
Ensuring Reachability by Design

Benoit Caillaud, Jean-Baptiste Raclet

To cite this version:

Benoit Caillaud, Jean-Baptiste Raclet. Ensuring Reachability by Design. [Research Report]
RR-7928, INRIA. 2012, pp.20. <hal-00696151>

HAL Id: hal-00696151

https://hal.inria.fr/hal-00696151

Submitted on 11 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50539344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00696151

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
79

28
--

FR
+E

N
G

RESEARCH
REPORT
N° 7928
May 2012

Project-Team S4

Ensuring Reachability by
Design
Benoît Caillaud, Jean-Baptiste Raclet

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Ensuring Reachability by Design

Benôıt Caillaud∗, Jean-Baptiste Raclet†

Project-Team S4

Research Report n° 7928 — May 2012 — 20 pages

Abstract: Modular design aims at decomposing systems as a set of distinct components that
can be independently developed and then assembled all together. Interfaces are then attached
to components; they abstract implementation details while exposing to the environment relevant
information about cross-component interactions.
Whereas state-of-the-art on interfaces essentially consider independent implementability of safety
properties, we consider in this paper reachability properties, which are in general not compositional.
The approach we advocate consists in controlling the design flow of components, that is, the
evolution of their interfaces through combinations and refinements, in order to ensure a reachability
property by construction.
Modal specifications are widely acknowledged as a suitable specification formalism for interface-
based design. In order to obtain the required expressivity, we extend them with marked states
to model states to be reached. We then develop an algebra with both logical and structural
composition operators ensuring reachability properties by design.

Key-words: component-based design; compositional reasoning; interface theories; modal speci-
fications

∗ INRIA Rennes - Bretagne, Atlantique, Campus de Beaulieu, F-35042 Rennes cedex, France.
Benoit.Caillaud@inria.fr
† IRIT/CNRS, 118 Route de Narbonne, F-31062 Toulouse cedex 9, France. Jean-Baptiste.Raclet@irit.fr

mailto:Benoit.Caillaud@inria.fr
mailto:Jean-Baptiste.Raclet@irit.fr

Garantir l’atteignabilité par construction

Résumé : Les méthodes de conception modulaire procèdent par décomposition d’un système
en un ensemble de composants qui seront, dans un premier temps, réalisés indépendamment
les uns des autres, pour être par la suite combinés de façon à former un système complet.
Il est alors utile d’associer aux composants des interfaces qui servent à abstraire les détails
de réalisation, tout en exposant les aspects cruciaux concernant les interactions avec les autres
composants et l’environnement. Alors que l’état de l’art sur les interfaces concerne en premier lieu
l’implémentation indépendante de propriétés de sureté, ce rapport porte sur la prise en compte
de propriétés d’atteignabilité, qui sont en général non compositionnelles. L’approche défendue ici
consiste ‘a contrôler le flot de conception d’un systèmes, c’est ‘a dire, l’évolution des interfaces
tout au long des étapes de composition et de raffinement, de telle manière qu’une propriété
d’atteignabilité est garantie par construction. Les spécifications modales sont reconnues comme
un formalisme d’interface approprié. Elles sont ici étendues par ajout de marquage des états,
servant a modéliser l’atteignabilité de certains états. L’algèbre d’interfaces modales marquée,
avec ses opérateurs de composition logique et structurelle, permet d’assurer par construction
l’atteignabilité de certains états.

Mots-clés : conception par composants; raisonnement compositionnel; théories d’interfaces;
spécifications modales

Ensuring Reachability by Design 3

1 Introduction

In order to face the intrinsic complexity of automotive, aeronautic and consumer electronics
embedded systems, but also of web-based service oriented architectures, modular design aims
at organizing systems as a set of distinct components that can be developed independently
and then assembled together. This is best achieved using interfaces which abstract superfluous
implementation details of a component and expose cross-component protocol informations that
are essential to a correct use of a component. Component reuse in different contexts is thus made
possible, not only reducing design time, but also enabling the amortization of design costs over
several different projects.

Component interoperability or compatibility is then a major issue: when can we safely com-
pose two (or more) components? Compatibility is often considered at a signature level. In this
simple case, interfaces consist in function or method types and compatibility consists in a type-
checking, performed either at compile-time or at run-time. This paper deals with a richer notion
of interfaces capable of capturing behavioral properties.

The first work on behavioral compatibility of interfaces has been proposed in [1]. This paper
considers an automata-based formalism for interfaces in which transitions are labeled with output
(produced by the component) or input (produced by the environment) actions. Then, a run-time
error occurs whenever a component produces an output that is not accepted as input by one of its
peers. The fact that a runtime error may occur does not necessarily lead to deem the interfaces
incompatible. Indeed, the authors promotes an optimistic approach of composition in which two
interfaces are compatible if there exists a restriction of the permitted actions of the environment
in order to prevent the reachability of a runtime error. They show that this form of compatibility
is preserved in the design flow provided alternating refinement [2] is used. More precisely, starting
from initial interfaces whose product satisfies a particular safety property (i.e., a runtime error
cannot be reached), they can be refined independently and then composed, their product will
also satisfy the same safety property. This principle, called independent implementability, is of
key importance [12] and enables the concurrent design of systems that are then assembled in a
bottom-up manner.

This paper now studies the case of reachability properties and proposes results regarding their
satisfaction by design. Basically, a reachability property states that some particular situation can
be reached. Examples abound in practice. For instance, consider Service Oriented Architectures
(SOA) formed of several interacting services; they should always have the possibility to reach a
termination state, by delivering a response to all service activation. However, termination is in
general not preserved by service composition. Although reachability properties are easy to verify
in this context [4], model-checking may not be an appropriate solution. First, because it requires
to construct the reachability graph of a system which may lead to a state explosion problem.
Moreover, in case model-checking reveals a violation of the reachability property, designers have
to iterate the design cycle by re-coding and re-validating their components, therefore extend-
ing time to market. The alternative approach advocated in this paper consists in controlling
the design flow of components, that is, the evolution of interfaces through compositions and
refinements, in order to ensure a reachability property by construction.

Now, what specification formalism capturing some behavioral aspects of components is con-
venient for interface-based design? Modal specifications [18, 16, 3] are widely acknowledged as a
suitable proposal [14, 22, 23]. Basically, they consist in labeling interface transitions with modal-
ities, either must if the transition has to be enabled in any refinement, or may if the transition
is allowed. Recently, they have been extended to a timed setting [5] and also to a quantitative
one [13]. In [14, 22, 23], modal specifications are shown to have many benefits comparing the
specification formalism introduced in [1]; they are not only equipped with an optimistic compo-

RR n° 7928

4 Caillaud & Raclet

sition operator and a refinement relation but also with a conjunction and a quotient operator.
The role of these operators in a design flow will be motivated later in the paper. As reachability
properties cannot be expressed, in general, with modal specifications, we first consider in this
paper modal specifications enriched with marked states, in the same fashion as it is done in [6].
We show that, in this framework, we can develop a theory ensuring reachability properties by
design.

2 Modeling with marked modal specifications

2.1 Background on automata

Let Σ be a finite alphabet of actions, a deterministic automaton over Σ is a tuple M =
(R, r0,Σ, λ,G) where R is a finite set of states, r0 ∈ R is the unique initial state, λ is a partial
map from R×Σ to R called the labeled transition map and G ⊆ R is a non-empty set of marked
states. The set of firable actions from r ∈ R is ready(r) = {a ∈ Σ | λ(r, a) is defined}.

Transition map λ is extended to its transitive and reflexive closure: let ε denote the empty
word, for all r ∈ R, λ(r, ε) = r and for all u ∈ Σ∗, a ∈ Σ, r1, r2, r3 ∈ R, λ(r1, u) = r2 and
λ(r2, a) = r3 imply λ(r1, u.a) = r3. Define LM = {u ∈ Σ∗ |∃r′ ∈ R, λ(r0, u) = r′} to be the
language of M. If λ(r, u) = r′ for some u then r′ is said to be reachable from r. The natural
projection of a word v ∈ LM on Σ′ ⊆ Σ is defined inductively with prΣ′(ε) = ε and, if v = u.a,
prΣ′(v) = prΣ′(u) .a when a ∈ Σ′ and prΣ′(v) = prΣ′(u) otherwise.

Given P ⊆ R, define pre∗(P) and post∗(P) to be the set of states that are respectively
coreachable and reachable from any state r ∈ P : it is the least set such that for r ∈ P , r ∈
pre∗(P) and r ∈ post∗(P) and for every λ(r′, a) = r′′, if r′′ ∈ pre∗(P) then r′ ∈ pre∗(P) and if
r′ ∈ post∗(P) then r′′ ∈ post∗(P). With a slight abuse, we may write pre∗(r) and post∗(r) for
pre∗({r}) and post∗({r}).

If modeling a service, it is desirable to set that a service session eventually terminates; this
is often refered in SOC as weak termination. To capture this kind of requirement, we define
terminating automata: an automaton M is said to be terminating whenever R = pre∗(G)
meaning that it is always possible to reach a marked state from any state of the automaton. In
other words,M is terminating if and only if for any u ∈ LM, there exists a v such that uv ∈ LM
and λ(r0, uv) ∈ G. In the temporal logic CTL, this property can be written AG(EF G).

Given two automata M1 = (R1, r
0
1,Σ1, λ1, G1) and M2 = (R2, r

0
2,Σ2, λ2, G2), their product

is the automaton M1 ×M2 = (R1 × R2, (r
0
1, r

0
2),Σ1 ∪ Σ2, λ,G1 × G2) where λ((r1, r2), a) is

defined as (λ1(r1, a), r2) for a ∈ Σ1 \ Σ2, (r1, λ2(r2, a)) for a ∈ Σ2 \ Σ1 and (λ1(r1, a), λ2(r2, a))
for a ∈ Σ1∩Σ2. As a consequence, the language ofM1×M2 is the mixed language LM1uuLM2 =
{u ∈ (Σ1 ∪ Σ2)∗ | prΣ1

(u) ∈ LM1 and prΣ2
(u) ∈ LM2}.

2.2 Marked modal specifications

Following [6], we enrich modal specifications [18, 16, 3] with marked states in order to model
states to be reached. For instance, if a designer specifies a service, this enables to represent session
terminations. The obtained formalism allows to specify a (possibly infinite) set of automata called
implementations.

Definition 1 (Marked Modal Specification) A marked modal specification over Σ is a tuple
C = (Q, q0,Σ, δ,must ,may , F), where Q is a finite set of states, q0 ∈ Q is the unique initial state,
δ : Q× Σ→ Q is a partial labeled transition map; must ,may : Q→ 2Σ map to each state q the
set of required and allowed actions from q, F ⊆ Q is a non-empty set of marked states.

Inria

Ensuring Reachability by Design 5

It is assumed that a transition is associated to any allowed action, that is for every state q ∈ Q
and every action a ∈ Σ, a ∈ may(q) if and only if δ(q, a) is defined. The mapping may : Q→ 2Σ

can thus be reconstructed from the transition relation δ. However, this distinction simplifies the
definition of satisfaction and refinement relations and compositions operators.

In this paper, marked modal specifications are taken deterministic, that is: for any a ∈ Σ
and any state q there is at most one state q′ such that δ(q, a) = q′. The reason for this will be
given later in Sec. 3.

The underlying automata associated to C is Un(C) = (Q, q0,Σ, δ, F). The language LC is then
LUn(C). As previously for automata, we extend δ to words by taking its transitive and reflexive
closure. Moreover, we define pre∗M (P) and pre∗m(P) with P ⊆ Q as the set of states that are
coreachable from any state q ∈ Q by following transitions labeled by required and allowed actions,
respectively: pre∗m(P) corresponds to pre∗(P) in Un(C); pre∗M (P) is the least set such that for
r ∈ P , r ∈ pre∗M (P) and for every λ(r′, a) = r′′ with a ∈ must(r′) and r′′ ∈ pre∗(P) then
r′ ∈ pre∗M (P). Last, post∗m(P) is post∗(P) in Un(C).

Any terminating automaton can be seen as a marked modal specification with no design
choice left open, that is, for any state r, the optional action set may(r) \ must(r) is empty.
More formally, the embedding of a terminating automaton M = (R, r0,Σ, λ,G) into the class
of the marked modal specifications is Em(M) = (R, r0,Σ, λ,must ,may , G) with, for all r ∈ R,
may(r) = must(r) = ready(r). Now, the semantics of marked modal specifications is given in
terms of terminating automata:

Definition 2 (Satisfaction) A terminating automatonM = (R, r0,Σ, λ,G) satisfies the marked
modal specification C = (Q, q0,Σ, δ,must ,may , F), denoted M |= C, if an only if there exists a
simulation relation π ⊆ R×Q such that (r0, q0) ∈ π and for all pairs (r, q) ∈ π:

1. must(q) ⊆ ready(r) ⊆ may(q);
2. r ∈ G implies q ∈ F ;
3. for every a ∈ Σ and every r′ ∈ Q, λ(r, a) = r′ implies

(
r′, δ(q, a)

)
∈ π.

The set of models (or implementations) of C is denoted JCK. A marked modal specification
if said satisfiable if and only if JCK 6= ∅. Two marked modal specifications C and C′ are said
equivalent, written C ≡ C′, if and only if they admit the same implementations: JCK = JC′K.
Any unsatisfiable specification is mapped on a special specification marked modal specification
denoted C⊥, with JC⊥K = ∅.

Example 3 Consider the terminating automaton M in Fig. 1(a) and the marked modal specifi-
cation C in Fig. 1(b) where transitions from q labeled by a are dashed when a ∈ may(q)\must(q)
and plain when a ∈ must(q); marked states are double-circled. M satisfies C because of the
simulation relation π = {(0, 0′), (1, 1′), (2, 2′), (3, 1′)}.

Observe that, in state 2′, although none of the two outgoing transition is must, at least one
of the two has to be present in any model in order to preserve the reachability of a marked state.
Such restricted disjunction cannot be expressed with traditional unmarked modal specifications.
Observe also that, according to the second item of the Def. 2, the reachability of a marked state
may be delayed: 1′ is marked, (3, 1′) ∈ π but 3 is not marked; however, a marked state can be
eventually reached from 3 thanks to the state 1.

According to Def. 2, only reachable states of C are semantically meaningful. We thus suppose
from now on, and without loss of generality, that C is reachable, that is: ∀q ∈ Q, q0 ∈ pre∗(q).

A marked state q ∈ F is said delayable if q can be reached again, that is, there exists a word
u 6= ε such that δ(q, u) = q; it is said undelayable otherwise. Denote by D the set of delayable
states of a marked modal specification.

RR n° 7928

6 Caillaud & Raclet

0 1 2 3
a a

c

b

a

(a) A terminating automaton M

0′ 1′ 2′
a a

b

c

(b) A marked modal specification
C

0′ 1′ 2′
a a

b

c

(c) Must-saturation of C

Figure 1: M is a model of C

A marked state q ∈ F is a bottleneck of C if it is the only marked states reachable from some
state q′ ∈ Q that is, post∗m(q′) ∩ F = {q}. Intuitively, this notion allows to identify the states
that will be marked in any model of the specification.

Lemma 4 Given a terminating automaton M and a marked modal specification C s.t. M |= C
then: LM ⊆ LC, and, for all u ∈ LM,

(
λ(r0, u), δ(q0, u)

)
∈ π.

Proof: The language inclusion is a direct consequence of the third item of Def. 2. Moreover,
as modal specifications are assumed deterministic, the relation π is unique, when it exists, and
thus, for any u ∈ LM,

(
λ(r0, u), δ(q0, u)

)
∈ π. 2

The introduced semantics induces some simplifications in the structure of the marked modal
specifications that we discuss now. At the end of this section, this will leads to the definition of
an associated normal form.

Must-saturation. Observe that any terminating automaton model of the marked modal spec-
ification in Fig. 1 includes the starting transition labeled by a stemming from the initial state.
It is thus a required transition that can be assigned a must modality in the specification. We
therefore introduce the must-saturation of marked modal specifications.

Definition 5 (Must-saturation) A marked modal specification is must-saturated if for all
q /∈ F such that there is a unique a ∈ may(q), we have a ∈ must(q). Such a must-mapping is
then said to be saturated.

Lemma 6 Any must-mapping can be saturated without changing the set of marked implementa-
tions.

Proof: Let (r, q) ∈ π. If q /∈ F then r /∈ G. As M is terminating, it is then possible
to reach a marked state from r and: card(ready(r)) ≥ 1. As card(may(q)) = 1, we have:
card(ready(r)) = 1 for any M and it is not different than to have card(must(q)) = 1. 2

Inria

Ensuring Reachability by Design 7

Consistency and attractability. Given a marked modal specification C = (Q, q0,Σ, δ,must ,
may , F) and a state q ∈ Q, C is said consistent in q if and only if must(q) ⊆ may(q). C is said
attracted in q if and only if q ∈ pre∗m(F).

Lemma 7 If M |= C then C is consistent and attracted in every state δ(q0, u) with u ∈ LM.

Proof: Let u ∈ LM, by Lem. 4 we have
(
λ(r0, u), δ(q0, u)

)
∈ π. Thus, from the first item of

Def. 2, must(δ(q0, u)) ⊆ ready(λ(r0, u)) ⊆ may(δ(q0, u)) and C is consistent in δ(q0, u).
We now prove that C is attracted in δ(q0, u) that is, δ(q0, u) ∈ pre∗(F). Since M is ter-

minating λ(r0, u) ∈ pre∗(G). As a result, there exists a suffix v of u such that uv ∈ LM and
λ(r0, uv) ∈ G. By Lem. 4, uv ∈ LC and

(
λ(r0, uv), δ(q0, uv)

)
∈ π. Now if λ(r0, uv) ∈ G then

δ(q0, uv) ∈ F by item 2 of Def. 2 and thus δ(q0, u) ∈ pre∗(F). 2

As a consequence, only consistent and attracting states of C are semantically meaningful.
This now leads us to define a reduced form:

Definition 8 (Reduced marked modal specification) C is reduced iff every state is reach-
able and it is consistent and attracted in every state q ∈ Q.

Proposition 9 (Reducibility) Every satisfiable marked modal specification is equivalent to a
reduced marked modal specification.

Proof of this proposition is by construction of a reduced marked specification ρC and then
proving that C and ρC are equivalent. This construction makes use of a pruning operation. We
denote by QΨ ⊆ Q the set of all states q ∈ Q such that q is inconsistent or unattracting, that is:
must(q) * may(q) or q /∈ pre∗(F).

Definition 10 (Reduction operation) Given a marked modal specification C = (Q, q0,Σ, δ,
must ,may , F): if q0 ∈ pre∗M (QΨ) then the reduction of C is C⊥; otherwise, it is the marked modal
specification (Q \ pre∗M (QΨ) , q0,Σ, δ′,must ′,
may ′, F \ pre∗M (QΨ)) where: δ′(r, a) = r′ if and only if δ(r, a) = r′ and r, r′ /∈ pre∗M (QΨ); as
indicated in right after Def. 1, may ′ can be recovered from δ′ whereas must′ is the restriction of
must to the domain Q \ pre∗M (QΨ).

We now prove Prop. 9:

Proof: We first show : JCK ⊆ JρCK. We prove that M |= ρC can be established with the same
simulation relation π that states M |= C:

• Let (r, q) ∈ π ⊆ R × Q. Observe first that q /∈ QΨ according to Lem. 7. Moreover, q /∈
pre∗M (QΨ) otherwise, there would exist q′ ∈ QΨ coreachable from q by following transitions
labeled by must-actions and thus we would have (r′, q′) ∈ π with q′ ∈ QΨ for some r′ ∈ R
which is not possible by Lem. 7. As a result, π stating M |= C is more precisely defined
over R×

(
Q \ pre∗M (QΨ)

)
.

• Moreover, we can show that if λ(r, a) is defined and q /∈ pre∗M (QΨ) then δ′(q, a) is also
defined. By contradiction, suppose that δ′(q, a) is not defined then δ(q, a) ∈ pre∗M (QΨ) by
construction of δ′. However, λ(r, a) defined implies δ(q, a) defined and

(
λ(r, a), δ(q, a)

)
∈ π

as M |= C and, by Lem. 7, δ(q, a) /∈ pre∗M (QΨ) which is in contradiction with the previous
sentence.

Consequence from the two previous items is that any pair (r, q) ∈ π which states M |= C can
also be seen as pair of states of M and ρC. We now show that F ′, must ′ and may ′ satisfies the
constraints of a model relation:

RR n° 7928

8 Caillaud & Raclet

• First, as M |= C, we have r ∈ G implies q ∈ F . As previously shown, q /∈ pre∗M (QΨ) and
thus q ∈ F \ pre∗M (QΨ);

• Next, if must(q) ⊆ ready(r) then, as ∈ Q \ pre∗M (QΨ), by construction we have must ′(q) =
must(q) and thus must ′(q) ⊆ ready(r);

• Last, if ready(r) ⊆ may(q), we can show that ready(r) ⊆ may ′(q). By contradiction,
suppose ready() ∩ (may(q) \ may ′(q)) 6= ∅. Then there exists a for which λ(r, a), δ(q, a)
are defined and q /∈ pre∗M (QΨ) but δ′(q, a) is not defined. We have shown above that this
situation is not possible.

As a result, M |= ρC which concludes the first part of the proof.
We now prove : JCK ⊇ JρCK. It is clear that the graph associated with Un(ρC) is a sub-graph of

Un(C) as ρC is built from C by removing some edges. As a result, all pairs (r, q) in the simulation
relation π stating that M |= ρC can also be seen as a pair of states of M and C. We now show
that π also defines a suitable simulation relation in order to establish M |= C as G, may and
must of C satisfies the constraints of a model relation. Let (r, q) ∈ π:

• If r ∈ G then q ∈ F \ pre∗M (QΨ) and thus, in particular, q ∈ F ;
• By construction, must ′(q) = must(q) and may ′(q) ⊆ may(q). As a result, if must ′(q) ⊆

ready(r) ⊆ may ′(q) then must(q) ⊆ ready(r) ⊆ may(q).
As a result, M |= C which concludes the proof. 2

Normal form. This now leads us to define the normal form of any marked modal specification:

Definition 11 (Normal form) A marked modal specification is in normal form if it is both
must-saturated and reduced.

According to Lem. 6 and Prop. 9, any marked modal specification C can be put in normal
form ηC without altering its set of models. As a result, from now on, we always suppose that
marked modal specifications are in normal form.

At this point, the reader may wonder why must-saturation, consistency and attractability are
not fully part of the definition of marked modal specification (as it is the case for the consistency
requirement in the original papers on unmarked modal specifications [18, 16]). The reason for this
is because, in what follows, we propose composition operators on marked modal specifications and
it is easier to define these constructions without trying to preserve these different requirements.
Now if the combination of two marked modal specifications (which are now implicitly supposed
to be in normal form) gives rise to the a specification violating one of the above requirements
then a step of normalization has to be applied on the result in order to have an iterative process.

3 Refinement of marked modal specifications

A refinement relation aims at relating interfaces at different stages of their design. Basically,
it should correspond to refine the set of allowed implementations of an interface. Moreover, we
shall see later that refinement should entail substitutability, meaning that the substitution of an
interface C2 by a refined version C1 must not impact the possible and actual cooperation with
other components, that have been previously declared as legal for C2.

Definition 12 (Refinement) Given two marked modal specifications C1 = (Q1,
q0
1 ,Σ, δ1,must1,may1, F1) and C2 = (Q2, q

0
2 ,Σ, δ2,must2,may2, F2), C1 is a refinement of C2,

noted C1 ≤ C2, if and only if there exists a simulation relation Π ⊆ Q1×Q2 such that (q0
1 , q

0
2) ∈ Π

and, for all pairs (q1, q2) ∈ Π:
1. may1(q1) ⊆ may2(q2) and must1(q1) ⊇ must2(q2);

Inria

Ensuring Reachability by Design 9

2. q1 ∈ F1 implies q2 ∈ F2;
3. for every a ∈ may1(q1), we have:

(
δ1(q1, a), δ2(q2, a)

)
∈ Π.

Intuitively, refining an interface corresponds to possibly changing a transition with a may
modality into either a required or a proscribed transition while potentially delaying the reacha-
bility of a marked state. This relation is reflexive and transitive and is thus a preorder.

Theorem 13 Given two marked modal specifications C1 and C2, C1 ≤ C2 if and only if, JC1K ⊆
JC2K.

Theorem 13 holds provided the marked modal specifications are deterministic. If nondeter-
minism is allowed, refinement becomes correct but not fully abstract (the implication from right
to left in Theorem 13 is not true in general). This is discussed for unmarked modal specifica-
tions in [17]; their counterexample can be immediately adapted to our context. Moreover, as
argued in [9], nondeterministic modal specifications are not really suitable to characterize a set
of deterministic automata.

To prove this Theorem, the two following intermediate Lemmata are necessary. We first
define the maximal implementation associated to a marked modal specification:

Lemma 14 (Maximal Implementation) Given a marked modal specification C = (Q, q0,Σ,
δ,must ,may , F), the automaton MC = (Q, q0,Σ, δ, F) satisfies C and moreover, LM = LC.

Proof: Take equality as the simulation relation. For all q ∈ Q, we have for MC: ready(q) =
may(q). Since C is in normal form, we have must(q) ⊆ may(q). Hence, must(q) ⊆ ready(q) ⊆
may(q). Normal form implies that Q = pre∗(F). Hence MC is a terminating automaton satis-
fying C and such that LM = LC. 2

Remark also that the simulation relation can be chosen to be a least relation defined as
follows:

Definition 15 (Least Simulation Relation) Given C1 = (Q1, q
0
1 ,Σ, δ1,must1,may1, F1) and

C2 = (Q2, q
0
2 ,Σ, δ2,must2,may2, F2) two marked modal specifications, define Γ ⊆ Q1 ×Q2 to be

the least relation such that:
1. (q0

1 , q
0
2) ∈ Γ;

2. For all (q1, q2) ∈ Γ, if a ∈ may1(q1) ∩may2(q2) then
(
δ1(q1, a), δ2(q2, a)

)
∈ Γ.

Lemma 16 Given two marked modal specifications C1 and C2, C1 refines C2 implies that any
(q1, q2) ∈ Γ satisfies the items of Def. 12.

Proof: Assume C1 ≤ C2, meaning that there exists Π satisfying the items of Def. 12. Lets prove
that Γ ⊆ Π. The pair of initial states are in both relations: (q0

1 , q
0
2) ∈ Γ ∩Π. If (q1, q2) ∈ Γ ∩Π,

then for every a ∈ may1(q1) ⊆ may2(q2),
(
δ1(q1, a), δ2(q2, a)

)
∈ Γ∩Π. This proves that Γ = Γ∩Π,

and hence Γ ⊆ Π. This implies that any (q1, q2) ∈ Γ also satisfies the items of Def. 12. 2

We can now prove Theorem 13:

Proof: (⇒) Suppose that M |= C1 and C1 ≤ C2, meaning that there exists simulation relations
π ⊆ R×Q1 and Π ⊆ Q1 ×Q2, witnesses of the satisfaction and refinement relations. Hence we
assume that π satisfies the items of Def. 2 and the Π satisfies the items of Def. 12.

We now prove that M |= C2. This is done by proving that relation π · Π = {(r, q2) ∈
R × Q2 | ∃q1 ∈ Q1 st. (r, q1) ∈ π and (q1, q2) ∈ Π} satisfies the items of Def. 2. (r0, q0

1) ∈ π

RR n° 7928

10 Caillaud & Raclet

and (q0
1 , q

0
2) ∈ Π imply (r0, q0

2) ∈ π · Π. Given (r, q2) ∈ π · Π, there exists q1 ∈ Q1 such that
(r, q1) ∈ π and (q1, q2) ∈ Π. Take any q1 ∈ Q1 such that (r, q1) ∈ π and (q1, q2) ∈ Π. (i)
must2(q2) ⊆ must1(q1) ⊆ ready(r) ⊆ may1(q1) ⊆ may2(q2); (ii) r ∈ G implies q1 ∈ F1 implies
q2 ∈ F2; And (iii) for every a ∈ Σ and every r′ ∈ R such that λ(r, a) = r′,

(
r′, δ1(q1, a)

)
∈ π and

(δ1(q1, a), δ2(q2, a)) ∈ Π. Hence (r′, δ2(q2, a)) ∈ π ·Π.

(⇐) We proceed by contraposition; we prove that if C1 � C2 then there exists a model M of
C1 that is not a model of C2. Consider the least simulation Γ. Since C1 � C2, (i) C1 is satisfiable
and (ii) there exists (q1, q2) ∈ Γ such that at least one of the items of Def. 12 is not satisfied:

• Assume may1(q1) * may2(q2). By construction MC1 |= C1, while MC1 6|= C2.
• Assume may1(q1) ⊆ may2(q2) for all (q1, q2) ∈ Γ and must1(q1) + must2(q2). Hence there

exists a ∈ must2(q2)\must1(q1). ConstructM = (Q1, q
0
1 ,Σ, λ,G1) such that λ(q, b) = q′ of

and only if δ1(q, b) = q′ and q 6= q1 or b 6= a. Recall C1 is in normal form, hence M |= C1.
However, a ∈ must2(q2) and a /∈ ready(q1). Hence M 6|= C2.

• Assume may1(q1) ⊆ may2(q2) and must1(q1) ⊇ must2(q2) for all (q1, q2) ∈ Γ. Assume
q1 ∈ F1 and q2 /∈ F2. MC1 |= C1, while MC1 6|= C2.

2

When the left counterpart is ultimately refined, the refinement relation coincide with the
implementation relation: given a terminating automaton M and a marked modal specification
C, M |= C if and only if Em(M) ≤ C.

4 Conjunction of marked modal specification

It is a current practice, when modeling complex systems, to associate several specifications with
a same system, sub-system, or component, each of them describing a different aspect of it. These
so-called viewpoints may be engineered independently, and possibly by different teams. It is then
natural to question whether different viewpoints are not contradictory and how to realize all of
them. This leads to define a conjunction operator. Moreover in [8], the authors point out that,
during the design cycle, a designer may be tempted to merge two interfaces which share some
similarities in order to use a same implementation for the two interfaces. More formally, this
corresponds to look for a shared refinement of the interfaces, if it exists.

We now define a conjunction operator which enjoy the expected properties to solve the two
above problems.

Definition 17 (Conjunction) Given two marked modal specifications C1 = (Q1, q
0
1 ,Σ, δ1,must1,

may1, F1) and C2 = (Q2, q
0
2 ,Σ, δ2,must2,may2, F2), the conjunction of C1 and C2, noted C1 ∧C2,

is the normal form η(C1 & C2) of C1 & C2 = (Q, q0,Σ, δ,must ,may , F) with:
1. Q = Q1 ×Q2 and q0 = (q0

1 , q
0
2);

2. for any q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ, δ
(
(q1, q2), a

)
= (q′1, q

′
2) if and only if δ1(q1, a) = q′1

and δ2(q2, a) = q′2;
3. may(q1, q2) = may1(q1) ∩may2(q2) and must(q1, q2) = must1(q1) ∪must2(q2);
4. (q1, q2) ∈ F if and only if q1 ∈ F1 and q2 ∈ F2.

Considering the manipulations done on the may/must-maps and on the transition map to
obtain C1 & C2, the must-saturation and the consistency may not be respected. We thus impose
a normalization step in order to have an iterative process as explained at the end of Sec. 2.

Theorem 18 Given some marked modal specifications C1, C2, C3 and C:
• JC1 ∧ C2K = JC1K ∩ JC2K;

Inria

Ensuring Reachability by Design 11

b

(a)
M1

a b

(b) C1

a

(c)
M2

a b

(d) C2

Figure 2: Reachability is not compositional

• C1 ∧ C2 is the greatest lower bound of C1 and C2 for the refinement relation: C ≤ C1 and
C ≤ C2 iff C ≤ C1 ∧ C2;

• ∧ is associative: C1 ∧ (C2 ∧ C3) ≡ (C1 ∧ C2) ∧ C3.

Proof: The proof of the second item is a direct consequence of the first one: if C ≤ Ci for
i ∈ {1, 2} then, by Theorem 13: JCK ⊆ JCiK. As a result, we have: JCK ⊆ JC1K∩ JC2K. By the first
item of Theorem 18, this is equivalent to: JCK ⊆ JC1 ∧ C2K. Last, we deduce from Theorem 13
that C � C1 ∧ C2. 2

5 Product of marked modal specifications

Reachability is not preserved by product in general. Fig. 2 shows a simple example: M1 |= C1 and
M2 |= C2; however the product ofM1×M2 is a single non-marked state, hence the reachability
of a marked state is not possible.

This leads us to consider the following problem: given two marked modal specifications, can
they be implemented concurrently i.e., such that the product of any model of the first specification
with any model of the second one will always have the ability to reach a marked state of the
product?

Similarly to [1], we distinguish a pessimistic from an optimistic view of composition and solve
the previous problem in this two contexts.

First, in order to represent the cooperation between subsystems, a signature over Σ is now
associated to any terminating automaton or marked modal specification over Σ:

Definition 19 (Signature) Given a set of actions Σ, a signature over Σ is a mapping µ : Σ→
{?, !} which associates to any action either ? when the action is an input or ! when it is an output.

Now, transitions are either labeled !a (for µ(a) = !) when the entity responsible for the occur-
rence of a is the system, or ?a (for µ(a) = ?) if a stems from the environment of the system. The
resulting formalism is thus suited to model protocols between a system and an unknown partner
belonging to the system environment. Contrarily to the input/output automata of [20] and fol-
lowing the interface automata of [1], terminating automata and marked modal specifications are
not required to be input-enabled, meaning that some actions ?b of the environment may not be
permitted in some state q. More formally, this situation occurs in state q if there is no outgoing
transition from q labeled by ?b. This allows to restrict, from the point of view of the system, the
behavior of its environment.

Example 20 Fig. 3(a) depicts the specification of a service which can receive requests ?r from an
unidentified subsystem in its environment and then answers by producing !a untils it is stopped

RR n° 7928

12 Caillaud & Raclet

0 1 2

3 4 5

6

?r
!a

?r
?e

?r
!a, !b

?r

?f

?f

(a) C1 over
{?r, ?e, ?f, !a, !b}

0 1

2

!r

?a

?a

!t

(b) C2 over
{?a, ?b, !r, !f}

0, 0 1, 1 2, 2

q> 6, 2

!r !a

?e !f

(c) C1 ‖ C2 over
{?e, !r, !f, !a, !b}

Figure 3: Example of composition

with ?f . It may also produce !b when set in an enhanced mode by ?e. Fig. 3(b) depicts the
specification of a client which expects to receive ?a as an answer to any request !r and is ready
to receive remitted ?a. Although ?b is in the signature of C2, there is no transition labeled ?b
meaning that the client rejects this inputs.

We write Σ? and Σ! for the set of input and output actions, respectively, thus forming a
partition of Σ. A system is then closed if its associated signature is such that Σ? = ∅ and open
otherwise. In this paper, we assume that ifM |= C then the signature associated toM and C is
identical. Similarly, if C1 ≤ C2 then C1 and C2 have the same signature1.

A first condition to product is the composability of signatures. Given two signatures µ1 and µ2

over Σ1 and Σ2 respectively, defining two partitions
(
Σ?

1,Σ
!
1

)
and

(
Σ?

2,Σ
!
2

)
, they are composable

if no output actions is shared: Σ!
1∩Σ!

2 = ∅. For composable signatures, we let the communication
actions be the set Σco(µ1, µ2) = (Σ?

1 ∩ Σ!
2) ∪ (Σ?

2 ∩ Σ!
1) which corresponds to the shared actions

on which a synchronization will be possible. The complement is called the set of private actions
and is denoted Σpr(µ1, µ2) = (Σ1 ∪ Σ2) \ Σco(µ1, µ2).

Definition 21 (Product of signatures) The product of two composable signatures µ1 and µ2

is µ = µ1 × µ2 defined over Σ1 ∪ Σ2 such that: Σ? = (Σ?
1 ∪ Σ?

2) \ Σco(µ1, µ2) and Σ! = Σ!
1 ∪ Σ!

2.

The product of two terminating automataM1 andM2 with respective composable signatures
µ1 and µ2 is then M1 ×M2 as defined in Sec. 2.1 with signature µ1 × µ2.

5.1 Pessimistic composition of marked modal specifications

We first consider the case of pessimistic2 composition; we define a sufficient and necessary condi-
tion such that two marked modal specification can be independently implemented, the product
of any of their implementations being terminating.

This condition corresponds to the existence of a joint path to a marked state, for every reach-
able state of the product of arbitrary implementations. We then consider the less cooperative
situation in which any optional behavior is disabled and check if such paths exist. However, the
minimal behavior associated to a state of a marked modal specification is not unique in general.
Consider C1 in Fig. 2(b), the minimal number of outgoing transition stemming from the initial

1This assumption is taken to simplify the presentation. Refinement of signature as defined in [23] can be
handled in the presented theory.

2The pessimistic view of this approach will be made clearer in the next section.

Inria

Ensuring Reachability by Design 13

state among all the models of C1 is 1 and can be either a transition label by a or by b. To rep-
resent the different minimal possibilities, we thus use an intermediate structure called minimal
constraint automaton. First we define the set of minimal constraints associated to a state:

Definition 22 (Minimal constraints) For any state q of a marked modal specification C de-

fined over Σ, we associate the set ζ(q) ∈ 22Σ

defined by:

ζ(q) =

 { must(q) } if must(q) 6= ∅
{ {a} | a ∈ may(q) } if must(q) = ∅ and q /∈ F
{ ∅ } if must(q) = ∅ and q ∈ F

Definition 23 (Minimal constraints automaton) Given a state q of a marked modal speci-
fication C over Σ, the minimal constraints automaton Min(C, q) is the automaton over Σ whose
initial state is q; its labeled transition map is λMin such that λMin(q′, a) = q′′ if and only if a ∈ X
with X ∈ ζ(q′) and δ(q′, a) = q′′; its set of final states GMin is the set of undelayable bottlenecks
of C.

We identify potential dead-ends, that is pairs of states of two marked modal specifications C1
and C2 to be composed from which no outgoing transition may be available in a product of two
respective implementations:

Definition 24 (Dead-end) Given q1 and q2 two states respectively from the marked modal
specifications C1 and C2 defined over Σ1 and Σ2, the pair (q1, q2) is a dead-end if:

1. q1 6∈ (F1 \D1) or q2 6∈ (F2 \D2) and,
2. there exists X1 ∈ ζ1(q1) and X2 ∈ ζ2(q2) such that: (X1 ∪ (Σ2 \Σ1))∩ (X2 ∪ (Σ1 \Σ2) = ∅.

Example 25 The minimal constraints associated to the initial states of C1 and C2 from Fig. 2
and defined over the same alphabet of actions {a, b} are respectively {{a}, {b}} and {{a}}. The
pair formed by this two states is thus a dead-end as for X1 = {b} and X2 = {a}, we have
X1 ∩X2 = ∅.

This now leads us to a definition of exception state pairs from which a joint path to a marked
state pair cannot be ensured independently of the implementation choices to be made:

Definition 26 (Exception state pair) Given q1 and q2 two states respectively from two marked
modal specifications C1 and C2, the pair (q1, q2) is an exception, noted Ex(q1, q2) if:

• Min(C1, q1)×Min(C2, q2) is not terminating or,
• there exists a reachable dead-end3 (q′1, q

′
2) in Min(C1, q1)×Min(C2, q2).

Then we can define the following criterion characterizing marked modal specifications having
compatible reachability:

Definition 27 (Compatible reachability) Two marked modal specifications C1 and C2 have
a compatible reachability, noted C1 ∼T C2, if there is no exception state pair that is reachable in
Un(C1)×Un(C2).

The soundness and the completeness of the previous definition is then stated by the following
Theorem:

3As the set of states of Min(Ci, qi) is a subset of these of Ci, we can refer to (q′1, q
′
2) in Min(C1, q1)×Min(C2, q2)

as a pair of states of C1 and C2 and then test if it is a dead-end in the sense of Def. 24.

RR n° 7928

14 Caillaud & Raclet

Theorem 28 (Independent implementability) Given two marked modal specifications C1
and C2, C1 ∼T C2 if and only if for any M1 |= C1 and M2 |= C2, the product M1 ×M2 is
terminating.

To prove this Theorem, we need the two following intermediate Lemmata.

Lemma 29 For any M |= C and pair (r, q) ∈ π, there exists a set X ∈ ζ(q) such that X ⊆
ready(r).

Proof: If must(q) 6= ∅ then ζ(q) = {must(q)}. As (r, q) ∈ π, we have must(q) ⊆ ready(r).
Thus, for X = must(q) ∈ ζ(q), we have X ⊆ ready(r).

If must(q) = ∅ and q /∈ F then ζ(q) = {{a} | a ∈ may(q)}. As q /∈ F , we have r /∈ G and
there exists a path from r to a marked state. Thus, there exists at least an a ∈ may(q) such that
λ(r, a) is defined. For X = {a} ∈ ζ(q), we then have X ⊆ ready(r).

Last, if must(q) = ∅ and q ∈ F then ζ(q) = {∅}. Thus, for X = ∅ ∈ ζ(q), we have
X ⊆ ready(r). 2

Lemma 30 If a state q of a marked modal specification C is a bottleneck and is not delayable
then may(q) = ∅.

Proof: Suppose that may(q) 6= ∅ then as C is supposed to be in normal form, there exists a
marked state reachable from q. As q is a bottleneck, the only reachable marked state from q is q.
However, as q is not delayable, q cannot be reached again. As a result, may(q) = ∅. 2

We can now prove Theorem 28:

Proof: (⇒) We assume C1 ∼T C2 and we prove that, for M1 |= C1 and M2 |= C2, M1 ×M2

is terminating. We thus fix a u ∈ LM1
uuLM2

and we show that there exists a v such that
λ((r0

1, r
0
2), uv) ∈ G1 ×G2.

The word u corresponds to u1 = prΣ1
(u) in M1 and to u2 = prΣ2

(u) in M2. Let r1 =
λ1(r0

1, u1) and r2 = λ2(r0
2, u2). By Lem. 4, u1 ∈ LC1 and u2 ∈ LC2 . Let q1 = δ1(q0

1 , u1) and
q2 = δ2(q0

2 , u2). As C1 ∼T C2 and as (q1, q2) is reached in Un(C1)×Un(C2) after u, (q1, q2) is not
an exception state pair. Thus Min(C1, q1)×Min(C2, q2) is terminating and no potential dead-end
is reachable in Min(C1, q1)×Min(C2, q2).

From Lem. 29, we know that u1 and u2 can be extended with actions belonging to the minimal
constraints sets of C1 and C2 respectively. More precisely, we construct a word w in Min(C1, q1)×
Min(C2, q2) such that w = a0...an with ai ∈ (X1 ∪ (Σ2 \ Σ1)) ∩ (X2 ∪ (Σ1 \ Σ2)) where:

X1 ∈ ζ1(δ1(q0
1 , u1.prΣ1

(a0...ai−1))) and
X1 ⊆ ready1(λ1(r0

1, u1.prΣ1
(a0...ai−1)))

X2 ∈ ζ2(δ2(q0
2 , u2.prΣ2

(a0...ai−1))) and
X2 ⊆ ready2(λ2(r0

2, u2.prΣ2
(a0...ai−1)))

As no dead-end is reachable in Min(C1, q1)×Min(C2, q2), (X1∪ (Σ2 \Σ1))∩ (X2∪ (Σ1 \Σ2)) 6= ∅
or a state in (F1 \ D1) × (F2 \ D2) is reached. In any case, we eventually reach a marked
state as Min(C1, q1) × Min(C2, q2) is terminating. Let w1 = prΣ1

(w) and to w2 = prΣ2
(w)

and let (q′1, q
′
2) be the marked state reached after w in Min(C1, q1) ×Min(C2, q2). Note that, by

construction, q′1 and q′2 are undelayable bottlenecks in C1 and C2. Now by Lem. 30, may1(q′1) = ∅
and may2(q′2) = ∅. As a result, λi(r

0
i , ui.wi) ∈ Gi, for i = 1, 2 as Mi |= Ci and Mi is

terminating. Thus, λ((r0
1, r

0
2), uw) ∈ G1 ×G2;

Inria

Ensuring Reachability by Design 15

(⇐) By contraposition, we prove that if C1 �T C2 then there exists M1 |= C1 and M2 |= C2
such that M1 ×M2 is not terminating.

If C1 �T C2 then there exists u ∈ LC1uuLC2 such that the state (q1, q2) reached after u is an
exception pair of state. Two cases are possible:

• Min(C1, q1)×Min(C2, q2) is not terminating, that is: there exists v ∈ LMin(C1,q1)uuLMin(C2,q2)

for which there is no w such that vw ∈ LMin(C1,q1)uuLMin(C2,q2) and the state reached after
vw is marked, that is, by construction, is a pair of bottleneck of C1 and C2.
We consider Mi |= Ci for i ∈ {1, 2} such that prΣi

(u) ∈ LMi
and the possible suffix of

prΣi
(u) are the words in LMin(Ci,qi). We can choose the marked state of Mi such that there

is no word w such that prΣi
(uvw) is marked in both M1 and M2 as a pair of bottleneck

from C1 and C2 cannot be reached in Min(C1, q1) ×Min(C2, q2). As a consequence, for
uv ∈ LM1uuLM2 , there is no suffix w such that the state reached in M1 ×M2 after uvw
is marked. As a result, M1 ×M2 is not terminating.

• (q′1, q
′
2) is a dead-end, reached in Min(C1, q1) ×Min(C2, q2) after a word v, that is: q′1 6∈

(F1 \ D1) or q′2 6∈ (F2 \ D2), and there exists X1 ∈ ζ1(q′1) and X2 ∈ ζ2(q′2) such that:
(X1 ∪ (Σ2 \ Σ1)) ∩ (X2 ∪ (Σ1 \ Σ2) = ∅.
We considerMi |= Ci for i ∈ {1, 2} such that prΣi

(uv) ∈ LMi and such that λ(r0, prΣi
(uv)) ∈

G if and only if q′i ∈ Fi \ Di and ready i(prΣi
(uv)) = Xi. The automaton M1 ×M2 is

not terminating as the pair of state reached after uv ∈ LM1
uuLM2

is not final and has no
outgoing transition by construction.

2

We now define the product of two marked modal specifications with compatible reachability.

Definition 31 (Product) Given two marked modal specifications C1 = (Q1, q
0
1 ,

Σ1, δ1,must1,may1, F1) and C2 = (Q2, q
0
2 ,Σ2, δ2,must2,may2, F2) with compatible reachabil-

ity, the product C1 ⊗ C2 is the normal form of the marked modal specification (Q, q0,Σ1 ∪
Σ2, δ,must ,may , F) with:

1. Q = Q1 ×Q2 and q0 = (q0
1 , q

0
2);

2. for any q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ1 ∪ Σ2, δ
(
(q1, q2), a

)
is defined as (δ1(q1, a), δ2(q2, a))

for a ∈ Σ1 ∩ Σ2, (δ1(q1, a), q2) for a ∈ Σ1 \ Σ2 and (q1, δ2(q2, a)) for a ∈ Σ2 \ Σ1;
3. may((q1, q2)) =

(
may1(q1) ∪ (Σ2 \ Σ1)

)
∩
(
may2(q2) ∪ (Σ1 \ Σ2)

)
;

4. must((q1, q2)) =
(
must1(q1) ∪ (Σ2 \ Σ1)

)
∩
(
must2(q2) ∪ (Σ1 \ Σ2)

)
;

5. (q1, q2) ∈ F if and only if q1 ∈ F1 and q2 ∈ F2.

Now, the product of any models M1 of C1 and M2 of C2 is model of C1 ⊗ C2:

Proposition 32 Given two marked modal specifications C1 and C2, if C1 ∼T C2 then for any
M1 |= C1 and M2 |= C2, M1 ×M2 |= C1 ⊗ C2.

Proof: Let u ∈ LM1
uuLM2

, we prove that:
1. must(δ((q0

1 , q
0
2), u)) ⊆ ready(λ((r0

1, r
0
2), u)) ⊆ may(δ((q0

1 , q
0
2), u));

2. if λ((r0
1, r

0
2), u) ∈ G then δ((q0

1 , q
0
2), u) ∈ F .

Observe first that: ready(λ((r0
1, r

0
2), u)) = ready1(λ1(r0

1, prΣ1
(u))) 2

Moreover, C1 ⊗ C2 gives the most precise characterization of the behavior of the product of
any models M1 of C1 and M2 of C2:

Proposition 33 Given two marked modal specifications C1 and C2, if C1 ∼T C2 and if there exists
a marked modal specification C such that for anyM1 |= C1 andM2 |= C2 we haveM1×M2 |= C
then C1 ⊗ C2 ≤ C.

RR n° 7928

16 Caillaud & Raclet

One important principle in modular and concurrent design of systems is the fact that a prop-
erty checked on a primary version of some system artifacts remains true on any refined version
of them. This is what allows to guarantee that the system parts corresponding to compatible
interfaces can be designed concurrently. This is respected for compatible reachability:

Proposition 34 For all marked modal specifications C1, C′1 and C2, if C1 ∼T C2 and C′1 � C1
then C′1 ∼T C2 and C′1 ⊗ C2 � C1 ⊗ C2.

Proof: Let M1 and M2 be models of C′1 and C2. As C′1 � C1, by Theorem 13, M1 is also a
model of C1. Moreover, the product M1 ×M2 is terminating as C1 ∼T C2, by Theorem 28. As
a result, by Theorem 28, C′1 ∼T C2. 2

Last, the product is a commutative and associative operator, meaning that interfaces can be
assembled in any order without affecting the result.

Proposition 35 The product of marked modal specifications is commutative and associative.
Given three marked modal specifications C1, C2 and C3: C1 ⊗ C2 ≡ C2 ⊗ C1 and C1 ⊗ (C2 ⊗ C3) ≡
(C1 ⊗ C2)⊗ C3.

Remark 36 If a bottleneck q1 of C1 belongs to a cycle in Min(C1, q1) then for any q2 of C2,
Min(C1, q1)×Min(C2, q2) will not be terminating, that is C1 �T C2.

5.2 Optimistic composition of marked modal specifications

Consider again C1 and C2 from Fig. 3. They do not have a compatible reachability as (4, 1) is
a reachable dead-end and thus an exception state pairs in the sense of Def. 26. It is however
pessimistic to declare C1 and C2 as not composable. Indeed, the system potentially formed by
any model of C1 and C2 would not be closed as the occurence of ?e would still be under the
control of the environment. Now by preventing the environment from producing !e when C1 and
C2 are in their initial state, the reachability of the exception state pairs (4, 1) can be avoided4.
In this section, let us now be optimistic and declare composable any C1 and C2 if there exists at
least one environment, closing the system and preventing the reachability of bad states of C1 and
C2 in which the reachability property cannot be guaranteed.

Definition 37 (Legal environment) Given M and E two terminating automata, E is said to
be a legal environment for M, if and only if: the signature of M and E are composable; M×E
is closed; Em(M) ∼T Em(E), that is M×E is terminating.

Next, we identify unusable states from which the reachability of an exception state pair
cannot be prevented regardless of the environment. This corresponds to pairs of state that can
autonomously reach an exception state pair by a sequence of output actions:

Definition 38 (Unusable pair of states) Given C1 and C2 two marked modal specifications
with respective signature µ1 and µ2, the set of unusable pair of states U ⊆ Q1 ×Q2 is the least
set such that:

• if Ex(q1, q2) then (q1, q2) ∈ U ;
• if, for a ∈ Σco(µ1, µ2),

(
δ1(q1, a), δ2(q2, a)

)
∈ U then (q1, q2) ∈ U ;

• if, for a ∈ Σpr(µ1, µ2) ∩ Σ!
1,
(
δ1(q1, a), q2

)
∈ U then (q1, q2) ∈ U ;

• if, for a ∈ Σpr(µ1, µ2) ∩ Σ!
2,
(
q1, δ2(q2, a)

)
∈ U then (q1, q2) ∈ U .

4A similar pruning on the outputs of input complete specifications was proposed in [7], ealier than in [1].

Inria

Ensuring Reachability by Design 17

A pair of states is said usable if it is not unusable.

Definition 39 (Optimistic compatible reachability) Two marked modal specifications C1
and C2 have an optimistic compatible reachability, noted C1 ∼O C2 if the pair of initial states
(q0

1 , q
0
2) is usable, that is (q0

1 , q
0
2) /∈ U .

This criterion is sound and complete as stated by the following Theorem:

Theorem 40 (Independent implementability) Given two marked modal specifications C1
and C2, C1 ∼O C2 if and only if for any M1 |= C1 and M2 |= C2 there exists a legal environment
E for M1 ×M2.

Definition 41 (Optimistic product) Given two marked modal specifications C1 = (Q1, q
0
1 ,Σ1,

δ1,must1,may1, F1) and C2 = (Q2, q
0
2 ,Σ2, δ2,must2,may2, F2) over composable signatures µ1 and

µ2 and with optimistic compatible reachability, the optimistic product C1 ‖ C2 is is the normal form
of the marked modal specification (Q, q0,Σ1 ∪ Σ2, δ,must ,may , F) over µ1 × µ2 with:

• Q =
(
(Q1 ×Q2) \ U

)
∪ {q>};

• q0 = (q0
1 , q

0
2);

• for any q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ1 ∪ Σ2:
– if a ∈ Σpr(µ1, µ2) ∩ Σ1: δ

(
(q1, q2), a

)
= (δ1(q1, a), q2) if (δ1(q1, a), q2) /∈ U and q>

otherwise;
– if a ∈ Σpr(µ1, µ2) ∩ Σ2: δ

(
(q1, q2), a

)
= (q1, δ2(q2, a)) if (q1, δ2(q2, a)) /∈ U and q>

otherwise;
– if a ∈ Σco(µ1, µ2): δ

(
(q1, q2), a

)
= (δ1(q1, a), δ2(q2, a)) if (δ1(q1, a), δ2(q2, a)) /∈ U and

q> otherwise;
• may((q1, q2)) =

(
may1(q1) ∪ (Σ2 \ Σ1)

)
∩
(
may2(q2) ∪ (Σ1 \ Σ2)

)
;

• must((q1, q2)) =
(
must1(q1) ∪ (Σ2 \ Σ1)

)
∩
(
must2(q2) ∪ (Σ1 \ Σ2)

)
;

• may(q>) = Σ1 ∪ Σ2 and must(q>) = ∅;
• (q1, q2) ∈ F if and only if q1 ∈ F1 and q2 ∈ F2.; q> ∈ F .

This construction is very similar to the product ⊗ of Def. 31 except that unusable states
are pruned away. Transitions labeled by an action ?a that would lead to an unusable state if
performed by the environment are rerouted to a fresh state q> on which all constraints on the
future are relaxed.

Example 42 The optimistic product of C1 and C2 from is depicted in Fig. 3(c). The transition
labeled by ?e is rerouted from the unusable (3, 0) to q>.

The resulting C1 ‖ C2 is satisfied by the product of any models of C1 and C2:

Proposition 43 Given two marked modal specifications C1 and C2, if C1 ∼O C2 then for any
M1 |= C1 and M2 |= C2, M1 ×M2 |= C1 ‖ C2.

The next proposition states that C1 ‖ C2 is the minimal marked modal specification w.r.t.
refinement enjoying the independent implementability property:

Proposition 44 Given two marked modal specifications C1 and C2, if C1 ∼O C2 and if there
exists a marked modal specification C such that for any M1 |= C1 and M2 |= C2 there exists a
legal environment E for M1 ×M2 and M1 ×M2 |= C, then C1 ‖ C2 ≤ C.

Optimistic compatible reachability is preserved by refinement hence allowing concurrent de-
sign of sub-systems. Moreover, the optimistic product is monotonic with respect to the refinement
relation and is also associative which guarantees independence in the design flow.

RR n° 7928

18 Caillaud & Raclet

Proposition 45 For all marked modal specifications C1, C′1 and C2, if C1 ∼O C2 and C′1 � C1
then C′1 ∼O C2 and C′1 ‖ C2 � C1 ‖ C2.

Proposition 46 The optimistic product of marked modal specifications is commutative and
associative. Given three marked modal specifications C1, C2 and C3: C1 ‖ C2 ≡ C2 ‖ C1 and
C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C3.

6 Related works and conclusion

Marked modal specifications can be used to express, in a modular manner, that a system should
be capable of reaching one or several marked states representing either the completion of a
composition of services or the quiescence of a network of interacting agents. They improve
the expressive power of deterministic modal specifications that corresponds to the conjunctive
ν-calculus [11] which does not allow to capture reachability properties.

The same goal can be achieved with automata-theoretic specifications in which states are
annotated with propositional formulas expressing implementation variants and, possibly, an obli-
gation of progress. This is the case of annotated automata [24] and operating guidelines [21, 19].
While both formalisms have a product (or parallel) composition operator, they are missing the op-
timistic view of composition and also the conjunction operator that turns out to be instrumental
as soon as components are described according to several distinct but interacting viewpoints [23].

The disjunctive variants of modal specifications [15, 10] allows to constraint progress and
thus to inductively express reachability. However no implementation relations including marked
states nor optimistic composition have been proposed for these variants of modal specifications.

Marked modal specifications look similar to the modal specifications with marked states in-
troduced in [6]. However, these two formalisms are very different because the satisfaction relation
in [6] admits implementations having final states corresponding to a state of the specification
that is not final. This is appropriate in the context of supervisory control synthesis. However,
this semantics does not seem well-suited to a specification algebra with a refinement preorder,
which explains why a different satisfaction relation is used for marked modal specifications.

References

[1] de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. of the 9th ACM SIGSOFT
Inter. Symp. on Foundations of Software Engineering (FSE’01). pp. 109–120. ACM Press
(2001)

[2] Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations.
In: Proc. of the 9th Inter. Conf. on Concurrency Theory (CONCUR’98). LNCS, vol. 1466,
pp. 163–178. Springer (1998)

[3] Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal and
mixed specifications. Bulletin of the EATCS 1(94) (2008)

[4] Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, Ph.:
Systems and Software Verification. Model-Checking Techniques and Tools. Springer (2001)

[5] Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.B.: Modal event-clock specifications for
timed component-based design. Science of Computer Programming (2011), in Press, Cor-
rected Proof

Inria

Ensuring Reachability by Design 19

[6] Darondeau, P., Dubreil, J., Marchand, H.: Supervisory control for modal specifications
of services. In: Workshop on Discrete Event Systems (WODES’10). pp. 428–435. Berlin,
Germany (August 2010)

[7] Dill, D.L.: Trace theory for automatic hierarchical verification of speed-independent circuits.
ACM distinguished dissertations, MIT Press (1989)

[8] Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with component
reuse. In: Proc. of the 8th Inter. Conf. on Embedded Software (EMSOFT’08). pp. 79–88.
ACM Press (2008)

[9] Fecher, H., de Frutos-Escrig, D., Lüttgen, G., Schmidt, H.: On the expressiveness of refine-
ment settings. In: Proc. of the 3rd Inter. Conf. on Fundamentals of Software Engineering
(FSEN’09). LNCS, vol. 5961, pp. 276–291. Springer (2009)

[10] Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an one-
selecting variant. J. Log. Algebr. Program. 77(1-2), 20–39 (2008)

[11] Feuillade, G., Pinchinat, S.: Modal specifications for the control theory of discrete-event
systems. Discrete Event Dynamic Systems 17(2), 181–205 (2007)

[12] Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. IEEE Computer
40(10), 32–40 (2007)

[13] Juhl, L., Larsen, K., Srba, J.: Modal transition systems with weight intervals. Journal of
Logic and Algebraic Programming (2011), to appear.

[14] Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and product
line theories. In: Proc. of the 16th Euro. Symp. on Programming (ESOP’07). LNCS, vol.
4421, pp. 64–79. Springer (2007)

[15] Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: Proc. of
the 5th IEEE Symp. on Logic in Computer Science, LICS’90. pp. 108–117. IEEE Computer
Society Press (1990)

[16] Larsen, K.G.: Modal specifications. In: Automatic Verification Methods for Finite State
Systems. LNCS, vol. 407, pp. 232–246. Springer (1989)

[17] Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency. In: Proc. of
the 18th Inter. Conf. on Concurrency Theory (CONCUR’07). pp. 105–119. Springer (2007)

[18] Larsen, K.G., Thomsen, B.: A modal process logic. In: Proc. of the 3rd Annual Symp. on
Logic in Computer Science (LICS’88). pp. 203–210. IEEE (1988)

[19] Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for operating
guidelines. Fundam. Inform. 108(1-2), 43–62 (2011)

[20] Lynch, N., Tuttle, M.R.: An introduction to Input/Output automata. CWI-quarterly 2(3),
219–246 (1989)

[21] Massuthe, P., Schmidt, K.: Operating guidelines - an automata-theoretic foundation for the
service-oriented architecture. In: QSIC. pp. 452–457. IEEE Computer Society (2005)

[22] Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: Modal
interfaces: unifying interface automata and modal specifications. In: Proc. of the 9th Int.
Conf. on Embedded Software (EMSOFT’09). pp. 87–96. ACM (2009)

RR n° 7928

20 Caillaud & Raclet

[23] Raclet, J.B., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A modal interface
theory for component-based design. Fundam. Inform. 107, 1–32 (2011)

[24] Wombacher, A., Mahleko, B., Neuhold, E.J.: IPSI-PF - a business process matchmaking
engine based on annotated finite state automata. Inf. Syst. E-Business Management 3(2),
127–150 (2005)

Inria

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Modeling with marked modal specifications
	Background on automata
	Marked modal specifications

	Refinement of marked modal specifications
	Conjunction of marked modal specification
	Product of marked modal specifications
	Pessimistic composition of marked modal specifications
	Optimistic composition of marked modal specifications

	Related works and conclusion

