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Abstract

We develop Double Truncation Method(DTM) to understand the stochasticity of

chemical reaction network on the mesoscopic scale. The Chemical Master Equa-

tion(CME) describes the probability distribution of the system accurately under the

markov assumption. But solving CME is computationally heavy. It faces the curse

of dimensionality because it considers reactions on every different states. To settle

the issue, stochastic approach came out, typically Gillspie’s stochastic simulation

algorithm(SSA). SSA lifts the curse of dimensionality, but it needs too many re-

alizations, which makes it less practical, in cases of the system consisting of large

numbers of molecules or very different time scale reactions.

A recently developed Probability Generating Function(PGF) method supplements

those weaknesses. It is a deterministic description and sparks the reactions in stead

of considering those for all the states. By doing that, though it expresses the system

efficiently, but it implements the symbolic computation and converges still slowly.

So here we suggest DTM to speed up.

As suggested from the name, DTM has two truncations for time and for coefficients

based on PGF method. We perform the first truncation for a short time and second

truncation for small coefficients at each time step. First truncation or superim-

position can be performed underlying the power series expansion on time. And

next truncation can be conducted with the elimination of relatively small coefficient

terms. Since the coefficient of PGF means the probability of a specific state, the

sum of coefficient can be understood as an weight for the system. This observation

enables us to ignore a great deal of small terms which do not affect the system signif-

icantly. The method is procedurally simple and powerful, especially for mesoscopic

scale problems. It works well even for open systems, such as brusselator.

We apply the method to simulation of binding reactions, enzyme kinetics, transi-

tion model and brusselator and compare the results with those of SSA or matrix

exponential.
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I

Introduction

We want to keep track of the probability distribution of the states in a chemical reaction net-

work. The network simulates real world chemical system by formulating the reactant, reaction

and product. Deterministic description with the information of molecules’ position and velocity

requires a heavy computational load in most cases. So one classify the the states according

to the numbers of each type of molecules and consider the stochastic dynamics in the discrete

state space.[1]

The probability of a state is determined based on the law of mass action, which is an under-

lying hypothesis from chemical kinetics.[2] It states that the speed of a chemical reaction is

proportional to the amount of the reactants. The reaction speed is correspondence with the

probability here. For a uni-molecular reaction, it is assumed that the probability is proportional

to the number of the reacting substance. Physically, least condition above bimolecular reaction

is a collision of reactants. So it is assumed that the probability is proportional to the number

of encountering cases.[3]

The probability distribution can be understood as the solution of Chemical Master Equation(CME)[1,

3, 8, 10]. Under the markov assumption, CME is represented by

dp(n, t)

dt
=
∑

(ak(n− Vk)p(n− Vk, t)− ak(n)p(n, t))

where p(n, t) denotes the probability of the state n = (n1, · · · , ns) at time t, ak(n) denotes

the propensity function for k-th reaction, Vk denotes the k-th column of V , and V means the

stoichiometric matrix. However it is very difficult to solve CME analytically or numerically

because of the curse of dimensionality. Since CME describes every transition among all the

different states, its dimension is as high as the number of possible states, which is mostly large.

There came out some methods lifting the curse of dimensionality, such as Gillespie’s Stochastic

Simulation Algorithm(SSA) or tau leaping method[3, 4]. Those methods are based on Monte-

carlo type simulation. SSA is exact but time-consuming. It needs too many realizations in case
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of a system entangled with the fast and slow reactions because the two independent random

variables do not efficiently reflect the relation between reaction and time. To speed up, in tau

leaping method, the time interval τ and the propensity function are fixed. The method has

one random variable to determine the number of reactions following the Poisson distribution

for [t, t + τ). It is faster than SSA, but still not enough. Because leap condition is limited to

the fastest reaction, one cannot perform it as fast as one wishes.

On the other hand, we focus on the mesoscopic scale systems because huge system is relatively

easy to predict[3]. In a macroscopic view, deterministic Reaction Rate Equation(RRE) approx-

imates to CME. Because the time to the next reaction is short, the discrete stochastic process

becomes continuous. This enables us to describe the system as a set of coupled ODEs with a

few variables and get the results easily. So we consider mesoscopic scale system. Even for the

mesoscopic system, it is not easy to get the results with the introduced conventional methods.

Recently developed Probability Generating Function(PGF) method[6, 7, 9] can make up for the

weak points. The method is based on a deterministic approach and triggers reactions at every

infinitesimal time step without considering all transitions on every different state unlike CME.

Though it entails symbolic computations, PGF expresses n state vectors with n terms, whereas

CME needs n×n terms. In addition, PGF is procedurally simple and gives us an intuitive point

of view on the system. Introducing PGF, one can convert CME into a partial differential equa-

tion(PDE), say, PGF-PDE. Otherwise, PGF-PDE can be derived from the chemical equation

easily. Because of the lack of the boundary conditions, we cannot use the conventional schemes

like the finite difference method. In stead, we find a semi-analytic solution using power series

expansion. Since it converges too slowly, we suggest the Double Truncation Method(DTM).

DTM has two truncations based on the physical meaning of PGF for time and small coeffi-

cients. The first truncation can be performed based on power series expansion. The truncation

order means the maximum number of reactions during the given time interval. For the second

truncation, we remove the small coefficient terms because those imply rare events. Since the

coefficient means the probability of the state from the definition of PGF, the sum of small co-

efficient can be seen as an weight for the system. Under the markov assumption, the reactions

are independent, so it does not affect the system significantly when it is very small.

An outline is as follows; Section 2 gives a mathematical background of a CME. In section 3, the

details of PGF method and derivation of PGF-PDE are written. In section 4, we present the

DTM here. In section 5, we show the simulation results. We apply the method to simulation of

binding reactions, enzyme kinetics, G2/M transition, and brusselator and compare the results

with those of SSA or matrix exponential. Section 6 is a conclusion.
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II

Chemical Master Equation

Chemical master equation(CME) is the governing equation for probability distribution of the

states in a chemical reaction system. With the distribution, the interesting stochastic figures can

be easily computed including mean and variance. There are some assumptions for CME.[1, 8, 10]

2.1 Backgrounds

It is assumed that the molecules are uniformly distributed at a fixed temperature in a control

volume. There are A different types of molecules z1, · · · , zA, and these chemical species may

participate in B different types of reactions R1, · · · , RB.

The standard of the classification for the states is the number of chemical species. Each element

means the number of each type of molecules. A state vector is denoted by n, where n =

(n1, · · · , nA). The i-th element ni is the number of zi. With the spatial information such as

all molecules’ position and velocity, one can take the deterministic description. But in most

cases, a deterministic approach is computationally heavy and very expensive. To simplify the

situation, we classify the states and follow their probability. This stochastic description gives

us a valid result as long as the system is spatially homogeneous.

To describe the state-change, we introduce a stoichiometric matrix V . It considers relative

quantities of the state vectors after reactions. The matrix is defined as a column-wise sense.

After k-th reaction, the state n changes into n+ Vk. (j, k)th element of V means the change of

the number of zj after k-th reaction. Sign convention is positive for products, and negative for

reactants.

We describe the chemical reaction system under the markov assumption. A stochastic process

N is a collection of random variables {N(t), t ∈ T}. N(t) denotes the state space and N =

{n0,n1, · · · ,n}. T is the (time) index set of the stochastic process and T = {t0, t1, · · · , t}. If

the conditional probability distribution of future states is determined depending on the current

3



2.1 Backgrounds

state, that is,

p(N(t) = ni | N(ti−1) = ni−1, · · · , N(t0) = n0) = p(N(t) = ni | N(ti−1) = ni−1)

for all t ∈ T and all n ∈ N, then we say the stochastic process is under the markov assumption.

We denote p(N(t) = ni) as the probability that the state is ni at time t. .

Propensity function, denoted by aj(n) for a state n, determines the probability in the system.

The probability of reaction j taking place in the infinitesimal time dt is given by aj(n)dt. In

1864, Peter Waage and Cato Guldberg discovered the law of mass kinetics that the speed of a

chemical reaction is depending on the numbers of the reactants. The law is the basis of chemical

kinetics and gives us a strong physical assumption. The reaction speed corresponds to the

probability for a reaction. So the propensity function for uni-molecular reaction is proportional

to the number of reactant. For the above bimolecular reaction is proportional to the number of

cases of a collision. Because two molecules react when they encounter. The reaction constant

is a inherent value and means that every encounter does not come to a reaction.

Let us take an example.

z1 + z2
c1→ z3

The propensity function for this reaction is given by

a1(n) = c1n1n2

where c1 is a reaction constant.

Propensity function for reaction k is denoted ak(n) for a state n a time t. Then the probability

is given by

P (n | Rk) = ak(n− Vk)dt, 0 ≤ k ≤ B.

where P (n | Rk) means the probability that n occurs, when Rk happens. By the law of total

probability

P (n) =

B∑
j=0

P (n | Rk)P (Rk),

then we find that

p(x, t+ dt)− p(x, t)
dt

=
B∑
j=1

(ak(n− Vk)p(n− Vk, t)− ak(n)p(n, t)).

By letting dt approach to 0, we derive the CME as following.

dp(n, t)

dt
=

B∑
j=1

(ak(n− Vk)p(n− Vk, t)− ak(n)p(n, t)).

4



2.2 Chemical Master Equation

All types of reaction can be separated by a series of elementary reactions. Elementary reaction

is an unimolecular or bimolecular reaction. Unimolecular.

zi → ∅, zi → zj , · · ·

Bimolecular.

zi + zj → ∅, zi + zj → zk, · · ·

For example, let us consider the trimolecular reaction.

zi + zj + zk → zl + zm ⇒

{
zi + zj → zij

zij + zk → zl + zm

Let us consider the reversible reaction.

zi + zj ↔ zk ⇒

{
zi + zj → zk

zk → zi + zj

If there exists a reaction with catalyst a, the catalyst can be the reactant and the product at

the same time like following.

a→ a+ zi.

It there is no molecule, the reaction never happens. Under this observation, we focus on the

elementary reaction.

2.2 Chemical Master Equation

Under the markov assumption, the Chemical Master Equation(CME) is a linear coupled system

of ODEs as follows.

dp(n, t)

dt
=
∑

(ak(n− Vk)p(n− Vk, t)− ak(n)p(n, t))

CME can be simply expressed as

dp(n, t)

dt
= Kp(n, t).

For closed reaction systems, the probability function p(n, t) has an analytic solution,

p(n, t) = eKtp(0).

5



2.3 Stochastic Simulations

But in most cases, though it is mesoscopic scale, CME is very difficult to solve because of the

curse of dimensionality. To avoid that, there have been some attempts based on the stochastic

simulations.

2.3 Stochastic Simulations

2.3.1 Stochastic Simulation Algorithm

Gillespie’s Stochastic Simulation Algorithm(SSA) is not suffering from the high dimensionality,

but still it has some problems. To explain SSA, we need two different probability quantities,

which denote P0(τ | x, t), and p(τ, j | x, t) where x denotes state and t time.[3, 4]

First, P0(τ | x, t) is the probability that no reaction occurs over [t, t+ τ). So from the definition

of propensity function,

P0(τ + δτ | x, t) = P0(τ | x, t)(1−
B∑
k=1

ak(x)dτ).

Then,
P0(τ + δτ | x, t)− P0(τ | x, t)

dτ
= −asum(x)P0(τ, x, t)

where asum(x) :=
∑B

k=1 ak(x). So we can solve this ODE, and its solution is

P0(τ, x, t) = e−asum(x)τ .

Second, p(τ, j | x, t) is the joint probability that the next reaction will be the jth reaction and

will occur in the time interval [t+τ, t+τ +dτ). Then using the definitions of P0 and propensity

function,

p(τ, j | x, t)dτ = P0(τ | x, t)aj(x)dτ.

So if we substitute it with above solution, we get

p(τ, j | x, t) = aj(x)e−asum(x)τ .

It can be rewritten as

p(τ, j | x, t) =
aj(x)

asum(x)
asum(x)e−asum(x)τ .

The joint probability density function p(τ, j | x, t) is the product of two individual density

functions. The first term aj(x)/asum(x) relates to the next reaction index. And the second

term asum(x)e−asum(x)τ corresponds to the time until next reaction. It suggests that the time

random variable has an continuous exponential distribution. So from two uniformly distributed

6



2.3 Stochastic Simulations

random numbers, we take

τ =
1

a0(x)
ln(

1

r1
)

j = the smallest integer satisfying

j∑
j′=1

aj′(x) > r2a0(x)

. The algorithm is as follows. Evaluate every propensity function for a state x(t) and their

sum. Generate two random numbers to determine the next reaction j and the time to the next

reaction τ . Finally, update the state vectors along with jth reaction, and t to t + τ . Iterate

this from the beginning. Though SSA is exact, but in cases of the system consisting of very

different time scale reactions or large numbers of molecules, it converges too slowly. To speed

up, tau-leaping method came out.

2.3.2 Tau-leaping Method

Tau-leaping method improved the speed comparing with SSA but still not fast enough. If the

system has many molecules, the sum of propensity function is large. So the reaction time τ

rarely affects the system. So we can set the leap condition τ satisfying propensity function has

no big change for [t, t + τ). The number of reactions follows the Poisson distribution(P(P =

i) = e−λ λ
i

i! , i = 0, 1, 2, · · · ).
The algorithm is following. From a Poisson random variable pj(mj , τ) with mean and variance

mjτ , we determine the number of reaction for time [t, t+ τ). Then the state vector is changed

as

x(t+ τ) = x(t) +
B∑
j=1

νjpj(aj(x(t)), τ).

The time is updated t to t+ τ . Iterate from the beginning.

The method is approximate so it is sometimes much slower than SSA because of the assumption.

Leap condition τ is fitted to the fastest reaction and large number of molecules is needed. So

for mesoscopic scale systems, it is often unsuitable.

7



III

Probability Generating Function

Approach

Probability Generating Function(PGF) method gains the upper hand for a high-dimensional

computation comparing with CME. PGF is structurally simple because the probability distri-

bution is nothing but the coefficients of the terms. Therefore it is easy to deal with. But it

needs the symbolic computations. So it converges too slowly.

3.1 Probability Generating Function

Probability Generating Function(PGF) is an efficient function to describe the probability dis-

tribution for a discrete state space.[6] For z = (z1, · · · , zA) and n = (n1, · · · , nA), let us denote

zn = zn1
1 zn2

2 . . . znA
A .

It means that the number of zi is ni respectively. We call n as a state vector. Then a PGF is

defined as

G(z, t) =

∞∑
n=0

znp(n, t)

where zi ∈ [−1, 1]. p(n, t) is the probability that the state being n at time t.

For convenience,

Gi1,··· ,ik =
∂

∂zik
· · · ∂

∂zi1
G.

From a PGF, we can get mean, variance, probability as follows.

Mi(t) = Gi(z = 1, t)

Vi(t) = Gii(z = 1, t) +Gi(z = 1, t)− [Gi(z = 1, t)]2

8



3.2 PGF-PDE

Pi(k, t) =
1

k!

∂kG(z, t)

∂zki
|zi=0,zj=1,j 6=i

where Pi(k, t) denotes the marginal probability of i at time t.

3.2 PGF-PDE

Let G(z, t) solve the partial differential equation.

Gt = F (z1, . . . , zA, G,Gi, . . .)

On the left hand side, there is the derivative of G with respect to time. Because we want to see

the progression of probability of molecular state vectors with time. On the right hand side, there

is a function holding a mechanism describing the production and the annihilation of molecules

and change of the probability. In order to find the probability of each state vector, we recall the

propensity function. By differentiation with respect to the reactants, we can derive the number

of reactants and make the propensity function. With differentiation and multiplication, we also

control the state vector on the same principle of the stoichiometric matrix. Let us take some

examples.

Unimolecular reaction.

z1
c1→ z2, a1(n) = c1n1 −→ F = c1G1(z2 − z1)

Bimolecular reaction.

z1 + z2
c2→ z3, a2(n) = c2n1n2 −→ F = c2G12(z3 − z1z2)

Dimerization reaction.

z1 + z1
c3→ z2, a3(n) =

c3
2
n1(n1 − 1) −→ F =

c3
2
G11(z2 − z21)

Other types of reaction such as trimolecular, or reversible reaction can be described by a series

of elemental reactions as we wrote in section 2.1.

3.3 Probability Generating Function Method

We put the initial condition as

G(z, t = 0) = zn0

9



3.3 Probability Generating Function Method

where n0 denotes the numbers of each type of molecules at t = 0. From physical observation,

there exists only one state at the beginning.[6, 7, 9]

The boundary conditions are

G(z = 1, t) = 1 and G(z = 0, t) = 0.

This boundary condition is trivial and does not give us any clue to solve the given PDE. That

makes it more difficult to find an analytic solution. By taking a semi-analytic approach based

on the power series and Pade approximation, we can deal with it.

From the definition of PGF and the fact that all the events are independent, we can compute

the probability depending on the time. So PGF is described by

G(z, t) =
∞∑

n=0

pn(t)zn

=
∞∑
n=0

fn(z)tn

where fn, n = 0, 1, · · · , are polynomials of z. By putting the initial condition f0(z) = zn0 into

the PGF-PDE, we can derive fn recursively. Since those are all polynomials and computed

explicitly, they give us many computational benefits. However, it converges too slowly.

To make it faster, Pade approximation is an effective way. For the formal form of power series,

Pade approximation is
∞∑
k=0

ckt
k =

∑L
k=0 akt

k∑M
k=0 bkt

k
+O(tL+M+1).

That is,

(
∞∑
k=0

ckt
k)(

M∑
k=0

bkt
k) =

L∑
k=0

akt
k +O(tL+M+1).

By the method of undetermined coefficients and setting b0 = 1, we find

a0 = c0

a1 = c1 + c0b1

a2 = c2 + b1c1 + b2c0
... =

...

aL = cL +

min(L,M)∑
i=1

bicL−i

10



3.3 Probability Generating Function Method

Also, for tL+1, · · · , tL+M , we find a system


cL−M+1 cL−M+2 · · · cL
cL−M+2 cL−M+3 · · · cL+1

...
...

...
...

cL cL+1 · · · cL+M−1



bM
bM−1

...
b1

 = −


cL+1

cL+2
...

cL+M


where ck = 0 for negative k. Thus, we can find the coefficient of Pade approximation. But it

takes a time to find Pade approximant and the error cannot be predicted rigorously.
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IV

Double Truncation Method

We suggest Double Truncation Method(DTM) for an efficient computation by taking advantages

of PGF method. There are two truncations for time and small coefficients based on the physical

observation. The first truncation for order N during time dt means the maximum number of

reactions is N for the time. The second truncation for small coefficients means the elimination

of rare events in the system. The details are following.

4.1 First Truncation

We implement the first truncation on time. We find f1(z), f2(z), . . . , fn(z) iteratively by putting

this into PGF-PDE. By doing that, we find G(z, t). Truncation on time makes the equation

shorter and it reduces the computation load a lot. By Taylor series, we expand G(z, t) on time

as

G(z, t) =

∞∑
n=0

fn(z)tn.

With first few terms, it works well as long as the time step is infinitesimally small. So we solve

PGF-PDE by successive superimposition of truncated Taylor expansion.

G1(z, t) =

N∑
n=0

tnf1n(z, t), G1(z, 0) = zn

G2(z, t) =

N∑
n=0

tnf2n(z, t), G2(z, h) = G1(z, h)

G3(z, t) =

N∑
n=0

tnf3n(z, t), G3(z, 2h) = G2(z, 2h)

...

12



4.2 Second Truncation

The time interval h and the order N represent that the maximum number of reactions for

[t, t+ h) is N in a chemical system.

After r superimpositions, for time t ∈ [(r − 1)h, rh],

Gr(z, t) =
∑
n

znpr(n, t)

where pr(n, t) means the probability for the state being n at time t.

4.2 Second Truncation

We implement the second truncation on small coefficients. We define the carry-over functional

F mapping Gr(z, t) into ∑
n

znIε(p
r(n, t))

where Iε is a function defined as

Iε(x) =

{
x if x > ε
0 if x ≤ ε.

Then,

Gr(z, t) ≤ F (Gr(z, t)) + εmε,r

where mε,r is the number of eliminated terms depending on ε and r. It is obvious from the

construction that mε,r approaches zero as ε goes to zero. Since the coefficient means the prob-

ability of the state at time t, the second truncation guarantees the consistency for the state

probabilities. It is physically hard to occur the rare events. We see the probability as an weight

for the system. Since all the events are independent, the probability of a path-dependent state

becomes smaller. In fact, the probability distribution follows a multinomial distribution.[5] So

the sum of eliminated probabilities never exceeds itself over time. Hence, we ignore them for

efficiency.

We can find an uniform error bound on time for the mean and variance as long as the systems

being dealt with are closed because the number of each type of molecules is bounded. Even in

cases of open ones, one can derive an error bound for the mean and variance as follows.

Errorm(t) =| gi(z = 1, t) |≤ mεεmax(ni)

Errorv(t) =| gii(z = 1, t) + gi(z = 1, t)− [gi(z = 1, t)]2 |≤ mεε(2 max(ni)
2 + max(ni))

where g = G(z, t) − F (G(z, t)) and ni is the i-th element of n, which belongs to the possible

state space. For a given ε, mε =
∑r

i=0mε,i, where r is the number of superimpositions. So

13



4.2 Second Truncation

we can find the error bound as long as we know the maximum number of interesting molecules

after k reactions.

First, we define the reaction vector R = (R1, · · · , RB), s-th element denotes the number of s-th

reaction of k reactions. All the elements in nk are nonnegative where nk denotes a state vector

after k reactions. Then

nk = n0 + V ·R

where n0 is the initial condition and V is a stoichiometric matrix. We find the maximum number

of elements for all R satisfying that
B∑
s=1

Rs ≤ k.

In this way we determine the maximum value of n.

Let us take an example.

A+B
R1

�
R2

C
R3→ A+D

There are four kinds of molecules A,B,C,D and three reactionsR1, R2, R3. And n0 = (10, 10, 20, 5).

Then 
10
10
20
5

+


−1 1 1
−1 1 0
1 −1 −1
0 0 1


R1

R2

R3

 =


nk,1
nk,2
nk,3
nk,4


We want to find the maximum number of the first element nk,1 = 10 − R1 + R2 + R3, where

nk,2, nk,3, nk,4,≥ 0. The conditions are following.


nk,2 = 10−R1 +R2 ≥ 0

nk,3 = 20 +R1 −R2 −R3 ≥ 0

nk,4 = 5 +R3 ≥ 0

Then 20 ≥ −R1 +R2 +R3. So the maximum number of A, max(nk,1) is 30 after k reactions. In

the same way, we can find max(nk,i) for i = 2, 3, 4. For a given ε, we get the mε computationally.

Therefore we may reasonably conclude the error bound for the second truncation as above as

long as the first truncation does not have a decisive effect on the system.

14



V

Simulation Results

5.1 Binding Reaction

We consider a binding/unbinding reaction consisting of two elemental reactions.

A+B
c1
�
c−1

C.

The state vector is n = (n1, n2, n3) and n1, n2, n3 denotes the numbers of molecules of species

A,B,C respectively.

The stoichiometric matrix is

V =

−1 1
−1 1
1 −1

 .

Then CME is

dp(n, t)

dt
= c1(n1 + 1)(n2 + 1)p(n + V1, t) + c−1(n3 + 1)p(n + V2, t)− (c1n1n2 + c−1n3)p(n, t)

where Vk means the k-th column of V.

The following PDE can be derived from the reaction formula simply as

Gt = c1(z3 − z1z2)G12 + c−1(z1z2 − z3)G3.

We find the initial condition and boundary condition as following.

Initial condition : G(z, t = 0) = zn1
1 zn2

2 zn3
3

Boundary condition : G(z = 1, t) = 1 and G(z = 0, t) = 0.

The derived PDE with boundary conditions is converted to the CME. We can easily check by

using the method of undetermined coefficients.

15



5.2 Enzyme Kinetics

Figure 5-1: The initial condition n = [20, 10, 0] and parameters c1 = 1, c11 = 0.1 are assumed. In
the figure of probability, each curve p(n1 = i) denotes the time-dependent probability solution that
n1 = i, i = 10, 13, 15, respectively. The terms which have a coefficient less than 10−8 are dropped
out.

5.2 Enzyme Kinetics

The enzyme kinetics is one of the most important biochemical reactions. We consider an

enzyme-substrate system.

E + S
c1
�
c−1

ES
c2→ E + P

where E,S,ES,P denotes enzyme, substrate, enzyme-substrate complex and product, respec-

tively. The state vector n = (n1, n2, n3, n4) lies in same order.

The stoichiometric matrix is

V =


−1 1 1
−1 1 0
1 −1 −1
0 0 1


Then CME is

dp(n, t)

dt
= c1(n1 + 1)(n2 + 1)p(n + V1, t) + c−1(n3 + 1)p(n + V2, t)

+ c2(n3 + 1)p(n + V3, t)− (c1n1n2 + c−1n3 + c2n3)p(n, t)

16



5.3 G2/M Transition Model

where Vk means the k-th column of V.

The following PDE can be derived from the reaction formula simply as

Gt = c1(z3 − z1z2)G12 + c−1(z1z2 − z3)G3 + c2(z1z4 − z3)G3

Figure 5-2: The initial condition n = [10, 20, 20, 0] and parameters c1 = 0.1, c11 = 1, c2 = 0.5 are
assumed. In the figure of probability, each curve p(n2 = i) denotes the time-dependent probability
solution that n2 = i, i = 5, 10, 17 respectively. The terms which have a coefficient less than 10−7 are
dropped out.

5.3 G2/M Transition Model

G2/M transition model describes the cell cycle in all the eukaryotic organisms. Understanding

the regulators of the G2-to-mitosis phase transition is very important. Because malfunctioning

of regulators leads to a chromosomal mutation, such as cancer. The process of G2/M network

is given by the reaction scheme

X + Yp
c1
�
c2
Cx

c3→ Xp + Yp, E1 +Xp

c4
�
c5
Cex

c6→ X + E1

17



5.4 Brusselator Model

Xp + Y
c7
�
c8
Cy

c9→ Xp + Yp, E2 + Yp
c10
�
c11

Cey
c12→ Y + E2

The state vector n = (n1, n2, · · · , n9, n10) lies in order that Xp, Yp, X, Y,E1, E2, Cx, C
e
x, Cy, C

e
y .

The stoichiometric matrix is

V =

0 0 1 −1 1 0 −1 1 1 0 0 0
0 0 1 0 0 0 0 0 1 −1 1 0
−1 1 0 0 0 1 0 0 0 0 0 0
−1 1 0 0 0 0 −1 1 0 0 0 1
0 0 0 −1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 1
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1

Then CME is

dp(n, t)

dt
= c1(n2 + 1)(n3 + 1)p(n + V1, t) + c2(n7 + 1)p(n + V2, t)

+ c3(n7 + 1)p(n + V3, t) + c4(n1 + 1)(n5 + 1)p(n + V4, t)

+ c5(n8 + 1)p(n + V5, t) + c6(n8 + 1)p(n + V6, t)

+ c7(n1 + 1)(n4 + 1)p(n + V7, t) + c8(n9 + 1)p(n + V8, t)

+ c9(n9 + 1)p(n + V9, t) + c10(n2 + 1)(n6 + 1)p(n + V10, t)

+ c11(n10 + 1)p(n + V11, t) + c12(n10 + 1)p(n + V12, t)

− [c1n2n3 + (c2 + c3)n7 + c4n1n5 + (c5 + c6)n8

+ c7n1n4 + (c8 + c9)n9 + c10n2n6 + (c11 + c12)n10]p(n, t)

where Vk means the k-th column of V.

The following PDE can be derived from the reaction formula simply as

Gt = c1(z7 − z2z3)G23 + c2(z2z3 − z7)G7 + c3(z1z2 − z7)G7 + c4(z8 − z1z5)G15

+c5(z1z5 − z8)G8 + c6(z3z5 − z8)G8 + c7(z7 − z2z3)G23 + c8(z2z3 − z7)G7

+c9(z1z2 − z7)G7 + c10(z8 − z1z5)G15 + c11(z1z5 − z8)G8 + c12(z4z6 − z10)G10

5.4 Brusselator Model

We consider the open model, Brusselator.

A
c1→ X, 2X + Y

c2→ 3X,

B +X
c3→ Y +D, X

c4→ E

18



5.4 Brusselator Model

Figure 5-3: The initial condition n = [5, 4, 2, 3, 2, 3, 2, 0, 0, 0] and parameters c1 = c4 = c7 = c10 =
0.2, c2 = c5 = c8 = c11 = 1, c3 = c6 = c9 = c12 = 0.1 are assumed. In the figure of probability, each
curve p(n2 = i) denotes the time-dependent probability solution that n2 = i, i = 1, 3, 5, respectively.
The terms which have a coefficient less than 10−8 are dropped out.

Brusselator model system is hard to handle, because it is a type of autocatalytic reaction. Hence

it has infinitely many reachable states. It can be understood as an infinite dimensional ODE

system. A,B are catalysts and D,E are products, which does not affect the stochastic dynamics.

So we see two variables X,Y. The state vector n = (n1, n2) lies in order X and Y.

The stoichiometric matrix is

V =

(
1 1 −1 −1
0 −1 1 0

)
where Vk means the k-th column of V.

The following PDE can be derived simply as

Gt = c1a(z1 − 1)G+
c2
2
z21(z1 − z2)G112 + c3b(z2 − z1)G1 + c4(1− z1)G1

19



5.4 Brusselator Model

Figure 5-4: The initial condition n = [0, 0] and parameters c1 = 1, c2 = 0.0001, c3 = c4 = 0.1, a =
5, b = 1 are assumed. In the figure of probability, each curve p(n2 = i) denotes the time-dependent
probability solution that n2 = i, i = 30, 35, 40, respectively. The terms which have a coefficient less
than 10−8 are dropped out.
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VI

Conclusion

In this work, we suggest an efficient method to simulate the chemical reaction network using

Probability Generating Function(PGF) method. From conventional methods, such as Chemical

Master Equation(CME), Stochastic Simulation Algorithms(SSA) to recently developed PGF

method, those methods are less practical in some cases. CME is hard to handle because it

suffers from the curse of dimensionality. Though SSA settles the dimensional problem, it is not

suitable for the stiff system and too slow. Whereas PGF method alleviates the dimensional

problem but it still suffers from it.

So we suggest Double Truncation Method(DTM). With two truncations for time and for small

coefficients, we can get the probability distribution much faster. Moreover, DTM is numerically

simple and physically reasonable. We also clarify the derivation of PGF-PDE from the reaction

formula easily.

We expect that it would be one of important future works to find the optimized error bound

for every specific reaction, for the mean and the variance. As of now, an error measurement for

even conventional methods is an intricate problem, not in a heuristic approach. Unlike other

methods, DTM has some advantages because the sum of eliminated coefficients can be expressed

as an order of a threshold ε. So more sophisticated analysis for the error measurement would

be a good future work.
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