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Abstract

We present new MUSCL techniques associated with cell-centered Finite Volume
method on triangular meshes. The first reconstruction consists in calculating a one
vectorial slope per control volume by a minimization procedure with respect to a
prescribed stability condition. The second technique we propose is based on the
computation of three scalar slopes per triangle (one per edges) still respecting some
stability condition. The resulting algorithm provides a very simple scheme which
is extensible to higher dimensional problems. Numerical approximations have been
performed to obtain the convergence order for the advection scalar problem whereas
we treat a nonlinear vectorial example, namely the Euler system, to show the ca-
pacity of the new MUSCL technique to deal with more complexe situations.

Key words: High-order scheme; Finite Volume; multislope method; unstructured
mesh; conservation laws

1 Introduction

Large numerical simulations in industrial framework require efficient but rather
simple numerical methods to face the modelling complexity while making eas-
ier the implementation. Flexibility is also required to quickly adapt the com-
putation code to new conditions and models. High-resolution methods such
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that ENO, WENO or Discontinuous Galerkin methods provide very good ac-
curacy. However, the MUSCL technique is more popular in the industrial
context due to its natural simplicity and adaptation capacity to respond to
modelling evolutions and complexifications.

Monotone Upstream Scheme for Conservation Law technique (MUSCL tech-
nique) has been introduced by Van Leer [17] for one dimensional hyperbolic
problems. The main idea is a piecewise linear reconstruction of the solution
to achieve higher accurate schemes still preserving the stability (the maxi-
mum principle for instance). Initially elaborated for one dimensional scalar
problems, the MUSCL technique combined with a conservative scheme had to
preserve the Total Variation of the solution. To this end, slopes are limited to
prevent spurious oscillations or overshooting of the numerical approximations
[15]. A first extention of the MUSCL technique to higher dimensions has been
proposed using structured meshes where the MUSCL procedure is applied in
each direction [5] but the generalisation of the Total Variation constraint for
higher dimensional geometries makes the scheme to be a first order method
[9]. To get around this negative result, a new class of positive schemes have
been introduced [14] which ensures a local maximum principle.
To handle more flexible refinements and allow discretization of complex bounded
domains, new MUSCL methods for unstructured meshes have been considered
[11], [6], [1]. A local linear representation is constructed on each element us-
ing a gradient prediction which should be limited to prevent oscillations of
the numerical solutions [7] (see also [8,12,13] for a mathematical study of the
high-order schemes).

The classical MUSCL technique consists in two steps. First, a predicted gra-
dient is computed for each element of the mesh using the neighbouring values.
Then the gradient is modified to respect some Maximum Principle or Total
Variation Diminishing constraint and provide a vectorial slope on the ele-
ment. New values are therefore computed on each edge of the element using
the linear reconstruction. Finally, an approximation of the flux crossing the
interface is performed by employing the two reconstructed values situated on
both sides of the edge combined with a monotone numerical flux function. To
avoid the predictor-corrector algorithm and obtain some optimal reconstruc-
tion, we propose to build the vectorial slope on each element by minimizing a
convex functional under stability constraints. The idea is to optimize the slope
while respecting the Maximum principle or the Total Variation Diminishing
property. We intend in this way to produce the best gradient approximation
which respects the stability constraint.

The MUSCL method presented above will be referred to as monoslope method

since the reconstructed values are obtained using the same vectorial slope on
each element. We also introduce a new class of MUSCL method named mul-

tislope method where we use specific scalar slope for each interface. For a
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given element, we consider a set of normalized vectors and we use the neigh-
bouring values to compute the scalar slopes representing an approximation
of the directional derivatives. The slopes are modified afterwards to respect
some stability constraint and finally, the reconstructed values are computed
on each edge using the corrected slopes. The main advantage of the method
is that we only deal with one dimensional situations and, as we shall show
in the sequel, the scalar slopes are very simple to compute even for higher
dimensional geometries.

The remainder of the paper is organized as follows. In Section 2, we introduce
the notations we shall used in te sequel to describe the finite volume pro-
cess on triangular meshes for two-dimensional geometries and we review some
classical MUSCL-type methods. In particular, we give a precide description of
the Maximum Principle domain and the Total Variation Diminishing domain
that we employ to keep the stability condition. Section 3 is devoted to a new
monoslope MUSCL method while we describe the multislope MUSCL tech-
nique in Section 4. Numerical results are presented for the linear advection
problem and the Euler system in Section 5.

2 Second order monoslope MUSCL method.

To illustrate the MUSCL reconstruction, we here introduce the classical advec-
tion problem but more complex problems such as nonlinear vectorial systems
can of course be considered. Let Ω ⊂ R2, be a polygonal open bounded set of
R

2, T > 0. We denote by V(t, x) a given R
2 vectorial valued function defined

on QT = [0, T ] × Ω. For t ∈ [0, T ], we set

Γ−(t) = {x ∈ ∂Ω;V(t, x).n(x) < 0}, Γ+(t) = {x ∈ ∂Ω;V(t, x).n(x) ≥ 0},

with x = (x1, x2) a generic point of Ω and n the outwards normal on the
boundary ∂Ω.

We consider the advection problem: find U(t, x) a real valued function defined
on QT such that

∂tU + ∇.(VU) = 0 in ]0, T [×Ω,

U(t = 0, .) = U0(.) in Ω,

U(t, .) = Ub(t, .) on Γ−(t), t ∈]0, T ].

where U0 and Ub are given functions.

To deal with the numerical approximation, we introduce the following ingre-
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Fig. 2. Configuration satisfying the hypothesis (H) (on left). Configuration which
not satisfies the hypothesis (H) (on right).

dients (see Fig. 1). Th is a discretization of Ω with triangles Ki of centroid
Bi, i = 1, . . . , N where N is the number of mesh elements. For a given i, ν(i)
represents the index set of the common edge elements Kj ∈ Th, j ∈ ν(i) where
Sij = K̄j ∩ K̄i stands for the common edge with midpoint Mij.

We assume furthermore that the mesh satisfies the following hypothesis (H)
(see Fig. 2):

(H) For any Ki ∈ Th such that |ν(i)| = 3, point Bi is strictly inside the
convex set defined by the points Bj, j ∈ ν(i).

If Lij represents the line containing the edge Sij, point Qij is defined as the
intersection between the segment [Bi,Bj] and the line Lij. Note that Qij does
not belong a priori to Sij but only to Lij. For a given edge Sij, nij represents
the outward normal of Ki pointing to Kj and nji = −nij.

We will use a cell-centered finite volume method where control volumes are
the triangles. The sequence (tn)n defines a time discretization of [0, T ] with
tn+1 = tn + ∆t. Let Un

i stand for an approximation of the mean value of
U at time tn on the element Ki. The conservative first order finite volume
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formulation is given by

|Ki| U
n+1
i = |Ki| U

n
i − ∆t

∑

j∈ν(i)

|Sij| Fij(U
n
i , U

n
j ), (1)

where Fij(Ui, Uj) is a numerical flux from Ki to Kj at interface Sij.

For the advection case, classical numerical flux functions are the Lax-Friedrichs
flux or the upwind flux:

FLF
ij (Un

i , U
n
j )=

1

2

(
V(tn,Bi).nij U

n
i + V(tn,Bj).nij U

n
j

)
− λ(Un

j − Un
i ),

F upwind
ij (Un

i , U
n
j )= [V(tn,Qij).nij]

+ Un
i + [V(tn,Qij).nij]

− Un
j ,

where [.]+ represents the positive part and λ is a positive constant to guarantee
the scheme stability.

2.1 Classical MUSCL methods

First order schemes give a poor approximation and induce high viscosity effect.
A second order scheme provides a better approximation and manages to reduce
the viscous smoothing effect in the vicinity of the shocks.

The popular techniques consist in a local linear reconstruction (see [2,8,16]).
Assuming that a constant piecewise approximation Un

h = (Un
i )i of U at time

tn is known, we construct a new linear piecewise approximation Ũn
h in the

following way

Ũn
i (X) = Un

i + ai.BiX, X ∈ Ki, (2)

where BiX stands for the vector X − Bi, ai ∈ R
2 is the vectorial slope we

have to construct, ai.BiX is the inner product between BiX and ai ∈ R
2.

Remark that such a linear reconstruction satisfies conservation property

∫

Ki

Ũn
i (X) dX = |Ki| U

n
i ,

since the centroid point Bi is chosen as reference point.

Given a point Xij on the common edge Sij, we set

Un
ij = Un

i + ai.BiXij, Un
ji = Un

j + aj.BjXij. (3)
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We classify this kind of reconstruction as monoslope method since we pro-
duce values Un

ij on edges Sij, j ∈ ν(i) using the same slope: the slope ai does
not change with subscript j.

Two useful choices for point Xij are Qij or Mij (see Fig. 1). The first one
is natural from a geometrical point of view since it corresponds to the linear
interpolation between Bi and Bj whereas the second one is natural from the
integration point of view since the numerical integration with the midpoint
rule is exact for linear functions along the edge Sij.

To obtain a second order method, we then substitute the numerical flux
Fij(U

n
i , U

n
j ) by Fij(U

n
ij, U

n
ji) in relation (1) and obtain:

|Ki| U
n+1
i = |Ki| U

n
i − ∆t

∑

j∈ν(i)

|Sij| Fij(U
n
ij, U

n
ji). (4)

Several slope evaluations have been proposed (see [8], [10], [2] for an exhaustive
list), where two leading requirements have to be satisfied:

(C1) the linearly reconstructed function Ũh satisfies Ũh = U if the function U is
linear. In this paper, this property will be referred to as linear consistency
of the reconstruction;

(C2) the reconstruction has to respect a maximum principle to avoid over-
shooting leading to a descripency of the numerical approximation.

Remark 1 In the sequel, we only consider the situation where an element Ki

is strictly inside the domain, i.e. the element has no edge on the boundary,
otherwise we bring back to a first order scheme setting ai = 0.

2.1.1 Gradient methods

Let denote by Kj1 , Kj2, Kj3 the three adjacent triangles of Ki. We consider the
three following hyperplans in the x1, x2, U space: hyperplane πi,1 is defined by
the points Bi, Bj2, Bj3 with elevations Ui, Uj2, Uj3 and πi,2, πi,3 are obtained
in the same way. The hyperplane π1,2,3 is defined by the points Bj1, Bj2, Bj3

with elevations Uj1, Uj2 , Uj3 (see Fig. 3).

For example, πi,1 is given by equation

(u− Un
i ) = Gi,1 .BiX

where Gi,1 ∈ R
2 while π1,2,3 is given by

(u− Un
j1

) = G1,2,3 .Bj1X.
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Fig. 3. Plane π1,2,3 representation.

A first choice consists to take the slope ai = G1,2,3 and we obtain a linear
consistent reconstruction. Other possible choices use a combinaison of Gi,1,
Gi,2, Gi,3, setting

ai = σ(Gi,1,Gi,2,Gi,3).

The linear consistency is obtained if and only if a = σ(a, a, a) for all a ∈ R
2.

2.1.2 Minimization method

In reference [4], the authors consider the hyperplane minimizing the distance
with the four points (Bi, Ui), (Bj, Uj), j ∈ ν(i). One has to seek a vector GLS

using a Least Square Method, that is to say which minimizes the functional

E(a) =
∑

j∈ν(i)

(
Un

j − (Un
i + a.BiBj)

)2
. (5)

Existence and uniqueness of the minimum is obvious since the functional is
strictly convex.

Moreover, if U is linear, the four points lie in the same hyperplane and the
minimum corresponds to the gradient of U , hence we get the linear consistency
of the reconstruction.

2.2 The stability conditions.

Let consider two adjacent triangles Ki and Kj. To avoid numerical artefacts
in the vicinity of large gradients (overshooting or spurious oscillations), one
imposes that the reconstructed values Uij and Uji on Sij satisfy some stability
property. To this end, we introduce the following conditions:
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(1) The L∞ stability condition (Maximum Principle constraint or MP con-
straint):

min(Un
i , U

n
j ) ≤ Un

ij, U
n
ji ≤ max(Un

i , U
n
j ). (6)

(2) The Total Variation-like condition (TVD constraint):

if Un
i ≤ Un

j then Un
i ≤ Un

ij ≤ Un
ji ≤ Un

j . (7)

The last condition is named TVD constraint since the property (7) implies the
preservation of the BV norm between the initial piecewise constant function
and its piecewise linear reconstruction. Moreover, relation (7) implies relation
(6) so the Total Variation condition is a subcase of the L∞ stability condition.

The slope ai provided by one of the above methods does not a priori satisfy the
stability condition. We impose the stability multiplying the slope by a limiter
φi such that the values Un

ij and Un
ji obtained with the new slope ãi = φiai

satisfy one of the two stability conditions. In particular, if φi = 0, we find
again the first order scheme.

In the case of a linear solution, a predicted slope process which satisfies con-
dition (C1) provides a slope equal to the function gradient. In this particular
case, the limiting procedure has no impact since the predicted slope respects
the two stability constraints and one has φi = 1. Therefore, it is natural to
choose the highest value of φi ∈ [0, 1] such that the reconstruction statisfies a
prescribed stability condition.

2.2.1 The Maximum Principle domain

For a given element Ki, we define the Maximum Principle domain (MP do-
main) as

MPi = {a ∈ R
2 ; min(Un

j − Un
i , 0) ≤ a.BiQij ≤ max(Un

j − Un
i , 0), j ∈ ν(i)}.

If ai ∈MPi then Un
ij = Un

i + ai.BiQij satisfies the stability condition (6) and
conversely.

For the sake of simplicity, we introduce a new set of vectors

sk = sgn(Un
jk
− Un

i )BiQijk
, k = 1, 2, 3,

where sgn(x) =





1 for x ≥ 0

−1 for x < 0.
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The MPi region is now simply given by

MPi = {a ∈ R
2 ; 0 ≤ a.sk ≤ γk, k = 1, 2, 3}

with γk = |Un
i − Un

jk
|, k = 1, 2, 3.

We require that sgn(0) being non zero in order to extend the equivalence:

a.BiQijk
= 0 ⇐⇒ a.sk = 0,

to the particular situation Un
jk

= Un
i .

Hypothesis (H) implies that any couple of the three vectors sk, k = 1, 2, 3
defined a basis of the R

2 space. Therefore we can express one vector from
the two others and we have the following unique expansions with non zero
coefficients:

s1 =α12 s2 + α13 s3 (8)

s2 =α21 s1 + α23 s3 (9)

s3 =α31 s1 + α32 s2. (10)

A withdraw computation gives the following proposition.

Proposition 2 We have the relations

αlm αml =1, (11)

αlk αkm =−αlm, (12)

for any circular permutation (l, m, k) of (1, 2, 3).

PROOF. To check properties (11) and (12), let us consider the decomposition
of s1

s1 = α12 s2 + α13 s3.

Thanks to hypothesis (H), s1 is neither colinear to s2 nor to s3, hence coeffi-
cients α12 and α13 do not vanish. The relation can be rewritten

s2 =
1

α12
s1 −

α13

α12
s3 = α21 s1 + α23 s3

which gives relations (11) and (12) by identification thanks to the uniqueness
of the decomposition. 2

We deduce that MPi domain is only characterized by coefficients α and γ. If
at least two of the three γ coefficients vanish, we easily deduce MPi = {(0, 0)}.
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We now consider the other situations.

Proposition 3 Assume that one coefficient, say γk, vanishes while the two
others, say γl and γm, are not zero. Then we have

MPi = {(0, 0)} ⇐⇒ αlm < 0.

PROOF. Let us first remark that if a ∈ R
2 with a.sk = 0, then we have:

a.sl = αlk a.sk + αlm a.sm = αlm a.sm. (13)

⇐) Suppose that αlm < 0 and let a ∈MPi.
Since γk = 0, relation (13) is satisfied. From condition a ∈ MPi, we have the
relations a.sl ≥ 0 and a.sm ≥ 0. It follows that a.sm = a.sl = 0 since we have
αlm < 0. Hence a = (0, 0).

⇒) Conversely, suppose that αlm ≥ 0. Since all the coefficients are non-
vanishing, we have αlm > 0. We shall now construct a non zero vector of MPi.
To this end, consider a ∈ R

2 such that a.sk = 0 and a.sl = min (γl, αlm γm) ∈

]0, γl] .We obtain a non zero vector which satisfies 0 < a.sm =
1

αlm

a.sl ≤ γm,

then a ∈MPi. 2

Remark 4 If only one of the γk is zero, the MPi domain is reduced to the
null vector or to a segment.

Proposition 5 Assume that all the coefficients γk are positive, k = 1, 2, 3.
Then the following assertions are equivalent:

(i) α12 < 0 and α13 < 0.
(ii) α21 < 0 and α23 < 0.
(iii) α31 < 0 and α32 < 0.
(iv) MPi = {(0, 0)}.

PROOF. Equivalences between (i), (ii) and (iii) derive from relations (11)-
(12). It remains to prove the equivalence between (i) and (iv). To this end, let
us assume that assertion (i) holds and let a ∈MPi. One has

a.s1 = α12 a.s2 + α13 a.s3, with α12 a.s2 ≤ 0 and α13 a.s3 ≤ 0. (14)

It follows that a.s1 ≤ 0, hence that a.s1 = 0 since a.s1 ≥ 0. Relation (14) now
gives a.s2 = a.s3 = 0 and we conclude that a is the null vector because s1, s2

is a basis.
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Conversely, let us assume that (i) does not hold. We shall construct a non zero
vector a such that a ∈MPi.
Since assertion (i) is wrong, we have α12 > 0 or α13 > 0. Suppose α12 > 0
for example. Let a be the vector of R

2 such that a.s3 = 0 and a.s2 =

min
(
γ1

α12

, γ2

)
∈]0, γ2] .We obtain a non zero vector which satisfies 0 < a.s1 =

α12 a.s2 ≤ γ1, then a ∈MPi. 2

Under the same assumption as the above proposition, we have the following
corollary using relation (12).

Corollary 6 Assume that all the coefficients γk are positive, k = 1, 2, 3. Then
the MPi domain is not reduced to the null vector if and only if one of the three
following assertions holds

(i) α12 > 0 and α13 > 0,
(ii) α21 > 0 and α23 > 0,
(iii) α31 > 0 and α32 > 0.

PROOF. ⇒) We first assume that MPi domain is not reduced to the null
vector. From proposition 5, we deduce that α12 ≥ 0 or α13 ≥ 0, hence α12 > 0
or α13 > 0 since the coefficients are non zero. If both the coefficients are
positive, assertion (i) is right otherwise one of the two coefficients is negative
(says α13 < 0). From relations (11) and (12) we have α21 > 0 and α23 > 0 and
assertion (ii) holds.

⇐) Conversely, if for example α12 > 0 and α13 > 0 then proposition 5 imme-
diately implies that MPi domain is not reduced to the null vector. 2

When MPi domain is not reduce to the null vector one of the three assertions
of corollary 6 holds. In this case, we adopt the following convention:

Convention We choose the local indexation such that α31>0 and α32>0.

The MPi domain is a convex polygonal set (see Fig. 4) which consists in the
intersection of the three bands limited by the lines

dk = {a ∈ R
2; a.sk = γk}, k = 1, 2, 3, (15)

δk = {a ∈ R
2; a.sk = 0}, k = 1, 2, 3. (16)
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2.2.2 The slope limiter

Let ai be a predicted gradient obtained, for example, by one of the methods
presented in Section 2.1. The Maximum Principle constraint yields that ai has
to be in the MPi domain. If not, we reduce the slope by a limiter φi ∈ [0, 1]
such that ãi = φiai ∈MPi. The most classical limiting procedure (see [8], [2])
consists in constructing the three limiters

φi,k =





max
(
0,

γk

ai.sk

)
if ai.sk 6= 0,

1 if ai.sk = 0.
(17)

Taking φi = min(1, φi,1, φi,2, φi,3), we set ãi = φiai ∈ MPi. If for one local
subscript k, ai.sk < 0, the limiter is zero and we obtain a first order method.
Numerical experiences indicate that such a phenomena often occurs resulting
in a poor approximation accuracy [4]. For example, let us consider a config-
uration where the predicted slope G1,2,3 is on the left side of line δ1 while
GLS stands on the right side (see Fig. 4). Applying the limiting procedure
(17) yields that φi > 0 if we choose ai = GLS whereas φi = 0 if we choose
ai = G1,2,3. In the first case, the resulting slope provides a second order scheme
but the second situation reduces to a first order scheme.

To avoid the descrepancy, some authors propose to limit the predicted gradient
using a orthogonal projection of point ai on the boundary of the MPi domain
(see [10]).
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2.2.3 The TV D domain

We now consider the more restrictive TV D constraint (7) using the same
framework introduced for the MP constraint. For a given edge Sij, the TV D
constraint involves the two slopes ai and aj which also depends on the neigh-
bouring elements leading to a coupling between all the slopes. To avoid the
complex interactions between the slopes, we introduce a more restrictive def-
inition of the TVD constraint such that ai is computed independently of the
other slopes but only depends on the data of the three neighbouring elements.
The requirement on slope ai is that reconstructed values Un

ij and Un
ji (with

j ∈ ν(i)) have to satisfy

if Un
i ≤ Un

j then Un
i ≤ Un

ij ≤ U ref
ij ≤ Un

ji ≤ Un
j (18)

where U ref
ij is the reference value at point Qij defined by

U ref
ij = Un

i +
|BiQij|

|BiBj|
(Un

j − Un
i ) = Un

j +
|BjQij|

|BjBi|
(Un

i − Un
j ) = U ref

ji . (19)

We define the TV Di domain by

TV Di = {a ∈ R
2; min(U ref

ij −Un
i , 0) ≤ a.BiQij ≤ max(U ref

ij −Un
i , 0), j ∈ ν(i)}.

The TV Di domain is also characterized by

TV Di = {a ∈ R
2; 0 ≤ a.sk ≤ µk, k = 1, 2, 3}

with µk = |Un
i − U ref

ijk
|, k = 1, 2, 3.

The TV Di domain is a convex polygonal set which consists in the intersection
of the three bands limited by the lines

dk = {a ∈ R
2; a.sk = µk}, k = 1, 2, 3, (20)

δk = {a ∈ R
2; a.sk = 0}, k = 1, 2, 3. (21)

To conclude the section, notice that

µk =
|BiQi,jk

|

|BiBjk
|
γk ≤ γk,

hence, we deduce that the TV Di domain is a subset of the MPi domain and all
the limiting techniques presented for the MPi domain can directly be adapted
to the TV Di domain using µk in place of γk.
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3 A new monoslope method

All the second order schemes presented above are developed following two
steps: first we compute a predicted slope and, secondly, we use a limiting
procedure. We propose here a new method where we build the slope in only
one procedure in which we optimize the slope under the MP constraint or the
TV D constraint.

As we state in the convention presented in subsection 2.2.1, we choose the
local indexation such that the coefficients α31 and α32 are positive.

3.1 Minimization under the TV D constraint

We only present the construction of the optimized slope respecting the TV D
constraint. The construction of the optimized slope under the MP constraint
can also been considered and adapted.

3.1.1 Problem formulation

Let us consider a triangular control volume Ki. It is clear that if U is a linear
function defined by U(X) = U0+L.X, then U(Qij) = U(Bi)+L.BiQij = U ref

ij

for all j ∈ ν(i). For the general case, we wish to obtain a slope ai on Ki for
which deviations Ui+ai.BiQij−U

ref
ij are as close as possible to 0. Moreover, the

slope should provide a reconstruction which respects the stability condition.

We then compute the slope by using a least square method under the TV D
constraint on element Ki and the optimization problem reads:

find the slope ãi minimizing the functional

Ei(a) =
∑

j∈ν(i)

(U ref
ij − (Ui + a.BiQij) )2 with a ∈ TV Di. (22)

Using the notations introduced in Section 2.2.1, we can rewrite the minimiza-
tion problem as

Ei(a) =
∑

k=1,2,3

(µk − a.sk)
2 (23)

with 0 ≤ a.sk ≤ µk, k = 1, 2, 3. (24)
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Remark 7 We can also consider another minimization problem using the
minimization functional (5). If we add now the MP constraint (see [3]), the
optimization problem then reads:

find the slope ãi minimizing the functional

Ei(a) =
∑

j∈ν(i)

(Uj − (Ui + a.BiBj) )2 with a ∈MPi. (25)

Note that problem (22) is not equivalent to problem (25). 2

Since the functionnal (23) is strictly convex and the domain defined by (24) is
convex and bounded, we get the existence and the uniqueness of the minimum
ãi. With the slope in hand, we build the new predicted values at any given
collocation point Xij

Uij = Ui + ãi .BiXij, j ∈ ν(i). (26)

3.1.2 Computation of the optimal slope

We are now interested in finding the minimum ã of the functional (23) un-
der constraints (24). To simplify the notations, we skip the index i in this
subsection.

We first note that ã is obviously the null vector if TV D = {(0, 0)}. Note that
if µ3 = 0, we have TV D = {(0, 0)} by the indexation convention.

From now on we make the assumption that µ1, µ2 and µ3 are positive. The
case where µ1 = 0 or µ2 = 0 will also be treated further.

Proposition 8 Let a be the minimum of E(a) without constraint then a is
inside the triangle T123 formed by the three lines dk, k = 1, 2, 3 defined by
relation (20). In particular, if the triangle is not reduced to a point, a is strictly
inside the triangle.

PROOF. Let us set G1 = d2 ∩ d3 (see Fig. 5). We then have

G1.s2 = µ2, G1.s3 = µ3.

We define in the same way G2 = d1 ∩ d3 and G3 = d1 ∩ d2 satisfying

G2.s1 = µ1, G2.s3 = µ3, G3.s1 = µ1, G3.s2 = µ2.

15



If G1, G2 and G3 belong to the same line then hyptothesis (H) yields G1 =
G2 = G3 = G, thus a = G since E(a) = 0 in this exceptional case.

We now assume that the three points define a non degenerated triangle T123

and we seek a = λ1G1 + λ2G2 + λ3G3 using the barycentric coordinates with
λ1 + λ2 + λ3 = 1.
Existence and uniqueness of the minimun a is clear since E(a) is strictly
convex and a has to satisfy the linear system

∑

k=1,2,3

(µk − a.sk)sk = 0. (27)

Using the barycentric coordinates property and the definition of Gk, we get

∑

k=1,2,3

λk(µk − Gk.sk)sk = 0.

The inner product between the last relation and vector G1 gives

λ1(µ1 − G1.s1)G1.s1 + λ2(µ2 − G2.s2)µ2 + λ3(µ3 − G3.s3)µ3 = 0.

Using also vector G2 and G3, we obtain

λ1(µ1 − G1.s1)µ1 + λ2(µ2 − G2.s2)G2.s2 + λ3(µ3 − G3.s3)µ3 = 0,

λ1(µ1 − G1.s1)µ1 + λ2(µ2 − G2.s2)µ2 + λ3(µ3 − G3.s3)G3.s3 = 0.

From the three relations, we deduce

λ1(µ1 − G1.s1)
2 = λ2(µ2 − G2.s2)

2 = λ3(µ3 − G3.s3)
2 (28)

Since triangle T123 is not reduced to a point, the quantities (µk − Gk.sk)
2

are positive and thus the coordinates λk have the same sign. Moreover, the
condition λ1 + λ2 + λ3 = 1 yields that λk > 0, hence a is strictly inside the
triangle. 2

Remark 9 An explicit calculation of coefficients λk provides an expression
independant of Ui and Uj:

λ1 =
α2

31

1 + α2
31 + α2

32

, λ2 =
α2

32

1 + α2
31 + α2

32

, λ3 =
1

1 + α2
31 + α2

32

.

Remark 10 The exceptional situation where the triangle T123 is reduced to
a point corresponds to the case where the four points (Bi, U

n
i ), (Bj, U

n
j ), j =

j1, j2, j3 lie in the same hyperplane of the (x1, x2, U) space. In this case, the
optimal slope ã under constraint corresponds to the optimal slope a without
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Fig. 5. The triangle T123 is above point G3 (left). The triangle T123 is under point
G3 (right).

constraint and the reconstruction is consistent for linear functions.

Corollary 11 If triangle T123 is not reduced to a point, the minimum without
constraint a does not satisfy the TV D constraint. Furthermore the minimum
ã with constraint satisfies, at least, one of the six constraints: ã.sk = 0 or
ã.sk = µk with k = 1, 2, 3, i.e. ã ∈ ∂TV D.

PROOF. We notice that TV D ∩ T123 is reduced to the point G3 or the
segment [G1,G2] whether d3 is above (µ3 ≥ G3.s3, see Fig. 5 left) or under
(µ3 ≤ G3.s3, see Fig. 5 right) the point G3. Since a is strictly inside T123, we
conclude that a /∈ TV D.

Finally, if ã is strictly inside the TV D domain, then no constraint is saturated
and we have ∇E(ã) = 0 thus ã = a which is not possible since a /∈ TV D. 2

Proposition 12 The minimum under constraint ã belongs to d1, d2 or d3.

PROOF. Let us denote by s1
⊥ the orthogonal vector to s1 such that s1

⊥.s3 >
0. Since α31 and α32 are positive, we have also s1

⊥.s2 > 0. In the other hand,
the half-line δ1 which touches the TV D domain is characterized by λs1

⊥ with
λ > 0 and we have

E(λs1
⊥) = µ2

1 + (µ2 − λs1
⊥.s2)

2 + (µ3 − λs1
⊥.s3)

2.

Since s1
⊥.s3 > 0 and s1

⊥.s2 > 0, we deduce that E decreases as λ increases
till it reaches the first of the two intersection points δ1 ∩ d2 or δ1 ∩ d3. In
conclusion the minimum ã does not belong to δ1∩TV D excepted point δ1∩d2

or δ1 ∩ d3. The same arguments hold using vectors s2
⊥ and the minimum ã

does not belong to δ2 ∩ TV D excepted points δ2 ∩ d1 or δ2 ∩ d3. 2

Remark 13 If µ1 = 0 and µ2µ3 6= 0, the TV D domain is reduced to a segment
on line δ1. The previous proof shows in that case that the minimum ã is δ1∩d2
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or δ1 ∩ d3. The case µ2 = 0 and µ1µ3 6= 0 is similar.

We precise the position of the minimum with constraint in the next proposi-
tion.

Proposition 14 Let ã be the minimum with the TV D constraint. Then we
have the following alternative:

i) If d3 is above point d1 ∩ d2 then ã = G3.
ii) If d3 is under point d1 ∩ d2 then ã belongs to d3.

PROOF. We first study the situation for the line d1 where we prove that ã

does not belong to d1 exept point G3. The same argument holds for line d2.
Since G3 = d1∩d2, we have G3.s1 = µ1 and G3.s2 = µ2. Consider now a point

a on the segment d1 ∩ TV D. Using the parametrisation

a = G3 + λs1
⊥, (29)

we obtain

E(a) = E(G3 + λs1
⊥) = F (λ) = λ2(s1

⊥.s2)
2 + (µ3 − G3.s3 − λs1

⊥.s3)
2.(30)

We get a convex parabolic curve and the minimum λ0 is given by

λ0 =
(µ3 − G3.s3)s1

⊥.s3

(s1
⊥.s3)2 + (s1

⊥.s2)2
.

Due to the orientation convention s1
⊥.s3 > 0, any point a ∈ d1∩TV D satisfies

λ ≤ 0.

Case i)
If d3 is above G3, i.e. G3.s3 < µ3 then λ0 > 0 and we deduce that the minimum
on the segment d1 ∩ TV D is obtained at point λ = 0 since λ has to be non
positive.

Case ii)
If d3 is under G3, i.e. G3.s3 > µ3 then λ0 < 0. On the other hand, the point
G2 = d1 ∩ d3 corresponds to the parameter ν such that (G3 + νs1

⊥).s3 = µ3

and we deduce

ν =
(µ3 − G3.s3)

s1
⊥.s3

.

We obtain then
λ0

ν
=

(s1
⊥.s3)

2

(s1
⊥.s3)2 + (s1

⊥.s2)2
< 1.

18



δ3

δ2

δ1

d2d1

d−3 dc
3 d+

3

TV DiG1

◦

G2

◦

G3

◦

s3
s⊥3

s1
s2

Fig. 6. Partition of the line d3.

We conclude that ν < λ0 < 0 and the minimun of E on the segment d1∩TV D
occurs for λ = ν, thus the minimum belongs to d3. 2

The first situation corresponds to the choice ã = G3 whereas the following
proposition completes the second assertion.

Proposition 15 Assume that d3 is under point G3. Line d3 is parted into
three pieces: dc

3 is the segment d3 ∩ TV D, d−3 is the left part of d3 with respect
to dc

3 while d+
3 is the right part of d3 with respect to dc

3 (see Fig. 6).
Let â be the minimum of functional E(a) under the constraint a ∈ d3. We
have the following situations:

• case 1: if â ∈ d−3 then ã is the left bound of segment dc
3.

• case 2: if â ∈ dc
3 then ã = â,

• case 3: if â ∈ d+
3 then ã is the right bound of segment dc

3.

PROOF. Let us denote by s3
⊥ the orthogonal vector to s3 such that s3

⊥ goes
from the left to the right (see Fig. 6). Line d3 can be parametrized by using a
free parameter λ

a = â + λs3
⊥. (31)

On line d3, functional E is then given by

E(a) = E(â + λs3
⊥) = F (λ),

where F (λ) is a parabolic function, strictly decreasing for λ < 0 and strictly
increasing for λ > 0.
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If â ∈ dc
3, then â ∈ TV D. Since proposition 14 says that ã ∈ d3, we deduce

that ã = â.
If â ∈ d+

3 , function F (λ) is a decreasing function for λ such that a ∈ TV D.
Therefore, the minimum is obtained at the right bound of segment dc

3. On the
contrary, if â ∈ d−3 , function F (λ) is an increasing function for λ such that
a ∈ TV D. Therefore, the minimum is obtained at the left bound of segment
dc

3. 2

We conclude this subsection by a summary of optimal slope computation.

• If at least two of the three µ coefficients vanish, then â = (0, 0).
• Assume that all µ coefficients are positive.

From proposition 5, â = (0, 0) if and only if α21 < 0, α31 < 0 and α32 < 0.
Otherwise, using the convention on the local indexation (α31>0 and α32>
0), we derived the following Table from propositions 14-15:

Cases optimal slope â

case 1: ψ = G3.s3 − µ3

= α31µ1 + α32µ2 − µ3 ≤ 0

G3 such that

G3.s1 = µ1 and G3.s2 = µ2

case 2: ψ > 0 and µ1 −
ψ

α2
31 + α2

32

α31 ≤ 0 P3
1 such that

P3
1.s1 = 0 and P3

1.s3 = µ3

case 3: ψ > 0 and 0 ≤ µ1 −
ψ

α2
31 + α2

32

α31 ≤
µ3

α31

â such that

â.si = µi −
ψ

α2
31 + α2

32

α3i, i=1, 2

case 4: ψ > 0 and
µ3

α31
≤ µ1 −

ψ

α2
31 + α2

32

α31 P3
2 such that

P3
2.s2 = 0 and P3

2.s3 = µ3

Remark 16 If one of µk = 0, says µ1, and µ2µ3 6= 0, the previous procedure is
modified. From proposition 3 we deduced that â = (0, 0) if and only if α32 < 0.
Otherwise, using the convention on the local indexation, we now obtain the
following expression for the optimal slope:

if α32 µ2 ≤ µ3, â = G3 such that G3.s1 = µ1 and G3.s2 = µ2,

else, â = G2 such that G2.s1 = µ1 and G2.s3 = µ3.
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3.2 Q method and M method

The Q method consists in predicting the value Uij using the collocation point
Xij = Qij and we get

Uij = Ui + ãi .BiQij, j ∈ ν(i). (32)

The reconstruction is consistent with the linear solutions and satisfy a priori
the stability constraint whether ãi ∈ TV Di or ãi ∈ MPi. Nevertheless, the
Q method is not optimal. Indeed, flux Fij is an approximation of the exact
flux integrated on the edge Sij, therefore numerical integration using the value
at the midpoint Mij provides a better approximation than the value at Qij.
Consequently, we aim to evaluate Uij at point Mij in place of Qij leading to
the following M method:

Uij = Ui + ãi.BiMij, j ∈ ν(i). (33)

Note that the reconstruction is still consistent with the linear solutions but
does not satisfy a priori any stability constraint even if the slope belongs to
the TV D or MP domain. Theoritical stability is lost but as we shall show in
the numerical test section, the solution remains stable with a better accuracy
than the former method using points Qij.

4 The multislope technique

All the above second order method are based on the linear reconstruction
(2) where the slope ai computed on element Ki is used to obtain all the
reconstructed values Uij, j ∈ ν(i). A different approach consists in providing
three slopes, one for each edge of the element, such that we satisfy the two
following basic conditions:
- the reconstruction is consistent for the linear function U , i.e. Uij = U(Xij),
- if we have a local extremum at point Bi, we find again a first order scheme,
i.e. the slopes vanish.
We call this method a multislope method since each value Uij is obtained using
a specific slope for each j ∈ ν(i).
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4.1 The fundamental decomposition

We first construct the slopes in each direction. To this end, we introduce the
normalized vectors

tk = tijk
=

BiBjk

|BiBjk
|
, k = 1, 2, 3.

We have the following proposition.

Proposition 17 Assume that the mesh satisfies hypothesis (H), then the fol-
lowing decomposition holds:

t1 =β12 t2 + β13 t3 (34)

t2 =β21 t1 + β23 t3 (35)

t3 =β31 t1 + β32 t2, (36)

with

βml βlm = 1, (37)

βml βlk = −βmk, (38)

for any circular permutation (m, l, k) of (1, 2, 3) and all the coefficients are
negative.

PROOF. Hypothesis (H) reads

Bi =
∑

k=1,2,3

ρk Bjk
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with ρk > 0 and ρ1 + ρ2 + ρ3 = 1. We then deduce

0 =
∑

k=1,2,3

ρk BiBjk
=

∑

k=1,2,3

ρk |BiBjk
| tk.

Since ρk|BiBjk
| > 0, we conclude that all the coefficients βij are negative.

Relations (37)-(38) are proved as in proposition 2. 2

4.2 Multislope method with the Qij points

To build the multislope method, two slope sets are introduced. We define the
downstream slopes with respect to point Bi in direction tijk

by

p+
ijk

=
Un

jk
− Un

i

|BiBjk
|
, k = 1, 2, 3, (39)

and we define the upstream slopes by

p−ij1 =β12 p
+
ij2

+ β13 p
+
ij3
,

p−ij2 =β21 p
+
ij1

+ β23 p
+
ij3
,

p−ij3 =β31 p
+
ij1

+ β32 p
+
ij2
.

Note that the downstream slopes p+
ijk

correspond to an approximation of the
directional derivatives in the tijk

directions. We now give a general definition
of a limiter to provide L∞ stability for the reconstruction.

Definition 18 A function (p, q) → θ(p, q) is a limiter if it satisfies the prop-
erties

θ(p, p)= p, ∀p ∈ R, (40)

θ(p, q)= 0, ∀p, q ∈ R with pq ≤ 0, (41)

θ(p, q)= θ(q, p), ∀p, q ∈ R. (42)

For example the minmod limiter





θ(p, q) = 0 pq ≤ 0,

θ(p, q) = min(p, q) p ≥ 0, q ≥ 0,

θ(p, q) = max(p, q) p ≤ 0, q ≤ 0,

23



satisfies the properties. Other limiters like Van-Leer’s limiter, superbee limiter
also satisfy the properties (40)-(42).

Let us define the limited slopes in the tij direction by

pij = θ(p+
ij, p

−

ij), j ∈ ν(i). (43)

The multislope method reads

Uij = Ui + pij |BiQij|, j ∈ ν(i). (44)

Proposition 19 Assume that the mesh satisfies hypothesis (H). Then the
reconstruction is consistent for the linear solution and we have a first order
scheme at the extrema.

PROOF. To prove the first assertion, let us consider a linear function U(X) =
U0 + L.X. The downstream slope is given by

p+
ijk

=
L.BiBjk

|BiBjk
|

= L.tk

and the linearity of function U yields

p−ij1 =β12 p
+
ij2

+ β13 p
+
ij3

=β12 L.t2 + β13 L.t3

=L.(β12 t2 + β13 t3)

=L.t1 = p+
ij1
.

We conclude from property 40 that pij = p+
ij and finally we get Uij = U(Qij).

To prove the second assertion, let assume that Ui is a local minimum. All the
slopes p+

ij are non negative since Uj ≥ Ui, j ∈ ν(i). Under hypothesis (H), co-
efficients βij are negative hence p−ij are non positive. In consequence, property
41 yields pij = 0 and the scheme is reduced to a first order one. 2

Remark 20 The particular choice of the minmod limiter provides a TVD
reconstruction in each segment [Bi,Bj]. Indeed, if Ui ≤ Uj, we have Ui ≤

Uij ≤ U ref
ij ≤ Uji ≤ Uj (see (19) for definition of U ref

ij ).
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Fig. 8. Vector rk (left). Decompositions of vector r1 in the basis t1, t⊥1 and vector
t⊥1 in the basis t2, t3 (right).

4.3 Multislope method with the Mij points

The numerical flux Fij is an approximation of the exact flux integrated on edge
Sij. Numerical integration using midpoint Mij for the quadrature formula
provides a second order approximation. Therefore, better accuracy shall be
obtained using Mij in place of Qij. We then consider a new set of vectors
(Fig. 8 left),

rk = rijk
=

BiMijk

|BiMijk
|
, k = 1, 2, 3.

As in the previous section, we have the following proposition.

Proposition 21 Assume that the triangle K ∈ Th is not reduced to a segment.
Then the non zero coefficients of the following unique expansions

r1 = δ12 r2 + δ13 r3 (45)

r2 = δ21 r1 + δ23 r3 (46)

r3 = δ31 r1 + δ32 r2, (47)

satisfy

δml δlm = 1, (48)

δml δlk = −δmk, (49)

for any circular permutation (m, l, k) of (1, 2, 3). Furthermore, since Bi is
strictly inside the triangle (Mij)j∈ν(i), all the coefficients are negative.
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4.3.1 Decomposition of r

Natural directions to compute the slopes are tm = tijm
, m = 1, 2, 3 since basic

informations (i.e. the values of Ui) are given at the centroids. To compute
new interpolated values at points Mij, one has to decompose rk with respect
to the set (tm)m=1,2,3. Non uniqueness of the decomposition is clear so we
propose a decomposition such that we recorver the Q method when Mij and
Qij coincide.

Let t⊥k denote a normalized orthogonal vector to tk. On the one hand, we
consider the unique decomposition of t⊥k in the basis {tm, m 6= k} (Fig. 8
right)

t⊥1 = η12 t2 + η13 t3, (50)

t⊥2 = η21 t1 + η23 t3, (51)

t⊥3 = η31 t1 + η32 t2. (52)

On the other hand, we decompose rk as

rk = (rk.tk) tk + (rk.t
⊥

k ) t⊥k . (53)

We get the decomposition of rk thanks to relations (50)-(53):

rk =
∑

m=1,2,3

ξkm tm, (54)

with
ξkk = rk.tk, ξkm = (rk.t

⊥

k ) ηkm, m 6= k.

This decomposition satisfies the property:

if rk = tk then ξkk = 1 and ξkm = 0, m 6= k.

4.3.2 Construction of the slopes

We first define the downstream slopes q+
ij as

q+
ijk

=
∑

m=1,2,3

ξkm p+
ijm
, k = 1, 2, 3. (55)

Then we define the upstream slopes

q−ij1 = δ12 q
+
ij2

+ δ13 q
+
ij3
,
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q−ij2 = δ21 q
+
ij1

+ δ23 q
+
ij3
,

q−ij3 = δ31 q
+
ij1

+ δ32 q
+
ij2
.

We compute the slopes qij using the limiter function

qij = θ(q+
ij , q

−

ij), j ∈ ν(i). (56)

We finally define the reconstruction with

Uij = Ui + qij |BiMij|. (57)

Proposition 22 The reconstruction is consistent for linear functions.

PROOF. Let us consider a function U(X) = U0 + L.X with L ∈ R
2. By

construction, we have p+
ijk

= L.tk. Relation (55) implies that

q+
ijk

= L.
∑

m=1,2,3

(ξkm tm) = L.rk.

Hence we deduce that

q+
ijk

= L.rk =
U(Mijk

) − U(Bi)

|BiMijk
|

.

On the other hand, we write for example with k = 1

q−ij1 = δ12 q
+
ij2

+ δ13 q
+
ij3

=L.(δ12 r2 + δ13 r3)

=L.r1 = q+
ij1
.

Thanks to property 40, we deduce that qijk
= q+

ijk
and thus Uij = U(Mij) for

all j ∈ ν(i). 2

Remark 23 Degeneration to first order scheme is not guaranteed by the re-
construction at point M if Ui is a local extremum. Indeed, since the point Bi

is strictly inside the triangle with vertices Mij, j ∈ ν(i), all the coefficients
δkm are negative. Therefore if all the slopes q+

ijk
have the same sign, we deduce

that q−ijk
q+
ijk
< 0 then qijk

= 0 thanks to relation (41). But if all the slopes p+
ij

have the same sign, the slopes q+
ijk

given by relations (55) do not have a priori
the same sign, hence the slope qij might be non zero.
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5 Numerical tests

5.1 Tests with linear problems

We present numerical tests for the advection and the rotation problems. Com-
putations have been performed with the six following schemes:

S1 first order scheme (Eq. (1))

S2 the gradient scheme (Section 2.1.1) with TVD limiter (Section 2.2.3)

S3 optimized monoslope scheme (Section 3.1) with point Qij (Eq. (32))

S4 optimized monoslope scheme (Section 3.1) with point Mij (Eq. (33))

S5 multislope scheme with point Qij (Section 4.2)

S6 multislope scheme with point Mij (Section 4.3)

Let Ω be the unit square. To evaluate the method accuracy, we consider four
meshes M0, M1, M2, M3 with N0 = 228, N1 = 840, N2 = 3300, N3 = 13340
elements using the Delaunay algorithm to obtain real unstructured meshes.
The characteristic length is defined by

h = min
Ki∈Th
j∈ν(i)

|Ki|

|Sij|

and we compute h0 = 73.2E−3, h1 = 40.2E−3, h2 = 20.0E−3, h3 = 9.9E−3
respectively.

We use the forward Euler scheme to update the solution at each time step and
we define the characteristic parameter

CFL =
|V|∆t

h
.

The time step ∆t is adapted to provide stability and we calculate ∆t setting
the CFL coefficient number. We choose the CFL value in order to obtain
the smallest L1 error. For the present tests, stability is obtained with a CFL
parameter lower than 0.6. Moreover, we have taken smaller CFL values up
to 0.05 in the regular case to get better accuracy since we deal with a first
order scheme in time. A second order scheme in time (Heun scheme) has also
been tested with larger CFL values but it appears in our simulations that the
computational cost is equivalent since the second order scheme in time requires
to compute an intermediate solution for each time step. The performance of
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the second order method in time is not significative from a computational
point of view for the situations considered here and only first order scheme in
time will be employed in the sequel.

We assume that the error estimations converge asymptotically as

‖Uh(T, .) − U(T, .)‖L1 ≈ Chα (58)

where α is the scheme order while C is a constant. With low order scheme
(i.e. α < 1), constant C value is crucial to evaluate the scheme accuracy while
its influence is less important for higher order schemes (i.e. α > 1).

In this subsection, we consider the advection problem where an inital compact
support function is moved with a constant velocity or by rotation. Two initial
functions are used: a regular initial function Ur

Ur(x1, x2) =
1

2
(cos(5πr) + 1) if r <

1

5
, Ur(x1, x2) = 0 if r >

1

5

and an irregular initial function Ud

Ud(x1, x2) = 1 if r <
1

5
, Ud(x1, x2) = 0 if r >

1

5
.

Computational experiences have been performed using the six schemes and
the upwind flux where the velocity is computed at the midpoint of the edges.

• The advection problem with constant velocity: we take V = (0.5, 0.5) and
the initial functions Ur and Ud are centered at point (0.25, 0.25) (r =√

(x1 −
1

4
)2 + (x2 −

1

4
)2). Computational experiences have been performed

till the final time tf = 1 s for which exact solution is the initial function
centered at point (0.75, 0.75).

• The rotation problem: we take V = (0.5−x2, x1−0.5). The test consists in a
half-rotation around point (0.5, 0.5) of the initial function Ur or Ud centered

at point (0.75, 0.5) (r =

√

(x1 −
3

4
)2 + (x2 −

1

2
)2). At the final time tf = π s,

the solution is the initial function centered at point (0.25, 0.5).

5.1.1 The advection problem with an initial regular condition

Table 1 lists the errors in the L1 and L∞ norms between the exact solution and
the approximation at time t = 1.0 using a CFL value to provide the smaller
L1 error. Fig. 9 shows the L1 and L∞ error curves in function of the mesh
characteristic parameter h. Assuming that the L1 errors satisfy asymptotically
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S1 S2 S3 S4 S5 S6

M0 2.444e-02 2.404e-02 1.854e-02 2.002e-02 1.825e-02 1.736e-02

M1 1.902e-02 1.207e-02 8.503e-03 7.839e-03 1.001e-02 8.887e-03

M2 1.162e-02 7.531e-03 4.417e-03 3.698e-03 4.666e-03 3.966e-03

M3 6.587e-03 3.667e-03 1.770e-03 1.440e-03 1.947e-03 1.636e-03

S1 S2 S3 S4 S5 S6

M0 4.566e-01 3.334e-01 4.712e-01 3.828e-01 4.096e-01 4.278e-01

M1 3.887e-01 3.213e-01 2.105e-01 1.943e-01 2.372e-01 2.454e-01

M2 2.496e-01 2.107e-01 1.362e-01 1.298e-01 1.607e-01 1.504e-01

M3 1.390e-01 1.012e-01 6.638e-02 6.876e-02 7.894e-02 8.127e-02

Table 1
The advection test with the regular function. Error in the L1 norm (upper table)
and the L∞ norm (lower table)
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Fig. 9. The advection test with the regular function. Errors in the L1 norm (left)
and the L∞ norm (right) versus mesh parameter h for the six schemes.

relation (58), coefficients C and α are computed using the last three points
and presented in Table 2.

The first order scheme S1 is clearly the worth in comparison with the others.
Scheme S2 presents a better convergence order but the rough limiter (17)
ensures the scheme to provide convergence order similar to that of schemes
S3-S6. The last four methods have similar convergence order but we note the
following facts:

30



scheme S1 S2 S3 S4 S5 S6

α 0.76 0.85 1.12 1.21 1.17 1.21

C 0.22 0.19 0.32 0.39 0.44 0.44

Table 2
Convergence order with the L1 norm for the advection test with the regular function.

S1 S2 S3 S4 S5 S6

M0 7.730e-02 6.070e-02 5.432e-02 4.771e-02 6.339e-02 5.046e-02

M1 6.837e-02 5.143e-02 3.943e-02 3.249e-02 3.870e-02 3.413e-02

M2 4.961e-02 3.103e-02 2.410e-02 2.189e-02 2.706e-02 2.393e-02

M3 3.409e-02 1.987e-02 1.406e-02 1.261e-02 1.563e-02 1.367e-02

Table 3
The advection test with the discontinuous function. Error in the L1 norm for the
six schemes.

scheme S1 S2 S3 S4 S5 S6

α 0.50 0.68 0.74 0.68 0.65 0.65

C 0.34 0.45 0.42 0.29 0.32 0.29

Table 4
Convergence order with the L1 norm for the advection test with the discontinuous
function.

• Schemes using point M give slightly better convergence rates than schemes
using point Q.

• For a given point (Q or M), monoslope schemes S3 and S4 give slightly
better convergence rates than the multislope schemes S5 and S6.

5.1.2 The advection problem with an initial discontinuous function

We present in Table 3 the L1 errors between the exact solution and the ap-
proximation at time t = 1.0. Fig. 10 shows the convergence rate plotting the
L1 error in function of the mesh characteristic parameter h and Table 4 gives
coefficients C and α.

We obtain the same accuracy classification where S1 provides the worst con-
vergence, S2 is an intermediate situation and the last four schemes give the
best convergence orders. For the discontinuous case, schemes S3-S6 have the
same order of convergence but the constant are differents and the multislope
methods S5 and S6 have a better constant C than the monoslope methods
S3 and S4.
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Fig. 10. The advection test with the discontinuous function. Error in the L1 norm
versus mesh parameter h for the six schemes.

S1 S2 S3 S4 S5 S6

M0 7.861e-03 4.802e-03 4.294e-03 4.651e-03 4.859e-03 4.362e-03

M1 5.928e-03 2.905e-03 2.022e-03 2.199e-03 2.386e-03 2.085e-03

M2 3.953e-03 1.664e-03 9.484e-04 8.802e-04 10.30e-04 8.065e-04

M3 2.373e-03 8.889e-04 4.526e-04 3.819e-04 4.996e-04 3.632e-04

S1 S2 S3 S4 S5 S6

M0 12.62e-02 8.927e-02 8.131e-02 8.949e-02 9.186e-02 7.531e-02

M1 11.36e-02 6.917e-02 5.231e-02 5.910e-02 6.083e-02 5.549e-02

M2 8.648e-02 4.815e-02 2.915e-02 3.477e-02 3.398e-02 3.456e-02

M3 5.334e-02 2.759e-02 1.561e-02 1.735e-02 1.685e-02 1.716e-02

Table 5
The rotation test with the regular function. Error in the L1 norm (upper table) and
the L∞ norm (lower table)

5.1.3 The rotation problem

We first deal with the regular case using function Ur as an initial condition.
Table 5 lists the errors in L1 and L∞ norms between the exact solution and the
approximation at time t = π while Fig. 11 shows the L1 and L∞ error curves
in function of the mesh characteristic parameter h. Moreover, coefficients C
and α are presented in Table 6. As in the advection case, schemes S1 and
S2 give the lower rates of convergence while the last four schemes S3-S6
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Fig. 11. The rotation test with the regular function. Errors in the L1 norm (left)
and the L∞ norm (right) versus mesh parameter h for the six schemes.

scheme S1 S2 S3 S4 S5 S6

α 0.65 0.85 1.07 1.25 1.12 1.25

C 0.05 0.04 0.06 0.12 0.08 0.11

Table 6
Convergence order with the L1 norm for the rotation test with the regular function.

S1 S2 S3 S4 S5 S6

M0 5.634e-02 3.792e-02 3.297e-02 3.493e-02 3.534e-02 3.444e-02

M1 4.757e-02 3.135e-02 2.486e-02 2.853e-02 2.822e-02 2.522e-02

M2 3.571e-02 2.194e-02 1.623e-02 1.725e-02 1.793e-02 1.605e-02

M3 2.566e-02 1.469e-02 1.058e-02 1.105e-02 1.182e-02 1.062e-02

Table 7
The rotation test with the discontinuous function. Error in the L1 norm for the six
schemes.

produce the best convergence order. We have not notice significant difference
with the advection problem and the simulations confirm the remarks made in
Section 5.1.1.

The second set of tests concerns the irregular case using the discontinuous
function Ud as an initial condition. Errors in L1 norm at time tf = π are
given in Table 7 and plotted in Fig. 12. Coefficient C and α are computed and
presented in Table 8.

As in the translation tests, scheme S3-S6 are more efficient but in this example
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Fig. 12. The rotation test with the discontinuous function. Error in the L1 norm
versus mesh parameter h for the six schemes.

scheme S1 S2 S3 S4 S5 S6

α 0.44 0.54 0.61 0.68 0.62 0.62

C 0.20 0.18 0.18 0.25 0.21 0.18

Table 8
Convergence order with the L1 norm for the rotation test with the discontinuous
function.

the monoslope scheme provides the best convergence order with the smallest
constant.

5.2 The forward facing step problem for the Euler system

We now experiment the MUSCL reconstructions in the nonlinear vectorial
framework of the Euler system considering the forward facing step problem
(see [18] for the details). We use the HLLC flux to compute the numerical flux
(see [16]) while the reconstruction is performed using the density ρ, the velocity
(u, v) and the pressure P variables. A right-going supersonic Mach 3 flow is
reflected by a 0.2 length unit step. Steady-state is assumed to be reached at t =
4 and we compare the solutions computed with three different methods: the
first order scheme (run 1), the second order scheme with optimized monoslope
at point Q (run 2) and the second order scheme with multislope at point
Q (run 3). We use an unstructured Delaunay mesh of 18000 elements and
compute the solution till tf = 4.

Simulations have been also done using the M point but numerical artefacts
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Fig. 13. Run 1: first order scheme.
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Fig. 14. Run 2: second order optimized monoslope scheme at point Q.

appear leading to negative pressure values. The multislope method at point
M is not stable enough to pass critical tests such that the forward facing step
problem.

In Figs. 13-15, we represent the density isovalues from 0 to 8 with a step of 0.2.
Run 2 and 3 are very similar (second order methods) while the shocks suffer an
important diffusion in run 1 (first order method). The second order methods
are similar and provide a better resolution of the shock interfaces. The main
advantage of the multislope method here is its simplicity and computational
cost in comparison with the monoslope method.
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Fig. 15. Run 3: second order multislope scheme at point Q.

6 Conclusions

In this paper, new MUSCL methods have been presented in the context of
cell-centered Finite Volume method where control volumes are triangles. First
an enhancement of the monoslope MUSCL methods that is to say with one
vectorial slope per control volume has been introduced. It is based on a min-
imization under constraint corresponding to the desired stability condition.
Afterwards a new MUSCL method approach has been proposed. It consists in
computing three scalar slopes per triangle following the three directions given
by the neighbouring triangles.

The methods achieve a better accuracy in comparison with the classical gradi-
ent method with a rougth limiter. The convergence rate of both the methods
are similar but in the multislope case, time consumption is reduced and the
implementation corresponds to a one dimensional MUSCL method in each
direction. The generalisation for the three-dimensional situation is straight-
forward for the multislope where we are concerned with four directions and
very few modifications have to be done to adapt the method. For the mini-
mization monoslope MUSCL method, some complementary studies should be
considered to provide the three-dimensional extension.

From a numerical point of view, the choice of the edge midpoint M to compute
the interpolate values Uij in comparaison with point Q brings higher accuracy
but scheme is less stable since the maximum principle is not respected.
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