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Abstract

A method based in the pseudo-harmonics method was developed to solve the fixed source

problem. The pseudo-harmonics method is based on the eigenfunctions associated with the

leakage and removal matrix operator of the neutron diffusion equation, which will be treated

here in three dimensions and two groups of energy. This matrix is built in this work through

the nodal discretization supplied by coarse mesh finite differences method (CMFDM).

CMFDM has as input data the average currents and the average fluxes in the faces of the

node, and the average flux in the node, previously obtained by the nodal expansion method.

The results obtained with the pseudo-harmonics procedure show good accuracy when com-

pared to the reference results of the source problem tested. Moreover, it is a method which

can be easily implemented to solve this type of problems.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The fixed source problem, or source problem for short, is usually represented by a

non-homogeneous linear system of equations. The solution of this system can be
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obtained by direct inversion of the coefficient matrix. This direct solution method is,

however, inefficient, since the system matrix is sparse and one usually solves the

problem by iterative methods or, alternatively, making use of the associated

(homogeneous) eigenvalue problem. Nodal methods for solving the steady-state neu-

tron diffusion eigenvalue equation are well established in nuclear reactor physics,
nowadays and they can also be used to obtain solutions of the source problem, since

it is reasonable to suppose that the solution can be expressed as an expansion in

eigenfunctions of the matrix operator of the linear system. In this context, we may

use as a basis the pseudo-harmonics of the system, which are defined as the eigen-

functions of the leakage plus removal operators of the problem.

In the development of perturbation theory applied to reactor physics problems,

the pseudo-harmonics method has emerged as a viable alternative to overcome some

difficulties appearing in the determination of the neutron flux in perturbative compu-
tations (Gomit et al., 1985; da Silva et al., 1988; de Abreu et al., 1989). Even though

this method originated from perturbative studies, it has also been successful for solv-

ing non perturbative problems, such as in the solution of fixed source problems with

importance functions or auxiliary functions (de Lima et al., 2004). One should also

note that this method has also been successfully applied in conjunction with coarse

mesh nodal methods (Claro and Alvim, 1991).

In the work of de Lima et al. (2004) the pseudo-harmonics method is successfully

applied together with the flux expansion method (FEM) to the solution of problems
involving auxiliary functions. However, due to FEM construction, the matrix that

determines the pseudo-harmonics includes the average surface fluxes in addition to

the nodal fluxes, thus introducing a greater number of variables to be determined.

In practice this amounts to calculating three eigenvectors for each node, in 2D cal-

culations, and four in the 3D case.

Among coarse mesh methods, the coarse mesh finite differences method

(CMFDM) is of interest to our work since, due to its structure, it is easy to construct

the leakage + removal matrix and, differently from FEM, it is not necessary to cal-
culate face averaged nodal fluxes. The CMFDM makes use of the results from the

nodal expansion method (NEM). In practice, we will use the NEM results and the

pseudo-harmonics generated via CMFDM only once, to solve a linear system for

any of the source problems described in this work.

In the next section, we present the CMFDM and how the continuity equation is

discretized by this method. In Section 3, we present solutions obtained with the pseu-

do-harmonics method. Section 4 shows the results obtained and finally in Section we

present the conclusions of this work.
2. Coarse mesh finite differences method

The coarse mesh finite differences here developed is based on the formulation pro-

posed by Aragones and Ahnert (1986) and in the work of Pereira et al. (2002), which

explored the fact that CMFDM maintains the general structure of the classical finite

difference method in order to obtain the mathematical adjoint fluxes.
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The method uses as input data the diffusion coefficient Di;j;k
g , the nodal face aver-

aged currents J i;j;k
gus , the face averaged nodal fluxes wi;j;k

gus (s = e,d) and the nodal

averaged fluxes /i;j;k
g , previously computed by the nodal expansion method (Martinez

et al., 1999).

According to this formulation, adopting the coarse mesh correction factors that
modify the finite differences fine mesh formulation, we can write the nodal face aver-

aged currents in the following way:

J i;j;k
gue ¼ � 2

aru
Di;j;k

g /i;j;k
g � wi;j;k

gue

� �
þ Ci;j;k

gue /i;j;k
g þ wi;j;k

gue

� �
ð1Þ

and

J i;j;k
gud ¼ � 2

aru
Di;j;k

g wi;j;k
gud � /i;j;k

g

� �
� Ci;j;k

gud /i;j;k
g þ wi;j;k

gud

� �
; ð2Þ

where Ci;j;k
gus are correction factors and aru is the node dimension in direction u, with

g = 1 and 2 representing energy groups, u = x, y, z the Cartesian coordinates,

s = e, d left and right node faces, i, j, k a generic node and

r �
i for u ¼ x;

j for u ¼ y;

k for u ¼ z.

8><
>:

According to Eqs. (1) and (2) and knowing J i;j;k
gus ; w

i;j;k
gus ; /

i;j;k
g ; Di;j;k

g and aru we can

determine the correction factors by

Ci;j;k
gue ¼

J i;j;k
gue þ 2

aru
Di;j;k

g /i;j;k
g � wi;j;k

gud

� �
/i;j;k

g þ wi;j;k
gue

ð3Þ

and

Ci;j;k
gud ¼

J i;j;k
gud � 2

aru
Di;j;k

g /i;j;k
g � wi;j;k

gud

� �
/i;j;k

g þ wi;j;k
gud

. ð4Þ

Using continuity of fluxes and currents at node interfaces, we can write, e.g., for

three consecutive nodes in x-direction

J i;j;k
gxe ¼ �Di;j;k

gxe /
i;j;k
g þ Di�1;j;k

gxd /i�1;j;k
g ð5Þ

and

J i;j;k
gxd ¼ Di;j;k

gxd /
i;j;k
g � Diþ1;j;k

gxe /iþ1;j;k
g ; ð6Þ

where

Di;j;k
gxe ¼

2 1
ai�1
x
Di�1;j;k

g þ 1
2
Ci�1;j;k

gxd

� �
1
aix
Di;j;k

g � 1
2
Ci;j;k

gxe

� �
1

ai�1
x
Di�1;j;k

g þ 1
2
Ci�1;j;k

gxd

� �
þ 1

aix
Di;j;k

g þ 1
2
Ci;j;k

gxe

� � ð7Þ

and
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Di;j;k
gxe ¼

2 1
aix
Di;j;k

g � 1
2
Ci;j;k

gxd

� �
1

aiþ1
x
Diþ1;j;k

g þ 1
2
Ciþ1;j;k

gxe

� �
1
aix
Di;j;k

g þ 1
2
Ci;j;k

gxd

� �
þ 1

aiþ1
x
Diþ1;j;k

g þ 1
2
Ciþ1;j;k

gxe

� � . ð8Þ

Analogously, we can determine the average currents and the diffusion coefficients

at node faces, for directions y and z.

Considering the 3D neutron continuity equation, discretized with the NEM pro-

cedure, with two energy groups

X
u¼x;y;z

1

aru
J i;j;k
gud � J i;j;k

gue

� �
þ
Xi;j;k
Rg

/i;j;k
g ¼ 1

Keff

vg
X2

g0¼1

m
Xi;j;k
fg0

/i;j;k
g0 þ

X2

g0¼1
g0¼g

Xi;j;k
gg0

/i;j;k
g0 ;

ð9Þ
where

Pi;j;k
Rg ; m

Pi;j;k
fg0 and

Pi;j;k
gg0 are, respectively, node averaged microscopic cross sec-

tions for removal, fission and scattering.
Using Eqs. (5) and (6) and their analogous in y and z in Eq. (9), we have

� 1

akz
Di;j;k�1

gzd /i;j;k�1
g � 1

ajy
Di;j�1;k

gyd /i;j�1;k
g � 1

aix
Di�1;j;k

gxd /i�1;j;k
g

þ
X

u¼x;y;z

1

aru
Di;j;k

gue þ Di;j;k
gud

� �
/i;j;k

g � 1

aix
Diþ1;j;k

gxe /iþ1;j;k
g

� 1

ajy
Di;jþ1;k

gye /i;jþ1;k
g � 1

akz
Di;j;kþ1

gze /i;j;kþ1
g

¼ 1

Keff

vg
X2

g0¼1

m
Xi;j;k
fg0

/i;j;k
g0 þ

X2

g0¼1
g0¼g

Xi;j;k
gg0

/i;j;k
g0 . ð10Þ

Putting Eq. (10), as explained in Fig. 1, in matrix form one has

� Bn;q/
i;j;k�1
g � Bn;t/

i;j�1;k
g � Bn;p/

i�1;j;k
g � Bn;n/

i;j;k
g

� Bn;a/
iþ1;j;k
g � Bn;b/

i;jþ1;k
g � Bn;c/

i;j;kþ1
g ¼ 1

Keff

F i;j;k/i;j;k
g0 þ Si;j;k/i;j;k

g0 ;
ð11Þ
Fig. 1. Generic node and neighbors in directions x, y, z.
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where

F i;j;k �
v1m

Pi;j;k
f 1

v1m
Pi;j;k
f 2

v2m
Pi;j;k
f 1

v2m
Pi;j;k
f 2

2
6664

3
7775;

Si;j;k �
0

Pi;j;k
12Pi;j;k

21

0

2
6664

3
7775;

Bn;m �
b1l;m 0

0 b2l;m

" #
;

Bn;n �
b1n;n 0

0 b2n;n

" #

with

bgn;n �
Xi;j;k
Rg

þ
X
u¼x;y;z

1

aru
Di;j;k

gue � Di;j;k
gud

� �
;

and with n representing node i, j, k and m being its left (p) ou right (a) neighbor, in
direction x, in front (t) or behind (b), in direction y, and below (q) or above (c), in
direction z. For the left neighbor one has

bgn;m � 1

aix
Di�1;j;k

gxd .

By convenience, we can put Eq. (11) in block-heptadiagonal matrix form

B½ �U
�
¼ S½ �U

�
þ 1

Keff

F½ �U
�

ð12Þ

with

U
�
�

/
�1

/
�2

0
B@

1
CA; /

�g

�

/i;j;k�1
g

/i;j�1;k
g

/i�1;j;k
g

/i;j;k
g

/iþ1;j;k
g

/i;jþ1;k
g

/i;j;kþ1
g

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; ðg ¼ 1; 2Þ;



Z.R. de Lima et al. / Annals of Nuclear Energy 32 (2005) 1366–1376 1371
B½ � �
B1 0

0 B2

� �
;

where

Bg�

bg1;1 bg1;2 bg1;n bg1;N�1

bg2;1 bg2;2 bg2;3 bg2;nþ1 bg2;N

bg3;2 bg3;3
. .
. . .

.

. .
. . .

.
bgn�1;n bgn�1;N�1

bgn;1
. .
.

bgn;n
. .
.

bgn;N

bgnþ1;2 bgnþ1;n
. .
. . .

.

. .
. . .

.
bgN�2;N�2 bgN�2;N�1

bgN�1;1 bgN�1;n�1 bgN�1;N�2 bgN�1;N�1 bgN�1;N

bgN ;1 bgN ;n bgN ;N�1 bgN ;N

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

; ðg¼1;2Þ

with N being the total number of nodes. The scattering and fission matrices are,

respectively

½S� �
0 S1

S2 0

� �
and ½F � �

F 11 F 12

F 21 F 22

� �

with block-diagonal elements of dimension N · N.
3. Pseudo-harmonic expansions

To solve a linear system of the form

½B�S U
�
¼ Q

�
; ð13Þ

where [B]S is the symmetrical part of matrix ½B� and Q
�
represents any source matrix,

we can, alternatively, use eigenfunctions expansions. In this work, we will use as

eigenfunctions the pseudo-harmonics, which are the eigenfunctions generated by

the operator representing leakage + removal for the g energy group (matrix

½Bs
g�; g ¼ 1; 2).
A characteristic of the pseudo-harmonics method is that the eigenfunctions are

obtained for each group, via uncoupled equations. Assuming that the solution to
Eq. (13) is given by the expansion

U
�
¼

/
�1

/
�2

2
64

3
75 ¼

XN
i¼1

ci;1
x
�1;i

0
�

2
4

3
5þ ci;2

0
�
x
�2;i

" #0
@

1
A; ð14Þ



1372 Z.R. de Lima et al. / Annals of Nuclear Energy 32 (2005) 1366–1376
where x
�g;j

are eigenfunctions of the following eigenvalue problem:

BS
g

h i
x
�g;j

¼ kg;j x�g;j
ð15Þ

and substituting Eq. (14) into Eq. (13) and using Eq. (15), one has

½BS�U
�
¼

XN
i¼1

ci;1
k1;i x�1;i

0
�

2
4

3
5þ ci;2

0
�

k2;i x�2;i

2
4

3
5

0
@

1
A ¼

Q
�1

Q
�2

2
64

3
75. ð16Þ

Since the pseudo-harmonics form an orthogonal set, due to the symmetry of matrix
½BS

g �, that is

x
T

�g;j
x
�g;i

� �
¼ 0 for j 6¼ i;

we can multiply Eq. (16) by x
T

�g;j
and integrate the resulting equation to obtain the

expansion coefficients (14) and consequently the solution of system (13)

ci;l ¼
x
T

�g;i
Q
�g

* +

kl;i x
T

�g;i
x
�g;i

� � ; g ¼ 1; 2.

To obtain eigenvalues and eigenfunctions for this method we have made use of the

well-known Jacobi method.

We have verified that matrix [B], representing leakage + removal, in the LHS of

Eq. (10), is slightly unsymmetrical. Since the method of pseudo-harmonics requires

that the eingenfunctions be calculated from a symmetric matrix, one has to obtain its

symmetric part, by writing [B] as the sum of a symmetric and an anti-symmetric ma-

trix, as shown below

½B� ¼ ½B�S þ ½B�A; ð17Þ
Fig. 2. Quarter-core symmetry for IAEA-3D reactor.
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where

½B�S � ½B� þ ½B�T

2

and
Fig. 3. IAEA-3D reactor core.
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½B�A � ½B� � ½B�T

2
.

Substituting Eq. (17) into Eq. (12), one has

½B�S U
�
¼ S½ �U

�
þ 1

Keff

F½ �U
�
�½B�A U

�

or

½B�S U
�
¼ Q

�
; ð18Þ
Table 1

Multigroup nuclear constants

Type g Dg

P
ag m

P
fg

P
gg0

1 1 1.5 0.01 0.0 0.02

2 0.4 0.08 0.135 0.0

2 1 1.5 0.01 0.0 0.02

2 0.4 0.085 0.135 0.0

3 1 1.5 0.01 0.0 0.02

2 0.4 0.13 0.135 0.0

4 1 2.0 0.0 0.0 0.04

2 0.3 0.01 0.0 0.0

5 1 2.0 0.0 0.0 0.04

2 0.3 0.055 0.0 0.0

Fig. 4. Relative error at row containing node 148.
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where

½B�S � BS
1 0

0 BS
2

" #

and

Q
�
� ½S� U

�dir

þ 1

Keff

½F � U
�dir

�½B�A U
�dir

; ð19Þ

where the flux U
�dir

is the solution of Eq. (12), directly obtained by the CMFD method.
4. Results

The system described by Eq. (18), with the source term given by Eq. (19) was used to

test the expansion in pseudo-harmonics to solve source problems. Let us consider as

reference vectors the average nodal fluxes obtained with CMFDM. In our test we used

the IAEA-3D problem, with 1/4 symmetry, with two groups of energy. Fig. 2 shows
this symmetry in a xy plane of the reactor core. Fig. 3 shows a xz plane with the control

bank positions (BBC) and also the boundary and continuity conditions used.

The nuclear constants for two energy groups are shown in Table 1, where we made

the following description: Types 1 and 2 represent fuel without BBC, Type 3 fuel with

BBC, Type 4 superior, inferior and side reflectors without BBC and Type 5 superior

reflector with BBC. For the fission spectrum we have adopted v1 = 1.0 and v2 = 0.0.

Using this pseudo-harmonics method the results of the linear system given by Eq.

(14) were practically the same as the reference values calculated by CMFD. The larg-
est relative error was of approximately 10�5%, in node number 148, in the thermal

group. Fig. 4 shows the relative error in the line that contains the referred node.
5. Conclusions

The results obtained with the pseudo-harmonics procedure show good accuracy

when compared to the reference results of the source problem tested. Besides that,
it is a method that can be easily implemented to solve this type of problems. In prac-

tical terms, it is possible to construct a coarse mesh finite differences method, aiming

only at getting the leakage + removal matrix, which is the one needed for the pseudo-

harmonics method. In this work, although the CMFDM has been adapted to obtain

only the leakage + removal matrix, it retained its original purpose of calculating keff,

the average nodal fluxes and the mathematical adjoint fluxes and the average nodal

fluxes obtained with it were considered the reference values for the source problem

treated.
In view of the good performance shown here for the pseudo-harmonics method,

one has to consider its application to source problems in Reactor Physics and not

necessarily only to perturbative problems.
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