
Towards On-The-Fly Image Processing

Alexander Jungmann

Dissertation
in Computer Science

submitted to the

Faculty of Electrical Engineering,
Computer Science, and Mathematics

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium
(Dr. rer. nat.)

Paderborn, 2016

Supervisors:
Prof. Dr. Franz-Josef Rammig, Paderborn University
Prof. Dr. Eyke Hüllermeier, Paderborn University

ii

Abstract

Image Processing is fundamental for any camera-based vision system. In order
to support the development process of image processing applications, functional
prototypes can be realized in advance. Since the entire prototyping process includ-
ing among others design, realization, functional tests, and evaluation is usually
very time-consuming, automating the process to some extend is highly desirable.
On-The-Fly Computing, in turn, provides techniques for specifying, composing,
executing, and rating functionality. Software components are modeled as ser-
vices, which encapsulate distinct functionality and can be flexibly combined with
each other. The very basic idea of this thesis is to adopt On-The-Fly Computing
techniques as foundation for a holistic approach that allows for automated gen-
eration of task-specific image processing applications, e.g., for rapid prototyping
purposes. We refer to this combination of On-The-Fly Computing and Image
Processing as On-The- Fly Image Processing.
Throughout this thesis, we gradually develop a holistic, adaptive approach and
present concepts for specification, composition, recommendation, execution, and
rating of image processing functionality. Image processing applications are re-
alized according to Service-oriented Computing design principles, i.e., distinct
image processing functionality is encapsulated in terms of stateless, autonomous
services. The proposed specification formalism incorporates a variant of first-
order logic and grounds on domain knowledge provided in terms of ontologies.
Complex image processing functionality is defined by the data-flow between in-
put and output ports of services and modeled based on a Petri-net formalism.
To automatically compose complex image processing functionality, we present
a flexible, Artificial Intelligence planning-based forward search approach, and a
multi-step discovery mechanism that gradually reduces valid candidate services
for single composition steps. Decision-making between alternative composition
steps is supported by a learning recommendation system, which keeps track of
valid composition steps by automatically constructing a composition grammar.
In addition, it adapts to solutions of high quality by means of feedback-based
Reinforcement Learning techniques.
For distributed execution of composed services, we propose a message-based
Service-oriented Architecture. Since messages include all necessary information,
a central controller is not required. Rating mechanisms automatically evaluate
the functionality of composed solutions by comparing execution results with de-
sired results, e.g., given in terms of ground truth data. Rating results are used
as feedback values for the learning recommendation system. Three concrete use
cases with different characteristics are used for motivating and illustrating our
proposed concepts. Furthermore, in combination with a prototypical realization,
they serve as proofs of concept and demonstrate the feasibility of our holistic
approach.

iii

Zusammenfassung

Bildverarbeitung ist ein grundlegender Bestandteil jedes Kamera-basierten Sys-
tems. Um die Entwicklung von Bildverarbeitungsanwendungen zu unterstützen,
können funktionale Prototypen vorab realisiert werden. Eine automatisierte
Prototypenentwicklung unter Einbeziehung von Entwurf, Umsetzung, Test und
Evaluierung vermag den gesamten Entwicklungsprozess weiter zu beschleunigen.
On-The-Fly Computing bietet diesbezüglich allgemeine Techniken zur Spezifika-
tion, Komposition, Ausführung und Bewertung von Funktionalität. Softwarekom-
ponenten werden als Services modelliert und können flexibel miteinander kom-
biniert werden. Die Grundidee dieser Arbeit ist daher, On-The-Fly Computing
Techniken als Fundament für einen ganzheitlichen Ansatz zu nutzen und eine au-
tomatische Generierung von Bildverarbeitungsanwendungen zu ermöglichen. Wir
bezeichnen diese Kombination aus On-The-Fly Computing und Bildverarbeitung
als On-The-Fly Image Processing.
In dieser Arbeit werden Konzepte zur Spezifikation, Komposition, Empfehlung,
Ausführung und Bewertung von Bildverarbeitungsfunktionalität vorgestellt, und
sukzessive ein ganzheitlicher, adaptiver Ansatz entwickelt. Analog zu Ser-
vice -oriented Computing Gestaltungsgrundsätzen werden einzelne Bildverar-
beitungsalgorithmen als zustandslose, autonome Services realisiert und spezi-
fiziert. Der vorgeschlagene Spezifikationsansatz basiert auf einer Variante von
Prädikatenlogik. Domänenwissen wird in Form von Ontologien bereitgestellt.
Komplexe Bildverarbeitungsfunktionalität wird anhand des Datenflusses zwis-
chen Services definiert und mittels Petri-Netze beschrieben. Eine automatisierte
Komposition komplexer Funktionalität wird durch eine flexible Vorwärtssuche er-
möglicht. Ein mehrstufiges Verfahren identifiziert und reduziert schrittweise die
Menge der Service Kandidaten für einzelne Kompositionsschritte. Die Entschei-
dungsfindung zwischen alternativen Kompositionsschritten wird durch ein ler-
nendes Empfehlungssystem unterstützt, welches gültige Kompositionsschritte
in Form einer Kompositionsgrammatik verwaltet. Um qualitativ hochwertige
Lösungen zu identifizieren, wird darüber hinaus die Empfehlungsstrategie des
Empfehlungssystems durch den Einsatz von Reinforcement Learning Techniken
über die Zeit angepasst.
Für die verteilte Ausführung komponierter Services wird eine Nachrichten-basierte
Service-orientierte Architektur vorgestellt. Nachrichten enthalten sämtliche Infor-
mationen und machen eine zentrale Kontrollinstanz überflüssig. Bewertungsver-
fahren beurteilen die Funktionalität von komponierten Services anhand konkreter
Ausführungsergebnisse. Bewertungswerte fließen anschließend als Feedback in
das lernende Empfehlungssystem ein. Konkrete Anwendungsfälle aus drei ver-
schiedenen Problemdomänen dienen zur Veranschaulichung der vorgeschlagenen
Konzepte. In Kombination mit einer prototypischen Umsetzung demonstrieren
sie zudem die Machbarkeit unseres ganzheitlichen, adaptiven Ansatzes.

iv

Contents

1 Introduction 1
1.1 On-The-Fly Image Processing . 2
1.2 Objectives . 3
1.3 Outline and Contributions . 3

2 Preliminaries 7
2.1 Introduction to Image Processing 7

2.1.1 Image Manipulation vs. Image Processing 8
2.1.2 Fundamental Steps in Image Processing 9
2.1.3 Real-world Application Scenario 11
2.1.4 Developing Image Processing Solutions 15

2.2 Introduction to On-The-Fly Computing 17
2.2.1 Principles of Service-Orientation 17
2.2.2 Service-Oriented Computing 19
2.2.3 The On-The-Fly Computing Concept 20
2.2.4 On-The-Fly Composition Process 22

2.3 On-The-Fly Image Processing . 25
2.3.1 Principles of Service-oriented Image Processing 25
2.3.2 Fundamental Challenges 28
2.3.3 Adaptivity by Feedback-based Learning 32

2.4 Related Work . 35

3 Use Cases 39
3.1 Data-Flow and Control-Flow . 39

3.1.1 Data-Flow Graphs as Execution Model 40
3.1.2 Elementary Net Systems based on Petri Nets 43
3.1.3 Three Classes of Composed Solutions 47

3.2 Thumbnails for an Online Photo Gallery 49
3.2.1 Required Functionality . 50
3.2.2 Characteristics . 51

3.3 Color-based Segmentation . 51
3.3.1 Concrete Context . 51
3.3.2 Required Functionality . 53
3.3.3 Characteristics . 54

3.4 Motion-based Object Detection 54
3.4.1 Concrete Context . 55

v

Contents

3.4.2 Required Functionality . 57
3.4.3 Characteristics . 58

3.5 Summary . 59

4 Symbolic Service Composition 61
4.1 Knowledge-based Specifications 63

4.1.1 Body of Knowledge . 63
4.1.2 Service and Request Specification 70
4.1.3 Specification Example: Thumbnails 73
4.1.4 Specification Example: Segmentation 76

4.2 Planning-based Service Composition 79
4.2.1 Composed Services . 80
4.2.2 Body of Rules . 81
4.2.3 Formal Framework . 83
4.2.4 Composition Algorithm . 90
4.2.5 Composition Example: Thumbnails 96

4.3 Shortcomings and Extensions . 100
4.3.1 Exponentially Growing Solution Space 101
4.3.2 Incorrect Task Definitions 104
4.3.3 Superfluous Search Paths and Services 106
4.3.4 Discarding Properties of Visual Data 111
4.3.5 Outlook: Necessity for Learning 116

4.4 Evaluation . 117
4.4.1 Prototypical Implementation 117
4.4.2 Concrete Composition Problem 118
4.4.3 Search Space and Solution Space 120
4.4.4 Time to Solution . 123
4.4.5 Conclusion . 126

4.5 Related Work . 127

5 Execution and Rating 135
5.1 Service-oriented Architecture for Execution 136

5.1.1 Key Concepts and Building Blocks 136
5.1.2 Integration into OTF Image Processing 140

5.2 Problem Domain specific Rating Processes 141
5.2.1 Preliminary Considerations 142
5.2.2 Segmentation Use Case . 144
5.2.3 Object Detection Use Case 153

5.3 Evaluation . 165
5.3.1 Segmentation of Color Palette 165
5.3.2 Motion-based Robot Detection 170
5.3.3 Motion-based Ball Detection 174
5.3.4 Conclusion . 176

vi

Contents

6 Adaptive Service Composition 179
6.1 Learning Recommendation System 180

6.1.1 Reinforcement Learning 181
6.1.2 Recommendation Model 184
6.1.3 Learning Process . 191

6.2 Combining Composition and Recommendation 195
6.2.1 Overview and Interactions 196
6.2.2 Update Step . 197
6.2.3 Evaluation Step . 205
6.2.4 Modified Search Node Selection 209
6.2.5 Episode Finalization . 212

6.3 Evaluation . 213
6.3.1 Segmentation of Color Palette 214
6.3.2 Motion-based Robot Detection 218
6.3.3 Motion-based Ball Detection 223
6.3.4 Conclusion . 227

6.4 Related Work . 228

7 Conclusion and Outlook 233
7.1 Future Work . 235

List of Figures 237

List of Tables 245

List of Algorithms 247

Own Publications 249

Bibliography 253

vii

1 Introduction

Image Processing is fundamental for any camera-based vision system that aims
for extracting scene-data from images for autonomous, machine-based percep-
tion [25]; be it advanced driver assistance systems or even autonomous driving
in the automotive domain, quality inspection or general process automation in
manufacturing industry, or augmented reality scenarios, where images of the en-
vironment are analyzed and augmented by additional information. The function-
ality of image processing applications, however, heavily depends on the concrete
task and has to be optimized according to the underlying conditions. In order
to support the development process, functional prototypes can be realized, ana-
lyzed, and revised in advance. By doing so, developers can focus on the desired
functionality, while determining at an early stage, if and how the underlying im-
age processing task can be solved in the first place. Since the entire prototyping
process including design, realization, functional tests, and evaluation is usually
very time-consuming, automating the process to some extend is highly desirable.

On-The-Fly (OTF) Computing, in turn, provides techniques for specifying,
composing, executing, and rating functionality [26]. Software components are
modeled as services, which encapsulate distinct functionality and can be flexibly
combined with each other. Composed services are executed in a distributed man-
ner. In fact, OTF Computing consequently carries on Service-oriented Computing
(SOC) principles such as the automated composition of service-based applica-
tions [27]. In the long run, OTF Computing aims for automated composition of
customized software solutions based on services that are traded on dynamic mar-
kets and can be flexibly combined. While not considering economical aspects, the
very basic idea of this thesis is to use OTF Computing techniques as foundation
for a holistic approach that allows for automated generation of task-specific image
processing applications, e.g., for rapid prototyping purposes [1]. We refer to this
combination of OTF Computing and Image Processing as OTF Image Processing.

1

1 Introduction

1.1 On-The-Fly Image Processing

The starting point for OTF Image Processing is to interpret image processing
algorithms as services; that is, to design image processing services based on ex-
isting algorithms while adhering to common SOC design principles [28]. In or-
der to automatically generate service-based image processing applications, OTF
Computing techniques shall be applied. In our opinion, both domains benefit
from this connection. On the one hand, interpreting image processing algorithms
as services and automatically composing image processing services according to
the OTF Computing paradigm constitutes both a sound and promising starting
point for automatically composing image processing applications in general. On
the other hand, concrete examples from the image processing domain enable us
to investigate and clarify open challenges in the OTF Computing domain (and in
the SOC domain in general) as well as to develop and evaluate new methods in
order to meet these challenges.

From the image processing perspective, we investigate to what extent service
composition techniques facilitate automatic composition of image processing func-
tionality and how to overcome possible shortcomings. In doing so, we obtain new
insights in a domain with specific characteristics. This, in turn, enables us to
come up with more specialized concepts. These concepts can then be generalized
and transferred back to the SOC domain in the long run.

From the SOC perspective, the characteristics of the image processing domain
such as

� high variability of existing services in terms of traditional algorithms,

� demand for composed services providing task-specific functionality,

� availability of executable implementations provided by open source libraries,

� inherent vividness for motivating new challenges and new concepts,

enable us to realize examples of highly practical relevance, while the complexity of
those examples can be gradually increased. In our experience, increased practical
relevance has a highly positive impact on the awareness and acceptance of SOC
techniques in general.

2

1.2 Objectives

1.2 Objectives

In the most general sense, the objective of this thesis is to gradually develop a
holistic yet flexible approach that facilitates automatic composition and execution
of image processing functionality. More concretely, the intended approach shall
provide means for solving the following tasks:

1. Manual specification of image processing functionality, both for available
functionality in terms of services and required functionality in terms of
requests.

2. Automatic composition of complex image processing functionality based on
available services and according to a specified request.

3. Automatic and distributed execution of composed, service-based image pro-
cessing functionality.

4. Automatic rating of composed services in order to estimate the discrepancy
between required functionality and concrete functionality (i.e., the function-
ality when processing task-specific input data).

5. Incorporation of rating results as feedback into the composition process in
order to adapt decision-making and reduce functional discrepancy over time.

The entire approach shall ground on a sound formal basis that facilitates fu-
ture extensions and modifications. For evaluation, a prototypical implementation
combined with different application scenarios shall serve as proof of concept.

1.3 Outline and Contributions

Let us briefly summarize each of the upcoming chapters with respect to content
and contributions.

Chapter 2: Preliminaries

Section 2.1 introduces Image Processing in more detail. It also covers relevant
parts of our previous work in this domain. Section 2.2 focuses on the SOC
paradigm in general, and – according to our previous work – OTF Computing in

3

1 Introduction

particular. The result of this section is a fundamental OTF Computing frame-
work, which serves as guideline for the work at hand. Section 2.3 finally presents
our novel idea of OTF Image Processing in more detail and sets the stage for
all subsequent chapters. This section particularly emphasizes the necessity for
Machine Learning techniques in order to achieve a composition process, which
is not only automated, but adaptive as well. Section 2.4 discusses work that is
related to automated generation of image processing solutions.

Chapter 3: Use Cases

In Section 3.1, we describe our Petri-net based approach for modeling data-flow
of services and composed services. In fact, when talking about composed image
processing functionality, we always refer to data-flow nets, which define image
processing functionality in terms of data-flow between service ports. Section 3.2 -
Section 3.4 subsequently introduce three concrete use cases that are derived from
our previous work and accompany us throughout this thesis. Each use case defines
a different composition task, as summarized in Section 3.5. Developing new image
processing applications, however, is beyond the scope of this thesis.

Chapter 4: Symbolic Service Composition

Section 4.1 presents our knowledge-based approach for flexibly specifying image
processing functionality in terms of input and output data as well as image pro-
cessing tasks. The specification approach bases on ontologies for modeling domain
knowledge, and incorporates a variant of first-order logic for the actual specifi-
cation formalism. Please note that, although the specification approach actually
allows for specifying image processing functionality on different levels of abstrac-
tion, we mainly focus on the lowest level in the subsequent sections and chapters.

Section 4.2 introduces our composition approach that realizes a planning-based
forward search algorithm as well as a multi-step service discovery mechanism in
order to compose image processing functionality based on service and request
specifications. Section 4.3 points out remaining shortcomings of the composition
approach. Furthermore, it proposes modifications that are either optional or
mandatory in order to solve the composition tasks defined by our use cases. One
of the use cases is subsequently used in Section 4.4 as concrete application scenario
for evaluating the heretofore introduced composition approach. Section 4.5 finally

4

1.3 Outline and Contributions

discusses work that is related to automatic service composition.

Chapter 5: Execution and Rating

Section 5.1 describes our service-oriented architecture for execution of composed
services. In our previous work, it was successfully applied in a robotics context
for outsourcing computationally expensive functionality. It is perfectly suited
for automated execution of composed image processing functionality, and can be
easily integrated into the overall framework.

Section 5.2 introduces use case specific rating mechanisms for automatically
quantifying the discrepancy between required functionality and concrete function-
ality given concrete execution results and – among others – pre-defined ground
truth data. The rating mechanisms are subsequently evaluated in Section 5.3.

Chapter 6: Adaptive Service Composition

Section 6.1 introduces our so called learning recommendation system, which – in
combination with the composition algorithm – facilitates adaptive service compo-
sition. By automatically constructing and maintaining a composition grammar,
the recommendation systems keeps track of valid composition steps identified by
the composition algorithm. To achieve adaptivity, the sequential selection of valid
composition steps is modeled as Markov Decision Process and tackled by Rein-
forcement Learning techniques. Feedback is provided by the previously mentioned
rating mechanisms.

Section 6.2 describes the message-based interaction of composition algorithm
and learning recommendation system, as well as necessary adjustments to be
made to the composition algorithm. The entire approach including composition,
execution, rating, and learning is subsequently evaluated in Section 6.3. In this
context, please note that optimizing the learning behavior of the applied learning
techniques or developing new learning techniques is beyond the scope of the work.
Section 6.4 finally discusses work that is related to adaptive service composition.

Chapter 7: Conclusion and Outlook

Chapter 7 concludes the work at hand and summarizes major loose ends, which
– in our opinion – represent the most reasonable starting points for future work.

5

2 Preliminaries

This chapter serves as an informal introduction of the fundamental scope of this
thesis, motivates the idea of On-The-Fly Image Processing in more detail, and
serves as basis for all following chapters. Section 2.1 gives a general introduction
to Image Processing and motivates the automated generation of image processing
applications. Section 2.2 introduces On-The-Fly Computing and its relationship
to Service-oriented Computing. Furthermore, it derives a basic framework for all
following considerations. Finally, Section 2.3 explicitly connects Image Processing
with On-The-Fly Computing, motivates the benefits of this connection from both
the Image Processing perspective and the On-The-Fly Computing perspective,
and sets the stage for the remainder of this work.

2.1 Introduction to Image Processing

Image Processing addresses two principal applications areas: improvement of
visual information for human interpretation (also referred to as image manip-
ulation), and extraction of scene data for autonomous, machine-based percep-
tion [25]. In the most general sense, both application areas usually incorporate
multiple data processing steps. A single processing step can be applied, e.g., to
produce a modified version of an image (e.g., by scaling or color adjustments),
or to extract task-specific information from an image. In any case, the starting
point for any image processing application are images such as photos, or frames
from videos and live camera streams, respectively.

In this context, an image I corresponds to a two-dimensional, ordered matrix
of integers [29]. More formally, an image I is a two-dimensional function of integer
coordinates N× N, mapping to a range of possible (pixel) values P, such that

I(u,w) ∈ P and u,w ∈ N.

7

2 Preliminaries

The size of an image is determined by its width M (number of columns) and its
height N (number of rows). For addressing a pixel P ∈ P at position (u,w) with
u ∈ [0,M − 1] and w ∈ [0, N − 1], the following coordinate system is imposed:
The origin (0, 0) lies in the upper left corner, the x-axis runs from left to right,
and the y-axis runs from top to bottom.

The information embedded in a pixel depends on both the data type used to
represent it and the type of the image itself. For example, a grayscale image
consists of a single channel, which represents the intensity of the image and typi-
cally uses 8 bits per pixel value, where 0 corresponds to the minimum brightness
(black) and 255 corresponds to the maximum brightness (white). An image in
RGB format, in turn, consists of three channels (red, green, blue) to encode color
information. Each of the channels makes use of 8 bits, resulting in 3×8 = 24 bits
to encode the color information of a single pixel.

2.1.1 Image Manipulation vs. Image Processing

Software for imaging has been targeted at either manipulating or processing im-
ages, either for practitioners and designers (henceforth referred to as users) or
software programmers (henceforth referred to as developers), with quite differ-
ent requirements. Monolithic software packages for manipulating images, such as
Adobe Photoshop, Corel Photo-Paint and GIMP, usually offer a convenient user
interface and a large number of readily available functions and tools for working
with images interactively.

In contrast, image processing software primarily aims at the requirements of
algorithm and software developers working with images, where interactivity and
ease of use are originally not the main concerns. Instead, these environments
mostly offer comprehensive and well-documented software libraries that facilitate
the implementation of new image processing algorithms, prototypes and working
applications. Popular examples are OpenCV [30], ImageMagick [31], and the
Image Processing Toolbox from MatLab [32].

In practice, however, image manipulation and image processing are closely re-
lated. On the one hand, although Photoshop, for example, is aimed at image ma-
nipulation by non-programmers, the software itself implements many traditional
image processing algorithms. On the other hand, many of the effects achieved by
monolithic software packages can also be achieved by exploiting existing software
libraries and implementing appropriate image processing algorithms. In fact, im-

8

2.1 Introduction to Image Processing

age processing is at the base of any image manipulation software by providing the
building blocks in terms of algorithms.

2.1.2 Fundamental Steps in Image Processing

Software solutions for performing specific image processing tasks highly depend
on the task-specific problem domain. The fundamental steps, however, are usually
very similar. Based on the work of Gonzales and Woods [25], we classify these
steps as follows:

1. Image Acquisition: The very first step is responsible for acquiring an
image and providing it to the subsequent steps. For example, an image can
be obtained by loading the content of a single image file, by extracting the
next frame from a video file, or by grabbing a frame from a camera. We
refer to an acquired image that was not modified at all as original image.

2. Preprocessing: In the most general sense, the preprocessing step is re-
sponsible for improving the original image in order to increase the chances
for success of the subsequent steps. That is, acquisition defects such as
compression artefacts, image noise, or lense distortion are reduced. For ex-
ample, preprocessing may involve contrast enhancement or noise reduction.
As output, the preprocessing step provides a modified version of the original
image. We generally refer to this image as preprocessed image.

3. Segmentation: Roughly speaking, the segmentation step reduces the vi-
sual information embedded in an image to the actually relevant information
by partitioning an image into its constituent parts or visual primitives such
as points, lines, contours, or areas [33]. The type of visual primitives to be
identified as well as the level to which the subdivision of the image is car-
ried depends on the problem to be solved. The output of this step usually
is raw pixel data, constituting, e.g., the boundaries of a visual primitive or
all pixels related to a visual primitive. The data type of the output, how-
ever, is not necessarily an image anymore, but can be, e.g., a plain list of
pixel values, or a run-length encoded set of coordinates [34]. Either case,
since a single visual primitive can generally be considered as a region of
pixels (set of coordinates) in the image plane, we refer to the output of the
segmentation step as regions.

9

2 Preliminaries

Image
Acquisition Preprocessing Segmentation

Representation
and Description

Recognition and
Interpretation

original
image

preprocessed
image

regions (raw pixel data)

regions (features)

problem
domain

objects

Figure 2.1: Fundamental steps in image processing.

4. Representation and Description: After identifying relevant informa-
tion in terms of regions, a more suitable representation and description for
subsequent computer processing is required. First, a decision whether the
data should be represented as a boundary or a complete region has to be
made. While a boundary representation emphasizes shape characteristics,
the representation as complete region emphasizes internal properties such
as texture. If required, both representations are combined though.

Second, a method for describing the data so that features of interest are
highlighted has to be specified. This so called feature selection process
deals with extracting features that result in some quantitative information
that is basic for differentiating one class of regions from another.

5. Recognition and Interpretation: The last step involves recognition and
interpretation. Recognition (or classification) is the process that assigns a
label to a region based on the information provided by its features. Interpre-
tation involves assigning meaning to an ensemble of previously recognized
regions. We also refer to this last step as object detection. In the most gen-
eral sense, the result of this step is a set of objects that is used by subsequent
decision-making processes beyond image processing.

Figure 2.1 shows both the introduced image processing steps and the correspond-
ing input and output data, respectively. The additionally annotated problem do-
main represents the task-specific overall setting, which comprises, e.g., the context
of the image acquisition step and the actual objective that has to be solved. The
mutual task of all steps is to gradually reduce and abstract the visual information
embedded in the original image in order to extract the visual information that is
actually relevant for the problem domain.

10

2.1 Introduction to Image Processing

Camera

Passive gripperDifferential
chain drive

LED dome

(a)

Finish

Pylone

Pylone
Ball

BeBot

(b)

Figure 2.2: Real-world application scenario from the robotics domain: A
miniature robot BeBot (a) has to autonomously push a ball
through a slalom course (b).

2.1.3 Real-world Application Scenario

Figure 2.2b shows the schematic view of a real-world application scenario from the
robotics domain. In this scenario, a miniature robot BeBot [2] (cf. Figure 2.2a)
has to autonomously push a single-colored ball through a slalom course. The
course itself consists of small pylones that are arranged in a straight line. A
unicolored marker represents the finish of the course. The problem domain of the
actual image processing task comprises (i) the image capturing process by means
of the BeBot’s camera in a non-deterministic environment, and (ii) the objective
to identify the scenario-specific objects (pylones, ball, marker) in the captured
images. For solving the image processing task, we applied a flexible approach
that supports alternative realizations of the previously introduced fundamental
image processing steps [3]. We now describe two of these alternative solutions.

Image Processing Solution I

Figure 2.3 shows the sequence of image processing steps of the first solution.
Figures 2.4a - 2.4d show intermediate results produced by these steps. The original
image shown in Figure 2.4a represents a BeBot’s typical subjective view of the
scenario setup. After grabbing an image, a color-based segmentation algorithm
labels adjacent pixels of similar color as a single region [4]. Regions and their
associated pixels are interpreted as two-dimensional Gaussian distributions in
the image plane. The spatial information of each region is described in terms
of statistical parameters, i.e., in terms of discretized moments [35]. The color

11

2 Preliminaries

BeBot
Camera

Color-based
Segmentation

Moment
Computation

Color-based
Classification

Object
Detection

color
image

adjacent pixels
of similar color

discretized moments, average color

discretized moments,
color class

ball, pylones,
marker

Figure 2.3: Image processing steps of solution I. Nodes and edges with thick
border represent parts that differ from solution II (cf. Figure 2.5).

information of a region is equivalent to the average color of all associated pixels.
Figure 2.4b shows the corresponding intermediate result. The immediate result
of the segmentation algorithm is represented by adjacent pixels with identical
color values. The regions’ associated features (moments and average color) are
represented by image ellipses [36] and by the pixel values themselves.

Regions are subsequently classified based on their color information and ac-
cording to predefined color classes (cf. Figure 2.6a). Figure 2.4c shows the result.
Ellipses of regions that could not be assigned to any class at all are still black,
whereas ellipses of regions that belong to the same color class have identical color.
In the final step, regions belonging to the same class are composed based on their
spatial information in order to identify scenario-specific objects (cf. Figure 2.4d).
For a heuristical approach, geometric attributes such as mass, center of mass,
bounding box, or the previously mentioned image ellipse can be directly derived
from the discretized moments.

Image Processing Solution II

Figure 2.5 shows the sequence of image processing steps of the second solution.
Nodes and edges with thick border represent the part of the approach that differs
from the first solution; either with respect to the implementation of a single step or
with respect to the overall composition. Both the image acquisition step and the
object detection step are identical to the corresponding steps in the first solution.
That is, neither their implementation nor their position in the execution sequence
changed. The steps in between, however, were modified.

The segmentation algorithm now incorporates a classification mechanism based

12

2.1 Introduction to Image Processing

(a) (b)

(c) (d)

Figure 2.4: Intermediate results of the image processing steps shown in
Figure 2.3: (a) original color image, (b) regions as adjacent pixels
of similar color with raw pixel and feature-based representation, (c)
classified and unclassified regions, (d) detected objects.

on color classes. Figure 2.6a shows exemplary color classes defined as distinct
subspaces in the RGB color space. Pixels are assigned to a color class if their
values are located within such a subspace. Adjacent pixels belonging to the same
color class are then assigned to the same region. In other words, the criteria of
homogeneity for determining whether adjacent pixels belong to the same region
switched from “similar color” to “same color class”. Pixels that cannot be assigned
to any color class are considered to be irrelevant and are directly discarded. That
is, only visual information that is actually relevant for the problem domain is
extracted. As a consequence, the amount of regions produced by the segmentation
algorithm is significantly reduced in comparison to the segmentation algorithm in
the first solution (cf. Figure 2.4b vs. Figure 2.6b).

After identifying relevant regions and assigning them to a color class, moments
are computed. This step implements exactly the same method as in the first
solution. A subsequent classification step, however, is obsolete. Instead, the
object detection step immediately follows.

13

2 Preliminaries

BeBot
Camera

Segmentation based
on Color Classes

Moment
Computation

Object
Detection

color image

adjacent pixels of same color class

discretized moments,
color class

ball, pylones,
marker

Figure 2.5: Image processing steps of solution II. Nodes and edges with thick
border represent parts that differ from solution I (cf. Figure 2.3).

(a) (b)

Figure 2.6: (a) Color classes are subspaces in the underlying RGB color space.
(b) Intermediate results of the image processing solution shown in
Figure 2.5 after segmentation and computation of moments.

Conclusion

While both presented image processing solutions indeed represent concrete in-
stantiations of the introduced fundamental image processing steps, they also re-
veal that these fundamental steps are rather a rough classification than a strict
framework. A separate preprocessing step, e.g., is completely neglected in both
approaches. In fact, preprocessing mechanisms are directly integrated into the
segmentation algorithm in order to minimize redundant processing steps.

The second solution even further reduces redundant processing steps by incor-
porating a classification mechanism directly into the segmentation algorithm and
discarding irrelevant visual information already on pixel level: Pixels that do not
belong to a predefined color class are not considered in the segmentation process
in the first place. As shown in our previous work [3], this integrated approach

14

2.1 Introduction to Image Processing

significantly reduces the execution time for image processing. The drawback,
however, is the decreasing robustness in the face of a non-deterministic environ-
ment. If, e.g., the lighting conditions change, the pixel values change as well.
The predefined color classes, however, are static. As a consequence, a pixel that
was previously assigned to a color class, may be considered to be irrelevant in
an image captured under different lighting conditions. In this respect, the first
solution is more robust. It does not compare pixel values absolutely based on
color classes, but relatively based on color similarity. Furthermore, the likelihood
of a region’s average color to be correctly assigned to the according color class is
higher, since the averaging mechanism compensates changing lighting conditions
to a specific degree.

2.1.4 Developing Image Processing Solutions

In general, when facing a distinct image processing task, a developer has to come
up with a solution that

� copes well with acquisition defects such as compression artefacts, image
noise, or imbalanced illumination,

� identifies and extracts relevant visual information while simultaneously re-
jecting redundant visual information,

� transforms relevant information into a more convenient but also more ab-
stract representation without loosing important characteristics.

However, as indicated in the previous section, developing image processing solu-
tions heavily depends on the area of application and the underlying conditions. In
embedded systems, e.g., image processing software is usually optimized for spe-
cific hardware while the implemented algorithms are often highly specialized for
certain tasks. In order to reduce redundant implementation steps, a functional
prototype can be realized in advance. In doing so, developers primarily focus
on the desired functionality. They determine at an early stage, if and how the
underlying image processing task can be solved in the first place.

A possible way of solving an image processing task is to follow a component-
based approach. Existing algorithms are considered to be distinct components.
Components are interconnected in a loosely coupled manner in order to generate
a composition of image processing algorithms. A composition is subsequently

15

2 Preliminaries

executed and evaluated in an application specific test case. If the evaluation
result does not satisfy the requirements, the respective composition is partially
refined by adding, removing or adjusting available components. The modified
composition is again executed and evaluated. These steps are repeated until
either a prototype that provides the desired functionality was realized, or until
the task itself is modified, since no feasible solution could be found.

In the domain of photo and video post-processing (image manipulation do-
main), users do not implement a complete post-processing approach by program-
ming new software. They use existing algorithms that are provided by monolithic
solutions, such as Adobe Photoshop, Corel Photo-Paint and GIMP, or by web-
based solutions (like, e.g., Instagram [37]) and combine them in an arbitrary order.
Users, whether or not being an expert, however, follow a strategy that is similar
to the previously outlined way of prototyping. In order to get a solution that
satisfies the requirements, existing algorithms are consecutively applied in a trial
and error manner. Dependent on a user’s degree of expertise, this trial and error
process can be highly time consuming. Consider, e.g., a user, who has a concrete
idea of how his holiday photos should look like. If he is a novice, however, he
has no idea about what algorithms he has to apply to achieve the desired result.
As a consequence, he simply tries different algorithms or combinations of algo-
rithms in order to come up with a satisfying result. But even being an expert in
image processing does not necessarily mean that you are able to come up with a
satisfying solution from scratch.

In any case, a composition of concrete algorithms has to be identified, most
likely by a trial and error like strategy under context-specific conditions. Regard-
less of whether being an expert or a novice, developers and users almost always
have to deal with one and the same question: Which composition of available
algorithms solves the image processing task as good as possible?

Automating the Composition Process of Image Processing Solutions

By automating the composition of image processing solutions, both developers
and users can be supported and the effort for finding a satisfying solution can
be minimized. In the best case, an optimal solution that perfectly satisfies all
requirements is identified and the problem is solved fully automatically. However,
developers and users can even benefit from non-optimal solutions: An automat-
ically composed solution can be used as starting point for manual modifications

16

2.2 Introduction to On-The-Fly Computing

while the search space for possibly promising modifications was reduced.
The composition process can be supported by providing representative data

from the problem domain during the development phase. That is, decision-making
during the composition process is supported in terms of more specific information
about the problem domain. In this context, representative data can either be
concrete images or abstract descriptions of images (e.g., in terms of features). If
representative images are available, a partially composed image processing solu-
tion can already be executed during the composition process. The intermediate
execution result can then be evaluated in order to support decision-making for
the next processing step.

Last but not least, by deferring decision-making into the actual execution phase
during productive operation, appropriate solutions can even be determined just-
in-time according to the concrete execution context. Consider, e.g., our applica-
tion scenario. By analyzing original images over time (while the robot is already
performing its task), varying illumination conditions can be recognized. Based on
the outcome of this analysis, the image processing workflow can be reconfigured
(e.g., by incorporating additional preprocessing steps) in order to adapt to vary-
ing conditions. In contrast to just adapting parameters of a running application,
the application logic itself is changed during execution.

2.2 Introduction to On-The-Fly Computing

Software developer have to increasingly face up to the paradigm shift from the
principle of purchasing software as monolithic software packages to the princi-
ples of SOC [38], which shall enable purchase and execution of distributed soft-
ware components (services) on demand. OTF Computing intends to drive this
paradigm shift forward [26, 39]. This chapter starts with an introduction of
fundamental SOC concepts. Afterward, the OTF Computing concept and its re-
lationship to SOC are described, and a framework as basis for the remainder of
this thesis is derived.

2.2.1 Principles of Service-Orientation

Service-orientation is said to have its roots in a software engineering theory known
as “separation of concerns” [27]. The theory states that it is beneficial to break

17

2 Preliminaries

down a large problem into a series of individual concerns. This allows the logic
required to solve the problem to be decomposed into a collection of smaller, re-
lated pieces. Object-oriented programming and component-based programming
approaches, e.g., achieve a separation of concerns by using objects, classes, and
components, respectively. Service-orientation, in turn, achieves a separation of
concerns by means of services. Each service addresses a specific concern, while
the design of services adheres to the service-orientation design paradigm providing
the following set of design principles [28]:

Reusability: Regardless of whether immediate reuse opportunities exist, services
are designed to support possible reuse.

Formal contract (description): For services to interact, they need not share
anything but a formal contract that describes each service and defines the terms
of information exchange.

Loosely coupling: Services must be designed to interact without the need for
tight, cross-services dependencies.

Abstraction: The only part of a service that is visible to the outside world is
what is exposed via its description. Underlying logic and implementation details
are invisible and irrelevant to service requestors.

Composability: A service may be composed of other services. This allows logic
to be represented at different levels of granularity and promotes reusability.

Autonomy: The logic governed by a service resides within an explicit boundary.
The service has control within this boundary and is not dependent on other
services for it to execute its governance.

Statelessness: Services should not be required to manage state information,
as that can impede their ability to remain loosely coupled. Services should be
designed to maximize statelessness even if that means deferring state management
elsewhere.

Discoverability: Services should allow their descriptions to be discovered and
understood by service requestors that may be able to make use of their logic.

18

2.2 Introduction to On-The-Fly Computing

Service-Oriented
Architecture

Composed
Services Service

Inventory

Service-Oriented
Solution Logic

Service-Orientation
Design Paradigm

Services

is designed
to support the

implementation of

is designed to
support the creation
and evolution of a

is primarily
distinguished

byis designed
to support the

implementation
of

provides principles
that shape the

design of

provides principles
that shape the

design of

is comprised
of standardized

can be
comprised of

is
comprised of

draw from
the

are
composed of

Figure 2.7: SOC elements and their relations [40].

2.2.2 Service-Oriented Computing

SOC represents a new generation distributed computing platform [40]. It is a
cross-disciplinary paradigm for distributed computing that gradually changes the
way software applications are designed, delivered and consumed. Metaphorically
speaking, the term SOC can be considered as a big umbrella, which encompasses
past distributed computing platforms, while adding new design layers, governance
considerations, and a vast set of preferred implementation technologies.

Figure 2.7 shows the SOC key elements and how each element ties into others.
To sum it up in one sentence, service-oriented architecture represents a distinct
form of technology architecture designed in support of service-oriented solution
logic which is comprised of services and composed services designed according to
the service-orientation design paradigm and assembled in one ore more service
inventories. More concretely:

� Service-oriented solution logic is implemented as services and composed ser-
vices, and designed in accordance with the previously introduced design
principles.

� A composed service is composed of services that have been interconnected
to provide the functionality required to automate a specific task or process.

19

2 Preliminaries

Dynamic Market
of Services

OTF
Provider

Service Provider
Customer

Request

Response

Service Provider

...

Service Provider

Figure 2.8: On-The-Fly (OTF) Computing: A so-called OTF provider receives
and processes a customer’s request.

� One service may be invoked by multiple applications, each of which can
incorporate that same service in different composed services.

� A collection of standardized services can form the basis of a service inventory
that can be administered independently.

� Processes can be automated by the creation of composed services that draw
from a pool of existing services assembled in a service inventory.

� Service-oriented architecture is a form of technology architecture optimized
in support of services, composed services, and service inventories.

Creation of composed services can be either accomplished by hand – based on ex-
pertise and experience – or automatically. Automation of this service composition
process, however, is a formidable challenge: Functional as well as non-functional
requirements have to be satisfied.

2.2.3 The On-The-Fly Computing Concept

A major goal of the OTF Computing project is the automated composition of
customized software solutions based on services that are traded on dynamic mar-
kets and that can be flexibly interconnected with each other [5]. According to the
vision of OTF Computing, a user (henceforth referred to as customer) formulates
a request for a customized software solution, receives a response in terms of a
composed service, and finally executes the composed service. Figure 2.8 illus-
trates the very basic idea of OTF Computing. A so-called OTF provider receives

20

2.2 Introduction to On-The-Fly Computing

and processes a customer’s request. The processing step mainly involves auto-
matic composition of customized software solutions based on services supplied by
service providers. The OTF provider responds in terms of a composed service
that satisfies the requirements specified in the customer’s request.

Figure 2.9 gives a very abstract overview of the OTF Computing concept. In
the most general sense, it can be divided into three main layers, each of them
realizing distinct functionality and dealing with a different amount of services.
The upper layer represents the global market of services. It includes without
limitation market mechanisms for trading in services as well as algorithms for
discovering and matching services in a network. The lower layer comprises an
extensive verification step of composed services regarding functional as well as
non-functional properties and requirements. Furthermore, the lower layer pro-
vides necessary means for executing the established compilation of services. The
middle layer realizes the actual service composition process. It is the connection
link between upper and lower layer. It interacts with the upper layer to retrieve
candidate services from the global market and passes a composed service to the
lower layer for verification and execution.

The OTF Computing concept is closely related to the SOC paradigm. In fact,
the entire OTF Computing concept can be considered as a distinct form of service-
oriented architecture. Software components are designed as services according to
the principles provided by the service-orientation design paradigm. Services are
formally described by means of functional and non-functional properties [41, 42].
Based on their descriptions, services can be interconnected in a loosely coupled
manner to build composed services for solving more complex tasks [6].

The OTF Computing market of services fulfills the function of a service inven-
tory. Services, however, are not assembled in a central repository, but supplied
by independent service providers that are distributed across a dynamic market

Discovery and Matching in a
Dynamic Market of Services

Composition, Rating,
and Evaluation

Verification and Execution

Decreasing
number

of services.

Candidate
Services

Composed
Service

Figure 2.9: Abstract overview of the OTF Computing concept.

21

2 Preliminaries

OTF Provider

Service
Composition

1) Request

2) Response

4) Rating

OTF Provider
Selection

Service Provider
Selection

Service Matching

Service Provider

Customer

Service Discovery

Service
Recommendation

3) Execution

Figure 2.10: The OTF service composition process in the market environment.

environment. Service providers may change their service repertoire by offering
new services, removing old services, or updating existing services. Furthermore,
service providers may either enter the market as new participants or completely
leave the market. From an OTF provider’s perspective the complete set of all
available services is not known at any time, but can only be partially discovered
just in time [7].

2.2.4 On-The-Fly Composition Process

Figure 2.10 shows the OTF Computing process and its relevant subprocesses.
Three different classes of market participants are involved in the overall pro-
cess: customers, OTF providers, and service providers. In this context, OTF
Provider Selection and Service Provider Selection are reputation-based decision-
making processes regarding transactions between these market participants [8, 9].
A customer formulates a request for an individual software solution and sends the
request to an OTF provider of his choice (Step 1). The selected OTF provider
processes the request and automatically composes a solution based on services
that are supplied by independent service providers.

In the most general sense, the Service Composition process is interpreted as
sequential application of composition steps. A composition step may, e.g., cor-
respond to selecting a service in order to realize a placeholder within a work-
flow [43, 44]. A composition step, however, may also correspond to a single step
within a composition algorithm based on Artificial Intelligence (AI) planning ap-
proaches [45–48]. Either case, similar to a customer’s request, an OTF provider
formulates a request according to the requirements of the current composition
step and asks a selected subset of service providers for appropriate services.

Processing the response of a service provider is divided into two separate pro-

22

2.2 Introduction to On-The-Fly Computing

cesses. By doing so, the amount of qualified candidate services is gradually re-
duced. First of all, a Service Matching process determines to what extent a
particular service fulfills the functional (e.g., signatures and behavior) as well as
non-functional requirements (e.g., quality properties such as response time or re-
liability) that are specified in the OTF provider’s request [49, 50]. Based on the
matching result, services that provide significantly different functionality or that
violate important non-functional restrictions are directly discarded. The match-
ing process is part of the OTF Computing architecture and takes place before
an OTF provider receives a response about appropriate candidate services. Put
another way, the matching process operates as a filter ensuring that only services
that fulfill the desired requirements to a certain extent are returned.

After the matching process, a Service Recommendation process identifies and
ranks the best candidate services out of the set of remaining services [10, 11].
In comparison to the matching process, the recommendation process is part of
the OTF provider-specific composition process and highly depends on the con-
text of the request. That is, explicitly given non-functional objectives [12] (e.g.,
maximizing the performance while simultaneously minimizing the costs) as well
as implicit knowledge from previous composition processes [13] (e.g., a certain
service is more qualified in a particular context than others) are considered.

As soon as a composed service is completed, it is passed on to the customer
(Step 2), who subsequently executes it (Step 3). The customer rates his degree
of satisfaction regarding the quality of the execution result (Step 4). The rating
value is returned as feedback value to the associated OTF provider. Based on
the feedback value, the OTF provider then adjusts its recommendation strategy
in order to improve the quality of future composed services [14, 15].

Basic Framework - A More Technical Perspective

We now break down the entire OTF Computing process into a basic framework.
Figure 2.11 shows the OTF Computing process from a more technical perspective
including all components and processes that are relevant for the work at hand.
This framework serves as reference for the remainder of this work. For the time
being, the entire process is divided into three consecutive phases: composition,
execution, and rating.

Composition phase: A (human or artificial) requestor formulates a request that
abstractly represents the actually desired functionality in terms of a formal

23

2 Preliminaries

Composition

Requ
ester

Execution

Rating

Request

Data

Composed Service

Execution Result

Discovery Request

Candidate Services

Feedback

Composition
Phase

Execution
Phase

Rating
Phase

Loop

R
eq

ue
st

or

Discovery

Figure 2.11: Basic OTF Computing framework.

specification. The composition process iteratively constructs a composed
service based on formal service descriptions. Each iteration includes discov-
ering candidate services for realizing a part of the specified functionality.
Candidate services are provided by a non-deterministic discovery mecha-
nism. That is, we assume identical discovery requests to result in different
sets of candidate services over time. Furthermore, the discovery mechanism
operates in an online manner. That is, available candidate services cannot
be discovered in advance (offline), but have to be discovered on-demand
based on a request.

Execution phase: After composing a solution, the execution phase takes place.
The composed service is executed based on concrete data provided by the
requestor. The execution result can either be concrete output data or a
concrete behavior of a system.

Rating phase: In the composition phase, a solution that is valid with respect to
a formally but abstractly specified functionality is composed. Executing the
composed service produces a concrete functionality in terms of output data
or system behavior. To quantify the quality of the concrete functionality, the
execution result is evaluated in a rating process. The rating value is then
used as feedback value in a feedback loop for improving the composition
process over time.

24

2.3 On-The-Fly Image Processing

service s1

image

width
image

(a)

service s2

image

x scale
image

(b)

service s3

image

width

height

image

(c)

Figure 2.12: Black box view on image processing services s1, s2, and s3, each
implementing a different functionality for image resizing.

2.3 On-The-Fly Image Processing

As the name implies, the major idea behind OTF Image Processing is to con-
nect Image Processing with OTF Computing. That is, in order to automatically
generate image processing solutions, OTF Computing techniques shall be applied.

2.3.1 Principles of Service-oriented Image Processing

The starting point for OTF Image Processing is to interpret image processing al-
gorithms as services; that is, to design image processing services based on existing
image processing algorithms and according to the SOC design principles.

Elementary Services

In OTF Computing and so in this thesis, we consider elementary services (also
simply referred to as services) to be black boxes that are described based on
their inputs and outputs. Neither implementation details nor internal behavior
are visible. As an example, Figure 2.12 shows three different elementary services
that all provide functionality for image resizing. We graphically represent such a
service as a component with input ports and output ports. For the time being, the
annotations are rather informal to illustrate the basic concept of image processing
services. If data is provided at each input port, the service consumes the input
data, produces new data according to the implemented functionality, and puts
the new data into the corresponding output ports.

Service s1 requires as input data the actual image that shall be resized as well
as the width of the desired size. If we were able to look into the internal behavior
of the service, we would see that the height of the output image is calculated au-
tomatically according to the ratio of the original width and desired width. With-

25

2 Preliminaries

(a) (b) (c)

Figure 2.13: (a) Original image was resized while preserving the original
aspect ratio (b) and while ignoring it (c).

out a more detailed specification regarding input and output behavior, however,
there is no way to have this knowledge in advance. That is, without additional
information, we do not know whether service s1 resizes the photo depicted in Fig-
ure 2.13a while preserving the aspect ratio (cf. Figure 2.13b) or whether service
s1 just simply modifies the width and completely ignores the image height (cf.
Figure 2.13c).

Service s2 is quite similar to service s1, except that s2 requires a relative value
(a scale factor) for modifying the width of the original image. Again, however,
without more information about how the service defines the height of the new
image, we cannot foresee whether executing the service changes the original aspect
ratio or not.

In comparison to services s1 and s2, service s3 provides a more basic function-
ality. That is, in addition to the actual image to be resized, s3 requires absolute
values for the desired width and the desired height. Whether the aspect ratio is
preserved or not completely depends on the input values. As a consequence, both
s1 and s2 can be realized in terms of composed services that incorporate s3.

Composed and Configured Services

Figure 2.14 shows service s1 as composed service, consisting of elementary services
s3, s4, s5, and s6. Since service s1 was composed, a white box view on its internal
behavior is available. That is, its building blocks in terms of elementary services
as well as the data flow in terms of port interconnections between these services
are visible. The elementary services, in turn, are black boxes. Within the context
of composed service s1,

1. service s4 determines the size in terms of width and height of the input

26

2.3 On-The-Fly Image Processing

service s1

service s4

image
height

width
service s5

x

y
x/y

service s6

x

y
x · y

service s3

image

height

width

image
image

width

image

Figure 2.14: White box view on service s1 as a composed service.

image,

2. service s5 calculates the scaling factor based on the width of the input image
and the desired width,

3. service s6 calculates the new height based on the scaling factor and the
height of the input image, and

4. service s3 finally resizes the input image according to the desired width and
the calculated height.

To sum it up, composed service s1 adjusts the width of an input image according
to a desired width, while preserving the aspect ratio of the input image.

We refer to services that are building blocks of a composed service and whose
input and output ports are set up for interaction within the context of a composed
service as configured services. In case of composed service s1, services s3, s4, s5,
s6 are configured services. The data flow is defined by the port interconnections.
In case of composed service s1, the data flow also directly implies the control flow
in terms of the execution sequence [s4, s5, s6, s3].

Figure 2.15 shows another example for a composed service that incorporates
service s3, but only service s3. In this context, s3 was configured during the
composition process to resize any input image to a fixed width (320) and height
(240). That is, service s7 only requires the image to be resized as input.

Statelessness

The majority of traditional image processing algorithms is stateless from scratch.
For example, a postprocessing algorithm usually consumes an image and produces
a modified version of that image without relying on any state information or

27

2 Preliminaries

information from previous execution processes. Furthermore, algorithms such as
tracking algorithms that depend on historical data can be designed as stateless
services by providing historical data as input values. In fact, image processing
algorithms usually are non-interactive, data-processing subprocesses of a superior
image processing application. All data for such a subprocess can be provided
as input values. As a consequence, we assume image processing services to be
stateless in general.

Autonomy

The behavior of many image processing algorithms can be influenced by adjusting
algorithm-specific parameters. For example, the color-based segmentation algo-
rithm that was mentioned in Section 2.1.3 uses color similarity as criterion of
homogeneity. The distance function as well as the associated threshold values for
deciding whether two color values are similar or not can be adjusted. Adjust-
ing these parameters, however, heavily influences the behavior and consequently
the segmentation result. Take a look at Figure 2.16. The images shown in Fig-
ure 2.16a and Figure 2.16b represent the results of the segmentation algorithm
processing one and the same original image while applying two different distance
functions [16]. The images shown in Figure 2.16c and Figure 2.16d were produced
using the same distance function but with different threshold values [4]. In order
to ensure a service’s autonomy, we consider one and the same algorithm with
different parameter sets as different and independent services.

2.3.2 Fundamental Challenges

We identified multiple fundamental challenges that arise when aiming for auto-
matic composition of image processing services [17]. Some of them are related to

service s7

service s3

image

width

height

image320

240

image

image

Figure 2.15: White box view on composed service s7, which solely consists of
configured service s3.

28

2.3 On-The-Fly Image Processing

(a) (b) (c) (d)

Figure 2.16: Different segmentation results due to different distance functions
((a) vs. (b)) and due to different threshold values ((c) vs. (d)).

service composition in market environments such as OTF Computing. For exam-
ple, customers are not necessarily experts in the domain in which they formulate
a request. As a consequence, most of the time, requests will most likely be impre-
cise and incomplete. In addition, each customer has individual preferences. That
is, although customers specify the same request and provide the same data, the
actually desired functionality might still differ. In this thesis, however, we neglect
such customer- and market-related challenges and focus on challenges that are of
more technical nature.

Ambiguous Service Descriptions due to Abstraction

According to OTF Computing, functionality of image processing services is de-
scribed in terms of functional properties with respect to inputs and outputs.
Functional properties, in turn, are usually represented by abstract symbols such
as propositions in propositional logic or predicates in first-order logic. In image
processing, those abstract symbols may correspond to hard properties such as the
dimension or number of channels of an image or the data type of a pixel. Abstract
symbols may, however, also correspond to rather soft properties such as charac-
teristics of the visual content of an image regarding noise, illumination, color, or
structure. In the first case, symbols correspond to precise facts that are unam-
biguous. In the second case, the actual meaning of a symbol is ambiguous. Due
to the abstraction, similar services most likely end up with identical formal de-
scriptions, although they provide different functionality when applied to the same
input data. The expressiveness of specification languages might theoretically be
high enough to make a difference between services with similar functionality. Ab-
straction, however, is necessary to ensure feasibility of composition processes.

29

2 Preliminaries

(a) (b) (c)

Figure 2.17: Original image (a) and execution results (b) and (c) of two
formally equivalent services.

Example. Figure 2.17 demonstrates the effect of ambiguity due to abstraction.
The original image depicted in Figure 2.17a was processed by two formally equiv-
alent services; i.e., equivalent with respect to the description in terms of abstract
symbols [17]. The execution results depicted in Figure 2.17b and Figure 2.17c,
however, significantly differ from each other.

Data-dependent Service Functionality during Execution

In the image processing domain, service functionality heavily depends on the
concrete data that has to be processed. Although the functional description of a
service might be very detailed, there is always a high probability that a service
is not or not sufficiently fulfilling the required functionality when executing it
with concrete data. This problem becomes even more challenging when executing
sequences of image processing services that were composed based on abstract
descriptions. Due to the high variability of the image processing domain, it is
impossible to predict, consider, and formalize every valid context in advance.

Example. Figure 2.18 demonstrates the effect of data-dependent service func-
tionality. The images depicted in Figure 2.18a and Figure 2.18b were both cap-
tured by the same camera under different illumination conditions [16]. Applying
one and the same segmentation service to both images produces the two results
depicted in Figure 2.18c and Figure 2.18d. Again, the execution results signifi-
cantly differ from each other.

Functional Discrepancy

Abstraction and data-dependency inevitably lead to a gap between “the function-
ality you need” and “the functionality you get”. We refer to this effect as functional

30

2.3 On-The-Fly Image Processing

discrepancy : The functionality provided by a composed service differs from the
required functionality. Have a look at Figure 2.19 for a systematic overview.

The starting point is a concrete image processing problem domain such as the
problem domain of our real-world application scenario in Section 2.1.3. The prob-
lem domain defines the actual image processing objective. The image processing
objective determines the required functionality. Furthermore, the problem do-
main defines the input data for a composed service. Finally, knowledge about
the problem domain might be used to restrict the set of elementary services to
services that are actually relevant for the task at hand. Abstract descriptions
of these elementary services constitute the building blocks for the composition
process.

The required functionality derived from the problem domain is formalized by
making explicit use of abstraction. The hereby specified functionality corresponds
to the request in the OTF Computing framework. For composing services, the
level of abstraction as well as the applied specification formalisms of both elemen-
tary services and requests must be compatible (e.g., by means of model transfor-
mation and based on ontologies that connect different levels of abstraction).

The concrete functionality provided by a composed service depends on the con-
crete data that is provided by the problem domain. In the best case, the concrete
functionality satisfies the required functionality. That is, the generated image pro-
cessing application solves the image processing objective based on the input data.
In terms of our real-world example, this would mean, that the scenario-specific
objects are correctly detected in the camera images. However, if the functional
discrepancy is too wide, the required functionality is not or not completely cov-
ered by the concrete functionality. In terms of our real-world example, this could
mean, that the scenario-specific objects are only partially detected or not detected

(a) (b) (c) (d)

Figure 2.18: Applying the same segmentation service to original images (a)
and (b) produces two significantly different images (c) and (d).

31

2 Preliminaries

Problem Domain Required Functionality

Specified Functionality

Composed ServiceElementary Services

Concrete FunctionalityInput Data

Functional
Discrepancy

Abstraction

Abstraction

Data-dependency

Figure 2.19: Overview of OTF Image Processing concepts based on the OTF
Computing framework.

at all (false negative). Furthermore, it could also mean, that objects in the image
are accidentally detected as scenario-specific objects (false positive). Either case,
the robot’s behavior would significantly suffer.

Without additional knowledge, the composition process suffers from ambiguity
and is not able to produce more appropriate solutions that reduce functional
discrepancy. Hence, a major challenge for making OTF Image Processing feasible
is to improve the composition process in order to eliminate or at least minimize
functional discrepancy. The next section briefly introduces the major concept of
our proposed approach.

2.3.3 Adaptivity by Feedback-based Learning

In order to reduce functional discrepancy in OTF Image Processing, we adopt
the feedback-based approach of the OTF Computing framework. That is, the
service composition process is adapted over time by incorporating feedback from
previous composition processes; or more generally spoken, by learning from expe-
rience. According to the basic OTF Computing framework, this learning process
comprises i) the rating phase to produce feedback and ii) the incorporation of this
feedback to generate more appropriate composed services.

Most of the basic AI paradigms such as planning or learning can be clustered
into two major groups [51]:

Symbol-processing (or symbolic) approaches usually use a “top-down” design
method. At the top level, the knowledge for machine processing is specified.
Next comes the symbol level, where knowledge is represented in terms of
symbols and operations on these symbols are specified. Processing sym-

32

2.3 On-The-Fly Image Processing

Symbol

Signal Required
Functionality

Specified
Functionality

Composed
Service

Concrete
FunctionalityFeedback

formalize execute

Figure 2.20: Integration of feedback from signal level into the composition
process on symbol level.

bols according to the specified operations enables a machine to implement
intelligent behavior.

The composition phase in the OTF Computing framework incorporates
techniques that belong to this class of approaches.

Subsymbolic approaches usually proceed in “bottom-up” style. At the lowest
level, the concept of symbol is not as appropriate as the concept of signal.
Starting from simple signal-processing and control abilities, subsymbolic
approaches emphasize the concept of emergent behavior. That is, machine
functionality is an emergent property of the intensive interaction of the
system with its dynamic environment.

The learning techniques we incorporate in order to adapt the composition
process belong to this class of approaches.

Figure 2.20 visualizes our approach with respect to these two different classes.
The required functionality is located at the signal level. In our context, the term
signal does, e.g., correspond to an image. The required functionality is formalized
by making extensive use of abstraction. By doing so, the border between signal
level and symbol level is crossed. In our context, symbols correspond, e.g., to
properties of an image. The service composition process subsequently produces a
composed service based on i) the specified functionality and ii) functional prop-
erties of elementary services. That is, service composition takes place on symbol
level. After composition, the composed service is executed. By executing a com-
posed service based on concrete data, the border between symbol and signal level
is crossed again: The resulting concrete functionality is not expressed in terms of
symbols, but corresponds to a concrete signal (e.g., processed images, extracted
objects, etc.).

33

2 Preliminaries

Since both required functionality and concrete functionality belong to the sig-
nal level, measuring and quantifying the functional discrepancy is performed on
signal level in the first place. The resulting distance value is transformed into a
feedback value, which represents “how good the execution of a composed solution
was with respect to the required functionality”. The feedback value is incor-
porated by learning techniques into the composition process in order to adapt
decision-making and resolve ambiguity on symbol level based on knowledge from
the signal level [18].

Example. Let us assume that the required functionality corresponds to trans-
forming an original image into a desired image, whereas the desired image is
a manually modified version of the original image. In order to automate this
manually performed modification process, we would like to identify a composed
service that does the job for us. For the composition process, the original and
desired image are represented in terms of hard and soft properties. A solution
that transforms the original properties into the desired properties is composed and
subsequently applied to the original image. The difference between the desired im-
age and the result image that was produced by the composed service is measured,
quantified, and transformed into a feedback value. The higher the feedback value,
the better resembles the produced image the desired image. The feedback value
is incorporated into the symbolic composition process to inform the algorithm
about good (and bad) decisions. By repeating the entire process, the composition
process identifies the best solution (based on the available elementary services)
over time.

Outlook

The following chapters present the details of our proposed approach while grad-
ually addressing the following major questions:

1. Independent of the learning techniques, how are image processing services
modeled, and how are they automatically composed on symbol level?

2. How is the decision-making process that supports the symbolic composition
process modeled, and how is it incorporated into the composition process?

3. What type of learning paradigm and which related techniques are used to
adjust the decision-making process over time?

34

2.4 Related Work

4. How can functional discrepancy be quantified and appropriately trans-
formed into a feedback value for the learning process?

Some of these questions can only be answered with respect to a concrete image
processing problem domain. As a consequence, we make use of the use cases
introduced in Chapter 3 whenever necessary.

2.4 Related Work

This section briefly describes related work, which – in the most general sense –
address either explicitly or implicitly the same topic as we do: Automated genera-
tion of image processing solutions. A detailed discussion of our proposed approach
and the associated techniques in comparison to existing approaches, however, is
beyond the scope of this section, but will be presented in the corresponding chap-
ters later on.

Matsuyama already surveyed in 1988 four types of expert systems that use
knowledge about image processing techniques to compose complex image analysis
processes from primitive image processing operators: (i) consultation system for
image processing, (ii) knowledge-based program composition system, (iii) rule-
based design system for image segmentation algorithms, and (iv) goal-directed
image segmentation system [52]. Consultation systems help a user to select ap-
propriate program modules and parameters from existing libraries by using the
electronic documentation of a library. A knowledge-based program composition
system can be developed by using information about data types of a program
module as knowledge-base. The system can then compose complex programs by
combining program modules from a library. A rule-based system can facilitate
trial-and-error experiments during the design process, e.g., for developing high
performance, heuristics-based segmentation algorithms. That is, to automate
the testing of heuristics in experiments during the design process, heuristics are
represented by a set of production rules [53]. Last but not least, for correcting
errors incurred by initial (bottom-up) segmentation in image understanding, a
top-down goal-directed image segmentation system is proposed, which automati-
cally extracts visual primitives such as rectangles and straight lines. The system
then uses those features as fundamental descriptive terms to represent the knowl-
edge about image processing.

35

2 Preliminaries

Gong and Kulikowski presented in 1995 a unified, object-centered hierarchi-
cal planning framework for knowledge-based composition of processes for im-
age interpretation and analysis [54]. In their framework named VISIPLAN [55],
problem-solving steps of image processing experts are represented at the knowl-
edge level in terms of goals, tasks, and domain objects and concepts; separated
from the language implementation level [56]. During the first phase of planning,
this knowledge is used for experimentally selecting image processing operators
in an interactive manner. During the second phase, a so-called plan generator
automatically generates an executable plan. The automatically generated plan is
executed based on training images and is manually evaluated by an expert.

Cloudard et al. presented in 1999 a knowledge-based system (called Borg) for
automatic generation of image processing programs [57]. Users describe tasks
to be performed on images and the system constructs a specific plan, which, af-
ter being executed, should yield the desired result. The generation of an image
processing application is considered as the dynamic building of chains through se-
lection, parameter tuning, and scheduling of existing image processing operators.
The authors suggest to use a knowledge-rich resolution model for problem-solving:
First recognize the relevant plan based on expertise modeled in the knowledge and
then adjust its behavior to particularities of the concrete context [58].

Agarwal et al. proposed in 2004 a learning-based approach to detect objects in
still, gray-scale images via a sparse, part-based representation [59]. A vocabulary
of distinctive objects parts is automatically constructed from a set of sample im-
ages of the object class of interest [60]. Subsequently, images are represented using
parts from this vocabulary, together with spatial relations observed among the
parts. Based on this representation, a learning algorithm is used to automatically
learn to detect instances of the object class in new images. Although this work
does not explicitly address the composition of existing image processing operators,
it constitutes indeed an approach for automatically generating image processing
solutions for a particular problem; i.e., object detection in still, gray-scale images.

In 2006, Town proposed a cognitive architectural model for image and video
interpretation [61]. From an AI point of view, the work can be regarded as an ap-
proach to the symbol-grounding problem [62]: Terms in the ontology are grounded
in the data and therefore carry meaning directly related to the appearance of real-
world objects. That is, the proposed approach constitutes a way of bridging the
semantic gap between the signal and symbol level. Furthermore, the paper argues

36

2.4 Related Work

that in order to come closer to capture the semantic essence of an image, tasks
such as feature grouping and object identification need to be approached in an
adaptive goal oriented manner. By only considering those image aspects which
are of value given a particular task, the frame problem is addressed [63]. Again,
the paper does not explicitly focus on automatic generation of image processing
solutions. The proposed concepts, however, might be used in OTF Image Pro-
cessing to realize an “adaptive goal oriented” service specification mechanism as
an additional means for reducing functional discrepancy.

Maillot and Thonnat presented in 2008 an approach for object categoriza-
tion involving the following aspects of cognitive vision: learning, recognition,
and knowledge representation [64]. In their work, visual concepts (e.g., spatial
concepts and relations, color concepts) are contained in an ontology and can be
interpreted as an intermediate layer between domain knowledge and image pro-
cessing operators. Machine learning techniques are then used to solve the symbol
grounding problem (i.e., establish connections between terms in the ontology on
symbol level and concrete data on signal level). The entire approach consists of
two phases. Phase one comprises knowledge acquisition and learning [65]. Knowl-
edge acquisition is done by interaction with an expert of the application domain
and leads to a knowledge base containing expert knowledge in terms of ontology
concepts as well as manually segmented and annotated image samples of domain
objects. Learning is then responsible for filling the gap between ontology concepts
(symbols) and sample images. Phase two corresponds to using the configured sys-
tem for object categorization. Similar to the work of Town [61], the techniques
proposed in this work might be an additional means for reducing the gap between
abstract service descriptions and real functionality, which, in turn, could reduce
functional discrepancy.

The last work we want to mention is the work of Clouard et al. introduced in
2010 [66]. In their paper, they propose an ontology-based model for representing
image processing application objectives consisting of the image processing task
itself as well as the class of images to be processed. They concentrate on image-
to-image transformations and investigate what kinds of information are necessary
and sufficient to design and evaluate image transformation applications. Au-
tomation of the design process, however, is beyond the scope of their paper. The
identified information elements are represented using a computational language
performable by vision systems and understandable by experts. The language is

37

2 Preliminaries

built upon a formulation model that distinguishes the specification of a goal and
the definition of an input image class. The work of Clouard et al. constitutes
indeed a sound basis for ontology-based (or more generally knowledge-based)
description of service functionality in terms of inputs and outputs and will be
addressed in more detail in Chapter 4.

38

3 Use Cases

This chapter introduces three different use cases, which will accompany us
throughout this work in order to

� narrow down the problem addressed in this work to a manageable scope,

� motivate OTF Image Processing concepts in different concrete contexts,

� illustrate formally described OTF Image Processing techniques, and

� experimentally evaluate implemented OTF Image Processing techniques.

From use case to use case, we gradually increase the amount of possible solutions
as well the requirements imposed on the OTF Image Processing techniques. Be-
fore approaching the use cases in particular, however, we take a closer look at the
data-flow and control-flow of image processing applications we intend to compose
in this work. While data-flow, in our context, refers to the specification of how
data is exchanged between services, control-flow refers to the specification of the
execution order of services.

3.1 Data-Flow and Control-Flow

As the name implies, OTF Image Processing deals with the processing of images;
or more generally, with the processing of visual data. Algorithms that process the
data are provided as services having input and output ports. Connections among
these ports define how the data is passed between services in order to realize a
composed service such as service s1 depicted in Figure 2.14 on page 27. That
is, the application logic of a composed solution is defined by a designated data-
flow. For modeling how the data flows in particular during execution, we need a
formalism that allows a sufficiently detailed description of the specific data-flow
behavior in our OTF Image Processing context.

39

3 Use Cases

s4

s5

s6 s3
image

width

result

Figure 3.1: Data-flow graph of composed service s1 from page 27.

3.1.1 Data-Flow Graphs as Execution Model

We first of all introduce the graph-based execution model of data-flow program-
ming languages [67]. In the data-flow execution model of data-flow programming
languages (henceforth simply referred to as data-flow execution model), a pro-
gram is represented by a directed graph [68]. The nodes of the graph are usually
primitive instructions such as arithmetic or comparison operations. Directed arcs
between the nodes represent the data dependencies between the instructions and
can be said to represent a variable. Data flows as tokens along the arcs, which
behave like unbounded first-in, first-out (FIFO) queues [69]. Arcs that flow to-
wards a node are said to be input arcs to that node, while those that flow away
are said to be output arcs. The program is triggered by placing data onto certain
key input arcs. Whenever a specific set of input arcs of a node (called a firing
set) has data on it, the node is said to be fireable. A fireable node is executing by
removing a data token from each node in the firing set, performing the respective
operation, and placing a new data token on some or all output arcs. A data token
that reaches a forked arc gets duplicated and a copy is sent down each branch [67].
In order to preserve determinacy of the token-flow model, it is not permitted to
arbitrarily merge two arcs of flowing data tokens. To enable merging (or forking)
of arcs in a controlled manner, however, special control nodes called gates such
as Merge and Switch gates can be integrated [70].

Let us now apply the presented model to our OTF Image Processing context.
Figure 3.1 shows the corresponding data-flow graph (i.e., the application logic
or the “program”) of composed service s1 depicted in Figure 2.14 on page 27.
The nodes correspond to the involved services. The directed arcs correspond
to the port interconnections and indicate the flow direction between connected
ports. By putting data into the input ports indicated by labels “image” and
“width”, the execution of composed service s1 is triggered. That is, due to the

40

3.1 Data-Flow and Control-Flow

s
s′

s′′

s

s′ s′′

(a)

s s′
s

s′

(b)

Figure 3.2: Multiple output ports of service s are connected to (a) different
services or (b) a single service.

data dependencies, services s4, s5, s6, and s3 are executed in sequence, where
each service is fireable as soon as the necessary data tokens are available at the
associated input arcs. However, since nodes are no primitive instructions anymore,
but represent services that have multiple input and output ports, we have to
carefully distinguish the following cases regarding splitting (fork) and merging
(join) of arcs.

Fork (Multiple Output Ports)

A service s has more than one output port, resulting in multiple output arcs in
the corresponding data-flow graph. The output arcs can be either connected to
multiple services (cf. Figure 3.2a) or to a single service (cf. Figure 3.2b). In any
case, we assume that a service provides data token at each of its output ports.

Fork (Data Duplication)

For the execution to proceed, the data provided by an output port is required
by multiple services (cf. Figure 3.3a). That is, data has to be duplicated. In
Figure 3.1, e.g., the overall input image is required by service s3 as well as service
s4. Furthermore, a combination of data duplication and multiple output ports is

s
s′

s′′

s

s′ s′′

(a)

s
s′

s′′

s

s′ s′′

(b)

Figure 3.3: (a) A single output port is connected to different services.
(b) Combination of data duplication and multiple output ports.

41

3 Use Cases

s
s′

s′′

s

Switch

s′ s′′

Control

Figure 3.4: For the execution to proceed, the data provided by an output port
is required by either one of the connected input ports.

also possible (cf. Figure 3.3b). Unfortunately, the graph-based model does not
allow to clearly discriminate both cases (Figure 3.2a vs. Figure 3.3a).

Fork (Conditional Branch):

For the execution to proceed, the data provided by an output port is required
by either one of the connected services (cf. Figure 3.4). In this case, the data
token must not be duplicated but controlled by a mechanism similar to a Switch
gate node [70]. As a result, the control-flow of a required solution as well as the
composition process becomes more complex. However, in this work, we focus on
composing solutions with simple control-flow, i.e., solutions where every arc in the
data-flow contributes to the result. As a consequence, we do not allow conditional
branches in the data-flow of a composed solution.

Join (Multiple Input Ports)

A service has multiple input ports, i.e., the service requires multiple input vari-
ables for execution (cf. Figure 3.5a). In Figure 3.1, e.g., services s5, s6, and s3

require at least two input variables. This case corresponds to the non-arbitrary
merging case that does not require a controlling mechanism. Furthermore, we
assume that a service requires data at each of its input ports to be fireable; not
just a firing subset.

Join (Controlled Merging)

If a single input port has more than one incoming connection, the incoming
data-tokens have to be controlled in order to avoid arbitrary merging (cf. Fig-
ure 3.5b). However, as mentioned before, we focus on composing solutions with
simple control-flow. As a consequence, we neither allow controlled merging in the
data-flow of a composed solution.

42

3.1 Data-Flow and Control-Flow

Conclusion

We can draw two major conclusions. First, while alternative solutions indeed
exist in the composition phase, a composed service is reduced to exactly one
solution and does not integrate alternative data-flows (e.g., by means of condi-
tional branches). Put another way, we neither compose complex control-flow, nor
do we incorporate complex control-flow patterns by means of a template-based
composition approach [71].

Second, the presented graph-based formalism to model data-flow leads to am-
biguity in the OTF Image Processing context, since some cases that are indeed
different cannot be differentiated at all. For our work, we need a formalism that
allows a more fine grained description of data-flow; i.e., a description on port
level and not on service level. For that reason, we have chosen a Petri net based
formalism. The theory of Petri nets provides an extensively investigated means
for modeling and analyzing concurrent behavior of distributed systems – both
mathematically and graphically [72].

3.1.2 Elementary Net Systems based on Petri Nets

For modeling data-flow and control-flow of services we make use of Elementary
Net (EN) systems [73, 74]. EN systems were introduced as a simple model of dis-
tributed systems based on the theory of Petri nets [75]. An EN system (henceforth
simply referred to as net) is a quadruple

N = (PN ,EN , FN ,m0
N) (3.1)

s

s′
s′′

s s′

s′′

(a)

s

s′
s′′

s s′

Merge

s′′

Control

(b)

Figure 3.5: (a) A service requires multiple input variables for execution. (b) A
service requires an input variable from either one of the connected
output ports.

43

3 Use Cases

where PN and EN are finite disjoint sets of places and transitions, respectively,
FN ⊆ PN ×EN ∪EN ×PN is the flow relation and m0

N ⊆ PN . Any subset of PN is
called a marking of N ; m0

N is called the initial marking. A place in a marking is
said to be marked, or carrying a token. Places are used to denote the local atomic
states called conditions, while transitions are used to denote local atomic changes-
of-states. The entry places of a transition e ∈ EN are called preconditions of e and
are denoted by •e. The exit places of a transition e ∈ EN are called postconditions
of e and are denoted by e•. We assume that no place can be a precondition and
a postcondition of the same transition.

Nets are represented graphically using rectangular boxes to represent transi-
tions, circles to represent places, and arrows leading from circles to boxes or from
boxes to circles to represent the flow relation. Marked places are indicated by a
dot. For example, Figure 3.6c shows the net N1 with

PN1 = {p1, p2, p3, p4, p5},
EN1 = {e1, e2, e3},
FN1 = {(p1, e1), (e1, p2), (p2, e3), (p3, e2), (e2, p4), (p4, e3), (e3, p5)},
m0
N1

= {p1, p2} .

The dynamics of a net are as follows. A state of the entire system consists
of a set of conditions holding concurrently, denoted by a marking mN . We say
that a transition e ∈ EN is enabled at marking mN , if all its preconditions are
in mN while none of its postconditions are; i.e., •e ⊆ mN ∧ e• ∩ mN = ∅. If a
transition is enabled, it can fire, resulting in the new markingm′N = (mN− •e)∪e•.
Roughly speaking, a transition fires by consuming the tokens of its entry places
and creating tokens in its exit places. A firing is atomic and corresponds to a
single non-interruptible step of the entire system.

Basic Control-Flow Patterns

Since we only consider simple control-flow in this work, we only allow the basic
control-flow patterns Sequence, Parallel Split, and Synchronization to be con-
tained in a composed solution (i.e., in the control-flow derived from the composed
data-flow) [76, 77]. Figure 3.6 illustrates each pattern by using the previously in-
troduced net formalism. Transitions represent services. Places are the preceding
and subsequent states that describe when a service can be executed and what

44

3.1 Data-Flow and Control-Flow

p1

e1

p2

e2

p3

(a) N1: Sequence

p1

e1

p2

e2

p3

p4

e3

p5

(b) N2: Parallel Split, Fork

p5

e3p4

p2

e1

e2

p1

p3

(c) N3: Synchronization

Figure 3.6: Nets N1, N2, and N3 of supported control-flow patterns.

the consequences of its completion are [78]. The tokens that flow through a net
signify control-flow.

The Sequence pattern specifies that a service is enabled after the completion
of a preceding service. The Parallel Split pattern represents the divergence of a
branch into two or more concurrent branches. The Synchronization pattern rep-
resents the convergence of two or more branches into a single subsequent branch
such that the flow of control continues when all input branches have been enabled.

Remark. We do not take multi-tenancy into account in our models. That is, we
do not consider that composed services may be simultaneously invoked multiple
times. For the time being, we intentionally assume that a composed service can
only be invoked again after it finished its previous execution.

Data-Flow as Elementary Net Systems

A data-flow net models the exchange of data between output and input ports
of services and the consumption and production of data performed by services.
While transitions correspond to services and data-duplication processes, places
correspond to input and output ports of services. Connected ports share the
same place. In a case where data has to be duplicated (i.e. where one output
is connected to several input ports), the connected ports do not share the same
place, but are connected via a data-duplication transition. Tokens represent the
data that is flowing through a net. The flow relation defines the flow direction of
the data. For the sake of completeness, Figure 3.7 shows the corresponding net
representations of all supported data-flow cases described in Section 3.1.1. As we
can see, in terms of the net formalism, there is no more ambiguity, but all case
(whether fork or join) can be clearly distinguished.

Each data-flow net implies the control-flow for executing a composed solu-
tion. That is, a dependence graph can be derived according to the dependencies

45

3 Use Cases

s
s′

s′′
s

s′

s′′

(a) Multiple output ports with multiple subsequent services.

s s′ s s′

(b) Multiple output ports with a single subsequent service.

s
s′

s′′
d

s′

s′′

s

(c) Data duplication for multiple subsequent services. Transition d represents the
copy process for duplicating the data.

s
s′

s′′ d

s′

s′′

s

(d) Multiple output ports and data duplication for multiple subsequent services.
Transition d represents the copy process for duplicating the data.

s

s′
s′′ s′′

s

s′

(e) Multiple input ports with multiple preceding services.

Figure 3.7: EN system based representation of the supported data-flow fork
and join cases described in Section 3.1.1.

46

3.1 Data-Flow and Control-Flow

between services defined by shared places and the data-duplication transitions,
respectively [79]. A dependence graph, in turn, implies either a deterministic
control-flow or a non-deterministic control-flow. A deterministic control-flow cor-
responds to a designated sequential execution order, while a non-deterministic
control-flow contains (real) concurrency and yields multiple valid sequential ex-
ecution orders. However, by exploiting this inherent concurrency, concurrent
branches can be executed in parallel to optimize performance without influencing
the functionality of the composed service. Optimizing performance, however, is
beyond the scope of this thesis.

3.1.3 Three Classes of Composed Solutions

We differentiate between three classes of solutions with respect to data-flow,
control-flow, and the relationship between them, and use this classification as
one discriminating feature for our three use cases.

Remark. Please note that the existence of data-duplication transitions does not
influence the classification of a composed solution, since data-duplication tran-
sitions do not influence the relative execution order of services in a composed
solution. For that reason we explicitly exclude this type of transitions in the
following considerations.

I. Data-Flow ↔ Control-Flow

The composed data-flow implies a deterministic control-flow that only contains
the Sequence pattern. Furthermore, the data-flow is simple enough to be re-
constructed given only the control-flow. That is, a distinct data-flow implies a
distinct control-flow and vice versa.

Figure 3.8a shows an exemplary composed service, where each service receives
exactly one data token from its predecessor. A typical example is a chain of
preprocessing algorithms for gradually transforming an image. Each algorithm in
the chain requires a single image and produces a result image. The corresponding
yet trivial data-flow depicted in Figure 3.8b leads to the dependence graph shown
in Figure 3.8c and the control-flow shown in Figure 3.8d. Regarding the structure
of the elementary net systems, both data-flow and control-flow are identical –
albeit the semantics of the places are not the same, of course. Nevertheless, the
data-flow can be completely reconstructed from the control-flow.

47

3 Use Cases

s8 s9 s10

(a) Services and Port Interconnections

s8 s9 s10

(b) Data-Flow

s8 s9 s10

(c) Dependence Graph

s8 s9 s10

(d) Control-Flow

Figure 3.8: Class I: The data-flow yields a deterministic control-flow, while the
data-flow can be reconstructed given the control-flow.

s4

s5

s6

(a) Services and Port Interconnections

s4

s5

s6

(b) Data-Flow

s4 s5 s6

(c) Dependence Graph

s4 s5 s6

(d) Control-Flow

Figure 3.9: Class II: The data-flow results in a deterministic control-flow, but
cannot be reconstructed given the control-flow.

II. Data-Flow → Control-Flow

The composed data-flow implies a deterministic control-flow that only contains
the Sequence pattern. In comparison to the previous class of solutions, however,
the data-flow is too complex to be reconstructed given only the control-flow. That
is, different data-flows imply the same control-flow.

Have a look at Figure 3.9, which addresses (for the sake of clarity) an excerpt
of the composed service that is depicted in Figure 2.14 on page 27. Figure 3.9a
shows the excerpt containing services s4, s5, and s6, and the associated port
interconnections. The elementary net system depicted in Figure 3.9b models
the corresponding data-flow. The dependence graph in Figure 3.9c defines the
dependencies between services s4, s5, and s6 according to the data-flow. The
dependence graph implies exactly one valid control-flow: The sequential execution
of services s4, s5, and s6 as shown in Figure 3.9d.

48

3.2 Thumbnails for an Online Photo Gallery

s11

s12

s13

s14

(a) Services and Port Interconnections

s11

s12

s13

s14

(b) Data-Flow

s11

s12

s13

s14

(c) Dependence Graph

s11

s12

s13

s14

(d) Control-Flow

Figure 3.10: Class III: The data-flow implies a control-flow with concurrency.

III. Data-Flow Control-Flow

The composed data-flow is complex and leads to a non-deterministic control-flow
that contains concurrency and includes all three introduced patterns.

Have a look at Figure 3.10 for an example. Figure 3.10a shows the elementary
services and port interconnections of a composed solution that separates a color
image into its three channels. The first and third channel are processed inde-
pendently of each other. The second channel remains unchanged. The channels
are finally merged again by service s14. Figure 3.10b shows the corresponding
data-flow in terms of an elementary net system. Based on the derived depen-
dence graph depicted in Figure 3.10c, the non-deterministic control-flow depicted
in Figure 3.10d can be derived. Regarding the functionality, however, it does not
matter if service s12 is executed before service s13, after s13, or simultaneously.

3.2 Thumbnails for an Online Photo Gallery

This use case represents a typical scenario when a user wants to publish a set of
photos (e.g., taken during a holiday trip) in an online photo gallery. In addition to
the actual photos in terms of high-resolution images, preview images – so-called
thumbnails – are usually required for providing a compact overview of all available
photos. In comparison to the high-resolution images, thumbnails are significantly
smaller; both with respect to image size and with respect to file size.

49

3 Use Cases

(a)

(b) (c)

Figure 3.11: (a) Original images, (b) desired, and (c) undesired thumbnails.

?
image I

width w

height h

image IT

Figure 3.12: Required: A composed service that creates an undistorted
thumbnail image IT with size w × h based on image I.

3.2.1 Required Functionality

High-resolution images (cf. Figure 3.11a) have to be resized in order to use them
as thumbnails (cf. Figure 3.11b) for an online photo gallery. The original images
may have different sizes in terms of width and height and consequently different
aspect ratios as well. The thumbnails, however, shall all have the same size and
aspect ratio. For reuse purpose, the width and height values are not fixed, but will
be provided as input values during the execution phase. Furthermore, the content
of an image must not be distorted by changing the aspect ratio (cf. Figure 3.11c),
but has to be cropped to achieve the desired aspect ratio. Figure 3.12 summarizes
the required functionality.

50

3.3 Color-based Segmentation

3.2.2 Characteristics

We restrict the solution space to those solutions that belong to the second class;
i.e., to composed services, where data-flow implies only one valid deterministic
control-flow. Furthermore, since image resizing usually only affects hard proper-
ties such as width and size of an image, this use case does not suffer from ambiguity
due to abstraction and data-dependency. That is, subsymbolic techniques such
as feedback-based learning (cf. Section 2.3.3) for making decisions beyond the
symbol level are not required. As a result, this use case is the least extensive one.
It is, however, predestined for demonstrating our formal service models and will
be used to illustrate the automated composition process on symbol level.

3.3 Color-based Segmentation

In human perception, the perception of color constitutes a very salient quality:
Color significantly improves the perceptual organization of the environment [80].
Put another way, color facilitates the distinction of objects in the environment.
This extends to machine processing, where color represents a significant means for
recognizing and distinguishing objects. In the area of advanced driver assistance
systems, e.g., traffic signs are detected and classified, among others, based on their
colors. Furthermore, when designing a scenario or an application, the concept of
color can be actively exploited. In Section 2.1.3, e.g., we introduced a real-world
example from the robotics domain that makes explicit use of color in order to
facilitate the recognition and classification of scenario-relevant objects. That is,
colors were well-chosen for scenario-relevant objects to facilitate a robust object
detection.

3.3.1 Concrete Context

In our previous work, we developed a stationary, marker-based localization system
for small robots [19]. Eight cameras are mounted upside down under the ceiling
in order to monitor the area on which robot experiments are conducted. On each
robot, a unique marker is attached. A marker consists of a multi-colored circle
and is divided into six arcs of equal size (cf. Figure 3.13a). One arc has a fixed
color for determining the orientation of a robot. The remaining five arcs encode
the id of a robot. The center of the marker is covered by a solid red circle and

51

3 Use Cases

(a) Marker (b) Original Image (c) Segmented Image (d) Color Classes

Figure 3.13: A marker was (a) designed, printed, and (b) captured in a
camera image. The image was subsequently (c) processed by a
segmentation algorithm. The extracted regions can now be
classified according to (d) predefined color classes.

serves as an additional recognition feature for facilitating the detection process.

In the latest version, a distributed image processing system takes care of captur-
ing and processing images. First, an original image (cf. Figure 3.13b) is processed
by our color-based segmentation algorithm to identify areal regions of similar color
(cf. Figure 3.13c) [3, 4]. Subsequently, the detected regions are classified accord-
ing to predefined color classes (cf. Figure 3.13d). Based on the classified regions, a
final object detection step constructs potential markers and matches them against
a database that associates color combinations with unique ids. Successfully clas-
sified markers are subsequently used by a localization system to determine the
associated robots’ positions in the environment.

The entire design process of the image processing system, however, was very
time consuming. On the one hand, colors have to be sufficiently well distinguish-
able – although they are printed on paper and captured by a camera. Take a look
at Figure 3.13c and Figure 3.13d. If colors differ only slightly for whatever reasons
(poorly chosen colors, bad printing quality, inconvenient illumination conditions,
poorly adjusted camera, etc.), the segmentation process might merge adjacent
arcs into a single region. Moreover, subspaces of predefined color classes might
overlap, leading to ambiguous classification results. On the other hand, even if
all conditions for a good image processing result were met, the image processing
algorithms themselves might still be poorly chosen. Either way, the localization
process will be hampered, unless all processes are well-matched during the design
phase.

So how to support this time consuming process by means of OTF Image Pro-
cessing techniques? Inspired by an evaluation study from our previous work [16],

52

3.3 Color-based Segmentation

(a) (b) (c)

Figure 3.14: Synthetic color palette (a) was (b) printed and captured by a
camera and (c) segmented according to the different colors.

?image I
areal
regions RA

Figure 3.15: Required: A composed service that processes an image I and
returns areas of adjacent pixels with similar color as a set of
statistically described areal regions RA.

we came up with the following approach. First of all, a palette of color candi-
dates is designed and printed (cf. Figure 3.14a). Afterward, images of the printed
palette are captured by means of the target camera in the target environment
(cf. Figure 3.14b). These images are then used for automatically composing a se-
quence of image processing services, that can separate the different colors as good
as possible (as, e.g, shown in Figure 3.14c). The necessary evaluation step for
determining the quality of the composed solution corresponds to the rating step
in the OTF Computing framework. The rating mechanism, however, is beyond
the scope of this chapter and will be elaborated in detail later on.

3.3.2 Required Functionality

The required solution has to i) process a color image and ii) extract areal regions
consisting of adjacent pixels with the same “synthetical” color (cf. Figure 3.15).
A composed solution may include preprocessing steps, e.g., for compensating
imbalanced illumination or reducing image noise. The returned regions have to
be statistically described in terms of moments as required by the marker detection
algorithm in the production system.

53

3 Use Cases

3.3.3 Characteristics

We restrict the solution space to composed services where the data-flow is simple
enough to be reconstructed from a sequential control-flow. In contrast to the first
use case, this use case additionally deals with ambiguity due to abstraction and
data-dependency. That is, the description of required functionality and function-
ality of available services largely bases on soft properties, while the concrete result
heavily depends on the concrete image. This use case is convenient for demon-
strating the effect of functional discrepancy and for illustrating and evaluating
our proposed techniques that weaken the effect.

3.4 Motion-based Object Detection

Context-sensitive systems that rely on cameras as sensors are usually applied to
very specific environments. If knowledge about the target environment is available
in advance, the effort for obtaining appropriate visual data can be significantly
reduced: Task relevant information can be extracted by highly specialized algo-
rithms. Roughly speaking, since you know what you are looking for, you can
better concentrate on how to look for it. But what to do if such foreknowledge
is only sparsely available or totally lacking? In the latter and apparently worst
case, no specific object attributes such as color or shape are known in advance.

A small excursion into the animal world gives a hint of how to overcome this
problem. Many animals ensure their survival by remaining in total motionlessness
whenever natural enemies are nearby [80]. As long as the animal does not move,
it is invisible for its enemy. A mouse, e.g., completely freezes in place, when a cat
approaches. By doing so, the mouse tries to avoid to be classified as perceptible
object in the cat’s mind. This detection mechanism is known as the perceptual
organization of visual elements based on motion perception [81].

Assuming that – in the image processing domain – operations are not only
applied to a single image but a sequence of consecutive images, objects can be
detected based on their change over time. In our previous work, we proposed a
universal tracking algorithm that identifies correspondences between regions of
consecutive images [20] and a motion-based classification approach for automat-
ically clustering regions that might belong to the same object of interest [21].
How regions are extracted and what kind of visual primitives they correspond to,
however, is not fixed, but depends on the image processing task at hand. For that

54

3.4 Motion-based Object Detection

Image
Sequence ? Moment

Computation

Tracking Motion-based
Classification

Object
Detection

image
regions

(raw pixel data)

regions
(moments)

regions
(moments,

motion vector)

classified regions
(moments,

motion vector)
detected
objects

Figure 3.16: Overview of the entire image processing solution. For the missing
image processing step, a service-based solution shall be
automatically composed.

reason, this use case addresses the problem of automatically composing an image
processing solution that provides these regions as input for the entire approach.

3.4.1 Concrete Context

Figure 3.16 shows all image processing steps that are involved in this use case
as well as the corresponding input and output data. However, before going into
detail regarding the required functionality, we briefly describe the entire sequence
of image processing steps and present two exemplary results.

The basis for motion-based object detection is a sequence of original images;
that is, a set of consecutive images from the same scene with enough overlap to re-
recognize visual primitives and to establish correspondences among them. If, e.g.,
a camera is used for image acquisition, the frame rate has to be sufficiently high
in order to detect moving objects. Furthermore, if the camera is not stationary
but moves in the environment, its motion speed must not be too high depending
on the applied frame rate, while the direction must not change erratically but
smoothly.

Each original image is processed by the image processing step to be composed.
The result of this processing step is a set of regions (visual primitives) represented
in terms of raw pixel data. Subsequently, the raw pixel representation is trans-
formed in a more abstract but uniform description in terms of two-dimensional
discretized moments up to and including second order [35]. By doing so, different
types of visual primitives can be tracked in a consistent manner. In fact, the

55

3 Use Cases

(a) Straight line (b) Spline (c) Contour (d) Area

Figure 3.17: Different types of visual primitives and their image ellipses.

universal tracking algorithm can even handle a combined set of different types, as
long as they are statistically described in terms of the mentioned moments. Fig-
ure 3.17 shows different visual primitives and the statistically equivalent image
ellipses derived from the moments [20]. The tracking algorithm itself detects and
establishes correspondences among regions of consecutive images. A region’s mo-
tion is then interpreted as the trajectory of its center of mass in the image plane.
The algorithm assigns a motion vector to each tracked region as a quantitative
representation of the displacement of the region’s center of mass in relation to the
passed time.

The tracked regions (i.e., the regions that possess a motion vector) are passed
on to the motion-based classification step. By combining concepts of the human
perception with techniques belonging to the area of cluster analysis, the classifi-
cation algorithm gradually abstract the visual data in order to separate regions,
whose motion is caused by the sensor motion, from regions, that possibly belong
to dynamic objects in the environment [21]. The latter class of regions is then
used for a final object detection step, e.g., by combining regions that are close
together and have a very similar motion vector.

Figure 3.18 shows exemplary results of two different problem domains. In
both cases, visual primitives were provided in terms of points [82] and areas
(extracted by means of our color-based segmentation algorithm [3, 4]). Green
boxes (in Figures 3.18a and 3.18c) represent the bounding boxes of regions that
were classified as sensor motion, whereas red boxes represent potentially dynamic
objects. Arrows correspond to the region’s (averaged) motion in the image plane.
Dots indicate that no motion in the image plane was present at all. Regions
that were assigned to the same dynamic object during the object detection step
are highlighted in yellow in Figures 3.18b and 3.18d. A yellow ellipse with thick
border represents the combined set of all associated regions; i.e., the object of
interest.

56

3.4 Motion-based Object Detection

(a) (b) (c) (d)

Figure 3.18: Results of the motion-based object detection approach for two
different problem domains.

In the first scenario shown in Figures 3.18a and 3.18b, the camera was moved
to the right, while the marker was moved exactly the same. As a result, the
marker’s associated regions show no motion in the image plane. In the second
scenario shown in Figures 3.18c and 3.18d, the camera was moved forward, while
a ball rolled through the scenery. In both cases, our motion-based object de-
tection approach identified the objects of interest based on their motion, which
stood out against the actual sensor motion – at least in the depicted snapshots.
While processing the entire sequences of images, however, there were also a lot
of misperceptions: Dynamic objects were identified, although no real dynamic
objects were present (false positive). The results might have been more accurate,
if the provided regions were chosen more specifically; that is, if the algorithms for
extracting regions were selected and adjusted according to the characteristics of
the problem domains.

3.4.2 Required Functionality

The required service-based solution must i) process an original image to extract
visual primitives and ii) provide extracted visual primitives as a set of regions
(cf. Figure 3.19). The regions must be represented in terms of raw pixel data that
can be used as basis for computing the required statistical representation. For

?image I regions R

Figure 3.19: Required: A composed service that processes and image I,
extracts visual primitives represented as raw pixel data, and
returns them as a combined set of regions R.

57

3 Use Cases

image

areas

image

points

R1

R2

R1 ∪R2
image I regions R

Figure 3.20: Possible solution for the required functionality.

example, the composed solution may incorporate

� one or more preprocessing steps for improving the original image,

� independent algorithms for extracting different visual primitives such as
points, lines, and areas, as well as

� a merging mechanism that combines all independently extracted visual
primitives into a single set of regions.

Of course, any valid combination of the previously mentioned elements also rep-
resents a possible solution. For example, the solution depicted in Figure 3.20
corresponds to the realization that was applied in the previously mentioned ex-
amples. In the end, however, the set of possible solutions depends on the concrete
service pool that is available during the composition process.

3.4.3 Characteristics

The required solution for this use case is not restricted to a plain sequence of
services, but can contain multiple concurrent branches. As a consequence, we
consider this use case to be the most complex one. In fact, image resizing and
color-based image segmentation can be considered as subproblems of this use case.
That is, image resizing could be incorporated for reducing the size of the original
images before processing them (e.g., in order to reduce the computational effort).
Color-based image segmentation, in turn, is one possible means for extracting
areal regions and represents one possible branch in the composed solution.

Due to its complexity, this use case is predestined for investigating the current
capabilities as well as limitations of OTF Image Processing in a bigger context.
Symbolic approaches ensure automatic composition of complex solutions that are
valid and can be executed. Feedback-based learning (cf. Section 2.3.3), in turn,

58

3.5 Summary

provides means to refine the solutions according to the concrete problem domain
beyond the symbolic level. This last use case does not only take ambiguity due to
abstraction explicitly into account, but also deals with a vast variety of realization
possibilities, whereas the appropriateness of a solution heavily depends on the
concrete problem domain.

3.5 Summary

As a summarizing overview, Table 3.1 compares our use cases based on the fol-
lowing factors:

Solution Classes denote the classes of composed solutions as described in Sec-
tion 3.1. Roughly speaking, class I contains solutions that correspond to
plain sequences (chains) of services; both with respect to data-flow and
control-flow. Class II contains solutions that have a sequential control-flow.
The data-flow, however, is more complex. Last but not least, class III con-
tains solutions with complex data-flow and a more complex control-flow
structure (i.e., concurrent branches).

Ambiguity indicates whether ambiguity due to abstraction and data-dependency
occurs in the composition process. If no, a purely symbolic approach is
sufficient to solve the composition problem. If yes, service composition has
to be additionally considered on the subsymbolic level, e.g., by applying
feedback-based learning (cf. Section 2.3.3).

Evaluation indicates whether a concrete example from the use case will be used
to evaluate the entire approach. In this context, experimental evaluation in-

Table 3.1: Comparison of our three uses cases.

Use Case Id Solution Cl. Ambiguity Eval.

Thumbnails for
Photo Gallery

Thumbnails II no no

Color-based
Segmentation

Segmentation I yes yes

Motion-based
Object Detection

Object Detection II + III yes yes

59

3 Use Cases

cludes setting up an evaluation framework, providing appropriate services,
selecting a symbolic composition algorithm, integrating a feedback-based
learning algorithm, and designing a rating mechanism for feedback quanti-
zation.

60

4 Symbolic Service Composition

This chapter addresses the composition phase of the OTF Computing framework
(cf. Figure 4.1) and introduces techniques for a purely symbolic composition pro-
cess that can be applied in our use cases [22]. The integration of feedback as
part of a learning process, however, is beyond the scope of this chapter and is
introduced in Chapter 6.

For automating the symbolic service composition process, we first of all present
a knowledge-based approach for formally specifying required functionality (re-
quests) as well as provided functionality (services). Based on the knowledge-based
specification mechanism, we then apply a planning-based composition algorithm
to automatically generate composed services. To gradually reduce the set of
candidate services for a single composition step, we propose a multi-step service
discovery approach. To get an overview of what lies ahead, we briefly describe
the components depicted in Figure 4.1.

Request: A request contains an IOPE-based description (i.e., input ports, out-
put ports, preconditions, effects) of the required functionality. Precondi-
tions and effects describe the required functional behavior in terms of a
knowledge-based (symbolic) description of the input and output ports. In
fact, preconditions and effects are sets of monadic and binary first-order
logic predicates, which are organized as concepts and relations in a data
ontology. Furthermore, a request contains a set of propositions that corre-

Composition
Request

Composed Service

Discovery Request

Candidate Services

Loop

Discovery

Figure 4.1: OTF Image Processing - Symbolic Service Composition.

61

4 Symbolic Service Composition

spond to concepts of a task ontology. Roughly speaking, the propositions
provide a rough description of how the composed solution should achieve
the specified behavior.

Candidate Services: Candidate (or elementary) services are black boxes, which
are described based on their inputs and outputs and their functional be-
havior. The applied specification formalism is identical to the IOPE-based
formalism for specifying requests. A detailed description of their internal
behavior is not available. As a rough description beyond the IOPE-based
description, however, candidate services underlie a hierarchical classifica-
tion according to the image processing tasks they accomplish. The class
hierarchy corresponds to the concept hierarchy in the task ontology.

Composed Service: A composed service consists of nodes (or service calls) as
instances of services, a data-flow that defines the internal behavior (i.e., the
data-flow between the nodes’ ports), and a control-flow. The data-flow and
the control-flow are modeled as nets.

Composition Process: The composition problem is modeled as state-based plan-
ning problem. The preconditions and effects specified in the request define
the initial state and the goal state, respectively. The composition algorithm
corresponds to an uninformed forward search algorithm that iteratively con-
structs a composed service (the required data-flow) by identifying, select-
ing, and applying candidate services until the current state satisfies the goal
state.

Discovery Request: A discovery request contains the current state of the com-
position process. To guide the discovery process or restrict the set of candi-
date services, the discovery request also contains a set of task concepts that
indicate classes of image processing tasks to be accomplished.

Discovery Process: The discovery process works in two steps. First, possible
service candidates are identified according to their task classification and
based on the task concepts in the discovery request. Second, the identified
service candidates are matched against the state information in the discovery
request to identify those candidate services that can be actually applied in
the current state.

62

4.1 Knowledge-based Specifications

4.1 Knowledge-based Specifications

Knowledge is understanding of a subject area [83]. It includes concepts and facts
about that subject area, as well as relations among them. For our knowledge-
based specification of image processing functionality, we first of all need a basic
concept for a body of knowledge and a corresponding vocabulary in terms of an
ontology.

Remark. For the sake of both completeness and clarity, the next sections provide a
broader overview including principles that are not necessarily required for solving
our particular use cases. By doing so, however, we emphasize the challenges
that inevitably emerge when applying purely symbolic composition techniques.
Furthermore, please note that realizing a comprehensive ontology is beyond the
scope of this thesis. Whenever necessary, however, we present excerpts of this
“assumed” ontology, while consistently following the principles we propose in the
following sections.

4.1.1 Body of Knowledge

Our proposed knowledge-based approach for specifying services and requests is
heavily inspired by the work of Clouard et al., who propose an ontology-based
model for representing image processing application objectives [66]. Similar to
their work, we assume that an image processing application is tailored to a given
image processing goal and visual input data. Automatically composing image
processing applications cannot be done without an explicit representation of the
goal, since the problem domain data is not entirely included in the visual input
data, due to two major reasons. First, visual data is intrinsically incomplete,
since the associated image is an underconstrained representation of a scenery.
Second, image content does not make sense by itself, but needs a subject matter
to allow the distinction between relevant and irrelevant information. In contrast
to the work of Clouard et al., however, an image processing goal in our work does
not only include a description of the task to be solved, but also a description of
visual output data. This extension is crucial to enable automated composition of
executable image processing functionality.

63

4 Symbolic Service Composition

(sub)task (sub)task

task

visual
data

visual
data

visual
data

Figure 4.2: Elements that are part of an image processing functionality
description in our work.

Fundamental Concept

Figure 4.2 depicts the fundamental elements that are considered for describing
required and provided image processing functionality. Both required and provided
functionality are nothing but image processing objectives that are merely viewed
from two different perspectives. As a consequence, we describe both in exactly
the same way, i.e., by describing (i) the visual input data (e.g., an image), (ii)
the visual output data (e.g., regions), and (iii) the task that transforms (i) into
(ii). A task may be composed of several subtasks, where the visual output data
of one subtask corresponds to the visual input data of another subtask. Each
subtask (i.e., each sub-objective), however, is again described in terms of the
three mentioned elements.

Hard and Soft Properties of Visual Data

Visual data is usually described in terms of hard and soft properties. Hard prop-
erties may be considered as attributes of the data type (e.g., dimensions or color
space of an image). Soft properties such as color or structure, in turn, may be
considered as attributes of the visual information that is embedded in the data.

As an illustrative example, let us consider the following process: The RGB
image shown in Figure 4.3a is transformed to a gray-scale image (cf. Figure 4.3b)
and subsequently transformed back to an RGB image (cf. Figure 4.3c). In the
first step, the value of the hard property Color Space switches from RGB to
Gray-Scale. In the second step, the value switches back to RGB. That is, after
the process, the hard property has the same value as before. The actual data of
the image (i.e., the visual information), however, is not the same as before. In
the first step, the data is modified to contain only gray-scale pixels. The second
step has no effect at all, since the color information was already lost in the first
step.

64

4.1 Knowledge-based Specifications

(a) RGB (b) Gray-Scale (c) RGB

Figure 4.3: RGB image (a) is transformed to (b) a gray-scale image and
transformed back to a (c) RGB image.

A soft property that reflects this issue is the Color Distribution of an image.
It can be quantitatively described in terms of a color histogram [29] (see also the
related histograms in Figure 4.3). To describe color distribution on the symbolic
level, characteristic manifestations of histograms can be encoded as qualitative
(symbolic) values. For example, the histogram in Figure 4.3a implies that the
corresponding RGB image is indeed Colored, while the histogram in Figure 4.3c
implies that the corresponding RGB image is Gray. To sum it up: Symbolic
values of soft properties are qualitative interpretations of quantitative properties.

Flexible Description of Visual Data

For describing visual data, we generally propose to follow the phenomenological
hypothesis [84]. That is, describing visual data does not have the purpose to
describe the corresponding scenery in its physical reality, but only the way it is
perceived through the visual data. As a consequence, the description of data can
be reduced to a denotation of visual clues, while it is not necessary to represent
ontological knowledge about the entire problem domain. For example, the real
object “single-colored ball” in an image can be reduced from the phenomenological
point of view to a single-colored circle or ellipse.

Visual clues (henceforth referred to as definition elements) are basic elements
that are used to describe classes of visual data such as images or regions in more
detail. Roughly speaking, a description of visual input or output data corresponds
to a collection of definition elements, whereby a single definition element reflects
either a hard or a soft property. Each definition element has one or more pre-

65

4 Symbolic Service Composition

(a)

Ground Background Marker

Ball Pylone

in front of

above in front of

in front of
in front of,

above

right of,
behind

(b)

Figure 4.4: (a) Example image and (b) an exemplary description of relations
between existing objects of interest.

defined descriptors. A single descriptor is assigned either a predefined constant
or a variable. This approach facilitates a flexible description with high granular-
ity, without the necessity to enumerate all theoretically possible manifestations
of visual data in advance.

Input and output image classes, e.g., can be described in terms of definition
elements on three different levels: (1) the physical, (2) the perceptive, and (3)
the semantic level [66]. The physical level focuses on the characterization of the
acquisition system effects on the images, e.g., image noise or inhomogeneous il-
lumination. The perceptive level focuses on the description in terms of visual
primitives such as areas, lines, or points without any reference to objects of inter-
est. The semantic level is focused on the objects of interest that are described by
their individual intrinsic characteristics or by their spatial relations. Hard prop-
erties can only be found on the physical level, since both the perceptive level and
the semantic level do not address the data type, but – per definition – the visual
information embedded in the actual data.

By way of illustration, let us consider an exemplary description of the image
depicted in Figure 4.4a. Keep in mind, that the image represents in fact a class
of images, which we want to describe. Table 4.1 lists a collection of definition
elements with associated descriptors and values for all three mentioned levels.
While most of the values are predefined constants, the values for width and height
correspond to variables. Roughly speaking, this means that the corresponding
image class has a width and a height attribute. The concrete values, however, are
either not known in advance, or not provided on purpose, e.g., in order to keep
the description as abstract as possible. The spatial relations between the objects
of interests are defined in Figure 4.4b; strictly following the phenomenological

66

4.1 Knowledge-based Specifications

Table 4.1: The image depicted in Figure 4.4a is described on three levels.

Level Object of
Interest

Definition
Element

Descriptor Value

Semantic Background area texture no-texture
Ground area texture complex
Marker area shape circle
Ball area shape circle
Pylone boundary nature homogeneous

regions

Perceptive areas texture no-texture
areas shape circle
edges contrast medium
edges shape straight

Physical colorimetry color space RGB
noise distribution gaussian
illumination spatial homogeneous
geometry width w
geometry height h

hypothesis. That is, relations such as above or right of represent the spatial
relations in the image plane and not in the scenery.

Predefined Task Taxonomy

For describing tasks, we propose a different approach. Tasks are not explicitly
described regarding their characteristics, but correspond to classes in a task tax-
onomy. For example, Smoothing would be a subclass of Preprocessing, while
ColorSegmentation would be a subclass of Segmentation and a sibling of Thresh-
olding.

As an extension to this rather inflexible classification concept, task descriptions
may be refined by adding a task-related network of constraints (i.e., optimization
criteria, levels of detail, performance criteria, and quality criteria) to account for
more precise requirements [66]. Furthermore, reference images may supplement
the specification of the task by providing examples of expected results and con-
sequently anchoring the task in the concrete data (symbol grounding). In this
work, however, we do not take such extensions into account.

67

4 Symbolic Service Composition

Data Ontology and Task Ontology

An ontology is an explicit specification of a conceptualization [85]. The term
“ontology” is borrowed from philosophy, where the term “ontology” refers to “a
particular theory about the nature of being or the kinds of existence” [86]. For
AI systems, the ontology of a certain domain is about its terminology (domain
vocabulary), all essential concepts in the domain, their classification, their tax-
onomy, their relations (including all important hierarchies and constraints), and
domain axioms [87].

We neglect a more detailed introduction of ontologies, but concentrate on the
pragmatical aspect that is fundamental for our work: An ontology provides a com-
mon vocabulary for our knowledge-based specification of services and requests.
For the sake of clarity, however, we treat this ontology as two separate ontologies.
That is, we assume a data ontology OD to provide the vocabulary for flexibly
describing visual data in terms of definition elements, while a task ontology OT
defines the required taxonomy of tasks.

For operationalizing an ontology, the Web Ontology Language (OWL) [88, 89]
can be used. OWL is an Resource Description Framework (RDF) [90] language
developed by the World Wide Web Consortium (W3C) for defining ontology con-
cepts and relations and is a well established standard for defining semantic web
schemas, while tools and API support are rapidly expanding [91]. OWL itself
is broken into three sub-languages of increasing complexity and expressiveness:
OWL-Lite (the simplest), OWL DL (where DL stands for Description Logic),
and OWL Full. OWL Lite was originally intended to facilitate the definition
of classification hierarchies such as our task ontology. OWL DL, in turn, was
designed to provide the maximum expressiveness possible while retaining com-
putational completeness and decidability. Clouard et al., e.g., used OWL DL
to operationalize their proposed image class definition ontology [66]. It is also
well suited for operationalizing our data ontology. In this context, a commonly
used tool for creating and maintaining OWL-based ontologies is Protégé, which
is developed at the Stanford Center for Biomedical Informatics Research at the
Stanford University School of Medicine [92].

68

4.1 Knowledge-based Specifications

Real World

Body of Knowledge

Ontology

Service
Specification

Request
Specification

Composition

Figure 4.5: General components of the knowledge-based specification process.

Discussion and Assumptions

Before formalizing our specification approach, let us recapitulate what we have
presented so far and briefly discuss open challenges. Figure 4.5 shows the general
components of the knowledge-based specification process, beginning in the real
world and resulting in the composition process.

Until now, we covered the body of knowledge and proposed a concept for a data
and a task ontology. The body of knowledge is generated by deriving abstract
facts from the real world. Abstraction, however, inevitably introduces distortion
between the real world and the generated facts. That is because abstraction
leads by definition to loss of information. Furthermore, it is hardly possible to
fully grasp all necessary information in advance, even if this step is performed by
experienced domain experts.

Further distortion occurs when operationalizating an ontology. A knowledge
engineer usually attempts to elicit knowledge from the domain expert. The engi-
neer, however, may not have sufficient knowledge of the domain, while the expert
may not be able to fully explain elements of the domain. As a result, an in-
complete or partially wrong ontology is constructed [86]. Even if human errors
are eliminated, the ontology might still lack more complex relationships that are
essential for an automated composition process but cannot be fully grasped in
advance.

Remark. We will indeed experience this issue in the remainder of this chapter
(cf. Section 4.3). To facilitate a clearer understanding, however, we will neither
discuss the concrete circumstances nor propose necessary counter-measures until
the fundamental composition process was introduced.

For specifying the functionality of requests and services, appropriate concepts
have to be selected from the operationalized ontology. If concepts are not well

69

4 Symbolic Service Composition

chosen or a specification is too detailed, a service might not be selected although
it actually covers a desired functionality. If a service specification, in turn, is
too sparse, the service might be selected in a wrong context. Furthermore, if
service and request specifications are not well-matched, an automated composition
process can hardly be achieved.

In fact, distortion can occur among all processes that are necessary to generate
machine interpretable specifications. Reducing this kind of distortion, however, is
beyond the scope of this thesis. In our work, we focus on the three particular use
cases introduced in Chapter 3. That is, we neither intend to develop a generally
valid specification approach, nor do we claim that our proposed approach can be
simply transferred to other image processing problem domains without any further
adjustments. For the remainder of this work, we make the following assumptions:

� The description of visual input and output data is kept as sparse as possible
and as comprehensive as necessary – for each use case in particular.

� Images are only described on the physical and perceptive levels. The se-
mantic level is not considered.

� Service and request specifications are well-matched and are not influenced
by distortion; except for distortion by abstraction.

� The specification process is manually performed by a human. We do not
consider existing approaches such as automatic image annotation tech-
niques [93] for automating the specification process.

4.1.2 Service and Request Specification

Let us now formalize the service and request specifications. In order to facilitate
AI planning techniques as means for automated service composition, we follow an
IOPE (input, output, preconditions, effects) approach [94].

A service specification ŝ describes the external behavior of a service s. Formally,
it is a quintuple

ŝ = (Iŝ,Oŝ,Pŝ,Eŝ,Tŝ) (4.1)

where Iŝ and Oŝ are finite disjoint sets of input and output variables (ports of s),
respectively, preconditions Pŝ and effects Eŝ are sets of functions and monadic or
binary first-order logic predicates, and Tŝ is a set of propositions. Input variables

70

4.1 Knowledge-based Specifications

Iŝ must be variables in Pŝ and can be variables in Eŝ. Output variables Oŝ must
be variables in Eŝ. Monadic predicates in Pŝ and Eŝ are classes (i.e., concepts)
in our data ontology OD. Binary predicates in Pŝ and Eŝ are, among others,
roles/properties (i.e., binary related relations) in OD. Propositions in Tŝ, in turn,
are concepts in our task ontology OT .

Roughly speaking, monadic predicates define the data-types of input and out-
put variables, while binary predicates are, e.g, used to refine the description of
data-types by means of definition elements. Each variable must be assigned at
least one monadic predicate. The propositions in Tŝ represent the classification
of a service according to the tasks the service accomplishes.

A request reflects a desired external behavior. Analogous to a service specifi-
cation, a request specification r̂ of a request r is a quintuple

r̂ = (Ir̂,Or̂,Pr̂,Er̂,Tr̂) (4.2)

where the elements are exactly defined like the corresponding elements in Equa-
tion (4.1). The propositions in Tr̂, however, have to be understood as a rough
description of the tasks that have to or might be involved in a composed solu-
tion – depending on whether the applied composition algorithm considers the
specification to be mandatory or tentative.

Data-Flow of Services

The data-flow of a service s with specification ŝ (cf. Equation 4.1) is modeled as
net

N = (Iŝ ∪Oŝ, {s}, Iŝ × {s} ∪ {s} ×Oŝ,∅) . (4.3)

Places correspond to input and output ports. The only transition is the service
itself. All input ports are entry places of the service. All output ports are exit
places of the service. No places are initially marked. Places of different services
(or different instances of the same service) are generally disjoint.

Reducing Specification Symbols

In order to reduce the amount of symbols (i.e., predicates) during the composition
process without loosing information about functionality specified by a human, we
exploit the fundamental structure of the data ontology and deliberately transform

71

4 Symbolic Service Composition

subsets of predicates into a reduced representation. Without going into great
detail, we assume that subsets of predicates matching

{Concept(w), hasDefinitionElement(w, x), DefinitionElement(x),

hasDescriptor(x, y), Descriptor(y), hasValue(y, z)}

are automatically transformed and condensed into a set

{Concept(w), hasDescriptor(w, z)},

where hasDescriptor(w, z) is a newly generated binary predicate, with
Descriptor corresponding to the name of the predicate matching
Descriptor(y). For example, in Figure 4.7, the paths from the Image
concept along the Geometry concept down to the Width and Height concepts
are condensed into the binary predicates hasHeight and hasWidth, respectively.
That is, an exemplary set

{Image(i1), hasDefinitionElement(i1, a1),Geometry(a1),

hasDescriptor(a1, a2),Width(a2), hasValue(a2, i2)}

is transformed into the set

{Image(i1), hasWidth(i1, i2)} .

Furthermore, subsets of predicates matching

{Concept(w), hasDefinitionElement(w, x), DefinitionElement(x),

hasDescriptor(x, y), Descriptor(y), hasValue(y,CONST)},

where the second variable of the hasValue predicate is a constant individual, are
assumed to be automatically transformed and condensed into a set

{Concept(w), hasDescriptorCONST(w)},

where hasDescriptorCONST(w) is a newly generated monadic predicate, with
Descriptor corresponding to the name of the predicate matching Descriptor(y)
and CONST being the name of the individual. For example, in Figure 4.7, the

72

4.1 Knowledge-based Specifications

GeometricTransformation

Resizing Cropping

ResizingDistorting ResizingNotDistorting

ResizingKeepingRatioResizingAbsolute

CroppingCentered

CroppingAbsolute CroppingRelative

Figure 4.6: Excerpt from task ontology OT .

paths from the Image concept along the Colorimetry concept down to the in-
dividuals assigned to the ColorSpace concept are condensed into the monadic
predicates hasColorSpaceRGB and hasColorSpaceGrayLevel, respectively. That
is, a set

{Image(i1), hasDefinitionElement(i1, a1),Colorimetry(a1),

hasDescriptor(a1, a2),ColorSpace(a2), hasValue(a2,RGB)}

results in

{Image(i1), hasColorSpaceRGB(i1)} .

4.1.3 Specification Example: Thumbnails

As a first specification example, we address the Thumbnails use case, where only
hard properties of visual data (i.e., of images) have to be taken into account. As a
reminder: For this use case, we require a solution that creates a thumbnail image
from a high-resolution image given a width and a height and without distorting
the image content. Cropping, however, is allowed. Please refer to Section 3.2.1
on page 50 for a more detailed description of the required functionality.

Data and Task Ontology

We first need ontology concepts and relations that can be exploited for the re-
quest and service specifications. Figure 4.6 shows an excerpt of our task ontology
OT with the necessary task concepts for the use case at hand; i.e., the Cropping
and the Resizing concepts with the corresponding sub-trees. The class hierar-
chy is indicated by the dashed arcs, which represent the binary directed relation

73

4 Symbolic Service Composition

hasSubClass [95]. Roughly speaking, each sub-tree is a refinement of the task clas-
sification of its root concept. That is, e.g., the Resizing and Cropping concepts
constitute a more fine-grained classification of the general GeometricTransforma-
tion concept.

Figure 4.7 shows an excerpt of our data ontology OD for describing the input
and output images for the use case at hand. Beside the necessary concepts for de-
scribing an image in terms of width and height, the depicted excerpt also contains
exemplary concepts for defining the color space of an image. In this context, the
ColorSpace concept (class) possesses predefined constants (individuals) as child
nodes; indicated by an underscore.

Request

With all ingredients available, we can now describe the required functionality (the
request r) in terms of a request specification r̂ = (Ir̂,Or̂,Pr̂,Er̂,Tr̂) with

Ir̂ = {i1, i2, i3},
Or̂ = {o1},
Pr̂ = {Image(i1),Width(i2),Height(i3)},
Er̂ = {Image(o1), hasWidth(o1, i2), hasHeight(o1, i3)},
Tr̂ = {ResizingNotDistorting, Cropping} .

(4.4)

Depending on the available services and the composition algorithm, an alternative
definition of task classification Tr̂ may also lead to a valid composed solution.

Image

Geometry

Width Height

Colorimetry

ColorSpace

RGB GrayLevel

hasDefinitionElement hasDefinitionElement

hasDescriptor hasDescriptor hasDescriptor

hasValue hasValue

hasHeight

Figure 4.7: Excerpt from data ontology OD .

74

4.1 Knowledge-based Specifications

Service

For a service specification example, let us consider service s3 (cf. Section 2.3.1
on page 25) as an exemplary service that accomplishes an absolute resizing task.
That is, independent of its original aspect ratio, service s3 resizes an input image
according to absolute width and height values. By describing the functionality of
service s3 in terms of service description ŝ13 = (Iŝ13 ,Oŝ13

,Pŝ13 ,Eŝ13 ,Tŝ13) with

Iŝ13 = {i1, i2, i3},
Oŝ13

= {o1},
Pŝ13 = {Image(i1),Width(i2),Height(i3)},
Eŝ13 = {Image(o1), hasWidth(o1, i2), hasHeight(o1, i3)},
Tŝ13 = {ResizingAbsolute},

(4.5)

the service will most likely be not considered for the request described above.
However, under certain conditions, service s3 indeed resizes an image while pre-
serving the original aspect ratio. Namely, if and only if the original image already
has the same aspect ratio as defined by the input width and input height. This
specific functional behavior of service s3 can be described in terms of a second
service specification ŝ23 = (Iŝ23 ,Oŝ23

,Pŝ23 ,Eŝ23 ,Tŝ23) with

Iŝ23 = {i1, i2, i3},
Oŝ23

= {o1},
Pŝ23 = {Image(i1),Width(i2),Height(i3),Width(a1),Height(a2),

hasWidth(i1, a1), hasHeight(i1, a2), a1/a2 = i2/i3},
Eŝ23 = {Image(o1), hasWidth(o1, i2), hasHeight(o1, i3)},
Tŝ23 = {ResizingKeepingRatio}.

(4.6)

i2

i1

i3

s3 o1

(a)

i1 s15 o1

(b)

Figure 4.8: Data-flow nets of elementary services.

75

4 Symbolic Service Composition

Based on this specification, service s3 may indeed be considered for the request
described above; as long as another service appropriately adjusts the aspect ratio
in advance, i.e., as long as the description of a previously applied service ensures
i2/i3 = a1/a2. A service that provides the respective functionality might be, e.g.,
a service assigned to the CroppingRelative class in Figure 4.6. The data-flow net
of service s3, however, is identical for both specifications (cf. Figure 4.8a). This
is indeed generally valid, since different specifications of the same service always
encompass the same input and output ports. Or the other way around: Divergent
sets of input and output ports imply different services.

To sum it up: Following our proposed specification approach, one and the
same service can be assigned different functional descriptions for different specific
behaviors accomplishing different tasks. This strategy might be more feasible then
trying to come up with an all-encompassing (and consequently bloated) functional
description altogether. However, a detailed investigation in this matter is beyond
the scope of this thesis.

4.1.4 Specification Example: Segmentation

As a specification example, where also soft properties have to be taken into ac-
count, we address the Segmentation use case (cf. Section 3.3 on page 51). Recall
that a solution is required, which processes a color image and extracts areal regions
consisting of adjacent pixels with similar color. Besides the actual segmentation
step, preprocessing steps may be incorporated in order to increase the chances for
success of the segmentation step.

Data and Task Ontology

Figure 4.9 shows an excerpt from task ontology OT covering parts of the Prepro-
cessing and Segmentation sub-trees. Figure 4.10, in turn, shows an excerpt from
data ontology OD. Comparing both excerpts illustrates the structural differences
between both ontologies: While the structure of task ontology OT is restricted to
a tree, data ontology OD combines hierarchical structures with non-hierarchical
cross references between concepts, resulting in a more complex graph structure.

By combining both excerpts from our data ontology (i.e., Figure 4.7 and Fig-
ure 4.10), we have all ingredients available for a sparse request specification as
well as a sparse specification of our color-based segmentation algorithm. For con-

76

4.1 Knowledge-based Specifications

ImageProcessing

Preprocessing Segmentation

NoiseReduction Histogram
Equalization

Smoothing

ColorSegmentationThresholding

Binary Adaptive

GeometricTransf.

Figure 4.9: Excerpt from task ontology OT .

VisualData

Image

Colorimetry

ColorDistribution

Gray Colored

Regions

MulticoloredUnicolored

Areas

CompleteArea

Lines

Boundary

hasDefinitionElement

hasDefinitionElement

hasDescriptor

hasValue hasValue

hasDescriptor

hasDefinitionElement

Figure 4.10: Excerpt from data ontology OD .

venience, we again condense paths in the data ontology into single expressions.

Request

A request r for a composed solution, which (i) consumes a colored RGB image,
(ii) produces areal regions where each area is unicolored (e.g., the average color of
the associated pixels), and (iii) incorporates preprocessing steps, can be specified

77

4 Symbolic Service Composition

in terms of request specification r̂ = (Ir̂,Or̂,Pr̂,Er̂,Tr̂) with

Ir̂ = {i1},
Or̂ = {o1},
Pr̂ = {Image(i1), hasColorSpaceRGB(i1), isMulticolored(i1)},
Er̂ = {Areas(o1), isUnicolored(o1)},
Tr̂ = {Preprocessing, ColorSegmentation} .

(4.7)

What type of preprocessing steps to include, however, is not specified in detail. In
fact, considering preprocessing may even be optional. In the latter case, however,
the applied composition and discovery approaches have to be sophisticated enough
to generate not only solutions that exactly satisfy the request specification, but
also solutions that slightly differ from the request specification [10] – at least with
respect to the task classification.

Services

Our color-based image segmentation algorithm [3] is one candidate service (de-
noted by s15) for the required solution. Service s15 can be described in terms of
service specification ŝ115 = (Iŝ115 ,Oŝ115

,Pŝ115 ,Eŝ115 ,Tŝ115) with

Iŝ115 = {i1},
Oŝ115

= {o1},
Pŝ115 = {Image(i1), hasColorSpaceRGB(i1), isMulticolored(i1)},
Eŝ115 = {Areas(o1), isUnicolored(o1)},
Tŝ115 = {ColorSegmentation} .

(4.8)

The corresponding data-flow net is depicted in Figure 4.8b.
The algorithm, however, can also be configured to handle other color spaces

beside RGB [16]. In this context, recall that in order to ensure a service’s au-
tonomy, we consider one and the same algorithm with different parameter sets as
different and independent services. That is, in contrast to the service specifica-
tion example in Section 4.1.3, we do not deal with one and the same service that
has different specifications in this case, but with entirely different services, each of
them having particular specifications. For example, by adjusting our algorithm to
process HSV images [29], we receive a new service s16. The corresponding service

78

4.2 Planning-based Service Composition

specification ŝ116 is nearly identical with ŝ115, except that hasColorSpaceRGB(i1)
is substituted with hasColorSpaceHSV(i1) in the preconditions.

As stated in Section 2.1.3, the segmentation algorithm also integrates some
preprocessing mechanisms. This raises the general question of whether it is use-
ful to expand a service’s task classification by concepts (e.g., NoiseReduction or
Smoothing in this particular context) that do not reflect the main task accom-
plished by a service. For the time being, the question remains unanswered.

4.2 Planning-based Service Composition

The task of the composition process is to automatically compose a correct and
executable solution given a particular request specification (representing the ex-
ternal behavior of a required composed service) and a non-deterministic discovery
mechanism.

To achieve this, we developed a planning-based composition algorithm, which
is heavily inspired by the work of Mohr et al. [6]. Mohr et al. developed a
composition algorithm that automatically composes services based on powerful
functional descriptions without assuming a predefined data-flow or offline service
repositories. That is, available services do not have to be known in advance. The
entire algorithm is grounded on a sound formalism. Furthermore, in comparison
to other planning-based composition approaches, the algorithm supports func-
tional descriptions beyond monadic predicates or propositional logic labels. The
proposed backward search algorithm starts from an empty composed service (i.e.,
a request specification) and prepends candidate services based on their specifi-
cations until a solution was identified. Candidate services are discovered in an
online manner during the composition process. A concrete discovery mechanism,
however, is not proposed.

In comparison to the work of Mohr et al., we realized a forward search approach
in order to facilitate a potential interleaving of composition phase and execution
phase. That is, the execution process can already be initiated, although a final
solution was not yet identified. If data is available, execution results of par-
tially composed services can be exploited as additional knowledge when compos-
ing data-dependent applications. Furthermore, breaking up the strict separation
of composition and execution opens up new possibilities for more flexible mech-
anisms such as on-the-fly reconfiguration of composed services during execution.

79

4 Symbolic Service Composition

However, the actual interleaving of composition and execution is beyond the scope
of this work.

We adopted the formal framework of Mohr et al. and adjusted it to realize
our forward search approach (cf. Section 4.2.3). For identifying candidate services
during the composition process, we designed a multi-step discovery mechanism,
which exploits the classification of services according to the tasks they accomplish
(cf. Section 4.2.4). Based on the service classifications, we propose further heuris-
tic extensions to counter the inherent complexity of the underlying composition
problem (cf. Section 4.3.1 - Section 4.3.3). However, please note that a compre-
hensive investigation regarding the complexity of the composition algorithm is
not part of this work. Finally, in order to enable the composition algorithm to
automatically generate appropriate solutions for our image processing use cases,
we identified necessary modifications and customized our formal framework as
well as the composition algorithm accordingly (cf. Section 4.3.4).

4.2.1 Composed Services

A composed service is comprised of one or more configured services; i.e. services
with connected input and output ports. Since a service may occur multiple times
within the corresponding data-flow, configured services are considered to be in-
stances of services (henceforth referred to as service nodes). That is, a composed
service is comprised of service nodes, while each service node is mapped to a ser-
vice (class). A data-flow net defines the flow of data between the nodes’ ports. A
control-flow net specifies the execution order of the nodes.

Let S be the set of all available services. The internal behavior of a composed
service c is defined by a quadruple

c = (Nc,mc, Dc, Fc) (4.9)

where Nc is the set of contained service nodes, mc : Nc → S maps nodes to
services, and Dc, Fc denote the data-flow net and control-flow net, respectively.

The external behavior of a composed service is described in terms of a service
specification as defined in Section 4.1.2. That is, from the specification perspec-
tive, a composed service without a description of its internal behavior is nothing
but an elementary service.

80

4.2 Planning-based Service Composition

c1

o1i1

i2

i3

n1 7→ s17 o1i1

i2

i3

n2 7→ s3 o1i1

i2

i3

Figure 4.11: Composed service c1 consisting of service nodes n1 and n2 as
instances of services s17 and s3, respectively.

Example. Figure 4.12 shows one possible solution in terms of composed service
c1 for our Thumbnail use case. While service s17 crops an image to satisfy the
desired aspect ratio, service s3 resizes the cropped image to satisfy the desired
dimension. A more detailed description of the functionality is postponed until
we introduced the composition algorithm. Right now, we focus on the internal
behavior given by the quadruple c1 = (Nc1 ,mc1 , Dc1 , Fc1) with

Nc1 = {n1, n2},
mc1 = {(n1, s17), (n2, s3)},

and Dc1 , Fc1 as depicted in Figure 4.12 and Figure 4.13, respectively.
The labels of the places in Figure 4.12 contain the two original places that were

merged according to the port interconnections in Figure 4.11, while original places
are assigned unique labels that indicate the associated transitions. For example,
label n1.o1 = n2.i1 indicates that output port o1 of of node n1 is connected to input
port i1 of node n2. The labels strictly follow the convention that output ports
are stated on the left side, while input ports are stated on the right side. That is,
the label c1.i1 = n1.ii indicates that the input ports of composed services c1 are
interpreted as output ports from the internal behavior’s perspective. For reasons
of consistency and in order to avoid confusion, we generally refer to ports that
provide data (i.e., output ports of services and input ports of composed services)
as sources, while ports that consume data are referred to as sinks. Based on this
classification, the labels in Figure 4.12 follow the strict pattern source = sink.

4.2.2 Body of Rules

In Chapter 3, we narrowed down the set of image processing applications our com-
position algorithm has to compose. First, we allow composed services to contain

81

4 Symbolic Service Composition

c1.i1 = n1.i1

c1.i2 = d1.i1

c1.i3 = d2.ii

d1

d2

d1.o1 = n2.i2

d1.o2 = n1.i2

d2.o1 = n1.i3

d2.o2 = n2.i3

n1

n1.o1 = n2.i1
n2

n2.o1 = c1.o1

Figure 4.12: Data-flow net Dc1 .

d1

d2

n1 n2

Figure 4.13: Control-flow net Fc1 .

only basic control-flow patterns (cf. Section 3.1.2). Second, we concentrate on
composing solutions for our three concrete use cases. Based on the corresponding
restrictions and assumptions, we derived concrete requirements for the composi-
tion algorithm and condensed them in the body of rules shown in Table 4.2. The
rules serve a dual purpose in our work. First, they serve as basic framework for
our composition algorithm and implicitly determine the set of image processing
applications our algorithm is able to compose. Second, due to their informal na-
ture, the rules convey key aspects of our composition algorithm in a more intuitive
way.

Rules 1 - 4 are derived according to our Petri net-based data-flow model intro-
duced in Section 3.1.2:

Rule 1: Sinks (entry places that consume data) can only be connected to sources
(exit places that provide data).

Rule 2: For a service to be executable, every sink (entry place) must be provided
data by exactly one source (exit place).

Rule 3: The data provided by a source (exit place) can be duplicated for an
arbitrary number of sinks (entry places).

Rule 4: Data may also remain unused, as long as the corresponding source be-
longs to an elementary service.

82

4.2 Planning-based Service Composition

Rule 5 represents the most basic condition for connecting sources and sinks:

Rule 5: Sinks and sources are only connected if they have the same data type, i.e.,
if both corresponding variables are assigned the same monadic predicate.

On top of Rule 5, Rule 6 represents a fundamental design decision:

Rule 6: A service can only be added to a partially composed service, if all of
its sinks can be connected to sources provided by the partially composed
service (including the request specification).

We assume request specifications to not be influenced by distortion (cf. Sec-
tion 4.1.1). Rules 7 and 8 are derived based on the assumption that all sources
and sinks defined in the request specification are important and contribute to the
solution:

Rule 7: Every source that occurs in the request specification has to be connected
to a sink.

Rule 8: Connections between sources and sinks that both occur in the request
specification cannot be connected.

Note that Rule 2 already ensures the connection of all sinks in the request speci-
fication. Rules 9 and 10 are crucial in order to obtain a valid data-flow net after
the composition algorithm has identified a solution:

Rule 9: If a source (exit place) is connected to multiple sinks (entry places),
an additional transition for modeling the data duplication step has to be
integrated into the data-flow net.

Rule 10: If a source (exit place) is not connected at all, an additional transition
for modeling the depletion of unused data has to be integrated.

In the following sections, we will present our composition approach that enforces
these rules.

4.2.3 Formal Framework

The formal correctness of solutions can be understood in the sense of Hoare
logic [6]. A composed service c is formally correct, if its effects Eĉ follow from

83

4 Symbolic Service Composition

Table 4.2: Rules that are enforced during the composition process.
Rule Short Description

1 Sinks must only be connected to sources, and vice versa.

2 Every sink must be connected to exactly one source.

3 A source can be connected to an arbitrary number of sinks.

4 Sources of elementary services may be left unconnected.

5 Connected sources and sinks must have the same data type.

6 A service can be added iff all of its sinks can be connected.

7 Every source in r̂ must be connected to a sink.

8 A sink in r̂ must not be connected to a source in r̂.

9 Data must duplicated if sources are connected to multiple sinks.

10 Unconnected sources must be depleted whenever they provide data.

preconditions Pĉ and the specifications of the service nodes contained in c based
on Hoare’s Axiom of Assignment and Rule of Composition [96]. We say that c
is correct, if {Pĉ}c{Eĉ} is a correct Hoare triplet. Furthermore, we say that c
is correct with respect to r̂, if {Pr̂}c{Ẽ} is a correct Hoare triplet with Er̂ ⊆ Ẽ.
That is, the requested effects Er̂ must be in the effects Ẽ that follow from Pr̂ by
applying c.

Composition Problem

The composition environment is captured in a state transition system (STS) [94].
A STS Σ is a set of states, a set of actions, and a state transition function. In our
composition context, a state φ ∈ Φ is a set of functions and monadic or binary
first-order logic predicates, with Φ representing the set of all possible states. In
the most general sense, an action corresponds to a service specification ŝ ∈ Ŝ,
where Ŝ is the set of service specifications generally accessible by the discovery
mechanism. The state transition function τ computes the changes that follow
when applying ŝ in state φ, resulting in a successor state φ′. Formally, we write

Σ = (Φ, Ŝ, τ) (4.10)

with τ : Φ× Ŝ → Φ.
A composition problem P is defined by a STS Σ, an initial state φ0 ∈ Φ, and

a goal state φ∗ ∈ Φ. With respect to a request specification r̂, initial state φ0

84

4.2 Planning-based Service Composition

corresponds to the preconditions Pr̂, while goal state φ∗ corresponds to the effects
Er̂. That is, a composition problem P given a request specification r̂ is defined
by the triplet

Pr̂ = (Σ,Pr̂,Er̂) . (4.11)

We say that composed service c solves Pr̂ if c is correct with respect to r̂.

Variable Mapping

Before introducing the search space and how our algorithm traverses it, we have
to introduce how port interconnections are established, i.e., how variables are
mapped.

Let V↓(φ), V↑(φ), and Va(φ) represent the set of sink variables, source vari-
ables, and auxiliary (neither sink nor source) variables, respectively, contained in
a state φ. For example, based on preconditions P and effects E defined in service
specification (4.6) on page 75, we have

V↓(P) = I = {i1, i2, i3}, V↑(P) = {}, Va(P) = {a1, a2},
V↓(E) = {i2, i3}, V↑(E) = O = {o1}, Va(E) = {} .

For any service specification ŝ and request specification r̂, we assume that

V↓(Pŝ) = Iŝ, V↑(Eŝ) = Oŝ, and (4.12)

V↓(Pr̂) = Ir̂, V↑(Er̂) = Or̂ . (4.13)

Furthermore, we require that

Va(Pŝ) ∩ Va(Eŝ) = ∅ and Va(Pr̂) ∩ Va(Er̂) = ∅ . (4.14)

Given a state φ, a service specification ŝ, and a request specification r̂, we
define variable mappings as follows. Mappings mI and mO map sinks to sources.
While input mapping

mI : Iŝ → V↑(φ) (4.15)

maps input ports (sinks) of ŝ to sources in φ, output mapping

mO : Or̂ \ V↓(φ)→ Oŝ (4.16)

85

4 Symbolic Service Composition

φ

V↑(φ)

n1.o1 r̂.i1 r̂.i2 r̂.i3

V↓(φ)

r̂.o1

Va(φ)

n1.a1 n1.a2

ŝ

Iŝ = V↓(Pŝ)

ŝ.i1 ŝ.i2

Oŝ = V↑(Eŝ)

ŝ.o1

Va(Pŝ)

ŝ.a1

Va(Eŝ)

ŝ.a2

r̂

Or̂ \ V↓(φ)

r̂.o2

Va(Er̂)

r̂.a1

mI

mI

mIa

mO

mOa

Figure 4.14: Exemplary mappings mI , mO, mIa , and mOa given state φ,
service specification ŝ, and request specification r̂.

maps unconnected output ports (sinks) of r̂ to output ports (sources) of ŝ. Both
mappings combined, they enforce Rule 1 from Table 4.2. Furthermore,

mIa : Va(Pŝ)→ Va(φ) (4.17)

mOa : Va(Er̂)→ Va(Eŝ) (4.18)

denote mappings that map auxiliary variables to auxiliary variables. For example,
in Figure 4.14 the mappings

mI = {(ŝ.i1, n1.o1), (ŝ.i2, r̂.i3)}, mIa = {(ŝ.a1, n1.a2)},
mO = {(r̂.o2, ŝ.o1)}, mOa = {(r̂.a1, ŝ.a2)}

are graphically indicated.

To ensure correct solutions, variable mappings have to be valid. We say that
mappingsmI andmIa are valid with respect to a state φ and a service specification
ŝ, if the preconditions of ŝ given the mappings mI and mIa are in φ. Formally,
we write

Pŝ[mI ,mIa] ⊆ φ, (4.19)

where Pŝ[mI ,mIa] means that each variable in Pŝ that is assigned a substitute vari-
able by mI or mIa is substituted accordingly. Roughly speaking, condition (4.19)
ensures that all input ports of a service specification ŝ are connected and all pre-
conditions of ŝ are satisfied when adding the associated service as new service
node (Rule 6 in Table 4.2).

Mappings mO and mOa are valid with respect to a request specification r̂ and

86

4.2 Planning-based Service Composition

a service specification ŝ, if the effects of r̂ that are affected by mO and mOa are
in the effects of ŝ under a valid mapping mI ; we write

Er̂[mO,mOa] \ Er̂ ⊆ Eŝ[mI] . (4.20)

That is, after identifying a valid input mappingmI , the effects Eŝ of the respective
service specification ŝ are adjusted accordingly. Subsequently, for condition (4.20)
to be true, only those literals in Er̂ that are modified by applying mappings mO

and mOa have to be in the adjusted effects of ŝ. The underlying assumption for
this condition is that unconnected sinks in r̂ are only connected to sources of new
services (influenced by their input mappings), but not to sources that already are
in φ, since sources that already are in φ (except for input ports of r̂) are nothing
but sources of previously added services. That is, we strictly assume that once
we determined that a sink of r̂ cannot be connected to a source of ŝ, the situation
does not change anymore under any circumstances. Furthermore, this strategy
implicitly enforces Rule 8 from Table 4.2.

Remark. A special output mapping, which is – by definition – always valid, is the
empty output mapping

mO = ∅ with mOa = ∅,

where no ports are connected at all. Supporting this case is crucial for the algo-
rithm to be able to add services that do not directly contribute to the result, but
that are required for adding services that directly contribute to the result.

Example. Let r̂ correspond to request specification (4.4) on page 74, and let ŝ
correspond to service specification (4.5) on page 75. Furthermore, let φ = Pr̂.
The mappings

mI = {(ŝ.i1, r̂.i1), (ŝ.i2, r̂.i2), (ŝ.i3, r̂.i3)} and mIa = {}

are valid, since

Pŝ[mI ,mIa] = {Image(ŝ.i1),Width(ŝ.i2),Height(ŝ.i3)}[mI ,mIa]

= {Image(r̂.i1),Width(r̂.i2),Height(r̂.i3)}
⊆ {Image(r̂.i1),Width(r̂.i2),Height(r̂.i3)} = φ .

87

4 Symbolic Service Composition

The alternative mappings

m̃I = {(ŝ.i1, r̂.i1), (ŝ.i2, r̂.i2)} and m̃Ia = {},

however, are not valid, since

Pŝ[m̃I , m̃Ia] = {Image(r̂.i1),Width(r̂.i2),Height(ŝ.i3)
::::::::::::

}

* {Image(r̂.i1),Width(r̂.i2),Height(r̂.i3)
::::::::::::

} = φ .

Based on the valid input mapping mI , the mappings

mO = {(r̂.o1, ŝ.o1)} and mOa = {}

are valid, since

Er̂[mO,mOa] \ Er̂
= {Image(r̂.o1), hasWidth(r̂.o1, r̂.i2), hasHeight(r̂.o1, r̂.i3)}[mO,mOa]\
{Image(r̂.o1), hasWidth(r̂.o1, r̂.i2), hasHeight(r̂.o1, r̂.i3)}

= {Image(ŝ.o1), hasWidth(ŝ.o1, r̂.i2), hasHeight(ŝ.o1, r̂.i3)}
⊆ {Image(ŝ.o1), hasWidth(ŝ.o1, r̂.i2), hasHeight(ŝ.o1, r̂.i3)}
= {Image(ŝ.o1), hasWidth(ŝ.o1, ŝ.i2), hasHeight(ŝ.o1, ŝ.i3)}[mI]

= Eŝ[mI] .

Search Space

We address a composition problem Pr̂ with a forward search algorithm. The
search space is the set CŜ of all correct composed services that can be built based
on Ŝ. Every search node x of the search space X is associated with a state φx ∈ Φ

and a composed service cx ∈ CŜ .
For convenience, the representation of the internal behavior of a composed ser-

vice cx during the search process differs from definition (4.9). That is, a composed
service cx is defined by a triplet

cx = (Ncx ,mcx ,Dcx), (4.21)

where Ncx and mcx are identical to Nc and mc from definition (4.9), but Dcx cor-

88

4.2 Planning-based Service Composition

responds to the heretofore composed data-flow in terms of a set of valid mappings
between sinks and sources. After a solution was identified, the corresponding
data-flow net and control-flow net are constructed based on the mappings, while
adhering to Rule 9 and Rule 10 from Table 4.2.

Our composition algorithm explores the search space X by traversing an in-
ductively defined search tree. Root node x0 ∈ X is associated with the empty
composed service and initial state φx0 = φ0. Every composed service c′ ∈ CŜ ,
which is obtained by appending a service node ns (as instance of service s de-
scribed by service specification ŝ) under valid mappingsmI andmO to a composed
service cx ∈ CŜ , defines a new child node x′ ∈ X with associated state

φx′ = φx ∪ Eŝ[mI] ∪ Eŝ[mI ,m
−1
O ,m−1Oa], (4.22)

and c′ itself as associated composed service

cx′ = (Ncx ∪ {ns},mcx ∪ {(ns, s)},Dcx ∪mI ∪mO) . (4.23)

Equation (4.22) corresponds to the concrete realization of state transition func-
tion τ in the fundamental state transition system defined in Eq. (4.10) on page 84.
Expression Eŝ[mI] in Eq. (4.22) ensures that the effects of ŝ and the way they
are affected by the input mapping mI are contained in the new state. Roughly
speaking, this step can be considered as configuring the output ports of ŝ accord-
ing to the input mapping and providing them as sources to subsequent services.
Expression Eŝ[mI ,m

−1
O] ensures that the effects of ŝ and the way they are affected

by the input mapping mI and by the output mappings mO andmOa are contained
in the new state. This step, in turn, can be considered as storing and providing
information of already established connections to sinks of r̂ (e.g., to facilitate a
straightforward goal test). Recall that sources can be connected to multiple sinks
(Rule 3 in Table 4.2). That is, even if an output port of ŝ is already connected
to a sink of r̂, the same output port may be also used as source for subsequent
services. As a consequence, both the information provided by Eŝ[mI] and the
information provided by Eŝ[mI ,m

−1
O ,m−1Oa] are essential.

Finally, a search node x is a goal node, if the associated state φx contains all
literals of goal state φ∗; i.e., if

φ∗ ⊆ φx . (4.24)

89

4 Symbolic Service Composition

Fringe NodesInitialization

Node Selection

Goal Test

Finalization Discovery Invoc.

Service Discovery

Result Processing

Pruning
r̂

root
search node

search node

search node [is goal]

[yes]

search node
composed

service

[no]

search node

discovery request

candidate services

candidate search nodes

valid
search nodes

Figure 4.15: Overview of the entire composition process.

In combination with condition (4.19) from page 86, goal condition (4.24) enforces
Rule 2 from Table 4.2. That is, every sink must be connected to a source. Roughly
speaking, while condition (4.19) ensures that each sink of a service is connected
to a source, condition (4.24) ensures that each sink in the request is connected to
a source.

4.2.4 Composition Algorithm

Based on the previously introduced formal framework, we now describe our pro-
posed composition algorithm. Figure 4.15 shows the entire process with all related
sub-processes. The following sections explain each sub-process in detail.

Initialization

The composition process is triggered by a request specification r̂, which is pro-
cessed in an Initialization step to generate root search node x0 of the inductively
defined search tree. Any valid search node that was discovered but not yet pro-
cessed is an open node and is stored in a Fringe Nodes database. The first node
to be stored in this database is root node x0.

Node Selection

During each iteration, the algorithm first of all selects an open node from the
database. The selection strategy heavily influences the entire behavior of the
algorithm. By following a FIFO (first-in, first-out) strategy, the algorithm im-

90

4.2 Planning-based Service Composition

plements a breadth-first search [97] . When following a LIFO (last-in, first-out)
strategy, the algorithm implements a depth-first search. In both cases, however,
the search process is uninformed (also called blind), since no additional informa-
tion for making more promising decisions is available.

In comparison to the work of Mohr et al. [6], we do not consider non-functional
properties such as performance values, costs, or reputation [9] for selecting search
nodes. In this work, we completely focus on service functionality (i.e., functional
properties) and how to inform the search process in order to reduce functional
discrepancy (cf. Section 2.3.2). In Chapter 6, we will explain how feedback-based
learning techniques can be integrated to adapt the node selection process over time
in order to reduce functional discrepancy. Until then, search nodes are selected
either in a FIFO manner, in a LIFO manner, or completely uniformly at random.

Remark. Although not covered in this work, non-functional properties and
feedback-based learning are not mutually exclusive at all. In fact, we consider
both sources of information to be important in practice, since they complement
each other.

Goal Test

After being selected, a search node x is tested whether it represents a correct
solution. For x to represent a correct solution,

1. x must be a goal node, i.e., condition (4.24) must be true, and

2. every source variable in r̂ must be assigned a sink variable in the data-flow
(Rule 7 in Table 4.2); formally

∀i ∈ Ir̂ ∃z (i, z) ∈ Dcx .

A third condition that might be considered is the completeness of the specified
tasks to be accomplished. That is, we require that every task listed in Tr̂ is accom-
plished by the services in cx. However, since the set of valid solutions is heavily
influenced by this condition, deciding whether to consider it or not depends on
the specific context. For example, if a requestor exactly knows what kind of tasks
are necessary to achieve a desired functionality, integrating this condition would
lead to only those solutions that definitely accomplish those tasks. Our Thumb-
nails use case provides a context, where such a strict condition is reasonable, if

91

4 Symbolic Service Composition

not necessary. However, if a requestor does not exactly know whether a specific
task (such as a preprocessing step in our Segmentation use case) is necessary or
not, this condition is definitely too restrictive.

Discovery Invocation

If a search node x does not represent a correct solution, the non-deterministic
service discovery mechanism is invoked in order to expand x by identifying correct
child nodes. That is, a discovery request rd = (Tr̂, φx), where φx is the associated
state of x, and Tr̂ represents the tasks to be accomplished as defined in request
specification r̂ (cf. Definition (4.2) in Section 4.1.2 on page 70) is generated and
forwarded to the actual discovery process.

Service Discovery

In OTF Computing, services are traded on dynamic markets and are supplied by
independent service providers that participate in those markets (cf. Section 2.2.3).
Furthermore, the discovery process is said to involve reputation-based decision-
making processes regarding the transactions between OTF provider (being in
charge of composing solutions) and service providers (cf. Section 2.2.4) [8, 9].
Roughly speaking, before discovering the actual candidate services, candidate ser-
vice providers have to be selected (cf. Figure 4.16a). The discovery request is then
delegated to each selected service provider in order to discover candidate services
independently in each particular service pool. For example, in Figure 4.16a, Ser-
vice Provider B was not selected, while Service Provider A and Service Provider C
return discovered candidate services S̃A ⊆ SA ⊂ S and S̃C ⊆ SC ⊂ S, respec-
tively. The results of the separate discovery sub-processes are accumulated by
means of a central instance in order to facilitate synchronous invocation of the
entire discovery functionality. Results that do not reach the accumulation pro-
cess until a predefined deadline cannot be considered anymore, but have to be
discarded.

Alternatively, as proposed by Mohr et al. [6], the composition process and the
discovery process can be realized in an asynchronous fashion: Instead of waiting
for a distinct set of candidate services to be returned, the composition process con-
tinues for each incoming candidate service independently (cf. Figure 4.16b). That
is, the accumulation step for consolidating candidate services and synchronizing
the composition and discovery processes becomes obsolete.

92

4.2 Planning-based Service Composition

Service
Provider A

Services

Discover

Service
Provider B

Services

Discover

Service
Provider C

Services

Discover

Select, delegate, and accumulate.

Composition Process

dr S̃A ∪ S̃C

dr S̃A dr S̃C

(a) Distributed and
synchronous.

Service
Provider A

Services

Discover

Service
Provider B

Services

Discover

Service
Provider C

Services

Discover

Select and delegate.

Composition Process

dr

dr

s ∈ S̃A s ∈ S̃C

dr

(b) Distributed and
asynchronous.

Service
Provider A

Services

Service
Provider B

Services

Service
Provider C

Services

Service
Discovery Repository

Composition Process

SA SB SC

dr S̃A ∪ S̃C

(c) Centralized and
synchronous.

Figure 4.16: Different approaches for realizing the service discovery process.

In our work, however, we focus on a synchronous realization. Furthermore, for
the sake of simplicity, we assume that all service specifications are consolidated
in a single repository (cf. Figure 4.16c). That is, in order to identify candidate
services for a discovery request rd, the discovery process only has to search within
the repository.

Remark. For the remainder of this work, we assume that our simplified approach
delivers the same results as the distributed approach depicted in Figure 4.16a.
For evaluation purposes, the non-determinism that is inherent in the distributed
approach can be simulated by the centralized service discovery process.

Given a discovery request rd = (Tr̂, φx), the discovery process works in two con-
secutive phases. To identify an initial set of candidate services, the first phase
makes use of (i) the task concepts in Tr̂ as well as (ii) the task classification of
each service specification (cf. Section 4.1.2 on page 70). The second phase reduces
this initial set based on (i) the IOPE-based behavior descriptions of services and
(ii) the state φx.

Phase 1: For the first phase, the central service repository generates and main-
tains a data structure TOT , which has the same tree structure as defined by
our task ontology OT (cf. Section 4.1). Each service specification ŝ in the
repository is integrated into TOT by adding it as new leaf node to each node
x ∈ Tŝ. For example, service specification ŝ13 from page 75 is a leaf node of
node ResizingAbsolute in TOT , while service specification ŝ23 from page 75
is a leaf node of node ResizingKeepingRatio in TOT . Let leafŝ(x) denote an
operator, which returns all nodes that (i) are leaf nodes of the sub-tree with

93

4 Symbolic Service Composition

root node x, and (ii) correspond to service specifications. The result of the
first phase is then a set of service specifications given by

ŜP1 =
⋃
x∈Tr̂

leafŝ(x). (4.25)

Phase 2: In the second phase, for each service specification ŝ ∈ ŜP1, all valid
combinations of mappings mI (Eq. (4.15) on page 85) and mIa (Eq. (4.17)
on page 86) are generated. Validness is to be understood with respect to
state φx according to condition (4.19) on page 86. A candidate service is
then a tuple (ŝ, mI) with ŝ ∈ ŜP1 and mI being one valid input mapping
of ŝ. That is, a single service specification may indeed result in multiple
candidate services. A service specification without a valid input mapping,
however, is immediately discarded. The entire set of candidate services is
finally returned to the composition process.

Result Processing

Candidate services returned by the service discovery process have to be trans-
formed into search nodes. For this purpose, for each candidate service (ŝ, mI), all
valid combinations of mappings mO (Eq. (4.16) on page 85) and mOa (Eq. (4.18)
on page 86) are generated. Validness is to be understood with respect to re-
quest specification r̂ according to condition (4.20) on page 87. Each identified
output mapping mO (including the empty output mapping) for a candidate ser-
vice (ŝ, mI) defines a new child node x′ with associated state φx′ and associated
composed service cx′ as defined by Eq. (4.22) and Eq. (4.23), respectively.

By considering all valid input mappings in combination with all valid output
mappings, Rule 4 from Table 4.2 is explicitly taken into account. That is, as
long as they are valid, mappings with unconnected source variables are included
allowing sources to be unconnected. Furthermore, by allowing only valid variable
mappings, all connected source and sink variables inevitably have the same data
type (Rule 5 in Table 4.2). That is because the data type of a variable is expressed
in terms of monadic predicates contained in preconditions and effects.

94

4.2 Planning-based Service Composition

Pruning

A previously constructed search node x′ is discarded by a pruning mechanism if
at least one of the following cases is true:

� The associated composed service cx′ contains two or more service nodes
that are identically configured, i.e., that are instances of the same service
and have exactly the same port connections (identical variable mappings
in Dcx′

). Identically configured service nodes are of no use for solving a
composition problem.

� All sink variables of r̂ are connected to sources. However, the associated
state φx′ does not satisfy condition (4.24), i.e., associated composed service
cx′ is no solution. Since sinks can only have one connection (Rule 2 in
Table 4.2) and all sinks of r̂ are already connected, no extension of cx′ can
be a solution. As a consequence, there is no benefit from exploring the
sub-tree with root node x′.

All remaining search nodes are considered to be valid and are stored in the Fringe
database.

Finalization

If a search node x passes the goal test, the finalization process transforms the
internal representation of the associated composed service cx into the general
representation introduced in Section 4.2.1. That is, based on the service nodes in
Ncx , the “service node to service class” mappings in mcx , and “the sink to source”
mappings in Dcx , data-flow net Dc is constructed by the following algorithm:

1. Introduce a place for each variable i ∈ Ir̂ and a place for each variable
o ∈ Or̂.

2. Introduce a transition tn for each service node n ∈ Ncx . Furthermore, add
an entry place to transition tn for each variable i ∈ Iŝ, and an exit place to
transition tn for each variable o ∈ Oŝ, where ŝ corresponds to the service
specification of the service that is mapped to n by mcx .

3. Merge entry and exit places that are mapped by Dcx into a single place, if
the merging process does not result in a conflict situation [98] (i.e., if the
corresponding source is not connected to multiple sinks).

95

4 Symbolic Service Composition

4. In case of a conflict, introduce a data-duplication transition td, where the
concerned exit place is the only entry place of td and all mapped entry places
are exit places of td (Rule 9 in Table 4.2).

5. For each unconnected exit place p, introduce a data-removal transition tr

having no exit places, and p being the only entry place of tr (Rule 10 in
Table 4.2).

The control-flow net Cc can then be derived from Dc via the corresponding de-
pendence graph [79].

Final Remarks

It is quite obvious that the entire composition algorithm has a considerable run-
time complexity. Even without going into detail, it is clear that the overall runtime
of the processes involved in identifying new search nodes (i.e., the processes on
the right hand side in Figure 4.15) is exponential in the number of input ports and
output ports of services as well as the amount of sources in states. However, this
complexity is not a weakness of our proposed approach, but is in fact a general
issue of the underlying composition problem. That is, there is clearly a significant
complexity inherent to the problem itself rather than to the approaches solving it.
In this context, Sections 4.3.1-4.3.3 present some heuristic concepts for making
the presented algorithm more feasible in practice.

Apart from the topic of complexity, we have to mention that the entire al-
gorithm does not necessarily terminate. In cases where no solution exists but
services are appended in an alternating manner, our purely symbolic composition
algorithm will not terminate at all.

4.2.5 Composition Example: Thumbnails

For illustrating the entire composition process, let us consider the composition
process of two alternative solutions for our Thumbnails use case (cf. Section 3.2).
The first solution starts with a service that crops an image to fit the aspect ratio
defined by the desired width and height. The resulting image is subsequently
resized to exactly fit the desired size. Figure 4.17a shows an example that il-
lustrates these two steps. The second solution, in turn, first resizes an image to
fit either the desired width or the desired height; depending on the aspect ratio

96

4.2 Planning-based Service Composition

(a) Crop and Resize. (b) Resize and Crop.

Figure 4.17: Two strategies for obtaining the same result.

of the original image. The resized image is subsequently cropped to obtain the
desired result image. Figure 4.17b illustrates this alternative strategy.

Remark. Please note that we only consider search nodes that are relevant for at
least one of the solutions. The search algorithm, however, does not have this kind
of information, but has to explore the search space according to the applied node
selection strategy.

Composition Process

Let us assume we have four different services S = {s3, s17, s18, s19} and four service
specifications Ŝ = {ŝ23, ŝ117, ŝ118, ŝ119}, with

Pŝ117 = {Image(i1),Width(i2),Height(i3)},
Eŝ117 = {Image(o1),Width(a1),Height(a2),

hasWidth(o1, a1), hasHeight(o1, a2), a1/a2 = i2/i3},
Tŝ117 = {CroppingRelative},

(4.26)

Pŝ118 = {Image(i1), hasWidth(i2),Height(i3),Width(a1),

Height(a2), hasWidth(i1, a1), hasHeight(i1, a2),

a1 ≥ i2, a2 ≥ i3},
Eŝ118 = {Image(o1), hasWidth(o1, i2), hasHeight(o1, i3)},
Tŝ118 = {CroppingAbsolute},

(4.27)

97

4 Symbolic Service Composition

GeometricTransformation

Resizing Cropping

ResizingNotDistorting

ResizingKeepingRatio

CroppingCentered

CroppingAbsolute CroppingRelative

ŝ1
19ŝ2

3 ŝ1
18 ŝ1

17

Figure 4.18: Tree data structure TOT for the discovery process.

and

Pŝ119 = {Image(i1), hasWidth(i2),Height(i3)},
Eŝ119 = {Image(o1),Width(a1),Height(a2),

hasWidth(o1, a1), hasHeight(o1, a2), a1 ≥ i2, a2 ≥ i3},
Tŝ119 = {ResizingKeepingRatio} .

(4.28)

Service specifications ŝ23 corresponds to specification (4.6) on page 75. All services
have the same amount of input ports and output ports. For that reason, we
omitted the sets I and O in specifications (4.26)-(4.28). The composition problem
to be solved is captured by request specification (4.4) on page 74. Figure 4.18
shows the tree data structure TOT for the first phase of the discovery process.

Initialization (Figure 4.19a): Root node x0 is generated and stored as the first
open search node in the Fringe database.

φx0 Image(r̂.i1),Width(r̂.i2),Height(r̂.i3)

cx0

Ncx0
: −

mcx0
: −

Dcx0
: −

Iteration 1 (Figure 4.19b): Root node x0 was selected, but is not a goal node.
Two candidate services incorporating service specifications ŝ117 and ŝ119 were dis-
covered, transformed into search node x1 and x2, respectively, and stored in the
Fringe database. That is, none of the two nodes was pruned.

98

4.2 Planning-based Service Composition

φx1 Image(r̂.i1),Width(r̂.i2),Height(r̂.i3), Image(n1.o1),Width(n1.a1),Height(n1.a2),
hasWidth(n1.o1, n1.a1), hasHeight(n1.o1, n1.a2), n1.a1/n1.a2 = r̂.i2/r̂.i3

cx1

Ncx1
: n1

mcx1
: (n1, s17)

Dcx1
: (n1.i1, r̂.i1), (n1.i2, r̂.i2), (n1.i3, r̂.i3)

φx2
Image(r̂.i1),Width(r̂.i2),Height(r̂.i3), Image(n1.o1),Width(n1.a1),Height(n1.a2),
Height(n1.a2), hasWidth(n1.o1, n1.a1), hasHeight(n1.o1, n1.a2), n1.a1 ≥ r̂.i2,
n1.a2 ≥ r̂.i3

cx2

Ncx2
: n1

mcx2
: (n1, s19)

Dcx2
: (n1.i1, r̂.i1), (n1.i2, r̂.i2), (n1.i3, r̂.i3)

Iteration 2 (Figure 4.19c): Open node x1 was selected, but is not a goal node.
Six candidate services were discovered and transformed into new search nodes.
One node, however, was pruned. That is, only five new search nodes (x3 - x7)
were added to the Fringe database. Let us consider search node x3 incorporating
service specification ŝ23 as the only relevant (new) search node for identifying a
solution.

φx3
Image(r̂.i1),Width(r̂.i2),Height(r̂.i3), Image(n1.o1),Width(n1.a1),Height(n1.a2),
Image(n2.o1), Image(r̂.o1), hasWidth(n1.o1, n1.a1), hasHeight(n1.o1, n1.a2),
hasWidth(n2.o1, r̂.i2), hasHeight(n2.o1, r̂.i3), hasWidth(r̂.o1, r̂.i2),
hasHeight(r̂.o1, r̂.i3), n1.a1/n1.a2 = r̂.i2/r̂.i3

cx3

Ncx3
: n1, n2

mcx3
: (n1, s17), (n2, s3)

Dcx3
: (n1.i1, r̂.i1), (n1.i2, r̂.i2), (n1.i3, r̂.i3), (n2.i2, r̂.i2),

(n2.i3, r̂.i3), (n2.i1, n1.o1), (r̂.o1, n2.o1)

Iteration 3 (Figure 4.19d): Open node x3 was selected, which is a goal node.
That is, composed service cx3 is correct with respect to request specification r̂

and consequently represents a solution for the composition problem at hand. The
corresponding data-flow net (with r̂ = c1) and control-flow net are shown in
Figure 4.12 and Figure 4.13 on page 82, respectively. The identified solution
processes an image as shown in Figure 4.17a on page 97.

Alternative Iteration 2 (Figure 4.19e): Open node x2 was selected, but is not
a goal node. Six candidate services were discovered and transformed into new

99

4 Symbolic Service Composition

x0

(a)

x0

x1 x2

(b)

x0

x1

x3 · · · x7

x2

(c)

x0

x1

x3 · · · x7

x2

(d)

x0

x1 x2

x3 · · · x7

(e)

x0

x1 x2

x3 · · · x7

(f)

Figure 4.19: Search tree of the composition process. Open nodes are dashed,
closed (processed) nodes are solid. The trees in (e) and (f)
represent an alternative search path.

search nodes. One node, however, was pruned. That is, only five new search
nodes (x3 - x7) were added to the Fringe database. Let us consider search node
x3 incorporating service specification ŝ118 as the only relevant (new) search node
for identifying a solution.

φx3
Image(r̂.i1),Width(r̂.i2),Height(r̂.i3), Image(n1.o1),Width(n1.a1),Height(n1.a2),
Image(n2.o1), Image(r̂.o1), hasWidth(n1.o1, n1.a1), hasHeight(n1.o1, n1.a2),
hasWidth(n2.o1, r̂.i2), hasHeight(n2.o1, r̂.i3), hasWidth(r̂.o1, r̂.i2),
hasHeight(r̂.o1, r̂.i3), n1.a1 ≥ r̂.i2, n1.a2 ≥ r̂.i3

cx3

Ncx3
: n1, n2

mcx3
: (n1, s19), (n2, s18)

Dcx3
: (n1.i1, r̂.i1), (n1.i2, r̂.i2), (n1.i3, r̂.i3), (n2.i2, r̂.i2),

(n2.i3, r̂.i3), (n2.i1, n1.o1), (r̂.o1, n2.o1)

Alternative Iteration 3 (Figure 4.19f): Open node x3 was selected, which is a
goal node. That is, composed service cx3 is correct with respect to request speci-
fication r̂ and consequently represents a solution for the composition problem at
hand. The corresponding data-flow net and control-flow net have the same struc-
ture like the nets of the first solution. This second solution, however, processes
an image as shown in Figure 4.17b on page 97.

4.3 Shortcomings and Extensions

In the previous section, we presented a planning-based algorithm for automated
service composition and demonstrated the composition process by means of our
Thumbnails use case. Due to particular characteristics of the image processing

100

4.3 Shortcomings and Extensions

domain, however, we are confronted with shortcomings when applying the ap-
proach to problem domains such as our Segmentation use case. The purpose
of this section is to identify those shortcomings and to briefly discuss possible
modifications for overcoming them.

4.3.1 Exponentially Growing Solution Space

Image processing services are highly variable: Even a small amount of services
can lead to a considerable amount of different combination possibilities, especially
when dealing with simple image processing filters, i.e., services that only require
a single image as input and provide a modified version of this image as sole
output. As a consequence, in the worst case, we are confronted with a solution
space that grows exponentially with the amount of services included in a solution.
Dependent on the information available in advance, however, the set of possible
solutions can be reduced by reducing the tasks included in a service discovery
request rd , which, in turn, reduces the amount of discovered candidate services.

In this context, let Trd denote the set of tasks included in a discovery request.
Table 4.3 lists four different cases with different sets Trd , given the following
setting:

� Tr̂ (the set of tasks defined by a requestor in the request specification)
contains tasks T1, T2, and T3, which all have to be accomplished.

� A solution has to comprise at least three services (one for each task in Tr̂),
and l services at the maximum.

� Each task can be accomplished by the same amount (not the same set!) of
alternative services, denoted by s.

� Typically for simple image processing filters, there exists only one valid
input mapping for applying a service, while all services can be arbitrarily
combined.

For each case, Table 4.3 shows exemplary sets Trd for exemplary composition
steps i = 1 . . . 4, assuming that a solution must not comprise more than four
services (i.e., l = 4). An underlined tasks indicates that a service accomplishing
that particular task was selected during composition step i. Each case combines
a distinct interpretation of Tr̂ with a modified discovery invocation step due to
the following reasons.

101

4 Symbolic Service Composition

Table 4.3: Different cases leading to different sets Trd and consequently to a
different amount of solutions, given by #solutions with t = |Tr̂|,
l = max length of solutions, and s = alternative services per task.

Case Tr̂ exemplary Trd based on composition step i #solutions

i = 1 i = 2 i = 3 = t i = 4 = l s = 1

1 {T1, T2, T3} T1, T2, T3 T1, T2, T3 T1, T2, T3 T1, T2, T3
∑l
k=t t

k−t · t! · sk 24

2 {T1, T2, T3} T1, T2, T3 T1, T3 T3 t! · st 6

3 [T1, T2, T3] T1 T1, T2 T1, T2 T3
∑l−t
k=0

(t+k−1
k

)
· st+k 4

4 [T1, T2, T3] T1 T2 T3 st 1

Unknown Task Order vs. Known Task Order

The execution order of the services necessary for accomplishing the tasks in Tr̂
may be known in advance. In this particular case, Tr̂ can be interpreted as list,
where the order of the tasks corresponds to the desired execution order of the cor-
responding services. Starting with the first task, only one task (namely the next
task to be accomplished) has to be included in a discovery request (Case 4 in Ta-
ble 4.3). As a consequence, the solution space does not depend on the maximally
allowed length of solutions (cf. Figure 4.20a) and grows significantly slower with
the amount of alternative services per task than all other cases (cf. Figure 4.20b).

If a requestor knows the tasks to be accomplished, but not the exact execution
order of the corresponding services, Tr̂ has to be interpreted as set. However, the
candidate services can still be reduced by including only those tasks in a discovery
request that are not yet accomplished by the associated composed service (Case 2
in Table 4.3). As a consequence, the solution space is significantly smaller than
the worst case (Case 1) and is not influenced by the maximally allowed length
of solutions at all (cf. Figure 4.20a). However, the solution space still grows
polynomially with the amount of alternative services per task, but not as fast as
Case 1 or Case 3 (cf. Figure 4.20b).

Recurrent Tasks and Services

Tasks may have to recur in order to achieve a desired result. Furthermore, in order
to accomplish a single task, multiple service nodes that accomplish the same task
may have to be applied (e.g., for gradually reducing image noise).

In the worst case, the requestor knows the tasks to be accomplished, but neither
if a task has to recur nor the amount of corresponding services. As a consequence,

102

4.3 Shortcomings and Extensions

(a) (b)

Figure 4.20: Amount of solutions (#solutions in Table 4.3), for (a) increasing
max length of solutions (with t = 3 and s = 2), and (b) increasing
amount of alternative services per task (with t = 3 and l = 4).

Tr̂ has to be interpreted as set, while each discovery request has to include all
tasks in Tr̂ in order to allow recurrences of tasks, or recurrences of services that
accomplish the same task (Case 1 in Table 4.3). Case 1 corresponds to the
original approach introduced in the previous section. As a result, the amount
of discovered candidate services cannot be reduced at all. We face a solution
space of considerable size, where the solution space grows exponentially with the
maximally allowed length of solutions (cf. Figure 4.20a) and polynomially with
the amount of alternative services per task (cf. Figure 4.20b).

In the best case, the requestor is able to exactly specify all necessary tasks in
the correct order (i.e., Tr̂ can be interpreted as list) as well as how often a task
recurs and how many services have to be applied to accomplish a task, respectively.
Recurrences are nothing but additional entries in Tr̂ (Case 4 in Table 4.3 with
recurring tasks).

In many cases, a requestor may only know the tasks to be accomplished as
well as the “rough” execution order. The amount of services that have to be
consecutively applied to accomplish a single task, however, is not exactly known.
In this case, Tr̂ can still be interpreted as list. The discovery requests, however,
must at least include the previous task in addition to the current task, in order
to allow consecutive recurrences of services accomplishing the same task (Case 3
in Table 4.3). As a result, the solution space grows not as fast as Case 1 – neither
with the maximally allowed length of solutions (cf. Figure 4.20a) nor with the
amount of alternative services per task (cf. Figure 4.20b).

103

4 Symbolic Service Composition

Summary

The size of the solution space heavily depends on the task information that is
available in advance. The more precise a requestor can specify Tr̂, the smaller
the search space and the number of possible solutions will be. By restricting
the search space and consequently the solution space, however, the probability
of finding alternative and better solutions is decreased as well. In fact, deciding
whether to restrict the search space or not depends on whether you want to
automatically implement an exactly known functionality or whether you have to
identify the exact functionality as well.

The first case might be more related to automated program synthesis [99].
Assuming that the required functionality is known in advance, a service-based
solution that implements the required functionality has to be automatically gen-
erated (e.g., like in our Thumbnails use case). In this context, restricting the
search space as much as possible is most likely a good choice. The second case
addresses the problem when the tasks to be accomplished or the execution order
of corresponding services are not known or only partially known in advance (see
also next section). That is, in addition to implementing a service-based software
solution, the tasks to be accomplished, the execution order, etc. have to be iden-
tified as well (e.g., like in our Segmentation and Object Detection use cases). In
this case, restricting the solution space might discard solutions that are actually
more beneficial.

4.3.2 Incorrect Task Definitions

A requestor defines Tr̂ according to the information that is available in advance.
Independent of the task order or recurring tasks, Tr̂ may be incorrect, because

� tasks that are actually necessary for the desired result are missing, or

� tasks that are actually not required to achieve a desired result are included.

In the first case, we say that Tr̂ is underconstrained. In the second case, we say
that Tr̂ is over-determined. Of course, a combination of both cases also leads to
an incorrect task definition. The circumstances leading to these cases are diverse.
For example, a requestor may not be an expert in the image processing domain.
Or the tasks that have to be accomplished for solving a specific image processing
problem are not completely known at all. Furthermore, the problem domain

104

4.3 Shortcomings and Extensions

may heavily suffer from data-dependency, making it impossible to specify all
necessary tasks in advance. Tr̂ being over-determined, however, is not a problem,
as long as Tr̂ is interpreted as set and not tested for completeness in the goal
test (cf. Section 4.2.4). Missing tasks, however, are indeed a problem and require
adjustments.

Expanding Tasks

In our previous work, we proposed to consider slightly extended goal specifica-
tions in case of underconstrained goal specifications [10]. That is, the model of
the proposed search algorithm was modified to also consider goals that are likely
to be the actual goal of a requestor. Technically, an extended goal specification
is meant to be a small superset of the specified goal. This idea could be applied
to our “missing tasks” problem. For example, before starting the composition
process, Tr̂ can be expanded to contain additional tasks. Alternatively, the set of
tasks contained in a discovery request can be expanded for each discovery invo-
cation. However, the question is: Which tasks should be added? Given the task
ontology OT , considering parents of tasks contained in Tr̂ as additional task may
be a feasible strategy to gradually expand the amount of possible solutions. In
the worst case, the task corresponding to the root node might be added. As a
consequence, the first phase of the discovery process does not restrict the set of
possible candidate services anymore, but returns all service specifications avail-
able. With a growing amount of available service specifications, however, this
brute force approach will quickly become infeasible.

Task Dependencies

An approach for systematically overcoming a sub-problem of our “missing tasks”
problem is to define task dependencies in task ontology OT . For illustration,
consider the following case. A color image shall be processed by a Threshold-
ing service. Thresholding services, however, can only process gray level images.
That is, before applying a Thresholding service, a service accomplishing a Col-
orSpaceConversion task has to be applied. If the ColorSpaceConversion task is not
mentioned in Tr̂, our composition algorithm will hardly find a solution. However,
by indicating that a Thresholding task might depend on a ColorSpaceConversion
task, the tasks included in a discovery request can be expanded accordingly in

105

4 Symbolic Service Composition

Case 1

missing
tasks Case 2

Case 3

Case 4

Figure 4.21: Partitioning of the solution space according to Case 1-Case 4 from
Table 4.3. Crosses represent the associated example solutions.

a systematic way. Dependencies among tasks can be expressed in terms of a
dedicated binary relation (e.g., dependsOn) in task ontology OT .

Summary

An underconstrained specifications of Tr̂ is indeed a problem that cannot be easily
solved without providing very abstract task classifications or even completely
neglecting the first phase of the discovery process. In comparison to an unknown
task order or recurrent tasks where at least the tasks to be accomplished are
known, identifying missing tasks require a systematic exploration of solutions that
lie “somewhere beyond” the solutions defined by Case 1 from Table 4.3 (see also
Figure 4.21). For the remainder of this work, however, we expect tasks definitions
to be complete: The tasks contained in Tr̂ are sufficient to discover all required
candidate services. That is, with respect to Figure 4.21, the solution is located
somewhere inside the boundary of Case 1.

4.3.3 Superfluous Search Paths and Services

In Section 4.3.1 we discussed how to reduce the solution space by modifying the
discovery request according to task information available in advance. However,
we assumed one valid input mapping per service only. If we discard this restrictive
assumption, we face in fact the default behavior of our composition algorithm.
That is, although we may just require a plain sequence of services, the composition
algorithm nevertheless explores search paths that lead to different control-flows.
We refer to search paths that do not lead to a solution as superfluous search paths.

In this work, we are confronted with a huge amount of superfluous search paths
due to the flexibility of our proposed composition approach, especially because

106

4.3 Shortcomings and Extensions

of Rule 3 from Table 4.2 on page 84: A source can be connected to an arbitrary
number of sinks. In cases like our Thumbnail use case, this flexibility is necessary
to identify a solution. A requestor usually does not know in advance whether
sources have to be connected to multiple sinks or not.

Plain Sequences

In cases such as our Segmentation use case, however, a requestor may indeed
know that sources must only be connected to one sink. That is, the flexibility
provided by Rule 3 is not necessary, but negatively influences the efficiency of
the composition algorithm. Recall that solutions for our Segmentation use case
belong to the first class of solutions described in Section 3.1.3, where a distinct
data-flow implies a distinct control-flow and vice versa. That is, we can say with
certainty that paths where sources are connected to more than one sink will never
lead to a solution.

To suspend Rule 3 in such particular cases, the state transition function de-
fined by Eq. (4.22) on page 89 can be adjusted, so that all source variables (and
associated literals) that were mapped to a sink variable are not transferred to the
successor state. That is, we alter Eq. (4.22) to

φx′ = φx \ (φx[mI] \ φx)[m−1I] ∪ Eŝ[mI] ∪ Eŝ[mI ,m
−1
O ,m−1Oa] . (4.29)

Expression φx \ (φx[mI] \φx)[m−1I] means that we first of all determine all literals
in state φx affected by an input mapping mI . Subsequently, the application of the
input mapping is reversed and the identified literals are removed from the state.

Concurrency: Functionally Independent Branches

In cases such as our Object Detection use case, requestors may know in advance
that concurrent branches have to be included. However, strictly applying the
modified state transition function will only produce plain sequences of services.
Strictly applying the original transition function, in turn, can produce valid solu-
tions, but will lead to a vast amount of superfluous search paths. In such cases,
a flexible mechanism that dynamically enforces and suspends Rule 3 may allow
possibly redundant search paths whenever necessary, and discard certainly re-
dundant search paths whenever possible. To indicate whether Rule 3 has to be
applied or suspended, Tr̂ can be adjusted to not only explicitly cover sequences,

107

4 Symbolic Service Composition

d1

n2

n3

t1

n1

• d2

• d3

•

Figure 4.22: Composed solution for our Thumbnails use case with superfluous
functionality in terms of service node n2. Places with dashed
border indicate input and output ports that were specified in the
corresponding request.

but also concurrent branches. For example,

Tr̂ = [T1, (T2||[T3, T4]), T5]

may indicate that tasks T1 and T5 are the first and the last task, respectively, while
task T2 and the sequence T3, T4 are functionally independent. An appropriate
location for realizing such a flexible mechanism without changing the original
state transition function is the request invocation step: Similar to adjusting the
set of tasks contained in a discovery request, the state information contained in
a discovery request can be adjusted according to Tr̂. That is, literals of source
variables that must not be connected to a candidate service can be masked out.

Fallback: Removing Superfluous Services

Without any restrictions, the default behavior of our proposed composition al-
gorithm results in the exploration of a vast amount of superfluous search paths.
Furthermore, depending on how much the search process was eased in the first
place (e.g., by allowing a maximum solution length that exceeds the length of
the actually required solution, while simultaneously interpreting Tr̂ as set and
allowing recurrences of specified tasks), our algorithm inevitably composes so-
lutions that contain superfluous functionality. That is, our algorithm tends to
incorporate services that do not contribute to the output. The incorporation of

108

4.3 Shortcomings and Extensions

r.i2=n1.i2

n1.o1=n2.i1 n1.o1=n3.i1

r.i3=n1.i3 r.i1=n1.i1

r.i2=n2.i2

n2.o1=None

r.i3=n2.i3 r.i2=n3.i2

n3.o1=r.o1

r.i3=n3.i3

Figure 4.23: Illustration of Algorithm 1 based on the data-flow net depicted in
Figure 4.22.

superfluous services, however, can neither be avoided without applying the re-
stricting measures described above, nor can it be detected unless a composed
service was identified as solution.

As an example, let us consider the composed service shown in Figure 4.22,
which is a possible solution for our Thumbnails use case. The depicted data-flow
net was constructed in the finalization step of our composition algorithm. For
the sake of clarity, we omitted the labels of the places, and indicated the input
and output ports of the composed service by places with dashed borders. The
constructed net resembles the net depicted in Figure 4.12 on page 82. However,
the additional service node n2 does not contribute to any output port at all. In
fact, the functionality of the corresponding service is not required, but leads to
the unnecessary integration of both a data-duplication transition d1 and a data-
removal transition t1.

To get rid of superfluous service nodes, we apply Algorithm 1 to valid solutions
before constructing a data-flow net. That is, a solution is still represented as
defined by Eq. (4.21) on page 88. The fundamental idea is to traverse a graph
defined by the dependencies between port mappings contained in the composed
data-flow Dcx , and record all reachable port mappings. The algorithm starts with
the port mappings that are related to the output ports specified in the request
(line 1) and traverses the graph backward. Figure 4.23 illustrates this process.
Each node a = b represents a port mapping, where the first expression a refers to
the source that provides data, and the second expression b refers to the connected
sink that consumes data. Gray edges indicate the dependency between nodes

109

4 Symbolic Service Composition

Algorithm 1 Identifying and Removing Superfluous Services
Require: request specification r̂ . cf. Eq. (4.2) on page 71
Require: composed service cx = (Ncx ,mcx ,Dcx) . cf. Eq. (4.21) on page 88
1: Xopen ← mappings in Dcx relating to ports in Or̂ . to be processed
2: Xclosed ← ∅ . already processed
3: while Xopen 6= ∅ do
4: xopen ← get element from Xopen

5: Xopen ← Xopen \ {xopen}
6: Xclosed ← Xclosed ∪ {xopen}
7: n← preceding service node of xopen
8: for all y ∈ Dcx do
9: if n is succeeding service node of y and y /∈ Xclosed then

10: Xopen ← Xopen ∪ {y}
11: end if
12: end for
13: end while
14: D̃cx ← Xclosed . minimized data-flow
15: Ñcx ← extract service nodes covered by D̃cx

16: m̃cx ← mappings from mcx , where all service nodes are covered by Ñcx

17: c̃x = (Ñcx , m̃cx , D̃cx) . minimized composed service
18: return c̃x

according to the flow-direction of the data. Black edges indicate the single steps
of the algorithm. Starting with port mapping n3.o1 = r.o1 (i.e., the only mapping
related to output port r.o1), all reachable mappings (indicated by a thick border)
are identified.

In general, the algorithm processes each mapping contained in the set of open
mappings Xopen by removing it from Xopen (line 5 in Algorithm 1), adding it to
the set of closed mappings Xclosed (line 6), and adding its preceding mappings
as new open mappings to Xopen – provided that a preceding mapping was not
already traversed (line 9). A mapping y ∈ Dcx is a preceding mapping of xopen,
if the sink defined in y and the source defined in xopen refer to the same service
node (cf. Figure 4.23). When no more mappings can be processed (i.e., if Xopen is
empty), the set of closed mappings Xclosed is defined as new (and minimized) data-
flow. This minimized data-flow does not contain mappings relating to superfluous
services anymore (line 14). Finally, the set of contained service nodes (line 15)
as well as the service node to service mapping (line 16) are adjusted accordingly.
The result is a minimized composed service.

110

4.3 Shortcomings and Extensions

4.3.4 Discarding Properties of Visual Data

In our Thumbnails use case, the involved services modified width and height of
images. Now consider the situation that the incoming image (or more specifically
the corresponding variable) has additional properties. For example, the input
image is described in the request specification to be additionally colored and
encoded in the RGB color space, while the overall goal is to first resize the image,
and subsequently convert the color of the resized image. After applying the effects
of the resizing service, however, any additional properties that are not explicitly
mentioned in the effects are discarded. That is because service specifications
only include properties that are relevant for the service itself, while the transition
function (cf. Eq. (4.22) on page 89) does not explicitly preserve properties that
are not relevant for a service. In a sense, this shortcoming is related to the general
frame problem in AI, stating that effects cannot be used to derive the non-effects
of actions [94, 100].

In our specific context, several techniques may be applied to tackle this short-
coming. We propose two basic strategies: A local one involving more complex
service specifications, and a global one incorporating rules based on an expanded
data ontology. Both of them, however, base on the same assumption: Properties
of a visual input data i can only be transferred to a visual output data o, if o is
derived from i; e.g., if image o is a modified version of image i.

Including Negative Effects

We assume that visual output data o inherits all properties from visual input
data i, provided that o is derived from i, and both have the same data type (i.e., i
and o are assigned the same monadic predicates). To explicitly define properties
that have to be discarded when transferring properties, service specifications are
expanded to include negative effects. Formally, negative effects can be expressed in
terms of negative literals in E. Technically, as proposed in our previous work [10],
E can be divided into two disjoint sets E+ and E− comprising positive effects
and negative effects, respectively. By explicitly separating positive and negative
effects, negative effects can be conveniently expressed in terms of positive literals.
In any case, service specifications become more complex, while the specification
process itself becomes more expensive.

111

4 Symbolic Service Composition

Expanding the Data Ontology and Incorporating Rules

The global knowledge encoded in data ontology OD can be expanded, and sub-
sequently exploited by applying additional rules similar to rule-based expert sys-
tems [51]. For example, properties in OD can be defined as transferable in order
to indicate which properties have to be transferred from visual input data i to
visual output data o, provided that o is derived from i. Furthermore, properties
in OD can be defined as conflicting in order to indicate that particular properties
cannot be valid for the same variable at the same time. A distinct rule may then
enforce the transition function to not transfer a property that conflicts with a
property, which is explicitly mentioned in the effects of a candidate service. For
example, although the color space property may be indicated as transferable, it
must not be transferred from an input image i to an output image o, if another
color space property is already defined for o.

Necessary Adjustments

For the remainder of this work, we adopt the local approach in terms of negative
effects. We adjust our service specification formalism as follows.

� Given a service specification ŝ, we formally express negative effects as neg-
ative literals in Eŝ. Furthermore, we denote the non-negative effects con-
tained in Eŝ by E+

ŝ , and the negated negative effects by E−ŝ . Beside monadic
and binary predicates, we also allow patterns as negative effects. For exam-
ple, the pattern hasWidth(i1, _) represents all binary predicates hasWidth
having i1 as first variable and any other variable as second variable.

� Given a service specification ŝ, we indicate by means of the dedicated binary
predicate derivedFrom(o, i) ∈ E+

ŝ that an output variable o ∈ Oŝ is derived
from an input variable i ∈ Iŝ.

Modified Result Processing: We extend the Result Processing step in our
composition algorithm (cf. Figure 4.15 on page 90). For each service candidate
(ŝ, mI) that is returned by the discovery process and before generating valid out-
put mappings, we compute the set of derived properties – denoted by ϕ(ŝ,mI) – as
follows:

112

4.3 Shortcomings and Extensions

1. Given a service specification ŝ and a valid input mappingmI , we generate for
each predicate in E+

ŝ [mI] that matches derivedFrom(o, i) a distinct mapping
m = (i, o).

2. Let M denote the set of all previously generated mappings. For each map-
ping m ∈M, we expand ϕ(ŝ,mI) by adding all properties that are contained
in state φ and affected by m, except for i) properties that are contained in
E−ŝ under input mapping mI and ii) properties that match a pattern in E−ŝ .
That is,

ϕ(ŝ,mI) =
⋃
m∈M

φ[m] \ (φ ∪ E−ŝ [mI] ∪match(φ[m],E−ŝ)) , (4.30)

where match(A,B) is an operator that returns only those literals from A
that match at least one pattern contained in B.

Subsequently, the derived effects are incorporated for generating valid output
mappings mO and mOα . Roughly speaking, the derived effects combined with the
specified (positive) effects enable the algorithm to determine whether the appli-
cation of the corresponding candidate service results in an output that satisfies
an output specified in the request. We redefine the validness of output mappings
by altering Eq. (4.20) from page 87 to

Er̂[mO,mOa] \ Er̂ ⊆ E+
ŝ [mI] ∪ ϕ(ŝ,mI), (4.31)

with ϕ(ŝ,mI) being the derived effects as defined by Eq. (4.30), and E+
ŝ [mI] being

the positive effects of candidate service (ŝ, mI) under input mapping mI .

Like in the original Result Processing step, each identified output mapping mO

and mOα defines a new child search node x′. The derived effects, however, have
to be incorporated for computing the new associated state φx′ . That is, we alter
Eq. (4.22) from page 89 to

φx′ = φx ∪ (φ̃ \match(φ̃, {derivedFrom(_,_)})), (4.32)

with

φ̃ = E+
ŝ [mI] ∪ ϕ(ŝ,mI) ∪ E+

ŝ [mI ,m
−1
O ,m−1Oa] ∪ ϕ(ŝ,mI)[m

−1
O ,m−1Oα] .

113

4 Symbolic Service Composition

All positive effects E+
ŝ both under input mapping mI and under input and output

mappings mI , mO, mOα , as well as the derived effects ϕ(ŝ,mI) both in the origi-
nal form and under output mappings mO, mOα are contained in the new state.
Furthermore, the match operator ensures that we get rid of all derivedFrom pred-
icates, since they are not required anymore.

Relaxed vs. Strict Goal Node Condition: By incorporating derived effects
in a state φx that is associated to a search node x, the condition for testing
whether a search node is a goal node or not as defined in Eq. (4.24) on page 89 is
rather relaxed – if not too relaxed in particular cases. The current goal condition
accepts any attributes assigned to the output, as long as the attributes specified
in the request are satisfied. In cases where the tasks to be accomplished or the
execution order of corresponding services are not known or only partially known
in advance, this relaxed goal node condition is required to identify better or at
least appropriate solutions; especially in combination with learning techniques
(cf. Chapter 6).

If a requestor, however, is only interested in automated program synthesis (i.e.,
the required functionality is exactly known in advance, but the solution shall
be implemented automatically), a strict goal node condition that only accepts
exact solutions is required: Only the attributes specified in the request must be
assigned to the output. Let refersTo(φ,V) denote on operator, which returns all
predicates from φ that refer to any variable contained in a set of variables V. We
then define the strict goal condition as

φ∗ = refersTo(φx,Or̂) . (4.33)

That is, the predicates in state φx that refer to output variables specified in the
corresponding request r̂ must be identical to the effects specified in r̂ (remember
that φ∗ = Er̂).

Example. A request specification r̂ leads to initial state

φ0 = {Image(r̂.i1),Width(r̂.i2),Height(r̂.i3),Width(r̂.a1),

Height(r̂.a2), hasWidth(r̂.i1, r̂.a1), hasHeight(r̂.i1, r̂.a2),

hasColorSpaceRGB(r̂.i1), isMulticolored(r̂.i1)} .

114

4.3 Shortcomings and Extensions

Input variable i1 of r̂ is an image that has a width a1, a height a2, is encoded in
the RGB color space, and contains multiple colors. The image shall be first
resized by service s19 and subsequently converted to a gray image. The ef-
fects of service specification ŝ119 given by Eq. (4.28) on page 98 are expanded
by {derivedFrom(o1, i1),¬hasWidth(o1, _),¬hasHeight(o1, _)}, leading to

E+
ŝ119

= {Image(o1),Width(a1),Height(a1), hasWidth(o1, a1)

hasHeight(o1, a2), a1 ≥ i2, a2 ≥ i3, derivedFrom(o1, i1)},
E−
ŝ119

= {hasWidth(o1, _), hasHeight(o1, _)} .

When applying specification ŝ119 as service node n1 to state φ0 given valid in-
put mapping mI = {(n1.i1, r̂.i1), (n1.i2, r̂.i2), (n1.i3, r̂.i3), } and the empty output
mapping mO = ∅, we receive successor state φ1, expanded by

φ1 \ φ0 = {Image(n1.o1),Width(n1.a1),Height(n1.a2),

hasWidth(n1.o1, n1.a1), hasHeight(n1.o1, n1.a2),

n1.a1 ≥ r̂.i2, n1.a2 ≥ r̂.i3,

hasWidth(n1.o1, r̂.a1), hasHeight(n1.o1, r̂.a2),

hasColorSpaceRGB(n1.o1), isMulticolored(n1.o1)} .

Literals being crossed out correspond to properties that are not transferred due
to the patterns in E−

ŝ119
. Literals being underlined, in turn, correspond to prop-

erties that are successfully transferred. Roughly speaking, since service s19 ex-
plicitly changes the width and height properties of an image, previous width and
height properties are not valid anymore after applying s19. Properties such as
color space or color distribution, however, remain unchanged when resizing an
image. That is, they must be transferred from input i1 to output o1 indicated by
derivedFrom(o1, i1).

For changing the color space of the image produced by service node n1, we
apply service s20 as service node n2 to state φ1 given valid input mapping mI =

{(n2.i1, n1.o1)} and the empty output mapping mO = ∅. Service s20 is described

115

4 Symbolic Service Composition

in terms of service specification ŝ120 with

Iŝ120 = {i1},
Oŝ120

= {o1},
Pŝ120 = {Image(i1), hasColorSpaceRGB(i1), isMulticolored(i1)},
Eŝ120 = {Image(o1), isGray(o1), hasColorSpaceGrayLevel(o1),

derivedFrom(o1, i1),¬hasColorSpaceRGB(o1),

¬isMulticolored(o1)},
Tŝ120 = {ColorSpaceConversion}.

(4.34)

and

E+
ŝ120

= {Image(o1), isGray(o1), hasColorSpaceGrayLevel(o1), derivedFrom(o1, i1)},

E−
ŝ120

= {hasColorSpaceRGB(o1), isMulticolored(o1)} .

As a result, state φ1 is expanded by

φ2 \ φ1 = {Image(n2.o1), isGray(n2.o1), hasColorSpaceGrayLevel(n2.o1),

hasWidth(n2.o1, n1.a1), hasHeight(n2.o1, n1.a2),

hasColorSpaceRGB(n2.o1), isMulticolored(n2.o1)} .

Again, literals being crossed out correspond to properties that are not transferred
due to E−

ŝ120
, while underlined literals correspond to properties that are successfully

transferred. That is, by subsequently applying services s19 and s20, we receive an
image (variable n2.o1) that was resized and converted to a gray level image.

4.3.5 Outlook: Necessity for Learning

Even if additional knowledge such as the tasks to be accomplished, the execu-
tion orders of the corresponding services, or possible recurrences is available in
advance, multiple solutions that are all correct with respect to a request speci-
fication usually still exist. Put another way, even under optimal circumstances
(Case 4 in Table 4.3), our symbolic composition process usually still suffers from
ambiguity. That is because tasks can usually be accomplished by a vast amount
of different services (especially when considering markets of services), while ab-
stract service specifications render a more detailed differentiation of those services

116

4.4 Evaluation

impossible. Furthermore, the less information is available in advance, the bigger
is the amount of solutions that are correct with respect to a request specification.

So how to pick a good solution from a pool of correct solutions? That is, how
to choose a solution that reduces functional discrepancy to a degree acceptable
for the image processing problem domain at hand? And how to differentiate a
good solution from a less good solution in the first place? In fact, on its own, the
symbolic composition process is unable to cope with these problems.

As already stated, we propose feedback-based learning techniques to overcome
this problem. Feedback is generated in a concrete execution context based on con-
crete data, and is incorporated as additional information into the decision-making
processes (or more concretely, into the search node selection step) of the symbolic
service composition process. Roughly speaking, the learning techniques identify
and recommend beneficial search paths. The entire approach is introduced in all
details in Chapter 6.

4.4 Evaluation

In this section, we investigate the run-time behavior of the heretofore introduced
symbolic composition approach by comparing different configurations (depth-first
search vs. breadth-first search, interpretation of the tasks defined in the request,
etc.). An extended version of our Thumbnails use case serves as application
scenario and defines the concrete composition problem to be solved. All evaluation
steps were conducted in a Linux environment on a dual CPU system (2 x Xeon
E5-2637v2 3.50GHz 15MB) with 64GB RAM.

4.4.1 Prototypical Implementation

Figure 4.24 shows the two relevant components of our prototypical implemen-
tation. The Service Discovery component maintains a repository with available
services (in terms of their specifications), and implements the functionality for
discovering candidate services according to a discovery request. To simulate non-
determinism of a distributed network of Service Providers to some extend, dis-
covered candidate services are always returned in a random order. The Service
Composition component implements the composition functionality for generating
composed services according to a given request based on discovered services. The

117

4 Symbolic Service Composition

Service Composition

Uninformed
Forward Search

discovery request

candidates

composed service

request

Service Discovery

Service Specifications

Figure 4.24: Prototype

Parameter Alternatives

Search Algorithm Breadth-First, Depth-First,
Random Node Selection

Maximal Length l ∈ N

Interpretation of Tr̂
(Cases 1-4)

(1) Unordered, Recurrences
(2) Unordered, No Recurrences
(3) Ordered, Recurrences
(4) Ordered, No Recurrences

Goal Test Strict, Relaxed

Minimize Solution Yes, No

Table 4.4: Configuration parameters

parameters listed in Table 4.4 allow us to configure the composition approach.

The entire prototype is implemented using Python [101]. Specification literals
are simple strings. Variable mappings and matching functionality are realized by
string operations. The basis for the different search algorithms is the SimpleAI
Python library [102], which implements algorithms described in the textbook
Artificial Intelligence: A Modern Approach, also known as AIMA [97]. The task
ontology maintained by the Service Discovery component is realized based on the
treelib Python library [103].

Remark. In the experiments discussed in the upcoming sections, we always min-
imized identified solutions by removing superfluous services (cf. Section 4.3.3).
Furthermore, the goal node test always worked in strict mode (cf. Section 4.3.4).

4.4.2 Concrete Composition Problem

We need a composed service that accepts a colored image encoded in the HSV
color space [29] and produces

1. a gray image encoded in the RGB color space (o1),

2. a resized, colored image encoded in the RGB color space (o2), and

3. a resized, gray image encoded as Gray Level image (o3).

118

4.4 Evaluation

The request specification is given by

Ir̂ = {i1, i2, i3},
Or̂ = {o1, o2, o3},
Pr̂ = {Image(i1),Width(i2),Height(i3),

hasColorSpaceHSV(i1), isMultiColored(i1)},
Er̂ = {Image(o1), isGray(o1), hasColorSpaceRGB(o1),

Image(o2), hasWidth(o2, i2), hasHeight(o2, i3), isMultiColored(o2),

hasColorSpaceRGB(o2), Image(o3), hasWidth(o3, i2),

hasHeight(o3, i3), isGray(o3), hasColorSpaceGrayLevel(o3)} .

(4.35)

For Tr̂, we consider three different specifications:

Root Task Only: T1
r̂ = {ImageProcessing}

Reduced Task Set: T2
r̂ = {ColorSpaceConv., Resizing, Cropping}

Complete Task List: T3
r̂ = [ColorSpaceConv., ColorSpaceConv.,

Resizing, Cropping, ColorSpaceConv.,
ColorSpaceConv.]

By incorporating only the root task of our task ontology, the composition process
has no additional task information that can be exploited. That is, the set of
candidate services cannot be reduced in the first step of the discovery process.
The complete task list, in turn, incorporates all tasks in the correct order for
at least one valid solution. The reduced task set only incorporates the involved
tasks, but not how often a task has to be accomplished. When interpreted as list,
the order of the specified tasks resembles the order of the complete task list.

As elementary services, we have chosen a pool of nine services, where – ac-
cording to our Thumbnail use case – two services realize a cropping functionality,
two services realize a resizing functionality, and the remaining five services realize
the necessary color conversion functionality (i.e., HSV to RGB, Gray Level to
RGB, etc.). A solution for our composition problem requires a minimum of six
service nodes. Figure 4.25 shows an exemplary solution that was automatically
composed according to T3

r̂. In the lower branch, the original HSV image (input
port i1) is converted by service s8 into a Gray Level image in order to remove the
color information. The gray image is subsequently converted by service s6 into an
RGB image as required for output port o1. In the functionally independent upper

119

4 Symbolic Service Composition

 s6

o1

 s8

s4

 d2

s7

 s8

s3

o3

o2

•
i1

d1

•
i2

d3

•
i3

d4

Figure 4.25: Exemplary solution for l = 6.

branch, the original image is first resized by service s4 and cropped by service
s3 afterward. The resulting image is both converted by service s7 into an RGB
image as required for output port o2, and converted by service s8 into a Gray
Level image as required for output port o3.

4.4.3 Search Space and Solution Space

At first glance, a service pool of only nine services seems not to pose a formidable
challenge at all. However, even such a small amount of services can in fact result
in a tremendously huge search space – depending on the configuration of the
composition approach and Tr̂. In this context, Figure 4.26 shows the (measured
and estimated) search space sizes for the previously introduced specifications of
Tr̂ depending on the maximally allowed length l of a solution. Note that length
in our context generally refers to the amount of services included in a composed
service.

Each curve represents the results of a single experiment. During each exper-
iment, the entire search space was explored for l = 1 . . . 10 by constructing the
corresponding search tree. Furthermore, each experiment was assigned a different
interpretation of Tr̂ ∈ {T1

r̂,T2
r̂,T3

r̂}. That is, each experiment used the informa-
tion provided in terms of Tr̂ in a different way. In addition to Cases 1-4, we
additionally included a Worst Case interpretation of Tr̂: All tasks specified in
Tr̂ are included in every discovery request. In case where an experiment ran
out of memory (indicated by the out of memory line), the corresponding process
was aborted. The heretofore measured data was subsequently used in order to

120

4.4 Evaluation

(a) Root Task Only (b) Reduced Task Set

(c) Complete Task List

Worst Case: Measured Data
Worst Case: Fitted Curve
Case 1: Measured Data
Case 1: Fitted Curve
Case 2: Measured Data
Case 3: Measured Data
Case 3: Fitted Curve
Case 4: Measured Data

(d) Legend

Figure 4.26: Measured and estimated (dashed lines) development of the overall
search space sizes.

roughly estimate the amount of search nodes for bigger values of l by a curve
fitting mechanism. In addition to the amount of discovered search nodes, Fig-
ure 4.27 compares the amount of solutions identified in each experiment for l = 6

and l = 7. Overall solutions (transparent bars) represent the goal nodes exist-
ing in the corresponding search tree. Actually different solutions (opaque bars)
represent the remaining solutions after i) minimizing each composed service by
removing superfluous services and ii) removing duplicates that have an equivalent
data-flow.

If only the root task is specified (cf. Figure 4.26a and left part of Figure 4.27),
the amount of search nodes and the amount of identified solutions are identical
for the Worst Case, Case 1 (unordered, recurrences), and Case 3 (ordered, recur-
rences). However, due to the tremendous amount of combination possibilities, all
three experiments run out of memory for l > 6. For Case 2 (unordered, no recur-
rences) and Case 4 (ordered, no recurrences), the information provided in terms
of the root task is not sufficient to identify any solution at all. Since |T1

r̂| = 1, the
length of any composed solution is also restricted to one, while the search space
is not extended for any l > 1.

121

4 Symbolic Service Composition

Figure 4.27: Overall solutions (transparent bars) and actually different
solutions (opaque bars).

If a reduced task set is specified (cf. Figure 4.26b and middle part of Fig-
ure 4.27), the only significant difference can be observed for Case 3. Due to the
more fine grained information specified in T2

r̂, the amount of search nodes for
each l is reduced; i.e., the size of the search space is increasing less strongly. As a
consequence, the search space for l = 7 can be completely explored and valid solu-
tions are identified. One of those solutions is shown in Figure 4.28. In comparison
to the solution shown in Figure 4.25, all necessary color conversion services are
applied before applying service s3 and service s4 for resizing and cropping, respec-
tively. The original HSV image (input port i1) is converted by service s7 into an
RGB image, which is subsequently resized and cropped for required output o2.
Furthermore, the RGB image is converted by service s5 to a Gray Level image.
The Gray Level image is subsequently resized and cropped for required output
o3, as well as converted by service s6 to an RGB image for required output o1.

If a complete task list is specified (cf. Figure 4.26c and right part of Fig-
ure 4.27), solutions for l = 6 can be identified in all five cases, while the size
of the search space is slightly reduced for Case 1. Since |T3

r̂| = 6, which is the
minimal amount of service nodes for a valid solution, solutions can be found for
Case 2 and Case 4, although recurrences are not allowed in the respective settings.
T3
r̂ provides enough information for both cases to produce solutions for l = 6 and

l = 7. Note that the amount of search nodes for Case 2 and Case 4 does not
change anymore for l > |T3

r̂|, since recurrences are not allowed. Last but not
least, given Case 4 with l = 7, the ratio between the amount of overall solutions

122

4.4 Evaluation

 d1

 s5

s4

 d2
 s4

s6

 s3

 s3

o1

o3

o2

•
i2

d3

•
i1

s7

•
i3

d4

Figure 4.28: Exemplary solution for l = 7.

and the actually different solutions demonstrates impressively that a tremendous
amount of different composition runs actually result in identical solutions.

4.4.4 Time to Solution

In order to compare the time the different search approaches need to identify
a solution (henceforth referred to as time to solution) for l = 6, we conducted
experiments for each combination of Case 1-4, Tr̂ ∈ {T1

r̂,T2
r̂,T3

r̂}, and the search
approaches breadth-first, depth-first, and random node selection. For each exper-
iment, the composition process was repeated 100 times. Furthermore, we defined
a timeout of 30 minutes. That is, whenever a single composition run exceeded
the timeout threshold, we aborted the entire experiment. The results are shown
in Figure 4.29 in terms of box plots. Red lines represent median values, red
squares represent mean values, and the lower and upper whisker represent the
first quartile Q0.25 (i.e., 25% of the values are lower than Q0.25) and third quartile
Q0.75 (i.e., 25% of the values are higher than Q0.75), respectively. Crosses indicate
outliers. Note that – for purposes of presentations – some outliers with relative
high values are not depicted (e.g., in case of the “Root Task Only” depth-first
plot in Figure 4.29c). However, none of these omitted outliers exceed the timeout
threshold.

123

4 Symbolic Service Composition

(a) Case 1: Unordered, Recurrences (b) Case 2: Unordered, No Recurrences

(c) Case 3: Ordered, Recurrences (d) Case 4: Ordered, No Recurrences

Figure 4.29: Comparison of time to solution for max length l = 6 (the
minimum length for our composition problem to be solved).

Between the results of the experiments based on T3
r̂ shown in Figure 4.29c

and Figure 4.29d, there are actually no significant differences - despite of the
different scaling of the plots. That is, for l = 6 = |T3

r̂|, it is irrelevant for the
time to solution whether recurrences are allowed or not; as long as the order of
the tasks is predefined. The same behavior can be observed when comparing the
results of the experiments based on T3

r̂ shown in Figure 4.29a and Figure 4.29b.
In fact, these results reflect the behavior we desired: As long as all tasks to be
accomplished are specified, and provided that the maximally allowed length l

is equivalent to the number of specified tasks |Tr̂|, it does not matter whether
recurrences are allowed or not, since recurrences are not possible at all. For that
reason, we consider the more general cases Case 1 (unordered, recurrences) and
Case 3 (ordered, recurrences) as the two interpretations of Tr̂ that are actually
relevant for the integration of learning techniques (cf. Chapter 6).

Throughout all combinations, depth-first search proves to be the fastest for
our composition problem. In comparison to breadth-first search, which tends to
result in timeouts, depth-first search does not have to explore the entire search
space before reaching the necessary level in the search tree. In relative terms,

124

4.4 Evaluation

however, depth-first search suffers from the random order of discovered candidate
services. The time to solution values of breadth-first search are more stable in this
respect. When selecting search nodes uniformly at random, the time to solution
values can mostly compete with those of depth-first search. In the worst case,
however, the time to solution values approach the values of breadth-first search.
In one particular case (right part of Figure 4.29a), random node selection is even
slower than breadth-first search. In short, the behavior of random node selection
is less predictable than breadth-first search and depth-first search.

Figure 4.30 contrasts the mean time to solution of all experiments that in-
corporate T3

r̂ (except for the Case 1 and Case 2 breadth-first results) with the
corresponding number of discovered search nodes. The discovered search nodes
(complete bars) are divided into explored nodes (green), pruned nodes (yellow),
and open nodes (gray) that remained in the Fringe database. First of all, we can
observe that the experiments incorporating random node selection for Case 1 and
Case 2 stand out regarding the relation between number of search nodes and time
to solution, although the amount of closed search nodes (explored search nodes +
pruned search nodes) is significantly smaller in comparison to the related depth-
first search results. The reason is most likely an overhead induced by an inefficient
implementation of the random node selection process in our prototype. A more
thorough investigation, however, is beyond the scope of this work.

Let aside the relation between search nodes and time to solution, the divisions
of the discovered search nodes into open, explored, and pruned nodes reflect the
individual behavior of the different search approaches. Roughly speaking, depth-
first search is able to approach the composition problem in a more target-oriented
way, since the maximum length (and hence the maximum depth of the search
tree) is equivalent to the minimum amount of service nodes required for a valid
solution. As a consequence, only a small amount of open nodes remains in the
Fringe database. Breadth-first search, in contrast, has to explore the entire search
space until the necessary depth of the search tree is reached. As a consequence, a
huge amount of irrelevant search nodes that were discovered on the previous level
are still existing in the Fringe database after finding a solution. Considering the
results of the random node selection experiments, it might be worth to investigate,
whether an optimized implementation results in a mean time so solution that is
even lower than the mean time to solution of depth-first search. The significantly
smaller amount of closed search nodes is very promising that is.

125

4 Symbolic Service Composition

Figure 4.30: Discovered search nodes as well as corresponding time to solution.

4.4.5 Conclusion

Our proposed symbolic composition approach is able to identify valid solutions for
the composition problem at hand. The concrete configuration and its feasibility,
however, depends on the characteristics of the composition problem. For example,
if all tasks to be accomplished as well as their order are known in advance, depth-
first search combined with an interpretation of Tr̂ in terms of Case 4 (or Case 3)
as well as a maximally allowed length l = |Tr̂| minimizes time to solution and
memory consumption, while simultaneously allowing for more precise predictions
regarding the run-time behavior than, e.g., random node selection.

If necessary, our proposed approach can be flexibly extended to counter compo-
sition problems that exhibit other characteristics than our exemplary composition
problem. For example, iterative depth-first search combined with an interpreta-
tion of Tr̂ in terms of Case 3 might be a good choice when a minimal length can be
estimated, but the exact length of the required solution is not known. In the long
run, a decision-making engine for automatically choosing a good configuration
depending on the characteristics of the composition problem would significantly
increase the practical relevance – also with respect to OTF Computing in general
(cf. Section 2.2). However, before being of use in a productive environment, the
prototypical implementation has to be replaced by a more efficient realization.

For the remainder of this work, we focus on Case 3 (ordered, recurrences) as
interpretations for Tr̂. That is, recurrences are allowed by default, but can be
conveniently avoided by setting l = |Tr̂|. When combined with learning tech-

126

4.5 Related Work

niques, however, the uninformed search algorithms are replaced by an informed
search approach (cf. Chapter 6).

4.5 Related Work

There exist a tremendous amount of work that is related to the topic automated
service composition. However, the actual composition problems that are tackled
and the restricting assumptions that are made differ widely. While many of the
existing approaches claim to tackle “the” service composition problem, a consistent
definition of the problem itself does not exist. In fact, we have doubts whether
such a clear definition is even possible considering the variety of different research
directions that emerged under this topic. In order to organize the discussion of
related work to some extent, we need at least a rough classification of the different
approaches.

Classification

As proposed by Mohr [104], work related to automated service composition can
be classified according to the following two problem classes:

Composition with a Given Structure: Approaches belonging to this class as-
sume a predefined behavior of the required application, e.g., in terms of a
template that has to be instantiated during the composition process. In
the most general sense, the task is to find a possibly optimal refinement of
an abstract data-flow or control-flow. Optimality, in this context, usually
refers to the quality of an application in terms of non-functional properties.
Additional relevant questions are the consideration of business constraints,
transactional properties, and recursive decomposition of the task. Promi-
nent solution paradigms are integer programming [105–108], heuristic based
search [109–113], genetic programming [114, 115], and AI planning [116–
118].

Composition without a Given Structure: Approaches in this class assume
that the required behavior as well as the behavior of services is described
in terms of logical preconditions and effects. A predefined behavior for the
solution, however, is not available; neither in terms of a data-flow nor in
terms of a control-flow. Generally speaking, the problem class deals with

127

4 Symbolic Service Composition

the transformation of a declarative programming statement into an imper-
ative one: A description that specifies what kind of functionality is required
has to be automatically converted into an implementation that defines how
to realize it. Approaches belonging to this class typically differ in the com-
plexity of preconditions and effects, the complexity of the control-flow, and
the consideration of non-functional properties. The most prominent solution
paradigm is AI planning.

A similar classification was proposed by Rao and Su [119] in 2005, who also dif-
ferentiate two major classes of composition approaches: workflow-based and AI
planning-based approaches. In the first case, a composed service is considered
to contain both a set of elementary services and a corresponding control- and
data-flow among these services. Methods from dynamic workflow management
are then applied to automatically bind abstract nodes with concrete services out
of the set of elementary services. In terms of AI planning, service composition is
interpreted as finding a sequence of actions, whose execution leads to the achieve-
ment of the desired goal. A single action may, e.g., correspond to applying an
elementary service. An overall plan in terms of control- and data-flow is not known
in advance, but is automatically generated. Planning-based methods are further
divided into four categories: Situation calculus [120], Planning Domain Definition
Language (PDDL) [121], rule-based planning [122], theorem proving [123], and
others such as Hierarchical Task Networks (HTN) planning [117]. However, due
to the increasing amount of related work that was presented in the last decade,
we consider the classification proposed by Rao and Su to be slightly outdated and
incomplete by now. Hence, we stick to the classification proposed by Mohr [104].

We consider our composition algorithm to belong to the class of approaches
that do not require a given structure but rely on specifications in terms of logical
preconditions and effects. Although the task definitions included in a request
might be interpreted as a predefined structure (cf. Section 4.3.1), the composition
problem we are dealing with is clearly covered by the second problem class where
a predefined structure is not available. For that reason, we focus our discussion
on composition approaches that work without a given structure. Every approach
we discuss solves some form of a planning problem, where the problem domain is
defined either based on propositional logic or first-order logic.

128

4.5 Related Work

Propositional Logic

Thakkar et al. proposed a forward chaining approach based on propositional
logic [124]. Required Inputs and outputs as well as inputs and outputs of services
are described in terms of simple propositions. Starting with the required inputs
as available inputs, their algorithm iteratively appends services whose inputs are
a subset of the currently available inputs. The outputs of an appended service
are subsequently added to the available inputs. The algorithm terminates, if all
required outputs are contained in the available inputs. The very basic idea is
similar to our approach. However, by merely describing inputs and outputs in
terms of sets of propositions, a distinct data-flow cannot be composed at all,
especially when services have multiple inputs and outputs. Furthermore, in their
approach, every service can be contained at most once in a composed service, while
the set of available services is assumed to be known in advance. Our approach, in
turn, bases on a variant of first-order logic, making it possible to consider relations
between inputs and outputs as well as more complex semantic descriptions of
inputs and outputs. Furthermore, our approach incorporates an online discovery
mechanism for discovering candidate services during the composition process.
Last but not least, we do not restrict how often a service can be contained in a
composed service, as long as the respective service nodes are not configured in
exactly the same way.

Based on the work of Thakkar et al., Blake and Cummings presented a forward
search algorithm that additionally incorporates Service Level Agreements (SLAs)
such as reliability and execution time [125]. The proposed composition algorithm
first performs a forward search in order to identify composed services that trans-
form the required inputs into the required outputs and satisfy predefined SLA
bounds. Out of the set of valid solutions, the final solution is selected according
to predefined priorities among the SLAs. In comparison to our work, however, the
presented approach still has the same disadvantages as the previously described
approach proposed by Thakkar et al. [124].

Two approaches that tackle service composition based on propositional spec-
ifications by backward chaining were presented by Matskin et al. [126] and
Wu et al.[127]. While the work of Matskin et al. can be considered as the back-
ward search counterpart of the work of Thakkar et al. [124], Wu et al. additionally
introduce a distance-based heuristic: The selection of services to be prepended
during the backward search is driven by a heuristic computed in a pre-processing

129

4 Symbolic Service Composition

step. In our context, however, such a pre-processing is not feasible and may even
prevent solutions that are actually relevant for the composition task at hand.

Another strategy for guiding planning-based composition processes is the incor-
poration of dependency graphs [128–131]. The basic idea is to capture relations
among services in a graph in advance, and exploit the information during the
actual composition process. Brogi et al., e.g., presented an approach that consid-
ers ontological matchmaking [128]. Initial state and goal state of the underlying
planning problem correspond to sets of ontological concepts. Their proposed de-
pendency graph model incorporates nodes for the type of data that flows between
services, and nodes for services themselves. First, the dependency graph is con-
structed based on the concepts and the set of available services by means of an
iterative matching algorithm. After constructing the dependency graph, a back-
ward chaining algorithm is applied to identify the relevant service nodes within
the dependency graph for the composition problem at hand. In comparison to
“plain” backward chaining such as presented by Matskin et al. [126], dependency
graphs can, e.g., prevent the search algorithm from coming to a dead end.

In the presented form, however, dependency graphs cannot deal with the com-
position problem we are facing in our work. First of all, available services are not
known in advance. That is, a dependency graph cannot be simply constructed.
Furthermore, the application of an image processing service does not necessarily
depend on the direct predecessors only, but often also on a sequence of services
that gradually modify visual data. While our composition algorithm is indeed able
to construct such applications due to the extensions described in Section 4.3.4, the
available dependency graph-based approaches do not consider such dependencies.

In our previous work, we also used propositional logic for specifying requests
as well as services in terms of preconditions and effects [10]. The composition
environment is captured in a state transition system, where states correspond to
sets of propositions that can be altered by applying actions (services). Effects are
split in two disjoint sets. The first set contains positive effects that are valid after
applying a service. The second set, in turn, contains negative effects that are
no longer valid after applying a service. For example, a color conversion service,
which converts a colored image into a gray level image, has GRAY as positive ef-
fect and COLORED as negative effect. Similar to the work of Matskin et al. [126],
the composition problem is solved by a backward search algorithm. Due to the
restricted composition model, however, only simple sequences of services with

130

4.5 Related Work

a single input and a single output can be automatically composed. In short,
the presented composition approach is not appropriate for solving the use cases
introduced in Section 3.

In a consecutive paper, we slightly refined the composition model by addition-
ally splitting up the preconditions into positive and negative preconditions [18].
While positive preconditions must be satisfied (i.e., must be contained in the
current state) in order to apply a service, negative preconditions must not be
contained in the current state. For example, to explicitly prevent a multiple ap-
plication of a specific service (such as a binary thresholding service), the same
proposition can be specified as positive effect and negative precondition. Fur-
thermore, we switched from backward search to a more flexible forward search
approach. By doing so, the composition process is able to consider services that
are not explicitly mentioned in the request specification. Moreover, similar to
the work at hand, the composition process is enabled to apply the same service
more than once. In combination with feedback-based learning (cf. Section 6), the
composition approach is enabled to identify solutions for incorrect or incomplete
requests such as the incomplete task definitions mentioned in Section 4.3.2 – at
least to a certain degree. Last but not least, similar to the work at hand, the com-
position algorithm is able to compose services where services depend on multiple
previous services, and not only on their direct predecessor.

In our latest work and before switching to first-order logic, we further refined
the composition model to realize an IOPE-based approach based on propositional
logic [11, 17]. That is, apart from (positive and negative) preconditions and
effects, inputs and outputs are described in terms of propositions. While the
propositions for inputs and outputs refer to data types of inputs and outputs
(i.e., the signature of a service), the propositions for preconditions and effects
represent semantic information. Although the refined approach allows for more
fine-grained specifications of requests and service functionality, the composition
algorithm is still restricted to sequences of services.

First-Order Logic

Hoffmann et al. proposed a composition approach similar to our (IOPE-based)
work [11], but grounded on first-order logic [132, 133]. Preconditions and post-
conditions (effects) can contain relational information that refer to specific inputs
and outputs of services. In their work, a state is a conjunction of literals. Using a

131

4 Symbolic Service Composition

forward search algorithm, a service is applicable in a state iff the input variables
of the service as well as the preconditions are contained in the state, while the
output variables of the service must not be contained. Furthermore, the approach
makes a simplifying yet restrictive assumption: All variables in the postconditions
of a service are output variables. That is, in contrast to the approach described
in this work, relations between inputs and outputs are not allowed. For example,
specifications such as Eq. (4.6) on page 75 are not possible. In fact, the composi-
tion model is only slightly more expressive than our IOPE-based approach using
propositional logic as specification formalism [11]. Furthermore, in the work of
Hoffmann et al., each service can only be contained at most once in a composed
service, while the services are assumed to be known in advance.

A composition approach that describes the behavior of services by addi-
tionally relating the outputs to the inputs was presented by Bartalos and
Bieliková [134, 135]. In their work, and similar to our work, a service is de-
scribed by ontologically typed inputs and outputs and by so called conditions.
In contrast to our approach, conditions do not only contain predicates, but also
symbols for conjunction and disjunction. However, function symbols, which are
allowed in our approach (cf. Eq. (4.6) on page 75), are permitted. The approach
of Bartalos and Bieliková also considers ontological matchmaking in the data-
flow. That is, output can be used by the subsequent service event if it is more
specific than what is required. This kind of feature is currently not covered by
our work. To reduce the set of possible composed services, Bartalos and Bieliková
require that in order to apply a service, the preconditions of the service must be
completely satisfied by the preceding service. While this restriction facilitates a
highly efficient composition algorithm, it also significantly limits the set of possi-
ble compositions. For example, the presented approach might indeed be able to
produce solutions like chains of image processing services for our Segmentation
use case (cf. Section 3.3). However, it is not able to produce appropriate solutions
for our Thumbnails use case (cf. Section 3.2) or our Object Detection use case
(cf. Section 3.4).

In one of the first approaches for automated service composition, McDermott
extended classical PDDL in order to make it suitable for service composition [121].
So called step-values are introduced in order to enable PDDL to specify the cre-
ation of new information produced by services. The typical advantage of classical
PDDL is that it can serve as input for many standard planners. However, this

132

4.5 Related Work

advantage does not hold anymore for the proposed approach, since the proposed
extensions are not covered by standard planners. In fact, McDermott proposes a
specific composition algorithm based on a regression-match graph. Since the al-
gorithm works in multiple phases, it is able to compose solutions with conditional
branches. However, the paper itself reflects only a preliminary stage of research
without any evaluations, which could be a reason for never being adopted by
subsequent approaches that incorporate PDDL (such as [136]). Nevertheless, it
might be worth to take a second look in the future; especially with respect to
conditional branches, which are currently not supported in our work.

As already mentioned in Section 4.2, our planning-based composition approach
is heavily inspired by the work of Mohr et al. [6]. That is, they share many similar-
ities. Both composition approaches use a variant of first-order logic for specifying
functionality in a IOPE-based manner. Furthermore, both approaches support
relations between input and output variables. Available services do not have to be
known in advance; neither for the backward search proposed by Mohr et al., nor
for our proposed forward search. However, Mohr et al. incorporate non-functional
properties for selecting services and exploit the advantages of backward search to
find the most straightforward solutions. Our algorithm, in turn, uses a more
flexible yet more complex forward search that enables us – in combination with
feedback-based learning – to identify less obvious but possibly better solutions,
where better refers to the reduction of functional discrepancy. Last but not least,
due to the additional extensions we made, we are confident to say that our com-
position approach is more tailored to data processing applications in general and
image processing applications in particular. Data processing applications, in fact,
were not paid that much attention in the domain of SOC in the past. Due to
the increasing importance of topics like Big Data and Data Analytics, however,
intensifying research on automatically composing service-based data processing
applications might be a good choice.

133

5 Execution and Rating

After composing image processing functionality in terms of a data-flow net, the
composed solution has to be executed (cf. Figure 5.1). Subsequently, the execution
result has to be rated in order to quantify the discrepancy between desired and
concrete functionality. This chapter first presents a flexible architecture for dis-
tributed execution of service-based applications. Subsequently, problem-specific
rating mechanisms for both the Segmentation use case (cf. Section 3.3) and the
Object Detection (cf. Section 3.4) use case are described. Last but not least, we
present experimental results for the entire approach excluding the feedback-based
learning techniques.

Execution: As an exemplary framework for distributed execution of automat-
ically composed services, we present a flexible yet prototypical Service-
oriented Architecture (SOA). Beside providing services for composition, ser-
vice providers in our SOA also provide all means for executing provided
services. By integrating the SOA into the OTF Image Processing frame-
work, we obtain an architecture that allows us to automatically compose
and execute service-based image processing applications. Please note that
the SOA does not aim for offering an architecture for OTF Computing in
general. For example, market mechanisms are not covered.

Rating Process: The task of the rating process is to quantify the quality of
an execution result in comparison to the desired result of a specific image

Execution

Rating

Data
Composed Service

Execution Result

Problem Domain

Figure 5.1: OTF Image Processing - Execution and Rating.

135

5 Execution and Rating

processing problem domain. Roughly speaking, the higher the functional
discrepancy (i.e., the distance between “what we need” and “what we get”) is,
the lower the rating result will be. In this work, however, we do not intend
to develop a generally valid rating process, but focus on individual rating
mechanisms for both our Segmentation use case and our Object Detection
use case.

5.1 Service-oriented Architecture for Execution

Our SOA provides a distributed computing framework for executing composed
services. The SOA is already successfully applied in a robotics use case, where
autonomous, mobile robots (BeBots) have to realize cooperative behavior in or-
der to fulfill a mutual task [23]. In the concrete use case, the framework enables
the BeBots to outsource computationally expensive tasks, while it simultaneously
enables the entire system to make use of the BeBots as physical sensors in the
environment. In general, the SOA facilitates a very flexible development of dis-
tributed, service-based applications. In this section, we first briefly introduce the
main concepts of our SOA. Subsequently, we describe how the SOA can be in-
tegrated into the OTF Image Processing framework. By doing so, we obtain an
architecture that allows us to automatically compose and execute service-based
image processing applications.

5.1.1 Key Concepts and Building Blocks

The key concept of our framework are services. For executing a composition
of services (i.e., a composed service), we developed a uniform and data-driven
protocol based on so-called recipes. Recipes are autonomous messages traveling
through the network containing all information and data to complete a complex
task step by step in a sequential manner. The very basic idea is that a service
receives a recipe, extracts the required data, processes this data, appends the
processed data (i.e., the result) to the recipe, and finally forwards the updated
recipe to the next service defined in the recipe. Please note that we use the terms
recipe and message synonymously in the following sections.

Another building block of our SOA are service providers, which implement
the environment for executing services. Service providers are interconnected via

136

5.1 Service-oriented Architecture for Execution

’recipe ’ :
’id’ : 0,
’service ’ : ’GaussianFilterService ’,
’provider ’: (’192.168.0.1 ’, 5000) ,
’params ’ : ’k_size ’ : (-1, ’k_size ’),

’image’ : (-1, ’image’)
’id’ : 1,
’service ’ : ’DisplayImageService ’,
’provider ’: (’192.168.0.2 ’, 5000) ,
’params ’ : ’image ’: (0, ’result ’)

’data’ :
(-1, ’k_size ’) : 3,
(-1, ’image’) : [...]

(a)

Service Provider

Services Local
Behaviours

Queue Manager

Dispatcher

Network

(b)

Figure 5.2: (a) Excerpt of an exemplary recipe. (b) Overview of the
fundamental components of our SOA framework.

network and take care of the recipe packing, unpacking, and parsing, execution
management, as well as the routing and transmission of a recipe to the next
service provider (if necessary). In fact, our SOA corresponds to a network of
loosely coupled service providers. That is, each entity participating in the overall
system features a local management unit in terms of a service provider instance.

Recipes

A recipe is a data driven construct to define i) an order in which specific services
have to be executed (control-flow) and ii) how input and output parameters of
the services have to be connected to achieve a certain goal (data-flow). That is,
a recipe defines a composed service and describes its execution. Initial input as
well as intermediate and final result values are stored in a dedicated data section
of the recipe.

Figure 5.2a shows an excerpt of an exemplary recipe. The ’recipe’ sec-
tion contains two services. The first service (’id’: 0) is provided by a service
provider located at IP 192.168.0.1 and accessible via port 5000. The service
implements a Gaussian filter for reducing image noise. The input parameters
(kernel size ’k_size’ and ’image’ to be processed) are stored in the ’data’ sec-
tion. The second service (’id’: 1) displays the processed image on a different
entity in the network. The corresponding input data ’image’ is not yet available
in the recipe, but will be stored with key (0, ’result’) by the first service in

137

5 Execution and Rating

Service Provider

Dispatcher

Queue Manager

Routing

Packing

Message & Recipe
Parsing

Task Queue

Task Table

Services

Service 1:
Instance 1

Service 1:
Instance 2

Service N:
Instance 1

...

Result Queue

Local Behaviours

Behaviour 1

Behaviour N

...

Service 1
Queue

Service N
Queue

Behaviour 1
Queue 1

Behaviour 1
Queue N

...
Behaviour N

Queue 1

Figure 5.3: Internal processes of a service provider.

the data section.

Service Provider

A service provider resides directly on top of the network and consists of mul-
tiple components on three different levels of abstraction (cf. Figure 5.2b). The
dispatcher implements the application-level protocol for sending and receiving
messages over the network. On top of this, the queue manager handles parsing
of recipes, manages local services, and acts as intermediary between them. The
top layer consists of individual services and so-called local behaviors.

Figure 5.3 gives a detailed overview of the processes within a service provider.
The dispatcher is responsible for the communication between different service
provider instances among the network. Each message is serialized before it is
sent across the network, and is de-serialized after it was received. In order to
allow concurrent message processing, each message reception and sending task is
handled in an individual thread. After de-serialization, the dispatcher puts the
respective recipe into the task queue of the queue manager.

The queue manager is the heart of a service provider: Recipes are parsed and
processed. That is, the next service to be executed and the associated input pa-
rameters are extracted from the recipe. The extracted information is put into the

138

5.1 Service-oriented Architecture for Execution

input queue of the corresponding service type. An instance of the correspond-
ing service type subsequently processes the data and puts the result data into a
public result queue. The queue manager appends the computed result value to
the corresponding recipe. In order to keep track of which result belongs to which
recipe, unique task ids are generated and stored in a so-called task table. In this
way, the execution of services is strictly separated from any recipe parsing.

After being repacked, a recipe is processed by the routing component of the
queue manager in order to determine the next recipe-specific processing step. If
the next service is located at the same service provider, the recipe is put into the
task queue of the queue manager again. Otherwise, the recipe is forwarded to
the dispatcher, which takes care of sending the recipe to the respective service
provider in the network.

Services vs. Local Behaviors

Within our SOA, there are two main types of computation units: services and
local behaviors. These modular units provide a standardized way of computation
steps that can be accessed and combined by means of recipes. They form the
main logic of every application that uses our SOA for distributed computing.

According to the principles of SOC (cf. Section 2.2.1), services provide a state-
less execution of a predefined task. However, in order to cope with inherent
stateful tasks (such as localization), we introduce so-called local behaviors as
“stateful services”. In contrast to services, which are only executed if input data
is available, local behaviors can be executed periodically. Furthermore, local be-
haviors may have multiple input queues and have full control over them. That
is, behaviors are not automatically executed when new recipes are available, but
recipes are explicitly taken out of the input queues by the behavior according to
its application logic. Finally, in comparison to services, local behaviors can make
use of other services by creating and emitting recipes. That is, local behaviors
access the routing component of the queue manager (cf. Figure 5.3) and directly
inject new recipes into the overall system. Roughly speaking, this concept allows
to seamlessly integrate stateful and more complex functionality into the SOA
framework.

139

5 Execution and Rating

Composition

Execution

Request

Data

Composed Service

Execution Result

Discovery Request

Candidate Services

Loop

Discovery

Network
of Service
Providers

Recipe

Result

Repository

Service
Specifications

Figure 5.4: Integration of SOA and OTF Image Processing for execution of
composed image processing services.

5.1.2 Integration into OTF Image Processing

Our SOA can be integrated into OTF Image Processing on two different levels.
First, as Figure 5.4 illustrates, the SOA can be applied for executing composed
services. Second, the entire OTF Image Processing framework can be realized in
a service-oriented manner. In the first case, service providers instances supply
“only” image processing services. In the second case, also OTF processes such as
composition, discovery, execution, and rating themselves are supplied by service
provider instances; either as services or local behaviors. Such a distributed and
service-oriented OTF Computing environment does not only allow for distributing
the execution of composed services, but also for distributing the OTF Computing
process itself. Distributing the entire process is inevitably when aiming for market
environments, where participants may cooperate or at least delegate composition
tasks fully automatically. However, in this work, we exclusively focus on the first
case.

Executing Composed Services

Figure 5.4 shows the concept of how to use our SOA for executing composed
services. Recall that the SOA is nothing but a network of loosely coupled service
provider instances. For integration, there are in fact two points of contact. First,
having a network of service providers, the specifications of all provided services are
consolidated in a single repository. As described in Section 4.2.4, the composition
process (or more precisely the discovery process) resorts on this accumulated pool
of services. Furthermore, each service specification is enriched with additional
meta data such as the associated service provider’s location in terms of IP address

140

5.2 Problem Domain specific Rating Processes

and port number.
Second, after composing a solution, a recipe encapsulating all necessary in-

formation for execution is automatically generated. That is, a composed service
comprising service nodes, associated service classes, as well as a data-flow and
control-flow net, is transformed into a recipe according to the additional meta
data. Finally, after integrating the data to be processed, the recipe is injected
into the network of service providers for execution.

We strictly stick by the principles of service-oriented image processing intro-
duced in Section 2.3.1. That is, we do not include any parameters in a recipe gen-
erated from an automatically composed service. We consider one and the same
image processing algorithm with different parameter sets as different services in
the first place. For future work, however, mechanisms for manually adjusting
or even automatically adapting parameters most likely increase the practical rel-
evance. Our SOA, at least, already supports the integration of parameters in
recipes (cf. Figure 5.2a).

5.2 Problem Domain specific Rating Processes

In our work, rating refers to automatically

� quantifying the discrepancy between the functionality when executing a
composed service and the desired functionality that was (abstractly) speci-
fied in terms of a request, and

� expressing the quantified discrepancy as a rating value. Roughly speaking,
the smaller the functional discrepancy, the higher the rating value has to
be.

The very basic idea is to estimate the functionality of composed services based on
their execution results. During the execution process, use case-specific input im-
ages are processed. The images are prepared in advance according to the concrete
problem domain of the respective use case. Input images are processed separately
in consecutive execution runs. The corresponding result data is collected. After
the execution step has finished, i.e., after all images have been processed, the col-
lected result data is forwarded to the use case-specific rating mechanism. Since
the entire process heavily depends on the underlying image processing problem
domain, we tackle both relevant use cases (Segmentation use case and Object

141

5 Execution and Rating

Detection use case) separately. That is, deriving a general rating framework is
beyond the scope of this work.

5.2.1 Preliminary Considerations

Before describing both rating mechanisms in detail, let us first introduce some
preliminary considerations that are essential for the subsequent sections.

Direct and Indirect Rating

For our Segmentation use case, we require a composed service that identifies and
extracts adjacent pixels of similar color as regions. If key attributes of the regions
to be detected are known in advance, a heuristic for directly quantifying the
distance between those reference regions and extracted regions can be designed
(cf. Figure 5.5a). If, however, only the result of the overall task (such as detected
markers or scenario-specific objects as described in Section 2.1.3) can be evaluated,
the rating process is rather indirect. In the latter case, the rating result does not
only depend on the composed service and the rating process, but also on the
image processing steps between composed service and rating process.

In more complex scenarios such as our Motion-based Object Detection use
case, intermediate results cannot be rated at all, but only the final outcome
(cf. Figure 5.5b). For example, when detecting objects based on their motion
in the image plane, rating the execution result (i.e., the regions) of the composed
service is impossible. In comparison to the detection of predefined objects, neither
the regions nor any motion information can be clearly defined in advance. As a
consequence, we cannot draw any conclusions for evaluating intermediate results.
Instead, we have to focus on the final execution result in terms of detected objects.

Absolute and Relative Rating

Apart from rating directly or indirectly, functionality can be rated either abso-
lutely or relatively. By absolute rating, we refer to a rating process that involves
only the result of a single run – independent of previous runs and previous exe-
cution results. This scenario usually corresponds to the processing of images that
are considered to be independent. For example, in our Segmentation use case, we
address the comparison of regions extracted during a single run with predefined

142

5.2 Problem Domain specific Rating Processes

? Direct
Rating

Detection of
Predefined Objects

Indirect
Rating

regions regionsimage objects objects

rating value

reference

rating value

reference

(a) Segmentation Use Case: Predefined objects are detected based on their characteristic
regions extracted by a dedicated Segmentation mechanism.

? Motion-based
Object Detection

Indirect
Rating

regionsimage objects objects

rating value

reference

(b) Motion-based Object Detection Use Case: Arbitrary objects are detected based on the
motion of the corresponding yet unknown regions.

Figure 5.5: Direct and indirect rating processes.

reference regions as an absolute rating process. We also refer to such reference
data as ground truth data. In our context, ground truth data reflects the result
data that can be produced under optimal or nearly optimal circumstances.

Now consider a sequence of images with changing illumination conditions or
varying image noise (e.g., due to the imperfection of the applied camera). The
entire sequence is processed by consecutive runs of the composed service. In such a
scenario, it is often more beneficial to have an image processing application, which
performs robustly across consecutive runs, than an image processing application,
which performs perfectly in some runs, but poorly in others. Let us consider our
Segmentation use case as an example again. Given that the execution results
among consecutive runs are similar and do not change arbitrarily, a well designed
heuristic is still able to correctly classify predefined objects such as markers, even
though the corresponding regions were not perfectly detected.

In contrast to an absolute rating mechanism, a relative rating mechanism com-
pares results of consecutive runs without incorporating ground truth data. Put
another way: While the robust rating estimates how good a composed service can
reproduce a desired result known in advance, the relative rating estimates how
good a composed service can deal with (slightly) varying visual data. Of course,
relative and absolute rating can also be combined, as we will see in the rating
process for our Segmentation use case.

143

5 Execution and Rating

5.2.2 Segmentation Use Case

As described in Section 3.3.1, we restrict the context of the Segmentation use
case to the separation of colors printed on a color palette. A sequence of im-
age processing services has to identify and extract areal regions according to the
colored areas contained in the color palette. Furthermore, regions have to be
statistically described in terms of moments. Although serving as motivation for
the use case, neither the actual marker detection algorithm nor any other algo-
rithm for detecting predefined objects are involved. That is, we focus on a direct
rating mechanism in this use case (cf. Figure 5.5a). Furthermore, we combine
an absolute rating mechanism based on ground truth data and a relative rating
mechanism based on results of consecutive runs. Both mechanisms are derived
from our previous work [16].

Concrete Problem Domain and Execution Context

The problem domain of the Segmentation use case is to capture images of a
printed color palette by means of the target camera in the target environment.
These images shall then be used as concrete data for the execution step. In this
respect, the problem domain is fixed. However, right now, the capture process
itself has yet to be defined.

In the most general sense, we can use the knowledge about the color palette
as reference in order to generate ground truth regions (middle column in Fig-
ure 5.6). Depending on how images of the color palette are captured, however,
comparing the execution result with ground truth data can become rather com-
plex and error-prone. For example, a flexible rating mechanism that can handle
execution results based on images taken from arbitrary perspectives (as shown
in Figure 5.6), while relying on one and the same set of ground truth regions,
would be most convenient. For this purpose, the ground truth regions have to
be extracted and appropriately described. Furthermore, the ground truth regions
and the regions extracted by the composed service have to be correctly matched
(as indicated in Figure 5.6). Afterward, the distance between matched regions
can be estimated and aggregated into an overall rating result. However, a poorly
designed and error-prone rating mechanism tends to produce wrong rating results.
For example, wrongly established correspondences due to inappropriate represen-
tations of regions or a poorly designed matching approach can significantly distort

144

5.2 Problem Domain specific Rating Processes

Figure 5.6: Before comparing, execution results (left and right) have to be
correctly matched to ground truth data (middle) in the first place.

the rating result.

In our work, we require an automated rating process that produces reliable
values; especially with respect to feedback-based learning as it is introduced in
Section 6. Among others, false positive and false negative matching results have
to be minimized. For that reason, we decided for a very restricted problem domain
without spending any effort on a convenient and flexible rating mechanism. We
assume the color palette to have exactly the same geometric attributes in each
captured image. That is, in each image including the image for computing ground
truth regions, the color palette has the same coordinates, orientation, and size in
the image plane (cf. Figure 5.7). By doing so, we minimize sources of errors by
design.

Ground Truth Data

In this particular use case, ground truth data corresponds to a set of areal regions.
Each region represents a color segment of the color palette. To generate the
ground truth regions, we manually composed a sequence of pre-processing filters
followed by our segmentation algorithm [3]. The sequence was applied to an
image captured under optimal conditions (cf. Figure 5.7a). The parameters of
the segmentation algorithm were carefully adjusted to produce the best possible
result; i.e., to detect each color segment as a single region while simultaneously
covering the entire color palette as good as possible. The qualitative results are
shown in Figure 5.7d.

145

5 Execution and Rating

(a) (b) (c)

(d) (e)

Figure 5.7: (a)-(c) The color palette was captured by the target camera from
one and the same perspective, but under different illumination
conditions. (d) Ground truth regions based on (a). (e) Explicit
descriptions of ground truth regions in terms of image ellipses.

For the actual rating process, quantitative results are required. For that rea-
son, the raw pixel data of each region is transformed into a more abstract yet
more robust representation in terms of statistical moments [3, 4, 20]. As already
mentioned in Section 2.1.3, the fundamental idea is to interpret a region and its
associated pixels as two-dimensional Gaussian distribution in the image plane.
Such a distribution is described by means of statistical parameters: The two
mean values mx and my, the two variances σ2

x and σ2
y, and the covariance σxy.

A generalization of these specific parameters are statistical moments. The two
mean values correspond to the two moments of first order (m10 and m01), whereas
the two variances and the covariance correspond to the centralized (or central)
moments of second order (µ20, µ02, and µ11):

~m =

(
mx

my

)
=

(
m10

m01

)
,

Σ =

(
σ2
x σxy

σxy σ2
y

)
=

(
µ20 µ11

µ11 µ02

)
.

Based on the work of Hu [35], we define a discretized, two-dimensional moment

146

5.2 Problem Domain specific Rating Processes

mpq of order p+ q belonging to a region R as

mpq =
∑

(x,y)∈R
xpyq, (5.1)

where (x, y) are the coordinates of a pixel assigned to region R. According to our
previous work [3], the required central moments of second order are computed by
means of the moments up to and including second order:

µ20 = m20 −
m2

10

m00

,

µ02 = m02 −
m2

01

m00

,

µ11 = m11 −
m10 ·m01

m00

.

(5.2)

That is, for describing a single region as a two-dimensional Gaussian distribution
in the image plane, the following set M of moments is required:

M = {mpq | (p+ q) ≤ 2, p ≥ 0, q ≥ 0}
= {m00,m10,m01,m11,m20,m02} .

In order to represent a region in a more explicit manner, an adequate set of
geometric attributes can be derived from these moments [137]. The mass of a
region corresponds to the number of associated pixels and is equivalent to the
zeroth order moment m00. The coordinates (x, y) of the center of mass of a
region in the image plane are defined by means of the moments of zeroth and first
order:

x =
m10

m00

and y =
m01

m00

. (5.3)

Furthermore, the three-dimensional density distribution of a region can be ex-
pressed by a set of contour lines, i.e., by a set of ellipses (also denoted as image
ellipses). The center of an image ellipse is located at the center of mass of the
corresponding region (cf. Figure 5.8a). Statistically, each ellipse describes an ellip-
tical disk with constant intensity. An elliptical disk is equivalent to the associated
region given a certain confidence parameter. It has definite size, orientation, and
eccentricity, and is originally centered at the origin of the image plane [36] (cf. Fig-
ure 5.8b). Its major radius a, minor radius b, and orientation φ can be directly

147

5 Execution and Rating

x

y

(a)

a

b

y

x

x'
y'

(b)

Figure 5.8: (a) Regions expressed as contour lines (ellipses) of their density
distributions. (b) Representation of an ellipse by its major axis x′,
minor axis y′, and angle of inclination φ.

Table 5.1: Angle of inclination φ.
μ20 − μ02 μ11 φ

0 0 0

0 + +π/4 ξ = 2μ11

μ20−μ02

0 − −π/4
+ 0 0
− 0 −π/2
+ + (1/2) · arctan ξ (0 < φ < π/4)
+ − (1/2) · arctan ξ (−π/4 < φ < 0)
− + (1/2) · arctan ξ + π/2 (π/4 < φ < π/2)
− − (1/2) · arctan ξ − π/2 (−π/2 < φ < −π/4)

derived from moment m00 and central moments μ20, μ02, and μ11:

a =

√√√√γ
(
μ20 + μ02 +

√
(μ20 − μ02)2 + 4μ2

11

)
m00

, (5.4)

b =

√√√√γ
(
μ20 + μ02 −

√
(μ20 − μ02)2 + 4μ2

11

)
m00

, (5.5)

and φ as described in Table 5.1. The parameter γ can be considered as a measure
of confidence. The higher the value, the more likely it is that all pixels of a region
lie within the boundaries of the corresponding ellipse. Figure 5.7e shows the image
ellipses (with γ = 1.5) of the ground truth regions based on the moments listed
in Table 5.2.

Example. The average color of ground truth region in Figure 5.7e with ID 1

is R = 179, G = 86, and B = 93. According to Eq. (5.2), its central moments are

148

5.2 Problem Domain specific Rating Processes

Table 5.2: Complete list of discretized moments corresponding to the ground
truth regions depicted in Figure 5.7d.

ID Discretized Moments Color (R,G,B)

m00 m10 m01 m20 m02 m11

1 3771 264541 159710 19513652 8241922 11111092 (179, 86, 93)

2 4308 558392 184895 73723295 9714003 23917698 (253, 185, 131)

3 4379 840875 190688 162885212 10101324 36627877 (254, 252, 154)

4 3978 1004379 187733 254670908 10467543 47486497 (189, 204, 128)

5 3949 266013 448697 18967170 52594647 30197242 (67, 109, 147)

6 4667 595184 543612 77439863 65472178 69324098 (100, 142, 135)

7 4721 901704 557961 173803169 6812523 106552895 (88, 122, 9)

8 4217 1063330 503594 26931379 61982414 126989066 (120, 151, 104)

9 3946 268048 735694 19278265 138747082 50101916 (64, 65, 96)

10 4387 558132 832782 72407183 159934824 106015209 (73, 60, 85)

11 4465 845873 856701 161717910 166248451 162261279 (90, 60, 82)

12 4020 1005762 768999 252745079 148730443 192309477 (128, 64, 81)

µ20 = 955725, µ02 = 1477858, and µ11 = −92791. With Eq. (5.4), Eq. (5.5) and
γ = 1.5, we have a = 34 and b = 27, respectively. Furthermore, since µ20−µ02 < 0

and µ11 < 0, the angle of inclination is φ = −1.4 (≈ −80◦). Finally, according to
Eq. (5.3), the region’s center of mass and consequently the center of the image
ellipse defined by a, b, and φ is located at position (x, y) = (70, 42).

Absolute Rating Mechanism

The first step of the absolute rating mechanism is a non-exhaustive classification.
Let Rgt denote the set of ground truth regions listed in Table 5.2. Furthermore,
let Ri denote the set of regions that was extracted from an image Ii during a single
run i. An extracted region ri ∈ Ri is assigned to a ground truth region rgt ∈ Rgt,
if its center of mass lies within the boundaries of rgt (cf. Figure 5.9a). Multiple
regions from Ri may be assigned to the same ground truth region, while the same
region from Ri may be assigned to multiple ground truth regions. Regions that
are assigned to the same ground truth region are merged into a single region
(denoted by rc,i in Figure 5.9b) by adding up the associated moments. Let Rc,i

denote the set of all classified (and possibly merged) regions from Ri. As a result
of the classification step, each ground truth region belongs to one region from Rc,i

149

5 Execution and Rating

at most.

The second step of the absolute rating mechanism calculates the corresponding
rating value. The main idea is to analyze the overlap of a ground truth region
rgt ∈ Rgt and its associated region rc,i ∈ Rc,i. However, instead of calculating a
pixel-precise value, we consider the overlap of the region’s bounding boxes based
on their image ellipses (cf. Figure 5.9c). The reason for this strategy is simple: A
pixel-precise comparison contradicts the statistical and robust representation of
regions in terms of moments. Furthermore, in case of a statistical representation
and the comparison based on this representation, the influence of a few pixels
that were not assigned to a region are usually very low. In terms of a pixel-
precise comparison, however, missing pixels can have a significant impact to the
rating result, although the statistical representations are almost identical. That
is, a pixel-precise comparison tends to distort the actual rating result in this
particular use case.

We define the distance between a ground truth region rgt and its associated
region rc,i from run i as

δrgt,rc,i = 1− 2 · Aoverlap
Argt + Arc,i

, (5.6)

with Arc,i being the area of rc,i’s bounding box, Argt being the area of rgt’s bound-
ing box and Aoverlap being the overlapping area of both bounding boxes. If rgt
is not assigned a region from Rc,i, we set the distance value to the maximum
possible value 1. The absolute rating value λa,i for a single run i is then defined
as

λa,i = 1− 1

|Rgt|
∑

rgt ∈Rgt
δrgt,rc,i , (5.7)

with |Rgt| being the total amount of ground truth regions, and δrgt,rc,i being the
distance between ground truth region rgt ∈ Rgt and its associated region rc,i from
Rc,i according to Eq. (5.6).

In consideration of combining the absolute rating value with a relative rating
value, which incorporates multiple consecutive runs, we define the (averaged)
absolute rating value for the last n runs as

λa =
1

n

j∑
i=j−n+1

λa,i, 1 ≤ n ≤ j ≤ k , (5.8)

150

5.2 Problem Domain specific Rating Processes

(a) Classification. (b) Merging. (c) Overlap as Distance.

Figure 5.9: (a) Regions that lie within the boundaries of rgt are (b) merged
into a single region rc,i in order to (c) determine the overlap as
distance.

with λa,i as defined by Eq. (5.7), j being the current run, and k being the total
amount of runs.

Relative Rating Mechanism

For the relative rating mechanism, we first apply a deterministic tracking ap-
proach. Tracking is usually applied to detect motion in the image plane (cf. Sec-
tion 5.2.3). In the use case at hand, however, we exploit the basic tracking func-
tionality in order to establish correspondences between (actually non-moving)
regions, which were extracted by the composed service in consecutive runs. The
tracking algorithm was originally introduced in our previous work [20]. It is the
same algorithm that is applied in the Object Detection use case as described in
Section 3.4.1. The main idea of the tracking approach is to gradually reduce the
amount of valid correspondences between a region from two consecutive images Ii
and Ii−1 by subsequently applying heuristics with respect to position, motion, size,
and shape. Identifying the best correspondences within the remaining possible
correspondences is considered as local optimization problem and solved by mini-
mizing predefined distance functions. Note that the tracking algorithm requires
at least two consecutive runs in order to be able to establish correspondences.
That is, for the time being, we assume i > 1.

We subsequently compare the amount of established correspondences with the
amount of regions that were originally extracted by the composed service, given
by Ri. Let Rtr,i denote the set of successfully tracked regions detected by the
tracking algorithm in run i. We define the relative rating value λr,i for run i as

λr,i =
|Rtr,i|
|Ri|

. (5.9)

151

5 Execution and Rating

In order to obtain a value that reflects the robustness of the composed service
across n consecutive runs, we define the average relative rating value of the last
n runs given current run j as

λr =
1

n

j∑
i=j−n+1

λr,i, 1 ≤ n < j ≤ k , (5.10)

with k being the total amount of runs. The condition 1 ≤ n < j ≤ k is crucial,
since the tracking algorithm cannot establish correspondences until the second
run j = 2, i.e., until at least two images were processed. In short, the condition
ensures i > 1. For example, in case of j = 10 for any k ≥ j, the minimum and
maximum amount of values that can be incorporated in λr are n = 1 (only the
current result) and n = 9 (all previous results except for the result of the first
run), respectively.

Note that Rtr,i may contain regions with incorrect correspondences, leading to
a distortion of λr. However, we neglect an additional validation step, but simply
minimize the probability of wrongly established correspondences by applying a
highly restrictive parametrization to the tracking algorithm. A highly restrictive
parametrization is reasonable in our context, since there is no motion to be tracked
in our setting in the first place. If λr = 1, the composed service can be considered
to be highly robust, since very similar regions were detected in each of the last
n runs. If λr = 0, the execution results of consecutive runs significantly differ.
That is, the composed service cannot be considered to be robust at all.

Complete Setup

Figure 5.10 shows the entire rating mechanism for the Segmentation use case.
The input is a list of sets of regions extracted by an automatically composed
service from a sequence of consecutive images. The output is a single rating
value λ, 0 ≤ λ ≤ 1. The upper branch generates the absolute rating value,
where the Evaluation step computes λa according to Eq. (5.7) and Eq. (5.8).
The lower branch generates the relative rating value, where the Evaluation step
computes λr according to Eq. (5.9) and Eq. (5.10). Both associated Evaluation
steps incorporate all runs except for the very first run for calculating the respective
values; i.e., n = k − 1 for j = k given that k > 1. The relative rating mechanism
requires the first set for establishing initial correspondences in the second run.

152

5.2 Problem Domain specific Rating Processes

Classific. Evaluation

Tracking Evaluation

Aggreg.

Rgt

loop

Ri

Rc,i

Rtr,i

λa

λr

[R1, . . . ,Rk] λ

Figure 5.10: Rating mechanism for the Segmentation use case. The input is a
list of sets of regions extracted by the composed service in
consecutive runs i = 1, . . . , k. The output is a single rating value.

The absolute rating mechanism simply ignores the classification results from the
first run. By doing so, λa and λr are in sync regarding the execution results they
refer to. Both values are finally aggregated to obtain the final rating value; i.e.,

λ = wr · λr + (1− wr) · λa, 0 ≤ wr ≤ 1 , (5.11)

where wr is a weight parameter for adjusting the ratio between relative and ab-
solute rating in the final value.

5.2.3 Object Detection Use Case

In the Segmentation use case, the composed service is a standalone image pro-
cessing application that can be executed independently. In the Object Detection
use case, in contrast, the composed service is embedded into a more comprehen-
sive application (cf. Figure 5.5b on page 143). As described in Section 3.4.2, the
composed service shall produce regions that are subsequently processed in order to
detect objects based on their motion in the image plane. Due to the nature of this
use case, the execution result of a composed service can only be rated indirectly.
Given a sequence of consecutive images from a scenery with one or more moving
objects, the rating value reflects a composed service’s capability to extract regions
(such as points, lines, and areas) that enable the subsequent processes

� to correctly detect existing objects (i.e., reduce false negative cases), while

� minimizing misperceptions (i.e., reducing false positive cases).

153

5 Execution and Rating

(a) Motion Field. (b) Object Motion. (c) Sensor Motion.

Figure 5.11: Motion of different origin within the image plane, each consisting
of a displacement gradient (represented by arrows).

In comparison to the Segmentation use case, the best possible result does not
only depend on the available services, but is also limited by the capabilities of
the tracking and classification processes within the motion-based object detection
approach. That is, even if the execution result of a composed service is optimal,
shortcomings of the tracking and classification processes usually still lead to false
positive or false negative cases. However, this is not an issue in the first place. In
fact, the rating value has to be interpreted as a value that reflects the fitness of
a composed service within the context of the entire application.

For a better understanding of the upcoming sections, let us take a closer look
at the motion-based object detection approach depicted in Figure 3.16 on page 55.
Both the computation of moments and the tracking step were already addressed
in the rating process of the Segmentation use case. For that reason, we focus on
the motion-based classification (originally presented in our previous work [21])
and a rudimentary object detection step.

Motion-based Classification of Regions

According to the “ecological approach to visual perception” introduced by Gib-
son [138], we differentiate between two origins of motion in the image plane. First,
there are dynamic objects, which move relative to the camera in the environment
(cf. Figure 5.11b). Second, the camera itself may move in the environment (cf. Fig-
ure 5.11c). Each induced motion in the image plane can be described by means
of a displacement gradient. The displacement gradient indicates the direction and
provides information about the related velocity. In our context, the unification
of all available displacement gradients is provided by the tracking algorithm in
terms of regions with assigned velocity vectors.

The task of the motion-based classification approach is to cluster regions that

154

5.2 Problem Domain specific Rating Processes

belong to motions of same origin. The very main idea is the interpretation of
the sensor motion within the image plane as a homogeneous velocity vector field,
whereas the motion of present dynamic objects is interpreted as outliers in this
particular vector field (cf. Figure 5.11). No external knowledge about the current
motion of the applied camera is presumed. The entire classification can be roughly
divided into three steps:

1. First of all, the tracked regions are clustered based on the assumption, that
regions located next to each other have a similar velocity with respect to
value and direction. That is, adjacent regions with similar velocity are
consolidated into the same cluster, while adjacent regions with different ve-
locity are members of different clusters. The regions of every single cluster
are then merged together in order to get an even more abstract (and re-
duced) representation of the motion in different sections of the image plane.
We refer to those new regions section regions.

2. Afterward, colliding section regions with similar velocity are in turn
grouped. Out of these new clusters, the most likely cluster is interpreted
as the sensor motion, and, if possible, extended by section regions, which
previously did not meet the conditions. As a result, we obtain clusters
of section regions, where one of the clusters represents the sensor motion
in the image plane, while all other clusters represent outliers that can be
traced back to dynamic objects, but also to shortcomings such as wrongly
established correspondences.

3. In the third step, the section regions that were classified as sensor motion
are transformed into an appropriate and easy to handle structure, which in
turn consists of areal regions equally distributed in the image plane. With
the help of these sensor motion regions, the current run i as well the next run
i + 1 of the classification approach are improved. During run i, additional
section regions are iteratively assigned to the sensor motion cluster. During
run i + 1, the sensor motion regions from run i is used as starting point
for establishing a sensor motion cluster. By doing so, the whole approach
operates in a self-stabilizing manner.

Example. Figure 5.12 shows qualitative results from a scenery, where the camera
was moved to the right, while the colored marker was almost hold in place relative

155

5 Execution and Rating

(a) Tracked Regions. (b) Section Regions. (c) Sensor Motion.

Figure 5.12: Intermediate results of the motion-based object detection
approach.

to the camera. Figure 5.12a shows the result of the tracking step in terms of
regions and assigned velocity vectors (yellow arrows). As we can see, the motion
of the marker can be clearly distinguished from the motion induced by the moving
camera. Furthermore, the velocity vectors, which are assigned to the regions
of the marker, indicate that the marker was slightly shifted in the last images.
Figure 5.12b shows the result of the second classification step. That is, the section
regions created in the first step are either classified as sensor motion (green)
or outliers (red). Rectangles correspond to the bounding boxes of the section
regions. Arrows represent the averaged velocity vectors of section regions based
on all associated tracked regions. A dot indicates that the velocity is negligible.
Figure 5.12c shows the estimated sensor motion for the entire image plane. Red
dots indicate that no information about the sensor motion is available for the
particular section. Note that the arrows now indicate the actual sensor motion
mapped into the image plane, and no longer the motion of regions induced by the
sensor motion.

Object Detection

The task of the object detection approach is to detect and describe objects based
on the tracked regions classified as outliers. In this context, we follow a very
generic approach: Areas with a high density of velocity vectors are interpreted as
moving objects. That is, the set of outliers is divided into one or more partitions by
an exhaustive clustering algorithm. However, neither the value nor the direction
of velocity vectors is incorporated into the clustering process. That is because
a moving object in the environment does not generally result in a homogeneous
motion of corresponding regions, but may also result in adjacent regions with

156

5.2 Problem Domain specific Rating Processes

Figure 5.13: Correspondences between complex regions of consecutive runs
based on associated tracked regions. Note that only the center of
mass of a tracked region is indicated (in terms of a cross), but not
the image ellipse.

arbitrary motion (i.e., a set of velocity vectors with arbitrary value and direction).
As an example, compare the motion of the marker shown in Figure 5.12a and the
motion of a rolling ball. Shifting the marker results in a set of regions with
very similar motion. A rolling ball, in turn, does not only move relatively to the
camera, but additionally rotates. In the image plane, the rotation is reflected by
adjacent regions with apparently arbitrary motion.

After partitioning the set of outliers into one or more clusters, regions within
the same cluster are merged by adding up the corresponding moments. We re-
fer to the resulting regions as complex regions, where the term complex means
nothing but “consisting of multiple other regions”. Similar to the regions pro-
duced by the composed service, complex regions are tracked across consecutive
runs. To support the tracking mechanism, an additional heuristic considers corre-
spondences between associated regions (cf. Figure 5.13). Tracked complex regions
serve a dual purpose. First, tracked complex regions from run i are used in run
i+1 as seed points to support the clustering of outliers. Second and more impor-
tantly, tracked complex regions are the output of the entire motion-based object
detection approach. That is, a tracked complex region represents a moving object
detected during run i. Figure 3.18b and Figure 3.18d on page 57 show two exam-
ples. In each example, the thick (yellow) ellipse correspond to the image ellipse
of a tracked complex region consisting of multiple tracked regions.

Two Concrete Problem Domains and Execution Contexts

In contrast to the Segmentation use case, we consider two different problem do-
mains in this use case. Each problem domain is derived from a realistic scenario
and is defined by a sequence of consecutive images taken from a scenery with

157

5 Execution and Rating

(a) (b)

Figure 5.14: (a) Commercial robotic platforms that were integrated into the
test bed. (b) Web-client of the test bed.

moving objects. The overall goal, however, is the same: To compose a service
that extracts regions such as points, lines, and areas from each image, where the
regions serve as input for the subsequent processes in order to detect the moving
objects.

Robot Detection in a Test Bed for Robotic Experiments. Within the con-
text of the Segmentation use case (cf. Section 3.3.1), we already mentioned our
stationary, marker-based localization system for small robots [19]. This localiza-
tion system is mainly used to support experiments with heterogeneous groups
of autonomous, mobile robots such as the BeBot introduced in Section 2.1.3 on
page 11 or the commercial platforms shown in Figure 5.14a. None of the robotic
platforms has the computational capabilities to solve the localization problem
based on the built-in cameras [24]. For illustration, Figure 5.14b shows the sys-
tem’s web-client that provides an overview of the entire environment including
the position, orientation, and ID of detected robots.

The first problem domain addresses the detection of robots in the same setting
based on their motion. The input data for the execution step is a sequence of
consecutive images captured by a stationary camera from a bird’s eye perspective.
That is, the camera itself does not move in the environment. The sequence of
images comprises a scenery, where multiple robots are continually in motion,
either by driving around or rotating on the spot. For the sake of simplicity, we

158

5.2 Problem Domain specific Rating Processes

Figure 5.15: Soccer playing robots from the Middle Size League of the
RoboCup initiative. The robots were gradually developed by
students in consecutive project groups at Paderborn University.

systematically avoid passages where a robot is not moving at all.

Ball Detection for Soccer Playing Robots. The second problem domain is de-
rived from the RoboCup context [139]. In the Middle Size League of the RoboCup
initiative, teams of autonomous, mobile robots compete in a soccer game. That is,
two teams each of up to six middle-sized robots of no more than 50 cm diameter
are moving on a green-white playground in order to carry and shoot a soccer ball
into the opposing team’s goal (cf. Figure 5.15). All sensors have to be on-board.
Support from external sensors like in our robotic test bed is not allowed. A few
years ago, the ball was still single-colored in order to simplify the camera-based
detection of the ball. However, since the rules were continually tightened over the
years, the single-colored ball was replaced by a multi-colored ball with patterns.

In our second problem domain, we aim for detecting such a multi-colored ball
based on its motion without relying on information about color or pattern. The
input data for the execution step is a sequence of consecutive images captured by
a moving camera from an ego perspective. The sequence of images comprises a
scenery, where a multi-colored ball rolls through the camera’s pick-up area while
the background changes due to the camera motion.

We already used a very similar problem domain for evaluating the motion-based
classification of regions in our previous work [21]. In fact, we already referred to
the problem domain as we introduced the general use case (cf. Section 3.4.1).
In this section, however, we additionally apply a subsequent object detection
mechanism, and propose a mechanism for rating the corresponding execution
results. In Section 6, we aim for automatically improving the functionality of
the entire application by adjusting the composed service that is responsible for
extracting regions.

159

5 Execution and Rating

Figure 5.16: Robot Detection: Exemplary images and corresponding ground
truth images.

Figure 5.17: Ball Detection: Exemplary images and corresponding ground
truth images.

Ground Truth Data

For both problem domains, we propose an absolute rating mechanism based on
ground truth data. Although the concrete ground truth data differs for both
scenarios, the approach for expressing the required functionality is the same. The
idea is to process the input data in order to

1. assign pixels either to the background or to a moving object,

2. label the pixels accordingly, and

3. generate binary images as ground truth images.

As a result, and in comparison to the Segmentation use case, each input image
is assigned a dedicated ground truth image, where each ground truth image rep-
resents the reference for a single run. The ground truth generation step might
be done automatically, e.g., based on Optical Flow techniques [140, 141] or by
means of a modified Camshift approach [142]. For the work at hand, however, we
decided to process each image manually. For convenience, we only apply moving
objects in the two problem domains that have no complex shape, but can be well
approximated by simple geometric shapes such as circles and rectangles.

Example. Figure 5.16 and Figure 5.17 show two exemplary images from the
Robot Detection problem domain and the Ball Detection problem domain, re-
spectively. Furthermore, each image is assigned a binary image as ground truth

160

5.2 Problem Domain specific Rating Processes

image. White regions indicate the moving objects to be identified. Black re-
gions correspond to the background. The background may either be static like in
Figure 5.16 or dynamic like in Figure 5.17.

Note that we do not explicitly express the motion of objects in the ground truth
data. Although motion information (i.e., velocity vectors) could be easily ex-
tracted from the ground truth images by means of our tracking algorithm [20], we
neglect such information in the rating process and completely focus on whether
objects are correctly detected and how good they are represented in terms of
complex regions.

Absolute Rating Mechanism

Figure 5.18 illustrates the rating process for the Motion-based Object Detection
use case. For both the Robot Detection and the Ball Detection problem domain,
a sequence of ground truth images [Igt,3, . . . , Igt,k] is prepared in advance and
provided as input.

The rating mechanism works as follows. Let Oi denote the set of objects
(complex regions) identified by the application during run i with i = 3, . . . , k.
Note that the rating process incorporates results starting from the third run (i.e.,
i = 3), since the entire application cannot produce results until the third run.
In the second run, the tracking algorithm starts to establish correspondences
between regions. In the third run, the object detection step starts to establish
correspondences between clusters of tracked regions. Furthermore, let Igt,i denote
the associated ground truth image. In two independent initial steps, both Oi and
Igt,i are processed in order to synthesize two binary images that are used for the
actual rating of run i. Image Igt,i is processed by our Segmentation algorithm
to identify white regions. Identified regions are statistically represented in terms
of moments. Based on the associated image ellipses, a new binary image Ĩgt,i is
generated, where all white areas are represented in terms of ellipses. Likewise, the
image ellipses of the identified objects in Oi are used to generate a binary image
IOi . Roughly speaking, while Ĩgt,i represents the functionality we expect from the
application, IOi represents the functionality the application actually implements.

161

5 Execution and Rating

Synthesis
[O3, . . . ,Ok] Oi

Synthesis

[Igt,3, . . . , Igt,k]

Igt,i

Classific.

IOi

Ĩgt,i

Evaluation
Ptp,i, Pfp,i

Pfn,i

λ

loop

Figure 5.18: Rating mechanism for the Object Detection use case. The input is
a list of sets of objects detected by the application in consecutive
runs i = 3, . . . , k. The output is a single (absolute) rating value.

(a) synthesized ground truth (b) synthesized result (c) combined

Figure 5.19: Binary ground truth image and binary result image combined
into a single image for illustrating the different classes true
positive (white), false positive (light gray), false negative (dark
gray), and true negative (black).

Example. Figure 5.19a shows the synthesized binary image corresponding to
the right ground truth image in Figure 5.16. Figure 5.19b shows the synthesized
binary image of a possible execution result belonging to the same run. While
the lower white areas are quite similar, the white area in the upper right part of
Figure 5.19b indicates a falsely detected object.

The subsequent Classification step is responsible for quantifying the difference
between IOi and Ĩgt,i. The basic idea is to interpret a binary image as a binary
classification (or mask) of the original image, where the colors black and white
represent the two different classes. Consequently, we consider the comparison
of IOi and Ĩgt,i as a comparison of two binary classifications that apply for the
same set of elements (i.e., the coordinates of pixels in the original image). In the
entire process, Ĩgt,i is the reference for evaluating IOi . The comparison is done

162

5.2 Problem Domain specific Rating Processes

(a) true positive (Ptp,i) (b) false positive (Pfp,i) (c) false negative (Pfn,i)

Figure 5.20: Decomposition of the non-black pixels in Figure 5.19c.

element-wise by comparing the classes that are assigned by IOi and Ĩgt,i to the
same coordinate. As a result of the comparison, a pixel coordinate (henceforth
simply referred to as pixel) is assigned to exactly one of following four classes
(cf. also Figure 5.19c):

True Positive: A pixel being white in IOi is also white in Ĩgt,i. The entire set of
true positive pixels is denoted by Ptp,i.

False Positive: A pixel being white in IOi is black in Ĩgt,i. The entire set of false
positive pixels is denoted by Pfp,i.

True Negative: A pixel being black in IOi is also black in Ĩgt,i. This class of
pixels is not required in the subsequent Evaluation step.

False Negative: A pixel being black in IOi is white in Ĩgt,i. The entire set of false
negative pixels is denoted by Pfn,i.

Figure 5.20 illustrates the decomposition of Figure 5.19c into the sets Ptp,i, Pfp,i,
and Pfn,i. Pixels that belong to the indicated set are white, while all other pixels
are black.

Given Ptp,i, Pfp,i, and Pfn,i, the task of the Evaluation step is to generate a
rating value for each run as well as an overall rating value λ. For a single run i,
we evaluate the quality of the classification given by IOi in comparison to Ĩgt,i in
terms of recall (also called hit rate)

λrecall,i =

0 if |Ptp,i ∪ Pfn,i| = 0,

|Ptp,i|
|Ptp,i ∪ Pfn,i| otherwise,

(5.12)

163

5 Execution and Rating

and precision

λprecision,i =

0 if |Ptp,i ∪ Pfp,i| = 0,

|Ptp,i|
|Ptp,i ∪ Pfp,i| otherwise.

(5.13)

Recall generally corresponds to the fraction of elements that were correctly clas-
sified as relevant with respect to all effectively relevant elements [143]. In our
concrete context, it refers to the fraction of pixels that were correctly assigned to
objects by IOi with respect to the pixels that were assigned to objects by Ĩgt,i.
Precision, in turn, corresponds to the fraction of elements that were correctly
classified as relevant with respect to all elements that were classified as relevant
(independent of whether being correctly classified or not). That is, in our context,
precision refers to the fraction of pixels that were correctly assigned to objects by
IOi with respect to all pixels that were assigned to objects by IOi .

In order to combine recall and precision into a single value for each run i, we use
the generalized form of the harmonic mean (also referred to as Fα-measure [144]):

λFα,i = (1 + α2) · λprecision,i · λrecall,i
α2 · λprecision,i + λrecall,i

, (5.14)

where α ≥ 0 controls the ratio between precision and recall. For example, the F2-
measure weights recall higher than precision, while the F0,5-measure, in turn, puts
more emphasis on precision than recall. The F1-measure (also called traditional F-
measure) is the harmonic mean, where precision and recall are evenly weighted.
Based on Eq. (5.14), we define the average rating value for the last n runs at
current run j as

λ =
1

n

j∑
i=j−n+1

λFα,i, 1 ≤ n+ 1 < j ≤ k , (5.15)

with k being the total amount of runs. Condition 1 ≤ n + 1 < j ≤ k ensures
i ≥ 3, which is necessary since the entire application cannot produce results to be
rated until the third run. For calculating λ based on Eq. (5.15), the Evaluation
step in Figure 5.18 incorporates all runs defined by the input data except for the
two first runs; formally n = k − 2 for j = k given that k ≥ 3.

164

5.3 Evaluation

Service Composition

Uninformed
Forward Search

discovery request

candidates

composed service

request

Service Discovery

Execution

Rating

execution result

rating value

Service Executables

Service Specifications

executables

Figure 5.21: Extended Prototype

Segmentation of Color Palette

23 Services: 7 × Segmentation, 16 × Preprocessing

Input Data: 50 Images

Special: Only Plain Sequences

Motion-based Robot Detection
33 Services: 12 × Segmentation, 16 × Prepro-
cessing, 2 × ColorConversion, 3 × Adapter

Input Data: 100 Consecutive Images

Motion-based Ball Detection

Same services as applied for Robot Detection.

Input Data: 60 Consecutive Images

Table 5.3: Application Scenarios

5.3 Evaluation

The purpose of this section is to evaluate the proposed rating mechanisms based on
exemplary solutions. That is, our composition algorithm automatically identifies
solutions for our previously described application scenarios. The corresponding
rating values are subsequently briefly discussed.

Figure 5.21 shows the extended prototype. The Service Discovery process (or
more precisely: the Service Repository) now additionally contains executables for
all available services. After identifying a composed service, the executables are
used by the Execution component to automatically process input data specified as
Meta Data in the request. The execution result is subsequently rated – according
to the scenario-specific rating mechanisms. Table 5.3 gives a rough overview on
the concrete settings of the application scenarios.

Remark. In the experiments discussed in the upcoming sections, identified solu-
tions were always minimized by removing superfluous services (cf. Section 4.3.3).
Furthermore, the goal node test always worked in strict mode (cf. Section 4.3.4).
Last but not least, depth-first search was applied as search strategy.

5.3.1 Segmentation of Color Palette

The input data is a sequence of 50 images. The entire sequence can be divided
into different sections. Images within the same section were captured under the
same environmental circumstances. Figure 5.22 shows the initial images of each

165

5 Execution and Rating

(a) i = 1 (b) i = 5 (c) i = 9 (d) i = 14

(e) i = 18 (f) i = 22 (g) i = 35 (h) i = 40

(i) i = 41 (j) i = 48

Figure 5.22: Input data for color-based segmentation.

section. Figures 5.22f - 5.22h, however, constitute an exception: They all belong
to a section that suffers from dynamically changing shadows projected onto the
color palette (starting from Figure 5.22f via Figure 5.22g through to Figure 5.22h).

The service pool contains 23 different services. While seven services accomplish
Segmentation tasks, 16 services accomplish different Preprocessing tasks such as
Smoothing (Median and Gaussian Blur), Histogram Equalization, and Morpho-
logical Filters (Eroding and Dilating). Six of the seven segmentation services are
differently parametrized instances of our color-based segmentation algorithm [3],
which produces the required output data in terms of areal regions. The seventh
segmentation service implements a flood-fill based segmentation approach [33].
Both the flood-fill service and the preprocessing services produce a modified im-
age as output data and are realized based on the OpenCV Image Processing
library [30].

Throughout all experiments, Tr̂ = {PreProcessing, ColorSegmentation} was
interpreted as ordered set, while recurrences were allowed (Case 3 in Table 4.3
on page 102). Furthermore, we adjusted our composition algorithm to compose
plain sequences only. That is, we replaced the original state transition function
(cf. Eq. (4.32) on page 113) by a modified version based on Eq. (4.29) from

166

5.3 Evaluation

Figure 5.23: Rating results for the color palette scenario.

page 107. During the evaluation process, relative rating values and absolute
rating values were equally weighted; i.e., we set wr = 0.5 in Eq. (5.11) from
page 153. For computing the overall rating value λ, the rating results from each
execution run i = 2, . . . , 50 were considered. That is, for Eq. (5.8) on page 150
and Eq. (5.10) on page 152, we set j = k = 50 and n = 49.

Distribution of Rating Results

Figure 5.23 shows the distribution of rating values for l = 1, . . . , 10. Each box
plot comprises 1000 independent composition runs. No solution could be found
for l = 1 < |Tr̂|. Furthermore, allowing solutions with more than three service
nodes does not automatically result in solutions of higher quality. In fact, it is
quite the contrary, since the amount of poor solutions increases for l > 3.

Selected Rating Results

Figures 5.24 - 5.28 each show intermediate rating results of a composed solution.
The plots represent rating values in terms of absolute rating λa,i, relative rating
λr,i, and the weighted, combined value (simply denoted by λa,i + λr,i) for each
execution run i. The two additional images show qualitative execution results in
terms of identified areal regions (red ellipses) and corresponding image data for
selected execution runs.

Out of all composed solutions considered in this section, the solution belonging
to Figure 5.24 results in the highest overall rating result. The composed service
is a sequence containing two differently parametrized Gaussian smoothing ser-
vices, and a color-based segmentation service. According to the absolute rating
values and except for execution run i = 22, the composed solution approximates

167

5 Execution and Rating

i = 2

i = 22

Figure 5.24: Rating per execution run with overall rating result λ = 0.69.

i = 22

i = 43

Figure 5.25: Rating per execution run with overall rating result λ = 0.52.

the desired functionality specified in terms of ground truth regions pretty well.
According to the relative rating values, however, the execution results are only ro-
bust as long as the environmental circumstances do not change across consecutive
images.

The composed service belonging to Figure 5.25 contains a Median smoothing
service, a histogram equalization service for adjusting the saturation of an image,
and a more restrictive color-based segmentation service than in the previous solu-
tion. As a result, the composed solution extracts a huge amount of smaller areal
regions. Due to the classification and merging steps within the absolute rating
mechanism, however, the absolute rating values are almost optimal. That is, ac-
cording to the absolute rating mechanism, the composed solution approximates
the desired functionality almost perfectly. The relative rating results, however,
reveal that the execution results across consecutive images are not robust at all,
but change erratically – even if the environmental circumstances do not change.

Figure 5.26 show the rating results of a composed sequence containing a Median

168

5.3 Evaluation

i = 17

i = 40

Figure 5.26: Rating per execution run with overall rating result λ = 0.50.

i = 11

i = 21

Figure 5.27: Rating per execution run with overall rating result λ = 0.33.

smoothing service, a dilating service for removing small areas, and a relaxed color-
based segmentation service. Although the overall rating result is very similar
to the previous solution, the rating results of the individual execution runs are
completely different. For many execution runs such as i = 40, the absolute and
relative rating results are very similar, indicating a well balanced solution. In
some cases such as i = 17, however, the composed service tends to produce just
a few but huge areal regions, which are indeed stable across consecutive images,
but poorly approximate the desired functionality.

Figure 5.27 shows the rating results of a solution that mainly tends to produce
few huge areal regions – provided that regions were detected at all. The composed
sequence contains a Median smoothing service, the flood-fill based segmentation
service, and the restrictive color-based segmentation service that was also applied
for Figure 5.25. However, due to the flood-fill service that already labels areas of
similar color within the image (indicated by the different colors), the restrictive
parametrization of the final segmentation service does not negatively influence

169

5 Execution and Rating

i = 7

i = 40

Figure 5.28: Rating per execution run with overall rating result λ = 0.11.

(a) i = 1 (b) i = 50 (c) i = 100 (d)

Figure 5.29: Input data for motion-based robot detection.

the overall execution result. In fact, it prevents areas with similar colors such as
the green areas in the result image of execution run i = 11 to be merged. The
overall rating value λ = 0.33 reflects the issue that the composed solution robustly
detects huge areal regions in many execution runs, but only poorly approximates
the desired functionality.

Figure 5.28 finally shows the rating results of a solution that poorly approxi-
mates the desired functionality without even producing a few robust areal regions.
The composed solution is a sequence of two consecutive histogram equalization
services for adjusting the color of an image, and the same color-based segmenta-
tion service that was also applied in the best solution (cf. Figure 5.24).

5.3.2 Motion-based Robot Detection

The input data is a sequence of 100 consecutive images, starting from Figure 5.29a
via Figure 5.29b through to Figure 5.29c. Each image shows two small robots.
On top of the first robot, we attached a circular, colored marker. On top of the
second robot, we attached a single-colored extension module, which enables the
robot to carry small objects [2]. The motion of each robot throughout the entire

170

5.3 Evaluation

Figure 5.30: Rating results for the robot detection scenario.

sequence is indicated in Figure 5.29d.

In comparison to the previous service pool, 11 new services were added, while
the flood-fill segmentation service was removed. Six additional segmentation ser-
vices provide functionality for extracting points (corners) from gray level images.
Two services accomplish color conversion tasks. Both the additional segmenta-
tion services and the color conversion services are realized based on OpenCV [30].
Last but not least, three proprietary, so-called adapter services provide distinct
functionality for merging sets of regions into a single set – provided that the re-
gions are described in terms of statistical moments. Since input ports of services
can only be connected to one source, the amount of sets to be combined is pre-
defined by the amount of input ports. Two of the adapter services have two and
tree input ports, respectively. Furthermore, since Tr̂ does not allow for explicitly
specifying optional tasks, one of the adapter services has just one input port and
does nothing but passing the input data to the output port.

Throughout all experiments, Tr̂ = {ImageProcessing, Segmentation, Adapter}
was interpreted as ordered set, while recurrences were allowed (Case 3 in Table 4.3
on page 102). Instead of allowing only plain sequences, we switched back to
the original state transition function in terms of Eq. (4.32) from page 113. For
combining precision and recall, we used the harmonic mean; i.e., we set α = 1

when applying Eq. (5.14) from page 164. For computing the overall rating value
λ, the rating results from execution runs i = 5, . . . , 100 were considered. Note
that there are no rating results for execution runs i = 3 and i = 4 due to the
scenario-specific parametrization we applied to the tracking algorithm.

171

5 Execution and Rating

i = 20

i = 100

Figure 5.31: Rating per execution run with overall rating result λ = 0.81.

Distribution of Rating Results

Figure 5.30 shows the distribution of rating values for the robot detection scenario.
Due to the chosen specification of Tr̂, solutions can even be found for l < 3 = |Tr̂|.
For l = 1, however, most of the rating values are approximately zero, while high
rating values are achieved only once in a while. That is, only a small fraction of
the provided color segmentation services produces reasonable results. The rating
values for l > 1, in turn, indicate that composed services containing more than
one service node can produce better results more frequently.

Selected Rating Results

Figures 5.31 - 5.35 each show intermediate rating results of a composed solution.
Plots represent the combined values of precision and recall for each execution
run. The two additional images show qualitative execution results in terms of
identified moving objects (red ellipses).

Out of all composed solutions considered in this section, the solution belonging
to Figure 5.31 results in the highest overall rating. The associated composed
service is a sequence of color conversion service and a service for extracting points.
As we can see, the motion-based object detection approach is able to detect the
robots based on the extracted points. However, the shape of the robot with the
colored marker is not properly detected. Furthermore, as soon as the robots are
next to each other (i ≥ 90), the detection is significantly distorted. In the final
part of the sequence, both robots are even detected as one moving object.

Figure 5.32 shows the rating results of a composed sequence consisting of a Me-
dian smoothing service and a less restrictive segmentation service. In comparison

172

5.3 Evaluation

i = 20

i = 100

Figure 5.32: Rating per execution run with overall rating result λ = 0.69.

i = 74

i = 99

Figure 5.33: Rating per execution run with overall rating result λ = 0.3.

to the previous solution, the second robot with the colored marker is perfectly
detected most of the time. The second robot, however, is not detected at all.

The composed solution belonging to Figure 5.33 and shown in Figure 5.34
has to be understood as a result of our approach’s flexibility and its consequent
realization. Each areal region extracted by segmentation service s4 is subsequently
quadrupled according to the depicted composition of adapter services s61 and s62.
Once in a while, the execution result of the composed service is good enough to
almost perfectly detect the robot with the colored marker. Most of the time,
however, the colored marker is either only poorly detected or not detected at all.
The second robot, in turn, is never detected.

Without going into great detail, the composed service belonging to the results
shown in Figure 5.35 is a sequence consisting of a Gaussian smoothing service
and a highly restrictive segmentation service, which tends to produce many but
small areal regions. As a result, most of the time, no robot is detected at all. In
case where motion is detected, the result is of poor quality.

173

5 Execution and Rating

 d1

s61

 s62

o1

•
i1

s4

Figure 5.34: Data-flow net belonging to Figure 5.33.

i = 46

i = 99

Figure 5.35: Rating per execution run with overall rating result λ = 0.1.

5.3.3 Motion-based Ball Detection

The input data is a sequence of 60 consecutive images, starting from Figure 5.36a
via Figure 5.36b through to Figure 5.36c. During the entire sequence, the camera
as well as the depicted ball are moving. The composition problem and setting
(service pool, request, parametrization, etc.) is exactly the same as in the motion-
based robot detection scenario.

(a) i = 1 (b) i = 30 (c) i = 60

Figure 5.36: Input data for motion-based ball detection.

174

5.3 Evaluation

Figure 5.37: Rating results for the ball detection scenario.

i = 11

i = 41

Figure 5.38: Rating per execution run with overall rating result λ = 0.4.

Distribution of Rating Results

Figure 5.37 shows the distribution of rating values for the ball detection scenario.
In comparison to the robot detection scenario, the majority of the composed
services resulted in an overall rating of zero. That is, most of the time, the
ball couldn’t be detected at all given the current service pool. Two of the few
reasonable solutions identified for l > 1 are discussed in the next section.

Selected Rating Results

The composed service belonging to Figure 5.38 is a sequence containing a color
conversion service and a service for extracting points. Some of the rating results
are quite promising (i = 41). However, the ball cannot be detected robustly.
Furthermore, image sections are mistakenly detected as moving objects (i = 11).

The composed service that belongs to Figure 5.39 has a more complex data-
flow containing functionally independent branches. The corresponding data-flow
net is shown in Figure 5.40. First of all, service s50 converts the input image

175

5 Execution and Rating

i = 6

i = 31

Figure 5.39: Rating per execution run with overall rating result λ = 0.29.

 d1

s44

 s14 s40

 s62
 d2

 s60

o1•
i1

s50

Figure 5.40: Data-flow net belonging to Figure 5.39.

into a gray-level image. In the lower branch, the image is subsequently processed
by Gaussian smoothing service s14. In the upper and lower branch, points are
extracted by service s44 and service s40, respectively. The points in the upper
branch are additionally duplicated. All regions are finally combined by adapter
service s62. Adapter service s60 simply passes its input data to its output port
and is in fact obsolete. While the rating results are indeed promising – especially
between execution runs i = 30 and i = 40, where the results are even better than
those of the previous solution – the composed service is not able to detect the
ball even once after execution run i = 40.

5.3.4 Conclusion

We demonstrated the functionality of our scenario-specific rating mechanisms by
investigating rating values of exemplary solutions. However, we also identified
the following shortcomings.

The overall rating values do not reflect high variances between the rating re-
sults of single execution runs. In image processing, poor results are usually more

176

5.3 Evaluation

beneficial then having no results at all. That is, even if the overall rating re-
sults of different solutions are quite similar, the solution with the lowest variance
should be favored. As a consequence, the final rating value should additionally
incorporate some statistical statement about these variances, while low variances
have to be positively rewarded.

The proposed rating mechanism for color-based image segmentation addition-
ally suffers from variances across results of one and the same execution run. That
is, the combined value of absolute and relative rating for a single execution run
does not take the magnitude of difference between both values into account. A re-
vised rating mechanism should reward low variances (cf. Figure 5.26) and punish
high variances (cf. Figure 5.25).

Tr̂ should allow for specifying – among others – optional and alternative tasks.
The most flexible approach would be the incorporation of regular expressions.
That is, Tr̂ could be specified in terms of a regular expression, while an extended
Discovery Invocation step adjusts the service discovery messages accordingly. By
doing so, also the specification of functionally independent branches as proposed
in Section 4.3.3 can be easily taken into account.

In the work at hand, adapter services are necessary, since a sink can only be
connected to a single source. Similar to the data-duplication transitions, however,
data-merging transitions could be introduced. During the composition process,
multiple connections to a single sink could be allowed provided that the corre-
sponding sources have the same data type. In the finalization step, these con-
nections could than we exclusively interpreted as data-merging steps, while the
data-flow net is adjusted accordingly. The complexity, i.e., the size of search and
solution space, however, would most likely significantly increase.

Different solutions could be combined according to their intermediate rating
values in order to increase the overall quality. In a straight forward approach,
an extended execution engine could switch on-the-fly between pre-composed and
rated solutions (such as the solutions belonging to Figure 5.38 and Figure 5.39).
Regarding our proposed service-oriented architecture for service execution, the
engine simply has to exchange predefined recipe messages (cf. Section 5.1.2). In a
more sophisticated approach, the data-flow nets of the most promising solutions
could be merged into a single data-flow net with conditional branches, where
the underlying decision-making process for selecting branches could be modeled
as Markov-decision process and tackled by Reinforcement Learning techniques

177

5 Execution and Rating

(cf. Section 6.1.1). The learning process could be either accomplished in a ded-
icated training step, or even when executing the combined solution during pro-
ductive operation.

178

6 Adaptive Service Composition

This chapter introduces the feedback-based learning techniques as well as their
integration into the composition process for realizing an adaptive composition
process. In comparison to related work in this area (cf. Section 6.4), we do not
replace the symbolic composition approach but extend it to facilitate more intel-
ligent decision-making during the search process and consequently reduce func-
tional discrepancy (cf. Section 2.3.2). Throughout this chapter, we will see that
both the proposed symbolic composition algorithm and the learning techniques
in fact benefit from each other. Figure 6.1 depicts the components and processes
we address in this chapter. Before going into detail in the upcoming sections, let
us briefly summarize what lies ahead.

Learning Process: The learning process bases on Reinforcement Learning
(RL) [145]. Roughly speaking, RL follows a trial-and-error like strategy
for iteratively improving the outcome of a sequential decision-making pro-
cess such as the selection of search nodes in our composition algorithm. The
entire process can be split up into consecutive learning steps called episodes.
In our context, each episode involves generating a composed service that is
correct with respect to a request specification, executing the composed ser-

Composition

Execution

Rating

Data
Composed Service

Execution Result

Discovery Request

Candidate Services

Feedback

Composition Loop

Discovery

Learning Loop

Problem Domain

Request

Figure 6.1: OTF Image Processing - Adaptive Service Composition.

179

6 Adaptive Service Composition

vice given concrete input data, rating the execution result according to the
problem domain at hand, and incorporating the rating result (the so-called
reward) as feedback into the composition process for the next episode. The
learning loop in Figure 6.1 is a sequence of consecutive episodes.

Composition Process with Feedback: To exploit feedback from previous com-
position processes, we propose to add a learning recommendation system
that (i) implements the RL techniques based on a Markov model [146] and
(ii) supports the symbolic composition algorithm in decision-making be-
yond the symbolic level. While the composition algorithm is memoryless,
the learning recommendation system can be interpreted as a learning evalu-
ation function that keeps track of good and bad decisions across independent
composition runs. The composition algorithm utilizes the recommendation
system to rate and rank alternative composition steps, while the recommen-
dation system’s rating strategy is adjusted over time based on feedback. As
a result, for the same image processing problem domain, the composed so-
lution is adjusted over time in order to reduce functional discrepancy.

6.1 Learning Recommendation System

Recommendation systems are applied to provide users with the most suitable
services to their specific interests. Chan et al., e.g., developed a recommenda-
tion system that captures implicit knowledge by incorporating historical usage
data [147]. In their work, however, generated recommendation values are neither
used for automatic service composition nor do the values evolve by learning from
history.

In this work, we adopt the basic idea of recommendation systems. Our rec-
ommendation system, however, does not recommend services to users, but com-
position steps (i.e., search nodes) to the composition algorithm (cf. Figure 6.2).
In order to improve the recommendation strategy over time, our recommendation
system implements RL techniques and incorporates the feedback generated by
a rating mechanism. Before explaining the recommendation system as well as
its integration in detail, we introduce the necessary key ingredients from the RL
domain.

Remark. For the time being, we assume that each combination of image processing

180

6.1 Learning Recommendation System

Composition

Composed
Service Feedback

Discovery

Recommendation

Request

Alternative
Search Nodes

Rated and Ranked
Search Nodes

Composition Loop

Figure 6.2: Integration of recommendation process.

problem domain and request specification is assigned a dedicated recommendation
process; i.e., the learning processes are completely independent.

6.1.1 Reinforcement Learning

RL addresses the problem faced by an autonomous agent that must learn through
sequential trial-and-error interactions with its environment in order to achieve a
goal [145]. The agent itself is subject to a sequential decision making problem:
each action within the sequence of interactions has to be decided by the agent –
on its own. A RL task is said to satisfy the Markov property if the decisions of
an agent do not depend on history, but are memoryless. A RL task may then
be formally described as Markov Decision Process (MDP) and solved by either
model-based or model-free RL methods.

Markov Decision Process

Within the scope of this work, we deal with finite-horizon MDPs [146]. Formally,
a finite-horizon MDPM is a quintuple

M = (T,S,A, pt(·|s, a), rt(s, a)), (6.1)

where the ingredients are defined as follows:

� T = {1, 2, ..., N}, N ∈ N, is a discrete finite set of decision epochs with t ∈ T
representing a point in time when a decision is made.

� S is a discrete finite set of states with st ∈ S being the state occupied at
decision epoch t ∈ T.

181

6 Adaptive Service Composition

� A =
⋃

s∈SAs is a discrete finite set of actions with As being the set of possible
actions in state s ∈ S.

� pt(s
′|s, a) ∈ [0, 1] is the transition probability at decision epoch t ∈ T for

transitioning from state s ∈ S into state s′ ∈ S when performing action
a ∈ As.

� The expected reward at decision epoch t ∈ T for being in state s ∈ S and
performing action a ∈ As is defined by

rt(s, a) =
∑
s′∈S

rl(s, a, s
′) · pt(s′|s, a) (6.2)

with rl(s, a, s′) being the lump sum (immediate) reward for transitioning to
a successor state s′ ∈ S.

Given particular circumstances, a MDP can be solved directly without relying
on RL techniques. In this context, let dt : S → P (As) denote a Markovian
randomized decision rule that specifies the probability of action a ∈ As to be
chosen when currently occupying state s ∈ S without incorporating information
about previous states or actions. A policy π = (d1, ..., dt, ..., dN−1) specifies for
each decision epoch 1 ≤ t < N a decision rule dt. Solving a MDP is equivalent to
finding an optimal policy π∗ that maximizes the cumulative reward in the long run.
If complete knowledge of the environment is available, i.e., all elements of a MDP
are known, dynamic programming algorithms such as value iteration or policy
iteration can be applied to compute π∗ [145]. Complete knowledge, however, is
not available in our context: Neither do we know all services in advance nor can
we estimate reward values without actually executing a composed service.

Episodic Reinforcement Learning

The very basic idea of RL is learning by maximizing expected cumulative reward
in the long run. In case of episodic RL, an agent is not learning continuously but
periodically in terms of episodes. An episode defines the period between initial
state and terminal state including the final reward payout. In our context, each
episode involves composition, execution, rating, and incorporation of the rating
result.

182

6.1 Learning Recommendation System

The expected cumulative reward of a policy π is usually defined as a value
function

Qπ(s, a) = Eπ {Rt|st = s, at = a} ,

with Eπ denoting the expected value for policy π, and

Rt =
∞∑
k=0

γkrt+k+1

being the discounted reward with discount factor γ, 0 ≤ γ ≤ 1. Roughly speaking,
Qπ(s, a) can be interpreted as an estimation of how good it is to start in a state
s ∈ S, perform action a ∈ A and follow policy π afterward.

An episodic RL task can then be summarized as follows: Based on the ex-
perience that was gathered in one or more episodes, an optimal policy π∗ that
maximizes Qπ(s, a) has to be found. In our context, a RL task corresponds to
the goal of the composition algorithm to construct a composed service that min-
imizes functional discrepancy. If alternative solutions exist that are not optimal
but good enough for solving the image processing problem at hand, an optimal
policy is not necessarily required.

Temporal Difference Learning: Q-Learning and SARSA

Temporal Difference (TD) learning is one central concept of RL. It combines the
advantages of Monte Carlo methods with the advantages of dynamic program-
ming: model-free bootstrapping. Monte Carlo methods allow for learning without
relying on a model of the environment. Dynamic programming, in turn, provides
techniques for estimating value functions in terms of Q-values without waiting for
a final outcome. Hence, in our context, Q-values are already updated during the
composition process in an on-line manner, and not only after the rating process
generated feedback.

In order to maximize the final reward in the long run, TD learning algorithms
try to identify the most appropriate sequence of actions by trial-and-error. A
fundamental question in this context is how to choose an action when there are
multiple alternatives; i.e., what kind of action-selection strategy should be pur-
sued. If only the action with the highest Q-value is always selected (exploitation),
the learning algorithm may be stuck in a local maximum. If, in turn, Q-values are
not considered at all, but actions are always selected randomly (exploration), the

183

6 Adaptive Service Composition

learning behavior will never converge. There exist different approaches to cope
with this problem in the RL domain, such as the ε-greedy strategy or softmax
action selection strategy [145]. For the remainder of this work, we will stick to the
ε-greedy action-selection strategy. With a probability 1−ε, actions are selected in
a greedy manner; i.e., the action with the highest Q-value is selected (exploitation
phase). With probability ε, however, an action is selected uniformly at random
(exploration phase).

Two very famous TD learning algorithms for directly approximating Q-values
are Q-Learning [148] and SARSA [149, 150]. The off-policy Q-Learning algorithm
directly approximates Q-values by means of its update function

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
(Q(st+1, a))−Q(st, at)

]
, (6.3)

with current state st, next state st+1, current action at, immediate reward rt+1,
discount factor γ, 0 ≤ γ ≤ 1, and learning rate α, , 0 ≤ α ≤ 1,. Due to the max
operator, Q-Learning ignores the policy the agent currently follows, but always
updates Q-values based on the action with the highest Q-value. In contrast, the
on-policy SARSA algorithm always incorporates the agent’s actual behavior due
to its update function

Q(st, at)← Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] , (6.4)

with next action at+1, and all other variables as defined above.

6.1.2 Recommendation Model

RL bases on the major assumption, that the underlying decision-making process
does not depend on history, but is memoryless and can be modeled as MDP. The
fundamental assumption behind modeling a sequential decision-making problem
as MDP is that the reward function is Markovian [151]. All information needed to
determine the reward (and to choose an action) at a given state must be encoded
in the state itself, i.e., states have to satisfy the Markov property. That is, in
comparison to a state in the composition process (cf. Eq. (4.10) on page 84),
a state in the recommendation process has to encode additional information to
fulfill the Markov property and facilitate “reasonable” decisions.

In this work, we focus on additional state information in terms of the hereto-

184

6.1 Learning Recommendation System

φ0

φ1

φ ∗

X

Y

(a) STS

x0

x1 x2

x3 x4 x5 x6

X

Y Y

(b) Search Tree

X

aY bY

acZ adZ bcZ bdZ

(c) Markov State Space

Figure 6.3: Non-terminal symbols Y and Z in different models.

fore composed service. The heretofore composed service, in turn, is nothing but
the heretofore traversed path (the history) in the STS of the composition model.
By integrating such information, the quality of performing an action in the rec-
ommendation model can be estimated as a function of the current composition
structure. As a result, the Markov state space takes a tree-like shape similar to
the search tree in the composition process (cf. Figure 6.3b and Figure 6.3c).

Composition Grammar and Composition Rules

From the recommendation system’s perspective, we interpret a service composi-
tion step as an application of a composition rule. A composition rule compactly
describes a valid modification of a (partially) composed service. The syntax of
composition rules is similar to the syntax of production rules for specifying a
formal grammar. A formal grammar G = (V,Σ, P, S) is a rewrite system, where
V denotes a finite set of non-terminal symbols, Σ denotes a finite set of termi-
nal symbols, P denotes a finite set of production rules, and S ∈ V denotes a
distinguished start symbol.

In our context, non-terminal symbols correspond to functionality that still
has to be realized. In terms of the composition environment’s underlying STS,
a non-terminal symbol represents all possible paths from a state to the final
state (cf. Figure 6.3a). In terms of the composition algorithm’s inductively de-
fined search tree, a non-terminal symbol represents all branches starting at search
nodes with the same associated states and ending in goal nodes (cf. Figure 6.3b).
In short, unrealized functionality is the remaining composition problem in the

185

6 Adaptive Service Composition

composition model.

Terminal symbols represent (partial) realizations of the remaining composition
problem. In out current model, functionality realized by a terminal symbol cannot
be replaced anymore. A terminal symbol corresponds to a service in combination
with information about how to connect the service to a partially composed service.

Formally, given a request specification r̂, we define the composition grammar
of a recommendation process as a quadruple

GC = (VC ,ΣC , PC , SC), (6.5)

where the elements are defined as follows.

� VC is a set of non-terminal symbols. A non-terminal symbol is a tuple

N = (φ, φ∗), (6.6)

with φ, φ∗ ∈ Φ. A non-terminal symbol represents all paths from state φ
to goal state φ∗ = Er̂ in the composition process. We denote non-terminal
symbols by capital letters A, . . . , Z. Note that state φ∗ is a proxy state for
every state φ ∈ Φ with φ ⊇ φ∗. Final states are not necessarily identical.

� ΣC is a set of terminal symbols. In the most general sense, a terminal
symbol is a triple

τ = (ns,mns ,mio) = ({ns}, {(ns, s)},mI ∪mO),

where ns is the service node added in the corresponding composition step
given input mapping mI and output mapping mO, and s is the service
assigned to ns. We denote terminal symbols by small letters a, . . . , z.

Given a search node x and its child node x′, a terminal symbol corresponds
in fact to the element-wise difference of the associated composed services
cx and cx′ . We denote this element-wise difference by cx′ 	 cx and formally
define it based on Eq. 4.21 from page 88 as

τ = cx′ 	 cx = (Ncx′
\ Ncx ,mcx′

\mcx ,Dcx′
\ Dcx) . (6.7)

186

6.1 Learning Recommendation System

� PC is a set of composition rules. Each rule is of one of the forms

N → (τ,N) (or more compactly N → τN),

N → (τ,), (or more compactly N → τ),

N → ε ,

(6.8)

with ε (the empty string) denoting that no further realization for a given
composition problem is necessary.

� SC ∈ VC is the start symbol (φ0, φ
∗) = (Pr̂,Er̂) and represents the initial

composition problem.

Concatenations of terminal symbols describe the structure of composed services.
Given terminal symbols τ1 = (nτ1,s,mτ1,ns ,mτ1,io), . . . , τk = (nτk,s,mτk,ns ,mτk,io),
we define their concatenation by

k⊕
i=1

τi = (
k⋃
i=1

nτi,s,
k⋃
i=1

mτi,ns ,
k⋃
i=1

mτi,io) . (6.9)

Whenever convenient, we omit the ⊕ operator. That is, for example, we com-
pactly denote the concatenation τ1 ⊕ τ2 of two terminal symbols τ1 and τ2 by
τ1τ2.

A composition grammar for a recommendation process, however, is not known
in advance, but has to be constructed on-the-fly according to the search behav-
ior of the composition algorithm. Section 6.2 describes the involved interaction
processes between composition algorithm and recommendation system in detail.

Markov Model

Based on the MDP definition given by Eq. (6.1), we finally define the Markov
model of the recommendation system as follows:

� A composition step is equivalent to a decision epoch t ∈ T = {1, 2, 3, ..., N},
with N − 1 corresponding to the final composition step. That is, the last
decision is made at t = N − 1, while final feedback is integrated at “pseudo”
composition step t = N .

� A state st ∈ S occupied at composition step t is a concatenation of t − 1

187

6 Adaptive Service Composition

terminal symbols, followed by a non-terminal symbol. Formally, we write

st =

(,N) if t = 1,

(
⊕t−1

i=1 τi,N) otherwise,

or more compactly

st =

N if t = 1,

τ1 . . . τt−1N otherwise.

Initial state s1 is a single non-terminal symbol and represents the initial
composition problem. A final state sN is a concatenation of terminal symbols
(usually followed by a non-terminal symbol) and represents one possible
solution for the initial composition problem.

� The set As of actions that can be performed in state s is equivalent to the
set of composition rules having the non-terminal contained in s on the left
hand side. Performing an action a and transitioning to a successor state is
equivalent to applying a composition rule r and replacing the non-terminal
on the left hand side by the expression on the right hand side.

� A policy π corresponds to a derivation of composition rules. An optimal
policy π∗ corresponds to a derivation that minimizes functional discrepancy.

� The application of composition rules is considered to be deterministic, i.e.,
applying composition rule r in state s will always lead to the same successor
state s′. As a consequence, transition probabilities defined by pt are either
0 or 1; i.e., we do not face a probabilistic action model. For that reason, we
replace pt by a state transition function

σ ⊆ S× A× S , (6.10)

where an element (s, r, s′) ∈ σ is also expressed as s r−→ s′.

� Reward is only available after composition, execution, and rating. Immedi-
ate reward is not available.

188

6.1 Learning Recommendation System

φ0

φ1

φ ∗

s1 s2

s3 s4

(a) STS

x0

x1 x2

x3 x4 x5 x6

φx0 = φ0

φx2 = φ1φx1 = φ1

φx3 = φx4 = φx5 = φx6 ⊇ φ∗

(b) Search Tree

X

aY bY

acZ adZ bcZ bdZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

r3,
Q(bY, r3)

r4,
Q(bY, r4)

(c) Markov State Space

Figure 6.4: Corresponding composition and recommendation models for one
and the same composition problem.

To sum it up, the Markov model M of our recommendation system is given by
the quartuple

M = (T, S,A, σ) . (6.11)

According to our Markov model, the general Q-Learning update function given
by Eq. (6.3) can be altered to

Q(st, rt)← Q(st, rt) + α
[
γmax

r
(Q(st+1, r))−Q(st, rt)

]
, (6.12)

while the SARSA update function given by Eq. (6.4) can be altered to

Q(st, rt)← Q(st, rt) + α [γQ(st+1, rt+1)−Q(st, rt)] . (6.13)

Example. We have four different services S = {s1, s2, s3, s4} and four corre-
sponding service specifications Ŝ = {ŝ1, ŝ2, ŝ3, ŝ4}. All services require an input
image and produce an output image derived from the input image. Let us assume
that services s1 and s2 both implement a color conversion functionality for con-
verting a colored image to a gray level image. In contrast to service s1, service
s2 additionally enhances the contrast of the image while converting the color.
Both services, however, are described in exactly the same way; i.e., ŝ1 and ŝ2 are
identical. Services s3 and s4, in turn, implement two alternative Thresholding
mechanisms for transforming a gray level image into a binary image. Again, both
services have the same descriptions; i.e., ŝ3 and ŝ4 are identical.

The STS depicted in Figure 6.4a captures the composition problem at hand.

189

6 Adaptive Service Composition

Table 6.1: Associated composed services of the search tree in Figure 6.4b.

cxi Ncxi mcxi
Dcxi

cx0 − − −
cx1 n1 (n1, s1) (n1.i1, r̂.i1)

cx2 n1 (n1, s2) (n1.i1, r̂.i1)

cx3 n1, n2 (n1, s1), (n2, s3) (n1.i1, r̂.i1), (n2.i1, n1.o1), (r̂.o1, n2.o1)

cx4 n1, n2 (n1, s1), (n2, s4) (n1.i1, r̂.i1), (n2.i1, n1.o1), (r̂.o1, n2.o1)

cx5 n1, n2 (n1, s2), (n2, s3) (n1.i1, r̂.i1), (n2.i1, n1.o1), (r̂.o1, n2.o1)

cx6 n1, n2 (n1, s2), (n2, s4) (n1.i1, r̂.i1), (n2.i1, n1.o1), (r̂.o1, n2.o1)

For illustration: A solution produced by the STS transforms a colored image such
as depicted in Figure 2.17a on page 30 into a binary image such as depicted in
Figure 2.17b or in Figure 2.17c. Figure 6.4b shows the complete search tree for
the composition problem. The search node’s associated composed services are
listed in Table 6.1.

Given the information from the composition process, the recommendation sys-
tem’s corresponding composition grammar GC is defined as shown in Table 6.2.
Figure 6.4c shows the associated Markov state space defined by

S = {X, aY, bY, acZ, adZ, bcZ, bdZ},
A = AX ∪ AaY ∪ AbY ∪ AacZ ∪ AadZ ∪ AbcZ ∪ AbdZ

= {r1, r2} ∪ {r3, r4},
σ = {(X, r1, aY), (X, r2, bY), (aY, r3, acZ), (aY, r4, adZ),

(bY, r3, bcZ), (bY, r4, bdZ)} .

Note that rule r5 and the resulting states are not included in the Markov model,
since states acZ, adZ, bcZ, and bdZ already represent the solutions identified
by the search tree. Such “goal interpretation” rules, however, come in handy if
a composition grammar shall be directly used for efficiently generating solutions
(cf. Section 6.2.5). For example, in terms of composition rules, the four possible

190

6.1 Learning Recommendation System

Table 6.2: Composition grammar according to Figure 6.4a, Figure 6.4b, and
Table 6.1.

VC : {X,Y, Z}
X = (φx0 , φ

∗) Y = (φx1 , φ
∗) = (φx2 , φ

∗)
Z = (φx3 , φ

∗) = (φx4 , φ
∗) = (φx5 , φ

∗) = (φx6 , φ
∗)

ΣC : {a, b, c, d}
a = cx1 	 cx0 = ({n1}, {(n1, s1)}, {(n1.i1, r̂.i1)})
b = cx2 	 cx0 = ({n1}, {(n1, s2)}, {(n1.i1, r̂.i1)})
c = cx3 	 cx1 = cx5 	 cx2

= ({n2}, {(n2, s3)}, {(n2.i1, n1.o1), (r̂.o1, n2.o1)})
d = cx4 	 cx1 = cx6 	 cx2

= ({n2}, {(n2, s4)}, {(n2.i1, n1.o1), (r̂.o1, n2.o1)})
PC : {r1, r2, r3, r4, r5}

r1 = X → aY r2 = X → bY r3 = Y → cZ r4 = Y → dZ
r5 = Z → ε

SC : Y

solutions correspond to the derivations

X
r1−→ aY

r3−→ acZ
r5−→ ac, X

r1−→ aY
r4−→ adZ

r5−→ ad,

X
r2−→ bY

r3−→ bcZ
r5−→ bc, X

r2−→ bY
r4−→ bdZ

r5−→ bd .
(6.14)

6.1.3 Learning Process

Before introducing our combined approach that integrates composition and rec-
ommendation, let us take a closer look at the learning process itself. For this
purpose, we assume a fixed composition grammar (such as shown in Table 6.2)
to be available for the composition process. That is, for the remainder of this
section, we dismiss the planning-based composition algorithm and rely on a com-
position grammar GC = (VC ,ΣC , PC , SC) as production system [15]. Starting at
start symbol SC , a derivation of rules (such as listed in Eq.(6.14)) generates a
composed service. The sequential decision-making process for selecting rules is
modeled as described in the previous section.

191

6 Adaptive Service Composition

Algorithm 2 RL Episode
1: s← s0 . start at initial state
2: while s is no terminal state do
3: r← select rule from As . exploitation vs. exploration
4: if s 6= s0 then
5: update Q-value Q(′s,′ r) according to Eq. (6.12) or Eq. (6.13)
6: end if
7: ′s← s, ′r← r
8: s← compute new state by applying r to s . state transition
9: end while
10: result ← execute solution given by s
11: R← rate result and generate final reward
12: Q(′s,′ r)← R . incorporate final reward

Q-values

Each state-rule pair (s, r) in the associated Markov state space is assigned a Q-
value Q(s, r) (cf. Figure 6.4c). These Q-values are the basis for deciding between
alternative rules and can be interpreted as an estimation of how good (or bad) it
is to select the associated rule in the respective state. That is, according to our
rating mechanism (cf. Section 5.2), the higher a Q-value, the more appropriate is
the associated rule and the corresponding composition step for reducing functional
discrepancy. Selecting rules based on their Q-values as well as adjusting Q-values
is subject to RL.

RL Episode

Recall that we deal with episodic RL in this work (cf. Section 6.1.1). In our con-
text, an episode encompasses composition, execution, rating, and incorporating
final reward. Algorithm 2 lists the involved processes in more detail.

Lines 1 - 9 refer to the composition process. Starting at initial state s0 (i.e.,
start symbol SC), the algorithm traverses the Markov state space until a terminal
state (i.e., a state that contains only terminal symbols) was identified. In each
composition iteration, the first step is to select a rule from all rules As, which
can be applied to the currently occupied state s (line 3). Decisions are made
based on the assigned Q-values and according to the applied selection mechanism
(such as ε-greedy). The selection step is crucial for the entire learning process:
In order to achieve a proper learning behavior, exploitation of already gained

192

6.1 Learning Recommendation System

knowledge and exploration for gaining new knowledge has to be carefully balanced
(cf. Section 6.1.1).

After a rule was selected, the Q-value of the previous state-rule pair (′s,′ r)

is updated (line 5). The update step is realized by applying either Eq. (6.12)
or Eq. (6.13), where st = ′s, rt = ′r, st+1 = s, and rt+1 = r. In the first
iteration, however, the update step is neglected, since a state-rule pair (′s,′ r) is
not yet available. The update step is equally crucial for the learning process.
Independent of the applied update function, the learning rate α, 0 ≤ α ≤ 1, and
the discount factor γ, 0 ≤ γ ≤ 1, have to be carefully selected, since they heavily
influence the learning behavior [145]. For example, if α = 0, the Q-value does not
change at all. If, in contrast, α = 1, the old Q-value will be completely replaced.
At the end of each iteration, the algorithm transitions to a new state by applying
selected rule r to the currently occupied state s (line 8).

After a solution was composed (i.e., a terminal state was reached), the com-
posed solution is executed. The execution result is subsequently rated in order to
generate a final reward value. Last but not least, the Q-value of the last state-
rule pair (′s,′ r) is updated by replacing the old value with the final reward value
(line 12).

Example. For illustrating the learning process, we use the left-hand side of the
Markov state space depicted in Figure 6.4c. Figure 6.5a shows the respective
excerpt. Since the composition process bases on a composition grammar, the
depicted excerpt additionally includes rule r5 and terminal states ac, ad.

Figures 6.5b - 6.5e illustrate the actual learning process with Eq. (6.12) as
update function, α = 0.9, and γ = 0.9. Rules are selected by means of an ε-
greedy mechanism. Each figure shows the Markov state space and the associated
Q-values after an episode was completed. Thick arrows indicate the path that
was chosen in the previous episode. All Q-values were initialized with value 0.

Figure 6.5b: The first two episodes are completed. In the first episode, solution
ad was selected and executed. The initial value of Q(adZ, r5) was replaced by the
final reward value 0.4. During composition, rule r4 was selected randomly, since
both Q(aY, r3) and Q(aY, r4) had the same (initial) value 0. In the second episode,
as indicated by the thick arrows, rule r3 was selected. Consequently, solution ac
was composed and executed. The initial value of Q(acZ, r5) was replaced by the
final reward value 0.9. That is, the functionality implemented by solution ac is

193

6 Adaptive Service Composition

X

aY

acZ adZ

ac ad

r1,
Q(X , r1)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

r5,
Q(acZ, r5)

r5,
Q(adZ, r5)

(a)

X

aY

acZ adZ

ac ad

0

0 0

0.9 0.4

(b)

X

aY

acZ adZ

ac ad

0

0 0.32

0.9 0.4

(c)

X

aY

acZ adZ

ac ad

0.26

0 0.36

0.9 0.4

(d)

X

aY

acZ adZ

ac ad

0.32

0.73 0.36

0.9 0.4

(e)

Figure 6.5: Demonstration of the learning process.

more similar to the required functionality than the functionality implemented by
solution ad.

Figure 6.5c: The third episode is completed. Like in the first episode, rule r3 was
selected randomly. In addition, Q(aY, r4) was updated to 0.32 before transitioning
from state adZ to state ad. The value of Q(adZ, r5), however, did not change,
since the reward value for solution ad was the same as in the first episode.

Figure 6.5d: The fourth episode is completed. Again, solution ad was composed.
In contrast to all previous episodes, however, rule r4 was selected greedily (ex-
ploitation phase), since Q(aY, r3) < Q(aY, r4). While traversing the state space,
Q(X, r1) was updated based on Q(aY, r4) = 0.32, while Q(aY, r4) was subsequently
updated based on Q(adZ, r5) again.

Figure 6.5e: The fifth episode is completed. This time, rule r3 was selected,
although – according to the assigned Q-values – rule r4 would have been the
more reasonable choice. That is, the algorithm explicitly chose exploration over
exploitation. Furthermore, while the SARSA update function would have updated
Q(X, r1) based on Q(aY, r3), the Q-Learning update function we chose for this
example updated Q(X, r1) based on Q(aY, r4) again. Subsequently, Q(aY, r3) was
updated based on Q(acZ, r5).

By consecutively updating Q-values, and by continually incorporating feed-
back, good solutions or even the best solution will emerge over time. In Fig-
ure 6.5e, the best solution is already indicated by the annotated Q-values, al-
though the Q-values did not yet completely converge to their final values.

194

6.2 Combining Composition and Recommendation

Composition

Recommendation

Alternative
Search Nodes

Rated and Ranked
Search Nodes

 Composition Rule Manager (CRM)

 Temporal Difference Learner (TDL) State Space &
Q-Values

Composition
Grammar

Forward Search Algorithm

2
Selected

Search Node
1

Figure 6.6: Interaction between composition and recommendation.

6.2 Combining Composition and

Recommendation

Figure 6.6 shows the main components and interaction processes of the combined
approach. The service composition component and the service recommendation
component are two distinct modules that interact with each other in order to gen-
erate service-based image processing solutions that i) are correct with respect to a
request specification and ii) reduce functional discrepancy over time based on feed-
back. Without any additional information, the service composition component
implements the uninformed search introduced in Section 4.2.4. In combination
with the recommendation system as learning evaluation function, the composition
component realizes an informed search strategy.

The recommendation module consists of two components: Composition Rule
Manager (CRM) and Temporal Difference Learner (TDL). The CRM automati-
cally generates and maintains composition rules (or more generally: a composi-
tion grammar GC) based on valid composition steps identified by the composition
module. Composition rules are generated only once, are aggregated over time,
and represent all valid composition steps that were identified by the composition
module so far. The TDL maintains the learned knowledge in the form of a state
space and associated state transition values (Q-values) according to our proposed
Markov model.

195

6 Adaptive Service Composition

6.2.1 Overview and Interactions

Our combined approach bases on two fundamental design decisions. First, the
composition module remains the active component that actually composes a so-
lution. The recommendation module, in turn, is realized as a passive component
that keeps track of good and bad decisions made by the composition module.
Any interaction between both modules is triggered by the composition module.
Second, the recommendation module gives recommendations about which search
nodes to select. However, it never enforces the selection of a specific search node.
The final decision is always made by the composition module. In combination,
both design decisions facilitate a very flexible composition module, which bene-
fits from the recommendation module’s accumulated and aggregated knowledge
whenever possible, but still has the power to make other decisions if necessary.

As Figure 6.6 shows, two interaction processes are required during each search
iteration in order to keep composition module and recommendation module in
sync.

Interaction 1: The composition module informs the recommendation module
about which search node was actually selected. This information is cru-
cial for the recommendation module to keep track of every decision that
was made by the composition module, and to update the Markov state
space (i.e., the currently occupied state) accordingly. We also refer to this
interaction as update step.

Interaction 2: The recommendation module is used to rate and rank identified
child nodes. Roughly speaking, rating means to assign each search node
the corresponding Q-value. Ranking, in turn, means to sort the child nodes
according to the TDL’s action selection strategy in order to emulate the
behavior of a Markov decision process. For convenience, we also refer to
this interaction as evaluation step.

A dedicated interaction for indicating whether a solution was found (or not) is
not necessary. That is because the incorporation of final reward after execution
and rating already indicates that a solution was found. If final reward is lacking,
the currently occupied state in the recommendation module’s TDL does not cor-
respond to a solution. In such a case, the TDL does not require to perform any
particular steps.

196

6.2 Combining Composition and Recommendation

Fringe NodesInitialization

Modified
Node Selection

Update Step

Goal Test

Finalization Discovery Invoc.

Service Discovery

Result Processing

Pruning

Evaluation Step
r̂

root
search node

search node

search node

search node [is goal]

[yes]

search node
composed

service

[no]

search node

discovery request

candidate services

candidate search nodes

valid search nodes

evaluated, valid
search nodes

Figure 6.7: Adjusted composition algorithm when combined with the
recommendation system.

Figure 6.7 shows the adjusted composition algorithm, which is combined with
the recommendation module. Processes indicated by dashed borders are either
modified in comparison to the original realizations (search node selection), or
newly integrated in order to interact with the recommendation module (update
step, evaluation step). We will now explain those modifications and extensions,
which result in our proposed adaptive service composition approach, in more
detail.

6.2.2 Update Step

After selecting a search node x from the Fringe database, the composition module
informs the recommendation module about its decision by transmitting an update
message

mupdate = (P (x0, x), φ∗), (6.15)

where P (x0, x) is a sequence of nodes and φ∗ is the goal state. P (x0, x) =

(y1, . . . , yn) contains all nodes belonging to the path from root node x0 to node
x, with y1 = x0 and yn = x. The recommendation module processes mupdate to
update Q-values for bootstrapping (cf. Section 6.1.1), and to update the currently
occupied state in the TDL’s Markov state space.

If y1 = yn, then P (x, x0) contains only root node x0. Consequently, the recom-

197

6 Adaptive Service Composition

mendation module can conclude that the update message indicates the initializa-
tion of a new episode. In case of a new episode, the recommendation module’s
CRM identifies the corresponding non-terminal symbol N = (φy1 , φ

∗), where φy1
is the associated state of node y1 = x0. If not yet available, terminal symbol N is
automatically generated and stored in the composition grammar. Subsequently,
the TDL marks N as currently occupied state in the maintained state space.

If, however, y1 6= yn, we differentiate between two cases:

1. The composition algorithm has selected a child node of the previously se-
lected search node. Selecting a child node in the composition module’s
search tree corresponds to transitioning from the currently occupied state
to a successor state in the Markov state space by applying a composition
rule.

Figure 6.8a demonstrates this first case. In the previous search iteration,
node x1 was selected and nodes x3 and x4 were stored as new open nodes
in the Fringe database. Selecting either x3 or x4 as the next search node
corresponds to applying either rule r3 or rule r4 in the Markov model. We
refer to selecting a child node as next search node as Markov node selection.

2. The composition algorithm has selected a node that is not a child of the
previously selected search node. Selecting such a node in the composition
module’s search tree corresponds to jumping from the currently occupied
Markov state to a state that is no successor state. That is, in terms of the
Markov model, the actual change of state is in fact not valid (cf. Figure 6.8b).
We refer to search node selections that do not correspond to valid transitions
in the Markov state space as non-Markov node selections.

The reasons for non-Markov node selections are indeed diverse. The com-
position algorithm may, e.g., have to discard a branch in the search tree,
because it was pruned or since no further candidate services could be discov-
ered at all. Furthermore, additional heuristics may force the composition
algorithm once in a while to switch to another branch in the search tree in
order to achieve a more balanced exploration of the search tree.

Section 6.2.4 will describe the modified search node selection step in more detail.
Right now, we focus on the update step assuming that the selection of a search
node (being not the root node) was either Markov or non-Markov.

198

6.2 Combining Composition and Recommendation

x0

x1 x2

x3 x4

X

aY bY

acZ adZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

(a) Markov node selection.

x0

x1 x2

x3 x4

X

aY bY

acZ adZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

?

(b) Non-Markov node selection.

Figure 6.8: Pairs of search tree and Markov state space for demonstrating the
interpretation of search node selections in the Markov model.
Nodes with solid border are closed. Node with dashed border are
still open and can be selected.

Mapping the Selected Search Node to a Markov State

In both cases, given mupdate = ((y1, . . . , yn), φ∗), the recommendation module first
of all identifies state syn ∈ S, i.e., the state that corresponds to the selected node
yn. Recall that a state in the recommendation model is a concatenation of terminal
symbols followed by a non-terminal symbol. Terminal and non-terminal symbols
are contained in the composition grammar maintained by the recommendation
module’s CRM. State syn is defined as

syn = τ1 . . . τn−1N , (6.16)

where τ1 . . . τn−1 denotes the concatenation of terminal symbols τ1, . . . , τn−1, and
N = (φyn , φ

∗). Based on Eq. (6.7) on page 186, a terminal symbol τk (1 ≤ k ≤
n− 1) in the concatenation is defined as

τk = cyk+1
	 cyk , (6.17)

with cyk , cyk+1
being the associated composed services of search nodes yk and yk+1,

respectively. Roughly speaking, each terminal symbol represents a single compo-
sition step, while the concatenation of terminal symbols represents the entire
heretofore composed service. Non-terminal symbol N represents the remaining
composition problem after performing all composition steps.

Example. As an example, let us consider the situation depicted in Figure 6.8.
The composition module selects search node x4 and transmitted an update mes-

199

6 Adaptive Service Composition

sage
mupdate = ((x0, x1, x4), φ

∗) .

The recommendation module processes mupdate given y1 = x0, y2 = x1,y3 = x4,
and n = 3. Based on Table 6.2 and according to Eq. (6.16) and Eq. (6.17), we
have

sy3 = τ1τ2N = adZ,

since

τ1 = cy2 	 cy1 = cx1 	 cx0 = a,

τ2 = cy3 	 cy2 = cx4 	 cx1 = d,

N = (φy3 , φ
∗) = (φx4 , φ

∗) = Z .

That is, search node x4 is mapped to state adZ in the recommendation model.

Identifying a Markov Node Selection

With mupdate = ((y1, . . . , yn), φ∗) and syn being the state corresponding to the
selected search node yn, the composition rule r that represents the composition
step from node yn−1 to node yn is given by

r = N → τn−1N ′, (6.18)

where N = (φyn−1 , φ
∗), N ′ = (φyn , φ

∗), and τn−1 = cyn	 cyn−1 . Roughly speaking,
N represents the composition problem before applying terminal symbol τn−1,
while N ′ represents the composition problem after τn−1 was applied.

Let s ∈ S denote the currently occupied state in the Markov state space. We
say that a Markov node selection took place, if r ∈ PC and (s, r, syn) ∈ σ, i.e.,
if rule r exists in the composition grammar and if applying rule r in the current
state s leads to state syn .

Example. Again, let us assume that search node x4 was selected given the situ-
ation depicted in Figure 6.8. Node x4 maps to state adZ in the recommendation
model. According to Table 6.2 and Eq. (6.18), we have

r = N → τn−1N ′ = Y → dZ,

200

6.2 Combining Composition and Recommendation

x0

x1 x2

x3 x4

X

aY bY

acZ adZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

(a) Only Markov selections.

x0

x1 x2

x3 x4 x5 x6

X

aY bY

acZ adZ bcZ bdZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

r3,
Q(bY, r3)

r4,
Q(bY, r4)

(b) Markov and non-Markov selections.

Figure 6.9: Different search node selection sequences.

since

N = (φy2 , φ
∗) = (φx1 , φ

∗) = Y,

N ′ = (φy3 , φ
∗) = (φx4 , φ

∗) = Z,

τn−1 = τ2 = cy3 	 cy2 = cx4 	 cx1 = d .

That is, the composition rule, which represents the composition step from node
x1 to x4 is r = r4. With aY being the currently occupied state in the Markov
state space, selecting search node x4 is indeed a Markov node selection, since
r = r4 ∈ PC and (aY, r4, adZ) ∈ σ.

Updating Q-values in Case of a Markov Node Selection

If a Markov node selection took place, shifting from the currently occupied state
to the state corresponding to the selected search node is a valid transition in the
Markov state space. Before the actual transition takes place, however, a Q-value
has to be updated by applying an update function.

Figure 6.9a depicts a situation in which two subsequent Markov node selections
took place. Before transitioning from state aY to state adZ, Q-value Q(X, r1)

has to be updated. In case of Q-Learning (cf. Eq. (6.12) on page 189), Q-value
Q(X, r1) is updated based on the maximum of Q(aY, r3) and Q(aY, r4). In case
of SARSA (cf. Eq. (6.13) on page 189), the Q-value is updated based on Q-value
Q(aY, r4).

Now consider the situation depicted in Figure 6.9b. First, a Markov node se-
lection for selecting node x2 took place. Second, the composition module selected
node x1, leading to a non-valid transition in the Markov state space. Finally,
node x4 was selected as next search node. That is, again, before transitioning

201

6 Adaptive Service Composition

from state aY to state adZ, a Q-value has to be updated. The fundamental ques-
tion is: Which one? Typically, it would be the Q-value of the previous transition.
However, for the previous node selection step, no valid transition and consequently
no Q-value exists in the Markov state space. Furthermore, the previous transi-
tions did not even contribute to the currently occupied state aY . To preserve
the Markov property of states and reward in the model, we must indeed update
Q-value Q(X, r1). That is, the Q-value update step is the same as in Figure 6.9a.

Updating Q-values in Case of a Non-Markov Node Selection

In case of a non-Markov node selection (like, e.g., the selection of x1 after se-
lecting x2 in Figure 6.9b), no valid transition exists in the Markov state. As
a consequence, no Q-value exists that evaluates the action in the Markov state
space. That is, the on-policy SARSA update function cannot be applied at all.
The off-policy Q-value update function, however, could still be applied as long as
valid transitions are available in the currently occupied Markov state. For exam-
ple, in Figure 6.9b, before switching from state bY to state aY , Q-value Q(X, r2)

could be updated based on the maximum of Q(bY, r3) and Q(bY, r4).

Generalized Update Step

Instead of fragmenting the entire update process by realizing distinct update steps
for every possible combination of node selections, we propose a generalized update
step for the recommendation module. The only update step that is not covered
by the generalized approach is the initialization step when the update message
only contains the root node. During the generalized update step, i) a Q-value is
updated and ii) the currently occupied Markov state is updated. However, neither
the composition grammar nor the Markov model is expanded. Automatically
generating terminal symbols, non-terminal symbols, and composition rules, as
well as adding new states and transitions to the Markov model is part of the
evaluation step (cf. Section 6.2.3).

Given an update message mupdate = ((y1, . . . , yn), φ∗), a state syj (1 ≤ j ≤ n)

corresponding to search node yj is defined as

syj =

N if j = 1,

(τ1 . . . τj−1)N otherwise,
(6.19)

202

6.2 Combining Composition and Recommendation

with N = (φyj , φ
∗) and a terminal symbol τk (1 ≤ k ≤ j − 1) as defined in

Eq. (6.17). Furthermore, a composition rule ryi,yi+1
(1 ≤ i ≤ n−1) that represents

the composition step from search node yi to its child node yi+1 is defined as

ryi,yi+1
= N → τiN ′, (6.20)

with N = (φyi , φ
∗), N ′ = (φyi+1

, φ∗), and τi as defined in Eq. (6.17).

Given an update message with n ≥ 3 (i.e., a path with more than two search
nodes), the recommendation module’s TDL updates the Q-value of the state-
action pair (syn−2 , ryn−2,yn−1), where syn−2 is the state corresponding to the parent
node of the selected node’s parent, and ryn−2,yn−1 represents the composition step
from the parent’s parent node to the parent node of the selected node. Concretely,
the TDL applies either the Q-Learning update function in terms of Eq. (6.12)
altered to

Q(syn−2 , ryn−2,yn−1)← Q(syn−2 , ryn−2,yn−1)

+ α
[
γmax

r

(
Q(syn−1 , r)

)
−Q(syn−2 , ryn−2,yn−1)

]
,

(6.21)

or the SARSA update function in terms of Eq. (6.13) altered to

Q(syn−2 , ryn−2,yn−1)← Q(syn−2 , ryn−2,yn−1)

+ α
[
γQ(syn−1 , ryn−1,yn)−Q(syn−2 , ryn−2,yn−1)

]
.

(6.22)

After applying one of the altered update functions, the TDL sets the currently
occupied state to state syn . By doing so, the composition module and recommen-
dation module are finally in sync again.

Remark. Note that in case of n = 2 (i.e., in case that the selected node’s parent is
the root node), no update function is applied. Only the currently occupied state
is updated.

Example I. Both cases depicted in Figure 6.9 result in the same update message
mupdate = ((x0, x1, x4), φ

∗). Let us focus on the SARSA update function in terms
of Eq. 6.22 in this example. That is, syn−2 , ryn−2,yn−1 , syn−1 , and ryn−1,yn have to
be computed. Table 6.3 shows the detailed derivations for all four variables. In
this context, note that we use compact representations only. Based on Table 6.3,

203

6 Adaptive Service Composition

Table 6.3: Derivations of syn−2 , ryn−2,yn−1 , syn−1 , and ryn−1,yn for Figure 6.9.
syn−2 = sy1 [n = 3]

= (φy1 , φ
∗) [Eq. (6.19)]

= (φx0 , φ
∗) [y1 = x0]

= X [Table 6.2]

syn−1 = sy2 [n = 3]

= τ1(φy2 , φ
∗) [Eq. (6.19)]

= (cy2 	 cy1)(φy2 , φ
∗) [Eq. (6.17)]

= (cx1 	 cx0)(φx1 , φ
∗) [y1 = x0, y2 = x1]

= aY [Table 6.2]

ryn−2,yn−1
= ry1,y2 [n = 3]

= (φy1 , φ
∗)→ τ1(φy2 , φ

∗) [Eq. (6.20)]
= (φy1 , φ

∗)→ (cy2 	 cy1)(φy2 , φ
∗) [Eq. (6.17)]

= (φx0
, φ∗)→ (cx1

	 cx0
)(φx1

, φ∗) [y1 = x0, y2 = x1]

= X → aY = r1 [Table 6.2]

ryn−1,yn = ry2,y3 [n = 3]

= (φy2 , φ
∗)→ τ2(φy3 , φ

∗) [Eq. (6.20)]
= (φy2 , φ

∗)→ (cy3 	 cy2)(φy3 , φ
∗) [Eq. (6.17)]

= (φx1
, φ∗)→ (cx4

	 cx1
)(φx4

, φ∗) [y2 = x1, y3 = x4]

= Y → dZ = r4 [Table 6.2]

the Q-value update step for both cases depicted in Figure 6.9 is then

Q(X, r1) = Q(X, r1) + α [γQ(aY, r4)−Q(X, r1)] .

After updating Q(X, r1), the currently occupied state is set to adZ, since

syn = sy3 [n = 3]

= τ1τ2(φy3 , φ
∗) [Eq. (6.19)]

= (cy2 	 cy1)(cy3 	 cy2)(φy3 , φ∗) [Eq. (6.17)]

= (cx1 	 cx0)(cx4 	 cx1)(φx4 , φ∗) [y1 = x0, y2 = x1, y3 = x4]

= adZ [Table 6.2] .

Example II. As a second example, let us consider the situation depicted in Fig-
ure 6.10 in combination with the Q-Learning update function given by Eq. (6.21).
That is, syn−2 , ryn−2,yn−1 , and syn−1 have to be computed. As update message that
is sent from the composition module to the recommendation module, we have

204

6.2 Combining Composition and Recommendation

x0

x1 x2

x3 x4 x5 x6

X

aY bY

acZ adZ bcZ bdZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

r3,
Q(bY, r3)

r4,
Q(bY, r4)

Figure 6.10: The last two node selections both are non-Markov.

mupdate = ((x0, x2, x5), φ
∗). Analogous to the steps in Table 6.3, we get

syn−2 = (φy1 , φ
∗) = (φx0 , φ

∗) = X,

syn−1 = (cy2 	 cy1)(φy2 , φ∗) = (cx2 	 cx0)(φx2 , φ∗) = bY,

ryn−2,yn−1 = (φy1 , φ
∗)→ (cy2 	 cy1)(φy2 , φ∗)

= (φx0 , φ
∗)→ (cx2 	 cx0)(φx2 , φ∗) = X → bY = r2 .

The Q-value update step is then

Q(X, r2) = Q(X, r2) + α [γmax (Q(bY, r3), Q(bY, r4))−Q(X, r2)] .

Both Q-values contained in expression max (Q(bY, r3), Q(bY, r4)) belong to state-
action pairs that were already integrated in a previous evaluation step. After
updating Q(X, r2), the currently occupied state is set to bcZ.

6.2.3 Evaluation Step

After a search node x was selected, possible candidate services were discovered,
and a setX ′ containing all valid child nodes of x was determined (cf. Section 4.2.4),
the recommendation module rates and ranks the elements in X ′. For this purpose,
the composition module generates a message

mnew = (x,X ′, φ∗), (6.23)

which contains – beside the selected node x and the final state φ∗ – all new nodes
X ′. The recommendation module processes mnew in order to evaluate all nodes
in X′ based on the corresponding Q-values, while expanding the composition
grammar as well as the Markov state space whenever necessary. First, the rec-

205

6 Adaptive Service Composition

ommendation module’s CRM identifies - for each node x′ ∈ X ′ the composition
rule that corresponds to the composition step from node x to node x′; we write

Rx,X′ = {rx,x′ | x′ ∈ X ′}, (6.24)

where

rx,x′ =

N︷ ︸︸ ︷
(φx, φ

∗)→
τ︷ ︸︸ ︷

(cx′ 	 cx)
N ′︷ ︸︸ ︷

(φx′ , φ
∗) .

If an element is not yet contained in the composition grammar (i.e., if N /∈ VC ,
N ′ /∈ VC , τ /∈ ΣC , or rx,x′ /∈ PC), it is automatically created and stored in the
grammar.

For each rule rx,x′ ∈ Rx,X′ , the TDL subsequently looks up the corresponding Q-
value Q(sx, rx,x′), where state sx is the currently occupied state in the maintained
state space and corresponds to search node x. That is because the update step
keeps the composition module’s selected search node and the recommendation
module’s currently occupied Markov state in sync (cf. Section 6.2.2).

If a rule rx,x′ ∈ Rx,X′ was not yet assigned to sx, i.e., if rx,x′ /∈ Asx , Q-value
Q(sx, rx,x′) is not yet available. In such a case, the TDL automatically integrates
the rule and the corresponding successor state sx′ with sx

rx,x′−→ sx′ into the state
space:

S = S ∪ {sx′}, Asx = Asx ∪ {rx,x′}, σ = σ ∪ {(sx, rx,x′ , sx′)} .

Furthermore, Q-value Q(sx, rx,x′) is assigned an initial value. After gathering all
Q-values

Qx,X′ = {Q(sx, rx,x′) | rx,x′ ∈ Rx,X′} , (6.25)

the recommendation module performs the actual rating and ranking steps.

Rating: The rating step is nothing but assigning each node x′ the corresponding
Q-value based on the results of Eq. 6.24 and Eq. 6.25. We denote the set
where each node x′ ∈ X ′ is assigned its corresponding Q-value Qx′ ∈ Qx,X′

as X ′rated. Formally, we write

X ′rated = {(x′, Qx′) | x′ ∈ X ′, Qx′ ∈ Qx,X′} . (6.26)

Ranking: The ranking step generates a list X ′ranked that contains and sorts all
nodes from X ′ based on i) the corresponding Q-values and ii) the ε-greedy
action-selection strategy. With probability 1 − ε, X ′ranked is sorted accord-

206

6.2 Combining Composition and Recommendation

ing to the assigned Q-values (exploitation phase). That is, the node with
the highest Q-value is the first element in the list, while the node with the
lowest Q-value is the last element. If elements have identical Q-values, the
corresponding part of the list is shuffled. With probability ε, however, the
entire list is shuffled. That is, Q-values are completely neglected (explo-
ration phase).

The recommendation module finally generates and emits a response message

mrated = (X ′rated, X
′
ranked) . (6.27)

After receiving message mrated, the composition module assigns each child node
x′ ∈ X ′ its associated Q-value Qx′ given by X ′rated. Furthermore, the child nodes’
order given by X ′ranked is stored in their mutual parent node x. All child nodes are
subsequently stored in the Fringe database. After the evaluation step has finished,
the composition module, which discovered new search nodes, and the recommen-
dation module, which automatically expanded the composition grammar and the
Markov state space, are in sync again. Furthermore, due to the rated and ranked
search nodes, the composition module is now able to make decisions beyond the
symbolic level. Section 6.2.4 introduces the modified search node selection step.

Example. For illustration, let us consider an example where only Markov node
selections occur, i.e., where only X ′ranked is considered for search node selection.
Figure 6.11 shows an exemplary first composition process (i.e., the first episode)
for the example originally introduced in Section 6.1.2. Before the first iteration,
the recommendation model is still “empty”: Neither the composition grammar,
nor the Markov state space contains any elements.

1. Iteration (Figure 6.11a): Root node x0 is selected. During the update step,
the recommendation module creates non-terminal X and marks X as cur-
rently occupied Markov state. Based on discovered candidate services, the
composition module creates two valid search nodes x1 and x2. During the
subsequent evaluation step, the recommendation modules creates terminal
symbols a and b, non-terminal symbol Y , and composition rules r1 and r2.
Furthermore, the Markov state space is expanded accordingly. Q-values
Qx1 = Q(X, r1) and Qx2 = Q(X, r2) are assigned initial values. Due to the

207

6 Adaptive Service Composition

x0

x1 x2

x1 > x2

X

aY bY

r1,
Q(X , r1)

r2,
Q(X , r2)

(a) 1. Iteration

x0

x1 x2

x3 x4

x1 > x2

x4 > x3

X

aY bY

acZ adZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

(b) 2. Iteration

x0

x1 x2

x3 x4

x1 > x2

x4 > x3

X

aY bY

acZ adZ

r1,
Q(X , r1)

r2,
Q(X , r2)

r3,
Q(aY, r3)

r4,
Q(aY, r4)

(c) 3. Iteration

Figure 6.11: Composition process (top) and automated Markov model
construction (bottom). Nodes are selected based on X ′ranked.

ε-greedy mechanism (random shuffle), x1 is ranked higher than x2, indicated
by annotation x1 > x2 in the search tree.

2. Iteration (Figure 6.11b): Since x1 > x2, the composition module selects
node x1. The update step ensures that the currently occupied state in the
Markov state space is set to sx1 = aY . Based on the results from the service
discovery process, the composition module creates valid search nodes x3 and
x4. During the subsequent evaluation step, the recommendation modules
creates terminal symbols c and d, non-terminal symbol Z, and composition
rules r3 and r4. Again, the Markov state space is expanded accordingly.
Q-values Qx3 = Q(aY, r3) and Qx4 = Q(aY, r4) are assigned initial values.
Due to the ε-greedy mechanism (random shuffle), node x4 is ranked higher
then node x3.

3. Iteration (Figure 6.11c): Since x4 > x3, the composition module selects
node x4. Due to the update step, the currently occupied state in the Markov
state space is set to sx4 = adZ. Since φx4 ⊃ φ∗, the composition module
finalizes the identified solution by generating the corresponding data-flow
net-system and control-flow net-system. An additional evaluation step does
not take place. The last step for the recommendation module is the inte-

208

6.2 Combining Composition and Recommendation

based on
recommendations

independent of
recommendations

Markov
(only open child
nodes, ranking)

global, ranking-based
(all open nodes,

ranking)

global, greedy
(all open nodes,

Q-values)

global, uniform at random
(all open nodes)

ε1 1− ε1

open child
nodes available

no open child
nodes available

ε2 1− ε2

Figure 6.12: Node selection hierarchy.

gration of final reward in terms of feedback from the rating process (cf. Sec-
tion 6.2.5).

6.2.4 Modified Search Node Selection

As introduced in Section 6.2.2, open search nodes can be selected either based
on absolute Q-values (non-Markov node selection), or by picking a child node
from a sorted subset of all nodes (Markov node selection). On the one hand,
when only performing non-Markov node selections, the TDL’s action selection
strategy is completely bypassed. The TDL’s action selection strategy, however, is
crucial for balancing exploitation of already learned knowledge and exploration of
new and possibly better alternatives. On the other hand, when only performing
Markov node selections, the search behavior is completely bypassed. That is, the
recommendation system might recommend a search path, which does not contain
a correct solution at all. Furthermore, in cases where the end of a branch was
reached without finding a solution, or a branch of arbitrary depth is explored
(e.g., due to alternating service applications), selection mechanisms for switching
to alternative search branches are required.

Search Node Selection Hierarchy

For the work at hand, we decided for the node selection hierarchy shown in Fig-
ure 6.12. Labels assigned to edges either correspond to conditions or represent
probability values and serve as weights for a randomized decision-making process.
If ε1 = 0, the search node rankings of the recommendation system are completely
bypassed. That is, the next search node is selected based on all open search
nodes. With probability ε2, the search node with the globally highest Q-value

209

6 Adaptive Service Composition

is selected. With probability 1 − ε2, however, the next search node is selected
uniformly at random – completely independent of Q-values.

If, in turn, ε1 = 1, the next search node is strictly selected according to the
ranking defined by the recommendation system. If open child nodes are available,
the next search node is selected out of the set of open child nodes. In this context,
note that the ranking of child nodes is determined only once and remains the same
for an entire composition process. If no open child nodes are available, the next
search node is selected out of the set of all open search nodes – but still according
to their ranking (see next section).

Technical Realization

In the uninformed (purely symbolic) composition approach (cf. Section 4.2), the
Fringe database can be realized as simple queue; e.g., as FIFO queue in order to
achieve a breadth-first search behavior. When combining composition approach
and recommendation system, the Fringe database is realized as a priority queue
managed by a heap data structure [152]. When selecting greedily from all open
search nodes, the heap invariant is defined by an ordering relation based on ab-
solute Q-values. That is, the higher the Q-value of a search node, the higher the
priority and the lower the index in the priority queue. The ensure that the heap
invariant is not violated (due to the previous node selection step), the heapify
subroutine is invoked before extracting the first node from the queue. When
selecting uniformly at random from all open search nodes, the priority queue is
simply shuffled before extracting the first node.

When selecting from child nodes according to their ranking, the remaining
open child nodes are identified in the Fringe. From this subset, the node with
the lowest index in the ranking is selected and manually removed from the queue.
However, when no more child nodes are left (e.g., since all possible branches were
pruned), we redefine the heap invariant by applying the ordering relation realized
by Algorithm 3. That is, before extracting a node from the queue, the ordering
relation is changed to Algorithm 3 and the heapify subroutine is invoked.

The general idea is to compare two search nodes xa, xb, which are not necessar-
ily siblings, based on the ranking of their ancestors with the same parent. First of
all, if necessary, the algorithm identifies ancestor nodes that have the same depth
in the search tree (lines 1-6). Afterward, the algorithm simultaneously traverses
from both nodes upwards until sibling nodes are found (lines 7-10). The final

210

6.2 Combining Composition and Recommendation

Algorithm 3 Ordering Relation for Global, Ranking-based Selection
Require: xa, xb . two search nodes to be compared
1: while depth(xa) > depth(xb) do
2: xa = parent(xa)
3: end while
4: while depth(xb) > depth(xa) do
5: xb = parent(xb)
6: end while
7: while parent(xa) 6= parent(xb) do
8: xa = parent(xa)
9: xb = parent(xb)
10: end while . xa, xb are siblings now
11: return index(xa) < index(xb) . position in child node ranking

x0

x1 x2

x2 > x1

(a) Markov

x0

x1 x2

x3 x4

x2 > x1

x3 > x4

(b) Global, Random

x0

x1 x2

x5 x6 x3 x4

x2 > x1

x6 > x5 x3 > x4

(c) Global, Ranking-based

Figure 6.13: Search node selection examples.

comparison is then nothing but comparing the ranking of both identified siblings
in the parent’s child node ranking. The algorithm allows us to compare any com-
bination of two nodes in the Fringe database, while simultaneously adhering to
the Markov node selection strategy provided by the recommendation system.

Figure 6.13 illustrates the behavior of this selection mechanism. First of all,
x2 is selected as defined by the ranking of the child nodes. Afterward, the com-
position algorithm made the decision to randomly select node x1, leading to open
nodes {x5, x6, x3, x4}. Subsequently, the composition algorithm (for whatever rea-
son) decides to switch to the global but ranking-based node selection mechanism.
Invoking the heapify subroutine and adhering to Algorithm 3 as ordering relation
results in the priority queue [x3, x4, x6, x5]. That is because the parent of nodes
x3, x4 has a higher ranking than the parent of nodes x6, x5, while x3 has a higher
ranking then x4. As a consequence, x3 is selected. Roughly speaking, the global,
ranking-based selection mechanism always forces the search algorithm back into

211

6 Adaptive Service Composition

the branch that strictly follows the recommended node selection strategy.

6.2.5 Episode Finalization

Let x be the search node that passed the goal test. Furthermore, let sx denote
the currently occupied state in the recommendation module’s Markov state space.
Due to the last update step, state sx always corresponds to node x. After receiving
feedback in terms of a reward value, the recommendation module finalizes the
current episode by performing the following two steps.

Goal Interpretation Rules

If not yet available, the recommendation module’s CRM creates and stores a
composition rule

r = N → ε, (6.28)

where N is the non-terminal symbol contained in state sx. Replacing N by ε

means that a realization for N is not required at all. For the learning process,
creating such a “goal interpretation” rule is actually not necessary. However, by
doing so, we obtain a composition grammar that can be used independently of
both the symbolic composition model and the Markov model. That is because

1. composition rules compactly encode valid composition steps identified by
the composition module, and

2. the entire composition grammar is a production system that generates solu-
tions for a dedicated composition problem represented by the start symbol.

In the most general sense, such a grammar might be interpreted as a composition
cache. It allows for efficiently generating solutions without relying on a time-
consuming planning-based approach. Efficiency, for example, is crucial when a
composed service has to be adjusted during its execution (reconfiguration). Over
time, however, parts of the composition grammar become invalid, since the set of
available services changes.

Incorporating Final Reward

The recommendation module’s TDL integrates the reward value generated by the
rating step as new value for Q-value Q(s′x, r′x,x), where ′x is the parent node of

212

6.3 Evaluation

Service Composition

Informed
Forward Search

discovery request

candidates

composed service

request

Service Discovery

Execution

Rating

execution result

Service Executables

Service Specifications

executables

Learning Recommendation System

Composition
Rule Manager (CRM)

Composition
Grammar

selected node

new nodes

rated and
ranked nodes

rating value

Temporal Difference
Learner (TDL)

State Space
& Q-Values

Figure 6.14: Complete Prototype including Composition, Discovery,
Execution, Rating, and Recommendation/Learning.

node x, state s′x is the corresponding Markov state of node ′x, and r′x,x denotes
the composition rule representing the composition step from node ′x to node x.
For this last Q-value update step, no new elements have to be created; neither
for the composition grammar, nor for the Markov state space.

6.3 Evaluation

The purpose of this section is to investigate if and to what extend our learning
recommendation system can support the composition algorithm in order to realize
an adaptive composition approach.

Remark. Unless otherwise stated, our prototype (cf. Figure 6.14) is configured
as follows for the experiments in the upcoming sections. Identified solutions are
minimized by removing superfluous services (cf. Section 4.3.3). The goal node test
works in strict mode (cf. Section 4.3.4). The service pools for the scenarios are
identical to those introduced in Section 5.3. Likewise, the specifications of Tr̂ as
well as the configurations of the scenario-specific rating mechanisms are inherited
from Section 5.3. The Q-Learning and SARSA update functions (cf. Eq. (6.21)
and Eq. (6.22) on page 203) are applied with learning rate α = 0.9 and dis-
count factor γ = 0.9. Regarding the node selection hierarchy (cf. Figure 6.12
on page 6.12), we mainly focus on recommendation based search node selections;
i.e., ε1 = 1 while ε2 is not relevant. For the ranking process performed by the
recommendation system (cf. Section 6.2.3), we have ε = 0.1.

213

6 Adaptive Service Composition

6.3.1 Segmentation of Color Palette

All of the following results are based on 50 independent simulation runs, where
each simulation run consists of 1000 consecutive composition runs (i.e., episodes
in terms of RL). A single composition run comprises composing and executing
a solution, rating the execution result, and incorporating the rating result as
feedback. The maximally allowed length of a solution is set to l = 4 (cf. also
Figure 5.23 on page 167).

As reference, Figure 6.15 shows the overall rating results for the uninformed
depth-first search approach, which does not interact with the recommendation
system in the first place. Figure 6.15a shows the distribution of rating results
in terms of a histogram. Figure 6.15b gives a more abstract representation in
terms of statistical parameters. The min and max lines represent the minimal
and maximal rating results among all 50 · 1000 composition runs. As we can see,
there is no noteworthy difference between results of different composition runs.
The majority of the composed solutions have an overall rating of approximately
0.5, while all rating values range between 0 and 0.71.

Figure 6.16 shows the overall rating results in the case of SARSA. That is,
depth-first search is replaced by our informed search approach, which exploits
knowledge provided by our recommendation system. For updating Q-values, the
TDL applies Eq. (6.22) from page 203. In comparison to depth-first, the rating
results improve over time, where “over time” means “with increasing numbers
of consecutive composition runs”. However, even after 1000 composition runs,
the overall rating values are still considerably varying. Roughly speaking, the
decision-making process within the recommendation system does not converge to
a single solution. To sum it up, applying SARSA indeed improves the composition
process over time, but is far from perfect regarding the learning behavior.

Applying Q-Learning, i.e., using Eq. (6.21) from page 203 for updating Q-
values, significantly improves the learning behavior. Figure 6.17 shows the cor-
responding results. Furthermore, for better comparability, Figure 6.18a depicts
the overall rating results for depth-first, SARSA, and Q-Learning. As we can
see, Q-Learning outperforms SARSA while simultaneously requiring less Markov
states (cf. Figure 6.18b). However, although the rating results of Q-Learning
converge to a solution with high rating, there still exist better solutions (cf. the
max line as well as Figure 5.23 on page 167). Nevertheless, explicitly optimizing
the learning behavior is beyond the scope of this work.

214

6.3 Evaluation

(a) Histogram (b) Statistical Parameters

Figure 6.15: Rating results using depth-first search (no learning).

(a) Histogram (b) Statistical Parameters

Figure 6.16: Rating results using SARSA.

(a) Histogram (b) Statistical Parameters

Figure 6.17: Rating results using Q-Learning.

215

6 Adaptive Service Composition

ov
er

al
lr

at
in

g

(a) Rating results (Smoothed Mean) (b) Markov states (Mean + Confidence)

(c) Time to solution (Smoothed Mean)

Figure 6.18: Comparison of depth-first search, SARSA, and Q-Learning.

When comparing time to solution (i.e., the time required for composing a solu-
tion) of all three approaches, we observe an additional positive effect of the recom-
mendation system. Have a look at Figure 6.18c. Both SARSA and Q-Learning
apparently reduce time to solution despite the additional overhead induced by
the recommendation system. In comparison to the uninformed search approach,
where no previous knowledge is available, learned knowledge (i.e., any Q-value
that differs from initial value 0) implicitly indicate that a valid solution can be
found following the corresponding search path. Roughly speaking, by tracking
previous composition runs, the recommendation system can guide the composi-
tion process to find valid solutions in a more goal-oriented way.

Search Node Selection

Let us now investigate if and how different configurations of the search node selec-
tion mechanism (cf. Section 6.2.4) influence the learning behavior of Q-Learning.
As configuration parameters, we have ε1 to control the probability of selecting
search nodes based on recommendations, ε2 to control the probability of selecting

216

6.3 Evaluation

ov
er

al
lr

at
in

g

(a) Rating Results (Smoothed Mean) (b) Markov states (Mean + Confidence)

Figure 6.19: Different search node selection configurations (ε1/ε2/ε).

search nodes globally greedily, and ε to control the probability within the recom-
mendation system of sorting child nodes according to their Q-values. For more
details, please refer to Section 6.2.3 and Section 6.2.4.

Figure 6.19 shows the rating results and number of Markov states for the
following five configurations:

Color ε1 ε2 ε Brief Description

Blue 1 - 0.1 only recommendation-based node selections, low
TDL exploration rate (default configuration)

Orange 1 - 0.5 only recommendation-based node selections, iden-
tical TDL exploration and exploitation rate

Green 0.5 0 0.1 identical rate of recommendation-based and not
recommendation-based node selections, only ran-
dom global node selections, low TDL exploration
rate

Red 0.5 0.5 0.1 identical rate of recommendation-based and not
recommendation-based node selections, identical
rate of greedy and random global node selections,
low TDL exploration rate

Purple 0 1 - no recommendation-based node selections, only
greedy global node selections

Both an identical TDL exploration and exploitation rate (orange) and an iden-
tical rate of recommendation-based and not recommendation-based node selec-
tions (green) result in a similar behavior. The rating results are lower than the

217

6 Adaptive Service Composition

default configuration (blue) and still rather irregular after 1000 composition runs.
Furthermore, in both cases, the number of Markov states is significantly higher
than in all other cases. When comparing both configurations with each other, the
higher rating results in case of an identical rate of recommendation-based and not
recommendation-based node selections (green) comes along with a higher amount
of Markov states.

When selecting search nodes only globally greedily (purple), the composition
process sticks to the very first solution whose rating result is propagated from
the final Markov state to the initial state. As a consequence, neither the overall
rating values nor the number of Markov states change anymore. For productive
operation, this configuration is obviously useless.

The most interesting and actually surprising results belong to the identical
rate of recommendation-based and non recommendation-based node selection in
combination with an identical rate of greedy and random global node selections
(red). The rating results converge significantly faster than in the default case
(blue), while the boundary values are nearly identical. As indicated by the num-
ber of Markov states, this configuration facilitates a stronger exploration of the
search space, which in turn leads to a higher amount of Markov states from the
very beginning. In general, the presented results imply that more fine-grained
configurations of the search node selection mechanism can indeed result in an
improved learning behavior. However, a more thorough investigation is beyond
the scope of this work.

6.3.2 Motion-based Robot Detection

Again, all upcoming results are based on 50 independent simulation runs, where
each simulation run consists of 1000 consecutive composition runs. The maximally
allowed length of a solution, however, is set to l = 5 (cf. also Figure 5.30 on
page 171).

Figure 6.20 shows the rating results in case of uninformed depth-first search.
Compared with the color palette scenario, we have a completely different distri-
bution of rating results: The majority of composed solutions either have a very
low rating result or a high rating result of almost 0.7. Although a solution with
a maximal rating result of approximately 0.9 was identified at least once, the
depicted results clearly expose that solutions with high ratings only make up a
small part of the entire solution space.

218

6.3 Evaluation

(a) Histogram (b) Statistical Parameters

Figure 6.20: Rating results using depth-first search (no learning).

(a) Histogram (b) Statistical Parameters

Figure 6.21: Rating results using SARSA.

(a) Histogram (b) Statistical Parameters

Figure 6.22: Rating results using Q-Learning.

219

6 Adaptive Service Composition

ov
er

al
lr

at
in

g

(a) Rating results (Smoothed Mean) (b) Markov states (Mean + Confidence)

(c) Time to solution (Smoothed Mean)

Figure 6.23: Comparison of depth-first search, SARSA, and Q-Learning.

The learning behavior of SARSA (cf. Figure 6.21) and Q-Learning (cf. Fig-
ure 6.22) is very similar in this scenario. Figure 6.23a compares the overall rating
results. In both cases, the rating results very quickly converge to a boundary value
of approximately 0.7, although a solution with a significantly higher rating value
(indicated by the max line) exists. Nevertheless, in comparison to an uninformed
composition process, exploiting learned knowledge leads to composed solutions of
considerably higher quality. In addition, the composition time is reduced to less
than half of the original composition time (cf. Figure 6.23c).

When closely examining the time to solution results as well the rating re-
sults of Q-Learning and SARSA, we identify an advantage of Q-Learning over
SARSA: Starting from (approximately) composition run 600, the composition re-
sults slowly start to improve. The additional learning overhead, in turn, results
in higher time to solution values.

220

6.3 Evaluation

(a) Histogram (b) Statistical Parameters

Figure 6.24: Rating results using Q-Learning. The service pool changes after
500 composition runs.

(a) Histogram (b) Statistical Parameters

Figure 6.25: Rating results using Q-Learning. The service pool changes after
300 composition runs, and changes back after 700 runs.

Dynamic Service Pool

The previous results demonstrate, that the entire approach is indeed adaptive
given a static service pool. However, what happens if the service pool is not
static anymore, but changes after a pre-defined number of consecutive compo-
sition runs? To answer this question we conducted two additional experiments
using Q-Learning. In the first experiment, the original service pool is replaced by
a reduced service pool after 500 composition runs (cf. Figure 6.24). In the second
experiment, the original service pool is replaced by the same reduced service pool
after 300 composition runs, but is restored after 700 composition runs (cf. Fig-
ure 6.25). The reduced service pool contains all services from the original service
pool, except for the color segmentation services. The rating results and number
of Markov states of both experiments are compared in Figure 6.26.

221

6 Adaptive Service Composition

ov
er

al
lr

at
in

g

(a) Rating results (Smoothed Mean) (b) Markov states (Mean + Confidence)

Figure 6.26: Comparison of static and dynamic service pool for Q-Learning.

ov
er

al
lr

at
in

g

(a) Rating results (Smoothed Mean) (b) Markov states (Mean + Confidence)

Figure 6.27: Comparison of different values for max length l.

In both cases, the rating results worsen immediately after replacing the original
service pool. However, due to the learning mechanisms, they quickly start to
improve, until they are even better than before. The high variance among the
rating results as well as the stronger growth of the Markov state space indicate
a stronger exploration of the search space caused by the learning process. From
the image processing perspective, given the results, we can conclude that the
remaining services most likely produce better results than the color segmentation
services that were removed from the service pool. However, when switching back
to the original service pool, the rating values almost fall back to their original level.
This might be surprising at first glance. On closer examination, we can identify
a shortcoming of our approach given the scenario-specific setting. That is, due
to our chosen specification of Tr̂ (i.e., since ImageProcessing was chosen as first
task concept), our adaptive composition approach tends to create valid solutions
that contain just a single service. In fact, as shown in Figure 6.27, the rating

222

6.3 Evaluation

results are almost independent of the maximally allowed length of a solution,
although the number of Markov states significantly increases. The problem lies
within the feedback propagation mechanism (i.e., the update functions as well
as their application and their parametrization). While a solution consisting of a
color conversion service and a point detection service might have a higher overall
rating, the Q-value of the first composition step can be in fact lower than the
overall rating result of a valid solution that only contains single color segmentation
service. Depending on the differences in length and overall rating result, this issue
might change if the search path leading to the longer solution is visited often
enough and the Q-value of the first composition step is increased accordingly.

Generally speaking, the currently applied RL techniques tend to favor short
solutions, although longer solutions might be better. Unless allowing more fine-
grained task definitions to avoid such inconvenient settings or carefully revising
the learning mechanism (e.g., by additionally including the concept of eligibility
traces [145]), this shortcoming cannot be resolved. However, we consider these
necessary modifications to be future work.

6.3.3 Motion-based Ball Detection

Like in the previous two scenarios, all upcoming results are based on 50 inde-
pendent simulation runs, where each simulation run consists of 1000 consecutive
composition runs. The maximally allowed length of a solution is set to l = 5

(cf. also Figure 5.37 on page 175).
In case of depth-first search, most of the composed solutions result in an overall

rating value of approximately zero (cf. Figure 6.28). At least once, however, a
solution with a rating value slightly higher than 0.6 is identified. Furthermore,
like in the robot detection scenario, the results of SARSA (cf. Figure 6.29) and
Q-Learning (cf. Figure 6.30) are very similar. Figure 6.31 compares overall rat-
ing results, number of Markov states, and time to solution of all three settings.
We can clearly see, that the incorporation of learning takes a heavy toll on the
efficiency: While the Markov state space growths massively larger than in all pre-
vious settings, the time to solution values cannot be improved. In fact, the time
to solution values significantly worsen over time. The reason for this is the distri-
bution of possible rating values as indicated by Figure 5.37 on page 175. That is,
the majority of composed solutions result in an overall rating value of zero. As
a consequence, significantly more exploration is required to identify solutions of

223

6 Adaptive Service Composition

(a) Histogram (b) Statistical Parameters

Figure 6.28: Rating results using depth-first search (no learning).

(a) Histogram (b) Statistical Parameters

Figure 6.29: Rating results using SARSA.

(a) Histogram (b) Statistical Parameters

Figure 6.30: Rating results using Q-Learning.

224

6.3 Evaluation

ov
er

al
lr

at
in

g

(a) Rating results (Smoothed Mean) (b) Markov states (Mean + Confidence)

(c) Time to solution (Smoothed Mean)

Figure 6.31: Comparison of depth-first search, SARSA, and Q-Learning.

higher quality. Roughly speaking, in this particular scenario and given the cho-
sen configuration of our approach, the learned knowledge cannot compensate the
learning overhead regarding time to solution – at least not within the considered
1000 consecutive composition runs.

Different Task Definitions and Interpretations

For investigating the impact of different task definitions, we replaced Tr̂ by the
following definitions:

T1
r̂ = {PreProcessing,ColorSpaceConversion,PointExtraction

ColorSegmentation,Adapter},
T2

r̂ = {PreProcessing,ColorSegmentation},
T3

r̂ = {PreProcessing,ColorSpaceConversion,PointExtraction} .

225

6 Adaptive Service Composition

ov
er

al
lr

at
in

g

(a) Rating results (Smoothed Mean) (b) Markov states (Mean + Confidence)

(c) Time to solution (Smoothed Mean)

Figure 6.32: Comparison of different task definitions and interpretations using
Q-Learning.

T1
r̂ includes all relevant image processing steps in the correct order. Due to the

Adapter task, functional independent branches are allowed. T2
r̂ only allows se-

quences including color segmentation services, while T2
r̂ only allows sequences

including point extraction services. In two additional experiments, we configured
the Discovery Invocation step to interpret T1

r̂ and T3
r̂ as unordered lists. Recur-

rences, however, were still allowed (Case 1 in Table 4.3 on page 102). Figure 6.32
shows the corresponding results. As we can see, the best results can be achieved
based on T1

r̂, when the tasks are considered to be in the correct order (blue). That
is, within the first 1000 composition runs, the learning behavior is by far the best,
the number of necessary Markov states is the lowest, and the time to solution
values are even below depth-first search (brown). A more detailed representation
of the rating results of this particular experiment are given in Figure 6.33. If the
tasks defined in T1

r̂ are considered to be unordered (red), the rating values are far
lower and just slowly increase. The number of Markov states as well as the time
to solution values, however, are still quite similar.

226

6.3 Evaluation

(a) Histogram (b) Statistical Parameters

Figure 6.33: Rating results based on T1
r̂ using Q-Learning.

We can also conclude from the depicted results that a sequence including a
color segmentation service is not sufficient for the ball to be detected by the entire
application. While the corresponding rating values (orange) are permanently zero,
the Markov state space as well as the time to solution values grow tremendously.
Roughly speaking, the entire approach keeps on trying to find better solutions.
Last but not least, both results for T3

r̂ (green and purple) indicate that the ball
can be indeed detected once in a while by applying a sequence including just a
single point detection service.

For the sake of completeness, Figure 6.34 shows the data-flow net of a solution
with an overall rating value slightly above 0.6. It was composed while conducting
the experiment based on T1

r̂ as ordered list (red). The depicted data-flow contains
two independent branches. In the upper branch, points are detected within the
input image after converting it into a gray level image. In the lower branch, a color
segmentation service detects areal regions within the input image. All regions are
finally combined by service s62, where the regions provided by the upper branch
are additionally duplicated. We can see that a combination of areal regions and
point regions can significantly improve the functionality of the entire application.
However, in order to identify such high quality solutions not only by chance, the
applied learning techniques have yet to be adjusted in our future work.

6.3.4 Conclusion

Within the context of our use cases, we demonstrated the feasibility of our holis-
tic approach and showed that it is indeed adaptive: With increasing number
of consecutive composition runs, high quality solutions are identified more often

227

6 Adaptive Service Composition

 s50

 s6

 s40 d2

s62

o1•
i1

d1

Figure 6.34: Data-flow net of a solution with overall rating value λ = 0.61.

and more regularly. Throughout our evaluation, however, we also identified a lot
of room for improving the learning speed as well as the quality of the composed
solutions. Nevertheless, its sound formal basis in combination with its component-
based, flexible design allow for easily modifying and extending our approach. For
example, it can be used as testbed for evaluating alternative techniques, or might
be even applied for productive operation (e.g., in order to automate the prototyp-
ing process of less complex image processing applications). In our opinion, this
is a major contribution itself. Regarding concrete future work, however, please
refer to Section 7.1.

The presented results also indicate that the practicability and feasibility of our
proposed approach heavily depends on the characteristics of the composition task
at hand. That is, even if a specific configuration (e.g., Q-Learning vs. SARSA)
leads to good results for one specific composition task, the same configuration
might be inappropriate for other tasks. In the future, it would be highly favorable
to identify relevant characteristics of composition tasks, cluster composition tasks
accordingly, and identify appropriate configurations for each cluster. It might be
even possible to model this process as a learning problem, while letting a decision-
making engine automatically decide how to tackle a composition task at hand.

6.4 Related Work

In the last years, there has been an increasing amount of research on automated
service composition incorporating Markov models or RL. However, we are not
aware of any approach that combines feedback-based RL techniques with sym-
bolic techniques. Furthermore, existing approaches usually focus on adaptation
with respect to non-functional properties. Ignoring feedback regarding functional

228

6.4 Related Work

discrepancy, however, can be troublesome in domains such as image processing:
An executed solution might produce undesired results, although it is correct with
respect to a request specification. Since no comparable approaches exist, we dis-
cuss representative approaches that concentrate on non-functional properties.

Wang et al., e.g., propose an approach that enables composed services to adapt
to dynamic environments [153]. By modeling composed services as MDPs, mul-
tiple alternative workflows and services are integrated into a composed service.
During execution, workflow selection is controlled by a RL mechanism. Similar
to our approach, there is no separation between building abstract workflows and
concrete, composed services. In contrast to our work, however, the composition
process itself is not interpreted as an MDP, but the result of the process.

One approach that considers service composition and RL at a time is proposed
by Todica et al. [154]. They divide service composition into abstract work-flow
generation and service instantiation. RL is then applied to the abstract work-flow
generation phase. Their motivation is identical with ours, namely to improve the
entire composition process by involving learning from previous attempts. In our
work, however, RL is not applied for solving the service composition problem
directly, but to support it in terms of a recommendation system during decision
making. By doing so, RL is not replacing but extending classical search algorithms
or AI planning approaches.

Kun et al. combine a MDP model and HTN planning to increase flexibility of
automatic service composition [118]. Their proposed model enhances HTN plan-
ning in order to decompose a task in multiple ways and to identify more than
one possible solution. An evaluation mechanism then identifies a composition
out of the set of possible solutions that is optimal with respect to non-functional
properties. RL, however, is not applied in their work. In contrast to our work,
again, the composition process itself is not interpreted as MDP, but the result of
the composition process. Similar to the work of Wang et al. [153], the identified
solutions are aggregated in a single model. In case of failures, e.g., alternative
solutions enhance the probability of a successful execution. In our work, we cur-
rently do not compose solutions with alternative execution branches. However, in
our opinion, our approach would most likely benefit from it. Similar to collecting
knowledge from consecutive composition processes, an extended approach would
additionally collect knowledge from consecutive execution processes of a composed
service. This information could then be integrated as additional learning samples

229

6 Adaptive Service Composition

into our recommendation system.

Moustafa and Zhang introduce two RL algorithms for multi-objective opti-
mization of competitive service properties during service composition [155]. Both
approaches mainly base on Q-Learning and allow for identifying Pareto optimal
solutions. The first approach addresses each service property in a separate learn-
ing process. For selecting a distinct service during the composition process, the
separate learning processes are coordinated. The second approach is an extended
version of the approach that was originally proposed by Dehousse et al. [156].
In comparison to the first approach, the second approach considers a complete
vector of all competitive service properties in a single learning process. In our
work, we currently do not consider competitive service properties. In fact, we do
not consider non-functional (Quality of Service (QoS), performance) properties at
all. Incorporating multi-objective optimization of functional and non-functional
properties, however, is an important and necessary step for driving the idea of
OTF image processing forward.

Two other composition approaches that incorporate Q-Learning are proposed
by Wang et al. [157] and Yu et al. [158]. Wang et al. introduce a service composi-
tion concept based on a multi-agent Q-Learning algorithm. Agents benefit from
the experiences other agents made before. As a consequence, the convergence
speed of the overall learning process is improved in comparison to independently
learning agents, as it is currently realized in our approach. When dealing with a
market environment, however, we will not get out of including a similar mecha-
nism. An OTF provider will most likely receive similar requests at the same time,
leading to parallel learning processes that have to be appropriately synchronized.
Furthermore, different OTF provider may want to cooperate and share their in-
dividually learned knowledge.

The work of Yu et al. [158] places special emphasis on the advantages of Q-
Learning (model-free RL) when composing services in a distributed and dynamic
environment. Their work confirms our design decision to select TD learning for
our fundamental market scenario.

Another approach towards adaptivity is the dynamic reconfiguration of com-
posed services during runtime, as, e.g., proposed in [159–161]. In our current
OTF Computing context, we are separating composition and execution phase,
since both processes are embedded in a market environment with strictly regu-
lated interaction processes between users, OTF providers, and service providers.

230

6.4 Related Work

However, in our opinion, dynamic reconfiguration is essential in order to realize
our vision of OTF Computing. Experience from consecutive execution processes
with predefined alternatives or alternatives identified by invoking a composition
process from within the execution process has to be aggregated in our recommen-
dation system, e.g., by assembling Q-values from independent Markov models.

231

7 Conclusion and Outlook

We gradually designed a holistic, adaptive approach for automated development of
basic image processing applications. Our proposed approach comprises concepts
as well as concrete realizations for specification, composition, recommendation,
execution, and rating of image processing functionality. Adaptivity is achieved
by incorporating Machine Learning techniques. The very basic idea is to realize
image processing applications according to SOC design principles, i.e., to encapsu-
late distinct functionality as stateless, autonomous services. Furthermore, OTF
Computing techniques are adopted for automating the development process of
service-based image processing applications. We refer to the entire concept as
OTF Image Processing. The feasibility of the approach was demonstrated based
on exemplary results. As application scenarios, we designed three practically rel-
evant use cases each with different characteristics. The use cases were partially
derived from our previous work in the Image Processing domain.

Starting from domain knowledge, we derived a formalism that is powerful
enough for properly specifying image processing functionality while simultane-
ously facilitating an automated composition process. Furthermore, we focused on
a component-based realization, where the components such as composition algo-
rithm, discovery mechanism, or execution framework are closely intertwined on
the one hand, but can be flexibly modified, extended, or even exchanged on the
other hand. The key concepts of OTF Image Processing are as follows.

Specification: Image processing functionality is specified according to data that
is consumed and produced, and according to the tasks that are accom-
plished. Our IOPE-based specification formalism grounds on a data and a
task ontology, and incorporates a variant of first-order logic that allows for
specifying relations between input and output data.

Composition: Complex image processing functionality is defined by the data-
flow between input and output ports of services. It is modeled based on a

233

7 Conclusion and Outlook

Petri-net formalism. Complex image processing functionality is automat-
ically composed by means of a flexible, AI planning-based forward search
approach. A multi-step discovery mechanisms gradually reduces valid can-
didate services for single composition steps.

Recommendation: Decision-making between alternative composition steps is
supported by a learning recommendation system, which keeps track of valid
composition steps by automatically constructing a composition grammar.
In addition, it adapts to solutions of high quality by means of feedback-
based RL techniques. Adaption, in this context, refers to the reduction of
functional discrepancy between the actually required functionality and the
concrete functionality when executing a composed solution over time.

Execution: Our SOA provides a distributed computing framework for executing
composed services. The communication between so-called Service Provider
instances is based on messages that include all necessary information. That
is, a central controller is not required. Each Service Provider instance may
be assigned a distinct service pool and incorporates all means necessary for
executing its own services. The corresponding specifications are used by the
discovery mechanism.

Rating: Rating mechanisms evaluate the functionality of composed solutions ei-
ther directly or indirectly; i.e., either based on immediate execution results
or based on execution results produced by the entire application, where the
composed solution provides only parts of the functionality. The rating ap-
proaches typically depend on the concrete image processing problem to be
solved. An absolute rating approach may incorporate ground truth infor-
mation prepared in advance. A relative rating mechanism may analyze the
differences between consecutive execution results. Rating results are used
as feedback values for the learning recommendation system.

We feel confident to say that OTF Computing can benefit from both the pre-
sented approach, its holistic methodology, or just parts of it, and the Image
Processing domain in particular. By applying our approach to other domains,
open challenges can be identified and the OTF Computing vision can be pushed
forward. Furthermore, according to our experience, dealing with concrete and
actually relevant use cases (such as our uses cases from the Image Processing
domain) increases the acceptance and awareness of OTF Computing in general.

234

7.1 Future Work

7.1 Future Work

Although being holistic, the presented approach has nevertheless to be considered
as initial work. For reducing the scale of this work, we had to make simplifying
assumptions. Furthermore, while evaluating the approach, we identified short-
comings that have to be overcome for increasing feasibility as well as practicabil-
ity of OTF Image Processing. Let us briefly point out general loose ends, that
are – in our opinion – the most promising starting points for future work.

Composition

To increase the efficiency of the composition process, we generally propose to aim
for reducing the search space, exploiting the composition grammar, and incorpo-
rating additional information into decision-making.

A reduction of the search space can be achieved by using more comprehen-
sive specifications, e.g., by describing image processing functionality on different
levels of abstraction or by incorporating fuzzy expressions for more fine-grained
descriptions of soft properties. Furthermore, by using a task specification mech-
anism that bases on regular expressions, not only sequences of tasks, but also
alternative, optional, and functionally independent tasks can be specified. As a
result, the inherent flexibility of our composition process can be appropriately
controlled.

In addition to modified specifications, the composition grammar that is auto-
matically generated by our recommendation system can be exploited as “some kind
of composition cache”. In fact, the composition grammar keeps track of valid com-
position steps as well as valid solutions. Using the less efficient planning-based
composition approach for identifying new solutions, and exploiting the compo-
sition grammar for efficiently generating already discovered solutions will most
likely boost the composition efficiency and tremendously reduce time to solution
values.

Last but not least, additional information such as non-functional properties
or intermediate rating results can additionally support decision-making between
alternative composition steps. For intermediate rating results, however, the rigid
separation of composition, execution, and rating has to be systematically broken
up and transferred into an architecture of loosely coupled components that can
be flexibly interleaved – very similar to the SOC principle itself.

235

7 Conclusion and Outlook

Recommendation

Reducing the search space of the composition process also reduces the learning
space of the recommendation system and automatically increases the learning
efficiency. However, the efficiency can be additionally increased by improving
the node selection mechanism (especially the action-selection strategy within the
TDL), dynamically adjusting the Markov state space, performing multiple learn-
ing processes at the same time, or bootstrapping learning processes by incorpo-
rating learned knowledge from similar composition tasks.

The currently applied ε-greedy action selection strategy is rather static. That
is, it neither takes into account how often a branch was already visited, nor does
it dynamically adjust the rate between exploration and exploitation. A more
sophisticated mechanism (e.g., based on the softmax strategy [145]) might enable
the entire approach to converge to near optimal or even optimal solutions that
could not be appropriately identified during our evaluation – at least not within
the considered amount of consecutive composition runs.

The Markov state space currently reflects all valid composition possibilities in
all (sometimes inconvenient) details. For example, although different composition
steps produce one and the same data-flow, the corresponding Markov states are
considered to be different. As demonstrated by Lindner [162], dynamically ab-
stracting and concreting sections of the Markov state can significantly improve the
learning speed, while simultaneously reducing the number of necessary Markov
states. The basic idea is to generalize learned knowledge and share it among simi-
lar composition steps, and only increase the level of detail of promising sections of
the Markov space (i.e., sections that refer to high quality solutions) to an adequate
degree. Adequate, in this context, refers to a degree of abstraction that barely
allows for making appropriate decisions, i.e., for choosing good composition steps
over bad composition steps.

Assuming service markets, multiple identical or at least very similar requests
may arrive at nearly the same time. By interpreting the corresponding learning
processes not as multiple independent learning processes, but as a single learning
process tackled by multiple agents at the same time, techniques from the area of
Team Markov Games and Multi-Agent Reinforcement Learning might be applied
to boost the learning efficiency. Furthermore, learned knowledge from similar
composition tasks might also be used to bootstrap the learning process of other
but (for whatever reasons) independent composition tasks.

236

List of Figures

2.1 Fundamental steps in image processing. 10
2.2 Real-world application scenario from the robotics domain: A

miniature robot BeBot (a) has to autonomously push a ball through
a slalom course (b). 11

2.3 Image processing steps of solution I. Nodes and edges with thick
border represent parts that differ from solution II (cf. Figure 2.5). 12

2.4 Intermediate results of the image processing steps shown in Fig-
ure 2.3: (a) original color image, (b) regions as adjacent pixels of
similar color with raw pixel and feature-based representation, (c)
classified and unclassified regions, (d) detected objects. 13

2.5 Image processing steps of solution II. Nodes and edges with thick
border represent parts that differ from solution I (cf. Figure 2.3). 14

2.6 (a) Color classes are subspaces in the underlying RGB color space.
(b) Intermediate results of the image processing solution shown in
Figure 2.5 after segmentation and computation of moments. . . . 14

2.7 SOC elements and their relations [40]. 19
2.8 On-The-Fly (OTF) Computing: A so-called OTF provider receives

and processes a customer’s request. 20
2.9 Abstract overview of the OTF Computing concept. 21
2.10 The OTF service composition process in the market environment. 22
2.11 Basic OTF Computing framework. 24
2.12 Black box view on image processing services s1, s2, and s3, each

implementing a different functionality for image resizing. 25
2.13 (a) Original image was resized while preserving the original aspect

ratio (b) and while ignoring it (c). 26
2.14 White box view on service s1 as a composed service. 27
2.15 White box view on composed service s7, which solely consists of

configured service s3. 28

237

LIST OF FIGURES

2.16 Different segmentation results due to different distance functions
((a) vs. (b)) and due to different threshold values ((c) vs. (d)). . 29

2.17 Original image (a) and execution results (b) and (c) of two formally
equivalent services. 30

2.18 Applying the same segmentation service to original images (a) and
(b) produces two significantly different images (c) and (d). 31

2.19 Overview of OTF Image Processing concepts based on the OTF
Computing framework. 32

2.20 Integration of feedback from signal level into the composition pro-
cess on symbol level. 33

3.1 Data-flow graph of composed service s1 from page 27. 40
3.2 Multiple output ports of service s are connected to (a) different

services or (b) a single service. 41
3.3 (a) A single output port is connected to different services. (b) Com-

bination of data duplication and multiple output ports. 41
3.4 For the execution to proceed, the data provided by an output port

is required by either one of the connected input ports. 42
3.5 (a) A service requires multiple input variables for execution. (b) A

service requires an input variable from either one of the connected
output ports. 43

3.6 Nets N1, N2, and N3 of supported control-flow patterns. 45
3.7 EN system based representation of the supported data-flow fork

and join cases described in Section 3.1.1. 46
3.8 Class I: The data-flow yields a deterministic control-flow, while the

data-flow can be reconstructed given the control-flow. 48
3.9 Class II: The data-flow results in a deterministic control-flow, but

cannot be reconstructed given the control-flow. 48
3.10 Class III: The data-flow implies a control-flow with concurrency. 49
3.11 (a) Original images, (b) desired, and (c) undesired thumbnails. . 50
3.12 Required: A composed service that creates an undistorted thumb-

nail image IT with size w × h based on image I. 50
3.13 A marker was (a) designed, printed, and (b) captured in a cam-

era image. The image was subsequently (c) processed by a seg-
mentation algorithm. The extracted regions can now be classified
according to (d) predefined color classes. 52

238

LIST OF FIGURES

3.14 Synthetic color palette (a) was (b) printed and captured by a cam-
era and (c) segmented according to the different colors. 53

3.15 Required: A composed service that processes an image I and re-
turns areas of adjacent pixels with similar color as a set of statis-
tically described areal regions RA. 53

3.16 Overview of the entire image processing solution. For the missing
image processing step, a service-based solution shall be automati-
cally composed. 55

3.17 Different types of visual primitives and their image ellipses. . . . 56
3.18 Results of the motion-based object detection approach for two dif-

ferent problem domains. 57
3.19 Required: A composed service that processes and image I, extracts

visual primitives represented as raw pixel data, and returns them
as a combined set of regions R. 57

3.20 Possible solution for the required functionality. 58

4.1 OTF Image Processing - Symbolic Service Composition. 61
4.2 Elements that are part of an image processing functionality de-

scription in our work. 64
4.3 RGB image (a) is transformed to (b) a gray-scale image and trans-

formed back to a (c) RGB image. 65
4.4 (a) Example image and (b) an exemplary description of relations

between existing objects of interest. 66
4.5 General components of the knowledge-based specification process. 69
4.6 Excerpt from task ontology OT 73
4.7 Excerpt from data ontology OD 74
4.8 Data-flow nets of elementary services. 75
4.9 Excerpt from task ontology OT 77
4.10 Excerpt from data ontology OD 77
4.11 Composed service c1 consisting of service nodes n1 and n2 as in-

stances of services s17 and s3, respectively. 81
4.12 Data-flow net Dc1 . 82
4.13 Control-flow net Fc1 . 82
4.14 Exemplary mappings mI , mO, mIa , and mOa given state φ, service

specification ŝ, and request specification r̂. 86
4.15 Overview of the entire composition process. 90

239

LIST OF FIGURES

4.16 Different approaches for realizing the service discovery process. . 93

4.17 Two strategies for obtaining the same result. 97

4.18 Tree data structure TOT for the discovery process. 98

4.19 Search tree of the composition process. Open nodes are dashed,
closed (processed) nodes are solid. The trees in (e) and (f) represent
an alternative search path. 100

4.20 Amount of solutions (#solutions in Table 4.3), for (a) increasing
max length of solutions (with t = 3 and s = 2), and (b) increasing
amount of alternative services per task (with t = 3 and l = 4). . . 103

4.21 Partitioning of the solution space according to Case 1-Case 4 from
Table 4.3. Crosses represent the associated example solutions. . . 106

4.22 Composed solution for our Thumbnails use case with superfluous
functionality in terms of service node n2. Places with dashed border
indicate input and output ports that were specified in the corre-
sponding request. 108

4.23 Illustration of Algorithm 1 based on the data-flow net depicted in
Figure 4.22. 109

4.24 Prototype . 118

4.25 Exemplary solution for l = 6. 120

4.26 Measured and estimated (dashed lines) development of the overall
search space sizes. 121

4.27 Overall solutions (transparent bars) and actually different solutions
(opaque bars). 122

4.28 Exemplary solution for l = 7. 123

4.29 Comparison of time to solution for max length l = 6 (the minimum
length for our composition problem to be solved). 124

4.30 Discovered search nodes as well as corresponding time to solution. 126

5.1 OTF Image Processing - Execution and Rating. 135

5.2 (a) Excerpt of an exemplary recipe. (b) Overview of the funda-
mental components of our SOA framework. 137

5.3 Internal processes of a service provider. 138

5.4 Integration of SOA and OTF Image Processing for execution of
composed image processing services. 140

5.5 Direct and indirect rating processes. 143

240

LIST OF FIGURES

5.6 Before comparing, execution results (left and right) have to be
correctly matched to ground truth data (middle) in the first place. 145

5.7 (a)-(c) The color palette was captured by the target camera from
one and the same perspective, but under different illumination con-
ditions. (d) Ground truth regions based on (a). (e) Explicit de-
scriptions of ground truth regions in terms of image ellipses. . . . 146

5.8 (a) Regions expressed as contour lines (ellipses) of their density
distributions. (b) Representation of an ellipse by its major axis x′,
minor axis y′, and angle of inclination φ. 148

5.9 (a) Regions that lie within the boundaries of rgt are (b) merged
into a single region rc,i in order to (c) determine the overlap as
distance. 151

5.10 Rating mechanism for the Segmentation use case. The input is a
list of sets of regions extracted by the composed service in con-
secutive runs i = 1, . . . , k. The output is a single rating value.
. 153

5.11 Motion of different origin within the image plane, each consisting
of a displacement gradient (represented by arrows). 154

5.12 Intermediate results of the motion-based object detection ap-
proach. 156

5.13 Correspondences between complex regions of consecutive runs
based on associated tracked regions. Note that only the center
of mass of a tracked region is indicated (in terms of a cross), but
not the image ellipse. 157

5.14 (a) Commercial robotic platforms that were integrated into the test
bed. (b) Web-client of the test bed. 158

5.15 Soccer playing robots from the Middle Size League of the RoboCup
initiative. The robots were gradually developed by students in
consecutive project groups at Paderborn University. 159

5.16 Robot Detection: Exemplary images and corresponding ground
truth images. 160

5.17 Ball Detection: Exemplary images and corresponding ground truth
images. 160

241

LIST OF FIGURES

5.18 Rating mechanism for the Object Detection use case. The input is
a list of sets of objects detected by the application in consecutive
runs i = 3, . . . , k. The output is a single (absolute) rating value. 162

5.19 Binary ground truth image and binary result image combined into
a single image for illustrating the different classes true positive
(white), false positive (light gray), false negative (dark gray), and
true negative (black). 162

5.20 Decomposition of the non-black pixels in Figure 5.19c. 163
5.21 Extended Prototype . 165
5.22 Input data for color-based segmentation. 166
5.23 Rating results for the color palette scenario. 167
5.24 Rating per execution run with overall rating result λ = 0.69. . . . 168
5.25 Rating per execution run with overall rating result λ = 0.52. . . . 168
5.26 Rating per execution run with overall rating result λ = 0.50. . . . 169
5.27 Rating per execution run with overall rating result λ = 0.33. . . . 169
5.28 Rating per execution run with overall rating result λ = 0.11. . . . 170
5.29 Input data for motion-based robot detection. 170
5.30 Rating results for the robot detection scenario. 171
5.31 Rating per execution run with overall rating result λ = 0.81. . . . 172
5.32 Rating per execution run with overall rating result λ = 0.69. . . . 173
5.33 Rating per execution run with overall rating result λ = 0.3. 173
5.34 Data-flow net belonging to Figure 5.33. 174
5.35 Rating per execution run with overall rating result λ = 0.1. 174
5.36 Input data for motion-based ball detection. 174
5.37 Rating results for the ball detection scenario. 175
5.38 Rating per execution run with overall rating result λ = 0.4. 175
5.39 Rating per execution run with overall rating result λ = 0.29. . . . 176
5.40 Data-flow net belonging to Figure 5.39. 176

6.1 OTF Image Processing - Adaptive Service Composition. 179
6.2 Integration of recommendation process. 181
6.3 Non-terminal symbols Y and Z in different models. 185
6.4 Corresponding composition and recommendation models for one

and the same composition problem. 189
6.5 Demonstration of the learning process. 194
6.6 Interaction between composition and recommendation. 195

242

LIST OF FIGURES

6.7 Adjusted composition algorithm when combined with the recom-
mendation system. 197

6.8 Pairs of search tree and Markov state space for demonstrating
the interpretation of search node selections in the Markov model.
Nodes with solid border are closed. Node with dashed border are
still open and can be selected. 199

6.9 Different search node selection sequences. 201
6.10 The last two node selections both are non-Markov. 205
6.11 Composition process (top) and automated Markov model construc-

tion (bottom). Nodes are selected based on X ′ranked. 208
6.12 Node selection hierarchy. 209
6.13 Search node selection examples. 211
6.14 Complete Prototype including Composition, Discovery, Execution,

Rating, and Recommendation/Learning. 213
6.15 Rating results using depth-first search (no learning). 215
6.16 Rating results using SARSA. 215
6.17 Rating results using Q-Learning. 215
6.18 Comparison of depth-first search, SARSA, and Q-Learning. 216
6.19 Different search node selection configurations (ε1/ε2/ε). 217
6.20 Rating results using depth-first search (no learning). 219
6.21 Rating results using SARSA. 219
6.22 Rating results using Q-Learning. 219
6.23 Comparison of depth-first search, SARSA, and Q-Learning. 220
6.24 Rating results using Q-Learning. The service pool changes after

500 composition runs. 221
6.25 Rating results using Q-Learning. The service pool changes after

300 composition runs, and changes back after 700 runs. 221
6.26 Comparison of static and dynamic service pool for Q-Learning. . . 222
6.27 Comparison of different values for max length l. 222
6.28 Rating results using depth-first search (no learning). 224
6.29 Rating results using SARSA. 224
6.30 Rating results using Q-Learning. 224
6.31 Comparison of depth-first search, SARSA, and Q-Learning. 225
6.32 Comparison of different task definitions and interpretations using

Q-Learning. 226

243

LIST OF FIGURES

6.33 Rating results based on T1
r̂ using Q-Learning. 227

6.34 Data-flow net of a solution with overall rating value λ = 0.61. . . 228

244

List of Tables

3.1 Comparison of our three uses cases. 59

4.1 The image depicted in Figure 4.4a is described on three levels. . . 67
4.2 Rules that are enforced during the composition process. 84
4.3 Different cases leading to different sets Trd and consequently to a

different amount of solutions, given by #solutions with t = |Tr̂|,
l = max length of solutions, and s = alternative services per task. 102

4.4 Configuration parameters . 118

5.1 Angle of inclination φ. 148
5.2 Complete list of discretized moments corresponding to the ground

truth regions depicted in Figure 5.7d. 149
5.3 Application Scenarios . 165

6.1 Associated composed services of the search tree in Figure 6.4b. . . 190
6.2 Composition grammar according to Figure 6.4a, Figure 6.4b, and

Table 6.1. 191
6.3 Derivations of syn−2 , ryn−2,yn−1 , syn−1 , and ryn−1,yn for Figure 6.9. . . 204

245

List of Algorithms

1 Identifying and Removing Superfluous Services 110

2 RL Episode . 192
3 Ordering Relation for Global, Ranking-based Selection 211

247

Own Publications
[1] Alexander Jungmann and Bernd Kleinjohann. A holistic and adaptive ap-

proach for automated prototyping of image processing functionality. In Pro-
ceedings of the 21st IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), 2016. (to appear).

[2] Jürgen Gausemeier, Thomas Schierbaum, Roman Dumitrescu, Stefan Her-
brechtsmeier, and Alexander Jungmann. Miniature robot bebot: Mecha-
tronic test platform for self-x properties. In Proceedings of the 9th IEEE
International Conference on Industrial Informatics (INDIN), pages 451–456,
2011.

[3] Alexander Jungmann, Bernd Kleinjohann, Lisa Kleinjohann, and Maarten
Bieshaar. Efficient color-based image segmentation and feature classifica-
tion for image processing in embedded systems. In Proceedings of the 4th
International Conference on Resource Intensive Applications and Services
(INTENSIVE), pages 22–29, 2012.

[4] Alexander Jungmann, Thomas Schierbaum, and Bernd Kleinjohann. Image
segmentation for object detection on a deeply embedded miniature robot. In
Proceedings of the 7th International Conference on Computer Vision Theory
and Applications (VISAPP), pages 441–444, 2012.

[5] Ronald Petrlic, Alexander Jungmann, Marie Christin Platenius, Wilhelm
Schäfer, and Christoph Sorge. Security and privacy challenges in on-the-
fly computing. In Proceeding of: 4. Konferenz Software-Technologien und
-Prozesse (STeP), pages 131–142, 2014.

[6] Felix Mohr, Alexander Jungmann, and H. Kleine Büning. Automated online
service composition. In Proceedings of the 12th IEEE International Confer-
ence on Services Computing (SCC), pages 57–64, 2015.

[7] Alexander Jungmann. On adaptivity for automated composition of service
functionality. In Proceedings of the IEEE 11th World Congress on Services
(SERVICES), pages 329–332, 2015.

[8] Sonja Brangewitz, Alexander Jungmann, Ronald Petrlic, and Marie Christin
Platenius. Towards a flexible and privacy-preserving reputation system for
markets of composed services. In Proceeding of the 6th Sixth International
Conferences on Advanced Service Computing (SERVICE COMPUTATION),
pages 49–57, 2014.

249

OWN PUBLICATIONS

[9] Alexander Jungmann, Sonja Brangewitz, Ronald Petrlic, and Marie Christin
Platenius. Incorporating reputation information into decision-making pro-
cesses in markets of composed services. International Journal on Advances
in Intelligent Systems, 7(3&4):572–594, 2014.

[10] Alexander Jungmann, Felix Mohr, and Bernd Kleinjohann. Combining auto-
matic service composition with adaptive service recommendation for dynamic
markets of services. In Proceedings of the 10th World Congress on Services
(SERVICES), pages 346–353, 2014.

[11] Alexander Jungmann and Felix Mohr. An approach towards adaptive service
composition in markets of composed services. Journal of Internet Services
and Applications, 6(1):1–18, 2015.

[12] Alexander Jungmann and Bernd Kleinjohann. Towards an integrated service
rating and ranking methodology for quality based service selection in auto-
matic service composition. In Proceedings of the 4th International Confer-
ences on Advanced Service Computing (SERVICE COMPUTATION), pages
43–47, 2012.

[13] Alexander Jungmann and Bernd Kleinjohann. Towards the application of
reinforcement learning techniques for quality-based service selection in au-
tomated service composition. In Proceedings of the 9th IEEE International
Conference on Services Computing (SCC), pages 701–702, 2012.

[14] Alexander Jungmann and Bernd Kleinjohann. Learning recommendation
system for automated service composition. In Proceedings of the 2013 IEEE
International Conference on Services Computing (SCC), pages 97–104, 2013.

[15] Alexander Jungmann, Bernd Kleinjohann, and Lisa Kleinjohann. Learning
service recommendations. International Journal of Business Process Integra-
tion and Management, 6(4):284–297, 2013.

[16] Alexander Jungmann, Jan Jatzkowski, and Bernd Kleinjohann. Evaluation of
color spaces for robust image segmentation. In Proceedings of the 9th Interna-
tional Conference on Computer Vision Theory and Applications (VISAPP),
pages 648–655, 2014.

[17] Alexander Jungmann and Bernd Kleinjohann. Towards context-sensitive ser-
vice composition for service-oriented image processing. In Proceedings of the
6th IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), pages 755–758, 2014.

[18] Alexander Jungmann, Felix Mohr, and Bernd Kleinjohann. Applying rein-
forcement learning for resolving ambiguity in service composition. In Pro-
ceedings of the 7th IEEE International Conference on Service Oriented Com-
puting and Applications (SOCA), pages 105–112, 2014.

250

OWN PUBLICATIONS

[19] Alexander Jungmann, Jan Lutterbeck, Benjamin Werdehausen, and Bernd
Kleinjohann. A test bed for investigating self-x properties in multi-robot soci-
eties. In Proceedings of the 9th IEEE International Conference on Industrial
Informatics (INDIN), pages 437–442, 2011.

[20] Alexander Jungmann, Claudius Stern, Lisa Kleinjohann, and Bernd Klein-
johann. Increasing motion information by using universal tracking of 2d-
features. In Proceedings of the 8th IEEE International Conference on Indus-
trial Informatics (INDIN), pages 511–516, 2010.

[21] Alexander Jungmann and Bernd Kleinjohann. Automatic feature classi-
fication for object detection based on motion analysis. In Proceedings of
the 5th International Conference on Automation, Robotics and Applications
(ICARA), pages 190–195, 2011.

[22] Alexander Jungmann and Bernd Kleinjohann. Automatic composition of
service-based image processing applications. In Proceedings of the 13th IEEE
International Conference on Services Computing (SCC), 2016. (to appear).

[23] Alexander Jungmann, Jan Jatzkowski, and Bernd Kleinjohann. Combining
service-oriented computing with embedded systems - a robotics case study.
In Proceedings of the 5th IFIP International Embedded Systems Symposium
(IESS). Springer-Verlag, 2015.

[24] Alexander Jungmann, Jan Lutterbeck, Benjamin Werdehausen, Bernd Klein-
johann, and Lisa Kleinjohann. Towards a real-world scenario for investigating
organic computing principles in heterogeneous societies of robots. In Pro-
ceedings of the 2011 workshop on Organic computing, pages 41–50, 2011.

251

Bibliography

[25] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[26] Collaborative Research Center 901 - On-The-Fly Computing, 2014. URL:
http://sfb901.uni-paderborn.de Accessed 2016-06-01.

[27] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall, Upper Saddle River, NJ, USA, 2005.

[28] Thomas Erl, Pethuru Chelliah, Clive Gee, Jürgen Kress, Berthold Maier,
Hajo Normann, Leo Shuster, Bernd Trops, Clemens Utschig, Philip Wik,
and Torsten Winterberg. Next Generation SOA: A Real-World Guide to
Modern Service-Oriented Computing. Prentice Hall, Upper Saddle River,
NJ, USA, 2014.

[29] Wilhelm Burger and Mark James Burge. Principles of digital image process-
ing: Fundamental Techniques. Springer Publishing Company, Incorporated,
2009.

[30] OpenCV - Open Source Computer Vision, 2014. URL: http://opencv.
org/ Accessed 2016-06-01.

[31] ImageMagick: Convert, Edit, Or Compose Bitmap Images, 2015. URL:
http://http://www.imagemagick.org/ Accessed 2016-06-01.

[32] MatLab Image Processing Toolbox: Performing image processing, analy-
sis, and algorithm development, 2015. URL: http://www.mathworks.com/
products/image/ Accessed 2016-06-01.

[33] Wilhelm Burger and Mark J. Burge. Principles of Digital Image Processing:
Core Algorithms. Springer Publishing Company, Incorporated, 2009.

[34] Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck. Machine Vision.
McGraw-Hill, Inc., New York, NY, USA, 1995.

[35] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IEEE
Transactions on Information Theory, 8(2):179–187, 1962.

[36] M. R. Teague. Image analysis via the general theory of moments. Journal
of the Optical Society of America (1917-1983), 70:920–930, 1980.

253

http://sfb901.uni-paderborn.de
http://opencv.org/
http://opencv.org/
http://http://www.imagemagick.org/
http://www.mathworks.com/products/image/
http://www.mathworks.com/products/image/

BIBLIOGRAPHY

[37] Instagram - capture and share the world’s moments, 2015. URL: http:
//www.instagram.com Accessed 2016-06-01.

[38] W.T. Tsai. Service-oriented system engineering: a new paradigm. In IEEE
International Workshop Service-Oriented System Engineering (SOSE),
pages 3–6, 2005.

[39] Markus Happe, Friedhelm Meyer auf der Heide, Peter Kling, Marco
Platzner, and Christian Plessl. On-The-Fly Computing: A novel paradigm
for individualized IT services. In IEEE 16th International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), pages 1–10, 2013.

[40] Thomas Erl. SOA Principles of Service Design. Prentice Hall, Upper Saddle
River, NJ, USA, 2008.

[41] Svetlana Arifulina, Marie Christin Platenius, Christian Gerth, Steffen
Becker, Gregor Engels, and Wilhelm Schaefer. Market-optimized service
specification and matching. In Proceedings of the 12th International Con-
ference on Service Oriented Computing (ICSOC 2014), pages 543–550, 2014.

[42] Svetlana Arifulina, Marie Christin Platenius, Felix Mohr, Gregor Engels,
and Wilhelm Schaefer. Market-specific service compositions: Specification
and matching. In Proceedings of the IEEE 11th World Congress on Ser-
vices (SERVICES), Visionary Track: Service Composition for the Future
Internet, pages 333–340, 2015.

[43] N. Hiratsuka, F. Ishikawa, and S. Honiden. Service selection with combi-
national use of functionally-equivalent services. In Proceedings of the IEEE
International Conference on Web Services (ICWS), pages 97–104, 2011.

[44] Felix Mohr and Sven Walther. Template-based generation of semantic ser-
vices. In Proceedings of the 14th International Conference on Software Reuse
(ICSR), pages 188–203, 2014.

[45] Joachim Peer. Web service composition as ai planning - a survey. Technical
report, University of St. Gallen, Switzerland, 2005.

[46] Peter Bartalos and Maria Bieliková. Semantic web service composition
framework based on parallel processing. In Proceedings of the 11th IEEE
Conference on Commerce and Enterprise Computing (CEC), pages 495–
498, 2009.

[47] Peter Bartalos and Mária Bieliková. Automatic dynamic web service com-
position: A survey and problem formalization. Computing and Informatics,
30(4):793–827, 2011.

254

http://www.instagram.com
http://www.instagram.com

BIBLIOGRAPHY

[48] M. Aiello, E. el Khoury, A. Lazovik, and P. Ratelband. Optimal QoS-Aware
Web Service Composition. In Proceedings of the 11th IEEE Conference on
Commerce and Enterprise Computing (CEC), pages 491–494, 2009.

[49] Marie Christin Platenius. Fuzzy service matching in on-the-fly computing.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 715–718. ACM, 2013.

[50] Marie Christin Platenius, Markus von Detten, Steffen Becker, Wilhelm
Schäfer, and Gregor Engels. A survey of fuzzy service matching approaches
in the context of on-the-fly computing. In Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-based Software Engineering
(CBSE), pages 143–152. ACM, 2013.

[51] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1998.

[52] T. Matsuyama. Expert systems for image processing-knowledge-based com-
position of image analysis processes. In Proceedings of the 9th International
Conference on Pattern Recognition, pages 125–133, 1988.

[53] Ahmed M. Nazif and M.D. Levine. Low level image segmentation: An
expert system. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, PAMI-6(5):555–577, 1984.

[54] Leiguang Gong and C.A. Kulikowski. Composition of image analysis pro-
cesses through object-centered hierarchical planning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17(10):997–1009, 1995.

[55] L. Gong and C.A. Kulikowski. Visiplan: a hierarchical planning framework
for composing biomedical image analysis processes. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR),
pages 718–723, 1994.

[56] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An architecture
for general intelligence. Artif. Intell., 33(1):1–64, 1987.

[57] R. Clouard, A. Elmoataz, C. Porquet, and M. Revenu. Borg: a knowledge-
based system for automatic generation of image processing programs. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(2):128–144,
1999.

[58] H.N. Nii. Introduction. In Blackboard Architecture and Applications, pages
xix–xxix. Academic Press, 1989.

[59] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via
a sparse, part-based representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(11):1475–1490, 2004.

255

BIBLIOGRAPHY

[60] M. Weber, M. Welling, and P. Perona. Unsupervised Learning of Models for
Recognition. In Computer Vision - ECCV, volume 1842 of Lecture Notes
in Computer Science, pages 18–32. Springer Berlin Heidelberg, 2000.

[61] Christopher Town. Ontological inference for image and video analysis. Ma-
chine Vision and Applications, 17(2):94–115, 2006.

[62] Stevan Harnad. The symbol grounding problem. Phys. D, 42(1-3):335–346,
1990.

[63] D. Dennett. Cognitive Wheels: The Frame Problem of AI. In C. Hook-
way, editor, Minds, Machines and Evolution, pages 129–151. Cambridge
University Press, Cambridge, 1984.

[64] Nicolas Maillot and Monique Thonnat. Ontology based complex object
recognition. Image Vision Comput., 26(1):102–113, 2008.

[65] Nicolas Maillot, Monique Thonnat, and Alain Boucher. Towards ontology-
based cognitive vision. Machine Vision and Applications, 16(1):33–40, 2004.

[66] Régis Clouard, Arnaud Renouf, and Marinette Revenu. An ontology-
based model for representing image processing application objectives.
International Journal of Pattern Recognition and Artificial Intelligence,
24(08):1181–1208, 2010.

[67] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv., 36(1):1–34, 2004.

[68] Arvind and David E. Culler. Dataflow architectures. In Annual Review of
Computer Science Vol. 1, pages 225–253. Annual Reviews Inc., Palo Alto,
CA, USA, 1986.

[69] Gilles Kahn. The semantics of simple language for parallel programming.
In IFIP Congress, pages 471–475, 1974.

[70] A.L. Davis and R.M. Keller. Data flow program graphs. Computer,
15(2):26–41, 1982.

[71] F. Mohr and H. Kleine Büning. Semi-automated software composition
through generated components. In Proceedings of the 15th International
Conference on Information Integration and Web-based Applications & Ser-
vices (iiWAS), pages 676–680, 2013.

[72] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität
Hamburg, 1962.

[73] P.S. Thiagarajan. Elementary net systems. In Petri Nets: Central Models
and Their Properties, pages 26–59. Springer Berlin Heidelberg, 1987.

256

BIBLIOGRAPHY

[74] G. Rozenberg. Behaviour of elementary net systems. In Petri Nets: Central
Models and Their Properties, pages 60–94. Springer Berlin Heidelberg, 1987.

[75] G. Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, structure,
behaviour. In Current Trends in Concurrency, pages 585–668. Springer
Berlin Heidelberg, 1986.

[76] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51,
2003.

[77] Nick Russell, Arthur H. M. Ter Hofstede, and Nataliya Mulyar. Workflow
control-flow patterns: A revised view. Technical report, BPMcenter.org,
2006.

[78] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web
service composition. In Proceedings of the 14th Australasian Database Con-
ference, pages 191–200, 2003.

[79] V. Diekert and G. Rozenberg. The Book of Traces. World Scientific, 1995.

[80] E. Bruce Goldstein. Sensation and perception. Thomson, Wadsworth, 7
edition, 2007.

[81] Hermann von Helmholtz and James P. C. Southall. Treatise on physiological
optics. Dover Publications, Mineola, NY, 2005.

[82] J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
593–600, 1994.

[83] Jack Durkin and John Durkin. Expert Systems: Design and Development.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.

[84] Arnaud Renouf, Régis Clouard, and Marinette Revenu. How to formulate
image processing applications? In Int. Conf. on Computer Vision Systems
(ICVS), pages 1–10, 2007.

[85] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. Int. J. Hum.-Comput. Stud., 43(5-6):907–928, 1995.

[86] Kendal Simon and Creen Malcolm. An Introduction to Knowledge Engi-
neering. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[87] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven En-
gineering and Ontology Development. Springer Publishing Company, Incor-
porated, 2009.

257

BIBLIOGRAPHY

[88] W3C OWL Working Group. OWL Web Ontology Language : Reference.
W3C Recommendation, 10 February 2004. Available at http://www.w3.
org/TR/owl-ref/.

[89] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009. Available at http:
//www.w3.org/TR/owl2-overview/.

[90] W3C RDF Working Group. Rdf - semantic web standards, 2014. URL:
http://www.w3.org/RDF/ Accessed 2016-06-01.

[91] Toby Segaran, Colin Evans, Jamie Taylor, Segaran Toby, Evans Colin, and
Taylor Jamie. Programming the Semantic Web. O’Reilly Media, Inc., 2009.

[92] Stanford Center for Biomedical Informatics Research. protégé - A free,
open-source ontology editor and framework for building intelligent systems,
2015. URL: http://protege.stanford.edu/ Accessed 2016-06-01.

[93] Dengsheng Zhang, Md. Monirul Islam, and Guojun Lu. A review on auto-
matic image annotation techniques. Pattern Recogn., 45(1):346–362, 2012.

[94] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning: theory
& practice. Morgan Kaufmann, San Francisco, CA, USA, 2004.

[95] Grigoris Antoniou and Frank van Harmelen. Web ontology language: Owl.
In Handbook on Ontologies, International Handbooks on Information Sys-
tems, pages 67–92. Springer Berlin Heidelberg, 2004.

[96] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[97] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, Upper Saddle River, NJ, USA, 3 edition, 2009.

[98] Wolfgang Reisig. Elements of Distributed Algorithms - Modeling and Anal-
ysis with Petri Nets. Springer-Verlag Berlin Heidelberg, 1998.

[99] Zohar Manna and Richard Waldinger. A deductive approach to program
synthesis. ACM Trans. Program. Lang. Syst., 2(1):90–121, 1980.

[100] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Matthew L. Ginsberg, editor, Readings in
Nonmonotonic Reasoning, pages 26–45. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1987.

[101] Python.org - Python Programming Language, 2016. URL: https://www.
python.org/ Accessed 2016-06-01.

258

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/RDF/
http://protege.stanford.edu/
https://www.python.org/
https://www.python.org/

BIBLIOGRAPHY

[102] Simpleai - artificial intelligence algorithms described in the book “artifi-
cial intelligence, a modern approach”, 2015. URL: https://github.com/
simpleai-team/simpleai Accessed 2016-06-01.

[103] treelib - an efficient implementation of tree data structure in python 2/3,
2015. URL: https://github.com/caesar0301/treelib Accessed 2016-06-
01.

[104] Felix Mohr. Automated software composition - a survey and evaluating
review, 2015.

[105] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam,
and Quan Z. Sheng. Quality driven web services composition. In Proceedings
of the 12th International World Wide Web Conference (WWW), pages 411–
421, 2003.

[106] Liangzhao Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang. Qos-aware middleware for web services composition. IEEE
Transactions on Software Engineering, 30(5):311–327, 2004.

[107] D. Ardagna and B. Pernici. Adaptive service composition in flexible pro-
cesses. IEEE Transactions on Software Engineering, 33(6):369–384, 2007.

[108] D. Schuller, Julian Eckert, A. Miede, S. Schulte, and R. Steinmetz. Qos-
aware service composition for complex workflows. In Proceedings of the Fifth
International Conference on Internet and Web Applications and Services
(ICIW), pages 333–338, 2010.

[109] Mohammad Alrifai and Thomas Risse. Combining global optimization with
local selection for efficient QoS-aware service composition. In Proceedings
of the 18th International World Wide Web Conference (WWW), pages 881–
890, 2009.

[110] Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova, Nikolaos Geor-
gantas, and Valérie Issarny. QoS-aware service composition in dynamic
service oriented environments. In Proceedings of the 10th International Con-
ference on Middleware, pages 123–142. Springer, 2009.

[111] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting skyline
services for qos-based web service composition. In Proceedings of the 19th
International Conference on World Wide Web (WWW), pages 11–20. ACM,
2010.

[112] Adrian Klein, Fuyuki Ishikawa, and Shinichi Honiden. Efficient qos-aware
service composition with a probabilistic service selection policy. In Service-
Oriented Computing, Lecture Notes in Computer Science, pages 182–196.
Springer Berlin Heidelberg, 2010.

259

https://github.com/simpleai-team/simpleai
https://github.com/simpleai-team/simpleai
https://github.com/caesar0301/treelib

BIBLIOGRAPHY

[113] Joyce El Hadad, Maude Manouvrier, and Marta Rukoz. TQoS: Transac-
tional and QoS-aware selection algorithm for automatic web service compo-
sition. IEEE Transactions on Services Computing, 3(1):73–85, 2010.

[114] Jiuyun Xu and S. Reiff-Marganiec. Towards heuristic web services compo-
sition using immune algorithm. In Proceedings of the IEEE International
Conference on Web Services (ICWS), pages 238–245, 2008.

[115] Chunming Gao, Meiling Cai, and Huowang Chen. Qos-aware service com-
position based on tree-coded genetic algorithm. In Proceedings of the
31st Annual International Computer Software and Applications Conference
(COMPSAC), pages 361–367, 2007.

[116] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, and Dana Nau. Au-
tomating daml-s web services composition using shop2. In The Semantic
Web - ISWC, volume 2870 of Lecture Notes in Computer Science, pages
195–210. Springer Berlin Heidelberg, 2003.

[117] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. HTN
planning for web service composition using SHOP2. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 1(4):377–396, 2004.

[118] Chen Kun, Jiuyun Xu, and S. Reiff-Marganiec. Markov-htn planning ap-
proach to enhance flexibility of automatic web service composition. In Pro-
ceedings of the IEEE International Conference on Web Services (ICWS),
pages 9–16, 2009.

[119] Jinghai Rao and Xiaomeng Su. A survey of automated web service compo-
sition methods. In Semantic Web Services and Web Process Composition,
pages 43–54. Springer, 2005.

[120] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and auto-
mated composition of web services. In Proceedings of the 11th International
Conference on World Wide Web (WWW), pages 77–88, New York, NY,
USA, 2002. ACM.

[121] Drew V. McDermott. Estimated-regression planning for interactions with
web services. In Proceedings of the Sixth International Conference on Arti-
ficial Intelligence, pages 204–211, 2002.

[122] Shankar R. Ponnekanti and Armando Fox. SWORD: A developer toolkit for
web service composition. In Proceedings of the 11th International WWW
Conference (WWW), 2002.

[123] Jinghai Rao, P. Kungas, and M. Matskin. Logic-based web services com-
position: from service description to process model. In Proceedings of the
IEEE International Conference on Web Services (ICWS), pages 446–453,
2004.

260

BIBLIOGRAPHY

[124] Snehal Thakkar, Craig A. Knoblock, José Luis Ambite, and Cyrus Shahabi.
Dynamically composing web services from on-line sources. In Workshop
on Intelligent Service Integration, The Eighteenth National Conference on
Artificial Intelligence (AAAI), 2002.

[125] M.B. Blake and D.J. Cummings. Workflow composition of service level
agreements. In Proceedings of the IEEE International Conference on Ser-
vices Computing (SCC), pages 138–145, 2007.

[126] Mihhail Matskin and Jinghai Rao. Value-added web services composition
using automatic program synthesis. In Web Services, E-Business, and the
Semantic Web, pages 213–224. Springer Berlin Heidelberg, 2002.

[127] Bin Wu, Shuiguang Deng, Ying Li, Jian Wu, and Jianwei Yin. Awsp:
An automatic web service planner based on heuristic state space search. In
Proceedings of the IEEE International Conference on Web Services (ICWS),
pages 403–410, 2011.

[128] Antonio Brogi, Sara Corfini, and Razvan Popescu. Composition-oriented
service discovery. In Software Composition, pages 15–30. Springer Berlin
Heidelberg, 2005.

[129] S.V. Hashemian and F. Mavaddat. A graph-based approach to web services
composition. In Proceedings of the Symposium on Applications and the
Internet, pages 183–189, 2005.

[130] R. Akkiraju, B. Srivastava, A.-A. Ivan, R. Goodwin, and T. Syeda-
Mahmood. Semaplan: Combining planning with semantic matching to
achieve web service composition. In Proceedings of the International Con-
ference on Web Services (ICWS), pages 37–44, 2006.

[131] V. Degeler, I. Georgievski, A. Lazovik, and M. Aiello. Concept mapping
for faster qos-aware web service composition. In Proceedings of the IEEE
International Conference on Service-Oriented Computing and Applications
(SOCA), pages 1–4, 2010.

[132] Jörg Hoffmann, Piergiorgio Bertoli, and Marco Pistore. Web service com-
position as planning, revisited: In between background theories and initial
state uncertainty. In Proceedings of the 22Nd National Conference on Arti-
ficial Intelligence - Volume 2, pages 1013–1018. AAAI Press, 2007.

[133] Jörg Hoffmann, Piergiorgio Bertoli, Malte Helmert, and Marco Pistore.
Message-based web service composition, integrity constraints, and planning
under uncertainty: A new connection. J. Artif. Intell. Res. (JAIR), 35:49–
117, 2009.

261

BIBLIOGRAPHY

[134] M. Bartalos, P. andBieliková. Fast and scalable semantic web service com-
position approach considering complex pre/postconditions. In Proceedings
of the IEEE World Congress on Services (SERVICES), pages 414–421, 2009.

[135] P. Bartalos and M. Bieliková. Qos aware semantic web service composi-
tion approach considering pre/postconditions. In Proceedings of the IEEE
International Conference on Web Services (ICWS), pages 345–352, 2010.

[136] Joachim Peer. A pddl based tool for automatic web service composition.
In Principles and Practice of Semantic Web Reasoning, pages 149–163.
Springer Berlin Heidelberg, 2004.

[137] Richard J. Prokop and Anthony P. Reeves. A survey of moment-based
techniques for unoccluded object representation and recognition. CVGIP:
Graph. Models Image Process., 54(5):438–460, 1992.

[138] James J. Gibson. The ecological approach to visual perception. Lawrence
Erlbaum and New York and Psychology Press, Hillsdale, N.J, 1986.

[139] Robocup, 2016. URL: http://www.robocup.org/ Accessed 2016-06-01.

[140] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical
flow techniques. International Journal of Computer Vision, 12:43–77, 1994.

[141] S. S. Beauchemin and J. L. Barron. The computation of optical flow. ACM
Computing Surveys, 27:433–467, 1995.

[142] G.R. Bradski. Real time face and object tracking as a component of a
perceptual user interface. In Proceedings of the Fourth IEEE Workshop on
Applications of Computer Vision (WACV), pages 214–219, 1998.

[143] David L. Olson and Dursun Delen. Advanced Data Mining Techniques.
Springer Publishing Company, Incorporated, 1st edition, 2008.

[144] D. M. W. Powers. Evaluation: From precision, recall and f-measure to
roc., informedness, markedness & correlation. Journal of Machine Learning
Technologies, 2(1):37–63, 2011.

[145] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, Massachusetts, 1998.

[146] Martin L. Puterman. Markov decision processes: Discrete stochastic dy-
namic programming. Wiley-Interscience, Hoboken, NJ, USA, 2005.

[147] NguyenNgoc Chan, Walid Gaaloul, and Samir Tata. A recommender system
based on historical usage data for web service discovery. Service Oriented
Computing and Applications, 6(1):51–63, 2012.

262

http://www.robocup.org/

BIBLIOGRAPHY

[148] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learn-
ing, pages 279–292, 1992.

[149] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist
systems. Technical report, Cambridge University, Engineering Department,
1994.

[150] Richard S Sutton. Generalization in reinforcement learning : Successful
examples using sparse coarse coding. Advances in Neural Information Pro-
cessing Systems, 8:1038–1044, 1996.

[151] Sylvie Thiébaux, Charles Gretton, John K. Slaney, David Price, and Fro-
duald Kabanza. Decision-theoretic planning with non-markovian rewards.
Journal of Artificial Intelligence Research (JAIR), 25:17–74, 2006.

[152] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd
edition, 2001.

[153] Hongbing Wang, Xuan Zhou, Xiang Zhou, Weihong Liu, Wenya Li, and
Athman Bouguettaya. Adaptive service composition based on reinforcement
learning. In Service-Oriented Computing, pages 92–107. Springer, 2010.

[154] Valeriu Todica, Mircea-Florin Vaida, and Marcel Cremene. Using machine
learning in web services composition. In Proceedings of the Fourth Interna-
tional Conference on Advanced Service Computing, pages 122–126, 2012.

[155] Ahmed Moustafa and Minjie Zhang. Multi-objective service composition
using reinforcement learning. In Service-Oriented Computing, volume 8274
of Lecture Notes in Computer Science, pages 298–312. Springer, 2013.

[156] Stéphane Dehousse, Stéphane Faulkner, Caroline Herssens, Ivan J. Jureta,
and Marcos Saerens. Learning optimal web service selections in dynamic
environments when many quality-of-service criteria matter. In Machine
Learning, pages 207–230. Intech, 2009.

[157] Hongbing Wang, Xiaojun Wang, and Xuan Zhou. A multi-agent reinforce-
ment learning model for service composition. In Proceedings of the IEEE In-
ternational Conference on Services Computing (SCC), pages 681–682, 2012.

[158] Lei Yu, Wang Zhili, Meng Lingli, Wang Jiang, Luoming Meng, and Qiu
Xue-song. Adaptive web services composition using q-learning in cloud. In
Proceedings of the IEEE World Congress on Services (SERVICES), pages
393–396, 2013.

[159] G. Spanoudakis, A. Zisman, and A. Kozlenkov. A service discovery frame-
work for service centric systems. In Proceedings of the IEEE International
Conference on Services Computing (SCC), pages 251–259, 2005.

263

BIBLIOGRAPHY

[160] A. Zisman, G. Spanoudakis, and J. Dooley. A framework for dynamic service
discovery. In Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 158–167, 2008.

[161] Antonio Bucchiarone, Annapaola Marconi, ClaudioAntares Mezzina, Marco
Pistore, and Heorhi Raik. On-the-fly adaptation of dynamic service-based
systems: Incrementality, reduction and reuse. In Service-Oriented Com-
puting, volume 8274 of Lecture Notes in Computer Science, pages 146–161.
Springer, 2013.

[162] Jan-Christoph Lindner. Adaptive service composition using dynamic state
spaces. Master’s thesis, Paderborn University, Germany, August 2015.

264

	Introduction
	On-The-Fly Image Processing
	Objectives
	Outline and Contributions

	Preliminaries
	Introduction to Image Processing
	Image Manipulation vs. Image Processing
	Fundamental Steps in Image Processing
	Real-world Application Scenario
	Developing Image Processing Solutions

	Introduction to On-The-Fly Computing
	Principles of Service-Orientation
	Service-Oriented Computing
	The On-The-Fly Computing Concept
	On-The-Fly Composition Process

	On-The-Fly Image Processing
	Principles of Service-oriented Image Processing
	Fundamental Challenges
	Adaptivity by Feedback-based Learning

	Related Work

	Use Cases
	Data-Flow and Control-Flow
	Data-Flow Graphs as Execution Model
	Elementary Net Systems based on Petri Nets
	Three Classes of Composed Solutions

	Thumbnails for an Online Photo Gallery
	Required Functionality
	Characteristics

	Color-based Segmentation
	Concrete Context
	Required Functionality
	Characteristics

	Motion-based Object Detection
	Concrete Context
	Required Functionality
	Characteristics

	Summary

	Symbolic Service Composition
	Knowledge-based Specifications
	Body of Knowledge
	Service and Request Specification
	Specification Example: Thumbnails
	Specification Example: Segmentation

	Planning-based Service Composition
	Composed Services
	Body of Rules
	Formal Framework
	Composition Algorithm
	Composition Example: Thumbnails

	Shortcomings and Extensions
	Exponentially Growing Solution Space
	Incorrect Task Definitions
	Superfluous Search Paths and Services
	Discarding Properties of Visual Data
	Outlook: Necessity for Learning

	Evaluation
	Prototypical Implementation
	Concrete Composition Problem
	Search Space and Solution Space
	Time to Solution
	Conclusion

	Related Work

	Execution and Rating
	Service-oriented Architecture for Execution
	Key Concepts and Building Blocks
	Integration into OTF Image Processing

	Problem Domain specific Rating Processes
	Preliminary Considerations
	Segmentation Use Case
	Object Detection Use Case

	Evaluation
	Segmentation of Color Palette
	Motion-based Robot Detection
	Motion-based Ball Detection
	Conclusion

	Adaptive Service Composition
	Learning Recommendation System
	Reinforcement Learning
	Recommendation Model
	Learning Process

	Combining Composition and Recommendation
	Overview and Interactions
	Update Step
	Evaluation Step
	Modified Search Node Selection
	Episode Finalization

	Evaluation
	Segmentation of Color Palette
	Motion-based Robot Detection
	Motion-based Ball Detection
	Conclusion

	Related Work

	Conclusion and Outlook
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Own Publications
	Bibliography

