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Abstract

In this paper, we investigate an original way to deal with the problems generated
by the limitation process of high-order finite volume methods based on polynomial
reconstructions. Multi-dimensional Optimal Order Detection (MOOD) breaks away
from classical limitations employed in high-order methods. The proposed method
consists of detecting problematic situations after each time update of the solu-
tion and of reducing the local polynomial degree before recomputing the solution.
As multi-dimensional MUSCL methods, the concept is simple and independent of
mesh structure. Moreover MOOD is able to take physical constraints such as density
and pressure positivity into account through an “a posteriori” detection. Numer-
ical results on classical and demanding test cases for advection and Euler system
are presented on quadrangular meshes to support the promising potential of this
approach.
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1 Introduction

High-order methods for systems of nonlinear conservation laws are an impor-
tant challenging question with a wide range of applications. Furthermore in an
engineering context such methods may deal with complex multi-dimensional
domains requiring unstructured, heterogeneous or even non-conformal meshes.
To handle highly stretched unstructured meshes made with different cell shapes,
one has to design genuinely multi-dimensional numerical methods which ex-
clude dimensional splitting techniques.
Due to its simplicity (one unknown mean value per cell) and built-in con-
servativity property, first-order finite volume method is very popular in to-
day’s engineering applications or commercial codes. However, it suffers from
a major drawback, namely the presence of a large amount of numerical dif-
fusion leading to a poor accuracy and over smoothed discontinuities. High-
order space and time finite volume methods based on local polynomial re-
constructions and Runge-Kunta algorithm have been developed to improve
the approximation accuracy. MUSCL methods are probably the most popular
second-order finite volume schemes. First developed in the one-dimensional
situation with linear reconstructions [14,27,15,16], the technique has been ex-
tended to genuinely multi-dimensional case using structured or unstructured
meshes [3,2,12,20,7,21,4]. Stability is achieved using a limiting procedure based
on the Maximum Principle. In the present study, the Multi-dimensional Limit-
ing Process (MLP) of [20,21] is employed since it is one of the most up-to-date
MUSCL methods. Besides, (Weighted) Essentially Non Oscillatory polynomial
reconstruction procedures (ENO/WENO) were designed to reach higher-order
of accuracy [10,11,1,24,23] using less restrictive conditions for the limitation
which do not guarantee a strict Maximum Principle for scalar problems. More-
over, although ENO/WENO schemes can retain high-order spatial accuracy
even at points of extrema, extra difficulties and complexities have to be faced
for the implementation on multi-dimensional unstructured grids (see [1,28])
as a large number of stencils for the polynomial reconstructions must be pro-
ceeded. Such drawbacks lead us to put ENO/WENO methods aside from the
present study.
In this work we propose a genuinely multi-dimensional high-order method
within a finite volume Eulerian framework on non-uniform meshes, the Multi-
dimensional Optimal Order Detection (MOOD) method. In contrast to the
traditional methods which use an a priori limitation procedure, the MOOD
technique is based on an a posteriori detection of problematic cells. In each
cell optimal polynomial degrees are determined to build approximated states
leading to a discrete maximum principle preserving solution. In an hydro-
dynamics context, physical properties such as the density and the pressure
positivity are considered. Roughly speaking, the polynomial degree may drop
to zero in the vicinity of discontinuities leading to a local stable first-order fi-
nite volume scheme whereas high-order scheme is achieved in smooth regions.
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As for other methods, the MOOD method is embedded into the sub-steps of
a high-order Runge-Kutta time discretization.

The paper is organized as follows. Section 2 is dedicated to the generic frame-
work used to describe the MOOD method. Section 3 is devoted to the linear
reconstruction and to a short presentation of the MLP method [20,21]. The
MOOD method for scalar problems is detailed in the fourth section while sec-
tion 5 is dedicated to an extension of MOOD method to the Euler equations.
At last, the numerical results for the advection and the Euler equations prob-
lems are respectively gathered in sections 6 and 7. Classical tests are carried
out and comparisons to the results of MLP method are provided. Several nu-
merical examples prove the efficiency of the MOOD method in its second- and
third-order version. The last section finally gathers conclusion and perspec-
tives.

2 General framework

We consider the generic scalar hyperbolic equation defined on a domain Ω ⊂
R

2, t > 0 cast in the conservative form

∂tu+∇ · F (u)= 0, (1a)

u(·, 0)=u0, (1b)

where u = u(x, t) is the unknown function, x = (x1, x2) denotes a point of Ω
and t the time. F is the physical flux and u0 is the initial condition. Boundary
conditions shall be prescribed in the following.
To elaborate the discretization in space and time, we introduce the follow-
ing ingredients. We assume that the computation domain Ω is a polygonal
bounded set of R2 divided into quadrangles Ki, i ∈ Eel where Eel is the cell
index set with ci being the cell centroid. For each cell Ki, λ(i) is the set of all
the nodes Pm, m ∈ λ(i) while eij denotes the common edge between Ki and
Kj with j ∈ ν(i), ν(i) being the index set of all the elements which share a
common side with Ki. Moreover, ν(i) represents the index set of all Kj such
that Ki ∩Kj 6= ∅ (see figure 1). At last, |Ki| and |eij| measure the surface of
Ki and the length of eij respectively and nij is the unit outward normal vector
of Ki.
To compute an approximation of the solution of equation (1), we recall the
generic first-order explicit finite volume scheme

un+1
i = un

i −∆t
∑

j∈ν(i)

|eij|

|Ki|
F(un

i , u
n
j ,nij), (2)
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Fig. 1. Mesh notation. Ki is a generic element with the centroid ci. Index set ν(i)
corresponds to blue cells with dots, ν(i) corresponds to every non-white cells and
λ(i) is the set of red Pm node indexes. Edges are denoted by eij with nij the unit
outward normal vector of element Ki. Numerical integration on edge eil is performed
with the two Gauss points q1

il, q
2
il.

where F(un
i , u

n
j ,nij) is a numerical flux which satisfies the classical properties

of consistency and monotonicity.

Unfortunately, such a scheme only provides first-order accuracy in space and
higher-order reconstruction techniques are used to improve the solution ap-
proximation. To this end, we substitute in equation (2) the first-order approxi-
mation un

i and un
j with better approximations of u on the eij edge and consider

the generic spatial high-order finite volume scheme

un+1
i = un

i −∆t
∑

j∈ν(i)

|eij|

|Ki|

R∑

r=1

ξrF(u
n
ij,r, u

n
ji,r,nij), (3)

where un
ij,r and un

ji,r, r = 1, ..., R are high-order representations of u on both
sides of edge eij and ξr denote the quadrature weights for the numerical in-
tegration. In practice, un

ij,r and un
ji,r are two approximations of u(qrij , t

n) at
quadrature points qrij ∈ eij , r = 1, ..., R (see figure 1).

For the sake of simplicity, let us write the scheme under the compact form

un+1
h = un

h +∆t HR(un
h), (4)

with un
h =

∑
i∈Eel u

n
i 1IKi

the constant piecewise approximation of function u
and operator HR being defined as

HR(un
h) :=

∑

i∈Eel


−

∑

j∈ν(i)

|eij |

|Ki|

R∑

r=1

ξrF(u
n
ij,r, u

n
ji,r,nij)


 1IKi

. (5)
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To provide a high-order method in time, we use the third-order TVD Runge-
Kutta method (see [24]) which corresponds to a convex combination of three
explicit steps

u(1)

h = un
h +∆t HR (un

h) , (6a)

u(2)

h = u(1)

h +∆t HR(u(1)

h ), (6b)

u(3)

h =

(
3un

h + u(2)

h

4

)
+∆t HR

(
3un

h + u(2)

h

4

)
, (6c)

un+1
h =

un
h + 2u(3)

h

3
. (6d)

Remark 1 Note that a high-order scheme in space and time can be rewrit-
ten as convex combinations of the first-order scheme. From a practical point
of view, implementation of the high-order scheme from an initial first-order
scheme is then straightforward. 2

The main challenge is to build the approximations un
ij,r and un

ji,r on both
sides of edge eij with r = 1, ..., R to be plugged into relations (5) and (6).
Polynomial reconstructions provide high-order approximations but unphysical
oscillations arise in the vicinity of discontinuities. Indeed, the exact solution of
an autonomous scalar conservation law (1) satisfies a local Maximum Principle
and we intend to build the reconstructions such that this stability property is
fulfilled at the numerical level (see [5,6] and references herein). To this end,
we state the following definition.

Definition 2 A numerical scheme (4) satisfies the Discrete Maximum Prin-
ciple (DMP) if for any cell index i ∈ Eel one has

min
j∈ν(i)

(un
i , u

n
j ) ≤ un+1

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (7)

3 A short review on a multi-dimensional MUSCL method

All L∞ stable second-order schemes are based on piecewise linear reconstruc-
tions equipped with a limiting procedure. The polynomial reconstruction pro-
vides the accuracy while the limitation algorithm ensures the physical rele-
vancy of the numerical approximation. We briefly present the piecewise linear
reconstruction step and recall the MLP method proposed in [21] which is used
in the numerical part of this paper.
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3.1 Linear reconstruction

Let (ui)i∈Eel be a set of cell centered mean values given on cells Ki. In order
to simplify notations, let K be a generic cell with centroid c = (c1, c2). Con-
sidering mean values on a chosen neighborhood made of cells Kj, j ∈ ν, we
seek a polynomial function ũ(x) of degree d = 1. Let us define the notation
for the mean value as

〈
ũ(x)

〉

K

def
=

1

|K|

∫

K
ũ(x)dx.

Usually we ask for the following criteria

Criterion 3 The polynomial reconstruction ũ must fulfill

(1)
〈
ũ(x)

〉

K

= ū where ū is the mean value approximation of u on K.

(2) The polynomial coefficients are the ones minimizing the functional

E(ũ) =
∑

j∈ν

(
uj −

〈
ũ(x)

〉

Kj

)2

, (8)

A classic way to write ũ is

ũ(x) = ū+G · (x− c), (9)

where G = (G1, G2) is a constant approximation of ∇u on K. The first condi-
tion of criterion 3 is directly satisfied and classical techniques like least squares
methods are used to determine vector G that minimizes the functional E in
equation (8) .

3.2 Gradient limitation

As we mentioned above, a finite volume scheme only based on a local poly-
nomial reconstruction without limiting procedure produces spurious oscilla-
tions. Initiated by the pioneer works of Kolgan and Van Leer [14,15,27,16],
the MUSCL technique deals with a local linear reconstruction like (9) on each
cell K where the gradient G is reduced by a limiter coefficient φ ∈ [0, 1]

ũ(x) = ū+ φ (G · (x− c)) . (10)

such that any reconstructed values satisfy the Discrete Maximum Principle
(see [2,3,12]). We choose to detail and use the MLP limiter instead of the
classical Barth-Jespersen limiter because it provides more accurate results
(see [21]). The MLP limiter applies the following procedure.
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• Construction of an unlimited slope G using the neighbor cells Kj, j ∈ ν.
• Evaluation of the unlimited reconstruction (9) at the vertices Pm of K:
um = ũ(Pm), m ∈ λ the nodes index set of K.

• Evaluation of the bounds for each node Pm

δumax
m = max

j, Pm∈λ(j)
(uj − ū), δumin

m = min
j, Pm∈λ(j)

(uj − ū).

• Evaluation of the vertex based limiter φm

φm =






min

(
1,

δumax
m

um − ū

)
if um − ū > 0,

min

(
1,

δumin
m

um − ū

)
if um − ū < 0,

1 if um − ū = 0.

• Cell-centered limiter φ = min
m∈λ

φm.

The MLP technique provides a second-order finite volume scheme which sat-
isfies the Discrete Maximum Principle under a more restrictive CFL condition
than the CFL condition of the first-order scheme.

Remark 4 Although there exists a large literature about piecewise linear lim-
itation, the extension of MUSCL type methods to piecewise quadratic or even
higher degree polynomials in a multi-dimensional context is not yet achieved.
An efficient limitation process is still an under-investigation field of research. 2

4 The Multi-dimensional Optimal Order Detection method (MOOD)

Classical high-order methods are based on an a priori limitation of the recon-
structed values which are plugged into a one time step generic finite volume
scheme to update the mean values (see figure 2 top).
Unlike existing methods, the MOOD technique proceeds with an a posteriori
limitation. Over each cell, an unlimited polynomial reconstruction is carried
out to build a prediction u⋆

h of the updated solution. Then the a posteriori
limitation consists of reducing the polynomial degree and recomputing the
predicted solution u⋆

h until the DMP property (7) is achieved. To this end, a
prescribed maximum degree dmax is introduced and used to perform an initial
polynomial reconstruction on each cell. Through an iterative decremental pro-
cedure, we determine the optimal degree di ≤ dmax on each cell Ki such that
each updated mean value u⋆

i fulfills the DMP property (see figure 2 bottom).

In the following we focus on the quadratic polynomial case dmax = 2 and first
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Fig. 2. Classical high-order methods idea (top) and MOOD idea (bottom).

present the local quadratic reconstruction of [19]. Then the MOOD method
is detailed and we prove that the numerical approximations satisfy the DMP
property.

4.1 Quadratic reconstruction

Using the same framework as in section 3.1, the quadratic polynomial recon-
struction is written

ũ(x) = ū+G · (x− c) +
1

2

(
(x− c)tH(x− c)− H̄

)
, (11)

with

H̄ =
〈
(x− c)tH(x− c)

〉

K

, H =



H11 H12

H12 H22


 ,

where matrix H is an approximation of the Hessian matrix ∇2u on K. Note
that by construction, the mean value of ũ on K is still equal to ū.
A minimization technique is used to compute G and H . To this end, for a cell
Kj , let us define the integrals

x
{α,β}
Kj

=
〈
(x− c1)

α(y − c2)
β

〉

Kj

−
〈
(x− c1)

α(y − c2)
β

〉

K

.

Algebraic manipulations yield the following expression for
〈
ũ(x)

〉

Kj

〈
ũ(x)

〉

Kj

= ū+
(
G1 x

{1,0}
Kj

+G2 x
{0,1}
Kj

)
+
1

2

(
H11x

{2,0}
Kj

+ 2H12x
{1,1}
Kj

+H22x
{0,2}
Kj

)
.

(12)
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This expression is further derived for any cell Kj with j ∈ ν to form an
over-determined linear system of the form AΛ = B with

A =




x
{1,0}
K1

x
{0,1}
K1

x
{2,0}
K1

x
{1,1}
K1

x
{0,2}
K1

x
{1,0}
K2

x
{0,1}
K2

x
{2,0}
K2

x
{1,1}
K2

x
{0,2}
K2

...
...

...
...

...

x
{1,0}
KN

x
{0,1}
KN

x
{2,0}
KN

x
{1,1}
KN

x
{0,2}
KN




, Λ =




G1

G2

1
2
H11

H
12

1
2
H22




, B =




u1 − ū

u2 − ū

...

uN − ū




,

(13)
with N = #ν. This system is solved with a QR decomposition of A using
Householder transformations, such that Q ∈ MN×N(R) is an orthogonal ma-
trix and R ∈ MN×5(R) an upper-triangular one. Finally back-substitution of
RΛ = QtB defines ũ (see [19]).

Remark 5 A left preconditioner matrix can be applied to reduce the sys-
tem sensitivity and improve the reconstruction quality. For example, in [19],
the authors use a diagonal matrix whose coefficients ωjj = ‖cj − c‖−2 (j =
1, . . . , N) correspond to geometrical weights in order to promote closest infor-
mations. 2

4.2 Description of the MOOD method

We now detail the MOOD technique considering the simple case where an
explicit time discretization is employed. Moreover, without loss of generality,
we present the method using only one quadrature point (R = 1) and skip
the subscript r denoting uij in place of uij,r. Extension to several quadrature
points (R > 1) is straightforward.

Assume that we have a given sequence un
h = (un

i )i∈Eel of mean value approxi-
mations at time tn, the goal is to build a relevant sequence un+1

h = (un+1
i )i∈Eel

at time tn+1 = tn + ∆t. To this end, we define the following fundamental
notions.

• di is the Cell Polynomial Degree (CellPD) which represents the degree of the
polynomial reconstruction on cell Ki.

• dij and dji are the Edge Polynomial Degrees (EdgePD) which correspond to
the effective degrees used to respectively build uij and uji on both sides of
edge eij .

The MOOD method consists of the following iterative procedure.

1. CellPD initialization. Each CellPD is initialized to dmax.
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2. EdgePD evaluation. Each EdgePD is set up as a function of the neigh-
boring CellPD (see table 1).

3. Quadrature points evaluation. Each uij is evaluated with the poly-
nomial reconstruction of degree dij .

4. Mean values update. The updated values u⋆
h are computed using the

finite volume scheme (3).
5. DMP test. The DMP criterion is checked on each cell Ki

min
j∈ν(i)

(un
i , u

n
j ) ≤ u⋆

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (14)

If u⋆
i does not satisfy (14) the CellPD is decremented, di := max(0, di−1).

6. Stopping criterion. If all cells satisfy the DMP property, the iterative
procedure stops with un+1

h = u⋆
h else go to step 2.

We give in table 1 three possible strategies of EdgePD calculation. The simplest
one named EPD0 consists of setting dij = di and dji = dj whereas EPD1 chooses
the minimal value between di and dj for both dij and dji. At last, the smallest
CellPD of all the direct neighbor cells is taken in the EPD2 strategy.

To conclude the section, there are two important remarks which dramatically
reduce the computational cost.

Remark 6 If dij < d
max

, there is no need to recompute a polynomial of de-
gree dij, a simple truncation of the initial polynomial of degree d

max
should be

performed. 2

Remark 7 Only cells Ki where CellPD has been decremented and their neigh-
bors in a compact stencil have to be updated. Consequently only these cells have
to be checked during next iterations of the MOOD procedure in the current

EPD0 strategy EPD1 strategy EPD2 strategy

EdgePD dij di min(di, dj) min
j∈ν(i)

(di, dj)

Example

Table 1
Evaluation of the EdgePD dij using the CellPD of the two neighbor elements. Ana-
lytic formula on first line. Examples on the second line where CellPD are surrounded
in red and EdgePD for internal edges are in black. Missing cells are assumed to have
CellPD equal to 2.
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time step. For instance the compact stencil for EPD0 and EPD1 is ν(i) while

for EPD2 it is
{
ν(i) ∪ {ν(j), j ∈ ν(i)}

}
. 2

4.3 Convergence of the MOOD method

We first recall the classical stability result (see [6] and references herein).

Proposition 8 Let us consider the generic first-order finite volume scheme
(2) with reflective boundary conditions. If the numerical flux is consistent and
monotone, then the DMP property given by definition 2 is satisfied.

It implies that if uij = ui and uji = uj for all j ∈ ν(i) then relation (7) holds.
To prove that the iterative MOOD method provides a solution which satisfies
the DMP, we introduce the following definition.

Definition 9 An EPD strategy is said upper-limiting (with respect to the
CellPD) if for any Ki

di = d̄ =⇒ dij ≤ d̄ and dji ≤ d̄, ∀j ∈ ν(i). (15)

We then have the following theorem.

Theorem 10 Let us consider the generic high-order finite volume scheme
with reflective boundary conditions and assume that the numerical flux is con-
sistent and monotone. If the EPD strategy is upper-limiting then the MOOD
method provides an updated solution un+1

h which satisfies the DMP property
after a finite number of iterations.

Proof. Let di be the CellPD of cell Ki. If di = 0, then equation (15) implies
that dij = dji = 0, hence un

ij = un
i and un

ji = un
j , for all j ∈ ν(i). We

recover the first-order scheme (2) and proposition 8 yields that un+1
i satisfies

the DMP property (7). Otherwise, if di > 0 then two situations arise. Either
the Maximum principle is satisfied and we do not modify di or we decrement di.
Consequently if the maximum principle is not satisfied for all cells, then there
is at least one cell having its CellPD positive which has to be decremented.
Since we can not decrement more than dmax × #(Eel) times, the iterative
procedure stops after a finite number of iterations and the solution satisfies
the DMP property. 2

Remark 11 Note that EPD1 and EPD2 are upper-limiting strategies whereas
EPD0 strategy does not satisfy condition (15). Thus EPD0 cannot be used since
MOOD iterative procedure may loop endlessly. 2

Remark 12 To carry out a third-order Runge-Kutta time discretization (6)
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which provides a solution satisfying the DMP property, one has to perform
the MOOD technique for each explicit sub-step since (6) can be written as a
convex combination. 2

5 Extension to the Euler Equations

In this section, we propose an extension of the MOOD method to the Euler
equations.

∂t




ρ

ρu1

ρu2

E




+ ∂x1




ρu1

ρu2
1 + p

ρu1u2

u1(E + p)




+ ∂x2




ρu2

ρu1u2

ρu2
2 + p

u2(E + p)




= 0, (16)

where ρ, V = (u1, u2) and p are the density, velocity and pressure respectively
while the total energy per unit volume E is given by

E = ρ
(
1

2
V2 + e

)
, V2 = u2

1 + u2
2,

where e is the specific internal energy. For an ideal gas, this system is closed
by the equation of state

e =
p

ρ(γ − 1)
,

with γ the ratio of specific heats.
Despite that the physical variables do not have to respect the maximum prin-
ciple, classical methods such as the MUSCL technique use a limiting procedure
derived from the scalar case to keep the numerical solution from producing
spurious oscillations. A popular choice consists of reconstructing and limit-
ing the density, the velocity components and the pressure variables but other
limitations can be carried out: the internal energy, the specific volume or the
characteristic variables for instance.
Although applying the MOOD technique to each variable independently gives
physically admissible solutions, an excessive diffusion is noticed. We thus pro-
pose a strategy to both have an accurate approximation where the solution
is smooth and prevent the oscillations from appearing close to the discon-
tinuities. In the following we consider ρ, u1, u2 and p as the variables to be
reconstructed.
First we have to provide physically relevant reconstructed values at quadra-
ture points, and since no limitation is used in the MOOD method, negative
reconstructed values for pressure or density must be avoided (it would be the
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same for energy or specific volume). In that case, first-order values are substi-
tuted to the unphysical reconstructed values, for instance if the reconstructed
value ρij is negative on cell Ki, we replace it with the mean value ρi.

We now describe how we choose to use the two fundamental notions of the
MOOD method (CellPD and EdgePD) in the Euler equations framework. In-
stead of using one CellPD per cell and per variable, we choose to define only one
CellPD per cell and to use it for all variables. Consequently only one EdgePD

is defined per side of an edge and used for all variables.

As in the scalar case, we first build the local polynomial reconstruction of
maximal degree dmax for each variable. Then we apply the MOOD algorithm
of Section 4.2 where we substitute steps 5 and 6 with the following stages.

5. Density DMP test. The DMP criterion is checked on the density

min
j∈ν(i)

(ρni , ρ
n
j ) ≤ ρ⋆i ≤ max

j∈ν(i)
(ρni , ρ

n
j ). (17)

If ρ⋆i does not satisfy (17) the CellPD is decremented, di := max(0, di−1).
6. Pressure positivity test. The pressure positivity is checked and if p⋆i ≤

0 and di has not been altered by step 5 then the CellPD is decremented,
di := max(0, di − 1).

7. Stopping criterion. If, for all i ∈ Eel, di has not been altered by steps
5 and 6 then the iterative procedure stops and returns un+1

h = u⋆
h else go

to step 2.

Next section is dedicated to numerical experiments to assess the computational
efficiency of the MOOD method.

6 Numerical results — the scalar case

Let Ω be the unit square [0, 1]× [0, 1]. We first consider the linear advection
problem of a scalar quantity u with velocity V (x):

∂tu+∇.(V u) = 0, (18a)

u(., 0) = u0, (18b)

where V (x) is a given continuous function on Ω and u0 is the initial function we
shall characterize in the following. In this section periodic boundary conditions
are prescribed on ∂Ω.
Comparisons are drawn between the simple first-order Finite Volume method
(denoted FV with an abuse of terminology), the MUSCL method proposed in
[21] (MLP) and the MOOD method with dmax = 1 (MOOD-P1) and dmax = 2
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(MOOD-P2).
We use the following monotone upwind numerical flux (see equation (2))

F(un
i , u

n
j ,nij) = [V (x) · nij ]

+ un
i + [V (x) · nij]

− un
j ,

where the velocity is evaluated at the quadrature point x and the positive and
negative parts are respectively defined by

[α]+ = max(0, α) and [α]− = min(0, α).

Notice that we use ν(i) as the reconstruction stencil. Lastly two Gauss points
are used on each edge to provide a third-order accurate spatial integration
while time integration is performed with a forward Euler scheme for the FV
method and with the RK3-TVD method given by system (6) for the MLP and
MOOD methods.
Following remark 12, we simply apply the MOOD procedure detailed in section
4.2 to each sub-step of the RK3-TVD. The CellPD are thus reinitialized to dmax

at the beginning of each time sub-step.

6.1 Test descriptions

The method accuracy is measured using L1 and L∞ errors which are computed
with

err1 =
∑

i∈Eel

|uN
i − u0

i ||Ki| and err∞ = max
i∈Eel

|uN
i − u0

i |,

where (u0
i )i and (uN

i )i are respectively the cell mean values at initial time t = 0
and final time t = tf = N∆t.
Two classical numerical experiments are carried out to demonstrate the ability
of the method to provide effective third-order accuracy and to handle discon-
tinuities with a very low numerical diffusion.
Double Sine Translation (DST)
We consider a constant velocity V = (2, 1) and the initial condition is the C∞

function

u0(x1, x2) = sin(2πx1) sin(2πx2).

The final time is tf = 2.0. Since we use periodic boundary conditions, the final
time corresponds to a full revolution such that the exact solution coincides
with the initial one.
Solid Body Rotation(SBR)
First introduced by R.J. Leveque in [17], this solid body rotation test uses
three shapes which are a hump, a cone and a slotted cylinder. Each shape is
located within a circle of radius r0 = 0.15 and centered at (x0

1, y
0
2)
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Hump centered at (x0
1, x

0
2) = (0.25, 0.5)

u0(x1, x2) =
1

4
(1 + cos(πmin(r(x1, x2), 1))).

Cone centered at (x0
1, x

0
2) = (0.5, 0.25)

u0(x1, x2) = 1− r(x1, x2).

Slotted cylinder centered at (x0
1, x

0
2) = (0.5, 0.75)

u0(x1, x2) =





1 if |x1 − 0.5| < 0.25, or x2 > 0.85,

0 elsewhere,

where r(x1, x2) =
1

r0

√
(x1 − x0

1)
2 + (x2 − x0

2)
2. To perform the rotation, we

use the velocity V (x) = (−x2 + 0.5, x1 − 0.5) and the final time tf = 2π
corresponds to one full rotation.

6.2 Numerical results

6.2.1 Comparison between EPD1 and EPD2 strategies

We consider the DST test case on uniform meshes from 20×20 to 160×160 cells
and compare the L1 and L∞ errors and convergence rates displayed in table 2
using EPD1 and EPD2 strategies with the MOOD-P2 method. We obtain an
almost effective third-order convergence in L1 norm and a 1.6 convergence rate
in L∞ norm for the two strategies. We observe in this case that the L1 and L∞

errors for EPD1 are slightly less important than for EPD2 and the convergence
orders seem to indicate that the EPD1 strategy should be privileged. Moreover,
from a practical point of view, the EPD1 implementation is performed with a
more compact stencil than the EPD2 (see remark 7). In the sequel, only EPD1

strategy is used.

6.2.2 Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1

strategy on uniform meshes

Double Sine Translation. We report in table 3, 4 and 5 the L1 and L∞ errors
and convergence rates for FV, MLP, MOOD-P1, MOOD-P2, unlimited P1
and P2 reconstruction methods respectively. At last, we plot in figure 3 the
convergence curves for the four methods as well as the convergence curves for
the unlimited versions.
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Table 2
L1 and L∞ errors and convergence rates for DST problem with the MOOD-P2
method: EPD1 strategy (left) and EPD2 strategy (right).

Nb of EPD1 EPD2

Cells err1 err∞ err1 err∞

20x20 9.469E-02 — 3.960E-01 — 1.104E-01 — 4.506E-01 —

40x40 1.113E-02 3.09 1.333E-01 1.57 1.382E-02 3.00 1.566E-01 1.52

80x80 1.768E-03 2.65 4.164E-02 1.68 2.309E-03 2.58 5.196E-02 1.59

160x160 2.481E-04 2.83 1.304E-02 1.68 3.262E-04 2.82 1.698E-02 1.61

Table 3
L1 and L∞ errors and convergence rates for the DST on uniform meshes with FV
and MLP methods.

Nb of FV MLP

Cells err1 err∞ err1 err∞

20x20 3.924E-01 — 9.371E-01 — 1.417E-01 — 3.765E-01 —

40x40 3.480E-01 0.17 8.375E-01 0.16 3.038E-02 2.22 1.121E-01 1.75

80x80 2.663E-01 0.39 6.241E-01 0.42 6.904E-03 2.14 3.534E-02 1.67

160x160 1.734E-01 0.62 3.964E-01 0.65 1.693E-03 2.03 1.167E-02 1.60

Table 4
L1 and L∞ errors and convergence rates for the DST on uniform meshes with
MOOD-P1 and MOOD-P2 methods.

Nb of MOOD-P1 MOOD-P2

Cells err1 err∞ err1 err∞

20x20 1.502E-01 — 4.876E-01 — 9.469E-02 — 3.960E-01 —

40x40 3.141E-02 2.26 1.629E-01 1.58 1.113E-02 3.09 1.333E-01 1.57

80x80 7.438E-03 2.08 5.188E-02 1.65 1.768E-03 2.65 4.164E-02 1.68

160x160 1.787E-03 2.06 1.675E-02 1.63 2.481E-04 2.83 1.304E-02 1.68

The high-order finite volume methods with the two Gauss points and the RK3
time scheme reach the optimal convergence rate for the unlimited P1 and P2
reconstructions hence the limiting procedure has to be blamed for the accuracy
discrepancy.

Figure 3 shows that the optimal convergence rate in L1 error for P1, MOOD-
P1 and MLP methods is achieved since the curves fit very well. On the other
hand, the P2 and MOOD-P2 curves are very close and parallel which con-
firms that MOOD-P2 is an effective third-order method for the L1 norm. For
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Table 5
L1 and L∞ errors and convergence orders for the DST on uniform meshes with P1
and P2 methods.

Nb of P1 P2

Cells err1 err∞ err1 err∞

20x20 1.334E-01 — 3.227E-01 — 7.130E-02 — 1.729E-01 —

40x40 2.896E-02 2.20 6.593E-02 2.29 9.877E-03 2.85 2.427E-02 2.83

80x80 6.604E-03 2.13 1.408E-02 2.23 1.255E-03 2.98 3.091E-03 2.97

160x160 1.603E-03 2.04 3.310E-03 2.09 1.573E-04 3.00 3.876E-04 3.00
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Fig. 3. Convergence curves of err1(left) and err∞(right) for the DST on uniform
meshes.

the L∞ norm, none of the limited methods is over the effective second-order
while the unlimited P1 and P2 provide an effective second- and third-order
respectively. Indeed the strict maximum principle application at extrema is
responsible for the L∞ error discrepancy and we can expect nothing more
than a second-order scheme in L∞ norm, whatever the polynomial degree is
when the DMP condition is enforced.

Solid Body Rotation. We employ a 140×140 uniform mesh of square elements
in order to compare our results with 100×100×2 triangular mesh in reference
[21]. We display in the left panels of figure 4 three-dimensional elevations while
top views of ten uniformly distributed isolines from 0 to 1 are printed in the
right panels. We can measure the scheme accuracy by counting the number
of isolines outside of the slot since the exact solution isolines would fit the
slot shape. The smaller number of isolines outside of the slot is, the more
accurate the scheme is. With the MLP reconstruction, we observe three isolines
outside while we have only two with the MOOD-P1. At last, the outstanding
result is that we have just one isoline outside of the slot with the MOOD-P2
method which proves the great ability of the technique to handle and preserve
discontinuities.
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Fig. 4. Results of SBR on a 140x140 uniform mesh. Isolines are from 0 to 1 by 0.1. Top: MLP method —

Middle: MOOD-P1 method — Bottom: MOOD-P2 method.
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Fig. 5. The 40× 40 and 80× 80 non-uniform meshes for the DST.

6.2.3 Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1

strategy on non-uniform meshes

Approximation accuracy is reduced when one employs meshes with large de-
formations, i.e. the elements are no longer rectangular but quadrilateral with
large aspect ratios. The present subsection investigates the MOOD method
sensitivity to mesh distortion.
To obtain the distorted mesh for the DST, we proceed in two stages. First the
following transformation is applied to an uniform mesh

x1 →






x1(10x
2
1 + 5x1 + 1), if x1 ≤ 0.5,

(x1 − 1)(10(x1 − 1)2 + 5(x1 − 1)) + 1, elsewhere,

and we operate in the same way with variable x2.
Then we apply a second transformation

x1 →x1 + 0.1|x1 − 0.5| cos(6π(x2 − 0.5)) sin(4π(x1 − 0.5)),

x2 →x2 + 0.1|x2 − 0.5| cos(4π(x1 − 0.5)) sin(6π(x2 − 0.5)).

As an example two non-uniform meshes are given in figure 5. Notice that the
shape of domain Ω is preserved by the transformation.
Double Sine Translation. We report in tables 6, 7 and 8 the L1 and L∞ errors
and convergence rates for FV, MLP, MOOD-P1, MOOD-P2, unlimited P1
and P2 reconstruction methods respectively. At last, we plot in figure 6 the
convergence curves for the four methods as well as the convergence curves for
the unlimited versions.

We first observe in table 8 an accuracy discrepancy with the unlimited recon-
structions since the L∞ errors are roughly ten times larger for the distorted
mesh than for the uniform one given in table 5. Nevertheless, we obtain good
effective rates of convergence both in L1 and L∞ norm for the P1 and P2
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Table 6
L1 and L∞ errors and convergence rates for the DST on non-uniform meshes with
FV and MLP methods.

Nb of FV MLP

Cells err1 err∞ err1 err∞

20x20 4.053E-01 — 9.032E-01 — 3.907E-01 — 8.752E-01 —

40x40 4.038E-01 0.01 9.822E-01 -0.12 1.893E-01 1.05 5.306E-01 0.72

80x80 3.834E-01 0.07 9.486E-01 0.05 4.370E-02 2.11 1.806E-01 1.55

160x160 3.144E-01 0.29 7.825E-01 0.28 9.846E-03 2.15 5.889E-02 1.62

Table 7
L1 and L∞ errors and convergence rates for the DST on non-uniform meshes with
MOOD-P1 and MOOD-P2 methods.

Nb of MOOD-P1 MOOD-P2

Cells err1 err∞ err1 err∞

20x20 3.770E-01 — 8.557E-01 — 3.408E-01 — 7.897E-01 —

40x40 1.599E-01 1.24 4.541E-01 0.91 8.992E-02 1.92 3.222E-01 1.29

80x80 3.892E-02 2.04 1.314E-01 1.79 1.375E-02 2.71 9.199E-02 1.81

160x160 9.170E-03 2.09 3.374E-02 1.96 1.922E-03 2.84 2.483E-02 1.89

Table 8
L1 and L∞ errors and convergence rates for the DST on non-uniform meshes with
P1 and P2 methods.

Nb of P1 P2

Cells err1 err∞ err1 err∞

20x20 3.658E-01 — 8.312E-01 — FAIL — FAIL —

40x40 1.534E-01 1.25 3.793E-01 1.13 8.328E-02 — 2.135E-01 —

80x80 3.856E-02 1.99 9.760E-02 1.96 1.403E-02 2.57 3.582E-02 2.58

160x160 9.052E-03 2.09 2.643E-02 1.88 1.920E-03 2.87 4.917E-03 2.86

reconstructions. Optimal second-order scheme is achieved for the P1 method
and convergence rate is around 2.9 for the P2 reconstruction.
For the L1 norm, P1, MOOD-P1 and MLP convergence curves fit well hence
we get the optimal accuracy with the three methods. In the same way, the P2
and MOOD-P2 are also superimposed which means that MOOD-P2 is optimal
with respect to the unlimited case. For the L∞ norm, MLP method conver-
gence rate is around 1.6 whereas the MOOD-P1, MOOD-P2 and P1 provide
a 1.9 convergence rate. Notice that the MOOD-P2 produces more accurate
results but does not reach the third-order convergence since it has to respect
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Fig. 6. Convergence curves of err1(left) and err∞(right) for the DST on non-uniform
meshes.

Table 9
Min and Max for DST on non-uniform meshes with MLP, MOOD-P1 and MOOD-
P2.

Nb of MLP MOOD-P1 MOOD-P2

Cells Min Max Min Max Min Max

20x20 -3.740E-02 3.479E-02 -7.168E-02 7.566E-02 -1.376E-01 1.516E-01

40x40 -4.634E-01 4.645E-01 -5.445E-01 5.458E-01 -6.738E-01 6.792E-01

80x80 -8.179E-01 8.204E-01 -8.747E-01 8.743E-01 -9.098E-01 9.079E-01

160x160 -9.433E-01 9.431E-01 -9.655E-01 9.668E-01 -9.752E-01 9.748E-01

a strict DMP property. Finally, table 9 shows that the extrema are better ap-
proximated with respect to the exact solution with the MOOD methods than
the MLP method, in particular when coarse meshes are employed.

Solid Body Rotation. The mesh deformation presented above is not as relevant
for the SBR as for the DST since the solid bodies rotate and do not go through
the boundaries. A slight modification of the first step has been done

x1 →





x1(5x
2
1 + 2.5x1 + 1), if x1 ≤ 0.5,

(x1 − 1)(5(x1 − 1)2 + 2.5(x1 − 1)) + 1, elsewhere.
,

and we operate in the same way with variable x2.
The 140×140 non-uniform mesh is visible on the isolines top views. We display
in the left panels of figure 7 three-dimensional elevations while top views of
ten uniformly distributed isolines from 0 to 1 are in the right panels.

As in the smooth case, MOOD methods perform better than MLP on the
distorted mesh. Although they are both second-order methods, we notice that
MOOD-P1 gives a clearly better solution than the one computed with MLP,
even on the smooth profiles. Moreover the MOOD-P2 result supports the
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Fig. 7. Results of SBR on a 140x140 non-uniform mesh. Isolines are from 0 to 1 by 0.1. Top: MLP method

— Middle: MOOD-P1 method — Bottom: MOOD-P2 method.
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usefulness of using a third-order method since an important gain in symmetry
of the solution is obtained.

7 Numerical results — the Euler case

We now turn to the Euler equations (16) to test the MOODmethod. Efficiency,
accuracy and stability of the method are investigated on classical tests. In the
present article, we use the HLL numerical flux detailed in [26]. Once again
comparisons are drawn with the MLP technique proposed in [21]. We apply
the MOOD method using the detection strategy presented in Section 5 to each
sub-step of the RK3-TVD time discretization.
First the classical 1D Sod shock tube is used to test the ability of MOOD
in reproducing simple waves. This test is first run on an uniform mesh and
then on a non-uniform one to estimate the gain obtained when using MOOD
method. Then we proceed with a 2D Riemann problem proposed by [25] (see
also [18]). We conclude the series of tests with two classical references, the
Mach 3 wind tunnel with a step problem [21,29] and the double Mach problem
[21,29]. These two tests are run with MLP, MOOD-P1 and MOOD-P2 on
uniform meshes for comparison purposes with classical results from literature.

7.1 Sod Shock Tube

The one dimensional Sod problem is used as a sanity check for the MOOD
method. The computational domain is the rectangular domain Ω = [0, 1] ×
[0, 0.2]. The exact solution is invariant in x2-direction. The interface between
the left state (ρ, u1, u2, p) = (1, 0, 0, 1) and the right one (0.125, 0, 0, 0.1) is
located at x1 = 0.5. Reflective boundary conditions are prescribed. The final
time is tf = 0.2.
Uniform mesh. The computational domain is uniformly meshed by 100 cells
in the x1 direction and 10 cells in the x2 direction. We plot the density and the
x1-velocity at the final time with the exact solution using the MLP, MOOD-P1
and MOOD-P2 methods in figure 8. The curves show a very good agreement
between the three methods. The plateau between the contact and the shock
is wavy with the MLP method while MOOD produces better constant states.
However we observe an undershoot (resp. overshoot) at the tail of the rarefac-
tion with MOOD-P2 for the density (resp. velocity).

Non-uniform mesh. The same simulation is performed on the non-uniform
mesh plotted in figure 9. The density and the x1-velocity solutions at the final
time using the MLP, MOOD-P1 and MOOD-P2 methods are also printed in
figure 9. All cell values are represented so that the preservation of the 1D
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Fig. 8. Sod shock tube problem: Density and x1-velocity solutions on 100 × 10 uniform mesh for (a-b):

MLP — (c-d): MOOD-P1 — (e-f): MOOD-P2.

symmetry in the x2 direction can be evaluated by the thickness of the points
cloud. Clearly the MLP method provides the largest dispersion whereas the
MOOD-P2 method manages to better preserve the x2 invariance. Such a test
case suggests that the MOOD method is less sensitive to mesh deformation.
As in the uniform case an undershoot at the tail of the rarefaction wave
appears for MOOD-P2 method but the solution is genuinely improved by
comparison with MLP. The MOOD-P1 is an intermediate case where the
dispersion is reduced in comparison with the MLP method but where the
MOOD-P2 accuracy is not reached.
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Fig. 9. Sod shock tube problem: Non-uniform 100 × 10 mesh (Top) — Density and x1-velocity solutions

on the above mesh for (a-b): MLP — (c-d): MOOD-P1 — (e-f): MOOD-P2.

7.2 Four states Riemann problem

We now deal with one of the four states Riemann problem which corresponds
to a truly 2D Riemann problem. The computational domain Ω = [0, 1]× [0, 1]
is first uniformly meshed by a 100× 100 and then by a 400× 400 quadrangles
grid. The four sub-domains correspond to four identical squares separated by
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the lines x1 = 0.5 and x2 = 0.5. Initial conditions on each sub-domains are

• for the lower-left domain Ωll, (ρ, u1, u2, p) = (0.029, 0.138, 1.206, 1.206),
• for the lower-right domain Ωlr, (0.3, 0.5323, 0, 1.206),
• for the upper-right domain Ωur, (1.5, 1.5, 0, 0),
• for the upper-left domain Ωul, (0.3, 0.5323, 1.206, 0).

Each sub-domain is filled with a perfect gas of constant γ = 1.4. Outflow
boundary conditions are prescribed and the computation is carried out till the
final time tf = 0.3. Density at the final time is presented for the three methods
in figure 10. For each method on the left side one displays a three-dimensional
elevation on the 100×100 mesh while in the right panels 30 isolines are plotted
between the minimal density, ρm, and maximal one, ρM of each method on the
400×400 mesh. The 3D views clearly show that some artificial oscillations on
the plateau are generated by the MLP method whereas the MOOD method
better preserves the constant states. On the isoline view, we observe that the
MOOD-P2 method gives thinner shocks and a finer resolved central peak at
x1 = x2 = 0.35. As expected, this suggests that the MOOD-P2 method is
more accurate.

7.3 Mach 3 wind tunnel with a step

The test was initially proposed in [29]. A uniform Mach 3 flow enters in a
tunnel which contains a 0.2 unit length step leading to a flow with complex
structures of interacting shocks. The wind tunnel is 1 length unit wide and 3
length units long and the step is located at 0.6 length unit from the left-hand
side of the domain. At the initial time we consider a perfect gas (γ = 1.4) with
constant density ρ0 = 1.4, uniform pressure p0 = 1.0 and constant velocity
V0 = (3, 0). Reflective boundary conditions are prescribed for the upper and
lower sides as well as in front of the step. An inflow condition is set on the left
boundary and an outflow condition on the right one. Numerical simulations
are carried out till the final time tf = 4.
We plot a series of figures presenting 30 density isolines for two different uni-
form meshes on which the three methods are tested. We first consider the sit-
uation with coarse mesh using 120× 40 cells. Figure 11 represents the density
computed with the MLP, the MOOD-P1 and MOOD-P2 methods respectively
on top, middle and bottom panels. It is noticeable that the MOOD method
results are the most accurate. The shocks are less diffused and we can already
observe the contact discontinuity formation of the upper slip line. With the
MLP method, we remark that the formation of a triple point at x1 = 1.25
above the step (at a distance of about 0.1) while the junction point should be
exactly on the step interface. With the MOOD-P2 method, the triple point is
closer to the interface (half the distance with respect to the MLP case).
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Fig. 10. Density solution to the Four states Riemann problem. On the left 3D views on the 100 × 100

mesh. On the right top views with 30 isolines between ρm and ρM on the 400×400 mesh. Top: MLP method

ρm = 0.138 ρM = 1.821 — Middle: MOOD-P1 method ρm = 0.1377 ρM = 1.805 — Bottom: MOOD-P2

method ρm = 0.1379 ρM = 1.805.
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Fig. 11. Mach 3 problem — Density solutions with 30 isolines between ρm and ρM on a 120× 40 uniform

mesh. Top: MLP method ρm = 0.5437 ρM = 6.75 — Middle: MOOD-P1 method ρm = 0.5589 ρM = 6.58

— Bottom: MOOD-P2 method ρm = 0.5358 ρM = 6.047.

We plot the density obtained with a finer uniform mesh of 480×160 cells in fig-
ure 12. The mesh refinement implies more accurate solutions for any method.
Nevertheless MOOD methods still provide the best numerical approximations.
However the method does not reveal the Kelvin-Helmholtz instabilities as in
[8] as the strict DMP on the density reduces the scheme accuracy along the
slip line and consequently increases the numerical dissipation.
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Fig. 12. Mach 3 problem — Density solutions with 30 isolines between ρm and ρM on 480 × 160 mesh.

Top: MLP method ρm = 0.176 ρM = 6.802 — Middle: MOOD-P1 method ρm = 0.150 ρM = 6.483 —

Bottom: MOOD-P2 method ρm = 0.123 ρM = 6.257.

7.4 Double Mach reflection of a strong shock

The last problem is the double mach reflection of a strong shock proposed in
[29]. This test problem involves a Mach 10 shock which initially makes a 60◦

angle with a reflecting wall. The air ahead of the shock is at rest and has uni-
form initial density ρ0 = 1.4 and pressure p0 = 1. A perfect gas with γ = 1.4 is
considered. The reflecting wall lies along the bottom of the domain, beginning
at x1 = 1/6. The shock makes a 60 degrees angle with the x1 axis and extends
to the top of the domain at x2 = 1. The short region from x1 = 0 to x1 = 1/6
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Fig. 13. Double Mach problem on 480 × 120 — Top: MLP method ρm = 1.40 ρM = 22.21 — Middle:

MOOD-P1 method ρm = 1.40 ρM = 20.05 — Bottom: MOOD-P2 method ρm = 1.40 ρM = 20.10.

along the bottom boundary at x2 = 0 is always assigned values for the initial
post-shock flow. We prescribe a reflective condition on the bottom part for
x1 > 1/6, inflow boundary condition on the left side and outflow condition
on the right side. At the top boundary, the boundary conditions are set to
describe the exact motion of the Mach 10 flow (see [8]).
First for the three methods, a 30 density isolines top view on the 480 × 120
uniform mesh using Lax-Friedrich’s flux are plotted in figure 13. These results
have to be compared to results of figure 12 in [9] and figure 13 in [13]. Then
zoomed top views of 50 isolines — between minimal and maximal values, ρm
and ρM respectively, taken over the results of the three methods on a same
mesh — of the results obtained with the HLL flux are plotted in figure 14 for
the 960× 240 uniform mesh on left and for the 1920× 480 one on right.
The first Mach stem M1 is connected to the main triple junction point with
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Fig. 14. Double Mach problem on 960 × 240 (left) and on 1920 × 480 (right) — Zoom on the wave

interaction zone — Top: MLP method ρm = 1.400 ρM = 22.400 on left and ρm = 1.400 ρM = 22.68 on

right— Middle: MOOD-P1 method ρm = 1.236 ρM = 22.550 on left and ρm = 1.216 ρM = 22.0 on right

— Bottom: MOOD-P2 methodρm = 1.162 ρM = 22.800 on left and ρm = 1.146 ρM = 21.99 on right.

the incident shock wave and the reflected wave. A slip line is generated from
the triple junction point behind the incident shock. A secondary Mach stem
M2 also appear and interact with the slip line. As expected, the MOOD-P2
manages to better capture the Mach stem M1 (and M2 when we employ finer
meshes) with respect to the two other methods. The slip line corresponds to
a contact discontinuity where the jump of tangential velocity may generate
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Table 10
Computational time ratios between MOOD methods and MLP for different prob-
lems.

X
X
X
X
X
X

X
X
X
X
X

Problem

Method
MLP MOOD-P1 MOOD-P2

DST 1 1.1 1.73

SBR 1 1.4 2.65

Sod Shock Tube 1 0.84 1.3

Mach 3 Wind 1 1.08 1.6

Double Mach 1 0.99 1.06

Average 1 1.08 1.67

Kelvin Helmholtz instabilities. Usually, the amount of instabilities measures
the numerical diffusion influence [22]: large instabilities derive from small nu-
merical diffusion and the number of plane vortexes in the slip line is a qualita-
tive measure of the scheme diffusivity. In our test, even with the finest mesh,
no instability is reported. Indeed, the application of a strict DMP reduces the
accuracy of the scheme in the vicinity of the slip line maintaining a too large
amount of diffusion. Nevertheless, other choices of detection variables could
be investigated to reduce the numerical diffusion of contact discontinuities.

7.4.1 Computational cost comparison between MLP, MOOD-P1 and MOOD-
P2

In this last section, we give in table 10 the ratios between MOOD methods
computational times and MLP ones. For each test case, computational times
are calculated on a given mesh. Numerical experiments show that the ratios
are equivalent for finer or coarser meshes.
We recall that these ratios should only be taken as examples because compu-
tational times are strongly dependent of implementation and compilation and
all runs are carried out on a single core. Table 10 shows that the MOOD-P1
method is slightly more expensive than MLP but gives better results on gen-
eral meshes. In the scalar case, the difference between ratios of DST and SBR
problem are explained by the fact that more iterations during the MOOD pro-
cedure, due to more DMP violations, are implied by non-smooth profiles. The
MOOD-P2 computational cost is competitive (at most around 2.7 times more
expensive than MLP on our numerical experiments) in regard to the observed
accuracy improvement, see for instance figures 7 or 9.
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8 Conclusion and perspectives

This paper presents a high-order polynomial finite volume method named
Multi-dimensional Optimal Order Detection (MOOD) for conservation laws.
Contrarily to classical high-order methods MOOD procedure is based on a
test of the Discrete Maximum Principle (DMP) after an evaluation of the
solution with unlimited polynomials. If the DMP property is not fulfilled then
the polynomial degree is reduced and the solution is locally re-evaluated. This
procedure is repeated up to satisfaction of the DMP which is always achieved
after a finite number of iterations.
There are several important features of MOOD method which have to be
compared with classical high-order methods, namely

• The MOOD method is an a posteriori limiting process, whereas classical
limiting strategies perform an a priori limitation.

• The MOOD method computes one and only one high-order polynomial per
cell and employs it without any limitation.

• Within the same cell the polynomial degree can be different on each edge.
• The MOOD method ensures the Discrete Maximum Principle (DMP) under
the first-order CFL constraint.

• The MOOD method has no restriction to deal with higher polynomial de-
grees and polygonal meshes.

Two-dimensional numerical results are provided for advection and the Euler
equations problems on regular and highly non-regular quadrangular meshes.
They clearly show that MOOD method presents some promising good behav-
iors. The second-order MOOD method is at least equivalent to a second-order
multi-dimensional MUSCL method on uniform grids but produces better re-
sults on non-uniform ones. A third-order version of MOOD has been shown
to be effective on regular and non-regular solutions for a small extra compu-
tational effort.
This paper is the first one presenting the MOOD concept and extensions are
currently under investigations, as instance the behavior of the MOOD with
polynomials of degree greater than two on polygonal meshes.
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