Yang, Y. J. Chang, M. Watanabe, Y. S. Hon and T. J. Chow, J. Mater. Chem., 2012, 22, 4040.

- 96. V. Tamilavan, N. Cho, C. Kim, J. Ko and M. H. Hyun, *Tetrahedron*, 2012, **68**, 5890.
- Y. C. Chen, H. H. Chou, M. C. Tsai, S. Y. Chen, J. T. Lin, C. F. Yao and K. Chen, *Chem. Eur. J.*, 2012, 18, 5430.
- 98. J. He, W. Wu, J. Hua, Y. Jiang, S. Qu, J. Li, Y. Long and H. Tian, J. Mater. Chem., 2011, 21, 6054.
- Q. Y. Yu, J. Y. Liao, S. M. Zhou, Y. Shen, J. M. Liu, D. B. Kuang and C. Y. Su, J. Phys. Chem. C, 2011, 115, 22002.
- 100. H. Zhou, P. Xue, Y. Zhang, X. Zhao, J. Jia, X. Zhang, X. Liu and R. Lu, *Tetrahedron*, 2011, 67, 8477.
- 101. Y. S. Yen, Y. C. Chen, Y. C. Hsu, H. H. Chou, J. T. Lin and D. J. Yin, *Chem. Eur. J.*, 2011, **17**, 6781.
- 102. Y. Shi, R. B. M. Hill, J. H. Yum, A. Dualeh, S. Barlow, M. Grätzel, S. R. Marder and M. K. Nazeeruddin, *Angew. Chem., Int. Ed.*, 2011, **50**, 6619.
- 103. S. Higashijima, H. Miura, T. Fujita, Y. Kubota, K. Funabiki, T. Yoshida and M. Matsui, *Tetrahedron*, 2011, **67**, 6289.
- 104. X. Jiang, K. M. Karlsson, E. Gabrielsson, E. M. J. Johansson, M. Quintana, M. Karlsson, L. Sun, G. Boschloo and A. Hagfeldt, *Adv. Funct. Mater.*, 2011, 21, 2944.
- 105. D. W. Chang, H. J. Lee, J. H. Kim, S. Y. Park, S. M. Park, L. Dai and J. B. Baek, *Org. Lett.*, 2011, **13**, 3880.
- 106. E. Kozma, I. Concina, A. Braga, L. Borgese, L. E. Depero, A. Vomiero, G. Sberveglieri and M. Catellani, *J. Mater. Chem.*, 2011, **21**, 13785.
- 107. N. Lu, J. S. Shing, W. H. Tu, Y. C. Hsu and J. T. Lin, *Inorg. Chem.*, 2011, **50**, 4289.
- 108. D. Kumar, K. R. J. Thomas, C. P. Lee and K. C. Ho, Org. Lett., 2011, 13, 2622.
- 109. X. H. Zhang, Y. Cui, R. Katoh, N. Koumura and K. Hara, J. Phys. Chem. C, 2010, 114, 18283.
- 110. X. Hao, M. Liang, X. Cheng, X. Pian, Z. Sun and S. Xue, Org. Lett., 2011, 13, 5424.
- N. Cai, S. J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, *Nano Lett.*, 2011, 11, 1452.
- 112. S. Tamba, R. Fujii, A. Mori, K. Hara and N. Koumura, *Chem. Lett.*, 2011, 40, 922.
- 113. C. Teng, X. Yang, S. Li, M. Cheng, A. Hagfeldt, L. Z. Wu and L. Sun, Chem. Eur. J., 2010, 16, 13127.
- 114. W. Wu, J. Yang, J. Hua, J. Tang, L. Zhang, Y. Long and H. Tian, *J. Mater. Chem.*, 2010, **20**, 1772.
- 115. C. Baik, D. Kim, M. S. Kang, S. O. Kang, J. Ko, M. K. Nazeeruddin and M. Grätzel, *J. Photochem. Photobiol.*, *A*, 2009, **201**, 168.
- U. B. Cappel, M. H. Karlsson, N. G. Pschirer, F. Eickemeyer, J. Schöneboom, P. Erk, G. Boschloo and A. Hagfeldt, J. Phys. Chem. C, 2009, 113, 14595.
- 117. G. Li, Y. F. Zhou, X. B. Cao, P. Bao, K. J. Jiang, Y. Lin and L. M. Yang, Chem. Commun., 2009, 2201.
- 118. C. H. Yang, H. L. Chen, Y. Y. Chuang, C. G. Wu, C. P. Chen, S. H. Liao and T. L. Wang, J. Power Sources, 2009, 188, 627.
- D. Heredia, J. Natera, M. Gervaldo, L. Otero, F. Fungo, C. Y. Lin and K. T. Wong, *Org. Lett.*, 2010, **12**, 12.
- 120. D. Y. Chen, Y. Y. Hsu, H. C. Hsu, B. S. Chen, Y. T. Lee, H. Fu, M. W. Chung, S. H. Liu, H. C. Chen, Y. Chi and P. T. Chou, *Chem. Commun.*, 2010, **46**, 5256.
- 121. H. Choi, J. J. Kim, K. Song, J. Ko, M. K. Nazeeruddin and M. Grätzel, J. Mater. Chem., 2010, 20, 3280.
- M. Wang, S. J. Moon, D. Zhou, F. Le Formal, N. L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, P. Wang, S. M. Zakeeruddin and M. Grätzel, *Adv. Funct. Mater.*, 2010, 20, 1821.
- 123. M. Matsui, Y. Asamura, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida and H. Miura, *Tetrahedron*, 2010, **66**, 7405.
- 124. Y. J. Chang, M. Watanabe, P. T. Chou and T. J. Chow, *Chem. Commun.*, 2012, 48, 726.
- 125. Y. S. Kwon, J. Lim, I. Song, I. Y. Song, W. S. Shin, S. J. Moon and T. Park, *J. Mater. Chem.*, 2012, **22**, 8641.
- 126. S. Chaurasia, Y. C. Chen, H. H. Chou, Y. S. Wen and J. T. Lin, *Tetrahedron*, 2012, 68, 7755.
- 127. K. Funabiki, H. Mase, Y. Saito, A. Otsuka, A. Hibino, N. Tanaka, H. Miura, Y. Himori, T. Yoshida, Y. Kubota and M. Matsui, *Org. Lett.*, 2012, **14**, 1246.
- 128. M. Katono, T. Bessho, S. Meng, R. Humphry-Baker, G. Rothenberger, S. M. Zakeeruddin, E. Kaxiras and M. Grätzel, *Langmuir*, 2011, **27**, 14248.

- W. Wu, J. Zhang, H. Yang, B. Jin, Y. Hu, J. Hua, C. Jing, Y. Long and H. Tian, J. Mater. Chem., 2012, 22, 5382.
- 130. T. Duan, K. Fan, C. Zhong, T. Peng, J. Qin and X. Chen, *RSC Advances*, 2012, **2**, 7081.
- 131. H. Kisserwan, A. Kamar, T. Shoker and T. H. Ghaddar, *Dalton Trans.*, 2012, **41**, 10643.
- 132. D. Cao, J. Peng, Y. Hong, X. Fang, L. Wang and H. Meier, Org. Lett., 2011, 13, 1610.
- 133. J. A. Mikroyannidis, D. V. Tsagkournos, P. Balraju and G. D. Sharma, J. Power Sources, 2011, 196, 4152.
- 134. Y. D. Lin, C. T. Chien, S. Y. Lin, H. H. Chang, C. Y. Liu and T. J. Chow, *J. Photochem. Photobiol.*, *A*, 2011, **222**, 192.
- 135. B. Liu, W. Wu, X. Li, L. Li, S. Guo, X. Wei, W. Zhu and Q. Liu, *Phys. Chem. Chem. Phys.*, 2011, **13**, 8985.
- L. Giribabu, T. Bessho, M. Srinivasu, C. Vijaykumar, Y. Soujanya, V. G. Reddy, P. Y. Reddy, J. H. Yum, M. Grätzel and M. K. Nazeeruddin, *Dalton Trans.*, 2011, 40, 4497.
- 137. X. Yang, J. K. Fang, Y. Suzuma, F. Xu, A. Orita, J. Otera, S. Kajiyama, N. Koumura and K. Hara, *Chem. Lett.*, 2011, **40**, 620.
- 138. D. Sahu, H. Padhy, D. Patra, J. F. Yin, Y. C. Hsu, J. T. Lin, K. L. Lu, K. H. Wei and H. C. Lin, *Tetrahedron*, 2011, **67**, 303.
- 139. Y. Numata, I. Ashraful, Y. Shirai and L. Han, Chem. Commun., 2011, 47, 6159.
- 140. K. F. Chen, C. W. Chang, J. L. Lin, Y. C. Hsu, M. C. P. Yeh, C. P. Hsu and S. S. Sun, *Chem. Eur. J.*, 2010, **16**, 12873.
- 141. C. H. Yang, S. H. Liao, Y. K. Sun, Y. Y. Chuang, T. L. Wang, Y. T. Shieh and W. C. Lin, *J. Phys. Chem. C*, 2010, **114**, 21786.
- 142. D. Kim, M. S. Kang, K. Song, S. O. Kang and J. Ko, *Tetrahedron*, 2008, 64, 10417.
- 143. S. Paek, H. Choi, C. Kim, N. Cho, S. So, K. Song, M. K. Nazeeruddin and J. Ko, *Chem. Commun.*, 2011, **47**, 2874.
- 144. H. Choi, C. Baik, S. O. Kang, J. Ko, M. S. Kang, M. K. Nazeeruddin and M. Grätzel, *Angew. Chem.*, *Int. Ed.*, 2008, **47**, 327.
- 145. M. Xu, M. Zhang, M. Pastore, R. Li, F. De Angelis and P. Wang, *Chem. Sci.*, 2012, **3**, 976.
- 146. M. Wang, M. Xu, D. Shi, R. Li, F. Gao, G. Zhang, Z. Yi, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, *Adv. Mater.*, 2008, **20**, 4460.
- 147. G. Zhang, Y. Bai, R. Li, D. Shi, S. Wenger, S. M. Zakeeruddin, M. Grätzel and P. Wang, *Energy Environ. Sci.*, 2009, **2**, 92.
- 148. Y. Hao, X. Yang, M. Zhou, J. Cong, X. Wang, A. Hagfeldt and L. Sun, *ChemSusChem*, 2011, 4, 1601.
- H. Tian, X. Yang, J. Cong, R. Chen, C. Teng, J. Liu, Y. Hao, L. Wang and L. Sun, *Dyes Pigm.*, 2010, 84, 62.