
Project-Specific Software
Engineering Methods

Composition, Enactment, and Quality Assurance

Masud Fazal-Baqaie

Faculty of Computer Science, Electrical Engineering, and
Mathematics

Paderborn University
Dissertation submitted in partial fulfillment

of the requirements for the degree of
Doktor der Naturwissenschaften (Dr. rer. nat.)

September 2016

I dedicate this thesis to all young people at the Hindu Kush who pursue
knowledge and wisdom to overcome their boundaries.

Acknowledgements

This thesis has been made possible by support of various people. In the following,
I would like to express my gratitude and thank them.

First, I would like to thank my advisor Prof. Dr. Gregor Engels. Gregor, thank
you for giving me the opportunity to pursue my degree in your research group
and for advising me with critical feedback and motivating words. I am especially
grateful for your continuous support in phases of intensive project work and during
the final phase of writing up the thesis. To a very large extend my research is based
on industrial experience that I gathered in projects within the s-lab – Software
Quality Lab. Thus, I would also like to thank the managing director of s-lab and
co-author of several of my papers, Dr. Stefan Sauer. I also thank the external
co-reviewer of my thesis Prof. Dr. Marco Kuhrmann. Thank you Marco for the
fruitful discussions on various venues and your thorough review and improvement
suggestions on drafts of this thesis. In addition, I would like express my gratitude
to Prof. Dr. Eric Bodden and Prod. Dr. Dennis Kundisch for being members of my
doctoral committee.

During my research, I collaborated with various people and I would like to
thank all of them for the joint work on publications or their critical reviews and
feedback. I would like to mention a couple of them explicitly. First, I would like to
thank Dr. Markus Luckey for being the co-author of my first paper on my thesis
topic. I would like to thank Dr. Marvin Grieger for our productive collaboration
on several paper projects and for the sparring during writing up our theses. I also
thank Dr. Baris Güldali and Prof. Dr. Christian Gerth for our collaboration. Dennis
Wolters provided me with valuable feedback on several papers and presentations,
thank you for that. In addition, I would like to acknowledge the following people
that I advised. Thank you for your contributions to my tooling with your master
theses and your work as student assistants: Subramanya Gurumurthy, Frank Kluthe,
Karthik Neela, Karimuddin Cuddapah Shaik, Daniel Siebert.

vi

I would also like to express my gratitude to the various project partners that
allowed me to gather practical insights. In particular, I thank HJP Consulting GmbH
and S&N AG for the opportunity to work abroad.

This thesis is also influenced by the discussions within the German-speaking
community of the GI Special Interest Group on Process Models for the Develop-
ment of Business Application Systems (GI-Fachgruppe Vorgehensmodelle für die
betriebliche Anwendungsentwicklung). I would like to thank all former and current
committee members for contributing to this community.

Fortunately, the last couple of years in pursuit of my degree were not only
characterized by work. I would like to thank the former colleagues for the warm
and friendly environment of the Database and Information Systems Research
Group and the s-lab, especially my office mates Dr. Christian Soltenborn, Dr.
Hendrik Schreiber, and Enes Yigitbas. I also thank Ivan Jovanovic and Dr. Stefan
Grösbrink for our basketball games and Mirko Rose for our discussions on exotic
travels. Thanks to Dr. Henning Wachsmuth, who showed his support by joining
my defense.

I would also like to thank my friends outside of work – thank you for helping me
to forget about work from time to time. I thank my former flatmates (Kircherweg,
Königskinder, M7), the Paderborn salsa and climbing communities, and especially:
Navneet Bhalla, Ph.D.; Olga Käthler; Regina Dirks; Christina Rieke; Sarah Altmann;
Dr. Darko Jus; Danka Dasic; Simon Willmes; Christin Kirchhubel, Ph.D.; Dr. Jörg
Clobes; Stephan Parzefall; Tine Niederhacke; Veben Neamen. Thank you Matthias
Becker for being my best Bro and for being there, when I am in need for an open
ear.

Finally, I thank my parents and sisters for their unconditional love and support.
I thank Irene Palnau for her patience and her sacrifices, when I was working
on my thesis on evenings and on weekends. Rain-soaked hiking tours turn into
light-hearted singing sessions with you, Irene.

Abstract

Software engineering methods describe structured, repeatable best practice ap-
proaches for the engineering of software systems. The project team of a software
project enacts a method and applies the described activities. As methods are supe-
rior to ad-hoc build and fix approaches, they benefit the creation of high-quality
software. However, for the efficient use of methods, first, they need to be based on
state of the practice method content, second, they need to be tailored to the project
context, and third, they need to be enacted as prescribed. Otherwise, outdated,
unsuitable, or wrongly enacted methods can impede the creation of the software
system. While other approaches focus on supporting some of these aspects, our
approach is a holistic tool-supported approach that covers all of them. It allows
creating formally defined composition-based method models. First, method models
are composed from formal building blocks that represent method content and
are stored in an extensible, updatable repository. Second, they are composed
specifically for a project and tailored to its characteristics. Here the novel notion of
method patterns is used to guide the composition process. Third, their correct en-
actment is supported with a process engine. Our proof-of-concept implementation
demonstrates the feasibility of the approach. It provides tooling to define building
blocks, to compose them to method models consistently, and to execute them with
standard process engines.

Zusammenfassung

Softwareentwicklungsmethoden beschreiben Best-Practice-Ansätze für die Entwick-
lung von Softwaresystemen. Damit sind Methoden einfachen Ad-Hoc-Ansätzen
überlegen und ihr Einsatz unterstützt die Entwicklung von hochqualitativer
Software. Jedoch erfordert der effektive Einsatz von Methoden, drei Dinge:
Erstens müssen Methoden auf aktuellen Methodeninhalten basieren, zweitens
müssen sie auf den Projektkontext angepasst werden und drittens müssen sie wie
vorgeschrieben von dem Projektteam angewendet werden. Ansonsten gefährden
veraltete, unangepasste oder falsch angewendete Methoden den Projekterfolg.
Während andere Ansätze nur einige dieser Aspekte abdecken, präsentieren wir
einen umfassenden, werkzeugbasierten Ansatz, der alle Aspekte des Managements
von Softwareentwicklungsmethoden abdeckt. Unser Ansatz ermöglicht die Erstel-
lung von formalen, kompositions-basierten Methodenmodellen. Erstens werden
Methodenmodelle aus formalen Methodenbausteinen zusammengesetzt. Diese
repräsentieren, aktuelle Methodeninhalte und werden in einer aktualisierbaren
Methodenbasis gehalten. Zweitens werden Methodenmodelle projektspezifisch und
kontextbasiert komponiert. Drittens wird ihre korrekte Anwendung durch den Ein-
satz einer Process-Engine sichergestellt. Unsere Proof-Of-Concept-Implementierung
demonstriert die Machbarkeit unseres Ansatzes und stellt Werkzeugunterstützung
für die Definition von Methodenbausteinen, die konsistente Methodenmodellkom-
position und die Ausführung mit Standard-Process-Engines zur Verfügung.

Table of contents

List of figures xv

List of tables xix

1 Introduction 1
1.1 Motivation and Problem Statement . 1

1.2 Solution Overview and Research Contributions 6

1.2.1 Tasks of the Senior Method Engineer 7

1.2.2 Tasks of the Project Method Engineer 8

1.2.3 Tasks of the Project Team . 10

1.3 Publication Overview . 11

1.4 Structure of the Thesis . 12

2 Background 15
2.1 Foundations and Terminology . 16

2.1.1 Application Development with Software Engineering
Methods . 16

2.1.2 Situational Method Engineering 21

2.1.3 Executable Process Description Languages 25

2.2 Solution Requirements and State of the Art 26

2.2.1 Requirements for a Holistic Solution 27

2.2.2 Evaluation of Existing Approaches 31

2.3 Summary . 36

3 Solution Overview 37
3.1 Overview of the MESP Approach . 37

3.1.1 Overview of MESP Roles . 38

xii Table of contents

3.1.2 Overview of MESP Work Products 41

3.1.3 Overview of MESP Tools . 43

3.1.4 Integrated Overview of MESP Solution 43

3.2 End-to-End Example . 46

3.2.1 Method Content Definition . 46

3.2.2 Method Tailoring . 56

3.2.3 Method Enactment . 64

3.3 Summary . 68

4 Method Content Definition 71
4.1 Requirements and Related Work . 72

4.1.1 Requirements . 72

4.1.2 Related Work . 73

4.2 Extract Reusable Method Content . 75

4.2.1 Extraction from Methods Described in Literature 75

4.2.2 Extraction from the Daily Practice of Organizations 79

4.3 Define Basic Elements . 83

4.3.1 Definition of Basic Method Elements 84

4.3.2 Definition of Basic Characterization Elements 87

4.4 Define Method Services & Method Patterns 89

4.4.1 Definition of Method Services 91

4.4.2 Definition of Method Patterns 94

4.5 Summary . 101

5 Method Tailoring 105
5.1 Requirements and Related Work . 106

5.1.1 Requirements . 106

5.1.2 Related Work . 108

5.2 Characterize Project . 108

5.2.1 Meta-Classes . 109

5.2.2 Usage . 110

5.3 Compose Project-Specific Method . 111

5.3.1 Identifying Suitable Method Building Blocks 112

5.3.2 Specification of Methods . 114

5.4 Assure Quality of Method . 122

5.4.1 Quality Model . 125

5.4.2 Automated Quality Assurance Framework 134

5.4.3 Usage . 139

5.5 Initialize Method . 141

5.5.1 Transformation, Deployment & Configuration 143

5.5.2 Usage . 148

5.6 Summary . 151

Table of contents xiii

6 Method Enactment 153
6.1 Requirements and Related Work . 154

6.1.1 Requirements . 154

6.1.2 Related Work . 155

6.2 Coordinate Activities . 156

6.3 Perform Tasks . 160

6.4 Reflect Method . 163

6.5 Summary . 165

7 Proof of Concept Implementation 167
7.1 Tool Implementation . 168

7.1.1 Method Content Definition . 168

7.1.2 Method Tailoring . 170

7.1.3 Method Enactment . 175

7.2 Method Composition . 176

7.2.1 Case Study: Certification Issuance Process 176

7.2.2 Experiment: Scalability Analysis 183

7.3 Summary . 187

8 Conclusions and Outlook 189
8.1 Contribution Summary . 189

8.2 Fulfillment of Requirements . 192

8.3 Outlook on Future Work . 195

References 199

Acronyms 215

List of figures

1.1 The three conceptual layers of software engineering method manage-
ment . 3

1.2 Overview of the MESP framework and our contributions 6

1.3 Overview of previously published material 11

2.1 The concepts related to software engineering methods 17

2.2 Trade-off between effort and flexibility of different groups of method
engineering approaches . 22

2.3 Tasks of assembly-based method engineering 24

2.4 The relationship between software engineering method management
layers, our solution requirements (SRs), and the common require-
ments in [Ell+11] . 29

3.1 The aspects included in our MESP solution 38

3.2 Overview of the MESP Tasks . 39

3.3 Overview of central MESP Work Products 42

3.4 Overview of MESP Tool Support . 44

3.5 An Overview of the MESP Solution Framework 45

3.6 The gateways of the V-Modell XT method 47

3.7 The decision gate "System designed" of V-Modell XT 47

3.8 Illustration of the process flow of Scrum 48

3.9 Decription of the task "refine the architecture" of OpenUP 49

3.10 Basic elements created by the senior method engineer 50

3.11 A method service derived from OpenUP referencing basic elements 52

3.12 A method pattern based on the Sprint from the Scrum method . . . 54

3.13 The object model of the method pattern based on the Sprint from the
Scrum method . 54

xvi List of figures

3.14 The method pattern for the V-Modell XT is derived by creating
constrained scopes for each decision gate 55

3.15 Constraint scopes that reflect the decision gate “System Designed”
of V-Modell XT . 55

3.16 Relationship of the Work Products for Method Content Definition . 56

3.17 The MESP tools to define method content 57

3.18 The characterization of a project with basic elements from the method
repository . 58

3.19 Two method patterns combined to one pattern 59

3.20 A partial method model with method services 60

3.21 A partial method model with additional control and data flow . . . 61

3.22 A correctly specified partial method model 62

3.23 Configuration Interface of the BPEL engine to set up users and roles 63

3.24 Relationship of the MESP Work Products for Method Tailoring . . . 64

3.25 The MESP tools for Method Tailoring 65

3.26 The coordination of activities via workflow tasks 66

3.27 A workflow task for the method service Refine the Architecture . . . 67

3.28 Relationship of the MESP Work Products for Method Enactment . . 69

3.29 The MESP tools for Method Enactment 69

4.1 Extraction of method content from methods described in literature . 76

4.2 Extraction of method content from the daily practice of organizations 79

4.3 Excerpt of package structure of MESP meta-model 84

4.4 Illustration of division between Method Content and Process in
SPEM (adopted from [OMG08]) . 85

4.5 The basic method elements of our meta-model package BasicMeth-
odElements . 86

4.6 The basic characterization elements of our meta-model package
BasicCharacterizationElements 88

4.7 Excerpt of the package structure for method building blocks of the
MESP meta-model . 91

4.8 The method service related meta-classes of our meta-model package
MethodService . 93

4.9 A method service derived from OpenUP 94

4.10 The method pattern related meta-classes of our meta-model package
MethodPattern . 95

4.11 The condition related meta-classes of our meta-model package pat-
ternElements . 96

4.12 The service characterization related meta-classes of our meta-model
package patternElements . 98

4.13 The work product characterization related meta-classes of our meta-
model package patternElements . 100

List of figures xvii

4.14 The object model of the method pattern derived from Scrum shown
in Figure 3.12 . 102

5.1 The project characteristics related meta-classes of our meta-model
package ProjectMethod . 110

5.2 The control-flow related method elements of our meta-model pack-
age ProjectMethod . 115

5.3 The data-flow related method elements of our meta-model package
ProjectMethod . 118

5.4 The object diagram for the composed method patterns of Figure 3.19 120

5.5 The object diagram for the Develop constrained scope of Figure 3.22 121

5.6 The object diagram with the data flow specification between two
method service descriptors according to Figure 3.22 123

5.7 MESP’s quality model for software engineering method models . . . 126

5.8 Overview of the quality assurance framework 135

5.9 OCL expression to find elements that violate precedence consistency 136

5.10 OCL definition of the helper function getNested() 137

5.11 A Java code snippet for the translation of quantifiers to OCL 138

5.12 A partial method model with quality issues 139

5.13 The generated OCL expressions for the middle constraint scope
descriptor of Figure 5.12 . 140

5.14 The execution of a BPEL/BPEL4People process model 144

5.15 Snippet of the resulting BPEL process for the end-to-end example . 149

5.16 The configuration interface of the BPEL engine to configure role
assignment . 150

5.17 View of the project repository with uploaded WorkProduct 150

6.1 A partial example method model based on the end-to-end-example 157

6.2 The process model for the method model of Figure 6.1 158

6.3 Task management view of architect Bob with a workflow task ready 159

6.4 A workflow task to decide about a further run of an iteration 160

6.5 The Architecture Notebook uploaded to the project repository by Bob 161

6.6 The workflow task for Envision the Architecture 162

6.7 The workflow task for Refine the Architecture 164

6.8 The change log of the project repository 165

7.1 Definition of a Task using the EPF Composer 169

7.2 Defining a Method Pattern using the Tree-based EMF Editor 169

7.3 The end-to-end example in the tree-based editor 171

7.4 Composition of a process in the extended BPEL Designer 171

7.5 A composed method model in the customized BPEL Designer 172

7.6 The end-to-end example in the Sirius-based editor 173

xviii List of figures

7.7 An issue reported in the Problems View and visualized in the Sirius
Editor . 174

7.8 The context menu of the tree-based editor showing the command to
transform a method model to an BPEL process model 175

7.9 The captured process for the certification of ePassports 177

7.10 Excerpt of the captured process for the certification of ePassports . . 178

7.11 The work products defined based on the BPMN process diagram . . 179

7.12 The tasks defined based on the BPMN process diagram 179

7.13 The roles defined based on the BPMN process diagram 180

7.14 The derived method services for the case study 180

7.15 Details of the method service Perform ICAO Test 181

7.16 The composed Method for the certification of ePassports 182

8.1 Contribution Overview of our thesis 190

List of tables

2.1 Common requirements for software engineering method manage-
ment solutions without refinement regarding software engineering
management layers or assembly-based method engineering (adapted
from [Ell+11]) . 28

2.2 Evaluation of existing tool-supported approaches for assembly-based
method engineering . 35

4.1 Method definition requirements and the affected MESP tasks 74

5.1 Method tailoring requirements and the affected MESP tasks 107

5.2 Evaluation Criteria for quality models (adopted from [GK09]) 133

5.3 Refined requirements for the analysis framework 134

5.4 The mapping of MESP and BPEL/BPEL4People concepts 145

6.1 Method Enactment Requirements and the affected MESP tasks . . . 155

7.1 The data sets of process models for the scalability analysis 184

7.2 Results of the scalability analysis of the Consistency Checker 185

7.3 Results of the scalability analysis of the MESP2BPEL Transformer . 186

CHAPTER 1

Introduction

In this chapter, we explain the motivation and problem statement for this thesis.
We point out our solution approach and contributions. We present an overview
of publications published in the context of this thesis and provide a structural
overview of the thesis.

1.1 Motivation and Problem Statement

In software engineering 1, similar to other engineering disciplines, a structured ap-
proach to the development of the software systems is seen as a key factor for the re-
sulting product and service quality [FRO03]. Software development processes describe
such a structured, repeatable best practice. We thereby understand software devel-
opment processes to comprise project management aspects, organizational aspects,
and methodological aspects. Project management aspects denote the scheduling
and allocation of available resources, organizational aspects denote the definition of
organizational units and allocation of responsibilities, and methodological aspects
denote how a software system should be developed systematically.

In the following, we focus on the method aspect of software development
processes and use therefore the term software engineering method, in short, method.
Software engineering methods prescribe who should carry out which activities in
what order and thereby describe how artifacts should be derived from one another.
In general, software engineering methods cover the typical lifecycle phases of a
software engineering endeavor, e.g., a software project. These are software specification,

1Key terms are defined in Section 2.1.1 and Section 2.1.2.

2 Introduction

software design and implementation, software validation, and software evolution. Nor-
mally, these phases are not carried out purely sequentially, but earlier phases are
revisited regularly [Som11]. In most of the cases, software engineering methods
are described textually together with some informal visualizations of the high-level
process of activities or phases. If a method is described formally, e.g., by using a
meta-model, we call it a software engineering method model or method model. There
exist both methods for general-purpose software engineering and methods that are
specialized to a specific discipline or domain, e.g., Testing [SLS14] or Automotive
[Hoe08].

In this thesis, we focus on software engineering methods for software projects.
That is, we do not discuss, organization-wide software engineering methods, often
referred to as reference processes.

The use of software engineering methods benefits a software project, primarily
in two ways [CKO92]: First, it helps the group of involved people to coordinate the
various activities and to establish a common vocabulary of how to plan, develop,
and maintain a software system. Second, software engineering methods provide
guidance for the individual on how to carry out a specific activity.

During the past decades, several software engineering methods have been
published as reference and best-practice examples based on the experience in
different software engineering endeavors. For example, among others, the methods
Quasar Enterprise [Eng08] and Rational Unified Process (RUP) [Kru99] where
initially created by their respective IT companies for their own software engineering
projects. Later, they were published as a reference for the public.

While using a software engineering method is in general superior to an ad-hoc
build-and-fix approach, there is nothing like an one-size-fits-all software engineer-
ing method [Gla04]. Instead, a method that is suitable and beneficial in one context
can lead to quality issues in a different context. For example, several publications
describe how methods are used successfully in smaller, co-located settings (e.g.
[BT03]), while the same methods cause issues in a distributed, global software
engineering setting (e.g. [Ram+06],[CR06],[FSH15]). Therefore, the reusability of
methods is limited and they need to be customized to the context of the software
engineering endeavor – they need to be tailored to the situation [Hen+14].

Looking at tailoring from a conceptual point of view, we can differentiate
three layers of software engineering method management. We define this software
engineering method management hierarchy consisting of method content definition,
method tailoring, and method enactment as follows (adapted from [Hen06], cf.
Fig. 1.1): On the upper method content definition layer of the hierarchy, reusable
method knowledge is defined by experienced experts, for example, as published
methods like RUP and Quasar Enterprise. On the middle method tailoring layer, these
methods need to be tailored to the situation, for example, by the process manager
of an organization or a project manager. On the lowest method enactment layer, the

1.1 Motivation and Problem Statement 3

tailored method is then to be enacted by the organization or project team by following
the method. Software engineering method management is the coordination of
efforts to accomplish these objectives.

The method-related content created on one layer influences the content on the
layer below: the amount and form of available method content created on the
topmost layer influences how easy the method can be tailored to the situation on
the middle layer. For example, a textual representation defined on the top layer
is more difficult to tailor in a consistent manner than a formal representation. If
alternative activities are defined on the top layer, this additional choice eases the
tailoring. The content and form of the tailored method on the middle layer, in
turn, directly influences how easy the people can apply and follow the method.
For example, a textual representation is more ambiguous than a formal one and a
method that includes more detailed guidances and task descriptions is easier to enact.

Method Content Definition

Definition of Reusable Method Knowledge

Method Tailoring

Adaption of the Method to the Situation

Method Enactment

Following the Method as Prescribed

Fig. 1.1 The three conceptual layers of software engineering method management

Challenges of Software Engineering Method Management

Each layer of the software engineering method management hierarchy poses its
individual challenges. In the following, we discuss the challenges for each layer.

Regarding the definition of method content, it is difficult to update the content
of methods incrementally in order to reflect current trends, best practices, and
lessons learned [KF15]. For example, as the agile methodology [Mey14] is becoming
more and more popular, many creators of methods face the challenge to integrate
agile principles into their methods [VB15],[BT03]. Consequently, the users of these
methods cannot make use of the advances and improvements before new versions
of the methods are released. One major obstacle for updating methods is that
they are typically described in a textual manner, what makes it difficult to clearly
scope the area to improve and to assess the implications for the unchanged parts
[WBV07].

4 Introduction

Regarding the tailoring of methods, methods are sometimes defined in such a
way that they do not especially address the need for tailoring or they even disallow
it [Hen+14]. However, many comprehensive methods, e.g., RUP, Quasar Enterprise,
V-Modell XT [KTF11], or MFESA [Fir09] acknowledge the need to tailor a method
to a situation. They are published as software engineering method frameworks (termed
process framework in [KFS13a]) that do not describe a uniform method to be used
in every project, but support a certain degree of tailoring. Therefore, they require
that as a preliminary step, the method has to be created by selecting and adjusting
from the provided content. Agile methods, e.g., [SS13], [Bec00], [Coc05] follow a
different approach to achieve the tailoring of the software engineering method to
the situation. They focus on the lightweight description of some mandatory core
roles, activities and artifacts, while the rest is left to be defined and adapted by the
project team based on its experience and the current circumstances of the situation.
For example, the popular and widely adopted software engineering method Scrum2

[SS13] includes a periodical activity called Retrospective. This activity is dedicated
to perform required changes (method tailoring) to the method itself. The actual
software engineering activities (method content definition), however, are described
in the most generic way possible.

Irrespective of the underlying method, tailoring a method in a meaningful
and consistent way is a non-trivial task that needs to be performed by experts
[KF15],[Hei+10]. One of the reasons for this is that many methods have no under-
lying formalism at all and are described purely in natural language, e.g., Scrum,
Quasar Enterprise, or the Crystal Family [Coc98; Coc02; Coc05]. Therefore, en-
suring the consistency of a method is more difficult. Both RUP and V-Model XT
evolved to a model-based approach, where the tailored methods are instances of a
meta-model that describes the rules for consistent method models. However, there
is only very limited support and guidance on how to tailor a method model with
respect to the situation, e.g., whether an activity should be added or replaced.
Even though the meta-model of RUP evolved to the industry standard Software
& Systems Process Engineering Meta-Model Version 2.0 (SPEM) [OMG08] in 2008,
the modeling language is still not commonly used. In addition, the language itself
has been criticized, because it does not allow specifying an executable method model
[Ell+10], what makes it more difficult to follow the method properly.

Regarding the enactment of methods, it has to be ensured that how the work is
actually carried out corresponds to the defined method, otherwise there is the risk
of missing out important activities or doing them wrongly [Ost87]. For example,
in global software projects it is challenging to maintain sufficient overview and
to coordinate the activities according to the defined method [NC13]. Typically,
there is only generic tool-support for tailored methods available as these are often

2Scrum focuses on the project management aspects of software development processes, but is
typically complemented with agile principles.

1.1 Motivation and Problem Statement 5

described in natural language and tool support cannot be derived automatically.
While Application Lifecycle Management (ALM) suites [KV09] offer tool support of
the implemented general-purpose methods, they typically do not provide guidance
for the tailoring of methods.

Problem Statement

Acknowledging the difficulties of software engineering method management, the
research area situational method engineering3 is dedicated to the provisioning of
situation-specific methods [Hen+14]. Here, several approaches to provide and
manage method content, to derive situational software engineering methods, and
to enact them were proposed in the past. Each approach varies in its level of
support for the three software engineering method management levels. At present,
existing approaches do not support all three levels sufficiently in one comprehensive
solution. Approaches like [Har97; GP01; Ral04; KLR96; Spi15] lack in particular a
formal foundation that allows checking tailored methods for consistency and that
allows to execute them. Other approaches like [Ell+11; Ben+07; Wis+00] offer a
modeling language that allows to model executable method models, but do not
sufficiently support the tailoring of methods and the definition of reusable method
content.

In summary, to leverage the advantages of software engineering method man-
agement, the entire lifecycle of software engineering method models needs to be
addressed. To that extend, a suitable solution for the definition of method content,
its tailoring to a situation, and its enactment is required. Such a solution needs to
address the following challenges:

• It must enable updates of method content based on new trends, best practices,
and lessons learned

• It must enable the creation of consistent software engineering method models
for specific situations based on defined method content

• It must enable the proper enactment of the tailored method models according
to their definition

In this thesis, we introduce a comprehensive solution for software engineering
method management that tackles the described challenges. Our solution is based
on research and industrial project work performed within the s-lab – Software
Quality Lab of the University of Paderborn in joint projects with HJP Consulting
GmbH and other industrial partners. The research has been partly founded by the
German Federal Ministry for Economic Affairs and Energy (Bundesministerium

3discussed in detail in Section 2.1.2

6 Introduction

für Wirtschaft und Energie). An overview of our proposed solution together with
our research contributions is presented next.

1.2 Solution Overview and Research Contributions

An overview of our solution for software engineering method management, ad-
dressing the described challenges, is provided in Fig. 1.2. Our solution framework
addresses all major tasks on the three layers of software engineering method man-
agement. An overview of our solution is presented in Chapter 3. The tasks on
each layer are then described in the chapters 4-6 of this thesis. A proof of concept
implementation with a case study and an experiment is described in Chapter 7.

Define Basic Method Elements &

Basic Characterization Elements

Define Method Building

Blocks

Characterize

Project

Compose

Project-Specific

Method

Assure Quality

of Method

Enact Method Reflect Method

Tasks of the

Senior Method

Engineer

MESP Solution (Chapter 3)

Tasks of the

Project Method

Engineer

Tasks of the

Project Team

M
E

S
P

T
o

o
l
S

u
p

p
o

rt

Proof-Of-Concept
Implementation (Chapter 7)

Method Content Definition (Chapter 4)

Method Tailoring (Chapter 5)

Method Enactment (Chapter 6)

C
a

s
e

 S
tu

d
y
:

C
e

rt
if
ic

a
ti
o

n

Is
s
u

a
n

c
e

P
ro

c
e

s
s

E
x
p

e
ri

m
e

n
t:

S
c
a

la
b

ili
ty

 A
n

a
ly

s
is

Responsible Role Additional Work PackageActivity Tooling

Fig. 1.2 Overview of the MESP framework and our contributions

Our solution for software engineering method management is called Method
Engineering with Method Services and Method Patterns (MESP). Method services
and method patterns are the two types of method building blocks that are fundamental
to our solution. We differentiate three roles, where each role is responsible for
the tasks of one layer of the software engineering method management hierarchy,
because each layer requires a different level of knowledge and experience.

Senior method engineers are responsible for defining method content, based on
lessons learned or information sources like methods described in literature. They

1.2 Solution Overview and Research Contributions 7

model basic elements and on top of that the actual method building blocks, which
can be used to create situation-specific software engineering method models.

Project method engineers then can choose suitable method building blocks for
their project and compose them to a tailored method model for their project.

The project team follows the method to create the software in their project.
The composed method model is executed with a process engine (termed workflow
management software in [AH02, p. 148]) that coordinates the activities of the project
team members, provides them with guidance on the pending tasks, and thus
ensures that they enact the method as prescribed.

As part of our end-to-end solution, we defined the necessary meta-models and
algorithms to model method building blocks, to model composed method models,
to ensure their consistency, and to execute them with a process engine. Tool support
for our solution is implemented as a prototype that supports most of the tasks
described in the solution and that demonstrates the applicability of our approach.

In the following, we briefly describe the tasks for each role and layer and point
out our research contributions.

1.2.1 Tasks of the Senior Method Engineer

The senior method engineer is responsible for defining and maintaining the method
building blocks that form the pool of available building blocks for the creation of
situation-specific method models for specific projects.

These building blocks need to reflect the state of the art of method engineering,
e.g., best practices and lessons learned, including content from agile and plan-
driven methods, in order to allow for composing state of the art situation-specific
method models. In order to do that, building blocks should be composable and
capable of reflecting not only single activities, but also composite activities.

In order to reduce the tailoring effort for the project method engineer, building
blocks should offer meaningful sequences and orderings of activities. In addition,
the building blocks need also to be characterized in terms of their suitability for
different situations.

In order to allow for the execution of composed method models with a process
engine, the method building blocks must be formalized and executable.

We define two kinds of building block types to capture composable method
content. Method services basically describe atomic or composite activities, e.g.,
to capture the task in a method to Identify Stakeholders as part of the analysis
lifecycle phase [Bal07],[RR13, p. 54]. The notion of method services is influenced
by the service-oriented paradigm [Erl09, p. 70]. To enable interoperability and
composition, each method service contains a uniform interface description.

In addition, we introduce the novel notion of method patterns that allows to cap-
ture best practices for the ordering of activities on an activity-independent level. For

8 Introduction

example, it allows capturing the idea of an agile sprint loop [SS13],[CH05],[Mey14]
without fixing the involved activities. These method patterns serve as additional
guidance for the project method engineer during method composition. We define a
meta-model that allows her to model these building blocks in a formal and uniform
manner.

Moreover, each building block is characterized with its suitability for specific
project characteristics, e.g., small development team or low stakeholder participation.
This helps less experienced project method engineers to identify suitable method
building blocks for their project. We extend our meta-model to allow the senior
method engineer to formalize these characterizations with so-called situational factors
[Bec00],[CO12].

In order to ensure the executability of method building blocks, we include
an executable process description language into our meta-model to describe the
control flow within composite method building blocks.

The main contributions are as follows:

• The definition of a senior method engineer role and its tasks to offer method
building blocks

• The description of two ways to determine and extract reusable method content,
first, from existing methods described in literature, and second, from the daily
practice of organizations

• The definition of a method service, a reusable, compositional, interoperable,
and executable unit of method based on the service-oriented paradigm

• The definition of a method pattern, a means to capture abstract orderings of
activities as a guidance for the project method engineer

• A formalization in terms of a meta-model for the definition of method services,
method patterns, and underlying basic method model elements like roles and
work products (artifacts). Furthermore, a formalization of situational factors
for the characterization of method services and method patterns

1.2.2 Tasks of the Project Method Engineer

The project method engineer is responsible for composing a software engineering
method model with respect to a specific project by using the available method
building blocks. Thereby, she can make use of the expertise of senior method
engineers, who created the building blocks.

In order to compose a method model that is suitable for the project, she has
to be able to characterize the project situation in order to pick suitable method
building blocks based on their situational factors.

1.2 Solution Overview and Research Contributions 9

In order to ensure that the composed method model can be executed with a
process engine later by the project team, the selected method patterns and method
services need to be composed properly. It follows that the composition language
must be executable and define control flow as well as data flow [GJM03, pp. 179;171]
between method services. In addition, it has to be ensured that the composed
method model is consistent, so that no issues occur later during enactment. The
project method engineer is also responsible for preparing the method enactment,
e.g., by assigning project team members to roles defined in the method.

We define a formal project method interface that allows a project method
engineer to characterize a project prior to a method composition. The project
method interface uses the same basic elements that are also part of the method
service interfaces.

We implement a transformation from our method models to process models
formalized with the Business Process Execution Language (BPEL) [OAS07] and
BPEL4People [OAS10], offering a generic graphical user interface (GUI) for each
task.

In addition, we define a formal composition language that reuses the executable
process description language defined for method building blocks and that includes
control as well as data flow.

To ensure that the composed method is consistent, we define an extensible
quality assurance framework and implement quality assurance rules that check for
quality issues like missing building blocks, contradictions in control and data flow,
and inconsistencies between the method and the project method interface.

Our solution allows executing the composed method models with a standard
process engine (termed workflow management software in [AH02, p. 148]). We imple-
ment a transformation algorithm that transforms a method model into a standard-
conforming process model that can then be executed with the process engine. As
part of the initialization of the method enactment, the project method engineer
invokes this transformation. She then uses the facilities of the process engine to
deploy and initialize the model, e.g., by assigning project members to roles that are
defined in the method.

The main contributions are as follows:

• The definition of a project method engineer role and its tasks to compose a
method for a situation

• The definition of a project method interface to formalize the characterization
of a situation

• The definition of an executable composition language that includes the speci-
fication of control and data flow

• A quality assurance framework for the analysis of composed methods together
with a set of quality assurance rules to check method models for quality issues

10 Introduction

• A transformation algorithm to transform method models to BPEL/BPEL4Peo-
ple conformant process models allowing to execute methods with a standard
process engine including a generic GUI that allows project team members to
interface with the process model during method enactment

1.2.3 Tasks of the Project Team

The project team is responsible for enacting the composed method model.
In order to ensure that the project team members perform the activities in

the same order that is described in the composed method model, they need to
coordinate their tasks and inform each other about the progress.

In order to ensure that an assigned project team member performs the assigned
task with the right input work products and the way it was prescribed, the team
member needs easy access to the description of the task and the location of input
work products.

In order to reflect about the method enactment for later improvement of method
building blocks, the project team needs to collect information about method-related
issues.

As mentioned in the previous section, we implement a transformation from our
method models to models formalized with BPEL and BPEL4People. These process
models can be executed with a standard BPEL process engine (BPEL engine), which
ensures that the method is enacted as specified. The BPEL engine ensures that
the activities are performed in the right order by coordinating the order of tasks
that it assigns to individuals. In addition, it shows information about the current
activities.

Our transformation creates a GUI that is used for each task and allows the
project team member to inform herself about it. It shows a description about the
current task that originate from the method building blocks used in the composed
model. In addition, it shows the location of input work products and allows
specifying the location of the created work products as part of the task.

The BPEL engine logs data about the execution of the process model that can be
used when reflecting about method-related issues.

The main contributions are as follows:

• The definition of a project team role and its task to enact a method

• The mapping of method model concepts to BPEL/BPEL4 in order to support
the method enactment with the process model execution including the GUI
for project team members

• The description of a way to reflect the method enactment in order to sup-
port the senior method engineer in improving method services and method
patterns

1.3 Publication Overview 11

1.3 Publication Overview

Our solution for the method engineering method management presented in this
thesis has been influenced by research and industrial project work in the context of
method engineering. The research has been partly conducted in a joint project with
HJP Consulting GmbH founded by the Central Innovation Programme for Small
and Medium Enterpises of the German Federal Ministry for Economic Affairs and
Energy (Zentrales Innovationsprogramm Mittelstand des Bundesministerium für
Wirtschaft und Energie). The industrial project work has been performed within
the s-lab – Software Quality Lab of the University of Paderborn. We will briefly
describe the publications that were created in the course of this PhD thesis and
explain their influence on the solution (see Figure 1.3).

[FLE13]

[FK16]

[GF15a]

[Gri+16]

[GFS16]

[Gri+14]

[FE16]

[FCE14]

[FSH14]

[FR15]

[GF15b]

[FGS15]

[Faz+13]

Method
Content

Definition

Method
Tailoring

Method
Enactment

MESP Solution Software Migration
Methods

[FCE14]

Method
Engineering

Approach

[HMF13]

No Particular
Approach

[FSH15]

[Eng+15]

Fig. 1.3 Overview of previously published material

First of all, a number of publications is directly related to our solution. An
overview over our MESP framework is published as a book chapter [FE16]. This
publication provides a running example that covers all tasks of the different roles
defined in MESP. In another publication, we focus on the discussion of the bene-
fits of method patterns and method services for situational method engineering
[FLE13]. In particular, we show how method patterns and method services of agile
and plan-driven origin can be combined. In [FK16], we describe the quality analysis
framework of our approach and discuss performance evaluation results. Another
publication focuses on the enactment support for method models composed with
the MESP framework [FCE14]. Beside publications that directly address the frame-
work, more practical papers describe, how such a framework could be integrated
within the software development of a company. In [FSH14; FSH15], we describe in
the context of a concrete method improvement initiative of an industrial partner,

12 Introduction

how to transition from a fixed method to a method management framework that
allows creating situational methods. Here, we describe how to derive method
building blocks based on the existing methods, experiences, and knowledge within
that company.

Beside the work on the generic MESP framework, we have also worked on
a method engineering approach specific to the creation of software migration
methods. Here, we described the framework for such an approach in [GF15a]
and [Gri+16], the method base including fragments and patterns in [GFS16], and
specific method engineering activities to improve the method definition based on
experience and feedback from the method enactment in [Gri+14].

Beside the work on method engineering frameworks, we published a number
of papers that reflect the experience in concrete, industrial method engineering
projects performed within the s-lab – Software Quality Lab. In [Faz+13], we describe
how to systematically create situation-specific requirements engineering methods
and how to derive proper tool support for them. A number of publications focuses
on the creation of situation-specific methods for global software development (GSD)
projects. In [FSH14; FSH15], we describe an industrial project, where method
building blocks were derived based on the existing practices within that company.
In another publication, we explain how we improved the software engineering
method and its tool support in order to improve the synchronization of team
members in a GSD project [FGS15]. This is also the main theme for [GF15b] that
highlights the synchronization of multiple teams in an agile GSD setting. In a
further publication, we discuss how to arrive on a software engineering method in
a collaborative, team-based setting [FR15].

Last, but not least, the work for this PhD thesis is also influenced by the
discussions within the German-speaking community within the GI Special Interest
Group on Process Models for the Development of Business Application Systems
(GI-Fachgruppe Vorgehensmodelle für die betriebliche Anwendungsentwicklung).
The author of this thesis is the vice chairman of the executive committee and
volume co-editor of two proceedings [HMF13; Eng+15] of the annual conference.

1.4 Structure of the Thesis

The remainder of this thesis is organized as follows (cf. Figure 1.2): In Chapter 2,
we introduce the background for software engineering method management, we
discuss the solution requirements, and present a general overview of the related
work in method engineering.

In Chapter 3, we present an overview of our solution and introduce the different
roles of the MESP approach and their tasks. We go into details for these roles in
the following chapters. In Chapter 4, we describe the tasks of the senior method
engineer and explain the formalization of method building blocks. Chapter 5 is

1.4 Structure of the Thesis 13

concerned with the tasks of the project method engineer. Here, we go into the
details of the characterization of a situation, the composition of method models,
their quality assurance, and the preparation of method models for execution. In
Chapter 6, we explain the tasks of the project team. Here, we explain how the
method is enactment with support of the BPEL engine and how the team reflects
on the method enactment to support improving method content.

We discuss the proof of concept implementation of our solution in Chapter 7.
Here, we describe our prototypical tool implementation together with a first case
study and scalability analysis experiment of the method composition.

We conclude the thesis with the summary of our contributions, the discussion
of the solution requirements, and an outlook on possible future work in Chapter 8.

CHAPTER 2

Background

In this chapter, we discuss the background of the work presented in this thesis.
This chapter is structured as follows. In Section 2.1, we present the founda-

tions of this thesis and clarify the used terminology. Thereafter, we discuss the
requirements for our solution and the evaluation of the state of the art in software
engineering management in Section 2.2. Finally, we conclude this chapter with a
summary in Section 2.3.

2.1 Foundations and Terminology

2.1.1 Application Development with Software Engineering
Methods

2.1.2 Situational Method Engineering

2.1.3 Executable Process Description Languages

2.2 Solution Requirements and State of the Art

2.2.1 Requirements for a Holistic Solution

2.2.2 Evaluation of Existing Approaches

2.3 Summary

16 Background

2.1 Foundations and Terminology

In this section, we give a general introduction to the use of software engineering
methods in application development. Thereafter, we give an overview of the field
of situational method engineering that deals with the creation of custom methods
for specific projects and organizations. Finally, we will briefly explain the role of
executable process description languages and their relationship to the enactment of
methods. Throughout the chapter, we will present the definition of key terms for
this thesis.

2.1.1 Application Development with Software Engineering
Methods

Software engineering is an engineering discipline. Like in other engineering disci-
plines, engineers apply appropriate theories, methods, and tools to find solutions.
Doing that, they recognize the existing organizational, schedule-related, and finan-
cial constraints.

Definition 1 (Software Engineering). “The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software; that is,
the application of engineering of software.” [IEE90]

Software engineering thereby is not limited to the technical aspects of software
development. It also includes, e.g., activities of software project management or the
creation of tools and theories to support software development [Som11].

The systematic and structured approach used in software engineering is called
a software development process.

Definition 2 (Software Development Process). A software development process is a
goal-oriented activity in the context of engineering-style software development. It can be
refined by subprocesses, each of which can also be refined and it usually transforms one or
more input work products into one or more output work products by consuming further
work products [Mün+12].

As described, software development processes comprise project management
aspects, organizational aspects, and method aspects. In this thesis, we focus on
the method aspect of software development processes and use the term software
engineering method for descriptions of the method aspect, in short, method.

Definition 3 (Software Engineering Method). A software engineering method is the
structured approach to create a software system. It consists of the activities, their order
(process), the work products (artifacts) that are produced and used in them, and the roles
that are responsible for them, as well as their description, supporting materials like tools to
be used or checklists (guidances [OMG08]), as well as the relationship between all these
elements (cf. [ES10] and [Hen+14]).

2.1 Foundations and Terminology 17

The constituents of software engineering methods are explained in more detail
in chapters 4 and 5. In Figure 2.1, we illustrate further concepts that are related to
methods. In the following, we describe them and their relationship.

Software
Dev elopment

Process

Method Aspect

Software Engineering Method Software
Engineering

Method Model

Software
Engineering
Method Meta-

Model

Software Project

Software System

Software
Engineering

Method
Management

Software
Process

Improv ement

Executable
Method Model

Executable
Process

Description
Language

Situation

Software
Engineering

Endeav or

Process Model

Project Team Process Engine

Activ ities

Roles

Process

Work Products

Guidances

Software
Process

Management

Software Method
Improv ement

Tools

creates

enacts

influences

provides and
maintains

provides and
maintains

executes

describes

formalizes

conforms to /
instantiates

guides

conforms to /
instantiates

Fig. 2.1 The concepts related to software engineering methods

Software engineering method cover the typical (normally overlapping) lifecycle
phases of a software project, which are software specification, software design
and implementation, software validation, and software evolution [Som11]. They
are enacted by a project team of a software project (or another software engineering
endeavor) to create the software system.

Definition 4 (Project Team). The project team is the group of people that performs the
activities of the method (the group that enacts the method). Individual team members are
assigned to the roles used in the method and thereby are responsible for performing the
associated activities (adapted from [Mün+12]).

Definition 5 (Enactment). We speak of enactment (of the method), if the project team
performs activities that are part of the method (adapted from [Mün+12]).

18 Background

Definition 6 (Activity). An activity represents a unit of work in a method that needs to
be performed in order to create the software system by following that particular method
(adapted from [OMG08]).

Beside the term activity, we use the term task, when we want to stress the way
how work needs to be performed. Activity and task a differentiated in more detail
in the content chapters 4 and 5.

Definition 7 (Software Engineering Endeavor). A software engineering endeavor is
the setting, in which the method is applied, e.g., an individual software project or a whole
organization (adopted from [Hen+14]).

In case of organization-wide software engineering methods, the term reference
process is often used instead of method, because it typically serves as a coarse-grained
reference that needs further refinement before it can be applied. In this thesis, we
focus on software projects as the software engineering endeavor.

Definition 8 (Software Project). “A software project is a unique endeavor, which is
limited by a start date and an end date and should achieve a goal.” [Mün+12]

The use of software engineering methods benefits a software project in multiple
ways (adapted from [CKO92]): first, it facilitates the understanding and commu-
nication about the activities to create a software system. Thus, it supports the
coordination of those activities. Second, it offers guidance to individuals on how
to carry out a specific task. Third, software engineering methods are typically
the foundation for measurement and systematic improvement of the software
engineering within an organization.

In order to specify methods more formally, e.g., to reduce ambiguity, the can be
described as an instance of a software engineering method meta-model.

Definition 9 (Software Engineering Method Meta-Model). A software engineering
method meta-model is a meta-model for models that represent methods. It defines the valid
structural properties of such models and can be used to instantiate conforming models.
Thus, it is a specific kind of modeling language.

We will use the term software engineering method model or, in short, method model,
when we refer to the instance of such a method meta-model.

Definition 10 (Software Engineering Method Model). A software engineering method
model is a formal model of a method that is based on and conforming to a meta-model (or
other formalism).

Despite the existence of the internationally standardized meta-models Software
Engineering Metamodel for Development Methodologies (SEMDM) [ISO07] and
SPEM [OMG08], very often software engineering methods are specified without
using a common notation and with natural language only, e.g., [JBR99] or [SS13].

2.1 Foundations and Terminology 19

When the control and data flow within a software engineering method model
is described formally enough, that is, in terms of an executable process description
language, it can be executed with a process engine. We call this an executable method
model.

Definition 11 (Executable Process Description Language). An executable process
description language is a language to create models that represent processes and that can be
executed with a process engine.

Definition 12 (Executable Process Model). An executable process model is a model that
is created with an executable process description language and can be interpreted by process
engines (adopted from [Mün+12]).

Definition 13 (Executable Method Model). An executable method model is a software
engineering method model that is also an executable process model.

Definition 14 (Execution). We speak of execution of a method model (or process model),
when the method model is interpreted by a process engine, typically to support a project
team in the enactment of the method model (adopted from [Mün+12]).

Definition 15 (Process Engine). A process engine is a generic software that can interpret
the process structure and work allocation rules of a process model (adopted from [AH02]).

A process engine executes a process model and guides the project team. It
coordinates its activities by assigning tasks to team members and by showing them
guidances for their tasks. While not common for software engineering methods,
business processes are commonly formalized using executable process description
languages.

What software engineering method is used depends on the context of the soft-
ware project, we call it the situation. As there is no universal software engineering
method, many different software engineering methods have evolved over the past
50 years.

Definition 16 (Situation). The situation is the sum of the local conditions of a software
engineering endeavor that influence the suitability of a method or parts of it, e.g., the release
frequency or the customer involvement (adopted from [Hen+14]).

One very significant local condition (called situational factor) that influences as
part of the situation what software engineering methods are used is that of the
application type of the software system that is to be created. Application types
are categories based on the nature of a software system (adapted from [Som11,
pp. 10–11]): for example, interactive transaction-based applications are applications
that are executed on a remote server or in the cloud and accessed by different users
by their laptops, tablets, and mobile phones. They often have a large centralized
database that is accessed with transaction-based requests. Examples for such

20 Background

systems are modern business systems with cloud-based services and web-based or
special-purpose clients (apps). Interactive transaction-based applications are often
also referred to as information systems (e.g. in [CC05]). Another application type are
embedded systems, which are low-level software systems that manage and control
hardware devices. These embedded systems often run in resource-constrained
environments and are sometimes safety-critical, for example, software that controls
anti-lock braking in a car, and software in a microwave oven to control the cooking
process.

In this thesis, we focus on software engineering method management for in-
teractive transaction-based applications as our work is mostly based on software
engineering for this application type. Our solution might be usable or adapted also
for other types, however, an in-depth investigation remains possible future work.

Software engineering methods for interactive transaction-based applications
are sometimes categorized as either plan-driven or agile [BT03]. Plan-driven refers
to methods that typically differentiate multiple phases within a software project
and where the activities are planned in advance and progress is measured against
this plan, e.g., Quasar Enterprise [Eng08], V-Modell XT [KTF11], RUP [Kru99], or
Unified Process [JBR99]. Agile refers to more lightweight, team-centered methods
that typically to do not define separate phases, but integrate all activities into a
development cycle that is performed throughout the project, e.g., extreme program-
ming (XP) [Bec00] or Scrum [SS13]. In agile methods, planning is incremental
and changing customer requirements can be accommodated easier at the cost of
continuous rework. As discussed in [BT03], both approaches have their individual
advantages and drawbacks and based on the project situation, a balance has to be
found.

Balancing plan-driven and agile principles based on the project context is one
example for the need of software engineering method management. Another example
is to update the method to take advantage of latest best practices [Som11]. In this
thesis, we use the term software engineering method management for the activities
illustrated in Figure 1.1. It includes, first, updating the defined method content,
e.g., with new activities based on new best practices, second, providing methods
suitable for a given situation, e.g., by balancing plan-driven and agile principles,
and third, controlling the enactment of methods, e.g., by ensuring that the order of
activities corresponds to the method.

The management of software engineering methods includes software method
improvement, a term that describes the effort to continuously asses and update the
method content. Closely related is the term of software process improvement that is
used to describe the continuous assessment and change of software development
processes in the whole [HRT04]. In software process improvement so-called capa-
bility maturity models are used as an approach to measure the degree of formality
and optimization of a software development process. Two well-known capability

2.1 Foundations and Terminology 21

maturity models are Software Process Improvement and Capability Determination
(formally Software Process Improvement and Capability Evaluation – SPICE and
now part of ISO/IEC 15504) [Loo07] and Capability Maturity Model Integration
(CMMI) [Sof10]. Capability maturity models can be seen as a generic frame of refer-
ence to assess different software engineering methods as they define requirements
that must be met to reach specific maturity levels in separate disciplines.

In the next section, we will give an overview of the research field that deals with
the systematic creation of software engineering methods.

2.1.2 Situational Method Engineering

Over the past 50 years, many commercial or brand-named software development
methods have evolved. However, as there is no single method that is suitable for
all systems, organizations, or projects, in practice, these are not widely used and
especially not in their entirety (cf. [FRO03] and [KF15]). With the lack of suitable
fixed methods, customized methods were derived by tailoring, i.e., modifying existing
methods. However, this tailoring was often performed in an unsystematic and
especially informal manner [Ped+07] with outcome of varying quality [XR08]. We
refer to this unsystematic and informal approach as free tailoring in this thesis.

The observation that there is no single one-size-fits-all method and the need to
systematically derive methods gave rise to the research area and engineering disci-
pline of situational method engineering (SME) [HR10]. Situational method engineering
includes all aspects of systematically creating and adapting software engineering
methods based on local conditions (situations) as opposed to using unaltered off-
the-shelf, fixed methods or unsystematic, free tailoring. SME is sometimes referred
to as method engineering (ME), however, in strict terms SME is a subset of ME, the
latter describing the systematic definition, adaption and enactment of methods for
software development in general [BLW96]. Situational method engineering can be
therefore seen as an attempt to provide generic solutions for software engineering
method management.

Definition 17 (Situational Method Engineering). Situational method engineering is
both the research area and engineering discipline that deals with the systematic creation and
adaption of software engineering methods to situations (adopted from [HR10]).

Situational method engineering approaches can be compared among several
dimensions. Looking at the two dimensions degree of flexibility and tailoring effort,
method engineering approaches can be grouped roughly into three groups:

• the group of creation-based,

• the group of assembly-based, and

• the group of configuration-based approaches.

22 Background

As illustrated in Figure 2.2, each group represents its individual trade-off between
the two dimensions (cf. [HBJ94] and [Hen+14]): going from left to right, the
flexibility of the approach in terms of adaption to a specific situation increases,
however, the effort to create an unflawed method is also higher, thus rendering
some approaches to cumbersome for software engineering method management.
Situational method engineering covers the area between two extremes: On the
one hand, using fixed methods without any adaption and on the other hand, free
tailoring with potentially changing anything without following any underlying con-
sistency rules. In the following, we characterize the three groups within situational
method engineering.

Situational Method Engineering

Tailoring

Flexibility
configuration-

based

assembly-

based
creation-

based
fixed

Trade-Off Quality:

Effort / Flexibility

free

Effort: very high

Effort: high

Effort: middle

Effort: low

Effort: very low

Fig. 2.2 Trade-off between effort and flexibility of different groups of method engineering
approaches

Creation-based Approaches

In creation-based approaches, a method is created from scratch, however, its
constituents are instantiated from a common meta-model. This meta-model defines
the available concepts and their relations to describe a method. Therefore, the use
of meta-models allows ensuring a basic level of formality. In addition, it provides a
basic level of disambiguation as two methods can be compared with respect to the
instantiated meta-classes. Consequently, meta-models are often used as a formal
foundation for (potentially fixed) methods and are not primarily used to facilitate
situational method engineering.

Meta-models of software engineering methods that aim at being used for situa-
tional method engineering include SEMDM and SPEM. Beside these well-known
standards, other meta-models have been proposed, either as stand-alone (e.g.,
MetaMe [ES10]) or as an extension to these standards (e.g., eSPEM [Ell+10]).

2.1 Foundations and Terminology 23

Regarding the two dimensions of situational method engineering explained
before, creation-based approaches provide a lot of flexibility at the cost of consider-
able tailoring effort. With respect to the software engineering method management
layers (cf. Figure 1.1), methods can be defined and tailored to a project from
scratch with the most possible freedom only constrained by the concepts of the
meta-model. However, this freedom requires a lot of method engineering expertise
to tailor meaningful methods. In addition, as reuse is not particularly addressed,
considerable effort is necessary to define the contents of a complete method. Apart
from academic feasibility studies, this approach is therefore rather inapplicable,
particularly for method engineering in the context of complex software engineering
endeavors. For example, researchers in a recent study complain that they could not
find a single publication for a method based on SEMDM [KFS13a].

Assembly-based Approaches

In assembly-based approaches, component-like concepts to enable modularity and
reuse play an important role. Instead of creating a method from scratch, existing
method building blocks are reused. The basic idea is to maintain a repository of
predefined method building blocks. Based on this method repository, a method is
then created by assembling method building blocks suitable for the project. Since
building blocks are also instantiated from a meta-model, assembly-based method
engineering is based on creation-based method engineering.

As there is no common standard, approaches follow their own component
model and terminology. In many approaches, building blocks represent either
product or process aspects and are then often referred to as method fragments (e.g.,
[HB95], [Bri96], [Cer+11]) or the combine both and are then mostly termed method
chunks (e.g., [SRG96; Pli96],[RP96b],[Ral04]). In [KLR96] building blocks are named
components instead of fragments. In recent publications the notion of method
services and method-as-a-service are discussed [Rol09].

In general, assembly-based approaches have the advantage that they address
reuse of method content explicitly, which reduces the effort to tailor a method
(cf. Figure 1.1). The flexibility is limited mainly by the available method building
blocks that were defined. These, however, can be added on the fly. This makes
assembly-based approaches more flexible than configuration-based ones. Nev-
ertheless, despite the balance between flexibility and effort that assembly-based
approaches provide, they still have limited relevance in practice. Only few examples
of practical application are documented, e.g., [HS05] and [Wee+06]. We believe,
this is partly due to the limitations of contemporary approaches, discussed in
Section 2.2.2, especially the lack of high level-modeling languages to define and
compose method building blocks with suitable granularity and the lack of sufficient
tool support.

24 Background

Assembly-based method engineering needs to comprise the following tasks
(cf. [BLW96]) on the three conceptual layers of software engineering method man-
agement (see 1.1) shown in Figure 2.3. On the layer of method content definition:
Extract Reusable Method Content and Define Method Building Blocks. On the layer of
method tailoring: Characterize Project, Compose Project-Specific Method, and Assure
Quality of Method. On the layer of method enactment: Coordinate Activities and Guide
Tasks, as well as Reflect Method.

Assembly-based Method Engineering

Extract Reusable

Method Content

Define Method

Building Blocks

Characterize

Project

Compose Project-

Specific Method

Assure Quality of

Method

Guide Tasks Reflect Method

Method

Repository

Coordinate

Activities

methods,

best practices
lessons learned

reusable method

content

formal

building

blocks

characterization

project

situation

building

blocks

composed

method
flawed

method

correct method

enactment

experience

scheduled

tasks

Method Content Definition

Method Tailoring

Method Enactment

Activity Data Flow Data Storage

Fig. 2.3 Tasks of assembly-based method engineering

Extract Reusable Method Content is the task that needs to be performed to identify
method knowledge that shall be made available for incorporation into situational
methods. Possible sources for method knowledge are, for example, published
methods or established practices used within the organization [Ral04],[FCE14].
With Define Method Building Blocks the extracted information is formalized and
stored into the method repository. All building blocks are characterized in terms of
suitability for different project situations.

2.1 Foundations and Terminology 25

Based on the building blocks defined in the method repository, a situational
method can be composed. Firstly, with Characterize Project the situation of the
planned development project is assessed, such that, secondly, suitable building
blocks can be identified during Compose Project-Specific Method. Here, the actual
method is composed according to the needs of the situation. With Assure Quality of
Method it is ensured that the method contains no flaws such that it can be enacted
later on.

The task Coordinate Activities helps the project team to identify and assign the
pending tasks and work products to use, while the task Guide Tasks helps them to
carry out the software engineering tasks according to the specified method.

Configuration-based Approaches

In configuration-based approaches, a method is created by selecting a value from
a range of choices for each provided configuration point. This set of choices,
the configuration, is then used to derive a method automatically. As the solution
space of possible methods is limited (and in comparison not that big), it is feasible
to ensure the consistency of all possibly configurable methods (i.e. removing
inconsistent configurations) upfront. Thus, normally, methods of configuration-
based approaches are consistent by design and do not require additional quality
assurance by the user of the approach. However, this also means that additional
method content cannot be added by the user. Since the so-called base-method and its
configuration choices are typically formalized, using a meta-model, configuration-
based method engineering is based on creation-based method engineering.

Examples of configuration-based approaches are MC Sandbox [KÅ05] and V-
Modell XT [HH08]. The latter is well-known on the German market as it is a
requirement for government IT projects there. It focuses on the work products that
need to be created and defines only coarse-grained activities that allow for further
refinement by (manual) tailoring.

The strength of configuration-based approaches is that integrity and quality of
the resulting method are guaranteed and do not have to be addressed explicitly
during method tailoring. Therefore, these approaches require only little method
engineering expertise to create a method. However, the solution space of possible
methods is limited to the foreseen configurations. Consequently, the flexibility is
limited. It is insufficient for complex software engineering endeavors.

2.1.3 Executable Process Description Languages

One purpose of software engineering methods is to describe the flow of activities,
often termed process, and thereby supporting the coordination of method enactment.
Based on the idea of process programs [Ost87], the idea emerged to model methods
with executable process description languages. These languages allow describing

26 Background

processes with sufficient syntax and semantics to simulate them or to execute them
with a process engine (called workflow management software in [AH02]). The process
engine could ensure that the enactment of the method conforms to its specification
and it could support the coordination of the activities by taking care of the control
and data flow [GJM03]. For the interaction with the team members, the process
engine offers a task management component. If an activity has to be carried out by a
team member, the task management component creates a task for her and directs
the results back to the executed process.

However, executability is not supported by standard method meta-models like
SEMDM or SPEM [Ben+10]. Therefore, other languages have been proposed to
model executable methods, either stand-alone, e.g., Little-JIL [Wis+00], or as an
extension to SPEM, e.g., eSPEM [Ell+10; Ell+11]. In general, these approaches have
in common that they lack situational method engineering and mature tool support
in terms of a process engine that supports both control and data flow.

While the use of executable process description languages and their support
by process engines is an emerging topic for the domain of software engineering
methods and method engineering, it is quite common in the domain of business
processes. Here, languages like Event-driven Process Chains (EPC) [KNS92],
Business Process Execution Language (BPEL) [OAS07] with its extension BPEL4Peo-
ple [OAS10], and Business Process Model and Notation (BPMN) [OMG11] are used
to model business processes and to execute them with process engines. Especially,
the business process modeling languages BPEL and BPMN are de facto standards
for modeling business processes that potentially span different organizations and
have a long life span. There exists a wide range of mature tools to support the
creation and execution of these business process models. Generally, the focus of the
business process domain is to derive technical implementations (software systems)
from business processes sometimes called business-driven development (BDD) [Mit05].
While human interaction is important, the ultimate goal is to specify the coordina-
tion of automated services. The coordination of humans and especially supporting
the established concepts and terminology of software engineering methods is not
supported by standard business process modeling languages and their process
engines.

2.2 Solution Requirements and State of the Art

In this section, we discuss the solution requirements of a holistic software engineer-
ing method management solution. Thereafter, we present the state of the art and
assess existing approaches with respect to the solution requirements. While we
discuss global related work in this chapter, we introduce more specific, topic-related
works later in the respective chapters.

2.2 Solution Requirements and State of the Art 27

2.2.1 Requirements for a Holistic Solution

In this section, we revisit the challenges of software engineering method manage-
ment introduced in the introduction of this thesis. First, we discuss the suitability
of the situational method engineering approaches presented in Section 2.1.2 with
respect to these challenges. Then we define solution requirements (SRs) for a
software engineering method management solution addressing these challenges.
We use these requirements later to evaluate the related work and to assess our
proposed solution.

Necessity of an Assembly-based Approach

In Section 1.1, we discussed the challenges for software engineering method man-
agement on each layer of the hierarchy:

Challenge 1 – Method Content Definition To enable updates of method content
based on new trends, best practices, and lessons learned

Challenge 2 – Method Tailoring To enable the creation of consistent software en-
gineering methods for specific situations based on defined method content

Challenge 3 – Method Enactment To enable the proper enactment of the tailored
method according to its definition

In Section 2.1.2, we discussed different groups of situational method engineering
approaches. In order to address Challenge 1, a solution needs to be flexible enough
to update the method content continuously. As the available method content is
unchangeable in fixed and configuration-based approaches, these cannot address
Challenge 1 sufficiently. In order to address Challenge 2, a solution needs to offer
the definition and reuse of method content. As method content is not defined
to be reused later, this is not the case for creation-based approaches and free
tailoring. Thus, a solution for software engineering method management needs
to be assembly-based. First, it needs to allow the creation of additional method
building blocks to reflect new trends, best practices, and lessons learned. Second,
it needs to allow for the creation of a method model based on the composition of
suitable method building blocks with respect to a project situation. Third, it needs
to support the enactment of the composed method models.

Refined Solution Requirements

In [Ell+11], Ellner et al. describe common requirements for software engineer-
ing method management solutions based on previous work of other authors
[CJ99],[JBD99],[Gru02]. We present their common requirements in Table 2.1.

28 Background

Table 2.1 Common requirements for software engineering method management solutions
without refinement regarding software engineering management layers or assembly-based
method engineering (adapted from [Ell+11])

Common Requirement Description

Scalability Large as well as small methods can be created
and managed

Decomposability Sub methods and compound methods can be
defined

Adaptability Tailoring a given method to the needs of a project
must be straightforward

Testability Plausibility checks can be performed automati-
cally to help creating methods

Easy-to-digest formalism Needed, because in the past complex formalisms
have prevented adoption by practitioners

Executability Methods can be directly interpreted by a machine
or otherwise mapped to an executable language

Automatic process execution A process engine is provided that supports the
team in their work according to the method, trig-
gers certain tasks on time, and controls the deliv-
ery of artifacts

Electronic process guide A process engine actively guides team members
by providing information that is sensitive to the
task context at hand according to the method

Automatic audit trail A process engine automatically keeps track of
changes to work products and progress of the
method enactment

2.2 Solution Requirements and State of the Art 29

While the list of common requirements provides a good starting point, it can
be improved in two ways. First, the requirements are not explicitly associated
with the method engineering management layers or the described challenges. In
particular, requirements for method content definition and method tailoring are not
clearly separated. Thus, their relationship to the challenges is not stated explicitly.
Second, the requirements are very generic and to not take into account specifics of
assembly-based approaches.

Based on the common requirements and characteristics of assembly-based
approaches we refined SRs for a solution that addresses the software engineering
method management challenges. The relationship between software engineering
method management layers, common requirements and our solution requirements
is shown in Figure 2.4. In the following, we discuss our solution requirements.
Following the different levels of the software engineering method management
hierarchy, we first discuss five method content-related criteria, afterward four
tailoring-related criteria, and finally, three enactment-related criteria.

Method Content
Definition

Method
Tailoring

Method Enactment

S
R

 1
.1

:
A

b
st

ra
ct

 O
rd

er
in

g
s

S
R

1.
2:

E
x

p
li

ci
t

In
te

rf
ac

es

S
R

1.
3:

C
o

m
p

o
si

te
 B

u
il

d
in

g

B
lo

ck
s

S
R

1.
4:

M
et

h
o

d
 R

ep
o

si
to

ry

S
R

1.
5:

H
ig

h
-L

ev
el

M

o
d

el
in

g

S
R

2.
1:

P
ro

je
ct

C

h
ar

ac
te

ri
za

ti
o

n

S
R

2.
2:

C
o

m
p

o
si

ti
o

n

G
u

id
an

ce

S
R

2.
3:

C
o

n
si

st
en

cy

A
n

al
y

si
s

S
R

2.
4:

H
ig

h
-L

ev
el

C

o
m

p
o

si
ti

o
n

S
R

3.
1:

E
x

ec
u

ta
b

le
 P

ro
ce

ss

S
R

3.
2:

E
n

ac
tm

en
t

S
u

p
p

o
rt

w

it
h

 H
u

m
an

In

te
rf

ac
e

S
R

3.
3:

E
n

ac
tm

en
t

L
o

g
s

S
ca

la
b

il
it

y

D
ec

o
m

p
o

sa
b

il
it

y

A
d

ap
ta

b
il

it
y

E
as

y
-t

o
-d

ig
es

t
fo

rm
al

is
m

T
es

ta
b

il
it

y

E
x

ec
u

ta
b

il
it

y

A
u

to
m

at
ic

p

ro
ce

ss
 e

x
ec

u
ti

o
n

E
le

ct
ro

n
ic

 p
ro

ce
ss

g

u
id

e

A
u

to
m

at
ic

 a
u

d
it

tr

ai
l

Layer

S
o

lu
ti

o
n

R

eq
u

ir
em

en
ts

C
o

m
m

o
n

R

eq
u

ir
em

en
ts

Fig. 2.4 The relationship between software engineering method management layers, our
solution requirements (SRs), and the common requirements in [Ell+11]

Solution Requirement 1.1 – Abstract Orderings As a refinement of the scalability
requirement, we define the criterion abstract orderings. Abstract orderings
allow modeling orderings without referencing concrete building blocks. This
ensures that the orderings can be used also for yet not defined building blocks.
These ordering can then be used to speed up the definition of especially
large methods and they serve as an additional guidance during method
composition.

30 Background

Solution Requirement 1.2 – Explicit Interfaces As another criterion that is related
to the scalability requirement, we define the criterion explicit interfaces. Explicit
interfaces abstract from the content of method building blocks and make the
information that is necessary to find and compose suitable building blocks
available. Thus, they reduce the cognitive load when performing the related
tasks.

Solution Requirement 1.3 – Composite Building Blocks As a refinement of the
decomposability requirement, we define the criterion composite building blocks
that assesses whether building blocks of an approach support the composite
pattern. Composite building blocks allow hiding the complexity of building
block compositions as they can be treated like ordinary building blocks.

Solution Requirement 1.4 – Method Repository As a refinement of the adaptabil-
ity requirement, an assembly-based approach requires a method repository to
store method building blocks. Some method engineering approaches addi-
tionally store composed methods and method enactment data in the method
repository.

Solution Requirement 1.5 – High-level Modeling As a refinement of the easy-to-
digest formalism requirement, this criterion expresses whether an approach
offers a high-level modeling language and appropriate tooling to define
method building blocks. This would ease the definition of method building
blocks.

Solution Requirement 2.1 – Project Characterization As a refinement of the adapt-
ability requirement, an assembly-based approach requires the characterization
of the project in order to ease finding suitable building blocks for a project.

Solution Requirement 2.2 – Composition Guidance As another refinement of the
adaptability requirement, this criterion expresses whether an approach offers
guidance in composing a suitable method for a project.

Solution Requirement 2.3 – Consistency Analysis As a refinement of the testabil-
ity requirement, we define the criterion consistency analysis. It measures,
whether an approach offers consistency rules and tooling for it. This criterion
is partially fulfilled, if the conformance to the meta-model can be checked
automatically. It is fulfilled, if additional plausibility and quality checks are
performed.

Solution Requirement 2.4 – High-level Composition As a refinement of the easy-
to-digest formalism requirement, this criterion expresses whether an approach
offers a high-level composition language and appropriate tooling to define
method compositions. This would ease the composition of methods.

2.2 Solution Requirements and State of the Art 31

Solution Requirement 3.1 – Executable Process As a refinement of both, the exe-
cutability and the automatic process enactment requirement, this criterion mea-
sures whether methods can be executed with a process engine. This criterion
is fully fulfilled, if both flow of activities and the flow of work products is
considered and supported.

Solution Requirement 3.2 – Enactment support with Human Interface As a re-
finement of the electronic process guide requirement, this criterion expresses
whether an approach offers guidance for the enactment of a task and the
GUI for the team member to interact with the method. This criterion is fully
fulfilled, if the flow of work products is considered. This means that the team
member can inquire about her input work products and report output work
products.

Solution Requirement 3.3 – Enactment Logs As a refinement of the automatic au-
dit trail requirement, this criterion expresses whether an approach offers
support to log information about the enactment of a method in order to
support the reflection of the method.

The solution requirements are used to asses approaches proposed in related
work in the following section. Later, we use the solution requirements to assess our
proposed solution.

2.2.2 Evaluation of Existing Approaches

In this section, we discuss existing holistic tool-supported approaches for assembly-
based method engineering and assess them against our solution requirements.

Overview of Existing Approaches

Related works for assembly-based method engineering exist on a broad range, how-
ever, often focusing on specific aspects. In the following, we give a brief overview
of existing works and thereby focus on holistic solutions to assembly-based method
engineering that are tool-supported. These works will be considered for the eval-
uation later in this chapter, while additional works will be also discussed in this
section for the purpose of completeness. References to related work concerning spe-
cific aspects of assembly-based method engineering, such as modeling of executable
processes, are not considered here but later in the respective chapters.

Holistic Assembly-based Approaches In the following, we give a brief overview
of works that provide holistic solutions to assembly-based method engineering and
that are tool-supported. These works will be considered for the evaluation later
in this chapter, while other works will be also discussed here for the purpose of

32 Background

completeness. Brinkkemper and Harmsen presented an assembly-based method
engineering approach that is accompanied by their tool Demacrone [Har97]. Their
approach covers the definition of method building blocks and their storage in
a method repository [HB95]. They also define dimensions for the project char-
acterization and formulate assembly rules for the composition of methods that
could be reused for later consistency analysis. Their solution offers the generation
of a CAME environment and a process engine based on the composed method.
However, they admit issues with the usability, performance, and reliability of their
approach [Har97, p. 277]. In addition, their solution depends on low-level modeling
languages and on outdated and proprietary technologies as the Prolan programing
language of the CASE environment Maestro II and a character-based user interface.

The method engineering approach for the tool MERU [GP01] is based on the
creation of a implementation-independent Method Requirements Specification
(MRS) by means of a MRS Creator. This MRS is used instead of the characterization
of the project. The MRS can be analyzed for basic consistency violations and is then
translated semi-automatically in several steps to method building blocks and then
a composed method. From this method a suitable CASE environment is generated
afterward [PS97]. The authors do not explain whether created method building
blocks are supposed to be used for future methods. In addition, support for process
enactment is missing.

Another tool-supported approach is MENTOR [SRG96; Pli96]. This approach
uses method building blocks that follow the NATURE contextual approach [Gro+97].
Thus, building blocks are tree-based structures that bundle situations to decisions,
where situations reflect the state of products and decisions the intention of the
engineer. Instead of characterizing a project and modeling the whole process
explicitly, the core of the solution is the Guidance Engine that finds suitable building
blocks according to a situation and the defined high-level process. Based on the
selection of the method engineer, it executes them and thereby offers guidance to
the application developer (or method engineer). The solution includes a method
repository, but there is no support for consistency analysis and like Demacrone the
tooling is based on outdated technologies.

The tool family Method Management Tools [KLR96] is build on top of the meta-
CASE environment MetaEdit+, whose successor is still available for current software
platforms. It offers a method repository to store method building blocks, means to
compose methods, basic means to check methods for consistency, and generators
to generate a CASE tool customized to the method. Not covered by the solution is
supporting the choice of suitable method building blocks and the enactment of the
method with the guidance of the project team.

An assembly-based approach that was proposed recently and that is based on
modern technologies and standards is MOSKitt4ME [Cer+11]. It is build on top
of an Eclipse-based [Ste+09] modeling platform called MOSKitt. The approach is

2.2 Solution Requirements and State of the Art 33

based on the SPEM standard and supports the composition of methods based on a
method repository of method building blocks and specifically focuses on deriving
a suitable CASE environment for the method. Therefore, technical building blocks
are part of the method definition. These define the tools that should be used to
create and to process work products. After method composition these tools are
automatically bundled into a CASE environment to use during method enactment.
The approach has no process execution support as execution semantics are missing
in SPEM. A consistency analysis and also support for abstract orderings is also
missing.

Ellner et al. [Ell+10; Ell+11] provide eSPEM, a tool-based approach for the
modeling and execution of methods. The approach is based on extensions to SPEM
to address SPEMs lack of executability and it is based on the Eclipse ecosystem
[Ste+09]. It offers a method repository for the storage of method building blocks
and visual editors to model reusable method building blocks and compose them
to executable methods. The approach also offers rudimentary analysis support
of created methods. While the extension of SPEM with execution support is one
of the strengths of this approach and its tooling, there is no explicit support for
situational method engineering in terms of characterizing method building blocks
and the project nor for abstract orderings.

Further Related Work Bendraou et al. [Ben+07] also propose an extensions to
SPEM called xSPEM to address SPEMs lack of executability. However, creating
situational methods is not in scope of their work and they only sketch some
mappings between concepts of xSPEM and BPEL and, e.g., human interaction with
executed methods is not discussed.

In addition to these approaches, related work comprises other approaches worth
mentioning here. Software engineering method frameworks (termed “process
framework” in [KFS13a]) like V-Modell XT [KTF11] or Rational Unified Process
(RUP) [Kru99] offer more flexibility than rigid methods and allow a certain degree
of tailoring to a project or organization. These frameworks can be attributed to
configuration-based method engineering, however, the offered guidance and tool
support for tailoring varies among approaches. V-Modell XT for example offers
explicit configuration points that lead to the inclusion or exclusion of activities in
the method. Additionally, methods of software engineering method frameworks
are based on a meta-model that provides a formal foundation and allows additional
creation-based method engineering.

Another configuration-based approach consists of the Method for Method Con-
figuration and its tool support MC Sandbox [KÅ11; KÅ12]. Here, non-hierarchical
method components are defined that express how to transform input work products
into a defined output work product together with the rationale of such a transfor-
mation. For each assignment of a so-called characteristic (basically a configuration

34 Background

point) a configuration package is created that describes which method components
shall be included. Multiple characteristics are then covered by configuration templates
that basically characterizes a complete development situation and a complete set
of required method components. When changing the assignment for single char-
acteristics, the tooling can compute the set of included method components and
detect classification conflicts (contradicting method components) that then have to
be handled manually. The enactment is supported with a project-specific method
website that is derived from the included method components.

In addition to the described method engineering approaches, various works
propose approaches that focus on the conceptual level. We exemplarily present
three of them. A more complete overview is provided in [Hen+14]. Spijkerman
[Spi15] proposes the extension MetaMe++ as an improvement to the creation-based
method engineering approach described in [ES10]. Here, method requirements are
derived based on an as-is analysis of the specific situational context of an existing
organization. These are then used to iteratively improve the method in several
method improvement iterations. The method is thereby modeled based on the
product and process meta-model of MetaMe++.

The work by Geisen [Gei15] deals with the adaptation of a method during
method enactment. Adaptions of the method are seen as necessary reactions to
changes of the situational context of the project. The work describes a conceptual
framework that is based on the adoption of the MAPE-K feedback loop [KC03]
from the adaptive systems domain.

Ralyté proposes two approaches to extract reusable method building blocks
from existing methods and from scratch in [Ral04]. She uses the map formalism
[RP96b] to model the approaches where a number of intentions is linked to a number
of strategies.

Another related group of work are ALM suites [KV09] that integrate with various
tools, e.g., configuration management systems, change management systems, and
IDEs into a distributed development and collaboration platform. Examples for
these suites are Microsoft Team Foundation Server4 (TFS), IBM Rational Team
Concert5, and Method Park Stages6. These ALM suites offer to some extend
method execution support and allow for the use of automated workflows defined
in templates delivered by the ALM vendor. These workflows usually cover only
limited parts of the whole software engineering method, e.g., they cannot determine
the next possible steps in a process and guide team members accordingly [Ell+11,
p. 80]. Manual adaption of these templates is possible, but especially the creation
of situational methods is not supported explicitly. In [KKT14] Kuhrmann et al.
describe a generic framework that allows generating templates for ALM suites like

4http://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx
5http://www.ibm.com/software/products/en/rtc
6http://stages.methodpark.de/

2.2 Solution Requirements and State of the Art 35

TFS, based on process models. However, situational method engineering is also not
addressed explicitly here.

Evaluation

Existing related works for assembly-based method engineering exist on a broad
range, however, often focusing on specific aspects. In our evaluation, we consider
the holistic, tool-supported assembly-based method engineering approaches dis-
cussed in this section. Hence, we omit approaches that are not assembly-based
([KTF11], [Kru99], [KÅ11], [KKT14]), that focus only on specific layers of the soft-
ware engineering method management ([Ben+07], [Ral04]), or that do not provide
any tool support ([Spi15], [Gei15]). Table 2.2 shows the result of our evaluation.

Table 2.2 Evaluation of existing tool-supported approaches for assembly-based method
engineering

ab
st

ra
ct

 o
rd

er
in

g
s

ex
p

li
ci

t
in

te
rf

ac
es

co
m

p
o

si
te

 b
u

il
d

in
g

b
lo

ck
s

m
et

h
o

d
 r

ep
o

si
to

ry

h
ig

h
-l

ev
el

m
o

d
el

li
n

g

p
ro

je
ct

ch
ar

ac
te

ri
za

ti
o

n

co
m

p
o

si
ti

o
n

g
u

id
an

ce

co
n

si
st

en
cy

an
al

y
si

s

h
ig

h
-l

ev
el

co
m

p
o

si
ti

o
n

ex
ec

u
ta

b
le

 p
ro

ce
ss

en
ac

tm
en

t
su

p
p

o
rt

w
it

h
 h

u
m

an

in
te

rf
ac

e

en
ac

tm
en

t
lo

g
s

Demacrone

[HB95],[Har97]
- - □ + - + (+) - - (+) - -

MERU

[GP01], [PS97]
- - □ □ □ (+) (+) (+) □ - - -

MENTOR

[SRG96],[Pli96]
- + □ + (+) - (+) (+) - (+) (+) □

Method Management

Tools [KLR96]
- - □ + + - - (+) + - - -

MOSKitt4ME

[Cer+11]
- + □ + + - - - + - - -

eSPEM

[Ell+10], [Ell+11]
- (+) + + + - - (+) + + + +

Tailoring Support Enactment Support Content Definition

+ supported (+) partially supported - not supported □ not considered

Content Definition While several approaches differentiate different levels of gran-
ularity, none of the approaches provides support for abstract orderings. About half
of the approaches support the definition of explicit interfaces for method building
blocks and allow modeling them with high-level modeling support. While MEN-
TOR and Method Management Tools use outdated technologies, the approaches
eSPEM and MOSKitt4ME are build on top of the contemporary Eclipse platform
and use the popular Ecore meta-model [Ste+09]. Except eSPEM, none of the ap-
proaches discusses composite building blocks. Except of MERU, where it is unclear, all

36 Background

approaches offer a method repository. About half of the approaches support high-level
modeling with visual languages. As stated, eSPEM and MOSKitt4ME are build on
top of the contemporary Eclipse platform, while Method Management Tools and
MENTOR use outdated technologies.

Tailoring Support Regarding tailoring support, only the two approaches Demacrone
and MERU offer means for explicit project characterization. In the latter approach,
instead of the typical situational factors, a method requirements specification is
created. Composition guidance and consistency analysis are provided only partially
and only in roughly half of the approaches. In addition, only MERU and MENTOR
provide both. Regarding high-level composition support, besides one exception, the
support looks the same as that of the modeling of method building blocks. The
exception is that MERU does not offer high-level composition support, as processes
are not explicitly modeled in the approach.

Enactment Support Most of the presented approaches offer, if at all, only weak
enactment support. eSPEM is the only approach that supports all enactment-related
criteria, however, it has its particular weakness in method tailoring. The only other
approaches that offer some enactment support are Demacrone and MERU.

2.3 Summary

In this chapter, we provided the necessary background for the remainder of the
thesis. We explained software engineering methods, discussed their creation with
situational method engineering, and presented an evaluation of the state of the
art in assembly-based method engineering. Based on this foundation, we now
present our solution for software engineering method management that specifically
addresses the weaknesses of the other approaches. We start off with an overview of
our solution in the following chapter.

CHAPTER 3

Solution Overview

In this chapter, we provide a general overview of our solution and an end-to-end
example. Details will then be discussed in the following chapters.

This chapter is structured as follows. We provide an overview of our solution
for software engineering method management in Section 3.1 and discuss MESP
roles, work products, and tooling. In Section 3.2, we illustrate our solution with a
running example. We conclude the chapter with a summary in Section 3.3.

3.1 Overview of the MESP Approach

3.1.1 Overview of MESP Roles

3.1.2 Overview of MESP Work Products

3.1.3 Overview of MESP Tools

3.1.4 Integrated Overview of MESP Solution

3.2 End-to-End Example

3.2.1 Method Content Definition

3.2.2 Method Tailoring

3.2.3 Method Enactment

3.3 Summary

3.1 Overview of the MESP Approach

Our evaluation presented in Section 2.2.2 revealed that existing approaches do not
fulfill the requirements for software engineering method management. More pre-

38 Solution Overview

cisely, there is no holistic solution that, first, enables the updates of method content
based on new trends, best practices, and lessons learned, that, second, enables the
creation of consistent software engineering methods for specific situations based
on defined method content, and that, third, enables the proper enactment of the
tailored method according to its definition.

MESP is our proposed approach that addresses the stated requirements by
offering a holistic solution for software engineering method management. First,
following the assembly-based idea of “define once, use many”, method content is
defined in a formal, reusable way. Second, method models are consistently tailored
to a specific project by reusing and combining useful method content. Finally,
method models are executed with a process engine, so the enactment of the method
by the project team is supported.

Our solution describes the MESP roles and tasks necessary on all three layers of
the software engineering method management hierarchy. It also includes the formal
models that describe all necessary elements to define and characterize method
building blocks and analyzable, executable method models. We also provide tool
support to create these models, to check the consistency of method models, and
to execute them with standard off-the-shelf process engines. Thus, we provide
a meta-method, a method to create software engineering methods, with all its
required aspects as illustrated with the UML class diagram in Figure 3.1.

MESP

Tasks Roles Work Products Tool Support

Fig. 3.1 The aspects included in our MESP solution

3.1.1 Overview of MESP Roles

In MESP, we differentiate three different roles, where each MESP role is responsible
for a layer of the software engineering method management hierarchy. Figure
3.2 illustrates the three MESP roles and their tasks. In general, we differentiate
between the general, continuously performed tasks of the MESP role senior method
engineer to define reusable method content and the project-specific tasks of the
other MESP roles for one particular project. Potentially, the method content that is
defined once can be reused in many different projects. Thus, the tasks of the senior

3.1 Overview of the MESP Approach 39

method engineer are only loosely coupled to the tasks of the other MESP roles. In
the following, we briefly describe each MESP role and its tasks.

Tasks of the Project

Method Engineer

Method Tailoring

Tasks of the Senior

Method Engineer

Method Content Definition

Project-Specific

Generic

Tasks of the

Project Team

Method Enactment

Responsible RoleActivity Control Flow

Define Method

Services & Method

Patterns

Define Basic Method

Elements & Basic

Characterization

Elements

Extract Reusable

Method Content

Characterize Project

Compose Project-

Specific MESP

Method

Assure Quality of

Method

Transform and

Initialize Method

Perform Tasks
Coordinate

Activities
Reflect Method

Data FlowInitial Node

Fig. 3.2 Overview of the MESP Tasks

Senior Method Engineer Senior method engineers are responsible for defining
reusable method building blocks. First, they have to extract reusable method content,
e.g., by investigating the existing software development within an organization

40 Solution Overview

as we described in [FCE14] or by extracting it from existing method descriptions
in literature as described in a master thesis [Sie15]. Next, they formalize method
content, and define basic elements and method building blocks, and store them in a
method repository as we described in [FE16]. Method building blocks are based on
shared basic elements that ensure consistency and interoperability between method
building blocks. If suitable basic elements are missing, they are created as required.
Method content can be formalized using the two types of method building blocks,
method services and method patterns.

The MESP role of the senior method engineers is to be filled in with quality
managers, SPI managers, or very experienced project managers with modeling
experience. The tasks of the senior method engineer are exemplified in Section 3.2.1
and discussed in more detail in Chapter 4.

Project Method Engineer Project method engineers are responsible for defining
a suitable method model for their respective project. Thus, they first characterize
their project using basic elements from the method repository. Then they choose
suitable method services and method patterns and compose them to a project-specific
method model for their project as we described in [Faz+13]. They have to assure the
quality of the method model using the automated quality assurance framework of the
MESP tool support as we described in [FK16]. Thereafter, they prepare and initialize
the method model. They prepare the method model for execution by transforming it
into a process model and deploy it into a standard process engine as described in
[FCE14]. In addition, they assign team members to roles used in the method model.

The MESP role of the project method engineers is to be filled in with project
managers that are responsible for managing the project work, its tasks, its outputs,
and its team members. The tasks of the project method engineer are exemplified in
Section 3.2.2 and discussed in more detail in Chapter 5.

Project Team The project team enacts the composed method model to create the
software system in their software project. They execute the transformed process
model in a process engine that coordinates their activities and provides them with
guidance on the pending tasks as we described in [FCE14]. The process engine
ensures that the project team performs its tasks as prescribed and provides them with
task descriptions. In order to support the senior method engineers in improving
method services and method patterns, the project team reflects the enactment of the
method and provides feedback to her by capturing lessons learned as we described
in [Gri+14].

The MESP role of the project team is filled in with the members of the project
team that carry out the tasks of the project. The tasks of the project method engineer
are exemplified in Section 3.2.2 and discussed in more detail in Chapter 6.

3.1 Overview of the MESP Approach 41

3.1.2 Overview of MESP Work Products

Figure 3.3 illustrates the work products that are created as part of the MESP
approach. They can be grouped into four groups: The first group consists of work
products related to Method Building Blocks maintained by the senior method
engineer. The second group consists of work products to compose a MESP Method
Model for a project. The third group are the work products to express method
models in the executable process description language BPEL. They are used to
transform method models to BPEL Process Models in order to execute them with
a standard process engine. The fourth group consists of work products that are
related to the Method Enactment and execution of the model.

Method Building Blocks Regarding the first group, basic elements (Basic
Method Elements and Basic Characterization Elements) are used to charac-
terize Method Services and Method Patterns, but also method models via their
respective Interfaces. While they are used for method services and method
patterns to express what is provided and whether the building block is suitable,
in method models they are used to express the project characteristics and what
is required. Method patterns and method services are the actual building blocks
to be used in method models and that are discoverable and composable via their
interfaces.

MESP Method Model Regarding the second group, MESP Method models refer-
ence suitable method patterns and method services from the method repository.
The referenced elements are composed using control and data flow in order to
create consistent method models.

BPEL Process Model Regarding the third group, in order to execute method
models, they are first transformed to equivalent BPEL/BPEL4People process models
so that they can be executed with standard BPEL engines. Basically, each method
service referenced in a method model is transformed to an equivalent HumanTask
Invocation. The control and data flow information in the method model is used to
create a BPEL Process model that properly connects the HumanTask invocations
so that they are executed in the right order and with the right work products.

Method Enactment For the execution, additional work products are necessary:
during the execution of the process model, whenever a HumanTask invocation is
executed, a Workflow Task is created and assigned to the Person that is respon-
sible according to her role. In addition, Runtime Information about the state of
execution of the process model is maintained and logged.

42 Solution Overview

Method Enactment

MESP Method Model

Method Building Blocks

Basic Method
Element

Method Pattern Method Serv ice

MESP Method

Interface
(Characterization)

Person

BPEL Process Model

BPEL Process

Workflow TaskRuntime
Information

Human Task
Inv ocation

Basic
Characterization

Element
references

captures

references

transformed to

references

assigned to

transformed to

captures

references

creates

Fig. 3.3 Overview of central MESP Work Products

3.1 Overview of the MESP Approach 43

3.1.3 Overview of MESP Tools

Figure 3.4 illustrates the tools that are used as part of the MESP approach. The
tooling consists of three groups. First, the MESP Tool that we created specifically for
MESP. Second, an off-the-shelf Standard BPEL Engine with support for human
workflow tasks. Third, an off-the-shelf Standard Project Repository.

MESP Tool Regarding the first group, the Method Building Block Editor is
used by the senior method engineer to create method building blocks and to store
them in the method repository. The project method engineer uses the Method
Composer to compose methods out of building blocks. The created method models
are also stored in the Method Repository. With the Consistency Checker, the
project method engineer can resolve consistency issues of the method model.
Consistent method models can be transformed with the MESP2BPEL Transformer
into equivalent BPEL/BPEL4People process models to be executed with a BPEL
engine. The Repository Browser can be used to browse through elements stored
in the method repository.

Standard BPEL Engine Regarding the second group, the Standard BPEL Engine
is used to execute process models and manage workflow tasks. Its Worflow Engine
component executes the process model and request the creation of workflow tasks.
These are managed within the Task Engine that interfaces with the project team
members.

Standard Project Repository Regarding the third group, a Standard Project
Repository is used to store the created work products and create URIs for them.

3.1.4 Integrated Overview of MESP Solution

Figure 3.5 illustrates the MESP solution with all the aspects discussed in this
chapter: tasks, roles, tools, and work products. The top shows the method content
definition layer, the middle the method tailoring layer, and the bottom the method
enactment layer.

On the method content definition layer, reusable method content is extracted
from documented methods, best practices, and also lessons learned from performed
projects by the senior method engineer. This content is then formalized by basic
elements on the one hand and method services and method patterns on the other.
The elements are formalized using the building block editor and stored in the
method repository.

On the method tailoring layer, each project is first characterized by the project
method engineer using the method composer. Using the characterization, she com-

44 Solution Overview

MESP Tool Support

Standard BPEL Engine

MESP Tool

Method Repository

Method Building

Blocks Editor

Method Composer

Consistency

Checker

MESP2BPEL

Transformer

Workflow Engine Task Engine

Repository Browser

Standard Project Repository

Project Repository

Fig. 3.4 Overview of MESP Tool Support

3.1 Overview of the MESP Approach 45

MESP Solution

Define Method Services &

Method Patterns

Characterize Project Compose Project-Specific

Method

Assure Quality of Method

Perform TasksCoordinate Activities

methods,

best

practices

lessons learned

reusable method

content

method services &

method patterns

project

characterizationproject

situation

composed

method
flawed

method

correct

method

enactment

experience

scheduled

workflow tasks

Method Content Definition

Method Tailoring

Method Enactment

Method

Composer

Task

Engine

Method

Composer

Consistency

Checker

Process

Engine

Building

Block Editor

roles, situational factors,

tasks, categories

Method Repository

process model

+ GUI

Senior Method

Engineer

Define Basic Method Elements &

Basic Characterization Elements

Building

Block Editor

Senior Method

Engineer

informal information flow

formal information flow

Project Method

Engineer

Project Method

Engineer

Initialize Method

MESP2BPEL

TransformerProject Method

Engineer Project Method

Engineer

Project

Team

Project

Team

Reflect Method
BPEL

Engine
Project

Team

Responsible Role

Extract Reusable Method

Content

Senior Method

Engineer

reusable method

content

method services &

method patterns

External Tool

MESP ToolActivity

building block needs

partly method

method

Project

Repository
Project

Repository

performed

workflow tasks

partly method services &

method patterns

BPEL

Engine

Fig. 3.5 An Overview of the MESP Solution Framework

46 Solution Overview

poses a project-specific method and stores it into the method repository. Thereby,
she can use the consistency checker to assure the quality of the method. Once the
method model is consistent, she can initialize the method model for execution. She
derives a process model with the MESP2BPEL Transformer, deploys it to the BPEL
engine and assigns project members to roles.

On the method enactment layer, the process engine executes the process model
and helps the project team to coordinate their activities. The task engine man-
ages the performance of tasks and shows the responsible team members the task
descriptions from the method model. After the project team reflects the method
enactment and collects lessons learned, using the process execution information
from the BPEL engine and the created work products from the project repository.

3.2 End-to-End Example

In the following, we provide an end-to-end example to illustrate our overall solution
and in particular the tasks that we introduced in the previous section. Our example
is a project from the eID domain as we described in [Faz+13] and deals with the
introduction of a distributed ePassport system. Such a system is connected to
several national (e.g. border control, civil register) and international (e.g. Interpol)
databases and information systems.

Typically such a system is developed using a plan-driven approach, either a fixed
off-the-shelf method or by creating a method using configuration-based SME, e.g.,
V-Modell XT [HH08]. The project manager of such projects is typically a passport
domain expert and not an experienced method engineer. Thus, when changes
to a method are required, she is not able to tailor the method accordingly. One
requirement might for example be to integrate agile aspects into the method to allow
for stepwise refinement of the work products and to improve the communication
among team members. The method has to be tailored such that it integrates
meaningful agile aspects and still stays consistent. In addition, also its correct
enactment has to be ensured.

Using this scenario, we provide an end-to-end example for the use of MESP in
order to illustrate the benefits of our solution. We will briefly exemplify each MESP
task in the context of the scenario. We also describe the relationship between work
products and tools of each layer.

3.2.1 Method Content Definition

In the following, we illustrate the tasks of the senior method engineer to define
reusable method content. As described, these tasks are carried out independently
of individual projects as an ongoing, long-term effort to maintain a repository
of up-to-date method services and method patterns. In our scenario, the senior

3.2 End-to-End Example 47

method engineer has to derive method content that is suitable to carry out eID
projects with differing levels of customer involvement and system criticality.

Extract Reusable Method Content

With this task, the senior method engineer identifies and extracts reusable method
content from literature and practice. This is a first step towards the formalization by
creating new method services and method patterns. In the eID domain, projects are
typically carried out with plan-driven methods following the v-model. Now agile
aspects shall be incorporated to allow for stepwise refinement of work products. If
possible, concrete guidance on how to refine these work products shall be given. In
our example, the senior method engineer extracts content from the documented
methods V-Modell XT, Scrum, and OpenUP to cover these requirements.

V-Modell XT The senior method engineer investigates the V-Modell XT as a
software engineering method framework that creates plan-driven methods based on
the v-model. Figure 3.6 illustrates the control flow of a V-Modell XT-based method
that is denoted by its lifecycle. Each decision gate (left leaning parallelogram)
marks the end of a lifecycle phase. At each decision gate, a set of documents has
to be approved using a defined task “Project coming to a progress decision”. For
example, Figure 3.7 shows the documents that have to be approved for the decision
gate System Designed. Consequently, these documents have to be produced with
the designated V-Modell XT tasks before the decision gate can be passed. Thus, in
methods based on V-Model XT, the sequence of decision gates indirectly specifies
the order of activities that have to be performed.

Requirements

Specified

Request for

Proposal Released
Offer Submitted Contract Awarded Acceptance

Completed

System Specified

System Designed

Detail Design

Completed

System Elements

Realized

System Integrated

Delivery

Conducted

Fig. 3.6 The gateways of the V-Modell XT method

System Designed

:System Architecture

:Logistic Support Specification

Fig. 3.7 The decision gate "System designed" of V-Modell XT

The first four decision gates include activities to determine the requirements
of the system (decision gate: Requirements Specified), issue a tender (Request

48 Solution Overview

for Proposal Released), receive offers (Offer Submitted), and select a supplier for
the development of the system (Contract Awarded). The system is then specified
according to the requirements specification (System Specified) and decomposed
into components and subcomponents (System Designed, Detail Design Completed).
Based on the design documents, the subcomponents are integrated to components
(System Elements Realized) and components to the complete system (System
Integrated). Finally, the system is integrated into the production environment
(Delivery Conducted). Once the system is in place, it is tested and approved
(Acceptance Completed).

Due to the popularity of the v-model in the eID domain, the coverage of the
complete project lifecycle, and the systematic development and sign-off of formal
documents, the senior method engineer decides to extract the V-Model XT lifecycle
with its decision gates. In addition, she decides to extract the related tasks and
work products.

Scrum In order to identify agile method content, the senior method engineer in-
vestigates the popular Scrum method [SS13]. Scrum is an iterative and incremental
method, where the development is carried out in iterations of fixed length called
sprint. Figure 3.8 illustrates the control flow of Scrum. A sprint basically prescribes a
sequence of fixed length, where planning activities are followed by implementation
activities, which in turn are followed by reviewing activities. The implementa-
tion activities are repeated daily until the end of the sprint and coordinated with
informal, short meetings in the morning called daily scrum.

Product Backlog

Sprint Backlog

Potentially

Shippable

Software

Sprint

Daily

Fig. 3.8 Illustration of the process flow of Scrum

Due to the popularity of Scrum, its iterative and incremental nature, and its
informal coordination meetings, the senior method engineer decides to extract the
Scrum sprint loop. In addition, she decides to extract the related tasks and work
products.

OpenUP In order to identify further helpful task descriptions that can be used
in an iterative, incremental setting, the senior method engineer investigates the

3.2 End-to-End Example 49

OpenUp7 method. Among other tasks, she extracts the tasks to envision and refine
a system architecture that she considers useful. Figure 3.9 shows an excerpt of the
task refine the architecture from its specification website.

Glossary Feedback About

Print

Where am I Tree Sets

 Team

Introduction to OpenUP
Getting Started
Delivery Processes
Practices
Roles
Work Products
Tasks

Architecture
Refine the Architecture
Envision the Architecture

Deployment
Development
Environment
Project Management
Requirements
Test

Guidance
Tools
Release Info

6. Manage
7. Home

 This page is currently being modified by Gionei de Andrade

Tasks > Architecture > Refine the Architecture
Task: Refine the Architecture

Refine the architecture to an appropriate level of detail to support
development.

Disciplines: Architecture

Expand All Sections Collapse All Sections

Purpose

To make and document the architectural decisions necessary to support development.

Back to top

Relationships
Main Description

This task builds upon the outlined architecture and makes concrete and unambiguous
architectural decisions to support development. It takes into account any design and
implementation work products that have been developed so far. In other words, the
architecture evolves as the solution is designed and implemented, and the architecture
documentation is updated to reflect any changes made during development. This is a
key, since the actual implementation is the only real "proof" that the software architecture
is viable and provides the definitive basis for validating the suitability of the architecture.
For more information, see Concept: Executable Architecture.

The results are captured for future reference and are communicated across the team.

Back to top

Steps

Expand All Steps Collapse All Steps

Refine the architectural goals and architecturallysignificant requirements
Identify architecturally significant design elements

Fig. 3.9 Decription of the task "refine the architecture" of OpenUP

The MESP task Extract Reusable Method Content is carried out informally and
without tool support as it is the preparation of formalizing method content.

Define Basic Elements

With this MESP task, the senior method engineer defines basic elements that are
shared by method services, method patterns, and method models. There are two kinds
of basic elements. Basic method elements are work products, roles and tasks. They
are used to define the constituents of method services and they are also referenced

7http://epf.eclipse.org/wikis/openup/

50 Solution Overview

in method patterns. Basic characterization elements are situational factor values and
categories. They are used to characterize method services, method patterns and
projects (and thereby the method to be composed). Figure 3.10 shows an UML
object diagram that illustrates some basic elements and their relationships that were
defined for the method content extracted for V-Modell XT, Scrum, and OpenUP in
our scenario. We explain how they were derived in the following.

Prepare System Specification:Task

- Description: string = The Decision Ga...

System Architecture:
Work Product

Hold Standup Meeting:Task

- Description: string = The Standup Mee...

Architect:Role

Define the Architecture:Task

- Description: string = This task focus...

Refine The Architecture:Task

- Description: string = This task build...

Team Lead:Role

Architecture Notebook:
Work Product

Customer_Involvement.low:
Situational Factor Value

Customer_Involvement.medium:
Situational Factor Value

Customer_Involvement.high:
Situational Factor Value

System_Criticalityt.low:
Situational Factor Value

System_Criticalityt.medium:
Situational Factor Value

System_Criticalityt.high:
Situational Factor Value

Agile:Category

Plan-Driven:Category

Development:Category

Design:Category

Planing:Category

Fig. 3.10 Basic elements created by the senior method engineer

Basic Method Elements Regarding basic method elements, for example, the
senior method engineer defines the task Prepare System Specification and the
work product System Architecture for the extracted V-Modell XT decision gate
shown in Figure 3.7. The required information is given explicitly in the V-Modell
XT specification document. Instead of directly taking over the terminology used
in V-Modell XT, she adopts it to fit to the existing basic elements in the method
repository. Thus, instead of defining a role System Architect, she defines the role
Architect that is also responsible for tasks derived from OpenUP. The V-Modell
XT decision gate also defines tasks, roles, and work products for the logistic support.
However, the senior method engineer sees no use for them right now and does not
add them.

For the content from Scrum, she creates the task Hold Standup Meeting that
reflects the daily scrum meeting of Scrum. Again, she rephrases the terminology.

3.2 End-to-End Example 51

As responsible role for the task, she defines a Team Lead role that did not exist
yet. It is an adoption of the role Team that is described in the Scrum specification
document.

For the content from OpenUP, she creates the tasks Define the Architec-
ture and Refine the Architecture, as well as the work product Architecture
Notebook. Here, she can reuse the already defined role Architect.

Basic Characterization Elements Regarding basic characterization elements, situ-
ational factor values determine, in which context a method building block should
be included in the method and in which context not. These are usually not stated
explicitly in the extracted method content and need to be derived based on sec-
ondary literature (e.g. [Bek+08] or [CO12]) and project experience. For example,
the senior method engineer in our scenario defines the situational factor Cus-
tomer_Involvement as she learns that in Scrum a lot of customer involvement is
required, while in V-Modell XT it is required only selectively at some of the decision
gates. She defines the three situational factor values Customer_Involvement.low,
Customer_Involvement.medium, and Customer_Involvement.high. Situational
factor values will be used later to characterize whether customer feedback can be
given frequently in a project and whether it is required by a method building block.

Another situational factor the senior method engineer defines is the Sys-
tem_Criticality as she knows that for critical systems certain plan-driven tasks
are required, while they might be unsuitable for uncritical systems. Here, she
defines the situational factor values System_Criticality.low, System_Critical-
ity.medium, and System_Criticality.high.

Categories are an additional means to characterize method building blocks
independent of a project situation, for example by origin, discipline, or typical
phase. This is used to describe useful method services for a method pattern. In
our scenario, the senior requirements engineer for example creates the categories
Agile, Plan-Driven, Development, Design, and Planning based on the method
content she extracted.

The basic elements define the formal terminology that is used to describe
method services, method patterns, and methods. They therefore influence which
method services and method patterns are interoperable.

The MESP task Define Basic Elements is supported with tooling. Basic elements
are created with the Method Building Block Editor and stored in the Method Repository.
The Method Building Block Editor offers checks to ensure that the modeled elements
are specified correctly and adhere to the MESP meta-model.

Define Method Services & Method Patterns

With this MESP task, the senior method engineer defines the reusable method
building blocks that can be used to tailor project-specific method models. In our

52 Solution Overview

scenario, based on the extracted method content and the basic elements, she creates
method services and method patterns for V-Modell XT, Scrum, and OpenUP.

Method Services In our scenario, the senior method engineer first creates a
method service for the task refine the architecture from OpenUP. For this, she reuses
the respective task element that she created, as described in the previous section.
The method service wraps the task and associates it with suitable basic characteri-
zation elements that help to discover and compose it. For example, this method
service shall be used in methods, where the system to be developed is somewhat
critical (medium – high), otherwise it bears unnecessary overhead. In addition, it is
suitable, if there is a certain level of customer involvement planned in the project
(medium), as decisions need to be supported by the customer. If there a lot of
customer involvement is available, however, the method service is less suitable than
other (agile) alternatives. Figure 3.11 shows an UML object diagram of the created
method service. It references several basic elements from the method repository
that were defined before. As basic method elements, it references the task, with
its role and its work products. As basic characterization elements, it references
the situational factor values customer_involvement.medium, system_critical-
ity.medium, and system_criticality.high.

In a similar manner, the senior method engineer defines method services for
the other tasks elements she created. Once she is done, she has created a set of
method services to describe the necessary tasks for eID projects with different
characteristics.

Architect:RoleArchitecture Notebook:
Work Product

Refine The Architecture:Task

- Description: string = This task build...

Refine The Architecture:
Method Service

plan-driven:Category

development:Category

design:Category

system_criticalityt.high:
Situational Factor Value

system_criticalityt.medium:
Situational Factor Value

customer_involvement.medium:
Situational Factor Value

+responsible

+category

+suitableFactor

+suitableFactor

+output

+category

+category+suitableFactor

+referencedTarget

+input

Fig. 3.11 A method service derived from OpenUP referencing basic elements

3.2 End-to-End Example 53

Method Patterns In addition to method services, the senior method engineer
creates method patterns. For example, the senior method engineer wants to
formalize the sprint from Scrum so that it can be used by project method engineers
in their method models. As described previously, a sprint is mainly a time-boxed
sequence where planning activities are followed by implementation activities, which
in turn are followed by reviewing activities. If this was modeled with a method
service, other method services could not be added into the Sprint during method
composition. Thus, this would be very inflexible. So instead, the senior method
engineer models a method pattern as described in the following.

She wants to model three groups of planning, development, and reviewing
activities that are executed repeatedly. Figure 3.12 illustrates the method pattern
that she creates. It consists of three sequential constrained scopes, one for each
group of activities, which are executed inside a loop. Each constrained scope
contains a constraint and space where method services can be put in later when
the pattern is used. The space of a constrained scope has to fulfill the constraint.
For example, the middle constrained scope requires that all method services placed
inside are of category development and that there is one method service that is the
method service Hold Standup Meeting. Constraints are expressed with a specialized
domain specific language created for MESP that we describe in more detail in
Chapter 4.

Like method services, method patterns are characterized with basic elements.
This method pattern is associated with the situational factor values Customer_In-
volvement.medium and Customer_Involvement.high as the customer is involved
in the planning that takes place fairly often. In addition, it is associated with
System_Criticality.low and System_Criticality.medium, because it is very
challenging to apply the pattern to create correct critical systems [SA07]. The
pattern is furthermore associated with the category Agile. Figure 3.13 shows an
UML object diagram that illustrates the relationship between the method pattern
and the basic elements in the method repository. As shown, the constraints are
not expressed in plain natural language, but reference the according elements
in the method repository. For example, the constraint in the middle constrained
scope references the category Development and the method service Hold Standup
Meeting.

The senior method engineer also creates a pattern that represents the decision
gates defined by V-Modell XT. It can be used by project method engineers to ensure
that the method model they compose includes all tasks in order prescribed by the
decision gates. Similar to the sprint loop method pattern, it consists of a sequence of
constrained scopes that contain constraints. The resulting method pattern contains
a constrained scope for each decision gate as illustrated in Figure 3.14.

We use the decision gate System Designed of Figure 3.6 as an example to show,
how a constrained scope is derived. The resulting constrained scopes are illustrated

54 Solution Overview

Iteration

And

All

MS
[Development]

Of

Category

[Hold Standup

Meeting]

Exists

a MS
That Is

All

MS
[Reviewing]

Of

Category

Constrained Scope

Constraint

Control Flow

Exists

a MS
[Planning]

Of

Category

Fig. 3.12 A method pattern based on the Sprint from the Scrum method

Agile:CategoryCustomer_Inv olv ement.high:
Situational Factor Value

Customer_Inv olv ement.medium:
Situational Factor Value

System_Criticalityt.low:
Situational Factor Value

:Constrained Scope

Agile Loop:Method Pattern

:Constrained Scope :Constrained Scope

Planing:Category Dev elopment:Category

Hold Standup Meeting:Method
Serv ice

Quality_Assurance:CategorySystem_Criticalityt.medium:
Situational Factor Value

+constraintParameter

+constraintParameter

+category

+constrainedTarget

+suitableFactor

+suitableFactor

+constraintParameter

+suitableFactor

+suitableFactor

Fig. 3.13 The object model of the method pattern based on the Sprint from the Scrum
method

3.2 End-to-End Example 55

System Specified System Designed Detail Design Completed

System

Specified

System

Designed

Detail Design

Completed

… …

Fig. 3.14 The method pattern for the V-Modell XT is derived by creating constrained scopes
for each decision gate

in Figure 3.15. The constrained scopes ensure that the relevant work product system
architecture is created and assessed afterward. The senior method engineer left
out the other work products of the decision gate, which are irrelevant for the eID
projects of her organization.

Sequence

Exists

a MS
And

[Quality_Assurance]Of Category

[System

Architecture]
Has Input

Exists

a MS
Has Output

[System

Architecture]

Fig. 3.15 Constraint scopes that reflect the decision gate “System Designed” of V-Modell XT

The senior method engineer associated the resulting method pattern with the
situational factor values Customer_Involvement.low and Customer_Involvement.medium
as the customer is involved only in specific points in time and fairly limited. In addi-
tion, she decides to associate the situational factor values System_Criticality.medium
and System_Criticality.high, because the pattern is suitable to build critical systems,
but results in a process and documentation overhead unnecessary for uncritical
systems.

The two method patterns allow combining plan-driven and agile aspects later
during method composition as required by some eID projects. By creating the
V-Modell XT lifecycle pattern, the senior method engineer helps to ensure the
plan-driven nature of method models as required for eID projects. The sprint
pattern expresses the necessary aspects of an agile development cycle.

The MESP task Define Method Services & Method Patterns is supported with
tooling. Method patterns and method services are created with the Method Building
Block Editor and stored in the Method Repository. Like for basic elements, the Method
Building Block Editor offers checks to ensure that the modeled method services
and method patterns adhere to the MESP meta-model.

56 Solution Overview

Work Products and Tools

Figure 3.16 shows an UML class diagram that gives an overview of the relationship
of the MESP work products for method content definition. We can group basic
elements into Basic Method Elements and Basic Characterization Elements.
As illustrated, Method Patterns and Method Services reference basic method
elements via an explicit Interface. The interface helps to bundle those references.
The Constrained Scopes of method patterns reference basic elements as part of
their constraints.

Method Building Blocks

Basic Method
Element

Method Pattern Method ServiceInterface
(Characterization)

Basic
Characterization

Element

Task Work Product Role Situational Factor
Value

Category

Constrained Scope

references

references

references

references

Fig. 3.16 Relationship of the Work Products for Method Content Definition

Figure 3.17 shows an UML component diagram that gives an overview of
the relationship of the MESP tools used to create the MESP work products for
method content definition. As explained, the Method Building Block Composer
is used to create basic elements, method services, and method patterns and to
store them into the Method Repository. The Repository Browser can be used to
browse through the created elements and to invoke their editing with the Method
Building Block Composer.

3.2.2 Method Tailoring

In the following, we illustrate the tasks of the project method engineer to compose
project-specific, situational method models using existing method services and
method patterns from the method repository. In our scenario, a project method
engineer needs a suitable method for an eID project with a new client that wants to

3.2 End-to-End Example 57

MESP Tool

Method Repository

Method Building
Blocks Editor

Repository Browser

Fig. 3.17 The MESP tools to define method content

be involved throughout the development. An ePassport system shall be developed
that is important to the client, but does not pose a risk to human lives. The project
manager Alice has to propose the method that should be followed. She is familiar
with the basic principles of plan-driven and agile methods, but has no in-depth
knowledge of method engineering.

Characterize Project

With this MESP task, the project method engineer formalizes the project characteri-
zation using the available basic elements in the method repository. She characterizes
the project in terms of the project goal and the project situation. In our scenario, Alice
has to characterize the ePassport project with the new client.

Project Goal The project method engineer determines the project goal by defining
which work products defined in the method repository are available at project start
and which work products are to be delivered at the end of the project. In our
example, a requirements specification has already been created by the client and is
available at the start of the project. Required outputs are an implementation and
an integration test result to demonstrate that the implemented system works as
intended.

Project Situation The project method engineer determines the project situation
by defining what situational factor values are suitable for the project. In our
ePassport project, the system is somewhat critical and the customer is available
on a frequent basis, but not continuously. Thus, Alice selects the situational factor
values system_criticality.medium and customer_involvement.medium.

Figure 3.18 shows an UML object diagram of the project characterization that
Alice created for the project. She associated the Project Goal and Project Sit-

58 Solution Overview

uation of the MESP Method with the respective basic elements from the method
repository.

eID project :MESP Method

:Project Situation:Project Goal

customer_involvement.medium:
Situational Factor Value

system_criticalityt.medium:
Situational Factor Value

Requirements Specification :
Work Product

Implementation :Work
Product

Integration Test Result :Work
Product

+suitableFactor

+input

+output

+suitableFactor

+output

Fig. 3.18 The characterization of a project with basic elements from the method repository

Characterizing the project with project goal and project situation supports
the following MESP task of discovering suitable method services and method
patterns. In addition, it documents the project context for future reference, e.g.,
when reflecting the method enactment.

The MESP task Characterize Project is supported with tooling. The project
characterization is created with the Method Composer that allows accessing and
referencing available basic elements from the Method Repository.

Compose Project-Specific Method

With this task, the project method engineer identifies suitable method services and
method patterns and composes them to a method model. Composing the method
solely using method services would not offer sufficient guidance to allow less
experienced project method engineers like Alice. Therefore, method patterns are
used to restrict the potentially composable methods to meaningful ones. Afterward,
method services are added to the method.

Method Patterns Method patterns are selected and combined to a frame that
hosts potentially suitable method services. In our scenario, based on the situ-
ational factor values of the project situation, Customer_Involvement.medium and
System_Criticality.medium, Alice identifies the method patterns derived from Scrum
and V-Modell XT. As presented in the previous section, the method patterns are
associated with the same situational factor values. For each pair of constraint
scopes that reflect a decision gate of V-Modell XT, Alice adds a sprint loop method

3.2 End-to-End Example 59

pattern derived from Scrum, so that the work will be executed in an agile man-
ner. Figure 3.19 exemplifies the combination using the constrained scopes for the
system designed decision gate. As shown, the sprint pattern was added into first
Specification constrained scope, where the system architecture work product has to be
created. As a result, the method services to be added have to fulfill both, create a
system architecture and development in an agile manner.

Sequence

E… …
[Sys.

Arch.]
Exists a MS Has Output [System Architecture]

Iteration

And

All

MS
[Develop.]

Of

Cat.

[Hold Stan.

Meeting]

Exists

a MS

That

Is
All

MS
[Reviewing]

Of

Cat.
Exists

a MS
[Planning]

Of

Cat.

Specification Assessment

Plan Develop Review

Fig. 3.19 Two method patterns combined to one pattern

Method Services Suitable method services are identified based on the project
characterization, the method pattern constraints, and already chosen method ser-
vices. Regarding the project characterization, for example, among the required
outputs of the project is the integration test result. Thus, Alice has to add at least
one method service to the method model that provides this output. In addition,
searching for suitable method services with the situational factor values of the
project brings up the earlier described method service Refine The Architecture.

Regarding the method pattern constraints, for example, the Specification con-
strained scope in Figure 3.19 requires a method service that creates a system
architecture work product. In addition, the contained Develop constrained scope
requires the use of the method service Hold Standup Meeting.

Regarding already chosen method services, for example, the method service
Refine the Architecture requires an architecture notebook artifact as input. Looking
for method services that produce an architecture notebook brings up the method
services Envision the Architecture.

Alice adds the suitable method services into the method model. Thereby, she
pays attention to the constraints of the method patterns. Figure 3.20 shows the

60 Solution Overview

partially composed method model for the ePassport project. As the method services
Hold Standup Meeting, Refine the Architecture, and Prepare System Specification are
associated with the category Development and the method service Hold Standup
Meeting was added, the constraint of the Develop constrained scope is fulfilled.
By adding further method patterns and method services, Alice composes the
method step by step until all output work products required by the project goal are
created by methods services and all constraints of the used method patterns are
fulfilled. Thereby, she composes a method model that is specific to the context of
her ePassport project.

Sequence

Exists a MS Has Output [System Architecture]

Iteration

And

All

MS
[Development]

Of

Category

[Hold Stanup

Meeting]
Exists

a MS

That

Is
All

MS
[Review.]

Of

Cat.
Exists

a MS
[Planning]

Of

Cat.

Specification

Plan Develop Review

Hold Standup

Meeting

Refine the

Architecture

Envision the

Architecture

Prepare System

Specification

Method

Service

Fig. 3.20 A partial method model with method services

Control Flow & Data Flow In order to compose a unambiguous method model,
control and data flow information is added to the method model. For example, in
Figure 3.20 is not clear, whether the three method services in the Develop constrained
scope shall be enacted sequentially or in parallel. In addition, the data flow of
work products is not specified, yet. If there were multiple method services with
the same output, it would not be clear which input to take. Figure 3.21 shows
a more advanced state of the method model composition. Here, Alice added
additional control flow for the Develop constrained scope. The method service
Hold Standup Meeting takes place repeatedly in parallel to the sequentially enacted
method services. In addition, Alice specified the data flow between Envision the

3.2 End-to-End Example 61

Architecture and Refine the Architecture. However, the method model is still not
finished, as denoted by the .

Sequence

Exists a MS Has Output [System Architecture]

Iteration

And

All

MS
[Development]

Of

Category

[Hold Stanup

Meeting]
Exists

a MS

That

Is
All

MS
[Review.]

Of

Cat.
Exists

a MS
[Planning]

Of

Cat.

Specification

Plan Develop Review

Hold Standup

Meeting

Refine the

Architecture

Envision the

Architecture

Prepare System

Specification

Iteration

Parallel

Sequence

Fig. 3.21 A partial method model with additional control and data flow

The MESP task Compose Project-Specific Method is supported with tooling. The
method model is composed with the Method Composer that allows adding method
patterns and method services from the Method Repository and to specify additional
control and data flow.

Assure Quality of Method

With this task, the project method engineer checks the composed method model for
completeness and other quality characteristics. For example, she checks, whether
all required input work products are provided for all method services and whether
all method pattern constraints are fulfilled. The method model has to be free of
certain quality issues in order to be executable with a process engine later during
method enactment.

For example, when Alice checks the partial method model in Figure 3.21 she
finds out that the constraints for the constrained scopes Plan and Review are not
fulfilled yet as indicated by the . To detect these and similar issues, Alice can
use the quality analysis that we implemented as part of our tooling. In order
to remove the issues, Alice searches for suitable method services and adds them
to the method model. In some cases, this might require the refinement of the

62 Solution Overview

project characterization. Thus, the tasks to characterize the project, compose the
project-specific method, and to assure the quality of the method are carried out
incrementally. Figure 3.22 shows the corrected partial method model. By adding
the two method services Iteration Planning Meeting and Iteration Review Meeting and
the data flow between them, all method patterns are fulfilled, and the data and
control flow is specified.

Sequence

Exists a MS Has Output [System Architecture]

Iteration

And

All

MS
[Development]

Of

Category

[Hold Stanup

Meeting]
Exists

a MS

That

Is
All

MS
[Review.]

Of

Cat.
Exists

a MS
[Planning]

Of

Cat.

Specification

Plan Develop Review

Hold Standup

Meeting

Refine the

Architecture

Envision the

Architecture

Prepare System

Specification

Iteration

Parallel

Sequence

Iteration

Planning

Meeting

Iteration

Review

Meeting

Fig. 3.22 A correctly specified partial method model

After removing all issues from the method model, Alice has created a consistent
method model for her ePassport project, where the method model combines method
patterns and method services from V-Modell XT, Scrum, and OpenUP.

The MESP task Assure Quality of Method is supported by an analysis component,
as described. The Consistency Checker helps the project method engineer to detect
and resolve quality issues in her method model.

Initialize Method

With this task, the project method engineer prepares the method for enactment by
the project team. She derives a process model that can be executed with a standard
BPEL/BPEL4People Engine and assigns project team members to roles used in
the method. The process model contains only concepts of BPEL/BPEL4People,
thus, each concept of the MESP method model has to be transformed appropriately.
For example, each method service has to be transformed into an appropriate

3.2 End-to-End Example 63

BPEL4People task for the team member, a HumanTask Invocation. We implemented
this automated transformation as part of our tooling.

In our scenario, after Alice finished the method model she invokes the auto-
mated transformation. The transformation creates the deployment file with the
BPEL/BPEL4People process model and deploys it into the BPEL engine. Alice then
uses the configuration interface of the BPEL engine to assign her team members
to the roles used in the ePassport method. For example, she assigns the architect
role to Bob and the team lead role to herself. Figure 3.23 shows a screenshot of the
configuration interface of the BPEL engine. After the process model is deployed
and the roles are assigned, Alice starts the process and enters the location URI of
the requirements specification that is available at project start. The process model
is then ready for execution.

Management Console

Help

© 2008 - 2012 WSO2 Inc. All Rights Reserved.

Configure

Users and Roles

Features

Key Stores

Logging

Data Sources

Service Discovery

Transports

Service Data Publishing

Server Roles

Multitenancy

Add New Tenant

View Tenants

Home > Configure > Users and Roles

User Management

System User Store

Change Password

Signed-in as: admin@carbon.super | Sign-out | Docs | About

M
a
in

M
o
n

it
o
r

C
o
n

fi
g

u
re

T
o
o
ls

Users

Roles

Change My Password

Fig. 3.23 Configuration Interface of the BPEL engine to set up users and roles

The MESP task Initialize Method is supported by a transformation component, as
described. The MESP2BPEL Transformer transforms the MESP method model to a
BPEL/BPEL4People process model and deploys it to the Standard BPEL Engine, the
execution environment of the process model.

Work Products and Tools

Figure 3.24 shows an UML class diagram that gives an overview of the relationship
of the MESP work products for method tailoring. As explained, the project Charac-
terization consists of the Project Goal that references required and provided
work products and the Project Situation that references situational factor val-
ues. The project characterization is part of the MESP method model and can be
seen as its interface as it describes inputs and outputs of the method and the nature
of the project. The MESP Method references method patterns and method services
from the project repository that are used in the method. The MESP method is trans-
formed to a BPEL Process and especially BPEL4People HumanTask Invocations
that are derived from the Method Services.

64 Solution Overview

MESP Method

Method Building Blocks

Basic Method
Element

Method Pattern Method Service

MESP Method

Interface
(Characterization)

BPEL

BPEL Process Human Task
Invocation

Basic
Characterization

Element

Project Goal Project Situation

references

transformed to

referencesreferences

references

transformed to

Fig. 3.24 Relationship of the MESP Work Products for Method Tailoring

Figure 3.25 shows an UML component diagram that gives an overview of the
relationship of the MESP tools used to create the MESP work products for method
tailoring. As explained, methods are composed with the Method Composer. Created
methods are stored in the Method Repository. With the Consistency Checker, the
project method engineer can analyze the quality of the composed methods and
with the MESP2BPEL Transformer, she can transform MESP method models to
BPEL/BPEL4People process models. These models can be deployed into a Standard
BPEL Engine for their execution that supports the project team in enacting the
method.

3.2.3 Method Enactment

In the following, we illustrate the tasks of the project team to enact the method
as prescribed and to provide feedback for method content improvement. In our
scenario, the project team, Alice, Bob and their colleagues have to enact the method
defined specifically for their ePassport project. In addition to the tasks from the

3.2 End-to-End Example 65

Standard BPEL
Engine

MESP Tool

Method Repository

Method Composer

Consistency
Checker

MESP2BPEL
Transformer

Repository Browser

Fig. 3.25 The MESP tools for Method Tailoring

V-Modell XT that they are familiar with, the team has to carry out the novel tasks
derived from Scrum and OpenUP.

Coordinate Activities

With this task, the project team coordinates what activities need to be carried out
and what input work products to use. In particular, they have to ensure that they
carry out the activities in the right order, that they notify each other when an
activity is finished, and that they inform each other, where to find the output work
products. The BPEL engine takes care of this task completely and coordinates
the activities for the project team as illustrated in Figure 3.26. The BPEL engine
executes the process model and whenever an activity is executed, it creates an
appropriate workflow task (1). The assigned team member can access the workflow
task via the BPEL engine (2) and mark it as finished, when it is done (3,4). Then,
according to the control flow in the process model (5), the BPEL engine executes
the following activity and creates a workflow task for it (6) and so on (7-10).

In our scenario, Alice just finished her workflow task to host the Iteration Planning
Meeting. According to the control flow of the method model (see Figure 3.22), the
BPEL engine creates two workflow tasks, one for the method service Refine the
Architecture and one for the method service Hold Standup Meeting. It assigns the
first workflow task to Bob, as he is assigned the architect role. Once Bob performed
his workflow task, the BPEL engine invokes the following method service Prepare
System Specification and creates another workflow task for him. Once he finishes his
workflow task and the iteration with Hold Standup Meeting is finished, the BPEL
engine invokes the next activity Iteration Review Meeting. It creates the according
workflow task and assigns it to Alice, who is assigned the team lead role.

66 Solution Overview

Activity A

(HumanTask Invocation)

BPEL Process

Workflow
Task A

Standard BPEL Engine

Activity B

(HumanTask Invocation)

1 2

34
5

10

Workflow
Task B

6

9
…

7

8

Person 1

Person 2

Fig. 3.26 The coordination of activities via workflow tasks

The MESP task Coordinate Activities is supported by the Standard BPEL En-
gine. As described, it executes the BPEL/BPEL4People process model and creates
appropriate workflow tasks.

Perform Tasks

With this MESP task, members of the project team carry out the actual tasks defined
within the method services of the method model. The responsible team member has
to perform the task according to its description and by using the proper input work
products. After finishing the task, the team member has to notify the teammates
and inform them about the created output work products.

Like the previous MESP task, this MESP task is also supported by the BPEL
engine. As explained in the previous section, the BPEL engine creates appropriate
workflow tasks for invoked activities. A project team member can access her due
workflow tasks via the task engine that is part of the BPEL engine. As part of
our automated transformation from MESP method models to BPEL/BPEL4People,
each workflow task contains a description taken from the according task in the
method repository. In addition, each workflow task shows the location URIs of the
input work products and offers fields to enter the output work product URIs. It
also shows general information about the state of the executed process, e.g., the
number of the current iteration. As part of the standard task engine interface, the
team member can mark a task as completed. The BPEL engine then invokes the
following activity according to the control flow.

In our scenario, Bob has to perform a workflow task for the method service
Refine the Architecture. As shown in Figure 3.27, he is presented the description that
corresponds to the original task description in the method repository (cf. Figure 3.9).

3.2 End-to-End Example 67

He also sees the location of the input Architecture Notebook in the Redmine8 ticket
system that they the team uses as a project repository. After he uploaded his
created output, he adds its URI to the workflow task. Once he marks his workflow
task as finished, workflow tasks for the following activities will be created. So
naturally, the MESP tasks to coordinate activities and to perform tasks alternate
during method enactment.

Details:

<<_Back_to_Task_List

Mon_Mar_g/_f,:A,:Aw_CET_gAf/

Mon_Mar_g/_fV:g-:Af_CET_gAf/

IN_PROGRESS

Request:

People:
Bob

To_make_and_document_the_architectural_decisions_necessary_to_support_developmentv

Response:

Complete

Architecture_Notebook:

Name Refine_the_Architecture
Description This_task_builds_upon_the_outlined_architecture_and_makes_concrete_and_

unambiguous_architectural_decisions_to_support_developmentv_ It_takes_
into_account_any_design_and_implementation_work_products_that_have_
been_developed_so_farv_ In_other_wordsh_the_architecture_evolves_as_the_
solution_is_designed_and_implementedh_and_the_architecture_
documentation_is_updated_to_reflect_any_changes_made_during_
developmentv_

Role Architect
Steps Refine_the_architectural_goals_and_significant_requirements_

Identify_architecturally_significant_design_elements_
Refine_architectural_mechanisms_
Define_development_architecture_and_test_architecture_
Validate_the_architecture_
Communicate_decisions_

Addv_Roles None
Inputs Architecture Notebook_:_http:..redminevsylabvde.issues.fV_
Outputs Architecture Notebook
Phase Development_Phase
Iteration Development_Iteration:_f_

Description:

Created On:

Updated On:

Status:

Owner:

Fig. 3.27 A workflow task for the method service Refine the Architecture

The MESP task Perform Tasks is supported by the Standard BPEL Engine and a
Standard Project Repository. The BPEL engine contains two components: the Task

8http://www.redmine.org/

68 Solution Overview

Engine manages the workflow tasks that are created by the Workflow Engine. The
Worklfow Engine hosts and executes the process model.

Reflect Method

With this MESP task, the project team collects feedback about the method enactment
in order to support the senior method engineer in improving method building
blocks. The team might, for example, have feedback to improve the description of
tasks or about the suitability of method services for their project.

In our scenario, Alice and her team are not satisfied with their standup meetings.
As they are not so familiar with agile practices yet, they hope for more tips and
hints in the task description. They use the execution logs of the BPEL engine and
the work products they created to illustrate their issues with the method to the
senior method engineer.

The MESP task Reflect Method is only indirectly supported with tooling. The
BPEL engine tracks the execution of the method model, including the URIs for
inputs and outputs. These can be found in the standard project repository. However,
the actual findings are communicated informally to the senior method engineer.

Work Products and Tools

Figure 3.28 shows an UML class diagram that gives an overview of the relationship
of the MESP work products discussed in this section. The BPEL Process model
is executed within the BPEL engine that manages and logs Runtime Information
about the state of execution. Whenever an HumanTask Invocation is executed, a
Workflow Task is created and assigned to the person with the appropriate role.

Figure 3.29 shows an UML component diagram that gives an overview of the
relationship of the MESP tools used in the MESP tasks that were discussed in this
section. The Standard BPEL Engine that executes the process model consists of
two components. The Workflow Engine manages the state of the process model
and the Task Engine manages the state of workflow tasks. The Workflow Engine
instructs the Task Engine to create workflow tasks. The Task Engine in turn notifies
the Workflow Engine about finished workflow tasks. The Project Repository is
used to store the created work products within the project. The location of work
products is referenced within workflow tasks.

3.3 Summary

In this chapter, we provided an overview of the tasks, roles, work products, and
tools that are part of the Method Engineering with Method Services and Method
Patterns (MESP) solution. We first explained the tasks and associated roles to

3.3 Summary 69

Method Enactment

Person

BPEL

BPEL Process

Workflow TaskRuntime
Information

Human Task
Invocation

createscaptures

assigned to

captures

Fig. 3.28 Relationship of the MESP Work Products for Method Enactment

define method content, compose method models, and enact methods. We then
presented the various work products that are created and used and discussed
their relationship. We also explained what tools are used as part of our solution.
Thereafter, we illustrated this with an end-to-end example from the eID domain.
In the following chapters, we discuss the details of the method content definition,
method tailoring, and method enactment with MESP.

Standard BPEL Engine

Workflow Engine Task Engine

Standard Project Repository

Project Repository

Fig. 3.29 The MESP tools for Method Enactment

CHAPTER 4

Method Content Definition

In the previous chapter, we presented the three roles of our solution and presented
an end-to-end example. In this chapter, we discuss the details of method content
definition by the senior method engineer.

This chapter is structured as follows. In Section 4.1, we first discuss requirements
and related work. Thereafter, in Section 4.2, we explain two ways to extract reusable
method content. In Section 4.3, we focus on the definition of basic elements. In
Section 4.4, we discuss method services and method patterns that are based on
these basic elements. Finally, we summarize the chapter in Section 4.5.

4.1 Requirements and Related Work

4.1.1 Requirements

4.1.2 Related Work

4.2 Extract Reusable Method Content

4.2.1 Extraction from Methods Described in Literature

4.2.2 Extraction from the Daily Practice of Organizations

4.3 Define Basic Elements

4.3.1 Definition of Basic Method Elements

4.3.2 Definition of Basic Characterization Elements

4.4 Define Method Services & Method Patterns

4.4.1 Definition of Method Services

4.4.2 Definition of Method Patterns

4.5 Summary

72 Method Content Definition

4.1 Requirements and Related Work

In this section, we describe the requirements and related work of method content
definition. We first present the method definition requirements (method content
definition requirements (MDRs)) that are a refinement of the solution requirements
(SRs) presented in Section 2.2.1. Then we briefly summarize the related work that
will be discussed also in the respective sections later.

4.1.1 Requirements

In this section, we discuss the requirements with respect to the method content
definition for a holistic solution for software engineering method management
based on an assembly-based method engineering approach.

In assembly-based method engineering, method building blocks need to be
defined that can be reused later during method composition. Before these method
building blocks can be defined, the actual method content need to be discovered
and extracted. Thereby, method content can be found in methods described in
literature like [AL12] and [SS13], or within the daily practice of organizations. Thus,
the first task of a senior method engineer is to extract reusable method content
from documentation or daily practice. The first MDR for our solution is therefore
to describe how to extract method content (MDR1).

Each method uses its own terminology, for example, the same work product
might have different names in different methods. Thus, method content from
different sources is inconsistent in terms of terminology. In order to create method
building blocks that are interoperable and can be composed to method models,
they need to be based on the same shared terminology. This base of terminology
needs to be changeable to keep up with current trends, e.g., by introducing new
concepts. Another MDR for our solution is therefore to address the establishment of a
common, updatable terminology for method building blocks (MDR2).

Method building blocks are composed based on the project characteristics later
during method tailoring. In order to find suitable method building blocks, they
shall be characterized as well. With only a few method building blocks, a small
set of discriminating factors might be sufficient to pick the right ones. However,
with a growing base of method building blocks, the characterization needs to be
extensible such that additional situational factors and also situational factor values
can be added. In order to support the method composition, a MDR is therefore
to address the establishment of a common, updatable characterization of method building
blocks (MDR3).

In order to capture and formalize not only work products or tasks, but also
more abstract method content, abstract orderings shall be supported by the solution
(SR1.1). These abstract orderings shall be described using high-level modeling
constructs (SR 1.5), so that senior method engineers without low-level language

4.1 Requirements and Related Work 73

experience are capable of defining them. We therefore formulate the MDR to define
a method building block type that allows modeling of abstract orderings with high-level
modeling constructs (MDR4).

In order to compose method models with their flows of activities, method
building blocks need to capture activities for the creation of software systems. In
addition to simple activities, method building blocks need to be able to capture
composite structures (SR1.3), so that complex structures of method building blocks
can be abstracted to single method building blocks. Both need to be described
using high-level modeling constructs (SR 1.5), so that senior method engineers
without low-level language experience are capable of defining them. We therefore
formulate the MDR to define a method building block type that allows modeling both
atomic activities and composite method building blocks with high-level modeling constructs
(MDR5).

With solution requirement SR1.2, we described the need for interfaces of method
building blocks. The more method building blocks are available, the more choices
the project method engineer has, when composing a method model. However,
the handling of these method building blocks becomes more difficult. In order to
simplify the handling of method building blocks, interfaces need to abstract from
the actual content and allow method engineers to compare interfaces instead of
whole method building blocks. We therefore formulate the MDR to define explicit
interfaces for method building blocks that contain all the information necessary during
method composition (MDR6).

With solution requirement SR1.4, we described the need for a method repository
that stores the method building blocks for reuse by project method engineers. As
method building blocks shall be added, deleted, and updated on the fly, it has
to be ensured that the method repository stays consistent. In order to ensure
the consistency among method building blocks, they shall be part of the same
interconnected model, e.g., composite method building blocks shall reference and
be consistent to the contained composite structures. Thus, we therefore formulate
the MDR to define a interconnected meta-model for method building block types and related
information to support consistency (MDR7).

The discussed MDRs are summarized in Table 4.1. Also illustrated is the MESP
task where the requirement needs to be addressed. In the following, we discuss
each MESP task of our solution for method content definition. We then also explain
how the respective requirements are met.

4.1.2 Related Work

Regarding the extraction of reusable method content, [Hen+14] provides an
overview of the related work. While many works do not discuss how to actually
extract method content, in [Ral04] the author proposes two principal ways to define

74 Method Content Definition

Table 4.1 Method definition requirements and the affected MESP tasks

Requirement Description MESP Task

MDR1 describe how to extract method content Extract Reusable
Method Content

MDR2 address the establishment of a common, updat-
able terminology for method building blocks

Define Basic
Elements

MDR3 address the establishment of a common, up-
datable characterization of method building
blocks

Define Basic
Elements

MDR4 define a method building block type that al-
lows modeling of abstract orderings with high-
level modeling constructs

Define Method
Services &
Method Patterns

MDR5 define a method building block type that al-
lows modeling both atomic activities and com-
posite method building blocks with high-level
modeling constructs

Define Method
Services &
Method Patterns

MDR6 define explicit interfaces for method building
blocks that contain all the information neces-
sary during method composition

Define Method
Services &
Method Patterns

MDR7 define a interconnected meta-model for
method building block types and related infor-
mation to support consistency

Define Method
Services &
Method Patterns

method content for the creation of method building blocks. Other works illustrate
how method content was extracted without discussing it explicitly [HLH02]. In
addition, more specialized literature on how to adopt a certain method may contain
valuable insight, e.g., to assess the daily practice of software engineering [BR04].

Regarding terminology-related basic method elements, several works discuss
and present software engineering method meta-models, e.g., [ES10],[KFS13b], and
[FH02] that could be adopted to formalize basic method elements. With Software
& Systems Process Engineering Meta-Model Version 2.0 [OMG08], there exist a
standardized meta-model that has gained attention from industry and research
[KFS13b]. With respect to characterization of method building blocks many works
discuss relevant situational factors for situational method engineering, e.g., [Bek+08]
and [CO12]. However, only few approaches consider a formalization and then often
use key-value pairs, e.g., [Pli96],[Har97],[KDS07].

Regarding the formalization of method building blocks, several works present
approaches that define building blocks that differ in granularity, separation of

4.2 Extract Reusable Method Content 75

content and interface, and formality, e.g., [HBJ94],[Bri96],[Cer+11],[RP96b],[RR01],
[GLS98],[KW04],[Den+08].

Beside method building blocks that reflect work and work products directly, the
notion of patterns was also proposed and discussed. While most works describe the
usage of informal patterns [Cop95],[TR07] other approaches propose more formal
pattern descriptions [DS98].

4.2 Extract Reusable Method Content

For the fulfillment of MDR1, we want to discuss how reusable method content can
be identified and extracted as a preliminary step towards the creation of method
building blocks.

In order to populate the method repository with method building blocks, several
authors propose to extract them from existing works, e.g., [RR01] or [Har97].
However, only very few explain how to do that [Ral04]. In [HLH02], the authors
discuss a concrete example for the domain of web application development and
explain, how they derived new method building blocks based on methods described
in literature. In [Ral04], the author proposes two principal ways to identify reusable
method content for the creation of method building blocks (method chunks) and
discusses two of them briefly. Existing method re-engineering deals with analysis and
transformation of existing methods, while ad-hoc construction refers to the creation
from scratch. In [Hen+14], the authors discuss the related work with respect to
identifying and extracting method content, largely based on [Ral04].

We summarize two approaches for existing method re-engineering [Ral04] that we
developed based on related work and our own experience that we believe to be
valuable in practice. First, we discuss how to extract method content from methods
described in literature, in part based on the results of a master thesis [Sie15].
Afterward, we describe how to extract method content from the daily practice
of organizations as an example to extract undocumented method content. This
approach is based on our experience in industry projects [FCE14; FGS15].

4.2.1 Extraction from Methods Described in Literature

Our approach to extract method content based on methods described in literature
consists of three sequential preformed tasks as illustrated by Figure 4.1. In the
following, we will discuss each task.

Identify Sources

In order to identify the suitable sources for method content extraction, we can
differentiate two cases. In the first case, there is an explicit need for additional

76 Method Content Definition

Tasks of the Senior Method Engineer
Method Content Definition

Define Method

Services & Method

Patterns

Define Basic Method

Elements & Basic

Characterization

Elements

Extract Reusable Method Content

Indentify Sources
Indentify and Asses

Method Content

Select and Extract

Method Content

Sources

assessed

method content reusable

method

content

…
Tasks of the Project Team

Method Enactment

Reflect Method …

Informal information flow Control flow
Responsible

Role
Activity

lessons

learned

Fig. 4.1 Extraction of method content from methods described in literature

method content, e.g., based on lessons learned or missing method building blocks
during method composition. In this case, the senior method engineer should
identify and explicitly list all related problem areas and disciplines and then
investigate them for related work as illustrated by [HLH02]. Related work can
be collected by querying scientific databases, e.g., SpringerLink9, IEEExplore10,
ACM Digital library11, Google scholar12 or SCOPUS13. In order to perform a
more directed and formal procedure, relevant literature can be identified using a
structured literature review [KC07] as illustrated by [Sie15].

In the second case, there is no concrete need that needs to be addressed; however,
the method repository shall be updated with the latest trends and best practices.
In this case, the newest proceedings of national and international conferences or
issues of journals concerned with software engineering methods can be reviewed,
e.g., PROFES14, ICGSE15, and ICSSP16 or TSE17, TOSEM18, and Journal of Software:
Evolution and Process19. Searching for studies like [MW15],[KF15] that discuss the
popularity and usage of software engineering methods is also a good approach.

9http://link.springer.com
10http://ieeexplore.ieee.org
11http://dl.acm.org
12http://scholar.google.com
13http://www.scopus.com
14http://www.profes-conferences.org
15http://www.icgse.org/
16http://www.icsp-conferences.org
17http://www.computer.org/web/tse
18http://tosem.acm.org
19http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2047-7481

http://link.springer.com
http://ieeexplore.ieee.org
http://dl.acm.org
http://scholar.google.com
http://www.scopus.com
http://www.profes-conferences.org
http://www.icgse.org/
http://www.icsp-conferences.org
http://www.computer.org/web/tse
http://tosem.acm.org
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2047-7481

4.2 Extract Reusable Method Content 77

On the one hand, the identified work might present original work by the authors
themselves that is worth disseminating directly. On the other hand, it might also
discuss and reference other works, e.g., software engineering methods published as
books [Eng08], industrial standards [ISO07], capability maturity models [Hoe08], or
organizational patterns [CH05], which then serve as the source of method content
that needs to be disseminated.

Identify and Asses Method Content

Especially, when many or extensive works are collected, it might be necessary to
assess the contained method content to prioritize its dissemination. In the following,
we explain a few heuristics that support the selection of suitable works.

Appropriateness Is the work related to the created list of problem areas and
disciplines? Is it related to currently defined method building blocks? Work
discussing methods that relate to these areas are probably more worthy to
disseminate.

Granularity and Focus Is the work describing general-purpose methods or
domain-specific methods? The first typically describe more generic tasks
that are broadly applicable, but usually with less guidance and details. In
addition, the terminology used is more generic. The latter typically provide
specific descriptions and use a specialized terminology. Depending on the
goals of the senior method engineer, content from general-purpose methods
can fill gaps of missing method building blocks more easily, while content
from domain-specific methods provides richer content for specific topics.

Formality Is the description of methods based on a meta-model? Is it very struc-
tured, e.g., by applying templates repeatedly or by using many sections?
Typically, the more structured the method is described, the easier it is to
understand and extract content to formalize it later. Informal and unstruc-
tured descriptions of methods tend to be ambiguous and more difficult to
prepare for extraction. If a description of method is based on a meta-model
that is similar to the MESP meta-model then only little effort is necessary to
extract and reuse method content. However, if the meta-models are dissimilar,
then the effort needed may become as high as with unstructured method
descriptions [Hen+14].

Similarity Is the work using a similar terminology, that is, does it use tasks, roles,
and work products that are the same or close to those that are already in the
method repository? If this is the case, then it is probably easier to extract
method content. However, the benefit of the additional method content might
be smaller as it represents similar ideas.

78 Method Content Definition

Select and Extract Method Content

When the method content is not based on a meta-model or one that is different
to our meta-model, it might become difficult to define basic element and method
building blocks right away, because many methods were not created to be modular
[Ral04]. In addition, very extensive method descriptions are difficult to disseminate,
if not done systematically. Thus, within this task method content is prepared for
the definition based on our meta-model.

Based on the assessment described in the previous section, method content
is selected for further dissemination. For each described method or its part, the
following steps are applied. As a first step, hierarchical and chronological concepts
are identified. Examples are phases, stages, iterations, disciplines or decision gates.
Often, these concepts are used to structure the method and therefore are good
candidates to systematically break up the method as illustrated by [FLE13]. These
orderings are also potential candidates to be later formalized with method patterns.

As a second step, each of the identified concepts are decomposed further into
groups of interconnected concepts. Examples for what we are looking for now
are tasks, activities, task descriptions, events, roles, work products, states and artifacts.
Important connections are for example containment, predecessor, successor, input of,
output of, responsible for. The basic method elements used for these concepts and
their relationships might be mentioned explicitly or only implicitly. In the latter
case, the senior method engineer needs to identify them and make them explicit.

In order to capture and document both kinds of concepts, based on our ex-
perience, natural language and semi-formal diagrams should be used, as it is
often to difficult to formalize the concepts directly. However, if based on a similar
meta-model, concepts can already be formalized by instantiation of basic method
elements from our meta-model.

As a last step, the terminology and situational factors mentioned in the method
content are investigated. In order to define interoperable method building blocks,
they must share the same base of basic method elements. As each method uses its
own terminology, e.g., with respect to role or work products names, its terminology
needs to be mapped to the one used in the method repository. This can be
done by creating a mapping from the terms used in the method content to the
names of basic method elements in the method repository. The mapping can be
provided with a textual table. In order to define interoperable method building
blocks, they must also share the same base of situational factors. In order to
collect suitable situational factors, potential situational factors mentioned within
the method descriptions should be listed in a textual table for later use. The senior
method engineer should also reference identified concepts that are related to these
situational factors according to the method description.

4.2 Extract Reusable Method Content 79

After these steps, the senior method engineer has extracted reusable method
content from methods described in literature. She can then formalize it by creating
basic elements, method services, and method patterns.

4.2.2 Extraction from the Daily Practice of Organizations

Our approach to extract method content based on the daily practice of organizations
consists of five tasks as illustrated by Figure 4.1. The first two task are enacted in
parallel and lead to the task for the creation of method requirements. These first
three tasks serve as the foundation of the following two tasks Process Enactment
Feedback and Select and Extract Method Content. These two tasks are periodically
carried out in order to continuously extend and refine the method repository based
on the experience gained. In the following, we will discuss each task.

Tasks of the Senior Method Engineer
Method Content Definition

Define Method

Services & Method

Patterns

Define Basic Method

Elements & Basic

Characterization

Elements

Extract Reusable Method Content

Analyze Existing

Artifacts and

Interview Experts

Prioritize Goals with

Management

Create Method

Requirements

Select and Extract

Method Content

Process Enactment

Feedback

improvement potentials,

project context

strategic project

goals

method

requirements
reusable

method

content

lessons

learned

…
Tasks of the Project Team

Method Enactment

Reflect Method…

refined method

requirements

Informal information flow Control flow
Responsible

Role
Activity

Fig. 4.2 Extraction of method content from the daily practice of organizations

Analyze Existing Artifacts and Interview Experts

Before the senior method engineer can extract reusable method content from the
daily practice of an organization, she needs to establish an overview of how software
systems are created within that organization.

Based on our experience [FCE14] and as proposed in [BR04], we propose to
conduct interviews with project teams in order to capture the enacted method and
its strengths and weaknesses. Relying solely on the documentation of methods
results in less effort. However, there is the risk that it might not reflect the daily

80 Method Content Definition

practice, when the method is typically not enacted according to its definition and
both deviate from each other. In our opinion, interviews are a good trade-off
between the effort for the analysis and the quality of the results. If desired, other ap-
proaches can be used, e.g., collaborative workshops [FR15] or apprenticing [AW05]
that might cause more effort, but also give different results.

In order to prepare the interviews, we propose to analyze existing artifacts
related to the software engineering method. These are work products created
within software projects, e.g., requirement specifications or design documents, but also
method descriptions that describe the method or parts of it, e.g., task descriptions,
document templates, or checklists. Based on the analysis, the senior method engineer
can already postulate characteristics of the method, possible weaknesses, and
strengths. One weakness might be that documentation for the implementation is
incomplete for some projects.

With the results of the analysis, the senior method engineer can then prepare
the interviews with the project teams. She prepares questions in order to back up
or refute the analysis results. The interviews should be representative such that
with the involved project team members all roles, tasks, work products, and most
situations should be covered. We propose to have the interviews with two inter-
viewers and two interviewees as this provides second opinions when discussing the
questions (interviewees) and later the results (interviewers). The questions should
cover weaknesses and strengths regarding all parts of the software engineering
method: activities, work products, roles, tools, the process, and the flow of informa-
tion. They should also cover the method description with its provided guidances.
Another important aspect are situational factors. The questions should assess, e.g.,
what situational factors are differentiated explicitly (e.g. local and global software
projects) and what situational factors have influence on the used method, e.g., by
affecting the performed tasks or used tools. One result might be that in the past
global software projects, often project team members had differing expectations
regarding the required documentation of the implementation.

The results of artifacts analysis and expert interviews are used to derive method
requirements and to extract method content in the following tasks.

Prioritize Goals with Management

A software engineering method is used by a project team to create a software system
in a software project. While the project team has the primary goal of creating that
software system within time and budget, the management of the organization
pursues middle and long term goals. These might require mandatory activities
within a method that are not primarily beneficial for that same project, but of
strategically interest of the organization. One example might be the long-term
maintainability of the software systems.

4.2 Extract Reusable Method Content 81

In order to identify and consider these strategic method improvement goals,
the senior method engineer should carry out workshops with the stakeholders
that are responsible for the software projects. She can propose strategic method
improvement goals based on the results of the interviews to initiate the discussion.
Once a set of goals is identified, goals have to be prioritized with the managers,
e.g., by letting each of them distribute a smaller amount of priority points among
the goals.

The prioritized strategic method improvement goals are used to derive method
requirements in the following task.

Create Method Requirements

Especially, when not all aspects of the software engineering methods can be ad-
dressed at once, it is necessary to prioritize among them. Similar to [RR01], we
therefore propose the use of method requirements to make the goals of method
content extraction more transparent and to prioritize them with the stakeholders.
Method requirements describe what needs to be ensured by methods, e.g., that
the project team discusses the mutual expectations at project start or that certain
tools are used. Thereby, method requirements provide guidance on what method
content to extract (first).

The senior method engineer proposes method requirements based on both, the
results of the expert interviews and the prioritized strategic method improvement
goals. As with the strategic method improvement goals, she then should carry out
workshops with the stakeholders that are responsible for the software projects and
discuss the method requirements. Once a set of method requirements is identified,
it has to be prioritized by the managers, e.g., by letting them each distribute a
smaller amount of priority points among the requirements.

The prioritized method requirements are used as the basis to select and extract
method content in the following task.

Select and Extract Method Content

With this task, method content is prepared to be formalized within the following
tasks. The goal is to iteratively select and extract method content from the daily
practice within the organization based on the initial set of method requirements
and the refinements from the method enactment. Weaknesses in the existing meth-
ods are addressed by additionally disseminating method content from methods
described in literature.

Based on the prioritized method requirements, the senior method engineer
selects and extracts method content from the daily practice of the organization.
Similar to the initial analysis she can investigate artifacts and interview project teams
to do this. The goal is to capture concepts that are perceived as being successful

82 Method Content Definition

and proven by the project teams and that address the method requirements. If
method requirements cannot be addressed by the daily practice of the project
teams, the methods described in literature are investigated (see Section 4.2.1) for
solutions. As before, the senior method engineer documents tasks, task descriptions,
the process, roles, work products, guidances (tools, templates, checklists), and
associated situational factors. For example, the method requirement for the project
team to discuss the mutual expectations at project start could be fulfilled by a
mandatory kick-off workshop, where these are discussed and documented. Based
on the experience, this might be mandatory only for global software projects.

Based on our experience, natural language and semi-formal diagrams should
be used to capture the extracted method content and reference existing method
descriptions as formalizing the concepts directly is often to difficult. By using an
online document that is accessible via browsers, stakeholders can easily feedback
the extracted method content and the senior method engineer can iteratively refine
it. If the organization already uses a method model based on a meta-model similar
to our meta-model, concepts can already be formalized by instantiation of basic
method elements from our meta-model.

Once feedback from method enactment is available it is used to refine the method
requirements within the task Process Enactment Feedback. Similar to the initial set of
method requirements these are used to select and extract method content from the
daily practice of the organization and, if required, method requirements.

As described in Section 4.2.1, the terminology and the situational factors need to
be investigated and prepared, e.g., using textual tables. However, when extracting
method content from the daily practice within the same organization typically it is
more homogenous and does not require special preparation.

After this step, the senior method engineer has extracted reusable method
content from the daily practice of organizations. She can then formalize it by
creating basic elements, method services, and method patterns.

Process Enactment Feedback

With this task, the senior method engineer uses the feedback from method enact-
ment to check the fulfillment of method requirements and to possibly refine them.
This ensures that the defined method building blocks fulfill the actual requirements
and helps to maintain the transparency for the stakeholders of software projects.

Based on the lessons learned of the project teams, the senior method engineer
checks whether the method requirements were fulfilled and whether additional
method requirements are necessary. She marks method requirements as fulfilled,
e.g., when former weaknesses are successful mitigated. She adds additional and
refined method requirements, if the lessons learned indicate that this is neces-
sary. One example might be that although mutual expectations are discussed and
documented at project start, the documentation for the implementation is still

4.3 Define Basic Elements 83

incomplete for some projects. Then a refined method requirement might be to
review the documentation of the implementation at the end of an iteration.

After this step, the senior method engineer starts another iteration of method
content extraction with the task Select and Extract Method Content.

4.3 Define Basic Elements

In this section, we discuss how our solution addresses the establishment of a
common, updatable terminology (MDR2) and characterization (MDR3) of method
building blocks. To fulfill these requirements, we need to define meta-classes than
can be used to formalize the available terminology and characterization. These
basic elements serve as a common frame of reference as all defined method building
blocks will based on them.

With respect to terminology-related basic method elements, several works dis-
cuss and present software engineering method meta-models. In [ES10], the authors
present the meta-model of their creation-based situational method engineering
approach MetaME and relate its meta-classes to the meta-classes of other popu-
lar approaches. In [Spi15], MetaME is extended to support continuous software
method improvement. One of the first comprehensive software engineering method
meta-models is OPEN [FH02]. Another comprehensive meta-model is provided
by the software engineering method framework V-Modell XT that is prescribed for
projects with the German government [KTF11], but a purely German standard with
little international attention [KFS13b]. Standardization efforts resulted in two stan-
dards. First, the Software Engineering Metamodel for Development Methodologies
known as the ISO/IEC 24744 International Standard [ISO07] and, second, Software
& Systems Process Engineering Meta-Model Version 2.0 [OMG08]. While the first
has gained no impact and practical relevance, the latter has gained attention from
industry and research [KFS13b].

With respect to characterization of method building blocks, many works discuss
relevant situational factors for situational method engineering, however only few
approaches consider a formalization. In [Bek+08], the authors propose a set of
27 situational factors identified as relevant for software product management. In
[CO12] the authors consolidate related research into an initial reference framework
of 44 situational factors and additional sub-factors affecting situational method
engineering. Situational method engineerings approaches often use fixed sets of
key-value pairs to formalize situational factors [Pli96],[Har97],[KDS07] or do omit
an explicit characterization [RDR],[KLR96],[Ell+11].

In the following, we explain the basic elements of our software engineering
method meta-model. Following the structure of or software engineering method
meta-model illustrated in Figure 4.3, we first discuss basic method elements and

84 Method Content Definition

show, how they are used to formalize terminology. Thereafter, we discuss basic
characterization elements used to model situational aspects.

Basic Method Elements Basic Characterization Elements

Method Building Blocks

Fig. 4.3 Excerpt of package structure of MESP meta-model

4.3.1 Definition of Basic Method Elements

The basic method elements of our software engineering method meta-model are
defined in reference to the tool implementation of SPEM, the EPF Composer20,
for the following three reasons. First, SPEM is the most widespread software
engineering method meta-model and it allows defining and updating method
related terminology (MDR2). Second, with the EPF Composer there is tool support
and an implementation of the meta-model for the popular development platform
Eclipse available. Third, a large library of method content formalized with the EPF
Composer is publicly available.

As illustrated by Figure 4.4, SPEM separates reusable method content from its
application in processes (methods). Thus, it differentiates between method content
meta-classes and process meta-classes. Method content describes, e.g., tasks, roles,
and work products that can be used in potentially many different processes, which
reference this method content. Guidances can be defined with respect to both,
method content and processes. As the process part is not relevant to our basic
method elements, in the following, we focus on the method content of SPEM.

As illustrated in Figure 4.4, to define method content in SPEM the meta-classes
Task Definition, Step, Work Product Definition, Role Definition, and Guid-
ance are used. Additionally and not shown in the figure, Task Definitions can
associate a list of Qualifications instances that documents the qualifications
required for the performance of a task. In addition, Task Definitions can associate a
list of Tool Definitions that can be used to support the task.

20http://eclipse.org/epf/

http://eclipse.org/epf/

4.3 Define Basic Elements 85

Method Content Process

Task Definition

Role Definition

Work Product Definition

Guidance

Role Use

Task Use

Work Product Use

Step

references

references

references

Fig. 4.4 Illustration of division between Method Content and Process in SPEM (adopted
from [OMG08])

For our solution, we adopted the method content meta-classes of SPEM’s
implementation, the EPF Composer. Thus, details slightly deviate from the SPEM
standard. As we adopted only parts of the meta-model, we also simplified the
structure of the meta-model by omitting abstract meta-classes and moving their
relationships and attributes to the inheriting meta-classes.

Meta-Classes

In this section, we discuss the basic method element meta-classes of our MESP
meta-model that are illustrated in Figure 4.5 and were adopted from SPEM.

Task Task is based on the SPEM Task Definition meta-class. It represents
work being performed by Roles and it is associated with input and output Work
Products. Inputs are differentiated in mandatory versus optional inputs. A Task
must have a single Role that is responsible for it during method enactment and
can have additional Roles that are associated as additional performers. A Task
can recommend a specific set of Tools to be used to support the Task. It can also
provide a list of Qualifications that the task typically requires to be performed
versus optional inputs. A Task must have a single Role that is responsible for
it during method enactment and can have additional Roles that are associated
as additional performers. A Task can recommend a specific set of Tools to be
used to support the Task. It can also provide a list of Qualifications that the
task typically requires to be performed by one or more Roles and this list can be
mapped against the provided Qualification list defined for Role. As illustrated,

86 Method Content Definition

Role

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

Guidance

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

Tool

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

Qualification

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

Step

- name: String
- mainDescription: String

Task

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

WorkProduct

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

0..*

additionallyPerformedBy

0..*

0..*
step

0..*

guidance

0..*

0..*

guidance

0..*

0..*
managedWorkProduct

0..*

0..*

mandatoryOutput

0..*

0..*

usedTool

0..* 0..*

guidance

0..*

0..*

performedBy

1

0..*

guidance

0..*

0..*

subSection

0..*
providedQualification

0..*

0..*

mandatoryInput

0..*

0..*

requiredQualification

0..*

0..*

optionalInput

0..*

0..*

guidance

0..*

Fig. 4.5 The basic method elements of our meta-model package BasicMethodElements

Task contains several attributes that allow giving it a name, its description, and to
describe its purpose.

Step Step is based on the SPEM Step meta-class. It is used to organize a Task’s
description into parts or subunits of work. Steps can describe sub-steps nested as
subSections into Steps. As illustrated, Step contains attributes that allow giving it
a name and a description.

Role Role is based on the SPEM Role Definition meta-class. It represents a
set of related skills, competencies, and responsibilities and can provide a list of
Qualifications. It is used by Task to define who performs it. As illustrated,
Role contains several attributes that allow giving it a name, its description, and to
describe its purpose.

Tool Tool is based on the SPEM Tool Definition meta-class. It represents a
tool that can be used to process a WorkProduct and it is used by Task to define
its participation in performing the Task. As illustrated, Tool contains several
attributes that allow giving it a name, its description, and to describe its purpose.

Qualification Qualification is based on the SPEM Qualification meta-class.
Qualification documents required qualifications, skills, or competencies for
Roles and/or Tasks. Qualifications can be used to find suitable project team

4.3 Define Basic Elements 87

members to assign them to a Role for method enactment. As illustrated, Qualifi-
cation contains several attributes that allow giving it a name, its description, and
to describe its purpose.

Guidance Guidance is based on the SPEM Guidance meta-class. Guidance pro-
vides additional information related to the associated element, e.g., guidelines,
templates, checklists, or examples. As illustrated, Guidance contains several at-
tributes that allow giving it a name, its description, and to describe its purpose.

Usage

By adopting the standard SPEM, we cover all types of basic method elements that
are relevant. With these, the terminology used in method models can be extended
and updated as required by senior method engineers. For example, let us consider
that the senior method engineer extracted method content from the OpenUP method
as illustrated in our end-to-end example in Section 3.2. OpenUP describes the
usage of an architecture notebook “to capture and make architectural decisions and to
explain those decisions to developers”21. If the notion of architecture notebook did
not exist in her method repository yet, the senior method engineer would not be
able to describe method services that have architecture notebook as input or output.
However, she can introduce the concept of architecture notebook by defining a
new WorkProduct instance as illustrated in Figure 3.10. Senior and project method
engineers are then able to use it in method building blocks and method models. To
the contrary, this would not be possible, if the set of work products was predefined
by us.

4.3.2 Definition of Basic Characterization Elements

The basic characterization elements of our software engineering method meta-
model are defined with respect to the prevalent formalization of situational factors
that is the usage of key-value pairs. As illustrated by the end-to-end example in
Section 3.2, beside situational factors we also need to characterize method building
blocks with categories. Situational factors help to characterize in terms of project
situation, while categories help to characterize method building blocks in terms of,
e.g., origin, discipline, or typical phase. Basic characterization elements need to be
extensible, similar to basic method elements. The senior method engineer needs to
be able to add new situational factors and categories (e.g. customer_involvement,
phase) or respective values (e.g. customer_involvement.high, phase.design).

21http://epf.eclipse.org/wikis/openup/practice.tech.evolutionary_arch.base/
workproducts/architecture_notebook_9BB92433.html

http://epf.eclipse.org/wikis/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html
http://epf.eclipse.org/wikis/openup/practice.tech.evolutionary_arch.base/workproducts/architecture_notebook_9BB92433.html

88 Method Content Definition

Meta-Classes

In this section, we discuss the basic characterization element meta-classes of our
MESP meta-model as illustrated in Figure 4.6.

SituationalFactor

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

Category

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

SituationalFactorValue

- name: String
- mainDescription: String

CategoryValue

- name: String
- mainDescription: String

Fig. 4.6 The basic characterization elements of our meta-model package BasicCharacteri-
zationElements

SituationalFactor SituationalFactor represents a characteristic of the project
or organization that influences the suitability of method building blocks for a
method model. Thus, SituationalFactors span the domain of definition to
describe a situation. A SituationalFactor contains SituationalFactorValues
that represent its co-domain. As illustrated, SituationalFactor contains several
attributes that allow giving it a name, its description, and to describe its purpose.

SituationalFactorValue SituationalFactorValue represents a possible value of
a specific SituationalFactor. Thus, all the SituationalFactorValues of a Sit-
uationalFactor span its co-domain. As illustrated, SituationalFactorValues
contains attributes that allow giving it a name and a description.

Category Category represents a characteristic that is not a SituationalFactor,
but relevant to discriminate method building blocks. Categories span the domain
of definition to classify them and contains CategoryValues that represent its co-
domain. As illustrated, Category contains several attributes that allow giving it a
name, its description, and to describe its purpose.

CategoryValue CategoryValue represents a possible value of a specific Category.
Thus, all the CategoryValues of a Category span its co-domain. As illustrated,
CategoryValues contains attributes that allow giving it a name and a description.

4.4 Define Method Services & Method Patterns 89

Usage

With our formalization of characterization elements, the characterization of method
building blocks and projects can be extended and updated as required by senior
method engineers. For example, the senior method engineer can add a new
situational factor and respective values for customer involvement as illustrated in
the end-to-end example in Section 3.2. As another example, let us consider that the
senior method engineer extracted method content from the plan-driven methods
based on V-Modell XT and OpenUP before. Now she extracts method content from
the agile method Scrum and wants to be able to discriminate plan-driven and agile
method building blocks. The notion of plan-driven or agile was not existent before,
so method building blocks could not be differentiated by their nature. However, she
can introduce a new Category instance as illustrated in Figure 3.10. She would then
be able to characterize the method building blocks accordingly. To the contrary, the
senior method engineer would not be able to extend the characterization elements,
if they were predefined by us.

4.4 Define Method Services & Method Patterns

In this section, we discuss the method building block types provided by our
solution, method services and method patterns. We describe how we enable
the modeling of both atomic and composite activities with our method services
(MDR5) and how we enable the modeling of abstract ordering with our method
patterns (MDR4). We illustrate their interfaces that offer the information necessary
during method composition (MDR6) and explain how the meta-model classes of
method services and method patterns relate to basic method elements to support
consistency (MDR7).

Regarding method building blocks for software engineering method models,
various approaches are discussed in literature. Several authors adopted the terms
method fragments, method chunks, method components, and method services.

The term method fragment was defined in [HBJ94] and became popular by
its use in [Bri96]. In practice, method fragments are usually thought of as the
smallest building blocks of a method, typically defined in terms of an element in
a meta-model [HV97],[Hen+14]. Typically, there are at least two types of method
fragments, process fragments and product fragments, with some kind of association
between them, as for example in [Cer+11].

The term method chunk relates to the combination of a process part and a
product part [RP96b],[RR01],[Ral04],[MR06] and thus a concept that is more coarse-
grained. As method chunks link a process fragment to many product fragments,
the number of elements to create a method model is decreased. In addition, method
chunks possess interfaces to describe the situations where they can be applied

90 Method Content Definition

meaningfully. However, in contrast to the information hiding rationale used in
object-oriented programming, both, fragments and interface, need to be visible to
the method engineer [Hen+14].

The term method component promotes the view of methods as constituted
by exchangeable and reusable components [GLS98]. In [KW04] and [KW06], it
is defined as a self-contained part of a method, expressing the transformation of one or
several artifacts into a defined target artifact and the rationale for such a transformation.
Similar to the interface of method chunks, the method rationale capture the reasons
why a particular method component is useful in a particular context and why it
is designed the way it is. In addition, it allows hiding unnecessary details during
method tailoring [KÅ09]. However, method components were proposed for a
configuration-based situational method engineering approach.

The term method service was coined in [Den+08]. Based on service-oriented
principles, a method service comprises two basic parts: first, a descriptor part with
a semantic description of the purpose and operationalization of the method service
and, second, an implementation part that contains the executable description of the
method service. On top of the method service idea, Rolland has sketched concepts
of method as a service and method-oriented architecture according to the service-oriented
approach [Rol09]. In [Cau10], the authors present another service-oriented approach
called SO2M. In contrast to method components, method services were proposed
for assembly-based situational method engineering approaches, however, there is
still lack for a holistic tool-supported approach.

Regarding the definition of abstract orderings, in [MR06], the authors discuss
beside method chunks and method fragments the notion of patterns and road-maps.

The notion of patterns is commonly used to describe a general solution to a com-
mon problem or issue, one from which a specific solution may be derived [Cop95],[Amb98].
Similarly, a process patterns describes an pattern of activity that has shown to be
successful in practice and that was derived by abstraction from recurring software
development methods [Cop95],[TR07]. For example, in [TR07] the authors provide
a set of high-level process patterns for agile development that they derived from
several agile methods. In [GJS10], the authors describe a procedure to extract pro-
cess patterns out of existing software engineering methods. However, these patterns
are typically described informally. In [PM04], the authors use diagrams based on
SPEM to illustrate their patterns that are still mainly described in natural language.
In [RP96b] and [RP96a], the authors propose generic method construction patterns
formalized with method chunks. These reflect common patterns of behavior that a
method engineer should use to tailor methods. Thus, they do not reflect method
building blocks, but are part of the meta-method to create methods. In [DS98],
the authors discuss a different notion of patterns that encapsulate knowledge about
processes that can be reused and applied in different settings. Thus, this notion of patterns
is close to the original pattern idea. Here, a pattern consists of an interface that

4.4 Define Method Services & Method Patterns 91

describes in which situation the pattern is applicable and a body that uses a method
chunk to describe the pattern.

With respect to road-maps, in [MR06], the authors discuss an approach that
uses road-maps additionally to method chunks. A selected set of method chunks
does not necessarily predetermine the sequence in which the method chunks have
to be used. That means, that different road-maps among a set of method chunks
are possible, where a road-map represents a path in a method model or a specific
sequence of method chunks in a method model. The idea described in the paper
is to add a second step of road-map-driven method configuration to find the
road-map, which is the most suitable for the needs of a team member.

Based on the requirements and the related work, we define two types of method
building blocks in our software engineering method meta-model that are built on
top of the basic elements. Following the structure of our meta-model illustrated
in Figure 4.7, we first explain how method services are formalized. Thereafter, we
explain the formalization of method patterns.

Basic Method Elements Basic Characterization Elements

Method Building Blocks

Method Pattern Method Service

«import»

«import»

«import»

«import»

«import»

Fig. 4.7 Excerpt of the package structure for method building blocks of the MESP meta-
model

4.4.1 Definition of Method Services

The main type of method building block in our solution is the method service
that follows the service-oriented paradigm as described by [Den+08], [Rol09], and

92 Method Content Definition

[Cau10]. However, beside the conceptualization, we require a formalization and
executable notion of method services for our solution for software engineering
method management. Especially, our method services have to fulfill the stated
requirements MDR5, MDR6, and MDR7.

In order to allow for the definition of executable method services that reflect both
atomic and composite activities (MDR5), we use a variation of the composite pattern
[Gam+07] in our meta-model and embed a process within each method service. This
process is then comprised of a single reference to a task (atomic activity) or a flow
of method service references (composite activity). Following the principles of other
approaches based on method services, our method service comprises two parts,
interfaces and a process. The interfaces describe the information necessary during
method composition (MDR6), while the process part contains the operationalization
of the method service. Both, the interfaces and the process part are designed to
reuse basic elements instead of duplicating them in order to support consistency
(MDR7).

Meta-Classes

In this section, we discuss the method service related meta-classes of our MESP
meta-model as illustrated in Figure 4.8.

MethodService MethodService is the main method building block of our ap-
proach. It represents the composable notion of work, both an atomic task or a flow
of composed method services. MethodService contains two interfaces to describe its
suitability with respect to situations and other method services. It also contains an
executable Process with the actual description of work – the tasks that need to be
performed. This process is the same meta-class that is used within method models
(see Section 5.3.2). It references method services and tasks via TaskDescriptors
and MethodServiceDescriptors to denote that they are executed as part of the
process and thus, as part of the method service (control and data flow meta-classes
used in a process are omitted in Figure 4.8). As illustrated, MethodService contains
several attributes that allow giving it a name, its description, and to describe its
purpose.

CharacterizationInterface CharacterizationInterface characterizes the suit-
ability with respect to a situation by referencing suitable and unsuitable situational
factor values. In addition, it references suitable category values.

StructuralInterface StructuralInterface characterizes the technical interoper-
ability with respect to work products and roles. It describes the work products
that are optionally or mandatory required in order to work properly and the work

4.4 Define Method Services & Method Patterns 93

MethodService

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

CharacterizationInterface StructuralInterface

methodElements::Process

methodElements::Role

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

methodElements::
WorkProduct

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

characterizationElements::
SituationalFactorValue

- name: String
- mainDescription: String

characterizationElements::
CategoryValue

- name: String
- mainDescription: String

methodElements::Activity

- name: String
- mainDescription: String

methodElements::
TaskDescriptor

- name: String

methodElements::
MethodServiceDescriptor

- name: String

methodElements::Task

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

methodElements::
AtomicActivity

1

0..*

performedBy
0..*

targetService

1

0..*

optionalInput

0..*

1

1

0..*

mandatoryInput

0..*

0..*

excludedFactors

0..*

0..*

includedFactors

0..*

1

0..*

mandatoryOutput

0..*

0..*

additionallyPerformedBy

0..*

0..*

targetTask

1

0..*

includedFactors
0..*

Fig. 4.8 The method service related meta-classes of our meta-model package MethodSer-
vice

products that are produced. It also describes the roles that are used within the
characterized unit, e.g., a method service.

Usage

With our formalization of method services, we enable the modeling of atomic
and composite activities as the process of a method service can reference a single
task or a complex flow of method services. Thus, the senior method engineer can
summarize several tasks to more coarse-grained, executable, and composable units
of work. Figure 4.9 shows a refined illustration of the method service derived from
OpenUP as shown in 3.11. As illustrated, both parts of the method service, the
interface part and the process part, reuse basic elements to express the usage of
work products, roles, and tasks as well as situational factor values and category
values.

94 Method Content Definition

Refine The Architecture:
MethodServ ice

Refine The Architecture:
Task

:StructuralInterface

:Process :TaskDescriptor:Sequence

Dev elopment:
CategoryValue

Plan-driv en:
CategoryValue

Design: CategoryValue

System_Criticality.medium:
SituationalFactorValue

System_Criticality.high:
SituationalFactorValue

Customer_Inv olv ement.medium:
SituationalFactorValue

:CharacterizationInterface

ArchitectureNotebook:
WorkProduct

Architect: Role

includedFactors

performedBy

includedCategories

includedCategories

targetTask

includedFactors mandatoryOutput

mandatoryInput

includedCategories

includedFactors

Fig. 4.9 A method service derived from OpenUP

4.4.2 Definition of Method Patterns

The second type of method building block in our solution is the method pattern that
follows the pattern-based ideas as described by [TR07]. Our method patterns need
to describe abstract orderings (MDR4) and thus abstract from concrete method
services. However, while patterns are typically described informally, we need
sufficient formalization of these patterns in order to help project method engineers
to model executable method models and to precisely evaluate their fulfillment
during the quality assurance of method tailoring. Thus, our notion of patterns
goes beyond formalizations as presented in [DS98]. Our method patterns contain
scopes that are connected by executable control flow and where each scope contains
a constraint. A method pattern is successfully implemented in a method model,
when all constraints are fulfilled. Constraints are defined with a Domain Specific
Language (DSL), such that senior method engineers does not have to use low-level
modeling, while constraints can still be evaluated automatically. In addition, our
method services have to fulfill the stated requirements MDR6 and MDR7.

Meta-Classes

In this section, we discuss the method pattern related meta-classes of our MESP
meta-model. The main meta-classes are illustrated in Figure 4.10. The abstract
syntax of the DSL to model constraints is also defined within the MESP meta-model.

4.4 Define Method Services & Method Patterns 95

The related meta-classes are illustrated in Figure 4.11, Figure 4.12, and Figure 4.13

and will also be described in the following.

MethodPattern

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

serviceElements::
CharacterizationInterface

ConstrainedScope

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

methodElements::
ActivityWithActivity

Condition

- name: String
- mainDescription: String

methodElements::Activity

- name: String
- mainDescription: String

characterizationElements:
:CategoryValue

- name: String
- mainDescription: String

characterizationElements:
:SituationalFactorValue

- name: String
- mainDescription: String

0..*

excludedFactors

0..*

0..1

0..*

includedCategories

0..*

1

0..*

includedFactors 0..*

Fig. 4.10 The method pattern related meta-classes of our meta-model package MethodPat-
tern

MethodPattern MethodPattern is the second type of method building block of
our approach. It represents abstract orderings of groups of method services, where
these groups are paraphrased by constraints that need to be fulfilled by using
the right method services. A MethodPattern contains a ConstrainedScope that
represents the actual pattern content and a CharacterizationInterface that
characterizes the suitability of the method pattern (see Section 4.4.1).

As illustrated, MethodPattern contains several attributes that allow giving it a
name, its description, and to describe its purpose. In particular, the mainDescription
attribute can be used to describe intent, problem, context, and forces with natural
language, as known form pattern descriptions like in [CS95].

ConstrainedScope ConstrainedScope represents the content of a method pat-
tern. It consists of its content and a Condition that this content needs to fulfill.
A control flow either can host an empty control flow element like a sequence or
further constrained scopes connected by control flow. Thus, a ConstrainedScope
can host a complex structure of constrained scopes.

96 Method Content Definition

As illustrated, ConstrainedScope contains several attributes that allow giving
it a name, its description, and to describe its purpose.

Condition Condition formalizes the constraint of a ConstrainedScope that
needs to be fulfilled by the method service descriptors used within a Constrained-
Scope. The constraint is expressed with the DSL created for the usage by senior
method engineers illustrated in the Figures 4.11–4.13.

As illustrated, Condition contains attributes to give it a name and a description.

Condition

- name: String
- mainDescription: String

SingleConditionOrCondition AndCondition

Expression

- quantifier: Quantifier

«enumeration»
Quantifier

 AllFulFill
 AtLeastOneFulfills
 NoneFulfills

MethodObjectCharacterization

ServiceCharacterization WorkProductCharacterization

leftCondition

rightConditionrightCondition

leftCondition

Fig. 4.11 The condition related meta-classes of our meta-model package patternElements

OrCondition As illustrated in Figure 4.11, OrCondition is one of the three kinds
of conditions. It consists of two conditions, where at least one must be fulfilled in
order for the OrCondition to be fulfilled.

AndCondition AndCondition is the second of the three kinds of conditions. It
consists of two conditions that both must be fulfilled in order for the AndCondition
to be fulfilled.

4.4 Define Method Services & Method Patterns 97

SingleCondition SingleCondition is the third of the three kinds of conditions.
It consists of an expression that is either fulfilled or not fulfilled by the Con-
strainedScope that hosts the SingleCondition.

Expression Expression represents an expression about one or more method
services or work products that is fulfilled or not. It contains a MethodObjectChar-
acterization that characterizes method services or method patterns. In addition,
it has a quantifier that denotes that the MethodObjectCharacterization has to
be true for all (AllFulfill), at least one (AtLeastOneFulfills), or no (NoneFulfills)
method service or work product in order for the expression to be fulfilled.

MethodObjectCharacterization MethodObjectCharacterization represents a
characterization of one or more method services (ServiceCharacterization) or
work products (WorkProductCharacterization) that is fulfilled or not.

MethodServiceCharacterization MethodServiceCharacterization represents
a characterization of one or more method services. The related meta-classes are
illustrated in Figure 4.12.

WorkProductCharacterization WorkProductCharacterization represents a
characterization of one or more work products. The related meta-classes are
illustrated in Figure 4.13.

OrServiceCharacterization As illustrated in Figure 4.12, OrServiceCharacter-
ization is one of the three kinds of service characterizations. It consists of two
service characterizations, where at least one must be fulfilled in order for the
OrServiceCharacterization to be fulfilled.

AndServiceCharacterization AndServiceCharacterization is the second of the
three kinds of service characterizations. It consists of two service characterizations
that both must be fulfilled in order for the AndServiceCharacterization to be
fulfilled.

SingleServiceCharacterization SingleServiceCharacterization is the third
of the three kinds of service characterizations. It consists of a ServiceIdenti-
ficationConstraint that characterizes method services.

ServiceIdentificationConstraint ServiceIdentificationConstraint charac-
terizes method services by identity, category, or usage of work products.

98 Method Content Definition

«enumeration»
OwningModifier

 Has
 HasNot

«enumeration»
IdentityModifier

 Is
 IsNot

«enumeration»
DataDirectionModifier

 AsInput
 AsOutput

ServiceCharacterization

WorkProductCharacterization

OrServiceCharacterization

SingleServiceCharacterization

AndServiceCharacterization

ServiceIdentificationConstraint

ServiceIdentificationByIdentity

- identityModifier: IdentityModifier

ServiceIdentificationByCategory

- owningModifier: OwningModifier

ServiceIdentificationByWorkProduct

- owningModifier: OwningModifier
- dataDirection: DataDirectionModifier

serviceElements::MethodService

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

characterizationElements::
CategoryValue

- name: String
- mainDescription: String

0..*
methodService

1

rightCharacterizationrightCharacterization

0
categoryValue

1

leftCharacterization
leftCharacterization

Fig. 4.12 The service characterization related meta-classes of our meta-model package
patternElements

4.4 Define Method Services & Method Patterns 99

ServiceIdentificationByIdentity ServiceIdentificationByIdentity charac-
terizes method services by identity. It references a method service and requires that
one or more method service descriptors for that method service are present or not
present, depending on the identityModifier being set to Is or IsNot, respectively.

ServiceIdentificationByCategory ServiceIdentificationByCategory charac-
terizes method services by their associated category. It requires that one or more
method service descriptors that reference method services with that category are
present or not present, depending on the identityModifier being set to Is or IsNot,
respectively.

ServiceIdentificationByWorkProduct ServiceIdentificationByWorkProduct
characterizes method services by their usage of work products. It requires that one
or more method service descriptors use a specific work product are present or not
present, depending on the identityModifier being set to Is or IsNot, respectively. With
the attribute owningModifier it is set whether the work product has to be used as in-
put (AsInput) or output (AsOutput). Instead of specifying a work product directly,
the work product is described with the contained WorkProductCharacterization
as this is more flexible.

OrWorkProductCharacterization As illustrated in Figure 4.13, OrWorkProduct-
Characterization is one of the three kinds of work product characterizations. It
consists of two work product characterizations, where at least one must be fulfilled
in order for the OrWorkProductCharacterization to be fulfilled.

AndWorkProductCharacterization AndWorkProductCharacterization is the
second of the three kinds of work product characterizations. It consists of two work
product characterizations that both must be fulfilled in order for the AndWorkPro-
ductCharacterization to be fulfilled.

SingleWorkProductCharacterization SingleWorkProductCharacterization is
the third of the three kinds of service characterizations. It consists of a WorkPro-
ductIdentificationConstraint that characterizes method services.

WorkProductIdentificationConstraint WorkProductIdentificationConstraint
characterizes work products by identity and their usage by method services.

WorkProductIdentificationByIdentity WorkProductIdentificationByIdentity
characterizes work products by identity. It references a work product and requires

100 Method Content Definition

ServiceCharacterization

WorkProductCharacterization

OrWorkProductCharacterization AndWorkProductCharacterization

SingleWorkProductCharacterization

WorkProductIndentificationConstraint

WorkProductIndentificationByIdentity

- identityModifier: IdentityModifier

WorkProductIndentificationByUse

- usedAsModifier: DataDirectionModifier

methodElements::WorkProduct

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

leftCharacterization
leftCharacterization

0..*
workProduct

1

rightCharacterization rightCharacterization

Fig. 4.13 The work product characterization related meta-classes of our meta-model package
patternElements

4.5 Summary 101

that it is used or not, depending on the identityModifier being set to Is or IsNot,
respectively.

WorkProductIdentificationByUse WorkProductIdentificationByUse charac-
terizes work products by their usage within method services. Depending on the
usedAsModifier attribute, it requires that work products are used as input (AsInput)
or output (AsOutput) of specific method services. Instead of specifying a method
service directly, the method service is described with a ServiceCharacterization
as it is more flexible.

Usage

With our formalization of method patterns, we enable the modeling of abstract or-
derings with varying levels of complexity and with a high-level modeling language.
Figure 4.14 shows the object model for the method pattern derived from Scrum
that is illustrated in Figure 3.12. This method pattern is more complex and contains
three constrained scopes within a sequence. Our formalization allows defining
method patterns that are independent of concrete method services and that can be
precisely evaluated for their fulfillment during the quality assurance of composed
method models. The constraints in the figure characterize method services mostly
by category values. Only the method service Hold Standup Meeting is referenced
directly. This example also shows that method patterns reuse basic elements to
express the usage of work products, situational factor values, and category values.

4.5 Summary

In this chapter, we presented the details of the method content definition with our
approach that fulfills the MDRs explained in Section 4.1. In particular, we con-
tributed two ways to extract reusable method content (MDR1), first, by extraction
from methods described in literature, and second, by extraction from the daily
practice of organizations. We then explained the formalization of basic elements, of
basic method elements (MDR2) and basic characterization elements (MDR3). There-
after, we showed how method services are formalized, our main type of method
building blocks that is a reusable, compositional, interoperable, and executable unit
of method based on the service-oriented paradigm (MDR5,MDR6). Furthermore,
we explained the formalization of method patterns, our second type of method
building block that captures abstract orderings of activities as a guidance for the
project method engineer (MDR4). We showed, that both, the method service and
the method pattern is formalized based on reusing existing meta-classes in order to
support consistency (MDR7).

102 Method Content Definition

Agile Loop:
MethodPattern

:ConstrainedScope :ConstrainedScope :ConstrainedScope

:ConstrainedScope :Sequence

:CharacterizationInterface

:SingleCondition :SingleCondition:AndCondition

:Expression

quantifier = AtLeastOneFulfi l ls

:Serv iceIdentificationByCategory

owningModifier = Has

:SingleServ iceCharacterization

Planning:
CategoryValue

:Expression

quantifier = AllFulfi l l

:Expression

quantifier = AllFulfi l l

:Expression

quantifier = AtLeastOneFulfi l ls

:SingleServ iceCharacterization :SingleServ iceCharacterization :SingleServ iceCharacterization

:Serv iceIdentificationByCategory

owningModifier = Has
:Serv iceIdentificationByCategory

owningModifier = Has

Dev elopment:
CategoryValue

QualityAssurance:
CategoryValue

:Serv iceIdentificationByIdentity

identityModifier = Is

Hold Standup
Meeting:

MethodServ ice

Agile:
CategoryValue

System_Criticality.medium:
SituationalFactorValue

System_Criticality.low:
SituationalFactorValue

Customer_Inv olv ement.medium:
SituationalFactorValue

Customer_Inv olv ement.high:
SituationalFactorValue

includedCategories

includedFactorsincludedFactors

rightCondition

categoryValue categoryValue

includedFactorsincludedFactors

methodService

leftCondition

categoryValue

Fig. 4.14 The object model of the method pattern derived from Scrum shown in Figure 3.12

4.5 Summary 103

In the following chapter, we discuss the details of method tailoring with our
approach and explain requirements and related work, the formalization with the
meta-model, and the operationalization with algorithms.

CHAPTER 5

Method Tailoring

In the previous chapter, we presented the method content definition by the senior
method engineer. In this chapter, we discuss the details of method tailoring by the
project method engineer.

This chapter is structured as follows. In Section 5.1, we discuss the requirements
and related work. In Section 5.2, we explain the formalization of project situations.
We focus on the definition of method models in Section 5.3. In Section 5.4, we
discuss our quality model and quality assurance framework. Then we present the
preparation of method models for execution in Section 5.5. Finally, we summarize
the chapter in Section 5.6.

5.1 Requirements and Related Work

5.1.1 Requirements

5.1.2 Related Work

5.2 Characterize Project

5.2.1 Meta-Classes

5.2.2 Usage

5.3 Compose Project-Specific Method

5.3.1 Identifying Suitable Method Building Blocks

5.3.2 Specification of Methods

5.4 Assure Quality of Method

5.4.1 Quality Model

5.4.2 Automated Quality Assurance Framework

106 Method Tailoring

5.4.3 Usage

5.5 Initialize Method

5.5.1 Transformation, Deployment & Configuration

5.5.2 Usage

5.6 Summary

5.1 Requirements and Related Work

In this section, we describe the requirements and related work of method tailoring.
We first present the method tailoring requirements (MTRs) that are a refinement
of the solution requirements (SRs) presented in Section 2.2.1. Then we briefly
summarize the related work that will be discussed also in the respective sections
later.

5.1.1 Requirements

In this section, we discuss the requirements with respect to the method tailoring
for a holistic solution for software engineering method management based on an
assembly-based method engineering approach.

In assembly-based method engineering, suitable method building blocks need
to be composed based on the project situation. According to SR2.1, the first task of
a project method engineer is therefore to characterize the project situation, so that
she can determine suitable method building blocks based on it. The first MTR for
our solution is therefore to enable the formalization of project characteristics such that
suitable method building blocks can be determined (MTR1).

After the project is characterized, the project method engineer has to compose
the project-specific method model by composing selected method building blocks.
In order to provide her with guidance (SR2.2), a MTR is to enable her to combine
selected method patterns by nesting them into each other (MTR2).

Also important for the composition of method models is to enable their ex-
ecutability (SR3.1). Therefore, a MTR is that our formalization needs to support
formal control and data flow in method models (MTR3). Based on SR3.1, it should allow
the project method engineer to use a high-level language to formalize both.

A project method engineer has to be able to check for the consistency of the
composed method model (SR2.4). As the notion of quality is generally not defined
for software engineering method models, a MTR is to define and categorize the notion
of quality for software engineering method models (MTR4).

As method models can become so large that the manual quality assurance is
very tedious, another MTR is to automatically check for the consistency of method models

5.1 Requirements and Related Work 107

(MTR5). The analysis has to run fast enough to be used during method composition
by the project method engineer. It has to check for the executability of method
models and the fulfillment of used method patterns and shall be extensible.

Composed method models shall be executable (SR3.1). Instead of implementing
our own process engine, we decide to enable the use of process engines established
as standard in industrial practice. Therefore, each of our method models has to be
transformed into a BPEL/BPEL4People process model for its execution. Thus, a
MTR is to transform method models to process models automatically (MTR6).

The transformed process model has to provide an interface for the team members
to interact with the method (SR3.2). Therefore, a MTR for the transformation from
method models to process models is to incorporate the creation of suitable GUIs for
tasks into the transformation (MTR7). The team members shall be enabled to access
and specify information about work products, tasks, and the method execution
state, e.g., the current iteration or project phase.

The discussed MTRs are summarized in Table 5.1. Also illustrated is the MESP
task where the specific requirement needs to be addressed. In the following, we
discuss each MESP task of our solution for method tailoring. We then also explain
how the respective requirements are met.

Table 5.1 Method tailoring requirements and the affected MESP tasks

Requirement Description MESP Task

MTR1 enable the formalization of project charac-
teristics such that suitable method building
blocks can be determined

Characterize Project

MTR2 enable her to combine selected method pat-
terns by nesting them into each other

Compose Project-
Specific Method

MTR3 support formal control and data flow in
method models

Compose Project-
Specific Method

MTR4 define and categorize the notion of quality
for software engineering method models

Assure Quality of
Method

MTR5 automatically check for the consistency of
method models

Assure Quality of
Method

MTR6 transform method models to process models
automatically

Initialize Method

MTR7 incorporate the creation of suitable GUIs for
tasks into the transformation

Initialize Method

108 Method Tailoring

5.1.2 Related Work

Regarding the project characteristics, many approaches discuss the use of situational
factors and associated values, e.g., [HV97], [NH03] and [KDS07], similar to the
characterization of method building blocks. In [GGH08], the authors discuss a
slightly different idea by considering so-called method goals. However, in these
approaches have in common that the situation is determined by selecting one of
the provided values for each attribute in a list.

Regarding the identification of suitable method building blocks, most tool-
supported approaches only offer facilities to browse the method repository manu-
ally for suitable method building blocks, e.g., [KLR96],[Cer+11],[Ell+11] and only
few approaches offer additional support, e.g., by a textual query language [BSH01].
Proposals that go beyond that involve the use of similarity measures and backward
chaining of activities based on the required output work products [GH08].

Regarding the formalization of method models only few assembly-based
method engineering approaches allow modeling methods that are executable,
e.g., Demacrone [Har97] and MENTOR [SRG96],[Pli96]. More recently proposed
standard meta-models like SEMDM and SPEM lack support for executability. Ex-
tensions to these standards that enhance them for executability exist, e.g., [Ben+07]
and eSPEM [Ell+10; Ell+11], however, they lack support for assembly-based method
engineering.

Regarding the analysis of method models for quality issues, there is no accepted
and standardized notion of quality for software engineering method models. Only
few works discuss measurable and quantifiable notions of quality and propose
well-formedness rules or quality constraints, e.g., [Har97; BSH98], [Chr00], and
[Per+11].

Regarding the initialization of method models for enactment, some approaches
focus on creating documentation for the method to be used by the project team,
e.g., EPF Composer, IBM Rational Method Composer, and MC Sandbox [KÅ11;
KÅ12], while others derive a suitable Computer-aided software engineering (CASE)
environment [PS97], [KLR96], [Cer+11]. Only few approaches discuss execution
support, either supported natively by build-in execution support [Har97], [SRG96;
Pli96], [Ell+10; Ell+11], or by a mapping to an executable process description
language with process engine support [Ben+07].

5.2 Characterize Project

In this section, we discuss how our solution addresses the formalization of project
characteristics to support the search for method building blocks (MTR1). In the
following, we first discuss related work and then explain our formalization.

5.2 Characterize Project 109

The role of project characteristics and their formalization is discussed for exam-
ple in [HV97]. Here the author proposes to determine the situation by assessing
situational factors of the project. These should then be used to query for suitable
method building blocks. However, a solution is not proposed. In [NH03], the
authors discuss tool support for the OPEN approach [FH02] and propose the use of
a set of situational factors and associated values. They list a first set of 16 situational
factors, e.g., domain and product size and propose that these can best be elicited
using a questionnaire. In [KDS07], the authors extend the assembly-based approach
first proposed in [RR01] with the assessment of project characteristics. They also
propose the use of situational factors and associated values. They discuss the
four dimensions organizational, human, application domain, and development strategy,
where each dimension contains several situational factors and their possible values.
Related work specifically on situational factors, i.e., [Bek+08] and [CO12], is dis-
cussed in Section 4.3. In [GGH08], the authors discuss a slightly different idea by
considering so-called method goals, e.g., product reliability or project time constraints,
and then assign each method building block values that expresses its contribution,
e.g., enhances or deteriorates. They propose the use of goal analysis (e.g. [Bre+04]) to
find the best combination of method building blocks with respect to the prioritized
method goals. However, they only explain how to determine the better of two sets
of method building blocks, not how to come up with the set in the first place.

In the following, we explain the formalization of the project characteristics with
our software engineering method meta-model and then illustrate its usage.

5.2.1 Meta-Classes

In this section, we discuss the meta-classes of our MESP meta-model used to
formalize the project characteristics as illustrated in Figure 5.1.

ProjectMethod ProjectMethod represents the method model throughout its com-
position and contains all other method model related elements. Thus, the formal-
ization of the project characteristics is modeled to be part of ProjectMethod: it
contains a ProjectGoal and a ProjectSituation. In addition, ProjectMethod
contains attributes that allow giving it a name and descriptions.

ProjectGoal ProjectGoal is one of the two meta-classes that is used in our
approach to formalize the project characteristics. Our notion of project goal differs
from the goals used in [GGH08] as there the focus was on prioritizing among
different qualities when choosing a set of method building blocks. However, our
project goal captures what needs to be produced by the method in the project
and what input is available at project start to do that. Thus, it is associated with
input and output Work Products. It also associates the Roles that perform work

110 Method Tailoring

ProjectMethod

- name: String
- briefDescription: String
- mainDescription: String

ProjectSituation

- briefDescription: String
- mainDescription: String

ProjectGoal

- briefDescription: String
- purpose: String
- mainDescription: String

Role

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

WorkProduct

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

CharacterizationInterface

CategoryValue

- name: String
- mainDescription: String

SituationalFactorValue

- name: String
- mainDescription: String

0..* includedCategories

0..*

0..*
mandatoryOutput

1..*

0..*

includedFactors

0..*

0..*
performedBy

1..*

0..*

mandatoryInput

0..*

0..* excludedFactors

0..*

Fig. 5.1 The project characteristics related meta-classes of our meta-model package Project-
Method

in the method model. While roles might not always be relevant as a requirement
for project composition, the list of involved roles is helpful after the method is
composed, for example during method initialization. ProjectGoal has attributes
that allow giving it a descriptions and to explain the purpose of the method model.

ProjectCharacterization ProjectCharacterization is the second of the two
meta-classes that is used in our approach to formalize the project characteristics.
It expresses the situation by sets of situational factor values and characterization
values following the same idea as other approaches discussed in related work.
The associations are established by inheritance from the meta-class Characteriza-
tionInterface. In addition, ProjectCharacterization has attributes that allow
giving a textual description of the situation.

5.2.2 Usage

Our formalization of the project characteristics allows us to capture textual de-
scriptions of the project goal and the project characterization. More importantly, it
allows us to formally associate work products, roles, situational factor values, and
characterization values as we illustrated with Figure 3.18. The formal description
eases the search for suitable method building blocks, but also benefits the quality as-
surance and initialization of the composed method model. While many approaches
propose a fixed list of possible work products or situational factor values, our

5.3 Compose Project-Specific Method 111

solution allows the senior method engineer to add new basic elements and the
project method engineers to directly use them during project characterization.

5.3 Compose Project-Specific Method

In this section, we discuss how suitable method building blocks are identified with
our solution and how they are composed to executable method models (MTR3)
including support for combined patterns (MTR2).

Regarding the identification of suitable method building blocks, many tool-
supported approaches only allow manually browsing the method repository, e.g.,
[KLR96], [Cer+11],[Ell+11]. The tool Demacrone [Har97] additionally offers the
textual query language MEL [BSH01] that is similar to SQL and allows querying for
method building blocks that fulfill certain criteria, e.g., SELECT X Which PRODUCES
Object Model and PARTICIPATION_TYPE = Much user participation. The
tool MENTOR [SRG96; Pli96] also supports the identification of suitable method
building blocks by presenting a list of candidate building blocks based on the
situation and the context of a task. In [RR01], four generic strategies for the selection
of method building blocks are discussed. The evaluation strategy describes the
approach, where the degree of matching between the candidate method building
block to the project characteristics is used. This can be calculated using similarity
measures as also described in [MR06]. The decomposition strategy can be used,
if a method building block is a composite building block. It proposes to deselect
building block parts that are not required to fulfill the current requirements, i.e.,
the project characteristics. The aggregation strategy proposes to look for composite
building blocks that contain the candidate building block, if it does not fulfill
the requirements fully. The refinement strategy proposes to look for a different
building block that also fulfills the requirements, but offers richer content, e.g., by
having more guidances. In [GH08], the authors propose to create a method model
by backward chaining the activities that produce the required output. Thus, based
on the final work product of the method, the activities that produce these work
products are identified and added as predecessors. Then for the required input
work products of these predecessors, suitable activities are searched and added.
This is done recursively until activities are added, where the required input work
products are available at project start.

Regarding the formalization of method models, only few assembly-based
method engineering approaches allow modeling methods that are executable.
Demacrone [Har97] and MENTOR [SRG96],[Pli96] support the creation of exe-
cutable method models that are composed of method building blocks. However,
both are based on outdated, proprietary technology, low-level specification lan-
guages and low-level (e.g. character-based) user interfaces. More recently proposed
standard meta-models for software engineering methods like SEMDM and SPEM

112 Method Tailoring

lack execution tool support (SEMDM) or execution support in general (SPEM).
Bendraou et al. [Ben+07] and Ellner et al. [Ell+10; Ell+11] propose extensions to
SPEM to address SPEMs lack of executability. Bendraou et al. propose xSPEM
and present ideas to map it to BPEL in order to provide enactment support and
sketch some mappings between concepts of xSPEM and BPEL [Ben+07]. They
discuss that BPEL4People could be used to allow for human interaction, however
no details are given. Also, assembly-based method engineering is not addressed.
Ellner et al. developed eSPEM [Ell+10] and provide tooling based on the Eclipse
ecosystem to model and execute software engineering methods [Ell+11]. However,
situational method engineering support is very limited as method building blocks
and the project cannot be characterized. Other approaches focus explicitly and
solely on the provision of executable method models and corresponding process
engines, however, neglecting situational method engineering. Based on the idea of
process programs [Ost87], in [Wis+00] software engineering methods are described
with Little-JIL, a language for programming the coordination of agents. As this
language and the provided tool support focus on the coordination of tasks, the
actual enactment of tasks is left to the agents and descriptions and guidances for
tasks are not supported.

In the following, we discuss how the project method engineer identifies suitable
method building blocks for her project-specific method. Thereafter, we explain
the formalization of method model compositions with our software engineering
method meta-model and then illustrate its usage.

5.3.1 Identifying Suitable Method Building Blocks

Our approach to identify suitable method building blocks consists of three steps
that are performed in parallel and represent three strategies to identify suitable
method building blocks. While two are known from related work, one is based on
our novel notion of method patterns. In the following, we will discuss each step.

Identify based on Characterization

In our approach, the project situation is characterized with the same situational
factor values and category values that are used to characterize method services
and method patterns. Therefore, suitable method building blocks can be identified
using an evaluation strategy [RR01], i.e., based on the similarity of situational factor
values and category values between the project situation and the characterization
interface of building blocks. For example, if the project situation includes the
situational factor customer_involvement.medium then method building blocks with
customer_involvement.medium among their involved factors can be identified.

Part of this step is also to refine the project situation based on the amount of
matching method building blocks. To reduce the number of matching method

5.3 Compose Project-Specific Method 113

building blocks, additional situational factors could be considered. For example,
additionally taking into account the system criticality into the project situation
with adding system_criticality.medium could reduce the number of matching method
building blocks. On the contrary, if the search for method building blocks does
not render sufficient results, the project characterization can be relaxed by reduc-
ing the number of situational factors (e.g. by removing system_criticality.medium)
or by adding situational factor values that relax this condition, e.g., by adding
criticality.low.

Identify based on Work Products

In our approach, the project goal is characterized with input and output work
products and the roles to be involved via the method model. In addition, each
method service describes the input and output work products and responsible
role as part of its structural interface. Following the idea proposed in [GH08],
suitable method building blocks can thus be identified by their provided output
work products based on the currently needed work products. For example, when
integration test results are required as an output of the method, the project method
engineer can check the method repository for method services that provide that
output. This strategy is not limited to the required output work products of the
method, but can be used also to add method services that create the output work
products needed as input by method services used in the method model.

We propose additionally using the provided input work products that are
available at project start to identify method services that process them towards the
output work products. For example, if a requirements specification is provided
at project start or created by a method service in the method model, the method
service Create Test Cases could be added, as it uses a requirement specification as
input. While it might turn out that this identified method service is not useful to
progress towards the required outputs of the method model, this strategy can help
to identify useful method services. It is not limited to the provided inputs at project
start, but can be used also to add method services that consume an work product
that is created by method services used in the method model.

Identify based on Method Pattern Constraints

As our solution for software engineering method management introduces the
notion of method patterns, we propose a third strategy to identify suitable method
building blocks. Method patterns used in the method model are fulfilled, when
the condition of all of their constraint scopes is fulfilled. These conditions describe
the necessity for the presence or absence of method services based on their identity
(specifically named), associated category values, or processed or produced work
products. Therefore, useful method services can be identified by searching for

114 Method Tailoring

method services that fulfill the conditions. For example, the first constrained
scope shown in Figure 3.15 is fulfilled with a method service that has a system
architecture as its output work product. Consequently, the method service Prepare
System Specification can be identified and a corresponding method service descriptor
ca be added to the method model.

5.3.2 Specification of Methods

As SPEM is the most widespread software engineering method meta-model with
available tool-support, we used it as the foundation for our basic method elements.
However, as SPEM lacks execution-support and support for our method services
and method patterns, we cannot use it or extensions like eSPEM [Ell+10] to model
composed method models that are executable. Therefore, we introduce our own
composition language to describe composed, executable method models, however,
we rely on the two standards SPEM and BPEL. SPEM is the de facto standard for
software engineering methods, however without support for executability. BPEL
is one of the two de facto standard executable process description languages
with broad and mature tool support, however without support for the typical
terminology of software engineering methods and with a textual and very technical
specification language. Our terminology is influenced by the Process-related classes
of SPEM (cf. Figure 4.4), while we adopted the structure of BPEL processes. Similar
to the idea of xSPEM [Ben+07], we provide a mapping of our language to BPEL to
give it execution semantics. However, our approach goes beyond xSPEM, as we also
support data flow and GUIs for the project team members. Hence, we also rely on
BPEL4People. Our formalization of method models allows specifying executable
compositions of method building blocks with deterministic control and data flow.
The formalization is based on the scalable well-formed structure of BPEL process
models, but allows the project method engineer to use a high-level language with
the typical software engineering method related terminology.

Meta-Classes

In this section, we discuss the method-composition related meta-classes of our
MESP meta-model that are adopted from SPEM and BPEL. Figure 5.2 illustrates the
control-flow related meta-classes of our meta-model, while Figure 5.3 illustrates the
data-flow related meta-classes. Some associations are omitted for better readability.

Activity An Activity represents a general unit of work within a Process. It is
sub-typed either to describe elemental steps of the process behavior or to describe
deterministic control-flow logic. Therefore, Activity follows BPEL’s notion rather
than the notion of activity in SPEM. In SPEM, activities group other elements only
in terms of breakdown structures. As illustrated, Activity contains attributes that

5.3 Compose Project-Specific Method 115

AtomicActivity

- startDate: string
- finishDate: string

Activity

- name: String
- mainDescription: String
- duration: string

ActivityWithActivity

DataHandlingActivity

MethodServ iceDescriptor

Process

Sequence

DataHandlingActivity

TaskDescriptor
Flow

Phase

Iteration If

ElseHumanDecision

- mainDescription: String

ActivityWithActivities

Role

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

ConstrainedScopeDescriptor

MethodPatternDescriptor ConstrainedScope

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

MethodPattern

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

1..*
{ordered}

methodPattern

constrainedScope

decider

1

0..1

1

Fig. 5.2 The control-flow related method elements of our meta-model package Project-
Method

allow giving it a name and a textual description. In addition, similar to planning
data in SPEM, a duration can be given as an exact recommended duration or a
ratio.

AtomicActivity AtomicActivity inherits from Activity and represents an ele-
mental step of the process behavior as it is sub-typed by MethodServiceDescrip-
tor and TaskDescriptor. As illustrated, AtomicActivity contains attributes that
allow giving it a planned start and finish date similar to planning data in SPEM.

MethodServiceDescriptor MethodServiceDescriptor represents the use of a
method service within a specific point in the control flow of a process, either the

116 Method Tailoring

process of a method model or the process of a method service that represents
a composite activity. The use of MethodServiceDescriptor as a proxy element
within a process resembles the usage of Task and Task Use within SPEM.

TaskDescriptor TaskDescriptor represents the use of a task within a specific
point in the control flow of a process, either the process of a method model or
the process of a method service. Typically, task descriptors are meant and should
be used for the latter, as tasks do not have an interface description as opposed to
method services. The use of TaskDescriptor as a proxy element within a process
resembles the usage of Task and Task Use within SPEM.

ActivityWithActivities ActivityWithActivities inherits from Activity and
represents deterministic control-flow logic that specifies how the contained activities
are executed. For this purpose, it is sub-typed by Sequence and Flow.

Sequence Sequence contains one or more activities that are performed sequen-
tially, in the lexical order of their containment within the Sequence element, fol-
lowing the semantics of BPEL. The Sequence completes when the last activity in
the sequence has completed. If the HumanDecision of an activity evaluates to false
then it is skipped and also considered completed.

Flow Flow contains one or more activities that are performed in parallel, following
the semantics of BPEL. Thus, a flow enables concurrency. The Flow completes
when all of the activities within the flow have completed. If the HumanDecision
of an activity evaluates to false then it is skipped and also considered completed.
Thus, a flow also enables synchronization.

ActivityWithActivity ActivityWithActivity inherits from Activity and is
sub-typed by activities that can contain only one activity. These describe either
deterministic control-flow logic that specifies how the contained activity is executed
(i.e. Iteration, If, and Else), add semantic structure to the process (i.e. Phase),
or describe the usage of method patterns. If multiple activities should be placed
within an ActivityWithActivity then an ActivityWithActivities has to be
used to specify their control-flow order.

Iteration Iteration inherits from ActivityWithActivity. Adopting the defi-
nition in SPEM, it represents an important structuring element to organize work
in repetitive cycles. In addition, Iteration follows the execution semantics of
RepeatUntil in BPEL and provides for repeated execution of a contained activity.
The contained activity is executed until its contained HumanDecision evaluates to

5.3 Compose Project-Specific Method 117

false. The HumanDecision is tested after each execution of the body of the iteration.
The iteration executes the contained activity at least once.

If, Else If inherits from ActivityWithActivity and follows the execution se-
mantics of BPEL. It provides conditional behavior. The activity consists of one
conditional branch defined by the If element, followed by an optional Else ele-
ment. If the HumanDecision of the If evaluates to true, the branch is taken, and its
contained activity is performed. Otherwise, the Else branch is taken, if present.
The If activity is completed, when the contained activity of the selected branch
completes, or immediately, when the HumanDecision evaluates to false and no
Else branch is specified.

HumanDecision HumanDecision represents a Boolean decision that has to be
taken by a project team member and that decides whether a certain activity is
executed or not. The group of people that is requested to take the decision is
determined by the referenced role. HumanDecision has an attribute that allows
providing textual background for the decision.

Phase Phase inherits from ActivityWithActivity. Adopting the definition in
SPEM, it represents a significant period in a project, typically ending with activities
that represent an major management checkpoint or produce a set of major work
products. A Phase completes when its contained activity has completed.

MethodPatternDescriptor MethodPatternDescriptor represents the use of a
method pattern within a specific point in the control flow of a process. It has
an association to the method pattern that it represents. While method services
can be represented with atomic activities, a MethodPatternDescriptor has to
allow the method engineer to specify what method service descriptors shall be
used within the contained constrained scopes. Thus, similar to MethodPattern, a
MethodPatternDescriptor is an ActivityWithActivity. It should contain the
same structure as the content of the corresponding method pattern; however, for
every constrained scope of the method pattern it has to contain a corresponding
ConstrainedScopeDescriptor that represents a reference to it. Our formalization
also allows combining two method service descriptors by nesting the one into the
other. The use of MethodPatternDescriptor as a proxy element within a process
resembles the usage of Task and Task Use within SPEM.

ConstrainedScopeDescriptor ConstrainedScopeDescriptor represents the use
of a constrained scope of a method pattern within a specific point in the control flow
of a process. It has an association to the constrained scope that it represents and

118 Method Tailoring

that specifies the constraint. Like method pattern descriptors, a ConstrainedSco-
peDescriptor has to allow the method engineer to specify what method service
descriptors (or activities in general) shall be used within it. Thus, similar to
ConstrainedScope, a ConstrainedScopeDescriptor is an ActivityWithActiv-
ity. It should contain the same structure as the content of the corresponding
constrained scope. The use of ConstrainedScopeDescriptor as a proxy element
within a process resembles the usage of Task and Task Use within SPEM.

OutputReceiverInputReceiver InputProvider

Activ ityInputMapping Activ ityOutputMapping

DataHandlingActivity

AtomicActivity

MethodServ iceDescriptor

AtomicActivity

TaskDescriptor

WorkProduct

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

ProjectGoal

- briefDescription: String
- purpose: String
- mainDescription: String

StructuralInterface

DataFlowInterface

MethodServ ice

- name: String
- briefDescription: String
- purpose: String
- mainDescription: String

ProjectMethod

- name: String
- briefDescription: String
- mainDescription: String

input output

0..*

source

1..*

source

0..*

1

Fig. 5.3 The data-flow related method elements of our meta-model package ProjectMethod

5.3 Compose Project-Specific Method 119

ActivityInputMapping The data flow related meta-classes are illustrated in Fig-
ure 5.2. While languages like BPEL use the assignment to variables to specify data
flow, we directly specify source and targets of data flow. We believe that this is
easier to handle for the method engineers, as it is easier to specify and analyze.
ActivityInputMapping represents the data flow within a process. It specifies from
where an activity receives its input work products. It is contained by an InputRe-
ceiver, which is sub-classed by MethodServiceDescriptor and TaskDescriptor
and specifies the target of the data flow. The association to WorkProduct specifies
what type of work product is received and the association to the InputProvider
specifies the sources of the data flow. InputProvider is not only sub-classed by
MethodServiceDescriptor and TaskDescriptor, but also by the interfaces of
method models and method services. Thus, it can be specified that the input of an
activity is provided via the interface as an input of the process.

InputReceiver InputReceiver is an abstract meta-class and represents an activity
that can receive input work products. It contains activity input mappings to specify
from where these inputs are coming. It is sub-classed by DataHandlingActivity,
which in turn is sub-classed by MethodServiceDescriptor and TaskDescriptor.

InputProvider InputProvider is an abstract meta-class and represents an activity
or interface that can offer work products as inputs for other activities. It is indirectly
sub-classed by MethodServiceDescriptor, TaskDescriptor, ProjectGoal, and
StructuralInterface.

ActivityOutputMapping ActivityOutputMapping represents the data flow
from within a process to its interface. It specifies from where an interface re-
ceives its output work products. It is contained by an OutputReceiver, which is
sub-classed by ProjectGoal and StructuralInterface and specifies the target
of the data flow. The association to WorkProduct specifies what type of work
product is received. The association to the DataHandlingActivity specifies the
sources of the data flow and is sub-classed by MethodServiceDescriptor and
TaskDescriptor.

OutputReceiver OutputReceiver is an abstract meta-class and represents an
interface that can receive output work products from within the process. It contains
activity output mappings to specify from where these outputs are coming. It is
sub-classed by DataFlowInteraface, which in turn is sub-classed by ProjectGoal
and StructuralInterface.

DataHandlingActivity DataHandlingActivity is an abstract meta-class and rep-
resents activities that can produce and consume work products. It is the source for

120 Method Tailoring

activity output mappings and inherits the association to be the source of activity
input mappings. It is sub-classed by MethodServiceDescriptor and TaskDe-
scriptor.

DataFlowInterface DataHandlingActivity is an abstract meta-class and repre-
sents interfaces that can provide and consume work products. Via inheritance, it
owns activity output mappings and is the source of activity input mappings. It is
sub-classed by ProjectGoal and StructuralInterface.

Usage

With our specification, we enable the composition of executable method models that
possess deterministic control and data flow. The used method services and method
patterns are represented by proxy descriptor elements that allow reusing method
building blocks multiple times within the same and within different method models.
Additional meta-classes are used to specify the control and data flow.

:MethodPatternDescriptor

:MethodPatternDescriptor

Specification:
ConstrainedScopeDescriptor

:Sequence

Assessment:
ConstrainedScopeDescriptor

Plan:
ConstrainedScopeDescriptor

Develop:
ConstrainedScopeDescriptor

Review:
ConstrainedScopeDescriptor

:Iteration

Agile Loop:
MethodPattern

System Designed
Decision Gate:
MethodPattern

Fig. 5.4 The object diagram for the composed method patterns of Figure 3.19

As part of the end-to-end example in Chapter 3 we showed two nested method
patterns in Figure 3.19. Figure 5.4 shows the corresponding object diagram with

5.3 Compose Project-Specific Method 121

its formalization with two nested method pattern descriptors. As illustrated,
the method pattern descriptors reference the method patterns from the method
repository and contain a constrained scope descriptor for every constrained scope
of the method patterns. The constrained scope descriptors are contained by a
sequence or iteration respectively. Not depicted in the figure are the references
of the constrained scope descriptors to the corresponding constrained scopes and
the human decision of the iteration element (see Section 5.3.2). The Specification
constrained scope descriptor of the method pattern descriptor for the System
Designed Decision Gate contains the second method pattern descriptor for the Agile
Loop.

Develop:
ConstrainedScopeDescriptor

:Flow

:Iteration :Sequence

Hold Standup Meeting:
MethodServiceDescriptor

Refine The Architecture:
MethodServiceDescriptor

Prepare System
Specification:

MethodServiceDescriptor

Develop:
ConstrainedScope

Hold Standup
Meeting:

MethodService

Refine The
Architecture:

MethodService

Prepare System
Specification:
MethodService

Fig. 5.5 The object diagram for the Develop constrained scope of Figure 3.22

The method pattern descriptors and the related elements form a frame to place
method service descriptors and to specify refined control flow. Figure 5.5 shows the
object diagram for the Develop constrained scope of Figure 3.22. As depicted, several
method services descriptors where placed into the constrained scope descriptor

122 Method Tailoring

and are now contained by it. The flow element specifies that the iteration and
the sequence are concurrently executed. Thus, the method service descriptor for
Hold Standup Meeting is repeatedly executed in parallel to the sequentially executed
method service descriptors for Refine The Architecture and Prepare System Specification.
Also shown is that method service descriptors reference the method services that
they represent.

The method service descriptor Refine the Architecture depicted in Figure 5.5
requires input work products, but does not have an activity input mapping yet (cf.
Figure 3.22). Figure 5.6 shows an object diagram with the specification of the data
flow with activity input mappings corresponding to Figure 3.22. As shown, the
method service descriptor Refine the Architecture contains an activity input mapping
that points to the source of the data flow, which is the method service descriptor
Envision the Architecture. It also references the work product Architecture Notebook to
denote the type of data flow. Please note that several other elements where omitted
in the figure for clarity.

5.4 Assure Quality of Method

In this section, we discuss how the project method engineer assures the quality
of composed method models. Quality assurance comprises the tasks of defining
quality goals, defining how they are measured, and when they are reached. To
support this task, we offer an automated quality analysis that reports quality issues
and method pattern violations as published in [FK16]. It is in part based on the
results of a master thesis [Klu14].

One popular way to assure the quality of methods [Hen+14] is to define a quality
model that documents the quality goals and to define metrics on top of it. For
example, the predecessor of the ISO/IEC 25010 [ISO11] standard, ISO/IEC 9126-
1 [ISO01], defines such a quality model for software product quality. It describes a
set of quality characteristics that are refined into sub-characteristics and eventually
measurable quality attributes.

As the notion of quality is not generally defined, in this section we present our
quality model for software engineering method models (MTR4). We then describe
how quality characteristics from this quality model are formalized in order to allow
for automated quality assurance checks regarding general quality characteristics
and the fulfillment of method pattern descriptors used in the method model (MTR5)
and we also discuss our extensible analysis framework as published in [FK16].

Regarding the related work, the quality of methods and method models is
discussed in several works; however there is no established quality model for
methods nor an established means to measure the quality of method models
apart from manually assessing the conformance to capability maturity models
like CMMI and Software Process Improvement and Capability Determination

5.4 Assure Quality of Method 123

Refine The Architecture:
MethodServ iceDescriptor

Env ision The
Architecture:

MethodServ iceDescriptor

:
Activ ityInputMappingArchitecture

Notebook:Work
Product

Dev elop:
ConstrainedScopeDescriptor

:Flow

:Sequence

:MethodPatternDescriptor

Specification:
ConstrainedScopeDescriptor

:Iteration

Agile Loop:
MethodPattern

:Sequence

:ConstrainedScope

:ConstrainedScope

input

source

Fig. 5.6 The object diagram with the data flow specification between two method service
descriptors according to Figure 3.22

(SPICE). Researchers discussed the difficulty and need of standardizing the notion
of quality for methods already two decades ago [TRL96]. However, according to
[Hen+14], in the last two major situational method engineering (SME) conferences
([RBH07],[RMD11]) only one paper on this topic was presented [ZS07] in which
the authors remarked that formal means to reason about method quality were still
missing. Today, there is not even a standardized notion of method quality available
like it exists for software product quality with the ISO/IEC 25010 [ISO11].

124 Method Tailoring

In [RB96], the authors propose to assess different methods based on their meta-
models. They focus on the modeling of work products in different methods. Based
on their meta-models (modeling languages), they propose different metrics based
on the number of objects, attributes, and relationships to measure the complexity
of a language.

In a similar manner, in his PhD thesis [Har97] and in a following publication
[BSH98], Harmsen discusses five quality characteristics, e.g., completeness and
consistency, in the context of method models composed with Demacrone. He for-
malizes them with first order logic based on the set-based formalization of methods
used in Demacrone. We use this set of quality characteristics as a foundation for
our quality model and formalization.

Following this line of thought, in [Chr00] the author describes a generalized
meta-model for methods and postulates five well-formedness rules that should be
fulfilled by method models, e.g., that for all work products there should exist a
source (a producing activity) and a sink (a consuming activity). However, she does
not categorize these rules with respect to a quality model.

In an attempt to enable the check of method models for their conformance
to CMMI, the authors in [Hsu+08] propose a UML-based approach to define,
verify, and validate method models. They define rules formalized with the Object
Constraint Language (OCL) for their validation, e.g., to express that a WorkPractice
(activity) is performed by exactly one ProcessPerformer (role). As our formalization
of quality characteristics is also based on OCL, this work is related to ours. However,
the focus in [Hsu+08] is on the conformance to CMMI of method models modeled
with an UML-based approach and it does not offer a quality model for method
models.

Related to the work in [Hsu+08] is eSPEM, using OCL in a SPEM-based ap-
proach. The authors of eSPEM claim that they implemented consistency rules
based on OCL in their meta-model, however, details are not presented in the paper
[Ell+11].

In [Per+11], the authors advocate the check of method models before enactment
and propose well-formedness rules for SPEM in order to ensure the consistency of
SPEM-based method models. On the one hand, the authors redefine the cardinality
of some of the defined relationships of meta-classes, e.g., such that each TaskUse
(activity) is associated to at least one ProcessPerformer (role). For more elaborated
well-formedness rules the authors use first-order predicate logic, e.g., to ensure that
work products are produced before they are consumed. The approach discussed
in this paper is very closely related to our approach to formalize the quality of
method models, but they do not discuss a possible implementation of their rules. In
addition, the authors provide a list of low-level rules, but do not group or structure
their well-formedness rules with respect to a quality model. Furthermore, their
rules are limited to SPEM, which we had to extend due to its lack of executability.

5.4 Assure Quality of Method 125

In the following, we first present our quality model for method models that we
derived based on the related work. We then present our concept for the automated
quality analysis. Thereafter, we illustrate the usage of the automated quality
analysis.

5.4.1 Quality Model

As explained, a quality model is a set of quality characteristics that can be further
divided into sub-characteristics and eventually quality attributes, where quality
attributes are measurable properties of an object [ISO01]. As we did not find a
suitable quality model for the quality assurance of method models, we define our
own quality model. In the following, we first present our quality model and then
discuss it with respect to evaluation criteria for quality models.

The Quality Model of MESP

The quality model that we propose is inspired by the quality model of the ISO/IEC
9126 standard for software product quality [ISO01] and based on the related work
in the field of SME. In the following, we describe and discuss the hierarchical
structure of our quality model that is visualized in Figure 5.7. The general structure
of our quality model is the following. The overall method model quality consists of
three parts:

• Situation-independent and critical quality

• situation-independent and non-critical quality

• situation-dependent and non-critical quality

Each of these parts is refined into quality characteristics, which in turn are refined
into quality sub-characteristics. Omitted in the figure are quality attributes. They
are used to measure quality sub-characteristics.

Situation-Independent and Situation-Dependent Quality Quality characteris-
tics can be classified based on whether their assessment is affected by the project
situation. If they are, we call them situation-dependent. Otherwise, they are situation-
independent.

Critical and Non-Critical Quality Quality characteristics can be classified based
on their importance for the executability of the method model. If quality charac-
teristics must be fully fulfilled in order to preserve the executability of a method
model, we call them critical. Otherwise, we call them non-critical.

126 Method Tailoring

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g
 M

e
th

o
d

M

o
d

e
l
Q

u
a
li

ty

Situation-
Independent &
Critical Quality

Completeness

Reference
Completeness

Input/Output
Completeness

Attribute
Completeness

Pattern Descriptor
Completeness

Consistency

Precedence
Consistency

Input/Output
Consistency

Situation-
Independent & Non-

Critical Quality

Efficiency

Work Product
Efficiency

Control Flow
Efficiency

Soundness
Method Pattern

Fulfillment

Maintainability

Method Pattern
Coverage

Modularity

Situation-
Dependent, Non-
Critical Quality

Applicability

Level of Abstraction

Understandability

Suitability
Situational Factor

Compliance

Quality

Characteristic

Quality Sub-

Characteristic

Quality

Fig. 5.7 MESP’s quality model for software engineering method models

5.4 Assure Quality of Method 127

Completeness Completeness is fulfilled, if all required objects, attributes, and
associations of a method model are defined. As missing elements can lead to cases,
where the method model is not executable, independent of situational factor values,
it is a situation-independent and critical quality characteristic.

We define completeness based on the quality characteristic with the same name
defined in [Har97], where it requires that all method fragments referenced within a
method model are existing and included.

Completeness is refined into the quality sub-characteristics reference completeness,
input/output completeness, attribute completeness, and method pattern completeness.
Reference completeness is fulfilled, if all mandatory associations as defined in the
meta-model from objects contained within a method model to objects within
the method repository exist. The meta-classes that can cause a violation of the
reference completeness are task descriptors, method service descriptors, activity
input mappings, method pattern descriptors, constrained scope descriptors, and
project goals. Thus, the counts of their missing associations serve as quality
attributes for reference completeness.

Input/output completeness is fulfilled, if the two following conditions are met.
First, each activity within a method model that requires input work products
contains the corresponding activity input mapping that specifies from where the
input is coming. Second, for each output work product specified in the project goal
of a method model the project goal must contain an activity output mapping that
specifies from which activity the output is coming. Thus, the quality attributes are,
first, the counts of missing activity input mappings for task descriptors and method
service descriptors based on the mandatory input work products of the respective
task or method service, and second, the counts of activity output mappings that are
missing or that are missing mandatory associations based on the specified output
work products in the project goal. As a stricter sub-characteristic of input/output
completeness, we define the conditional input/output completeness that additionally
takes into account, whether the source activity of the input work product is con-
ditionally executed, thus might not produce the required input. This is the case,
when the source activity is contained by an if, else if, or else activity ca and the
consuming activity is not contained within the same ca. Conditional input/output
completeness is fulfilled, if input/output completeness is fulfilled for all possible
conditional control flows, ignoring activities that would not be executed.

Attribute completeness is fulfilled, if all mandatory attributes as defined in the
meta-model are defined for objects contained within a method model. These
mandatory attributes are the name of the project method, the name of an atomic
activity, and the main description of a human decision. The count of missing
mandatory attributes serves as quality attribute.

Pattern descriptor completeness is fulfilled, if each method pattern descriptor mpd
in the method model has the same structure as the method pattern mp that it

128 Method Tailoring

references. This means that for every activity a in the containment hierarchy of
mp there is a corresponding activity ca in the containment hierarchy of mpd. In
addition, if an activity e has another activity ae in its containment hierarchy then
the corresponding activity ca of e has to have a corresponding activity to ae in its
containment hierarchy. A corresponding activity ce is an object of the same type
that represents e and has the same attribute values. An exception are constrained
scopes, where the corresponding activity for a constrained scope cs is a constrained
scope descriptor that references cs. From pattern descriptor completeness follows
method pattern consistency and vice versa. Thus, we did not list it as a separate
quality sub-characteristic. It means that the structure of method pattern descriptors
and thus the control flow containment relationship between constrained scope
descriptors corresponds to the relationship given by the method pattern and its
constrained scopes. The count of missing corresponding activities serves as quality
attribute for pattern descriptor completeness.

Consistency Consistency is fulfilled, if the method model does not contain contra-
dictions. Contradictions can lead to cases where the method model is not executable,
independent of situational factor values; therefore, it is a situation-independent
and critical quality characteristic.

We define consistency based on the quality characteristic with the same name
defined in [Har97], where it requires that elements and their relationships within a
method model do not contain any contradictions and thus are mutually consistent.

Consistency is refined into the quality sub-characteristics precedence consistency
and input/output consistency. Precedence consistency is fulfilled, if for each data
handling activity (cf. 5.3.2) that requires an input, the source of this input is a
predecessor data handling activity or the input is already available initially at
project start. This means that a source of an activity input mapping must be a
predecessor, with respect to the control flow, of the data handling activity that
contains the activity input mapping or it must be the data flow interface, hence the
project goal. The quality attribute is the count of method service descriptors and
task descriptors that have activity input mappings that do not fulfill this.

Input/output consistency is fulfilled, if the type of the data flow in the method
model corresponds to the interface specification of tasks and method services in
the method repository or the work products specified in the interface (project
goal) of the method model. This means that for each activity input mapping ip
with a referenced work product wp two conditions must be fulfilled. First, the
data handling activity that contains ip has to reference a method service or task
in the method repository that has wp among its input work products. Second, if
the input provider that is referenced as source of ip is a data handling activity, it
has to reference a method service or task in the method repository that has wp
among its output work products, otherwise, it has to be a data flow interface (e.g.

5.4 Assure Quality of Method 129

project goal) that specifies the work product wp as an input available at project start.
Similarly, for each activity output mapping op with a referenced work product
wp the source data handling activity needs to reference a method service or task
that has wp among its output work products and wp must be specified among the
output work product of the data flow interface (project goal). The quality attribute
for input/output consistency is the count of activity input mappings and activity
output mappings that violate these conditions.

Efficiency Efficiency is fulfilled, if the method model fulfills its duty at minimal
cost and effort. Missing efficiency, however, does not lead to cases where the
method model is not executable and it is independent of situational factor values.
Therefore, it is a situation-independent and non-critical quality characteristic.

We define efficiency based on the quality characteristic with the same name
defined in [Har97], where it requires that activities that are not closely related in
the method model do not produce the same output work products and that they
do not receive input work products that are produced within that activity itself. As
this definition is too strict, we define an adopted sub-characteristic. Efficiency is
refined into the quality sub-characteristics work product efficiency and control flow
efficiency.

Work product efficiency is fulfilled, if each output in the method model that is
produced by a data handling activity (cf. 5.3.2) is used either as an input by another
data handling activity or as an output of the method model (i.e. as a final result).
This means that for each data handling activity dha and each output work product
wp that is specified as output by the task or method service referenced by dha,
there exist an activity input mapping with dha as a source and wp as the input
work product or an activity output mapping with dha as a source and wp as the
output work product. In addition, each work product that is specified as input
for the method model by the project goal needs to be the source for an activity
input mapping within the method model. The quality attribute for work product
efficiency is the count of the missing activity input/ouput mappings according to
the stated conditions.

Control Flow Efficiency is fulfilled, if the method model does not contain useless
control flow constructs, which are flows, sequences, phases, iterations, ifs, else ifs,
and elses that do not contain other elements (cf. 5.3.2). In addition, if-constructs,
where the conditional (if) and the alternative (else) activities have the same content
also violate this condition. The quality attribute for control flow efficiency is the
count of useless control flow constructs.

Soundness Soundness is fulfilled, if the method model is semantically correct
and meaningful. A method model can be unsound, but syntactically correct and

130 Method Tailoring

executable. Therefore, this is a situation-independent and non-critical quality
characteristic.

We define soundness based on the quality characteristic with the same name
and definition in [Har97], but we define different sub-characteristics. For now, we
only define the sub-characteristic method pattern fulfillment.

Method pattern fulfillment is given, if all used method patterns in a method model
are fulfilled. This means, that for each constrained scope descriptor in the method
model, the contents of it must fulfill the constraint described by the referenced
constrained scope. The quality attribute for method pattern fulfillment is the
number of unfulfilled constraints of constrained scope descriptors.

Maintainability Maintainability is fulfilled, if the method model can be easily
adapted and managed. Missing maintainability, however, does not lead to cases
where the method model is not executable and it is independent of situational
factor values. Therefore, it is a situation-independent and non-critical quality
characteristic. Maintainability is refined into the quality sub-characteristics method
pattern coverage and modularity.

Method pattern coverage is given, if all method service descriptors and task
descriptors of the method models are placed within method pattern descriptors,
which eases meaningful changes and updates, as the used method patterns and their
constraints cover the whole method model. This means that every method service
descriptor and task descriptor is contained within the containment hierarchy of a
constrained scope descriptor of a method pattern descriptor. The quality attribute
for method pattern coverage is the number of method service descriptors and task
descriptors that are not in the containment hierarchy of any constrained scope
descriptor.

Modularity is given, if the method model is divided into manageable, well-
defined units. In MESP, method models can reference method services and tasks.
While the later are mainly textually described, atomic units of work, the former can
wrap whole (sub-)processes that are described by a rich interface. Therefore, in
method models the usage of method service descriptors instead of task descriptors
is encouraged. In addition, regarding a group of method services (or tasks), the
usage of a composite method service that includes them is encouraged over the
usage of many single method services. The quality attributes for modularity are
the number of method service descriptors, the number of task descriptors, and the
number of tasks directly or indirectly referenced by the method model.

Applicability Applicability is fulfilled, if the method model is appropriate for the
enactment by a project team. Thus, it is a situation-independent and non-critical
quality characteristic.

5.4 Assure Quality of Method 131

Applicability is refined into the quality sub-characteristics level of abstraction and
understandability. Level of abstraction describes on what level of detail the work to
be performed is described. A low level of abstraction indicates that the method
model describes the work to be performed in much detail, leaving less room and
freedom for self-organization of the project team members, however, also requiring
less qualification. On the contrary, a high level of abstraction indicates an abstract
description of the work and more freedom for the project team members. The level
of abstraction of a method model depends, on the one hand, on the number of
tasks that it describes. On the other hand, it depends on the level of abstraction of
each of these tasks. A task is less abstract, if it has a longer task description and less
input and output work products, since this indicates a more detailed description of
a smaller unit of work. Quality attributes for the level of abstraction are therefore
the number of tasks directly or indirectly referenced by the method model as well
as the length of the task description and the number of the input and output work
products of each of these tasks.

Understandability is given, if the method model is understandable in terms of
the readability of the referenced task descriptions and the complexity of the control
and data flow. The easier the task descriptions are to read and the simpler the
control and data flow are, the higher is the understandability. Quality attributes
for the understandability are therefore the readability of the task descriptions, the
number of data flows, and the number of conditional paths of control flow.

Suitability Suitability is fulfilled, if the process of the method model is appro-
priate for its project situation. As this quality characteristic does not affect the
executability, it is a situation-dependent and non-critical quality characteristic.

Suitability is refined into the quality sub-characteristic situational factor compliance.
Situational factor compliance is given, if the situational factor values in the project
situation of a method model match the ones that characterize the method services
referenced by it. It is violated in the following two cases. First, a situational factor
is referenced by one or more of its situational factor values as an included factor
of the project situation, and also by a method service referenced from the method
model, however, no situational factor value matches. This signifies that a situational
factor is relevant, but does not comply. Second, a method service referenced from
the method model has a situational factor value that is among the excluded factors
of the project situation.

Discussion of the Quality Model of MESP

In the previous section, we described a quality model for method models. A quality
model should be of high quality itself and the question arises how to evaluate the
quality model. In [GK09], the authors compiled a list of evaluation criteria for

132 Method Tailoring

quality models based on the existing literature on model quality. We list them in
Table 5.2 (translated from German).

In the following, we discuss each of the evaluation criteria in the context of our
quality model for MESP: Regarding Clarity & Structuredness, the quality characteris-
tics of the MESP quality model are organized within a hierarchical tree structure
providing a clear structure. Thus, this criterion is fulfilled. Regarding Consistency,
as the quality characteristics of the MESP quality model are organized within a
hierarchical tree structure, this criterion is also fulfilled. Regarding Cohesion &
Modularity, the MESP quality model contains three layers of grouping and currently
sixteen quality sub-characteristics. As all sub-characteristics belong semantically to
their root characteristics, cohesion and modularity is provided. Regarding Unam-
biguity & Comprehensibility, the quality characteristics of the MESP quality model
are described with natural language in order to enhance the comprehensibility
and as a foundation for additional quality sub-characteristics. As natural language
is ambiguous, ultimately, quality sub-characteristics should be formalized with a
formal language. For some quality sub-characteristics, we discuss the formalization
in Section 5.4.2. However, formalizing all quality characteristics is still an open
research issue and beyond the scope of this thesis. Overall, we consider this crite-
rion as fulfilled. Regarding Absence of Overlappings, the quality characteristics of
the MESP quality model are free from redundancies. For example, as from pattern
descriptor completeness follows pattern descriptor consistency and vice versa, we
omitted the latter form the quality model. Thus, this criterion is fulfilled. Regard-
ing Operationalizability, all quality characteristics of the MESP quality model are
operationalizable and we either stated the quality attributes to measure or provide
the operationalization with OCL as part of our solution. However, as described
with respect to the unambiguity, the formalization of all quality sub-characteristics
is beyond the scope of this thesis. Regarding Completeness & Relevance, our MESP
quality model is intended to support project method engineers in assuring the
quality of composed method models. In this regard, all presented quality charac-
teristics are relevant as they influence the perceived quality of the method model.
Regarding the completeness, this quality model is based on the related work in
the field. However, we do not claim that the quality model is complete as further,
especially non-critical, quality sub-characteristics might be proposed in the future.
With respect to the critical quality characteristics, we consider it complete. Regard-
ing Correctness and Consistency, the MESP quality model conforms to the discussed
structure. Quality characteristics, especially quality sub-characteristics, and quality
attributes are discussed with respect to the MESP meta-model and method models.
Therefore, we consider this criterion fulfilled. Regarding Satisfiability, the quality
characteristics of the MESP quality model are discussed with respect to structural
features of method models. Hence, the underlying quality goals are realistic and
satisfiable.

5.4 Assure Quality of Method 133

Table 5.2 Evaluation Criteria for quality models (adopted from [GK09])

Evaluation Criterion Description

Clarity & Structuredness models need to be clear, readable, and struc-
tured as a hierarchy.

Consistency quality characteristics need to be transitive,
thus the quality model shall not contain two
quality characteristics x and y, where both x
is a (possibly indirect) sub-characteristic of y
and y is a (possibly indirect) sub-characteristic
of x.

Cohesion & Modularity quality characteristics that belong together,
should also be closely connected in the quality
model. In addition, each quality characteris-
tic of the quality model should represent only
one aspect of quality.

Unambiguity & Comprehensibility Every quality characteristic shall be clearly and
comprehensibly described.

Absence of Overlappings Quality characteristics must not be overlap-
ping and should be pairwise disjoint and free
of redundancies.

Operationalizability All quality characteristics should be measur-
able (by quality attributes). If a subjective as-
sessment is required, the quality characteristic
should be labeled as such.

Completeness & Relevance A quality model should comprise all quality
characteristics and all their relationships that
are relevant for its stakeholders, such that its
value decreases, when quality characteristics
and relationships are removed.

Correctness & Consistency A quality model should be consistent to its
meta-model. Additionally, its quality charac-
teristics and quality attributes should conform
to the nature of the domain.

Satisfiability The quality goals expressed with the quality
model and its quality characteristics should be
realistic and satisfiable by the models.

134 Method Tailoring

After we discussed the underlying quality model, in the following section, we
discuss the concept of our automated quality assurance framework.

5.4.2 Automated Quality Assurance Framework

In this section, we describe the concept of our automated quality assurance frame-
work that supports the project method engineer. In the following, we first present
the requirements for such a framework. Thereafter, we give a conceptual overview
of it. Then, we discuss how we formalized quality characteristics of the MESP
quality model, in order to allow for automated assessment of the method models.

Requirements

For this analysis framework, we define the requirements listed in Table 5.3 as
a refinement of MTR5. In order to provide early feedback, the analysis shall be
applicable to incomplete method models and restrictable to single regions (activities,
see Section 5.3.2) of the model (MTR5.1). In order to help in fixing quality issues, the
elements of a method model that cause quality issues shall be reported (MTR5.2).
In order to help in assessing quality issues, the analysis shall classify quality issues
based on their type (regarding a quality model). Most importantly, critical and
non-critical issues shall be distinguished, where critical issues prevent method
models from being enacted with a process engine (MTR5.3). In order to implement
further quality checks easily, the analysis framework shall be extensible (MTR5.4).
And finally, in order to be used frequently throughout the composition of a method
model, the analysis shall not take longer than a couple of seconds (MTR5.5).

Table 5.3 Refined requirements for the analysis framework

Requirement Name

MTR5.1 Partial analysis of models

MTR5.2 Traceability of issues

MTR5.3 Categorization of issues

MTR5.4 Extensibility of the analysis framework

MTR5.5 High performance of the analysis

Overview of the Quality Assurance Framework

The MESP tool support is based on the Eclipse Modeling Framework [Ste+09]
that allows automatically checking for the conformance of models with their meta-
models. This allows analyzing method models for reference completeness and

5.4 Assure Quality of Method 135

attribute completeness (see Section 5.4.1) out of the box. However, the fulfillment of
other quality characteristics cannot be checked with the build-in support. Therefore,
we propose an extensible quality assurance framework that is implemented as the
consistency checker component in the tool support of MESP (see Figure 3.4).

The concept of the quality assurance framework is shown in Figure 5.8. The
automated quality analysis is based on the formalization of quality characteristics
with the OCL [OMG14]. The analysis consists of two parts. First, the method
model is evaluated against a set of pre-formalized quality constraints (1.). These
constraints are represented by a set of pre-defined OCL expressions. This part
is discussed in Section 5.4.2. Second, the method model is evaluated against the
method pattern constraints used in the method model (2.). As method patterns
can be added or modified, we cannot provide a pre-defined set of equivalent OCL
expressions. Instead, method pattern constraints are translated on the fly to OCL
and evaluated against the model. This part is discussed in Section 5.4.2. For the
evaluation of OCL expressions, our framework reuses the existing Eclipse OCL
Component. The detected issues and pattern violations are passed, together with
the responsible model elements, to the Eclipse Problems View component and are
then presented to the project method engineer.

Method Services &
Method Patterns

Method Model

Quality Constraints
as Pre-Defined

OCL Expressions

Pattern-
Constraints as

OCL Expressions

Detected Quality
Issues + Pattern

Violations

references

2.

Eclipse OCL-Evaluation Eclipse Problems View

MESP Pattern-Constraints-
To-OCL-Translation

1.

Fig. 5.8 Overview of the quality assurance framework

Formalization and Analysis of General Quality Characteristics

Most quality characteristics can be formalized upfront. This set of pre-defined
OCL expressions can then be used to automatically analyze method models. Every
time, the user invokes the quality analysis, the method model is checked against all
pre-defined OCL expressions and the quality issues are reported. We have currently
implemented a set of six critical and two non-critical quality sub-characteristics
(c.f. requirement MTR5.3) to demonstrate the approach and the extensibility of the
framework (c.f. requirement MTR5.4) and to cover all essential aspects to ensure

136 Method Tailoring

the enactment of method models. Violations of critical quality sub-characteristics
are presented as errors, while violations of non-critical sub-characteristics are
presented as warnings. Thus, the project method engineer is getting feedback on
what issues must be resolved in order to derive an executable method model. The
implementation of further non-critical quality characteristics remains for future
work, especially, as further quality sub-characteristics might be proposed in the
future.

We exemplify the derivation of OCL expressions using precedence consistency as
an example (see Section 5.4.1). Figure 5.9 shows the OCL constraint that formalizes
this quality sub-characteristic. It computes the set of all method service descriptors
or task descriptors of the process (lines 1-4) and removes from this set (line 5) all
descriptors that have only valid sources as the origin of their input work products.
Valid sources means that the origin input provider of the input work product is a
predecessor method service descriptor or predecessor task descriptor (lines 5-7).
The functions getNested() and getPredecessors() are OCL helper functions
that we defined. The first returns the set of all contained activities, while the
latter returns all activities that, regarding control flow, are executed before. If the
resulting set computed by the expression is not empty, it contains the method
service descriptors and task descriptors that violate the quality characteristic (c.f.
requirement MTR5.2).

1 context Process

2 self.activity.getNested()->

3 select(oclIsTypeOf(MethodServiceDescriptor) or

4 oclIsTypeOf(TaskDescriptor))->

5 reject(prov | prov.inputs.source->

6 forAll(sourceActivity |

7 activity.getPredecessors(prov)->includes(sourceActivity)

8)

Fig. 5.9 OCL expression to find elements that violate precedence consistency

As another example for the formalization with OCL, Figure 5.10 shows the
definition of the OCL helper function getNested() used in the OCL constraint for
the precedence consistency. It basically differentiates three cases in order to collect
the activities in the containment hierarchy of an activity, ignoring e.g. activity input
mappings. Case 1 is given, if the function is invoked upon an activity with activities
(line 3-11). Case 2 is given, if it is invoked upon a task descriptor or method
service descriptor. Case 3 is given, if it is invoked upon another type of activity. In
case 1, the function returns any directly contained task descriptors and method
service descriptors (line 5-6). Additionally, for all other directly contained elements
the contained activities are returned using a recursive call to getNested() (line 9).
In case 2, the function returns the task descriptor or method service descriptor,

5.4 Assure Quality of Method 137

respectively (line 14-15). In case 3, the function returns the contained activities of
the element using a recursive call to getNested() (line 19). In addition, in all cases,
the element itself (self) is returned (line 11 and line 23).

1 getNested():Set(Activity) =

2 if self.oclIsKindOf(ActivityWithActivities) then

3 self.activities->iterate(

4 a:Activity;result:Set(Activity) = Set{} |

5 if(a.oclIsTypeOf(TaskDescriptor) or

6 a.oclIsTypeOf(MethodServiceDescriptor)) then

7 result->including(a)

8 else

9 result->union(a.getNested())

10 endif

11)->including(self)

12 else (

13 if self.activity->notEmpty() and

14 (self.activity.oclIsTypeOf(TaskDescriptor) or

15 self.activity.oclIsTypeOf(MethodServiceDescriptor)) then

16 Set{}->including(self.activity)

17 else

18 if self.activity->notEmpty() then

19 Set{}->union(self.activity.getNested())

20 else Set{}

21 endif

22 endif

23)->including(self)
24 endif

Fig. 5.10 OCL definition of the helper function getNested()

Formalization and Analysis of Method Pattern Constraints

For the quality sub-characteristic method pattern fulfillment, the method pattern
constraints of the constrained scope descriptors have to be evaluated. Unlike other
quality constraints, the method pattern fulfillment cannot be formalized upfront
with pre-defined OCL expressions. Because senior method engineers can define
arbitrary method pattern constraints for their method patterns, there is no fixed
set of method pattern constraints. For this reason, we use an on-the-fly translation
for method pattern constraints into equivalent OCL expressions (see Figure 5.8), so
that we can reuse the existing Eclipse OCL Component to evaluate method pattern
constraints against the process model and determine method pattern fulfillment.

The translation works as follows (see Figure 5.8): Based on the used method
pattern descriptors in the method model, the corresponding constraints from the
method repository are extracted and transformed into equivalent OCL expressions.
Then these are checked against the respective constrained scope descriptors of
the method model. These pattern-related OCL expressions are created on-the-fly

138 Method Tailoring

during each run of the quality assurance analysis. Furthermore, method pattern
constraints are evaluated only against the respective constrained scope descriptor,
while the other quality constraints are evaluated against all elements in the scope
of the analysis, so usually the whole method model.

Figure 5.11 shows a Java code snippet used in the construction of the OCL
expression for a method pattern constraint. The depicted code adds the part of the
OCL expression that expresses the used quantifier of a single condition element
(see Section 4.4.2). The quantifier states, whether the method pattern constraint has
to be fulfilled for all, for none, or at least one atomic activity within the constraint
scope descriptor. In the first case (line 3-10), the number of the elements that fulfill
the condition (line 6) has to match the number of the method service descriptors
and task descriptors in the containment hierarchy of the constrained scope (line
6-9). In the second case (line 11-15), the set of elements that fulfill the condition
shall not be empty (line 14). In the last case (line 16-19), the set of elements that
fulfill the condition shall be empty (line 18). The code in the lines 19-21 is part of
the error handling.

1 private String parseSingleCondition(SingleCondition sc)

2 {

3 if(sc.getExpression().getQuantifier() ==

4 Quantifier.ALL_FULFILL)

5 {

6 conditionString+= "->size() = "+

7 "self.getNested()->"+

8 "select(oclIsTypeOf(MethodServiceDescriptor)"+

9 "->size()";

10 }

11 else if (sc.getExpression().getQuantifier() ==

12 Quantifier.AT_LEAST_ONE_FULFILLS)

13 {

14 conditionString+= "->notEmpty()";

15 }

16 else if (sc.getExpression().getQuantifier() ==

17 Quantifier.NONE_FULFILLS) {

18 conditionString+="->isEmpty()";

19 } else

20 { return unableToParse; //Unknown Condition

21 }

22 return conditionString;

23 }

Fig. 5.11 A Java code snippet for the translation of quantifiers to OCL

5.4 Assure Quality of Method 139

5.4.3 Usage

With our automated quality assurance framework, we enable the automated quality
analysis of method models. This helps project method engineers in composing
consistent method models. In the following, we discuss two examples, one for the
check against general quality characteristics formalized upfront and one for the
check against method pattern constraints transformed to OCL on-the-fly.

We use again precedence consistency as an example for general quality charac-
teristics. Figure 5.12 shows a derivation of Figure 3.22 from the end-to-end example
in Chapter 3. The method service descriptor “Refine the Architecture” gets its
input work product from “Envision the Architecture”, however, that is executed
afterward and hence cannot produce the input work product. Thus, the quality
sub-characteristic precedence consistency is violated. In this case, the evaluation
of the OCL expression presented in Figure 5.9 returns “Refine the Architecture”
as violating element as indicated by the next to the method service descriptor.
In the consistency checker component, a reference to this element is passed along
with an error description to the Eclipse Problems View component such that it
is presented to the project method engineer. She can then fix the issue, e.g., by
changing the control flow order of the elements as discussed in Chapter 3 (cf. 3.22).

Sequence

Exists a MS Has Output [System Architecture]

Iteration

And

All

MS
[Development]

Of

Category

[Hold Stanup

Meeting]
Exists

a MS

That

Is
All

MS
[Review.]

Of

Cat.
Exists

a MS
[Planning]

Of

Cat.

Specification

Plan Develop Review

Refine the

Architecture
Envision the

Architecture

Prepare System

Specification

Sequence

Iteration

Planning

Meeting

Iteration

Review

Meeting

Parallel

Sequence

Fig. 5.12 A partial method model with quality issues

140 Method Tailoring

Also shown in Figure 5.12 is a violation of the method pattern sub-characteristic.
The method pattern constraint of the middle constraint scope descriptor is not
fulfilled as indicated by the in the upper right corner of the constraint. With
the assumption that both method service descriptors reference method services
that have the “Development” category, the upper condition is fulfilled, however, as
there is no “Hold Standup Meeting” method service referenced in the constrained
scope descriptor, the lower condition is not fulfilled. Thus, the overall evaluation
result is also negative.

This violation is detected by evaluating the OCL expressions presented in
Figure 5.13 that are generated on-the-fly. The equivalent OCL expression for the
upper condition is shown in lines 1-11. The equivalent OCL expressions for the
lower condition is shown in lines 13-20. In accordance with the upper condition,
the OCL expression collects the method service descriptors that have the category
“Development” (line 4-8). The size of the set with these elements is then compared
to the size of the set with all method service descriptors within the constrained
scope descriptor (line 9-11). These lines are generated by the lines 3-10 of the Java
code shown in Figure 5.11. For the lower condition, the OCL expression collects the
method service descriptors with the name “Hold Standup Meeting” (lines 15-17)
and checks whether the set with these elements is empty (line 20). This lines are
generated by the line 11-15 of the Java code shown in Figure 5.11.

1 // Upper Condition

2 context ConstrainedScopeDescriptor

3 getNested()->

4 select(oclIsTypeOf(MethodServiceDescriptor))->

5 select(msd | msd.methodService.interface.categories->

6 exist(category | category.name = 'Development'))->

7 iterate(x:MethodServiceDescriptor; activitySet:Set(Activity) =

8 Set{} | activitySet->including(x))

9 ->size() =

10 self.getNested()->

11 select(oclIsTypeOf(MethodServiceDescriptor))->size()

12

13 // Lower Condition

14 context ConstrainedScopeDescriptor

15 getNested()->

16 select(oclIsTypeOf(MethodServiceDescriptor))->

17 select(msd | msd.methodService.name ='Hold Standup Meeting')->

18 iterate(x:MethodServiceDescriptor; activitySet:Set(Activity) =

19 Set{} | activitySet->including(x))

20 ->nonEmpty()

Fig. 5.13 The generated OCL expressions for the middle constraint scope descriptor of
Figure 5.12

In the consistency checker component, the two OCL expressions are evaluated
against the respective constrained scope descriptor using the Eclipse OCL Com-

5.5 Initialize Method 141

ponent. The result of the overall AndCondition is then computed using a Java
“AND”-Statement. As this evaluates to false, a reference to the middle constrained
scope descriptor is passed along with an error description to the Eclipse Problems
View component such that it is presented to the project method engineer. She
can then fix the issue, by adding a method service descriptor that references the
method service “Hold Standup Meeting” as shown in the end-to-end example in
Chapter 3 (cf. Figure 3.22). Similar to the discussed example, all possible method
pattern constraints can be transformed to OCL and consequently evaluated with
our quality analysis.

After we illustrated the quality analysis, we revisit the requirements described
in Section 5.4.2 and discuss their fulfillment. Regarding requirement MTR5.1, our
implementation of the automated quality assurance framework can be invoked
on the whole Process, but also on single Activities. It is designed to run also
on method models that are only partially completed. Thus, this requirement is
fulfilled. Regarding requirement MTR5.2, our formalization of quality characteristic
collects model elements that cause quality issues (cf. Section 5.4.2). Quality issues
are presented to the project method engineer in the Eclipse Problems View (cf.
Figure 5.8). If the user double-clicks on an issue in the Problems View of our MESP
tool support, she jumps to the causing element. In addition, the elements that cause
quality issues are highlighted in the Method Composer and Repository Browser.
Thus, this requirement is fulfilled. Regarding requirement MTR5.3, critical issues
are presented as errors and non-critical issues as warnings in the Eclipse Problems
View (cf. Section 5.4.2). In addition, the issues are categorized according to our
quality model (cf. Section 5.4.1) in their description. Therefore, this requirement
is fulfilled. Regarding the requirement MTR5.4, our automated quality assurance
framework is not limited to a specific set of quality sub-characteristics, because
additional quality sub-characteristics can always be added by extending the set of
OCL expressions. In Section 5.4.2, we explained the set of quality sub-characteristics
that we have already implemented using this mechanism. Thus, this requirement is
fulfilled. Regarding the last requirement MTR5.5, we evaluated the runtime of the
quality analysis (cf. discussion in Chapter 7). As the evaluation showed, the analysis
is fast enough for realistically sized method models, thus this requirement is also
fulfilled. In summary, our quality assurance framework fulfills all the requirements
that we derived.

5.5 Initialize Method

In this section, we discuss how the project method engineer initializes the method
model in order to prepare it for execution. Initializing the method model comprises
two tasks. First, the method model needs to be transformed into a process model
that can be executed with a standard process engine. Second, this process model

142 Method Tailoring

needs to be deployed on the process engine. The process engine and the standard
project repository for work products need to be configured such that they can be
used by the project team. We offer an automated transformation and deployment
(MTR6) as part of our tool support as published in [FCE14]. It is in part based on
the results of a master thesis [Nee14].

Regarding the related work, there are three groups of approaches that are
related. The first group of related work are approaches that do not directly support
the execution of the method model, but support the enactment by providing
documentation and tools. For example, tools like the EPF Composer or IBM
Rational Method Composer allow defining SPEM-based method models. From
these method models, a website can be generated that allows team members to
browse for the description of processes and tasks (cf. Figure 3.9). The configuration-
based approach MC Sandbox [KÅ11; KÅ12] offers similar support. The tool
support of the V-Modell XT allows deriving project plans and document templates
for work products used in the method model [KTF11]. Other approaches allow
deriving a CASE environment from the method models, e.g., MERU [PS97] or
Method Management Tools [KLR96]. An approach with this capability based on
SPEM and modern technologies is MOSKitt4ME [Cer+11]. Based on the method
model tools are automatically bundled into a CASE environment to use during
method enactment. However, the approach has no process execution support as
execution semantics are missing in SPEM.

Another group of related work are ALM suites [KV09] like Microsoft Team Foun-
dation Server (TFS) or IBM Rational Team Concert. As explained in Section 2.2.2,
these offer limited execution support based on automated workflows that can be
adapted manually. However, the creation of situational methods is not supported
explicitly.

The last group of related work are approaches that allow executing the method
model with means of a process engine. The tool Demacrone of Brinkkemper and
Harmsen allows generating a process engine based on the composed method model
[Har97]. The Guidance Engine of MENTOR [SRG96; Pli96] also allows executing
the selected method building blocks in order to offer guidance to the application
developers. However, both approaches are based on low-level modeling languages
and outdated technologies. A more standard-conforming way to allow for execution
support is to follow our approach and to extend SPEM in order to overcome its lack
of executability. Bendraou et al. [Ben+07] propose the extensions called xSPEM, but
only sketch some mappings between concepts of xSPEM and BPEL and thus misses
out on explicit support for human interaction. However, the approach follows the
same idea that we implemented. Ellner et al. [Ell+10; Ell+11] propose the extension
eSPEM and support the execution of methods based on an own process engine for
eSPEM. However, there is no explicit support for situational method engineering.

5.5 Initialize Method 143

In the following, we first present the transformation of method models into
BPEL process models. Then we discuss their deployment and configuration for
enactment by the project team.

5.5.1 Transformation, Deployment & Configuration

In order to execute method models an execution environment is required. If this
execution environment, a process engine, does not exist, there are two possibilities.
First, one could implement a process engine that directly supports the software
engineering method modeling language, similar to the approach used for eSPEM.
Second, the software engineering method modeling language can be mapped to
another executable language, which is accompanied by process execution sup-
port. This approach allows reusing proven and stable execution support. In
our MESP approach, we use this approach and transform our method models to
BPEL/BPEL4People process models. In the following, we first explain how the
execution of BPEL/BPEL4People processes works from a technical perspective.
Thereafter, we present our mapping of language constructs and discuss the transfor-
mation of MESP method models to BPEL/BPEL4People process models. Thereafter,
we explain the deployment and configuration and then illustrate the initialization
of method models.

Process Enactment from a Technical Perspective

To execute a MESP method model, it is transformed into a BPEL/BPEL4People
process model. BPEL is a executable process description language to coordinate web
services and the BPEL4People extension enables to incorporate human interaction
into BPEL processes. Thus, every BPEL/BPEL4People process model basically
consists of two parts that are deployed into the BPEL engine: a BPEL process that
is responsible for the general control and data flow and BPEL4People HumanTask
services that creates workflow tasks and provides their graphical user interfaces
(GUI) to interact with the project team members. From the perspective of the BPEL
process, a HumanTask is just a regular web service that can be invoked with certain
parameters and that returns a result. While the BPEL process and the HumanTask
service reside inside the process engine component, the created workflow tasks
are managed by the task management component of the BPEL engine. Figure 5.14

shows the interplay between the different parts. A BPEL4People peopleActivity
within the BPEL process can invoke a HumanTask web service during process
execution (1). This invocation then triggers the creation of a workflow task (2) for
a project team member in the task management component of the BPEL engine.
When the respective project team member selects a workflow task to enact it, she is
presented the GUI defined by the respective HumanTask web service (3). Once the
team member has provided her input and is finished (4), the result is replied back

144 Method Tailoring

to the BPEL process (5) and the next (potentially ordinary) service invocation can
take place (7-9).

Service Invocation
Activity A

BPEL Process

HumanTask
Web Service

Regular
Web

Service

Workflow
Task A

Process Engine

BPEL Engine

Task
Management

Service Invocation
Activity B

1 2 3

456
7

8

9
10

Fig. 5.14 The execution of a BPEL/BPEL4People process model

Mapping and Transformation to BPEL/BPEL4People

After we described the BPEL/BPEL4People process enactment, we now discuss the
mapping between concepts of MESP and BPEL/BPEL4People. A straight forward
way to define a mapping between MESP and BPEL/BPEL4People would be to create
a dedicated HumanTask web service and it’s GUI for each task or decision of a
method model. Each TaskDescriptor would then be transformed to an invocation
of the appropriate HumanTask web service. The created workflow task could then
be processed via the provided GUI that would contain the hard-coded information
of the task, e.g., its description. However, this would result in creating, deploying,
and maintaining many HumanTask web services together with their specific GUIs.

With MESP, we follow a different approach that reduces the number of Hu-
manTask web services and GUIs required. We use a single, generic HumanTask
web service and dynamic GUIs for all the Tasks referenced in a method model.
The task-specific information, e.g., the task description or responsible role, is then
encoded in the input parameters of the service invocation and loaded into the dy-
namic GUI. Technically, all Tasks are transformed into the same type of workflow
task and TaskDescriptors can be transformed into invocations with appropriate
parameters of the generic HumanTask web service.

Beside the type of workflow task that represents MESP Tasks (1), there are
two further types of workflow tasks that are need. The next type of workflow
task represents MESP HumanDecisions (2) and allows deciding about conditional
activities, e.g., another execution of an Iteration or executing If or Else activities.
The third type of workflow tasks lets the project team set up the initial input work
products of the method model according to the ProjectGoal. As these three

5.5 Initialize Method 145

different types of workflow task differ in their input and output parameters an
individual BPEL4People HumanTask web service is used for each type. Thus, for
each MESP method model, we generate and deploy a BPEL process and three
HumanTask web services. All tasks and decisions to be processed by the project
team are transformed into invocations of one of these three HumanTask web
services.

After we explained the general approach of our transformation, we provide
an overview of the mapping between concepts of MESP and BPEL/BPEL4People
in Table 5.4 and briefly describe the transformation of each MESP concept in the
following.

Table 5.4 The mapping of MESP and BPEL/BPEL4People concepts

MESP Concept BPEL/BPEL4People Concept

Process process with global <variable> elements to
store input and output work product values
and HumanTask-related <peopleActivity> to
initialize input WorkProducts

Sequence <sequence>

Flow <flow>

Phase hard-coded <variable> for invocation of
TaskDescriptor-related <peopleActivity>

Iteration <repeatUntil> loop containing counting
<variable>, HumanTask-related <peopleAc-
tivity> for looping condition, <assign> to
increment counting <variable>

If, Else <if> activity and HumanTask-related <people-
Activity> for condition

MethodPatternDescriptor no explicit element

ConstrainedScopeDescriptor no explicit element

MethodServiceDescriptor no explicit element

TaskDescriptor <assign> activity to initialize the input <vari-
able>, <peopleActivity>, and <assign> ac-
tivity to save the return values

Process The Process element is transformed into a BPEL <process> that contains
<variable> declarations for all output WorkProducts of all TaskDescrip-
tors directly and indirectly referenced from the method model. Additionally,

146 Method Tailoring

it contains <variable> declarations for all WorkProducts available at project
start. Indirectly referenced TaskDescriptors are those that are used in
MethodServices that are referenced by the method model using Method-
ServiceDescriptors. Here, several levels of indirection are possible, when
MethodServices themselves contain MethodServiceDescriptors. Addition-
ally, as the very first activity of the contained <sequence>, it contains a Hu-
manTask invocation (<peopleActivity>) that is used to initialize the input
WorkProducts available at project start. It creates a workflow task that allows
the project team to specify the location of the respective WorkProducts.

Sequence, Flow These control flow activities can directly be mapped to their BPEL
counterparts as they were derived from there.

Phase The Phase element is transformed into a textual hint for the workflow tasks
of that Phase. Therefore, its name is provided as an invocation parameter
<variable> to all of the HumanTask invocations (<peopleActivity>) that
are contained in the Phase, such that it can be presented to the project team
member (cf. Figure 3.27).

Iteration The Iteration element is transformed into a conditional <repeatUntil>
loop that contains the contents of the Iteration. In order to allow the
project team to decide about a further execution of the loop, a HumanTask
invocation (<peopleActivity>) is added at the end of the loop (technically
a further <sequence> element is created, where the transformed content
of the loop is the first element and the <peopleActivity> the second). It
represents the HumanDecision and creates a corresponding workflow task.
Its return value (the human decision) is evaluated in the <condition> of
the <repeatUntil> activity and based on its value, the loop is repeated. In
addition, a BPEL <variable> is incremented at the end of the loop with
an <assign> activity to count the number of iteration runs. Its value is
shown as a textual hint in the workflow tasks of the loop. Therefore, it is
provided as an invocation parameter <variable> to all of the HumanTask
invocations (<peopleActivity>) that are contained in the loop, such that it
can be presented to the project team member (cf. Figure 3.27).

If, Else The If element is transformed into a conditional <if> activity that con-
tains the contents of the MESP If activity. A possibly existing Else activity
is transformed into the <else> branch of the <if> activity. In order to allow
the project team to decide about the execution of the If activity, a Human-
Task invocation (<peopleActivity>) is added right before the <if> element
(technically a further <sequence> element is created, where the transformed
If activity is the first element and the <peopleActivity> the second). It
represents the HumanDecision and creates a corresponding workflow task.

5.5 Initialize Method 147

Its return value (the human decision) is evaluated in the <condition> of the
<if> activity.

MethodPatternDescriptor It is not directly transformed into BPEL, but the con-
tents of the MethodPatternDescriptor are recursively transformed and
added to the BPEL <process>.

ConstrainedScopeDescriptor It is not directly transformed into BPEL, but the
contents are recursively transformed and added to the BPEL <process>.

MethodServiceDescriptor It is not directly transformed into BPEL, but the con-
tents of the referenced MethodService are recursively transformed and added
to the BPEL <process>.

TaskDescriptor A TaskDescriptor is transformed into the invocation of a Hu-
manTask (<peopleActivity>) that will trigger the creation of a workflow
task. To do this the invocation parameter <variable> has to be initialized
with an <assign> activity, so that the right information is presented to the
project team member. First, a part of the invocation parameter <variable> is
assigned values from the referenced MESP Task, e.g., its name, its descrip-
tion, and the associated Role. Second, a part of the invocation parameter
<variable> is assigned values from the Process, e.g., the current Phase and
the current Iteration. Third, a part of the invocation parameter <variable>
is assigned values of WorkProduct <variable> elements according to the
specified InputMapping of the TaskDescriptor, e.g., the value “http://red-
mine.s-lab.de/issues/142” with respect to Figure 3.27. After these <assign>
activities the HumanTask can be invoked with the initialized invocation
parameter <variable> using a <peopleActivity>. Afterward, another <as-
sign> activity saves the provided outputs by the project team member into a
work product <variable> for that output.

We implemented an algorithm that performs the described transformations
automatically and generates the process model related files such that they can be
deployed on the BPEL engine. The algorithm processes the process model in three
steps. First, it replaces all usages of MethodServiceDescriptors with the contents
of the Process of the referenced MethodService. As the replacing Sequence
might itself contain MethodServiceDescriptors, it repeats this procedure until
the process model does not contain any MethodServiceDescriptors anymore.
In the second step, the algorithm builds up the BPEL process by traversing the
Process of the method model and transforming the elements according to the
description. In the third step, the algorithm creates the three HumanTask web
service description files (cf. previous section). These three service descriptions are
basically the same for all generated process models and are only configured with

148 Method Tailoring

different names and namespaces according to the respective method model for
technical reasons.

Deployment & Configuration

Once the process model is derived by transforming the process model into the
BPEL process and the three HumanTask web service description files (cf. previous
section), it can be deployed and configured. Typically, deployment to a process
engine is done by moving the process model files into a dedicated folder or by
uploading them using a web front end. Our tool support allows deploying the files
into the used BPEL engine without human interaction.

Thereafter, the process model needs to be prepared for execution and the project
repository needs to be set up. On the one hand, the roles used in the method model
need to be assigned to project team members. This requires the creation of the
respective user accounts in both systems. On the other hand, the process model
needs to be initialized with the values of the work products that are available at
project start. To do this, the project method engineer first uploads the available
work products to the project repository. Then she starts the execution of the process
model using the configuration interface of the BPEL engine. This executes the
initialization <peopleActivity> that creates a workflow task for the initialization
with input work products of the project. Here, the project manager can enter the
location URIs of the work products that were uploaded to the project repository.

5.5.2 Usage

With our automated transformation of method models into standard BPEL/BPEL-
4People process models, we enable the execution of method models with a standard-
conformant BPEL engine later by the project team. Figure 5.15 shows a simplified
excerpt of the BPEL process that is transformed from the MESP method model
discussed in the end-to-end example in Section 3.2. Lines 3-4 show the generated
BPEL <variable> declarations for all output WorkProducts of all TaskDescrip-
tors. Lines 8-32 show the transformed TaskDescriptor for the Task “Refine
the Architecture”. The first part, in lines 8-18, shows the assignment (<assign>
activities) of <variables> to the input parameter <variable> for the Human-
Task invocation. Lines 11-14 show assignments for the Task-related name and
description. Lines 15-17 show the assignment of the input WorkProduct URL value
that is the output of the Task “Envision the Architecture”. The second part, in
lines 20-24, shows the <peopleActivity> that invokes the HumanTask with the
input <variable>. The last part, in lines 26-32, shows how after execution of the
<peopleActivity> the output is saved. It is saved with an <assign> activity into
the according output <variable> declared in line 4. The remaining parts of the
method model are transformed in a similar manner.

5.5 Initialize Method 149

1 <process name="ePassportMethod"> ...

2 <!-- variable declarations for all outputs of all task descriptors-->

3 <variable name="EnvisionTheArchitecture_architecture_notebook_OP"/>

4 <variable name="RefineTheArchitecture_architecture_notebook_OP"/>

5 ...

6 <sequence>

7 <!-- parameter assignments to set up the invocation of HumanTask-->

8 <assign name="RefineTheArchitecture_Input">

9 <!-- copy values from MESP task to invocation parameter -->

10 <copy> <from> ...

11 <taskName>RefineTheArchitecture</taskName>

12 <descr>"This task builds upon the outlined architect..." </descr>

13 ...

14 </from> <to variable="b4pInput"> </to> </copy>

15 <copy> <from> $EnvisionTheArchitecture_architecture_notebook_OP.

16 Response/Result/wpURL <to> $b4pInput.Request/inputs/input[1]

17 </to> copy>

18 </assign>

19 <!-- invocation of HumanTask for method tasks -->

20 <extensionActivity>

21 <peopleActivity name="RefineTheArchitecture"

22 inputVariable="b4pInput" outputVariable="b4pOutput" > ...

23 </peopleActivity>

24 </extensionActivity>

25 <!-- Output assignment to copy the response from HumanTask -->

26 <assign name="RefineTheArchitecture_Output">

27 <copy> <from variable="b4pOutput">

28 <query> <![CDATA[Result[@workproduct="architecture_notebook"]]]>

29 </query> </from>

30 <to variable="RefineTheArchitecture_architecture_notebook_OP">

31 <query> <![CDATA[Result[1]]]> </query> </to> </copy>

32 </assign>

33 </sequence>...

34 </process>

Fig. 5.15 Snippet of the resulting BPEL process for the end-to-end example

150 Method Tailoring

Using the described transformation, we are able to derive BPEL/BPEL4People
process models from MESP method methods. As discussed, these can be deployed
into standard BPEL engines and configured to be used with the project team.
Figure 5.16 shows the assignment of people (here Alice) to roles defined in the BPEL
engine. Figure 5.17 shows a standard repository with an uploaded Requirements
Specification that was available at project start.

Fig. 5.16 The configuration interface of the BPEL engine to configure role assignment

Fig. 5.17 View of the project repository with uploaded WorkProduct

5.6 Summary 151

5.6 Summary

In this chapter, we presented the details of method tailoring with our approach that
fulfills the MTRs explained in Section 5.1. In particular, we formalized the notion of
project characteristics, such that suitable method building blocks can be determined
(MTR1). Thereafter, we presented our executable composition language to compose
method models. It allows combining method patterns by nesting them into each
other (MTR2) and it supports formal control and data flow (MTR3). In order to
support the quality assurance of method models, we first defined a consolidated
quality model for software engineering method models that categorizes and defines
the notion of quality (MTR4). Based on the quality model, we defined an automatic
quality analysis that reports inconsistencies, including method pattern violations
(MTR5). In the following, we described the automated transformation of method
models to process models such that they can be executed with existing standard
process engines (MTR6). We explained that as part of the process model, the
required HumanTask web services and their GUIs for the project team members
are also created (MTR7).

In the following chapter, we discuss the method enactment with our approach
and explain requirements and related work, the coordination of activities among
the project team, the performance of tasks by single project team members, and the
reflection of the method as a foundation for the improvement of method building
blocks.

CHAPTER 6

Method Enactment

In the previous chapter, we presented the details of method tailoring by the project
method engineer. In this chapter, we discuss the details of method enactment by
the project team.

This chapter is structured as follows. We first discuss the requirements and
related work in Section 6.1. Thereafter, we discuss the coordination of activities
and the support provided by the executed process model (transformed from the
composed method model) in Section 6.2. In Section 6.3, we then discuss the
performance of individual tasks and how that is supported by the executed process
model and the task management component of the BPEL engine. In the following
Section 6.4, we discuss the reflection of the method enactment by the project team
in order to provide feedback to the senior method engineer. Finally, we conclude
the chapter with a summary in Section 6.5.

6.1 Requirements and Related Work

6.1.1 Requirements

6.1.2 Related Work

6.2 Coordinate Activities

6.3 Perform Tasks

6.4 Reflect Method

6.5 Summary

154 Method Enactment

6.1 Requirements and Related Work

In this section, we describe the requirements and related work of method enactment.
We first present the method enactment requirements (MERs) that are a refinement
of the SRs presented in Section 2.2.1. Then we briefly summarize the related work
that will be discussed also in the respective sections later.

6.1.1 Requirements

In this section, we discuss the requirements with respect to method enactment
for a holistic solution for software engineering method management based on an
assembly-based method engineering approach.

The duty of the project team is to enact the method that is formalized as a
method model in order to create the software system. They have to do three
things: first, they have to coordinate their activities according to the control flow
of the method model. Here, they also have to communicate where to find the
work products to be used for each activity. Second, they have to perform the
individual activity according to its task description. And third, they have to reflect
the enactment of the method in order to provide the senior method engineer with
feedback.

As stated with SR3.1, a solution for software engineering method management
has to support the project team with execution support for the enacted method
model. In order to support the coordination of the project team activities, we
therefore derive the MER for our solution that is to coordinate the activities of the
project team according to the method model (MER1). The solution has also to coordinate
the data flow between activities (MER2).

The SR3.2 describes that the solution has to provide enactment support for the
project team via interfaces for the executed method model. In order to support the
performance of individual tasks, we refine it into the MER for our solution that it
has to offer task-related GUIs that show information about the current task, the execution
state of the method model, and the input work products to be used (MER3). Additionally,
the task-related GUIs have to provide means to capture the results of the performed task
(MER4) and the solution has to offer means to store the task-related results (MER5).

As stated with SR3.3 the solution has to provide enactment logs about the
enactment of the method by the project team. This shall support the reflection of
the method enactment. As the execution of the method model in the process engine
reflects the enactment by the team, we refine it into the MER that the solution has
to provide logs for the method model execution and work product alterations (MER6).

6.1 Requirements and Related Work 155

The discussed MERs are summarized in Table 6.1. Also illustrated is the MESP
task where the requirement needs to be addressed. In the following, we discuss
each MESP task of our solution for method enactment. We then also explain how
the respective requirements are met.

Table 6.1 Method Enactment Requirements and the affected MESP tasks

Reqs. Description MESP Task

MER1 coordinate the activities of the project team ac-
cording to the method model

Coordinate Activities

MER2 coordinate the data flow between activities Coordinate Activities

MER3 offer task-related GUIs that show information
about the current task, the execution state of the
method model, and the input work products to
be used

Perform Task

MER4 task-related GUIs have to provide means to
capture the results of the performed task

Perform Task

MER5 offer means to store the task-related results Perform Task

MER6 provide logs for the method model execution
and work product alterations

Reflect Method

6.1.2 Related Work

Regarding the coordination of activities, there are only few approaches that offer
support by executing method models. The tool Demacrone [Har97] and the Guid-
ance Engine of MENTOR [SRG96; Pli96] offer execution support according to the
authors. However, both approaches are based on low-level modeling languages and
outdated technologies. A more standard-conforming way to allow for execution
support is to follow our approach and to extend SPEM in order to overcome its
lack of executability. Ellner et al. [Ell+10; Ell+11] implemented their own process
engine for their extension eSPEM. Bendraou et al. [Ben+07] sketch mappings to the
executable process description language BPEL for their extension xSPEM. For all
the described approaches, the extend of the control flow and data flow support is
not described. Other approaches like V-Modell XT do not offer execution support,
but offer the creation of supporting material, e.g., project plans [KTF11]. In [KKT14],
Kuhrmann et al. describe the Process Enactment Tool Framework (PET) that allows
transforming a given method model into project templates that project tools can
work with. For example, method models based on V-Modell XT can be transformed

156 Method Enactment

into process templates for the Team Foundation Server22 or work product document
templates.

Regarding the performance of tasks, except xSPEM and PET, the above ap-
proaches provide information to the project team member for the task at hand, e.g.,
task descriptions. Other approaches do not offer dynamic support, but generate
documentation based on the method model. For example, tool like the EPF Com-
poser or IBM Rational Method Composer or MC Sandbox [KÅ11; KÅ12] create
static websites that can be browsed for description of processes and tasks (cf. Fig-
ure 3.9). A third group of approaches generate specific CASE environments based
on the method model, e.g., MERU [PS97], Method Management Tools [KLR96],
or MOSKitt4ME [Cer+11]. These CASE environments are specialized to the work
products that need to be created as part of the method and thus help the project
team member to perform her task.

Regarding the reflection of method enactment for the improvement of method
building blocks, there is related work that investigates the enactment of methods.
However, much attention is spend on whether the method is enacted correctly, not
on whether the method suits to the situation in the first place [Hen+14]. Thus,
approaches to measure the degree of formality and optimization of a software
development process, so-called capability maturity models like SPICE [Loo07] and
CMMI [Sof10] are less suitable to address the question of whether the method
model or parts of it are appropriate for specific situations. Beside these more heavy-
weight, organization-driven approaches, there are more lightweight, team-driven
approaches. Postmortem reviews collect experiences from projects that either are
completed or have finished a major activity or phase [Din05]. Here the project team
reflects on its experience and documents lessons learned. Based on the same idea,
recent agile methods include regular activities to reflect the method enactment
and adjust the method for future iterations. For example, Scrum [SS13] includes
a regular, informal meeting called retrospective in each iteration. We discuss an
approach for the systematic information exchange between the project team and
method engineers in the context of software migration methods in [Gri+14].

6.2 Coordinate Activities

In this section, we discuss how our solution addresses the coordination of the
activities of the project team according to the method model (MER1) and the
coordination of the data flow between activities (MER2). In Section 5.5, we already
explained how the method model is transformed into a process model and how it
is executed in a BPEL engine. In the following, we directly discuss the implications
for the project team using an illustrative example.

22https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx

6.2 Coordinate Activities 157

Figure 6.1 shows the beginning part of a method model that is based on the end-
to-end example of Chapter 3. Please note that the data flow is mostly omitted due
to readability reasons. We also do not show the method descriptors and constrained
scopes (but show their content) as they will not be part of the transformed process
model. In the following, be briefly explain the execution order of the shown
activities.

Sequence
Iteration

Hold Standup

Meeting

Refine the

Architecture

Envision the

Architecture
Prepare System

Specification

Iteration

Parallel

SequenceIteration

Planning

Meeting

Iteration

Review

Meeting

Sequence

Develop System

Increment

Test System

Increment

Fig. 6.1 A partial example method model based on the end-to-end-example

The activity Envision the Architecture is the first activity that is executed. It is
followed by an iteration for the actual development. Within this iteration Iteration
Planning Meeting is always executed first. Then the activity Hold Standup Meeting,
shown on the top, is executed repeatedly in parallel to the sequence on the bottom.
Within this sequence, the contained activities are executed one after the other. As
denoted by the dotted line, the first activity Refine the Architecture is receiving its
input from Envision the Architecture. After the sequence, Iteration Review Meeting is
executed. If a further run of the iteration follows, it starts from the top with the
execution of Iteration Planning Meeting. If not, the following activities, not shown in
the figure, are executed.

Figure 6.2 shows the process model that is generated from the method model.
As depicted, it looks similar to the method model, however some elements are
replaced by multiple elements (cf. Section 5.5). For example, each activity that
represented a Task, e.g., Envision the Architecture was replaced by a triplet of BPEL
activities (<assign>, <peopleActivity>, <assign>). Each iteration was replaced by a
<repeatUntil> activity with an additional <peopleActivity> contained as the last

158 Method Enactment

element. Not shown is the triplet of BPEL activities that is used to set up the
locations of input work products of the process model (cf. Section 5.5) that is
executed at the very beginning. Also omitted are some elements that are generated
for technical reasons, e.g., namespaces, (cf. [Nee14]).

<repeatUntil>

<repeatUntil>

<flow>

<sequence>

<sequence>

Envision the

Architecture

<peopleActivity>

Input <assign>

Output <assign>

Iteration

Planing

Meeting

<peopleActivity

>

Input <assign>

Output <assign>

Hold Standup

Meeting

<peopleActivity>

Input <assign>

Output <assign>

Further

Iteration?

<peopleActivity>

Input <assign>

Output <assign>

Refine the

Architecture

<peopleActivity>

Input <assign>

Output <assign>

Prepare System

Specification

<peopleActivity>

Input <assign>

Output <assign>

Develop

System

Increment

<peopleActivity

>

Input <assign>

Output <assign>

Test System

Increment

<peopleActivity>

Input <assign>

Output <assign>

Iteration

Review

Meeting

<peopleActivity

>

Input <assign>

Output <assign>

Further

Iteration?

<peopleActivity>

Input <assign>

Output <assign>

<sequence>

Fig. 6.2 The process model for the method model of Figure 6.1

We illustrate the coordination of activities by the process model execution in
the following. Once the outer <sequence> is executed, the first triplet of BPEL
activities is executed. The activities are executed one after the other. The <assign>
activity initializes the invocation variable with the Task-related information, e.g.,
the name “Envision the Architecture” and the associated role “Architect”. The
following peopleActivity invokes our generic HumanTask web service. This
creates a workflow task with the provided information in the Task Management
component of the BPEL server and the execution stops until a response is received.
Team members can log into the BPEL server to see their open workflow tasks
according to their roles set up in the system. Thus, now every team member with
the role Architect can access the created workflow task via the task management
view as illustrated by Figure 6.3.

The team member, e.g., Bob, can now claim and perform the workflow task and
create the output work product Architecture Notebook. He than marks the workflow
task as finished and provides the location URI of the output. Once the workflow

6.2 Coordinate Activities 159

Fig. 6.3 Task management view of architect Bob with a workflow task ready

task is finished by Bob, the execution of the process resumes with the following
<assign> activity that stores the result into the appropriate result <variable>
“EnvisionTheArchitecture_architecture_notebook_OP” (cf. 5.15). Afterward, the
next activity <repeatUntil> is executed. The only child <sequence> is executed
next and executes its first child, the triplet of activities for the task Planning Meeting.
Similar to before, a workflow task is created for the associated role Team Lead (c.f.
3.10) and the execution is resumed, after it was finished. Next, the <flow> activity
is executed and it executes its two children in parallel, the <repeatUntil> activity
and the <sequence>. Thus, two workflow tasks are created, one for Hold Standup
Meeting and one for Refine the Architecture. The workflow task that is created for
the latter contains the location URI that was provided by Bob after performing
the workflow task for Envision the Architecture. Based on the specified data flow
(cf. Figure 6.1), it is copied from the <variable> “EnvisionTheArchitecture_archi-
tecture_notebook_OP” during the input <assign> activity. Both BPEL activities
execute their child activities sequentially, but independent of each other. Once the
workflow task for Test System Increment is finished, the <sequence> is finished. The
<repeatUntil> activity, however, might be repeated, depending on the outcome
of the second <peopleActivity>. This creates a workflow task that allows team
members with the role Team Lead to request a following iteration. A team member,
e.g. Alice, can now claim and perform the workflow task that is shown in Figure 6.4.
Depending on the decision, the <repeatUntil> activity is repeated and a workflow
task for Hold Standup Meeting is created again.

Only after the <repeatUntil> activity and the <sequence> are both finished,
the triplet of activities for Review Meeting is executed and the corresponding work-
flow task is created. Once that is finished, the <peopleActivity> to decide about
a further iteration of the development loop is executed.

As described, the enactment of the method is controlled by the BPEL engine
via the created and performed workflow tasks. The BPEL engine ensures that the

160 Method Enactment

Details:

<< Back to Task List

Mon Mar 26 09:34:32 CET 2016

Mon Mar 26 09:41:05 CET 2016

IN_PROGRESS

Request:

People:

Alice

Should the Iteration be repeated and another Hold Standup Meeting be performed?

Response:

Complete

Yes, repeat No

Description Should the Iteration be repeated and another Hold Standup Meeting be

performed?

Phase Development Phase

Iteration Development Iteration: 1 HoldStandupMeetings Iteration: 1

Description:

Fig. 6.4 A workflow task to decide about a further run of an iteration

workflow tasks are created in the right order according to the control flow specified
in the method model. In addition, it ensures that the right information about input
work products is shown based on the data flow specified. Especially in settings,
where the coordination of activities is challenging, e.g., in big projects or global
software project (cf. [FGS15] and [FSH15]), the project team benefits from this
support of the coordination of activities. In general, it is ensured that the enactment
of activities does not deviate from the specification in the method model.

6.3 Perform Tasks

In this section, we discuss how our solution provides project team members with
information about their task at hand (MER3), how team members store the results
of their work (MER4) and how they report them back to the system (MER5). In
Section 5.5, we already explained how that is achieved, technically. In the following,
we directly discuss the implications for the team member using an illustrative
example. In the previous section, we explained how the method enactment is
controlled via the creation and performance of workflow tasks by the BPEL engine.

6.3 Perform Tasks 161

In this section, we want to discuss how task-related workflow tasks are presented
to the team members.

First, we focus on the outputs that are to be created. Figure 6.6 shows the
workflow task for Envision the Architecture as it is presented to the architect Bob
after he claimed and started it (see previous Section). As depicted, it shows the
information about the associated Task. Based on the provided information, Bob
can now create the output work product Architecture Notebook. He uploads the
result to the project repository as illustrated with Figure 6.5 or specifies it directly
there using the provided facilities. Afterward, he provides the location URI of the
output, when he marks the workflow task as finished as shown in Figure 6.6.

Fig. 6.5 The Architecture Notebook uploaded to the project repository by Bob

Second, we now discuss the three groups of information provided in a workflow
task. Figure 6.7 shows the workflow task for Refine the Architecture that is claimed
and started by another architect named Eve. As the first group of information, the
workflow task shows task-related information that corresponds to the specification
given by the senior method engineer (cf. Figures 3.9 and 3.10), e.g., the description of
the task and the associated roles. In addition, it shows process-related information
based on the process model execution so far. It reflects to which phase and to
which run of an iteration the workflow task belongs. For example, the workflow
task belongs to the second iteration, while the workflow task shown in Figure 6.6
did not belong to any iteration. As the last group of information, the workflow task
shows the location of the input work products so that Eve can access them in the

162 Method Enactment

Details:

<< Back to Task List

Fri Mar 23 12:34:33 CET 2016

Mon Mar 26 09:01:42 CET 2016

IN_PROGRESS

Request:

People:

Bob

To envision a technical approach to the system that supports the project requirements,

within the constraints placed on the system and the development team.

Response:

Complete

Architecture Notebook:

Description This task focuses on envisioning the initial architecture and outlining the

architectural decisions that will guide development and testing. It relies

on gathering experience gained in similar systems or problem domains

to constrain and focus the architecture so that effort is not wasted in re-

inventing architecture.

Role Architect

Steps Identify architectural goals

Identify architecturally significant requirements

Identify key abstractions

Define approach for partitioning the system

Identify interfaces to external systems

Verify architectural consistency

Capture and communicate architectural decisions

Add. Roles None

Inputs Architecture Notebook

Outputs Architecture Notebook

Phase Development Phase

Iteration None

Description:

http://redmine.s-lab.de/issues/15

Fig. 6.6 The workflow task for Envision the Architecture

6.4 Reflect Method 163

project repository. The provided location URI corresponds to the one provided as
output for the workflow task Envision the Architecture (cf. Figure 6.6). Now Eve
can upload a new version of the Architecture Notebook in the project repository and
provide its location URI.

As described, the information in the workflow tasks support the project team
member in performing her individual task. As the information specified by the
senior and project method engineers regarding tasks, phases, and iterations are
provided right with the workflow task, the project team member does not have to
look that information up or ask for it. Same is true for the required input work
products of the task whose location is also specified within the workflow task. As
with the coordination of activities, this is especially helpful in distributed and large
settings, e.g., global software project (cf. [FGS15] and [FSH15]).

6.4 Reflect Method

In this section, we discuss the reflection of the method enactment by the project
team and how our solution provide logs for the method model execution and work
product alterations (MER6).

In order to support the senior method engineer in improving method services
and method patterns, the project team should reflect the enactment of the method
and provide her with feedback by capturing lessons learned. Team-based reflection
approaches are described for example in [Din05] and [SS13] typically involve the
discussion of what went good or bad since the last reflection session.

To support this analysis, it is helpful to have access to information about the
actual method enactment. Based on our experience (e.g. [FSH14]), the actual
enactment of the method can very often only be reconstructed indirectly and in a
tedious manner, based on the created work products and the individual memories
of the project team members. If a project repository is used (as designated with our
solution), the change log for work products as illustrated by Figure 6.8 is a helpful
extension.

However, the performed tasks themselves are typically not documented. To the
contrary in our solution, every performed task is associated with a workflow task.
This workflow task has to be started and finished by the project team members.
Therefore, the log file of the BPEL engine can be used to reconstruct the method
enactment as it logs the start and end of workflow tasks. As the raw data log will
contain technical details and BPEL terminology, it is less suitable for the direct use
by the project team members and should be preprocessed. Yet, such a preprocessing
remains future work for our solution.

The results of the method reflection are not (only) to be implemented by the
project team itself, but need to be communicated to the senior method engineer.
Here, oral feedback and interviews are preferred (cf. 4.2.2) as this is efficient and

164 Method Enactment

Details:

<< Back to Task List

Mon Mar 26 14:04:03 CET 2016

Mon Mar 26 15:27:01 CET 2016

IN_PROGRESS

Request:

People:

Eve

To make and document the architectural decisions necessary to support development.

Response:

Complete

Architecture Notebook:

Name Refine the Architecture

Description This task builds upon the outlined architecture and makes concrete and

unambiguous architectural decisions to support development. It takes

into account any design and implementation work products that have

been developed so far. In other words, the architecture evolves as the

solution is designed and implemented, and the architecture

documentation is updated to reflect any changes made during

development.

Role Architect

Steps Refine the architectural goals and significant requirements

Identify architecturally significant design elements

Refine architectural mechanisms

Define development architecture and test architecture

Validate the architecture

Communicate decisions

Add. Roles None

Inputs Architecture Notebook : http://redmine.s-lab.de/issues/15

Outputs Architecture Notebook

Phase Development Phase

Iteration Development Iteration: 1

Description:

Fig. 6.7 The workflow task for Refine the Architecture

6.5 Summary 165

Fig. 6.8 The change log of the project repository

allows for follow up questions. However, especially in distributed settings like
global software projects (cf. [FGS15] and [FSH15]) this might not be possible. In
[Din05], the creation of a postmortem report is proposed. In [Gri+14], we discuss
the use of feedback forms in the context of software migration methods in an
industrial case study. The (senior) method engineer creates these feedback forms to
guide the kind of feedback she considers helpful. The project team members then
can use them to provide feedback without direct communication.

6.5 Summary

In this chapter, we presented the details of method enactment with our approach
that fulfills the MERs explained in Section 6.1.1. In particular, our execution support
coordinates the activities of the project team by creating and assigning workflow
tasks based on the progress within the process model that is generated from the
method model (MER1). Our solution also provides the appropriate work products
for a workflow task based on the data flow of the method model (MER2). In
addition, the workflow tasks show the task-related information specified by the
senior method engineer for a task and information about the current phase and
iteration (MER3). The project team member can provide the location of the output
work products that she created right in the GUI of a workflow task (MER4) and the
storage of work products is realized using a standard project repository (MER5).

In the following chapter, we discuss the evaluation of our approach that is
based on the prototypical implementation of the described solution for software
engineering method management.

CHAPTER 7

Proof of Concept Implementation

We implemented the solution presented in this thesis in a research prototype
that covers MESP tasks on all three layers of the software engineering method
management hierarchy.

This chapter is structured as follows. In Section 7.1, we discuss the technical
implementation of the MESP tool support. In Section 7.2.1, we focus on content
realized with the tool support. We discuss a case study from the eID domain
created in a joint project with HJP Consulting GmbH to test the capabilities of the
MESP tool support. In Section 7.2.2, we discuss the scalability of our tool support
and in Section 7.2.2, we discuss the results.

7.1 Tool Implementation

7.1.1 Method Content Definition

7.1.2 Method Tailoring

7.1.3 Method Enactment

7.2 Method Composition

7.2.1 Case Study: Certification Issuance Process

7.2.2 Experiment: Scalability Analysis

7.3 Summary

168 Proof of Concept Implementation

7.1 Tool Implementation

The implementation of our approach is based on three platforms. First, we devel-
oped and extended Eclipse-based tooling for all the MESP tasks related to method
content definition and method tailoring. This covers the creation and management
of method services and method patterns as well as the creation and quality analysis
of method models and their transformation to executable process models. For
method enactment, we use, second, the off-the-shelf BPEL engine WSO2 Business
Process Server23 and, third, we use the standard off-the-shelf project repository Red-
mine24. In the following, we explain the implementation of each of the components
presented in Figure 3.4.

7.1.1 Method Content Definition

In this section, we illustrate the implementation of the Method Building Blocks Editor,
the Method Repository, and the Method Repository Browser.

Method Building Blocks Editor

The Method Building Blocks Editor is used to define basic method elements, method
services, and method patterns. In our implementation, we offer a combination of
editors that realize this functionality.

First, our tooling integrates the Eclipse Process Framework (EPF) Composer25

that allows modeling SPEM-based basic elements and SPEM-based method models
(cf. Figure 7.1). We developed functionality to import tasks, work products, and
roles defined with the EPF Composer into our project repository. Thus, we also
allow importing basic elements from existing SPEM repositories26.

Second, basic elements, method services, and method patterns can be defined
using a tree-based editor that also functions as the Method Repository Browser.
This editor was generated from our meta-model and extended with additional
functionality using the Eclipse Modeling Framework (EMF) [Ste+09]. Figure 7.2
shows how the method pattern constraint of a method pattern is created using the
context menu of the tree-based editor.

Third, besides using the tree-based editor, the process of method services can
be specified using visual editors. These editors are the same ones that can be used
to specify the process of method models (cf. Section 7.1.2).

23http://wso2.com/products/business-process-server/
24http://www.redmine.org/
25http://www.eclipse.org/epf/
26e.g. https://eclipse.org/epf/downloads/praclib/praclib_downloads.php

7.1 Tool Implementation 169

Fig. 7.1 Definition of a Task using the EPF Composer

Fig. 7.2 Defining a Method Pattern using the Tree-based EMF Editor

170 Proof of Concept Implementation

Method Repository and Method Repository Browser

The Method Repository is used to store method content and composed method
models. The Method Repository Browser is used to browse through these elements.

The Method Repository is currently a file-based XML storage that is managed
by the used Eclipse EMF framework. Multi-user support and performance improve-
ments could be added easily by migrating to the Connected Data Objects (CDO)
model repository27 for EMF-based models.

The Method Repository Browser is realized by the tree-based editor presented
in the previous section. It allows viewing and editing model elements.

7.1.2 Method Tailoring

In this section, we illustrate the implementation of the Method Composer, the Consis-
tency Checker, and the MESP2BPEL Transformer.

Method Composer

The Method Composer is used to characterize the project and to compose the
method model. In our implementation, we offer a combination of editors that
realize this functionality.

The tree-based editor discussed in the previous sections can be used to create
a new ProjectMethod with an empty Process and to define the ProjectGoal
and the ProjectSituation. The tree-based editor can also be used to define the
contents of the Process as shown in Figure 7.3. However, we additionally offer
two visual editors to do this.

As the first visual editor, our tooling integrates an extended version of the BPEL
Designer28 that originally allows specifying BPEL process models. We extended the
editor to support our process-related meta-classes, e.g., task descriptors, method
service descriptors, phases, and iterations. Figure 7.4 shows the BPEL Designer
with the extended tool palette to add elements to the process. It also shows the
extended properties view that shows the Details of the selected TaskDescriptor.
Figure 7.5 shows a bigger process in the extended BPEL designer. The Inception
Phase in the figure was collapsed for better overview.

The second visual editor was developed to address the missing capabilities of the
extended BPEL Designer to specify and visualize data flow related information. This
visual editor is based on the more recent Eclipse Sirius framework29. As illustrated
by Figure 7.6, the editor optionally includes data flow related information like
required inputs (red rectangles) and existing InputMappings (white rectangles)

27http://projects.eclipse.org/projects/modeling.emf.cdo
28http://www.eclipse.org/bpel/
29https://eclipse.org/sirius/

7.1 Tool Implementation 171

Fig. 7.3 The end-to-end example in the tree-based editor

Fig. 7.4 Composition of a process in the extended BPEL Designer

172 Proof of Concept Implementation

Fig. 7.5 A composed method model in the customized BPEL Designer

7.1 Tool Implementation 173

or provided outputs (green rectangles). It also features drag-and-drop from the
tree-based editor. For example, when a MethodService is dragged into the pane, a
MethodServiceDescriptor for it is created and added.

Fig. 7.6 The end-to-end example in the Sirius-based editor

Consistency Checker

The Consistency Checker is used to partially or completely check the composed
method model for consistency and quality issues. In our implementation, this
functionality is realized by using the EMF Validation Framework that is part of

174 Proof of Concept Implementation

the Eclipse Modeling Project30. The checks themselves are realized using OCL and
Java. The OCL expressions are evaluated with the Eclipse OCL component31.

The use of the EMF Validation Framework allows integrating with the existing
validation that is provided out of the box and available in all editors. Here, the
EMF automatically checks for the conformance of models with their meta-models,
so method models are already checked for reference completeness and attribute
completeness (see Section 5.4.1).

Figure 7.7 illustrates how detected issues are reported to the user. In the figure,
the highlighted Iteration does not contain a HumanDecision that is required to
describe the condition for additional iteration runs. Running the validation from
the context menu of the visual editor or the tree editor will result in the error
reported in the Problem View on the bottom. As shown, the error is visualized in
the visual editor with an mark.

Fig. 7.7 An issue reported in the Problems View and visualized in the Sirius Editor

MESP2BPEL Transformer

The MESP2BPEL Transformer is used to transform the MESP method model into
a BPEL/BPEL4People process model. The BPEL/BPEL4People process model
consists of two parts, the BPEL process and BPEL4People HumanTask services with
their GUIs. In our implementation, the transformation is realized by an Eclipse-
Plugin. The functionality can be triggered via the context menu of the tree-based
editor upon right click on a ProjectMethod as shown in Figure 7.8. The Plugin is
written in Java and uses text-based templates. These hold the necessary generic
parts of the BPEL/BPEL4People process that are the same for all transformed

30https://eclipse.org/modeling/
31http://www.eclipse.org/modeling/mdt/?project=ocl

7.1 Tool Implementation 175

method models. They also contain placeholders for the dynamic parts that are
generated based on the method model contents. Our implementation deploys the
process model automatically into the BPEL server by moving the generated files
into specific folders.

Fig. 7.8 The context menu of the tree-based editor showing the command to transform a
method model to an BPEL process model

7.1.3 Method Enactment

In this section, we illustrate the implementation of the Workflow Engine, the Task
Engine, and the Project Repository.

Workflow Engine

The Workflow Engine is used to execute the BPEL process and to host the BPEL4Peo-
ple HumanTask services that are invoked by the BPEL process (cf. Section 5.5.1).
In our implementation, this functionality is realized by the standard BPEL en-
gine we use, the WSO2 Business Process Server32. Internally, it uses the Apache
Orchestration Director Engine (ODE)33 for the execution of BPEL process models.

Task Engine

The Task Engine is used to manage workflow tasks and serves as the interface
to the project team members. In our implementation, this functionality is also

32http://wso2.com/products/business-process-server/
33http://ode.apache.org/

176 Proof of Concept Implementation

realized by the WSO2 Business Process Server that provides it out-of-the-box.
However, the GUIs for the workflow tasks depend on their inputs and outputs
and are defined using Java Server Pages34. Therefore, we defined a GUI for each
of the three workflow task types (e.g. Figure 6.7). These get deployed to the
WSO2 Business Process Server together with their corresponding BPEL4People
HumanTask services.

Project Repository

The Project Repository is used to manage work products created by the project
team members. In our implementation, we use the standard project repository
Redmine (cf. Figure 6.5). In particular, it allows accessing work products via unique
URIs. Regarding the third group, a standard project repository is used to store the
created work products and create URIs for them.

7.2 Method Composition

In this section, we use the tool implementation presented in the previous section
to take more detailed look at the method content definition and method tailoring.
The detailed investigation of the method enactment with our tool implementation
remains for future work. In the following, we first present a case study that we
conducted together with a company. Thereafter, we present a scalability analysis
experiment for the performance-critical components of our tool implementation.

7.2.1 Case Study: Certification Issuance Process

As a proof of concept for the MESP tool support, we realized an exploratory case
study [RH09] from the eID domain in a joint project with HJP Consulting GmbH.
The goal was to demonstrate the approach of MESP and to gain experience with an
practical example and to evaluate the capabilities of the tool support.

Case Study Design

The investigation in this case study took place at an eID consultancy and software
company called HJP Consulting GmbH. The underlying scenario for the case
study is the certification of the eID passport as part of the introduction of a
distributed ePassport system. It ensures that the designed eID passports conform to
international standards and that they are temper-proof. This scenario was chosen by
the participating organization, because it has been very familiar with it. Therefore,

34http://www.oracle.com/technetwork/java/javaee/jsp/index.html

7.2 Method Composition 177

it was expected to be easier to identify related concepts like tasks, work products,
and roles.

At the time of the case study, the tool support comprised the extended BPEL
Designer, but not the Sirius-based editor that was added partly based on the
provided feedback. In the following, we describe how the MESP tasks of our
approach were performed and illustrate the created model elements. Afterward,
we discuss the results of the case study.

Conduction of Case Study

From the case study, the MESP tasks of method content definition and method
tailoring were performed by members of HJP Consulting GmbH with feedback and
guidance by us.

Method Content Definition In order to extract reusable method content, two domain
experts of the participating organization captured the existing processes for the
certification. They documented their results with the Business Process Model and
Notation (BPMN) [OMG11] using the modeling tool Enterprise Architect35. The
created BPMN diagram included work products, typical activities, conditional
branches and branching conditions. Then, based on feedback by us regarding
gaps and inconsistencies, they refined the diagram. Figure 7.9 shows the resulting
BPMN diagram and illustrates its size. The process of the diagram basically
consists of two parts. First, the required and desired certification is determined and
selected. Afterward, based on the selection, the corresponding certification tasks
are performed. Thus, the complexity of the depicted process is due to it encoding
all possible sequences of activities (i.e. situations).

Pa
ss

po
rt

Te
st

Te
st

Au
th

or
ity

 /
La

bo
ra

to
ry

St
an

da
rd

iza
tio

n
Au

th
or

ity
Te

st
Ex

pe
rt

Cu
sto

m
er

Chose Test
Scenario

Apply Durability
Test

Apply Conformity
Test

Test
Scenario

Select Test Layer Apply ICAO
Tests

Apply BSI Tests

Supported
Protocols

Request
Passport

Certification

Apply
Electronical

Tests

Apply Functional
Tests

Certification
Request

Supported
Protocols

Conformity
Tests

Conformity Tests

Required
Certification

Request
Durability Test

Perform
Durability Test

Passport
Samples

Durability
Test

Durability
Test
Protocol

Issue Durability Test Report

Durability
Test
Protocol

Required Certificate

ICAO –
ISO/IECSC17/WG3
tests

ICAO RF Protocol
and Application Test
Standard for e-
Passport part 2

Passport
Samples

Perform Test

ICAO –
ISO/IECSC17/WG3
tests

Passport
Samples

Receive Test
DocumentDurability

Test Report

Issue HJP
Functional Test

Certificate
HJP
Functional
Test
Certificate

Functional
Test Protocol

Functional
Test Protocol

Communicate
Test Errors

Resolve Errors

Test
Protocol

Prepare Report
Issuance

Forward
ICAOTest
Results

Functional
Test Protocol

Functional
Test Report
(ICAO)

ICAO Durability
Test Specification

Durability
Test Report

Perform
Functional Test

Sample
Passports

Functional
Test
Protocol

Functional
Test Protocol

Issue ICAO Functional
Test Report

ICAO Functional
Test Report

ICAO
Functional
Test Report

BSI TR-
03105,
part 3.2
tests

Perform Test

Passport
Samples

BSI TR-
03105, part
3.2 tests

Prepare
Certificate
Issuance

Select Protocols

ICAO –
ISO/IECSC17/WG3
tests

Functional
Test Protocol Request ICS

ICAO –
ISO/IECSC17/WG3

BSI TR-
03105,
part 3.2

ICS

Fill ICS
Request of
ICS

Perform
Functional Test

Passport
Samples

BSI TR-
03105, part
3.2 tests

Functional
Test Report

HJP
Certificate

Issue BSI
Certificate

BSI
Certificate

Functional
Test Report

BSI
Certificate

Perform
Electronical Test

Electrical
Test

BSI TR-
03105 Part 2

Issue Electronical Test
Report

Electronical
Test Report

Electronical
Test Protocol

Electronical
Test Protocol

Terminabsprachen
sind nicht
Bestandteil der
Modells

Electronical
Test Report

Errors

No Errors

passed

passed

Durabili ty Test

HJP Certificate

BAC, SAC, Security Conditions, LDS HJP Certificate

No Errors

Official Certificate

Conformity Test

Official Certifi cate

passed

passed

Layer 1-4

ErrorsLayer 6-7

EAC

Fig. 7.9 The captured process for the certification of ePassports

As we will see, the complexity of resulting method models is significantly
reduced as they are tailored to the situation. In addition, for the case study, the

35http://www.sparxsystems.com/products/ea/index.html

178 Proof of Concept Implementation

organization focused on the modeling of the “happy path”. That is, they chose to
ignore alternative flows due to failed certifications for the case study.

Figure 7.10 shows an excerpt of the BPMN diagram. It shows two branches
and the icon with the plus sign in the diamond shape indicates that one or both is
chosen based on the results of the activity Select Protocols. Depending on which path
is chosen and for which protocols tests are required, ICAO tests (EAC protocol), BSI
tests (BAC protocol), or both (EAC and BAC protocols) are applied and performed.
Also shown are input and output work products, e.g., Passport Samples are input
for Perform Test.

T
es

t
A

u
th

o
ri

ty
 /

 L
ab

o
ra

to
ry

C
u

st
o

m
er

Apply ICAO

Tests

Apply BSI Tests

Supported

Protocols

Request

Passport

Certification

Apply

Electronical

Tests Perform

Durability Test

Passport

Samples

Durability

Test

Durability

Test

Protocol

Issue Durability Test Report

Durability

Test

Protocol

ICAO –

ISO/IECSC17/WG3

tests

ICAO RF Protocol

and Application Test

Standard for e-

Passport part 2

Perform Test

ICAO –

ISO/IECSC17/WG3

tests

Passport

Samples

Receive Test

DocumentDurability

Test Report

Functional

Test Protocol

Resolve Errors

Test

Protocol

Functional

Test Report

(ICAO)

ICAO Durability

Test Specification

Durability

Test Report

Perform

Functional Test

Sample

Passports

Functional

Test

Protocol

Functional

Test Protocol

Issue ICAO Functional

Test Report

ICAO Functional

Test Report

ICAO

Functional

Test Report

BSI TR-

03105,

part 3.2

tests

Perform Test

Passport

Samples

BSI TR-

03105, part

3.2 tests

Select Protocols

ICAO –

ISO/IECSC17/WG3

tests

Functional

Test Protocol

ICAO –

ISO/IECSC17/WG3

BSI TR-

03105,

part 3.2

ICS

Fill ICS

Request of

ICS

Perform

Functional Test

Passport

Samples

BSI TR-

03105, part

3.2 tests

Functional

Test Report

HJP

CertificateBSI

Certificate

Perform

Electronical Test

Electrical

Test
BSI TR-

03105 Part 2

Issue Electronical Test

Report

Electronical

Test Report

Electronical

Test Protocol

Electronical

Test Protocol

Electronical

Test Report

passed

BAC, SAC, Security Conditions, LDS

passed

passed

EAC

Fig. 7.10 Excerpt of the captured process for the certification of ePassports

In order to define basic elements, a third member of the participating organization
used the illustrated BPMN diagram. This person was the one that operated the
proof of concept implementation. She served both as senior method engineer and
defined basic elements and method services. Later she also composed the method
model. Based on the information captured in the BPMN diagram, she defined the
work products in our tooling as shown in Figure 7.11. In a similar manner, she
defined the activities and roles. (Figures 7.11 and 7.12).

Regarding situational factors, no dependencies based on the situation have been
known at the time of the case study. The performed activities depended solely on
the necessary output work products. Therefore, no situational factors have been
defined. Alternatively, the protocols to certify (e.g. EAC or BAC) might have been
modeled as situational factor values. The according method services might then
have been associated with the corresponding protocol.

7.2 Method Composition 179

Fig. 7.11 The work products defined based on the BPMN process diagram

Fig. 7.12 The tasks defined based on the BPMN process diagram

180 Proof of Concept Implementation

Fig. 7.13 The roles defined based on the BPMN process diagram

The definition of basic elements was seen as the most labor-intensive work in
the sense of “lots of clicking, little thinking”. However, in our case study the actual
analysis and “thinking” was part of the BPMN diagram creation and thus took
place prior to the definition in the tool.

Based on the basic element, the same third member created method services
using our tooling and using feedback by us. The resulting method services are
shown in Figure 7.14. The defined method services both comprised method
services with a single task descriptor and method services containing multiple task
descriptors. Thus, there were less method services defined than tasks.

Fig. 7.14 The derived method services for the case study

Figure 7.15 shows the definition of the method service Perform ICAO Test. It
contains a sequence of three task descriptors, where the last two contain each two
input mappings. Also defined are output mappings. The last output mapping for
the functional test protocol in highlighted in the Properties View of the tooling and
its work product type (Output) and source task descriptor are shown.

Method patterns were not identified in the case study; as the required and
provided work products would already predetermine the required method service
descriptors for a method model.

The creation of method services and sizing them regarding the contained task
descriptors was perceived as being considerable cognitive, but doable work.

Method Tailoring For the creation of the method model, the third member of the
organization postulated a typical certification project, where the passport samples
had to be certified for the protocol BAC using ICAO tests. She created the method
model herself, while we gave feedback and answered clarification questions.

7.2 Method Composition 181

Fig. 7.15 Details of the method service Perform ICAO Test

In order to characterize the project, she selected the required output work products
of the method model and the provided inputs from the method repository. As
explained, situational factors were not defined for the case study.

In order to compose the project-specific method and to assure the quality of the method,
she chose the suitable method services based on the required output work products.
The resulting method model is shown in Figure 7.16. Due to the availability of
suitable method services with multiple tasks descriptors, the resulting method
model only contains two method service descriptors. Also illustrated in the figure
are the created input mappings and output mappings for the data flow. Here
the automated quality analysis supported her in the identification of missing
specifications.

In order to initialize the method the third member of the organization invoked the
transformation to the BPEL/BPEL4People process model and the deployment of
the method model. She also started the process execution and demonstrated the
creation of workflow tasks to the other members of the organization.

Overall, the method tailoring was perceived as being doable.

182 Proof of Concept Implementation

Fig. 7.16 The composed Method for the certification of ePassports

Discussion

In this section, we illustrated a case study from the eID domain from a joint project
with HJP Consulting GmbH. The case study was the certification of the eID passport
as part of the introduction of a distributed ePassport system. In the case study, three
people from the organization were involved, where the tool-related modeling part
was performed by the third member of the organization. The following discussion
is based on her feedback.

In general, she perceived the creation of method content and the composition
of the method model based on the BPMN diagram as easily doable and a good
approach for the future. Most of the time for the modeling was spent on the
creation of work products, roles, and tasks. While that work was seen as simple, the
creation of method services with the right size and content was seen as the most
challenging and cognitive intensive work. Together with feedback and clarifications,
the modeling took about twelve hours including the time to explain the tooling.
The resulting method repository contained four roles, 18 tasks, 22 work products,
and 7 method services. The tool support was perceived as being stable and usable.
However, it was proposed to extend the visual user interface with the possibility to
define and present data flow. This is now possible using our Sirius-based editor.

7.2 Method Composition 183

Overall, the case study shows satisfactory results for our approach and our tool
support. Still, as with every case study there are some limitations. In the following,
we want to discuss the threads to validity.

The case study was limited to a rather narrow scenario of the certification of
ePassports. Here, the creation of basic method elements was perceived as easy.
However, it could become more difficult with a bigger number of elements, e.g.
to ensure that there are no two work products that describe the same concept.
In addition, in the case study, situational factors and method patterns were not
defined and used. Therefore, their effect on the creation of method models needs
further investigation. Furthermore, our case study was limited to the method
content definition and method tailoring, while the method enactment was out of
scope. Nevertheless, the case study provides a first indication for the usage of our
approach and the provided tooling. The case study was not performed by us, but
by IT consultants of another organization and based on a real-life scenario.

7.2.2 Experiment: Scalability Analysis

Beside the investigation of the approach and the tool support in a case study,
we also analyzed the scalability of our tool support. Our goal was to determine
whether it scales well enough, even for very big method models.

Experiment Design

In our scalability analysis experiment, we focused on the two performance-intensive
algorithms that are part of our tool support. The first algorithm is the automated
quality analysis with the Consistency Checker that is also highlighted in [FK16]. The
second algorithm is the transformation of method models to BPEL/BPEL4People
with the MESP4BPEL Transformer. We investigated their performance on a regular
workstation with respect to method models with varying properties.

Process Model Data Sets For the scalability analysis, we composed method
models from a method repository that had been mainly derived from the practices
library of the EPF36. Based on prior experiments, we prepared method models
with varying parameters focusing on the parameters that influence the runtime of
the algorithms. The computational complexity for the MESP2BPEL Transformer
is linear in the number of method model elements including the (transitively)
referenced elements in the method repository. Therefore, it would have been
sufficient to create method models with a varying number of method service
descriptors. However, the computational complexity of the Consistency Checker
depends on various parameters. Especially, for the evaluation of method pattern

36http://epf.eclipse.org/wikis/epfpractices/index.htm

184 Proof of Concept Implementation

constraints, our tooling uses an existing black box component, whose runtime
characteristics had not been known to us. As a result, we created the three data sets
A, B, and C of models as shown in Table 7.1. The test method models are designed
such that they represent the worst case for the analysis of the Consistency Checker.
For example, if a certain method service descriptor is required, it is not included in
the model, such that the algorithm cannot terminate before analyzing the whole
model.

Table 7.1 The data sets of process models for the scalability analysis

ID Service
Descriptors

Input
Mappings

Constrained
Scopes

Partial
Constraints

Descriptors
per Scope

A1 500 - - - -
A2 500 1000 - - -
A3 500 2000 - - -
B1 500 2000 5 5 100

B2 500 2000 5 15 100

B3 500 2000 20 60 25

C1 2000 4000 - - -
C2 2000 4000 20 60 100

We created a set A of method models that do not contain method pattern
descriptors and thus no constraints that need to be checked as part of the quality
analysis of the Consistency Checker. The method models of set A vary in the
number of input mappings that they contain. In addition, we created a set B of
method models that contain a varying number of method patterns. While the
number of method service descriptors and input mappings is constant, the number
of constrained scopes, partial constraints, and method service descriptors per
constrained scope vary. Both sets exceed the complexity of method models based
on software engineering method frameworks like RUP [Kru99] or V-Modell XT
[HH08] and represent an upper bound for realistically sized method models. The
set C of method models that we created contains even bigger method models that
are unrealistically big and aims primarily at investigating the boundaries of the
scalability of the Consistency Checker and the MESP2BPEL Transformer.

Execution Environment The scalability analysis was carried out on a workstation
with an Intel Xeon W3530 CPU and 16 GB of RAM. It ran Windows 8 and the
Eclipse IDE Version Juno.

In the following, we first describe how we conducted the scalability analysis.
Afterward, we conclude with a discussion of the scalability analysis experiment.

7.2 Method Composition 185

Conduction of Experiment and Results

With the data set of method models, we evaluated the scalability of the Consistency
Checker and the MESP2BPEL Transformer. For each method model, we took the
average of 10 runs, although the measurements deviated only in fractions of a
second. In the following, we present and discuss the results.

Analysis of Consistency Checker We measured the time between the invocation
of the automated quality analysis and the output of the results (cf. Section 5.4.2).

Table 7.2 Results of the scalability analysis of the Consistency Checker

ID Runtime
(sec)

A1 0.1
A2 2.0
A3 3.4
B1 3.8
B2 3.9
B3 4.0
C1 31

C2 34

Table 7.2 shows the positive results of our scalability analysis. The evaluation
shows, that realistically sized models (sets A and B) are analyzed in a few seconds.
The method models of set A contain a varying number of method service descriptors
and input mappings, but no method patterns descriptors. The number of input
mappings directly influences the runtime as shown by the differences between A1

and A2, and also, A2 and A3. The number of method service descriptors also plays
a role, as shown by the high increase from A3 to C1.

The method models of set B contain method pattern descriptors with different
characteristics. Comparing the results for model A3 to the models B1, B2, and
B3, and in addition, the results for the model C1 to the model C2, shows that
the analysis of method pattern constraints has a minor influence on the runtime
compared to the evaluation of quality characteristics in general. The analysis takes
about 3 to 4 seconds for the realistically sized models of set B.

The analysis of the unrealistically big method models of set C, which are about
4 times bigger than the ones of sets A and B, takes about 30 seconds (cf. C1/C2).
Here, the analysis for the unrealistically big model C2 takes about three seconds
longer than the equivalent model without method pattern descriptors.

The scalability analysis shows that the requirement MTR5.5 is fulfilled and
that the performance of the component allows its continuous use during method

186 Proof of Concept Implementation

composition. For the evaluation, we considered the runtime of the analysis of
complete method models. However, the user has the choice to run the analysis on
parts of the model to get specific results that are computed quicker.

Regarding threats to validity, there is the risk that the method models that we
created are not representative and that the analysis of other method models takes
much longer. However, we do not consider this very likely, because of the variety of
characteristics we investigated in the described evaluation and in the experiments
before. In fact, for the evaluation of pattern constraints, we expect even lower
runtimes in practice, because, e.g., the evaluation for an “exists” quantifier stops
as soon as one element is found. However, in our evaluation models, we ensured
that the evaluation does not stop early, with our choice of pattern constraints and
method service descriptors.

Analysis of MESP2BPEL Transformer We measured the time between the invo-
cation of the transformation and the creation of the output files (cf. Section 5.5.1).
Running the transformation, even on the unrealistic big models of set C runs in
less than a second (cf. Table 7.3).

The computational complexity of the MESP2BPEL transformer is in linear time
in the number of method model elements. The runtime depends on the number
of elements that need to be considered during the transformation, especially the
transformed tasks and input mappings. The MESP2BPEL Transformer scales far
beyond the required size of method models.

Table 7.3 Results of the scalability analysis of the MESP2BPEL Transformer

ID Runtime
(sec)

A1 – A3 <1

B1 – B3 <1

C1 & C2 <1

Regarding threats to validity, there is the potential risk that other factors that are
not reflected by the test models play an important role for the scalability. However,
while parts of the Consistency Checker are a black box for us, the internals of the
MESP2BPEL Transformer are known to us. Thus, this is not very likely.

Discussion

In the previous sections, we presented the scalability analysis experiment of our
proof of concept implementation. For the analysis, we created method models
of different sizes including unrealistically big method models. Our experiment

7.3 Summary 187

showed that the Consistency Checker processes these models in reasonable time
and that its performance allows its continuous use during method composition.
The MESP2BPEL Transformer processes these method models in under a second.
As the transformation is invoked only once at the end of the method composition,
this is more than sufficient. Thus, both critical components scale beyond realistically
sized models.

Despite the positive results, there are some threats to validity that need to be
considered. As mentioned, there is the potential risk that our method models to
not represent the variety of method models well. In particular, they might not cover
valid worst cases, however, we do not think that this is likely. In addition, for the
scalability analysis, we focused on the eclipse-based parts of our tool support and
did not analyze the standard components. In particular, we did not analyze the
scalability of the used BPEL server. While it would always be possible to switch to
a different BPEL server, its evaluation could render a more complete picture.

7.3 Summary

In this chapter, we presented our proof of concept implementation of our tool
support that covers MESP tasks on all three layers of the software engineering
method management hierarchy. We explained that our tool implementation is based
partly on eclipse-based components that we developed and extended and partly on
off-the-shelf standard products. With our research prototype, we demonstrated the
feasibility of our MESP approach and the validity of the underlying meta-model
and related concepts. In addition, we discussed a case study that we conducted
together with a company. Here, we got third party feedback on the usage of our
tooling, however, in a limited setting. This led for example to improvements for the
Method Composer. As the third piece of our proof of concept implementation, we
performed a scalability analysis experiment. We explained that it indicated that the
tool support scales beyond realistically sized models.

While our proof of concept implementation allows drawing first conclusions, it
does not replace a thorough evaluation using our approach in real-world software
projects. Performing such an evaluation, however, is beyond the scope and time
frame of this thesis as it requires a significant number of these projects in order
to deliver reliable results. We therefore propose to consider the evaluation and
refinement of our approach within industrial projects as a possible follow-up thesis.

In the following chapter, we summarize the contributions of this thesis, conclude
the thesis and discuss potential future work.

CHAPTER 8

Conclusions and Outlook

In this thesis, we have presented our solution for software engineering method
management that covers method content definition, method tailoring, and method
enactment. Our solution is accompanied by tool support that spans these three
levels and that we implemented in a research prototype.

In this concluding chapter, we first summarize our contributions in Section 8.1.
Thereafter, we discuss the fulfillment of the stated requirements for a solution for
software engineering method management in Section 8.2. Then, in Section 8.3, we
conclude with future works for software engineering method management.

8.1 Contribution Summary

The goal of this thesis was to develop a solution for software engineering method
management that addresses the entire lifecycle of software engineering method
models. Such a solution needs to span all three layers of software engineering
method management: First, it has to provide means to define method building
blocks for activities and repeatable control flow patterns that reflect reusable method
knowledge, like new trends, best practices, and lessons learned. Second, it has to
provide means to compose suitable method building blocks to executable method
models customized to specific situations. Third, it is has to support the proper
enactment of these method models.

To achieve the goals of this thesis, we presented our solution for software
engineering method management MESP. Figure 8.1 gives an overview of our
contributions on each level of the software engineering method management
hierarchy. In the following, we shortly summarize these contributions.

190 Conclusions and Outlook

Solution for Software Engineering Method

Management

Method Tailoring

6. Definition of the project method engineer role and its tasks

7. Formalization of the characterization of a project situation

8. Formalization of an executable composition language supporting

control and data flow

9. Concept for an automated quality assurance framework

10. Tool support to compose methods and implementation of an automated

quality assurance framework

Method Enactment

11. Definition of the project team role and its tasks

12. Concept for Execution Support via transformation to

BPEL/BPEL4People

13. Description of method reflection for future improvements

14. Tool support for transformation to BPEL/BPEL4People process models

Method Content Definition

1. Definition of the senior method engineer role and its tasks

2. Description of two ways to extract reusable method content

3. Definition of two types of method building blocks

4. Formalization of method building blocks and underlying basic method

elements

5. Tool support to define method building blocks and basic method

elements

Fig. 8.1 Contribution Overview of our thesis

8.1 Contribution Summary 191

Method Content Definition

To systematize the method content definition, we defined the role of a senior
method engineer with her tasks to extract method content and to define reusable
method building blocks.

In order to extract method content, we described two ways to extract reusable
method content, one based on the body of literature and one based on the daily
practice of organizations.

In order to define method content, we defined two types of method building
blocks. First, method services represent atomic and composite activities similar
to building block types previously proposed in related literature, however, with
a formal interface and executable. Second, the novel notion of method patterns
represents abstract control flow patterns that prescribe the use of method services
fulfilling specific constraints. Together with the underlying basic method elements
that are based on the de-facto standard SPEM, we formalized both types of method
building blocks in terms of a meta-model. In particular, we introduced a domain-
specific language to express method pattern constraints as part of the meta-model.
In addition, we formalized situational factors in order to characterize method
building blocks with respect to their suitability for different situations.

For the evaluation of our method content definition, we implemented tool
support in a research prototype that allows modeling basic method elements,
method building blocks, and situational factors.

Method Tailoring

To systematize the method tailoring, we defined the role of a project method engi-
neer with her tasks to compose a project-specific method model using previously
defined method building blocks.

In order to characterize and formalize the project situation, we use the same sit-
uational factors that are used to characterize method services and method patterns
easing the identification of suitable method building blocks.

In order to compose an executable method model, we defined a composition
language that is inspired by SPEM and BPEL. From SPEM, it borrows a similar
terminology and the separation between method content and process that fits
well to our purpose. From BPEL, it borrows the control flow structure and the
semantics of several control flow elements. In particular, our approach also supports
(executable) data flow, which is neglected in many other related approaches.

In order to support the project method engineer during method composition,
we created a quality analysis framework. In a first step, we defined a quality
model for software engineering methods to structure the notion of quality. Then we
operationalized different quality characteristics with the quality analysis framework.
In particular, we defined an on-the-fly translation of method pattern constraints to

192 Conclusions and Outlook

expressions in OCL in order to check for method pattern violation for the method
patterns used in the method model.

To prepare the method model for execution, we created a transformation to a
standard BPEL/BPEL4People process model including generic HumanTask web
services and their GUIs. These GUIs allow project team members to interface with
the process model later during method enactment.

For the evaluation of our method tailoring, again we implemented tool support
in a research prototype that allows creating a method model, checking it for
consistency issues, and transforming it. With the tool support, we conducted a
targeted case study that demonstrated the basic applicability of our approach.
We also conducted a scalability analysis that showed that the automated quality
assurance and the transformation to BPEL/BPEL4People performs sufficiently fast.

Method Enactment

To systematize the method enactment, we defined the role of the project team and
its tasks to enact the method and provide feedback to the senior method engineer.

In order to enact the method model, we defined the concept of execution support
by transforming the method model to a BPEL/BPEL4People process model. The
process model can be executed with a standard BPEL server and the project team
interacts with its task management component that manages the workflow tasks
for the team that are created during method model execution. Our concept also
includes the usage of a standard project repository to store created work products
under unique URIs. These URIs are used to represent input and output work
products when performing workflow tasks.

In order to support the senior method engineer in refining method building
blocks, we described how the enactment logs of the BPEL server and the standard
project repository can be used to provide feedback.

For the evaluation of our method enactment, we integrated tool support in a
research prototype that in particular allows deploying and executing our trans-
formed BPEL/BPEL4People process models. Besides executing the process model
according to the control flow, it requests and shows work product locations in
accordance with the method model data flow specification.

8.2 Fulfillment of Requirements

In Chapter 2.2, we described common challenges to software engineering method
management. In order to develop a solution that addresses these challenges, we
defined solution requirements for such a solution in Section 2.2.1. In this section,
we describe how our MESP approach fulfills these solution requirements.

8.2 Fulfillment of Requirements 193

Solution Requirement 1.1 – Abstract Orderings Our approach introduces the
notion of method patterns that allow modeling abstract orderings without referenc-
ing concrete methods services. Instead, suitable method services are characterized
by method pattern constraints, such that method patterns can be used with method
services that are created later in time.

Solution Requirement 1.2 – Explicit Interfaces Method services, method pat-
terns, and method models have interfaces that characterize them and abstract from
their contents. Based on the formalization of situations with situational factor
values and the description of processed work products and involved roles, suitable
method building blocks can be identified and composed.

Solution Requirement 1.3 – Composite Building Blocks Method services can
describe single, atomic tasks. However, they can also describe composite tasks by
encapsulating a process with multiple tasks descriptors or method service descrip-
tors. As these composite method services have the same structure and interface
like atomic method services, they can be handled in the same way. Especially, their
interface allows abstracting from the possibly complex content.

Solution Requirement 1.4 – Method Repository The method repository in our
approach stores all information to describe method models: basic elements, method
services, method patterns, and method models. Enactment-related information is
stored in the BPEL engine and the project repository. The BPEL execution logs are
stored within the BPEL engine and logs about changes to the work products are
stored within the project repository.

Solution Requirement 1.5 – High-level Modeling Our approach offers a DSL
based on a meta-model and appropriate tooling to model method building blocks.
Thus, senior method engineers can focus on the modeling aspect and do not have
to deal with low-level languages.

Solution Requirement 2.1 – Project Characterization In our approach, the
project context is characterized by a project goal that describes the available and
desired work products and a project situation that describes the related situational
factor values. Thus, our approach supports the formal characterization of projects.

Solution Requirement 2.2 – Composition Guidance In our approach, method
patterns are used as a starting point for the composition of method models. With
their constraints, they guide the project method engineer in composing the method.
The formal project characterization and the explicit interfaces of method services

194 Conclusions and Outlook

and method patterns also guide her in the choice of method building blocks. In
addition, our automated quality analysis points her to inconsistencies that need to
be resolved, especially violated method pattern constraints.

Solution Requirement 2.4 – High-level Composition Our approach offers a DSL
based on a meta-model and appropriate tooling to compose method models. Thus,
project method engineers can focus on the modeling aspect and do not have to
deal with low-level languages. In particular, they can use visual editors to compose
method models.

Solution Requirement 3.1 – Executable Process Method models created with our
approach can be executed with a BPEL server. For this purpose, method models
are automatically transformed to equivalent BPEL/BPEL4People process models.

Solution Requirement 3.2 – Enactment support with Human Interface Our en-
acted BPEL/BPEL4People process models create workflow tasks that are accessed
by team members via the task management component of the BPEL server. It shows
task- and enactment-related information and allows the team member to specify
and access the location of work products related to her task.

Solution Requirement 3.3 – Enactment Logs As out-of-the-box features of the
BPEL engine and the project repository execution and change logs captures
enactment-related information.

As described in this section, our solution for software engineering method man-
agement fulfills all stated solution requirements. Thus, it addresses the described
challenges of method content definition, method tailoring, and method enactment.

The challenge to enable updates of method content based on new trends, best
practices, and lessons learned is addressed by well-defined, interconnected basic
elements and method building blocks that reflect different levels of granularity.
The challenge to enable the creation of consistent software engineering meth-
ods for specific situations based on defined method content is addressed by the
situation-specific composition and quality assurance of method building blocks.
The challenge to enable the proper enactment of the tailored method according to
its definition is addressed by supporting the proper enactment of the method model
with a BPEL process engine and automated transformation to BPEL/BPEL4People
models.

8.3 Outlook on Future Work 195

8.3 Outlook on Future Work

In this thesis, we presented a holistic approach for software engineering method
management. However, we identified room for further extensions and improve-
ments as well as follow-up research. In this section, we want to discuss possible
extensions of our approach and present ideas for follow-up research.

Modeling Language Extensions With our approach we provide an end-to-end
solution for method content definition, method tailoring, and method enactment.
Possible extensions are based on the current capabilities of our modeling language
that is defined by our meta-model. In the following, we discuss two language
extensions.

One possible extension is the introduction of language concepts for exceptional
control flows. While the specification of software engineering methods traditionally
focuses on the “happy path”, the specification of exceptional flows is quite common
for business processes and for executable process description languages like BPEL.
In addition, the project management domain knows concepts like escalation to
resolve process-related issues. As our approach allows executing method models,
it would benefit from the definition and execution of exceptional flows. This would
mean to specify the control flow, e.g., when activities exceed their designated time
frame (time box).

Another possible extension is the introduction of artifact lifecycles. In our
approach, we focus on activity-based modeling of methods that is the predominant
approach. However, especially to ensure that activities are performed properly,
some methods evade to artifact-centric modeling, e.g. V-Modell XT. Here, the
progress is determined by the individual lifecycle states of related artifacts, as
described for example in [FGS15]. Artifact lifecycles could be to refine interface
specifications of tasks and method services. They could also extend method pattern
conditions and allow conditional control flow based on artifact states during
runtime.

Quality Analysis Extensions The current implementation of our quality analysis
uses a static analysis approach. Currently, conditionally executed parts of the
method model are treated like regular parts. The expressiveness of our quality
analysis could be improved by taking into account the conditionality. For example,
the quality analysis should warn the project method engineer, if all sources of a
required input work product are only conditionally executed (within a different
execution branch than the requiring target). This might require the integration
of model checking techniques. Additional modeling language extensions would
also require extensions to the quality analysis, for example to detect contradiction
between the specified artifact lifecycles and the used activities (c.f. [Wah+09]). Lastly,

196 Conclusions and Outlook

as part of this thesis, we did not formalize all proposed quality characteristics,
as this is still an open research question especially for situation-dependent and
non-critical quality characteristics.

Tool Support Extensions The application of a holistic solution for software en-
gineering method management is not feasible without proper tool support. As
part of this thesis, we developed a research prototype to demonstrate the feasibility
of our approach. For productive use in industrial projects, it needs especially
non-functional improvements, e.g., improved usability, as we focused on functional
aspects. In addition, some minor aspects of our solution have not been implemented
yet, e.g., the GUI to specify the duration of activities.

Follow-Up Thesis – Evaluation in Industrial Projects Within this thesis, we
were only capable to apply our approach to sample methods and an limited case
study. Thus, future work includes the application of our approach to create more
complex, real-world methods. We therefore propose to consider the evaluation and
refinement of our approach within industrial projects as a possible follow-up thesis.
Ideally, the approach would be applied in several projects of different size and
with different project teams. Thereby, a reference method repository with method
services and method patterns could be established.

Follow-Up Thesis – Integrating of Human and Organizational Aspects Lately
with modern and agile software engineering methods, there is a clear trend towards
team-based methods, where decisions are taken by team members instead of project
managers. Most recent evolutions focus on the establishment of cross-functional
teams that overcome barriers of traditionally functional oriented organization.
For example, DevOps describes a culture where development and operations
departments collaborate in order to establish method improvements spanning
the complete lifecycle of IT systems. However, many companies struggle with
introducing these novel methods due to organizational constraints and individual
lack of skills.

As these recent improvements to the software engineering methodology stem
from human and organizational aspects, their explicit modeling and incorporation
into our approach could be investigated in a follow-up thesis. Currently, these
aspects can only be expressed in roles and situational factors. Ideally, project
method engineer could model these aspects and evaluate, whether the chosen
project team organization fits to skills of the team members and the project situation.

With such an extended modeling approach, the transfer of our approach to other
domains seems especially interesting. For example, with respect to the current
research area of the fourth industrial revolution (“Industrie 4.0”), researchers
investigate the impact of future industrial production processes (methods) on

8.3 Outlook on Future Work 197

human labor (project team members). Our approach could serve as a foundation
to reason about the relationship of production processes and the organization and
required skills of employees.

Follow-Up Thesis – Integrating Change at Runtime Our approach uses a trans-
formation to BPEL/BPEL4People and a standard BPEL server to enable the execu-
tion of methods. Therefore, changing methods at runtime is not in scope of our
approach. A possible follow-up thesis could therefore focus on enabling and han-
dling changes to the method at runtime as described theoretically in [Gei15]. One
critical aspect would include the avoidance or resolution of change-related conflicts
or inconsistencies. Another challenge is the migration of the current runtime state
into an instance of the changed method, possibly by adopting the models@runtime
[Red+14] philosophy.

Follow-Up Thesis – Usage for Empirical Software Engineering With the increas-
ing maturity of the software engineering field, there are more and more attempts to
applied software engineering research with a strong empirical component. However,
especially in the area of software engineering methods and method engineering
the lack of data about method enactment is a major issue. Thus, today a lot of
empirical software engineering is based on the investigation of the check-in history
of open source repositories, as in [GAH16] or [SMS16].

With our approach, the enactment of methods is tightly coupled with the
interaction of the project team with the BPEL server. Enactment logs are available
for the BPEL server and change logs for the project repository. A follow-up thesis
could therefore investigate, how our approach could be used and extended to
perform empirical software engineering in order to tackle the lack of enactment
data.

References

[AH02] Wil M. P. van der Aalst and Kees Max van Hee. Workflow management:
Models, methods, and systems. Cambridge and Mass: MIT Press, 2002.
isbn: 0262011891.

[AL12] Scott Ambler and Mark Lines. Disciplined Agile Delivery: A practitioner’s
guide to agile software delivery in the enterprise. Upper Saddle River and
N.J: IBM Press, 2012. isbn: 9780132810135.

[Amb98] Scott W. Ambler. Process patterns: Building large-scale systems using object
technology. Cambridge, UK, and , New York: Cambridge University
Press, 1998. isbn: 9780521645683.

[AW05] Aybüke Aurum and Claes Wohlin. Engineering and Managing Soft-
ware Requirements. Berlin/Heidelberg: Springer-Verlag, 2005. isbn:
3540250433.

[Bal07] Ricardo Balduino. Introduction to OpenUP (Open Unified Process). 2007.
[Bec00] Kent Beck. Extreme programming eXplained: Embrace change. XP series.

Reading, MA: Addison-Wesley, 2000. isbn: 9780201616415.
[Bek+08] Willem Bekkers, Inge van de Weerd, Sjaak Brinkkemper, and Alain

Mahieu. “The Influence of Situational Factors in Software Product
Management: An Empirical Study”. In: Proceedings of the 2008 Second
International Workshop on Software Product Management (ISWPM ’08).
Ed. by Christoph Ebert, Sjaak Brinkkemper, Slinger Jansen, and Gerald
Heller. IEEE, 2008, pp. 41–48. isbn: 9781424440832.

[Ben+07] Reda Bendraou, Benoit Combemale, Xavier Cregut, and Marie-Pierre
Gervais. “Definition of an Executable SPEM 2.0”. In: 14th Asia-Pacific
Software Engineering Conference (APSEC’07). Los Alamitos and Calif:
IEEE Computer Society, 2007, pp. 390–397. isbn: 0769530575.

[Ben+10] Reda Bendraou, Jean-Marc Jezequel, Marie-Pierre Gervais, and Xavier
Blanc. “A Comparison of Six UML-Based Languages for Software
Process Modeling”. In: IEEE Transactions on Software Engineering 36.5
(2010), pp. 662–675.

200 References

[BLW96] Sjaak Brinkkemper, Kalle Lyytinen, and Richard J. Welke, eds. Proceed-
ings of the IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering:
Principles of method construction and tool support. London: Chapman &
Hall, 1996. isbn: 041279750X.

[BR04] Stefan Bergström and Lotta Råberg. Adopting the Rational Unified Process:
Success with the RUP. Addison-Wesley object technology series. Boston:
Addison-Wesley, 2004. isbn: 0321202945.

[Bre+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and
John Mylopoulos. “Tropos: An Agent-Oriented Software Development
Methodology”. In: Autonomous Agents and Multi-Agent Systems 8.3
(2004), pp. 203–236.

[Bri96] Sjaak Brinkkemper. “Method engineering: engineering of information
systems development methods and tools”. In: Information & Software
Technology 38.4 (1996), pp. 275–280.

[BSH01] Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen. “A Method
Engineering Language for the Description of Systems Development
Methods”. In: Proceedings of the 13th International Conference on Advanced
Information Systems Engineering (CAiSE 2001). Ed. by Klaus R. Dittrich,
Andreas Geppert, and Moira C. Norrie. Vol. 2068. Lecture Notes in
Computer Science. Berlin and Heidelberg: Springer, 2001, pp. 473–476.
isbn: 3540422153.

[BSH98] Sjaak Brinkkemper, Motoshi Saeki, and Anton Frank Harmsen. “As-
sembly Techniques for Method Engineering”. In: Proceedings of the
10th International Conference on Advanced information systems engineering
(CAiSE ’98). Ed. by Barbara Pernici and Costantino Thanos. Vol. 1413.
Lecture Notes in Computer Science. Berlin: Springer Berlin / Heidel-
berg and Springer, 1998, pp. 381–400. isbn: 9783540645566.

[BT03] Barry W. Boehm and Richard Turner. “Observations on Balancing Disci-
pline and Agility”. In: Proceedings of the Conference on Agile Development
(ADC 2003). Los Alamitos and Calif: IEEE Computer Society, 2003,
pp. 32–39. isbn: 0769520138.

[Cau10] Corine Cauvet. “Method Engineering: A Service-Oriented Approach”.
In: Intentional Perspectives on Information Systems Engineering. Ed. by
Selmin Nurcan, Camille Salinesi, Carine Souveyet, and Jolita Ralyté.
Berlin and Heidelberg: Springer Berlin Heidelberg, 2010, pp. 335–354.
isbn: 9783642125430.

[CC05] Graham Curtis and David P. Cobham. Business information systems:
Analysis, design, and practice. 5th ed. Harlow and England, New York:
Financial Times Prentice Hall, 2005. isbn: 9780273687924.

[Cer+11] Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano.
“Turning Method Engineering Support into Reality”. In: IFIP Advances
in Information and Communication Technology. Ed. by Jolita Ralyté, Is-
abelle Mirbel, and Rébecca Deneckère. Vol. 351. Berlin and Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 138–152. isbn: 9783642199967.

References 201

[CH05] James O. Coplien and Neil Harrison. Organizational patterns of agile
software development. Upper Saddle River, NJ: Pearson Prentice Hall,
2005. isbn: 9780131467408.

[Chr00] Gerhard Chroust. “Software Process Models: Structure and Challenges”.
In: Software: theory and practice—proceedings, IFIP congress 2000. Ed. by
Yulin Feng, David S. Notkin, and M.-C Gaudel. Amsterdam: Kluwer,
2000, pp. 279–286. isbn: 9783901882043.

[CJ99] Reidar Conradi and Letizia Jaccheri. “Process Modelling Languages”.
In: Software Process: Principles, Methodology, and Technology. Ed. by Jean-
Claude Derniame, BadaraAli Kaba, and David Wastell. Vol. 1500. Lec-
ture notes in computer science. Springer Berlin Heidelberg, 1999, pp. 27–
52. isbn: 9783540655169.

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. “Process modeling”. In:
Communications of the ACM 35.9 (1992), pp. 75–90.

[CO12] Paul Clarke and Rory V. O’Connor. “The situational factors that affect
the software development process: Towards a comprehensive reference
framework”. In: Inf. Softw. Technol. 54.5 (2012), pp. 433–447.

[Coc02] Alistair Cockburn. Agile software development. Addison-Wesley, 2002.
isbn: 9780201699692.

[Coc05] Alistair Cockburn. Crystal clear: A human-powered methodology for small
teams. The Agile software development series. Boston: Addison-Wesley,
2005. isbn: 0201699478.

[Coc98] Alistair Cockburn. Surviving object-oriented projects: A manager’s guide.
Reading and Mass: Addison Wesley, 1998. isbn: 9780201498349.

[Cop95] James O. Coplien. “A Generative Development - Process Pattern Lan-
guage”. In: Pattern languages of program design. Ed. by James O. Coplien
and Douglas C. Schmidt. New York, NY, USA: ACM Press / Addison-
Wesley, 1995, pp. 183–237.

[CR06] Valentine Casey and Ita Richardson. “Uncovering the reality within
virtual software teams”. In: Proceedings of the 2006 international workshop
on Global software development for the practitioner. Shanghai and China:
ACM, 2006, pp. 66–72. isbn: 1595934049.

[CS95] James O. Coplien and Douglas C. Schmidt, eds. Pattern languages of
program design. New York, NY, USA: ACM Press / Addison-Wesley,
1995.

[Den+08] Rébecca Deneckère, Adrian Iacovelli, Elena Kornyshova, and Carine
Souveyet. “From Method Fragments to Method Services”. In: Proceed-
ings of the 13th International Workshop on Exploring Modeling Methods for
Systems Analysis and Design (EMMSAD’08) held in conjunction with the
CAiSE’08 Conference. Ed. by Terry Halpin, Erik Proper, John Krogstie,
Xavier Franch, Ela Hunt, and Remi Coletta. Vol. 337. CEUR Workshop
Proceedings. 2008, pp. 80–96.

202 References

[Din05] Torgeir Dingsøyr. “Postmortem reviews: Purpose and approaches in
software engineering”. In: Information and Software Technology 47.5 (2005),
pp. 293–303.

[DS98] Rébecca Deneckère and Carine Souveyet. “Patterns for Extending an
OO Model with Temporal Features”. In: OOIS’98. Ed. by Collete Rol-
land and George Grosz. London: Springer London, 1998, pp. 201–218.
isbn: 9781852330460.

[Ell+10] Ralf Ellner, Samir Al-Hilank, Johannes Drexler, Martin Jung, Detlef Kips,
and Michael Philippsen. “eSPEM – A SPEM Extension for Enactable
Behavior Modeling”. In: Modelling Foundations and Applications. Ed.
by Thomas Kühne, Bran Selic, Marie-Pierre Gervais, and François
Terrier. Vol. 6138. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2010, pp. 116–131.

[Ell+11] Ralf Ellner, Samir Al-Hilank, Martin Jung, Detlef Kips, and Michael
Philippsen. “An Integrated Tool Chain for Software Process Modeling
and Execution”. In: Joint Proceedings of co-located Events at the 8th Euro-
pean Conference on Modelling Foundations and Applications (ECMFA 2012).
Ed. by Harald Störrle, Goetz Botterweck, Michel Bourdellès, Richard
Paige Kolovos, Ella Roubtsova, Julia Rubin, and Juha-Pekka Tolvanen.
Copenhagen and Denmark: Technical University of Denmark (DTU),
2011, pp. 73–82. isbn: 9788764310146.

[Eng+15] Martin Engstler, Masud Fazal-Baqaie, Eckhart Hanser, Martin Mikusz,
and Alexander Volland, eds. Projektmanagement und Vorgehensmod-
elle 2015: Hybride Projektstrukturen erfolgreich umsetzen- Proceedings der
gemeinsamen Tagung der Fachgruppen WI-PM und WI-VM im Fachgebiet
Wirtschaftsinformatik der Gesellschaft für Informatik e.V. Vol. 250. Lecture
notes in informatics. GI, Köllen Druck+Verlag GmbH, Bonn, 2015.

[Eng08] Gregor Engels. Quasar Enterprise: Anwendungslandschaften serviceorien-
tiert gestalten. 1st ed. Heidelberg: Dpunkt-Verl., 2008. isbn: 3898645061.

[Erl09] Thomas Erl. SOA: Principles of service design. 5. print. Prentice-Hall
service-oriented computing series from Thomas Erl. Upper Saddle
River, NJ: Prentice Hall, 2009. isbn: 9780132344821.

[ES10] Gregor Engels and Stefan Sauer. “A Meta-Method for Defining Software
Engineering Methods”. In: Graph Transformations and Model-Driven Engi-
neering. Ed. by Gregor Engels, Claus Lewerentz, Wilhelm Schäfer, Andy
Schürr, and Bernhard Westfechtel. Vol. 5765. Lecture Notes in Computer
Science. Berlin: Springer, 2010, pp. 411–440. isbn: 9783642173219.

[Faz+13] Masud Fazal-Baqaie, Baris Güldali, Markus Luckey, Stefan Sauer, and
Michael Spijkerman. “Maßgeschneidert und werkzeugunterstützt En-
twickeln angepasster Requirements Engineering-Methoden”. In: OB-
JEKTspektrum (Online Themenspecials) RE/2013 (2013), pp. 1–5.

References 203

[FCE14] Masud Fazal-Baqaie, Christian Gerth, and Gregor Engels. “Breathing
Life into Situational Software Engineering Methods”. In: In Proceedings
of the 15th International Conference of Product Focused Software Development
and Process Improvement (PROFES 2014). Ed. by A. Jedlitschka et al.
Vol. 8892. Springer, 2014, pp. 281–284.

[FE16] Masud Fazal-Baqaie and Gregor Engels. “Software Processes Manage-
ment by Method Engineering with MESP”. In: Managing Software Process
Evolution. Ed. by M. Kuhrmann, A. Rausch, J. Münch, I. Richardson,
and J. H. Zhang. Springer, 2016, pp. 185–210.

[FGS15] Masud Fazal-Baqaie, Marvin Grieger, and Stefan Sauer. “Tickets with-
out Fine - Artifact-based Synchronization of Globally Distributed Soft-
ware Development in Practice”. In: Proceedings of the 16th International
Conference of Product Focused Software Development and Process Improve-
ment (PROFES 2015). Ed. by Pekka Abrahamsson, Luis Corral, Markku
Oivo, and Barbara Russo. Springer, 2015, pp. 167–181.

[FH02] Donald G. Firesmith and Brian Henderson-Sellers. The OPEN process
framework: An introduction. The OPEN series. London and New York:
Addison-Wesley, 2002. isbn: 0201675102.

[Fir09] Donald G. Firesmith. The method framework for engineering system archi-
tectures. Boca Raton: CRC Press, 2009. isbn: 9781420085754.

[FK16] Masud Fazal-Baqaie and Frank Kluthe. “Automated Quality Analysis
of Software Engineering Method Models”. In: Proceedings of the4th Inter-
national Conference on Model-Driven Engineering and SoftwareDevelopment
(Modelsward 2016). Ed. by Slimane Hammoudi, Luis Ferreira Pires, Bran
Selic, and Philippe Desfray. Portugal: SciTePress, 2016, pp. 527–534.
isbn: 9789897581687.

[FLE13] Masud Fazal-Baqaie, Markus Luckey, and Gregor Engels. “Assembly-
Based Method Engineering with Method Patterns”. In: Software Engi-
neering 2013 - Workshopband (inkl. Doktorandensymposium), Fachtagung
des GI-Fachbereichs Softwaretechnik. Ed. by Stefan Wagner and Horst
Lichter. Vol. 215. LNI. GI, 2013, pp. 435–444. isbn: 9783885796091.

[FR15] Masud Fazal-Baqaie and Anu Raninen. “Successfully Initiating a Global
Software Project”. In: Industrial Proceedings of the 22nd European Sys-
tems Software & Service Process Improvement & Innovation Conference
(EuroSPI2015). Ed. by Richard Messnarz, Jorn Johansen, Morten Korsaa,
Eva Christof, and Damjan Ekert. WHITEBOX, Denmark, 2015, p. 5.1.

[FRO03] Brian Fitzgerald, Nancy L. Russo, and Tom O’Kane. “Software devel-
opment method tailoring at Motorola”. In: Communications of the ACM
46.4 (2003), pp. 64–70.

[FSH14] Masud Fazal-Baqaie, Stefan Sauer, and Torsten Heuft. “Agile Entwick-
lung mit On- und Offshore-Partnern – Methodenverbesserung in der
Praxis”. In: Proceedings of Projektmanagement und Vorgehensmodelle 2014.
Lecture Notes in Informatics (LNI). Bonn: GI, Köllen Druck+Verlag
GmbH, 2014, pp. 59–69.

204 References

[FSH15] Masud Fazal-Baqaie, Stefan Sauer, and Torsten Heuft. “Agile Entwick-
lung mit On- und Offshore-Partnern – Methodenverbesserung in der
Praxis”. In: WI-MAW-Rundbrief 21.1 (2015), pp. 5–13.

[GAH16] Daniel M. German, Bram Adams, and Ahmed E. Hassan. “Continu-
ously mining distributed version control systems: An empirical study
of how Linux uses Git”. In: Empirical Software Engineering 21.1 (2016),
pp. 260–299.

[Gam+07] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Elements of reusable object oriented software. 35. print. Addison-
Wesley professional computing series. Boston, Mass. et al.: Addison-
Wesley, 2007. isbn: 9780201633610.

[Gei15] Silke Geisen. “MAPE-K4SEM: Selbst-adaptive Software-Engineering-
Methoden”. PhD Thesis. Paderborn: Universität Paderborn, 2015.

[GF15a] Marvin Grieger and Masud Fazal-Baqaie. “Towards a Framework for
the Modular Construction of Situation-Specific Software Transforma-
tion Methods”. In: Softwaretechnik-Trends 35.2 (2015), pp. 41–42.

[GF15b] Baris Güldali and Masud Fazal-Baqaie. “Skalieren von großen agilen
Projekten mit verteilten Backlogs”. In: OBJEKTspektrum (Online Themen-
specials) Agility/2015 (2015), pp. 1–4.

[GFS16] Marvin Grieger, Masud Fazal-Baqaie, and Stefan Sauer. “A Method
Base for the Situation-Specific Development of Model-Driven Transfor-
mation Methods”. In: Softwaretechnik-Trends (2016).

[GGH08] Cesar Gonzalez-Perez, Paolo Giorgini, and Brian Henderson-Sellers.
“Method Construction by Goal Analysis”. In: The Inter-Networked World.
Ed. by Michael Lang, Wita Wojtkowski, Gregory Wojtkowski, Stanislaw
Wrycza, and Joze Zupancic. Berlin: Springer US, 2008, pp. 79–91. isbn:
9780387304038.

[GH08] Cesar Gonzalez-Perez and Brian Henderson-Sellers. “A work product
pool approach to methodology specification and enactment”. In: Journal
of Systems and Software 81.8 (2008), pp. 1288–1305.

[GJM03] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
software engineering. 2nd ed. Upper Saddle River and N.J: Prentice Hall,
2003. isbn: 0133056996.

[GJS10] Mahdi Fahmideh Gholami, Pooyan Jamshidi, and Fereidoon Shams. “A
Procedure for Extracting Software Development Process Patterns”. In:
Proceedings of the 4th European Modelling Symposium (EMS2010). Ed. by
David Al-Dabass, Alessandra Orsoni, Athanasios Pantelous, Marco
Vannucci, and Ajith Abraham. 2010, pp. 75–83.

[GK09] Bastian Grabski and Lars Krüger. Analysen zu Qualität und Qualitätsman-
agement von Software und Dienstleistungen: Technical Report. Magdeburg,
Germany, 2009.

[Gla04] Robert L. Glass. “Matching methodology to problem domain”. In:
Communications of the ACM 47.5 (2004), pp. 19–21.

References 205

[GLS98] Göran Goldkuhl, Mikael Lind, and Ulf Seigerroth. “Method Integration:
The Need For A Learning Perspective”. In: IEE Proceedings Software
145.4 (1998), pp. 113–118.

[GP01] Daya Gupta and Naveen Prakash. “Engineering Methods from Method
Requirements Specifications”. In: Requirements Engineering 6.3 (2001),
pp. 135–160.

[Gri+14] Marvin Grieger, Masud Fazal-Baqaie, Stefan Sauer, and Markus Klenke.
“A Method to Systematically Improve the Effectiveness and Efficiency of
the Semi-Automatic Migration of Legacy Systems”. In: Softwaretechnik-
Trends 34.2 (2014), pp. 77–78.

[Gri+16] Marvin Grieger, Masud Fazal-Baqaie, Gregor Engels, and Markus
Klenke. “Concept-Based Engineering of Situation-Specific Migration
Methods”. In: Proceedings of the 15th International Conference on Software
Reuse (ICSR2016). Lecture Notes in Computer Science. Springer, 2016.

[Gro+97] Georges Grosz, Colette Rolland, Sylviane Schwer, Carine Souveyet,
Veronique Plihon, Samira Si-Said, Camille Ben Achour, and Christophe
Gnaho. “Modelling and engineering the requirements engineering
process: An overview of the NATURE approach”. In: Requirements
Engineering 2.3 (1997), pp. 115–131.

[Gru02] Volker Gruhn. “Process-Centered Software Engineering Environments:
A Brief History and Future Challenges”. In: Annals of Software Engineer-
ing 14.1/4 (2002), pp. 363–382.

[Har97] Anton Frank Harmsen. “Situational Method Engineering”. PhD Thesis.
Twente: University of Twente, 1997.

[HB95] Frank Harmsen and Sjaak Brinkkemper. “Design and implementation
of a method base management system for a situational CASE environ-
ment”. In: Asia-Pacific Software Engineering Conference. Los Alamitos:
IEEE Computer Society, 1995, pp. 430–438.

[HBJ94] Frank Harmsen, Sjaak Brinkkemper, and J. L. Han Oei. “Situational
method engineering for informational system projects”. In: Methods
and Associated Tools for the Information Systems Life Cycle. Ed. by Alex A.
Verrijn-Stuart and T. William Olle. Vol. 55. IFIP Transactions. Amster-
dam: North-Holland Publishers, 1994, pp. 169–194. isbn: 0444820744.

[Hei+10] Werner Heijstek, Michel R. V. Chaudron, Libing Qiu, and Christian C.
Schouten. “A Comparison of Industrial Process Descriptions for Global
Custom Software Development”. In: Proceedings of the 5th International
Conference on Global Software Engineering (ICGSE). Los Alamitos and
Calif: IEEE, 2010, pp. 277–284. isbn: 9780769541228.

[Hen+14] Brian Henderson-Sellers, Jolita Ralyté, Pär J. Ågerfalk, and Matti Rossi.
Situational Method Engineering. Berlin and Heidelberg: Springer Berlin
Heidelberg, 2014. isbn: 9783642414664.

[Hen06] Brian Henderson-Sellers. “Method Engineering: Theory and Practice”.
In: Information systems technology and its applications. Ed. by Dimitris
Karagiannis. Vol. 84. Proceedings. Bonn: Ges. für Informatik, 2006,
pp. 13–23. isbn: 9783885791782.

206 References

[HH08] Reinhard Höhn and Stephan Höppner. Das V-Modell XT: Anwendun-
gen, Werkzeuge, Standards. Springer-Lehrbuch. Berlin and Heidelberg:
Springer, 2008. isbn: 9783540302506.

[HLH02] Brian Henderson-Sellers, David Lowe, and Brendan Haire. “OPEN Pro-
cess Support for Web Development”. In: Annals of Software Engineering
13.1/4 (2002), pp. 163–201.

[HMF13] Eckhart Hanser, Martin Mikusz, and Masud Fazal-Baqaie, eds. Vorge-
hensmodelle 2013: Vorgehensmodelle - Anspruch und Wirklichkeit - Pro-
ceedings der 20. Tagung der Fachgruppe Vorgehensmodelle im Fachgebiet
Wirtschaftsinformatik (WI-VM) der Gesellschaft für Informatik e.V. Vol. 224.
Lecture notes in informatics. Lörrach, Germany: GI, Köllen Druck+Ver-
lag GmbH, Bonn, 2013.

[Hoe08] Klaus Hoermann. Automotive SPICE in practice: Surviving interpretation
and assessment. 1st ed. Santa Barbara and Calif: Rocky Nook, 2008. isbn:
9781933952291.

[HR10] Brian Henderson-Sellers and Jolita Ralyté. “Situational Method En-
gineering: State-of-the-Art Review”. In: Journal of Universal Computer
Science (J. UCS) 16.3 (2010), pp. 424–478.

[HRT04] Bo Hansen, Jeremy Rose, and Gitte Tjørnehøj. “Prescription, descrip-
tion, reflection: the shape of the software process improvement field”.
In: International Journal of Information Management 24.6 (2004), pp. 457–
472.

[HS05] Brian Henderson-Sellers and M. K. Serour. “Creating a Dual-Agility
Method”. In: Journal of Database Management 16.4 (2005), pp. 1–24.

[Hsu+08] Nien-Lin Hsueh, Wen-Hsiang Shen, Zhi-Wei Yang, and Don-Lin Yang.
“Applying UML and software simulation for process definition, verifi-
cation, and validation”. In: Information and Software Technology 50.9-10

(2008), pp. 897–911.
[HV97] Arthur H. M. ter Hofstede and T. F. Verhoef. “On the feasibility of

situational method engineering”. In: Information Systems 22.6-7 (1997),
pp. 401–422.

[IEE90] IEEE. Standard Glossary of Software Engineering Terminology. New York,
N.Y., USA, 1990.

[ISO01] ISO/IEC. Software engineering – Product quality. Geneva and Switzerland,
2001.

[ISO07] ISO/IEC. Software Engineering: Metamodel for Development Methodologies.
Geneva and Switzerland, 2007.

[ISO11] ISO/IEC. Systems and software engineering – Systems and Software Quality
Requirements and Evaluation (SQuaRE) – System and Software Quality
Models. Geneva, 2011.

[JBD99] Letizia Jaccheri, Mario Baldi, and Monica Divitini. “Evaluating the
Requirements for Software Process Modelling Languages and Sys-
tems”. In: Process support for Distributed Teambased Software Development
(PDTSD’99), Orlando, FL. 1999, pp. 570–578.

References 207

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified soft-
ware development process. The Addison-Wesley object technology series.
Reading and Mass: Addison-Wesley, 1999. isbn: 9780201571691.

[KÅ05] Fredrik Karlsson and Pär J. Ågerfalk. “Method-User-Centred Method
Configuration”. In: Situational Requirements Engineering Processes :
Methods, Techniques and Tools to Support Situation-Specific Requirements
Engineering Processes. Ed. by Jolita Ralyté, Pär J. Ågerfalk, and N.
Kraiem. Vol. 1. Irelenad: University of Limerick, 2005, pp. 37–43. isbn:
1874653828.

[KÅ09] Fredrik Karlsson and Pär J. Ågerfalk. “Towards Structured Flexibility
in Information Systems Development: Devising a Method for Method
Configuration”. In: J. Database Manag. 20.3 (2009), pp. 51–75.

[KÅ11] Fredrik Karlsson and Pär J. Ågerfalk. “Towards Structured Flexibility
in Information Systems Development”. In: Theoretical and Practical Ad-
vances in Information Systems Development. Ed. by Keng Siau. IGI Global,
2011, pp. 214–238. isbn: 9781609605216.

[KÅ12] Fredrik Karlsson and Pär J. Ågerfalk. “MC Sandbox: Devising a tool
for method-user-centered method configuration”. In: Information and
Software Technology 54.5 (2012), pp. 501–516.

[KC03] Jeffrey O. Kephart and David M. Chess. “The vision of autonomic
computing”. In: Computer 36.1 (2003), pp. 41–50.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing Sys-
tematic Literature Reviews in Software Engineering: EBSE Technical Report
EBSE-2007-01. 2007.

[KDS07] Elena Kornyshova, Rébecca Deneckère, and Camille Salinesi. “Method
Chunks Selection by Multicriteria Techniques: an Extension of the
Assembly-based Approach”. In: Situational Method Engineering: Funda-
mentals and Experiences. Ed. by Jolita Ralyté, Sjaak Brinkkemper, and
Brian Henderson-Sellers. Vol. 244. IFIP — The International Federa-
tion for Information Processing. Springer US, 2007, pp. 64–78. isbn:
9780387739465.

[KF15] Marco Kuhrmann and Daniel Mendez Fernandez. “Systematic Software
Development: A State of the Practice Report from Germany”. In: IEEE
10th International Conference on Global Software Engineering (ICGSE 2015).
2015, pp. 51–60.

[KFS13a] Marco Kuhrmann, Daniel Méndez Fernández, and Ragna Steenweg.
“Systematic software process development: where do we stand today?”
In: Proceedings of the 2013 International Conference on Software and System
Process (ICSSP 2013). Ed. by Jürgen Münch, Jo Ann Lan, and He Zhang.
New York, NY and USA: ACM, 2013, pp. 166–170. isbn: 9781450320627.

208 References

[KFS13b] Marco Kuhrmann, Daniel Méndez Fernández, and Ragna Steenweg.
“Systematic software process development: where do we stand today?”
In: Proceedings of the 2013 International Conference on Software and System
Process (ICSSP 2013). Ed. by Jürgen Münch, Jo Ann Lan, and He Zhang.
New York, NY and USA: ACM, 2013, pp. 166–170. isbn: 9781450320627.

[KKT14] Marco Kuhrmann, Georg Kalus, and Manuel Then. “The Process En-
actment Tool Framework – Transformation of software process models
to prepare enactment”. In: Science of Computer Programming 79 (2014),
pp. 172–188.

[KLR96] Steven Kelly, Kalle Lyytinen, and Matti Rossi. “MetaEdit+ A fully con-
figurable multi-user and multi-tool CASE and CAME environment”.
In: Advanced Information Systems Engineering. Ed. by Panos Constan-
topoulos, John Mylopoulos, and Yannis Vassiliou. Vol. 1080. Lecture
notes in computer science. Springer Berlin Heidelberg, 1996, pp. 1–21.
isbn: 9783540612926.

[Klu14] Frank Kluthe. Quality Assurance of Situational Methods: Master’s thesis.
Germany, 2014.

[KNS92] Gerhard Keller, Markus Nüttgens, and August-Wilhelm Scheer. Seman-
tische Prozeßmodellierung auf der Grundlage Ereignisgesteuerter Prozeßketten
(EPK): Technical Report 89. 1992.

[Kru99] Philippe Kruchten. The rational unified process: An introduction. Object
technology series. Reading and Mass: Addison-Wesley, 1999. isbn:
0201604590.

[KTF11] Marco Kuhrmann, Thomas Ternité, and Jan Friedrich. as V-Modellr
XT anpassen: Anpassung und Einführung kompakt für V-Modellr XT
Prozessingenieure. Informatik im Fokus. Berlin and Heidelberg: Springer-
Verlag Berlin Heidelberg, 2011. isbn: 9783642014901.

[KV09] Jukka Kääriäinen and Antti Välimäki. “Applying Application Lifecycle
Management for the Development of Complex Systems: Experiences
from the Automation Industry”. In: Software Process Improvement. Ed. by
RoryV O’Connor, Nathan Baddoo, Juan Cuadrago Gallego, Ricardo
Rejas Muslera, Kari Smolander, and Richard Messnarz. Vol. 42. Com-
munications in Computer and Information Science. Springer Berlin
Heidelberg, 2009, pp. 149–160. isbn: 9783642041327.

[KW04] Fredrik Karlsson and Kai Wistrand. “MC Sandbox - Tool Support for
Method Configuration”. In: CAiSE’04 Workshops in connection with The
16th Conference on Advanced Information Systems Engineering. Ed. by Janis
Grundspenkis and Marite Kirikova. Vol. 1. CAiSE workshops. Riga and
Latvia: Faculty of Computer Science and Information Technology, Riga
Technical University, 2004, pp. 199–210. isbn: 9984976718.

[KW06] Fredrik Karlsson and Kai Wistrand. “Combining method engineering
with activity theory: theoretical grounding of the method component
concept”. In: European Journal of Information Systems 15.1 (2006), pp. 82–
90.

References 209

[Loo07] Han van Loon. Process assessment and ISO/IEC 15504: A reference book.
2nd ed. New York: Springer, 2007. isbn: 9780387300481.

[Mey14] Bertrand Meyer. Agile! The good, the hype and the ugly. Switzerland:
Springer International Publishing, 2014. isbn: 9783319051550.

[Mit05] Tilak Mitra. Business-driven development: IBM developerWorks article. Ed.
by IBM. 2005.

[MR06] Isabelle Mirbel and Jolita Ralyté. “Situational method engineering:
combining assembly-based and roadmap-driven approaches”. In: Re-
quirements Engineering 11.1 (2006), pp. 58–78.

[Mün+12] Jürgen Münch, Ove Armbrust, Martin Kowalczyk, and Martín Soto.
Software process definition and management. The Fraunhofer IESE Series
on Software and Systems Engineering. Berlin and New York: Springer
Berlin Heidelberg, 2012. isbn: 9783642242908.

[MW15] Daniel Méndez Fernández and Stefan Wagner. “Naming the pain in
requirements engineering: A design for a global family of surveys and
first results from Germany”. In: Information and Software Technology 57

(2015), pp. 616–643.
[NC13] Anh Nguyen-Duc and D. S. Cruzes. “Coordination of Software De-

velopment Teams across Organizational Boundary - An Exploratory
Study”. In: Proceedings of the 8th International Conference on Global Soft-
ware Engineering (ICGSE). 2013, pp. 216–225.

[Nee14] Karthik Neela. Enactment of Software Development Methods with the Sup-
port of BPEL Workflow Engines: Master’s thesis. Germany, 2014.

[NH03] Van Puh Nguyen and Brian Henderson-Sellers. “Towards Automated
Support for Method Engineering with the Open Approach”. In: Pro-
ceedings of the Seventh IASTED International Conference on Software En-
gineering and Applications. Anaheim, USA: ACTA Press, 2003, pp. 691–
696.

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0.
2007.

[OAS10] OASIS. Web Services – Human Task (WS-HumanTask) Specification Version
1.1 - Committee Draft 10 / Public Review Draft 04. 23 June 2010.

[OMG08] OMG. Software & Systems Process Engineering Metamodel Specification
(SPEM) 2.0. 2008.

[OMG11] OMG. Business Process Model and Notation. 2011.
[OMG14] OMG. Object Constraint Language. 2014.
[Ost87] Leon J. Osterweil. “Software processes are software too”. In: Proceeding

of the 9th International Conference on Software Engineering (ICSE). Wash-
ington and D.C: IEEE Computer Society Press, 1987, pp. 2–13. isbn:
0897912160.

[Ped+07] Oscar Pedreira, Mario Piattini, Miguel R. Luaces, and Nieves R. Bris-
aboa. “A systematic review of software process tailoring”. In: ACM
SIGSOFT Software Engineering Notes 32.3 (2007), p. 1.

210 References

[Per+11] Eliana Beatriz Pereira, Ricardo Melo Bastos, Michael da Costa Móra,
and Toacy Cavalcante de Oliveira. “Improving the Consistency of
SPEM-based Software Processes”. In: ICEIS 2011 - Proceedings of the 13th
International Conference on Enterprise Information Systems (ICEIS 2011).
Ed. by Runtong Zhang, José Cordeiro, Xuewei Li, Zhenji Zhang, and
Juliang Zhang. SciTePress, 2011, pp. 76–86. isbn: 9789898425553.

[Pli96] Veronique Plihon. “MENTOR: An Environment Supporting the Con-
struction of Methods”. In: Proceedings 1996 Asia-Pacific Software Engi-
neering Conference. Los Alamitos, CA and USA: IEEE Computer Society
Press, 1996, p. 384.

[PM04] Vladimir Pavlov and Dmitry Malenko. “Mining MSF for Process Pat-
terns: a SPEM-based Approach”. In: VikingPLoP 2004. 2004, pp. 46–
66.

[PS97] Naveen Prakash and Sangeeta Sabharwal. “Building CASE Tools For
Methods Represented As Abstract Data types”. In: OOIS’96. Ed. by
Dilip Patel, Yuan Sun, and Shushma Patel. Springer London, 1997,
pp. 357–369. isbn: 9783540761327.

[Ral04] Jolita Ralyté. “Towards situational methods for information systems
development: engineering reusable method chunks”. In: Proceedings
of the 13th international conference on information systems development.
Ed. by O. Vasilecas, A. Caplinskas, W. Wojtkowski, W. G. Wojtkowski,
J. Zupancic, and S. Wrycza. Vilnius and Lithuania: Vilnius Gediminas
Technical University, 2004, pp. 271–282.

[Ram+06] Balasubramaniam Ramesh, Lan Cao, Kannan Mohan, and Peng Xu.
“Can distributed software development be agile?” In: Commun. ACM
49.10 (2006), pp. 41–46.

[RB96] Matti Rossi and Sjaak Brinkkemper. “Complexity metrics for systems
development methods and techniques”. In: Information Systems 21.2
(1996), pp. 209–227.

[RBH07] Jolita Ralyté, Sjaak Brinkkemper, and Brian Henderson-Sellers, eds.
Situational Method Engineering: Fundamentals and Experiences. IFIP —
The International Federation for Information Processing. Springer US,
2007. isbn: 9780387739465.

[RDR] Jolita Ralyté, Rébecca Deneckère, and Colette Rolland. “Towards a
Generic Model for Situational Method Engineering”. In: vol. 2681,
p. 1029.

[Red+14] David Redlich, Gordon Blair, Awais Rashid, Thomas Molka, and Wasif
Gilani. “Research Challenges for Business Process Models at Run-Time”.
In: Models@run.time. Ed. by Nelly Bencomo, Robert B. France, Betty
H.C Cheng, and Uwe Aßmann. Vol. 8378. Lecture notes in computer
science. Cham: Springer International Publishing, 2014, pp. 208–236.
isbn: 9783319089140.

[RH09] Per Runeson and Martin Höst. “Guidelines for conducting and report-
ing case study research in software engineering”. In: Empirical Software
Engineering 14.2 (2009), pp. 131–164.

References 211

[RMD11] Jolita Ralyté, Isabelle Mirbel, and Rébecca Deneckère, eds. IFIP Ad-
vances in Information and Communication Technology. Vol. 351. Berlin and
Heidelberg: Springer Berlin Heidelberg, 2011. isbn: 9783642199967.

[Rol09] Colette Rolland. “Method engineering: towards methods as services”.
In: Software Process: Improvement and Practice 14.3 (2009), pp. 143–164.

[RP96a] Colette Rolland and Veronique Plihon. “Using generic method chunks
to generate process models fragments”. In: Second International Confer-
ence on Requirements Engineering. 1996, pp. 173–180.

[RP96b] Colette Rolland and Naveen Prakash. “A proposal for context-specific
method engineering”. In: Proceedings of the IFIP TC8, WG8.1/8.2 Working
Conference on Method Engineering: Principles of method construction and
tool support. Ed. by Sjaak Brinkkemper, Kalle Lyytinen, and Richard J.
Welke. London: Chapman & Hall, 1996, pp. 191–208. isbn: 041279750X.

[RR01] Jolita Ralyté and Colette Rolland. “An Assembly Process Model for
Method Engineering”. In: Proceedings of the 13th International Conference
on Advanced Information Systems Engineering (CAiSE 2001). Ed. by Klaus
R. Dittrich, Andreas Geppert, and Moira C. Norrie. Vol. 2068. Lecture
Notes in Computer Science. Berlin and Heidelberg: Springer, 2001,
pp. 267–283. isbn: 3540422153.

[RR13] Suzanne Robertson and James Robertson. Mastering the Requirements
Process: Getting Requirements Right. 3rd ed. Upper Saddle River,
NJ: Addison-Wesley Professional and Addison-Wesley, 2013. isbn:
9780321815743.

[SA07] Ahmed Sidky and James Arthur. “Determining the Applicability of
Agile Practices to Mission and Life-Critical Systems”. In: 31st IEEE
Software Engineering Workshop (SEW 2007). 2007, pp. 3–12.

[Sie15] Daniel Siebert. Key Aspects of Popular Developmet Methods as Building
Blocks for Situational Method Engineering: Master’s thesis. Germany, 2015.

[SLS14] Andreas Spillner, Tilo Linz, and H. Schaefer. Software testing foundations:
A study guide for the certified tester exam. 4th ed. Santa Barbara, CA:
Rocky Nook, 2014. isbn: 9781937538422.

[SMS16] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. “From Aris-
totle to Ringelmann: A large-scale analysis of team productivity and
coordination in Open Source Software projects”. In: Empirical Software
Engineering 21.2 (2016), pp. 642–683.

[Sof10] Software Engineering Institute. CMMI for Development, Version 1.3:
Improving processes for developing better products and services. Pittsburgh,
Pennsylvania, 2010.

[Som11] Ian Sommerville. Software engineering. 9th ed. Boston: Pearson, 2011.
isbn: 9780137035151.

[Spi15] Michael Spijkerman. “Situationsgerechte Methodenweiterentwicklung
auf Basis von MetaMe am Beispiel der Server-System-Entwicklung”.
PhD Thesis. Paderborn: Universität Paderborn, 2015.

212 References

[SRG96] Samira Si-Said, Colette Rolland, and Georges Grosz. “MENTOR: A
Computer Aided Requirements Engineering environment”. In: Ad-
vanced Information Systems Engineering. Ed. by Panos Constantopoulos,
John Mylopoulos, and Yannis Vassiliou. Vol. 1080. Lecture notes in
computer science. Springer Berlin Heidelberg, 1996, pp. 22–43. isbn:
9783540612926.

[SS13] Ken Schwaber and Jeff Sutherland. The Scrum Guide. 2013.
[Ste+09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

EMF: Eclipse Modeling Framework (2nd Edition). 2nd ed. The eclipse
series. Upper Saddle River and N.J: Addison-Wesley, 2009. isbn:
9780321331885.

[TR07] Samira Tasharofi and Raman Ramsin. “Process Patterns for Agile
Methodologies”. In: Situational Method Engineering: Fundamentals and Ex-
periences. Ed. by Jolita Ralyté, Sjaak Brinkkemper, and Brian Henderson-
Sellers. Vol. 244. IFIP — The International Federation for Information
Processing. Springer US, 2007, pp. 222–237. isbn: 9780387739465.

[TRL96] Juha-Pekka Tolvanen, Matti Rossi, and Hui Liu. “Method Engineering:
Current research directions and implications for future research”. In:
Method Engineering. Ed. by Sjaak Brinkkemper, Kalle Lyytinen, and
Richard J. Welke. IFIP – The International Federation for Information
Processing. Boston, MA: Springer US, Imprint, and Springer, 1996,
pp. 296–317. isbn: 9781475758245.

[VB15] Leo Vijayasarathy and Charles Butler. “Choice of Software Development
Methodologies - Do Project, Team and Organizational Characteristics
Matter?” In: IEEE Software (2015), p. 1.

[Wah+09] Ksenia Wahler, Harald C. Gall, Schahram Dustdar, and Carl-Christian
Kanne. “A framework for integrated process and object life cycle mod-
eling”. PhD thesis. University of Zurich, 1.01.2009.

[WBV07] Inge van de Weerd, Sjaak Brinkkemper, and Johan Versendaal. “Con-
cepts for Incremental Method Evolution: Empirical Exploration and
Validation in Requirements Management”. In: Advanced Information Sys-
tems Engineering. Ed. by John Krogstie, Andreas Opdahl, and Guttorm
Sindre. Vol. 4495. Lecture notes in computer science. Springer Berlin
Heidelberg, 2007, pp. 469–484. isbn: 9783540729877.

[Wee+06] Inge van de Weerd, Sjaak Brinkkemper, Jurriaan Souer, and Johan
Versendaal. “A situational implementation method for web-based con-
tent management system-applications: Method engineering and vali-
dation in practice”. In: Software Process: Improvement and Practice 11.5
(2006), pp. 521–538.

[Wis+00] Alexander Wise, Aaron G. Cass, Barbara Staudt Lerner, Eric K. McCall,
Leon J. Osterweil, and Stanley M. Sutton. “Using Little-JIL to Coordi-
nate Agents in Software Engineering”. In: The 15th IEEE International
Conference on Automated Software Engineering. Piscataway, N.J.: IEEE,
2000. isbn: 0769507107.

References 213

[XR08] Peng Xu and Balasubramaniam Ramesh. “Using Process Tailoring to
Manage Software Development Challenges”. In: IT Professional 10.4
(2008), pp. 39–45.

[ZS07] Liming Zhu and Mark Staples. “Situational Method Quality: Situational
Method Engineering: Fundamentals and Experiences”. In: Situational
Method Engineering: Fundamentals and Experiences. Ed. by Jolita Ralyté,
Sjaak Brinkkemper, and Brian Henderson-Sellers. Vol. 244. IFIP — The
International Federation for Information Processing. Springer US, 2007,
pp. 193–206. isbn: 9780387739465.

Acronyms

ALM
Application Lifecycle Management.

BPEL
Business Process Execution Language.

BPMN
Business Process Model and Notation.

CASE
Computer-aided software engineering.

CDO
Connected Data Objects.

CMMI
Capability Maturity Model Integration.

DSL
Domain Specific Language.

EMF
Eclipse Modeling Framework.

EPF
Eclipse Process Framework.

GUI
graphical user interface.

MDR
method content definition requirement.

MER
method enactment requirement.

MESP
Method Engineering with Method Services and Method Patterns.

MTR
method tailoring requirement.

OCL
Object Constraint Language.

ODE
Orchestration Director Engine.

PET
Process Enactment Tool Framework.

RUP
Rational Unified Process.

SEMDM
Software Engineering Metamodel for Development Methodologies.

SME
situational method engineering.

SPEM
Software & Systems Process Engineering Meta-Model Version 2.0.

SPICE
Software Process Improvement and Capability Determination.

SR
solution requirement.

Credits

Some icons used are designed by Freepic and distributed under a free licence (with
attribution).

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Solution Overview and Research Contributions
	1.2.1 Tasks of the Senior Method Engineer
	1.2.2 Tasks of the Project Method Engineer
	1.2.3 Tasks of the Project Team

	1.3 Publication Overview
	1.4 Structure of the Thesis

	2 Background
	2.1 Foundations and Terminology
	2.1.1 Application Development with Software Engineering Methods
	2.1.2 Situational Method Engineering
	2.1.3 Executable Process Description Languages

	2.2 Solution Requirements and State of the Art
	2.2.1 Requirements for a Holistic Solution
	2.2.2 Evaluation of Existing Approaches

	2.3 Summary

	3 Solution Overview
	3.1 Overview of the MESP Approach
	3.1.1 Overview of MESP Roles
	3.1.2 Overview of MESP Work Products
	3.1.3 Overview of MESP Tools
	3.1.4 Integrated Overview of MESP Solution

	3.2 End-to-End Example
	3.2.1 Method Content Definition
	3.2.2 Method Tailoring
	3.2.3 Method Enactment

	3.3 Summary

	4 Method Content Definition
	4.1 Requirements and Related Work
	4.1.1 Requirements
	4.1.2 Related Work

	4.2 Extract Reusable Method Content
	4.2.1 Extraction from Methods Described in Literature
	4.2.2 Extraction from the Daily Practice of Organizations

	4.3 Define Basic Elements
	4.3.1 Definition of Basic Method Elements
	4.3.2 Definition of Basic Characterization Elements

	4.4 Define Method Services & Method Patterns
	4.4.1 Definition of Method Services
	4.4.2 Definition of Method Patterns

	4.5 Summary

	5 Method Tailoring
	5.1 Requirements and Related Work
	5.1.1 Requirements
	5.1.2 Related Work

	5.2 Characterize Project
	5.2.1 Meta-Classes
	5.2.2 Usage

	5.3 Compose Project-Specific Method
	5.3.1 Identifying Suitable Method Building Blocks
	5.3.2 Specification of Methods

	5.4 Assure Quality of Method
	5.4.1 Quality Model
	5.4.2 Automated Quality Assurance Framework
	5.4.3 Usage

	5.5 Initialize Method
	5.5.1 Transformation, Deployment & Configuration
	5.5.2 Usage

	5.6 Summary

	6 Method Enactment
	6.1 Requirements and Related Work
	6.1.1 Requirements
	6.1.2 Related Work

	6.2 Coordinate Activities
	6.3 Perform Tasks
	6.4 Reflect Method
	6.5 Summary

	7 Proof of Concept Implementation
	7.1 Tool Implementation
	7.1.1 Method Content Definition
	7.1.2 Method Tailoring
	7.1.3 Method Enactment

	7.2 Method Composition
	7.2.1 Case Study: Certification Issuance Process
	7.2.2 Experiment: Scalability Analysis

	7.3 Summary

	8 Conclusions and Outlook
	8.1 Contribution Summary
	8.2 Fulfillment of Requirements
	8.3 Outlook on Future Work

	References
	Acronyms

