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Université de Toulouse-IRIT

5, Allées A. Machado

31058 Toulouse Cedex 1, France

Email: Romain.Guillaume@irit.fr

Caroline Thierry
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Abstract—In this paper, we are interested in a production
planning process in collaborative supply chains. More precisely,
we consider supply chains, where actors use Manufacturing
Resource Planning process (MRPII). Moreover, these actors
collaborate by sharing procurement plans. We focus on a supplier,
who applies the Periodic Order Quantity (POQ) rule to plan
a production integrating the uncertain procurement plan sent
by her/his customer. The uncertainty of the procurement plan
is expressed by closed intervals on the cumulative demands. In
order to choose a robust production plan, under the interval
uncertainty representation, the min-max criterion is applied.

We propose algorithms for determining the set of possible
costs of a given production plan - due to the uncertainty on the
cumulative demands. We then construct algorithms for computing
a robust production plan with respect to the min-max criterion:
the algorithm based on iterative adding constraints and the
polynomial algorithms under certain realistic assumptions.

Index Terms—Supply Chain, Production Planning, Uncer-
tainty, Scenario Optimization.

I. INTRODUCTION

Companies today evolve in high competitive context that

obliges the companies to collaborate with their suppliers and

customers and creates uncertainty on the demand. Due to

the well-known bullwhip effect [1], this uncertainty induces

supply chain risks as backordering, obsolete inventory. Sharing

information on the demand and the collaboration with the

suppliers are ways to reduce this risk.

Most companies use Manufacturing Resource Planning

(MRPII) to plan and control all resources of a manufacturing

company. MRPII is composed of three processes (the pro-

duction process, the procurement process and the distribution

process) and three levels [2]: the strategic level (Sales and

Operation Plan-S&OP), the tactical level (Master Production

Scheduling (MPS) and Material Requirement Planning (MRP))

and the operational level (detailed scheduling and shop floor

control). Within MRP process, different lot sizing rules exist

for purchased or produced items, as Fixed Order Quantity

(FOQ), Lot-for-Lot (L4L), Minimal Order Quantity (MOQ),

Periodic Order Quantity (POQ), etc. In collaborative supply

chains, collaboration is usually characterized by a set of point-

to-point (customer/supplier) relationships with partial infor-

mation sharing. More precisely, the collaboration process in

supply chains, where actors use MRPII, is realized by sharing

procurement plans through the supply chain. The procurement

plan can take into account uncertainty [3]. Thus, the problem

is how to integrate this information in a production planning

process. In this paper, we focus on cases where no probability

distribution is available to model the uncertainty. In this

context, the uncertainty is modeled by specifying a set of all

possible realizations of the demand, called scenarios.

In the literature, the planning processes of MRPII have been

extended to take into account the imprecision on quantities of

period demands (MPS and MRP) [4], [5], [6], [7], quantities

of period demands and uncertain orders (MRP) [8] and the

imprecision on order quantities and dates with uncertain order

(MRP) [9].

To deal with the uncertainty in the production planning,

three approaches can be distinguished: computing the possible

inventory and backordering levels over all scenarios to help

the decision maker to choose a production plan ([4], [8], [9]),

computing an optimal solution for one of possible demand

scenarios [5], [6] and the robust optimization [10] under the

scenario uncertainty representation, more precisely using the

min-max criterion [7]. Under this criterion, we seek a solution

that minimizes the largest cost over all scenarios. The cost

function in production planning is the sum of inventory and

backordering costs over the planning horizon.

The aim of this paper is to investigate the MRP process

with the POQ rule under imprecision on cumulative demands.

The POQ rule consists in producing a quantity equal to the

gross requirements for P periods minus any items in on-

hand inventory plus any additional items needed to replenish

safety stock if it has fallen below its desired level. To adapt

the MRP with the POQ rule to the uncertain context, we

have to consider the problem with backordering. Indeed, the

problem without backordering is not satisfactory due to the

fact that a solution method (without backordering) consists in

applying the rule to the maximal cumulative demands. Thus,

this solution method induces too much inventory and does not

consider preferences of the decision maker between possible

inventory and backordering levels. In the model proposed in

this paper, the imprecision on the demand is represented by

cumulative demand intervals. Such modeling allows us to

describe the imprecision on order quantities and dates.



The paper is organized as follows. Section II presents the

problem under consideration with the precise demands (pa-

rameters). In Section III, we formulate the problem under the

scenario uncertainty model in the robust optimization setting.

We adopt min-max criterion to choose a robust production

plan. We then propose algorithms for evaluating a given

production plan (for determining optimal interval containing

all possible values of costs of the production plan) and for

computing an optimal robust production plan.

II. THE DETERMINISTIC PROBLEM

In this section, a deterministic version of the problem under

consideration, i.e. the problem in which all parameters are

precisely known in advance.

Given T + 1 periods. For period t, t = 0, . . . , T , let dt be

the demand in period t, dt ≥ 0, xt the production amount in

period t. Furthermore, we are given a periodicity P , P ∈ ℕ,

such that: xt ≥ 0 if t = k ⋅ P ; otherwise (if t ∕= k ⋅ P ) xt = 0
for k = 0, . . . , N and t = 0, . . . T , where N = T/P (we

assume without loss of generality that T is divisible by P ).

Now, the set feasible production amounts X ⊆ ℝ
T+1
≥0 can be

defined as follows:

X = {xxx = (x0, . . . , xT ) : xt ≥ 0 for t = k ⋅ P,

xt = 0 for t ∕= k ⋅ P,

k = 0, . . . , N, t = 0, . . . , T}.

Set Dt =
∑t

i=0 di and Xt =
∑t

i=0 xi, Dt and Xt stand

for the cumulative demand up to period t and the production

level up to period t, respectively. Obviously, Xt−1 ≤ Xt and

Dt−1 ≤ Dt, t = 1, . . . , T . The nonnegative costs of carrying

one unit of inventory from period t to period t+ 1 are given,

denoted by cI , and all the inventory costs are equal for every

period. The nonnegative costs of backordering one unit from

period t+ 1 to period t are given, denoted by cB , and all the

backorder costs are equal for every period. Furthermore, we

assume that cI ≤ cB . The nonnegative real function Ct(u, v)
represents either the cost of storing inventory from period t
to period t + 1 or the cost of backordering quantity from

period t+1 to period t, namely Ct(Xt,Dt) = cI(Xt−Dt) if

Xt ≥ Dt; c
B(Dt −Xt) otherwise. The function has the form

Ct(Xt,Dt) = max{cI(Xt −Dt), c
B(Dt −Xt)}.

The optimization problem with the precise parameters con-

sists in finding a feasible production plan xxx = (x0, . . . , xT ),
xxx ∈ X, that minimizes the total cost of storage and backo-

rdering subject to the conditions of satisfying each demand,

that is

min
xxx∈X

F (xxx) = min
xxx∈X

T
∑

t=0

Ct

(

t
∑

i=0

xi,
t
∑

i=0

di

)

= min
xxx∈X

T
∑

t=0

Ct(Xt,Dt). (1)

It is easily seen that when P = 1, the problem (1) is

equivalent to the classical lot sizing with backordering with

the Lot-For-Lot (L4L) rule (see, e.g., [11], [12], [13]). The

problem (1) can be formulated as the minimum cost flow

problem (see, e.g., [14]):

min

T
∑

t=0

(cIIt + cBBt)

s.t. Bt − It =

t
∑

j=0

(dj − xj), t = 0, . . . , T,

xt = 0, t ∕= k ⋅ P, k = 0, . . . , N,
t = 0, . . . , T,

xt, Bt, It ≥ 0, t = 0, . . . , T.
(2)

The problem (2) can solved in O(T ). For each k = 0, . . . , N−
1, we determine periods:

ℎk = max{t : t ∈ {k ⋅ P, . . . , (k + 1) ⋅ P − 1},

cI(t− k ⋅ P ) ≤ cB((k + 1) ⋅ P − t)}.

An optimal production plan to (2) is computed by the following

formula for t = 0, . . . , T and k = 0, . . . , N :

xt =

⎧







⎨







⎩

0 if t ∕= k ⋅ P ,

Dℎk if t = k ⋅ P and k = 0,

Dℎk −Dℎk−1 if t = k ⋅ P and 0 < k < N ,

Dk⋅P −Dℎk−1 if t = k ⋅ P and k = N .

We have assumed that an initial inventory I and an initial

backorder B are equal to zero. Otherwise, one can easily

modify the above method to cope with I > 0 or B > 0.

III. ROBUST VERSION OF THE PROBLEM

In Section II, we have assumed the all input parameters in

problem (1) are precisely known. However, in real life this is

rarely the case. Here, we admit uncertainty on the demands.

A. Model of uncertainty

One of the simplest form of the uncertainty representations

is modeling the imprecise demands d̃t, t = 0, . . . , T , as closed

intervals [dt, dt], dt ≥ 0, where dt and dt are a minimal and a

maximal possible values of demand d̃t in period t, respectively.

So, assigning some interval [dt, dt] to demand d̃t means that it

will take some value within the interval, but it is not possible

to predict at present which one, i.e. dt ∈ [dt, dt]. From the

above model of uncertainty, it follows that the imprecision of

cumulative demand Dt =
∑t

i=0 di increases in subsequent

periods, i.e. Dt ∈ [
∑t

i=0 dt,
∑t

i=0 dt]. In fact, practitioners

often express the knowledge on demand uncertainty by the

range. The demand can be interpreted in two different ways: a

demand in the period or a cumulative demand. For instance, a

practitioner expresses the uncertainty on the demand by range

±Δ. If this uncertainty is interpreted as the one on demands

in periods, then it leads to the cumulative demands with

increasing uncertainty (see Fig. 1a)). This case is unrealistic

compared to the case when the uncertainty is interpreted as

the one on cumulative demands (see Fig. 1b)). So in this

paper, the uncertainty of the demands d̃t is described by the

uncertainty on the cumulative demands, modeled by intervals

[Dt;Dt], instead of the uncertainty on demands in periods,



(a) (b)

t t0 0

+Δ

+Δ

+Δ

D0 = d0 D0

Dt

−Δ

−Δ

−Δ

+(t + 1)Δ

−(t + 1)Δ

Dt =
∑

t

i=0
di

periods periods

Fig. 1. An example: (a) the case with the uncertainty on demands in
periods and the resulting uncertain cumulative demands, (b) the case with
the uncertainty on cumulative demands.

modeled by [dt, dt]. Hence, we are given intervals [Dt;Dt]
that model the uncertainty of the cumulative demands for each

period t, t = 0, . . . , T , where Dt and Dt are a minimal

and a maximal possible values of cumulative demands in

period t, respectively. Obviously, Dt−1 ≤ Dt and Dt−1 ≤ Dt,

t = 1, . . . , T .

A vector S = (D0, . . . ,DT ), Dt ∈ [Dt;Dt], Dt−1 ≤
Dt, that represents an assignment of cumulative demands Dt

to periods t, t = 0, . . . , T , is called a scenario. Thus every

scenario expresses a realization of the cumulative demands. It

is easy to check that scenario S = (D0, . . . ,DT ) induces an

assignment of demands in periods t, t = 0, . . . , T . Namely,

dt = Dt −Dt−1. We denote by Γ the set of all the scenarios,

i.e.

Γ = {S = (D0, . . . ,DT ) :Dt ∈ [Dt;Dt], t = 0, . . . , T,

Dt−1 ≤ Dt, t = 1, . . . , T}.

Among the scenarios of Γ, we distinguish the ones called ex-

treme scenarios. Each extreme scenario S = (Dt)
T
t=0 belongs

to the set of scenarios defined by the following recurrence

formula:

Dt ∈

{

{D0,D0} if t = 0,

{max{Dt−1,Dt},Dt} if t = 1, . . . , T .
(3)

We will denoted by Γext, the set of extreme scenarios. Clearly,

Γext ⊆ Γ. The cumulative demand and the demand in period t
under scenario S are denoted by Dt(S), Dt(S) ∈ [Dt;Dt],
and dt(S), respectively, dt(S) = Dt(S) −Dt−1(S). Clearly,

for every S ∈ Γ it holds Dt−1(S) ≤ Dt(S), t = 1, . . . , T . The

function Ct(Xt,Dt(S)) = max{cI(Xt−Dt(S)), c
B(Dt(S)−

Xt)}, represents either the cost of storing inventory from

period t to period t + 1 or the cost of backordering quantity

from period t+ 1 to period t under scenario S. Now F (xxx, S)
denotes the total cost of a production plan xxx ∈ X under

scenario S, i.e. F (xxx, S) =
∑T

t=0 Ct(Xt,Dt(S)). The set

feasible production amounts X is the same as in Section II.

In order to choose a robust production plan, one of robust

criteria, called the min-max can be adopted (see, e.g. [10]).

In the min-max version of problem (1), we seek a feasible

production plan with the minimum the worst total cost over

all scenarios, that is

ROB : min
xxx∈X

A(xxx) = min
xxx∈X

max
S∈Γ

F (xxx, S)

= min
xxx∈X

max
S∈Γ

T
∑

t=0

Ct(Xt,Dt(S)).

In other words, we wish to find among all production plans the

one that minimizes the maximum production plan cost over all

scenarios, that minimizes A(xxx), A(xxx) is the maximal cost of

production plan xxx. An optimal solution xxxr to the problem ROB

is called optimal robust production plan.

Here and subsequently (as in Section II), we assume that

an initial inventory I and an initial backorder B are equal to

zero. Otherwise, one can modify the algorithms presented in

this section to cope with the case I > 0 or B > 0.

B. Evaluating a Given Production Plan

In this section, we will be concerned with evaluating a given

production plan. We will propose methods for computing the

optimal interval containing all possible values of costs of the

production plan.

Let xxx∗ ∈ X be a given production plan. A scenario So ∈
Γ that minimizes the total cost F (xxx∗, S) of the production

plan xxx∗ is called optimistic scenario. A scenario Sw ∈ Γ that

maximizes the total cost F (xxx∗, S) of the production plan xxx∗

is called the worst case scenario. Thus, the optimal interval

containing all possible values of costs of the production plan xxx∗

is of form: [F (xxx∗, So), F (xxx∗, Sw)]. We begin with a result on

function F (xxx∗, S) =
∑T

t=0 Ct(Xt,Dt(S)):
Proposition 1: Function F (xxx∗, S) is convex on Γ for any

fixed production plan xxx∗ ∈ X.

Proposition 1 follows by similar arguments as in [7], i.e.

function cI(X∗
t − Dt(S)) and cB(Dt(S) − X

∗
t ) are convex

on Γ and so max{cI(X∗
t − Dt(S)), c

B(Dt(S) − X
∗
t )} and

∑T

t=0 max{cI(X∗
t −Dt(S)), c

B(Dt(S)−X
∗
t )} are convex.

1) Computing an Optimistic Scenario: The problem of

determining an optimistic scenario So = (Do
t )

T
t=0 for a given

production plan xxx∗ ∈ X, i.e. the problem

F (xxx∗, So) = min
S∈Γ

F (xxx∗, S), (4)

can be formulated by a linear programming problem:

min

T
∑

t=0

(cIIt + cBBt)

s.t. Bt − It = Dt −X
∗
t , t = 0, . . . , T,

Dt−1 ≤ Dt, t = 1, . . . , T,
Dt ≤ Dt ≤ Dt, t = 0, . . . , T.
Bt, It ≥ 0, t = 0, . . . , T

(5)

If D
o
t , Bo

t and Iot is an optimal solution to (5), then So =
(Do

t )
T
t=0 is an optimistic scenario for xxx∗. Furthermore, since

cI , cb ≥ 0, either Iot > 0 or Bo
t > 0, which means that for So

storing from period t to t+1 and backordering from period t+1
to t are not performed simultaneously. However, determining



an optimistic scenario for xxx∗ can be improved to O(T ), since

one can give the explicit form of an optimistic scenario So =
(Do

t )
T
t=0 and thus an optimal solution to (5):

D
o
t =

⎧



⎨



⎩

Dt if X∗
t < Dt,

X
∗
t if Dt ≤ X

∗
t ≤ Dt, t = 0, . . . , T .

Dt if X∗
t > Dt,

(6)

The form (6) follows from inequalities: Dt−1 ≤ Dt, Dt−1 ≤
Dt, X

∗
t−1 ≤ X

∗
t , t = 1, . . . , T , and Proposition 1.

2) Computing a Worst Case Scenario: We now pass on

to the problem of computing a worst case scenario Sw =
(Dw

t )
T
t=0 for a given production plan xxx∗ ∈ X, i.e.

F (xxx∗, Sw) = max
S∈Γ

F (xxx∗, S). (7)

Problem (7) is more difficult than the one of computing an

optimistic scenario and thus a solution algorithm is much more

involved. The following proposition allows us to construct an

efficient algorithm for the problem under consideration:

Proposition 2: A worst case scenario Sw is an extreme one,

i.e. Sw ∈ Γext.

Proof: Proposition follows by the same method as [7].

Function F (xxx∗, S) attains its maximum in convex set Γ. An

easy computation shows that scenarios S ∈ Γext are the

vertices of Γ. From the above and Proposition 1, it follows

that F (xxx∗, S) attains the maximum value at a vertex of Γ (see,

e.g., [15]).

We now construct an algorithm for the problem (7), based

on a dynamic programming technique. Let Dt be the set of

feasible cumulative demand levels in period t, t = 0, . . . , T .

Namely Dt ∈ Dt if and only if Dt is the tth component

of an extreme scenario that belongs to the set generated by

formula (3) (Γext). Let Ct−1(Dt−1) be the maximal cost of

a given production plan xxx∗ over periods t, . . . , T , when the

cumulative demand level up to period t− 1 is equal to Dt−1,

Dt−1 ∈ Dt−1, Ct−1 : Dt−1 → ℝ≥0. Set D−1 = {0}. We see

at once that:

CT (DT ) = 0,DT ∈ DT , (8)

Ct−1(Dt−1) =max

⎧

⎨

⎩

Ct(X
∗
t ,Dt) + Ct(Dt)

Ct(X
∗
t ,max{Dt−1,Dt})+

+Ct(max{Dt−1,Dt})

⎫

⎬

⎭

Dt−1 ∈ Dt−1, t = T, . . . , 0. (9)

The maximal cost of production plan xxx∗ over period 0, . . . , T is

equal to C−1(0), C−1(0) = F (xxx∗, Sw), which is computed by

the backward recursion (8) and (9). Worst case scenario Sw =
(Dw

t )
T
t=0 for xxx∗ can be determined by a forward recursion

technique. It is sufficient to store for each Dt−1 ∈ Dt−1 the

value for which the maximum in (9) is attained, that is D
w
t is

either max{Dt−1,Dt} or Dt.

Let us analyze the running time of the dynamic program-

ming based algorithm. Building the sets of feasible cumula-

tive demand levels D0, . . . ,DT according to formula (3) and

computing F (xxx∗, Sw) by the backward recursion (8) and (9)

can be done in O(T ⋅ maxt=0,...,T ∣Dt∣). Determining Sw by

by a forward recursion takes O(T ). It is easy to check that

maxt=0,...,T ∣Dt∣ ≤ T + 2. Hence, the total running time of

the algorithm is O(T 2).

C. Computing an Optimal Robust Production Plan

In this section, we will propose algorithms for computing

an optimal robust production plan to problem ROB. We

will first construct an algorithm for problem ROB without

any additional restrictions on ROB. We will then put some

restrictions on ROB and obtain more efficient algorithms for

computing an optimal robust production plan.

1) Algorithm for the General Problem ROB: We now

give an iterative algorithm for the problem ROB based on

iterative adding constraints for min-max problems proposed

in [16]. Similar methods were developed for min-max regret

linear programming problems with an interval objective func-

tion [17], [18] and a production planning problem with interval

demands [7]. Let us perform a relaxation of the problem ROB

that consists in replacing a given cumulative demand scenario

set Γ with a discrete scenario set Γdis = {S1, . . . , SK},

Γdis ⊆ Γ:

RX-ROB: ẑ = min z
s.t. z ≥ F (xxx, Si) ∀Si ∈ Γdis,

xxx ∈ X,
(10)

where Si = (Di
t)

T
t=0, xxx = (xt)

T
t=0. Since Γdis ⊆ Γ, ẑ is a lower

bound on the maximal cost of an optimal robust production

plan xxxr to problem ROB, ẑ ≤ A(xxxr) = F (xxxr, Sw). Note that

the constraint v ≥ F (xxx, Si) called scenario cut, associated

with Si is not a linear constraint. Each scenario cut associated

with Si can be linearized by replacing it with the following

T+2 constraints and 2T+2 new decision variables (Bi
t and Iit ):

z ≥
T
∑

t=0

(cIIit + cBBi
t),

Bi
t − Iit = D

i
t −

t
∑

j=0

xj , t = 0, . . . , T,

Bi
t, I

i
t ≥ 0, t = 0, . . . , T.

(11)

Replacing each scenario cut z ≥ F (xxx, Si) by (11) in (10)

leads to the following linear program:

ẑ = min z

s.t. z ≥
T
∑

t=0

(cIIit + cBBi
t), ∀Si ∈ Γdis,

Bi
t − Iit = D

i
t −

t
∑

j=0

xj , t = 0, . . . , T , ∀Si ∈ Γdis,

Bi
t, I

i
t ≥ 0, t = 0, . . . , T , ∀Si ∈ Γdis,

xt = 0, t ∕= k ⋅ P , k = 0, . . . , N,
t = 0, . . . , T,

xt ≥ 0, t = 0, . . . , T.
(12)

The iterative algorithm for the problem ROB (Algorithm 1)

starts with zero lower bound LB = 0, a candidate x̂xx ∈ X

for an optimal solution for ROB (any solution in X) and



empty discrete scenario set, Γdis = ∅. At each iteration,

a worst case scenario Sw for x̂xx is determined by the dy-

namic programming algorithm presented in Section III-B2.

The value of A(x̂xx) = F (x̂xx, Sw) is an upper bound on A(xxxr),
A(xxxr) ≤ A(x̂xx). If a termination criterion is fulfilled (Step 3),

for a given precision ² > 0, then the algorithm stops with

production plan x̂xx being an approximation of an optimal robust

production plan xxxr. Otherwise the worst case scenario Sw is

added to Γdis, the scenario cut corresponding to Sw is appended

to problem RX-ROB or equivalently to linear programming

problem (12) . Next the updated linear programming prob-

lem (12) is solved to obtain a better candidate x̂xx for an optimal

robust production plan xxxr to problem ROB and new lower

bound LB = ẑ. Since set Γdis is updated during the course of

the algorithm, the computed values of lower bounds {ẑ} form

a nondecreasing sequence of their values. Then new iteration

is started.

Algorithm 1: Solving problem ROB.

Input: [D
t
,Dt, ], t = 0, . . . T , cI , cB , initial production

plan x̂xx ∈ X, a tolerance � > 0.
Output: A production plan, an approximation of an optimal

robust production plan, and its worst case scenario.
Step 0. i := 0, LB := 0, Γdis := ∅.
Step 1. xxxi := x̂xx.
Step 2. Compute a worst case scenario Sw for xxxi by the
dynamic programming algorithm presented in Section III-B2.
Step 3. Δ := F (xxxi, Sw)− LB. If LB > 1 then Δ := Δ/LB.
If Δ ≤ � then output xxxi, Sw and STOP.
Step 4. i := i+ 1, Si := Sw, Γdis := Γdis ∪ {Si} and append
scenario cut z ≥ F (xxx, Si) to problem RX-ROB.
Step 5. Compute an optimal solution (x̂xx, ẑ) to RX-ROB (linear
programming problem (12)), LB := ẑ, and go to Step 1.

Algorithm 1 terminates in a finite number of iterations for

any given ² > 0. In order to show this, the same reasoning

applies as those given in [19, Theorem 2.5], [16, Theorem 3]

and [7, Theorem 3]. It is worth pointing out that the running

time of each iteration highly depends on Step 2 and Step 5,

where a worst case scenario is computed and linear program-

ming problem (12) is solved. The running time of Step 2 is

O(T 2), linear program (12) (Step 5) can be solved by using

a specially-tuned method for this kind of problems [20] or by

some standard off-the-shelf LP solvers. Hence, each iteration

of Algorithm 1 can be done efficiently (in a polynomial time).

2) Algorithms for Special Cases of ROB: Consider the

problem ROB, when periodicity P = 1. In this case, we

can apply a method proposed in [7] for computing an optimal

robust production plan xxxr = (xr
t )

T
t=0:

X
r
t =

cBDt + cIDt

cB + cI
, t = 0, . . . , T. (13)

Set xr
0 = X

r
0 and xr

t = X
r
t −X

r
t−1 for t = 1, . . . , T .

Consider the problem ROB, when P > 1 (if P = 1 one can

use (13)) and the bounds of cumulative demand intervals are

such that Dt−1 ≤ Dt for every t = 1, . . . , T . According to the

above assumption, the set of cumulative demand scenarios Γ

has the form Γ = [D0,D0] × ⋅ ⋅ ⋅ × [DT ,DT ]. Now each

S = (Dt)
T
t=0 ∈ Γ has components such that Dt−1 ≤ Dt,

t = 1, . . . , T . Hence, and the periodicity in the problem ROB,

it follows that one can decompose the problem into N + 1
separate subproblems, that is:

xxxr = arg min
xxx∈X

max
S∈Γ

T
∑

t=0

Ct(Xt,Dt(S)) =

=

N−1
∑

k=0

min
Xk⋅P∈Xk

max
S∈Γk

(k+1)⋅P−1
∑

t=k⋅P

Ct(Xk⋅P ,Dt(S))

+ min
XN⋅P∈XN

max
S∈ΓN

CN ⋅P (XN ⋅P ,DN ⋅P (S)), (14)

where X k = [Dk⋅P ,Dk⋅P ] ∪ ⋅ ⋅ ⋅ ∪ [D(k+1)⋅P−1,D(k+1)⋅P−1],

Γk = [Dk⋅P ,Dk⋅P ] × ⋅ ⋅ ⋅ × [D(k+1)⋅P−1,D(k+1)⋅P−1], k =

0, . . . , N−1, XN = [DN ⋅P ,DN ⋅P ] and ΓN = [DN ⋅P ,DN ⋅P ];
Γ = Γ0 × ⋅ ⋅ ⋅ ×ΓN . Obviously, the above possible cumulative

production levels are nondecreasing sequence of their values,

X0 ≤ XP ≤ ⋅ ⋅ ⋅ ≤ XN ⋅P . Therefore, we need only to

solve the N +1 separate subproblems. The last subproblem is

trivial, i.e. an optimal cumulative production level Xr
N ⋅P can

be computed by formula:

X
r
N ⋅P =

cBDN ⋅P + cIDN ⋅P

cB + cI
. (15)

It remains to solve the subproblems for k = 0, . . . , N − 1, i.e.

min
Xk⋅P∈Xk

max
S∈Γk

(k+1)⋅P−1
∑

t=k⋅P

Ct(Xk⋅P ,Dt(S)). (16)

Consider the kth subproblem. Since Xt = Xk⋅P in period t,
t ∈ {k ⋅ P + 1, . . . , (k + 1) ⋅ P − 1}, worst case scenar-

ios Sw ∈ Γk for Xk⋅P belong to the set [Dk⋅P ,Dk⋅P ] ×
⋅ ⋅ ⋅ × [Dℎ−1,Dℎ−1] × [Dℎ,Dℎ] × [Dℎ+1,Dℎ+1] × ⋅ ⋅ ⋅ ×
[D(k+1)⋅P−1,D(k+1)⋅P−1] ⊆ Γk, assuming that Xk⋅P ∈
[Dℎ,Dℎ].

For each ℎ = k ⋅ P, . . . , (k + 1) ⋅ P − 1, we compute a

possible cumulative production level

X
ℎ
k⋅P =

cBDℎ + cIDℎ

cB + cI
∈ [Dℎ,Dℎ].

Note that for Xℎ
k⋅P equality Cℎ(X

ℎ
k⋅P ,Dℎ) = Cℎ(X

ℎ
k⋅P ,Dℎ)

holds and its worst case scenario has form

(Dk⋅P , . . . ,Dℎ−1,Dℎ, . . . ,D(k+1)⋅P−1). Thus, the worst

case cost for X
ℎ
k⋅P over the set of scenarios Γk, denoted by

Cℎ, is as follows:

Cℎ(Xℎ
k⋅P ) = max

S∈Γk

(k+1)⋅P−1
∑

t=k⋅P

Ct(X
ℎ
k⋅P ,Dt(S))

=

ℎ−1
∑

t=k⋅P

Ct(X
ℎ
k⋅P ,Dt) +

(k+1)⋅P−1
∑

t=ℎ

Ct(X
ℎ
k⋅P ,Dt).

We then determine an optimal cumulative production

level Xr
k⋅P for the kth subproblem (16) by formula:

X
r
k⋅P = arg min

ℎ∈{k⋅P,...,(k+1)⋅P−1}
Cℎ(Xℎ

k⋅P ). (17)



Using (15) and (17), one can easily compute an optimal robust

production plan xxxr. Thus, (14) can be solved in O(T ).

IV. CONCLUSION

In this paper, we have studied the possibility of integrating

the uncertainty into planning process. We have proposed effi-

cient algorithms for solving the production planning problem

using MRP process with the POQ rule under uncertain cu-

mulative demands, modeled by closed intervals, with the min-

max criterion. Namely, the algorithm based on iterative adding

constraints. It is worth pointing out that each iteration can done

in a polynomial time. Moreover, we have provided algorithms

for two special cases of the problem under consideration. The

first case corresponds to the Lot-For-Lot (L4L) rule. In the

second one the range of uncertainty is small compared to the

demand.

An interesting topic for further research is investigating

the production planning problem using MRP process under

uncertain cumulative demands, considered in this paper, with

other rules such as: Fixed Order Quantity (FOQ) and Minimal

Order Quantity (MOQ), and with production constraints.
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