
Learning Shepherding Behavior
Michael Baumann

Dissertation
in Computer Science

submitted to the

Faculty of Computer Science,
Electrical Engineering and Mathematics

University of Paderborn

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium
(Dr. rer. nat.)

Paderborn, October 2015

Acknowledgements

Although this work is—unless otherwise stated—a work of my own, many people
helped to finish this thesis. Thus, it is my pleasure to express my gratitude to all
those who accompanied me on this journey.

First, I would like to thank my advisor Prof. Dr. Kleine Büning for his patience,
his constant support, and for always making time for discussions. His invaluable
advice helped tremendously to shape this project. I am also grateful to Jun.-Prof.
Dr. Heiko Hamann who agreed to review this thesis. Additionally, I would like to
thank Prof. Dr. Friedhelm Meyer auf der Heide, Prof. Dr. Eyke Hüllermeier, and Dr.
Matthias Fischer for being on my examination committee.

I would like to thank my (former) colleagues Dr. Uwe Bubeck, Dr. Asmir
Vodenčarević, Felix Mohr, and Yan Yuhan for creating such an inspiring working
atmosphere in the research group Knowledge-based Systems at the University of
Paderborn. Additionally, I would like to thank Dr. Thomas Kemmerich, Dr. Markus
Eberling, and Timo Klerx for fruitful discussions, for proof-reading papers, and
for collectively drinking all the coffee. Additionally, I am grateful to Dr. Theodor
Lettmann for his advice on research and beyond. I am indebted to Thomas, Timo,
and Felix for proof-reading parts of this thesis and presenting valuable suggestions.
Furthermore, I thank Simone Auinger, Elisabeth Lengeling, Gerd Brakhane, Christa
Stoll, and Christina Lange for their help in all organizational and technical matters.

I am grateful to the International Graduate School Dynamic Intelligent Systems
at the University of Paderborn for funding parts of my research and providing me
with the opportunity to attend all those interesting conferences. In particular I like to
thank Prof. Dr. Eckhard Steffen and Astrid Canisius for their organizational support.

I would like to express my deepest gratitude to my parents Susanne and Bernd
for their continuous support and for making all of this possible in the first place.

Most importantly, I am very grateful to Yvonne for improving the readability of
this thesis, for her lovely support and understanding, and for enduring all the time it
took to finish this project.

Michael Baumann
Paderborn, October 2015

Abstract

Artificial shepherding strategies, i.e. using robots to move certain individuals in a
controlled manner to a given location, have many applications in different situations.
For example, people can be guided by mobile robots from dangerous places or
swimming robots may be used to assist in cleaning up oil spills. Independent of an
actual deployment of the strategies on real robots, investigating such strategies can
help to improve the response of stewards or other security service personnel.

This thesis uses a multiagent system as model for the robots in which the sheep
are modeled with reactive behaviors. We analyze the complexity of the shepherding
task and present a greedy algorithm that only needs linear time to compute a solution
that is close to optimal. In fact, the worst case length differs from the optimal solution
in a term linear in the size of the sheep’s viewing range. In addition to this, we
analyze to what extend such strategies can be learned as learning usually provides
powerful solutions. This thesis focuses on reinforcement learning as learning method.

To enable reinforcement learning agents to use their knowledge more efficiently
in continuous or large state spaces as it is the case in the shepherding task, methods
to transfer knowledge to unseen but similar situations are required. We investigate
two different approaches to achieve such behavior: State space abstraction combines
“similar” states to derive a smaller, abstract state space while function approximation
directly approximates the value function of the reinforcement learning agent.

The approaches developed in this thesis, GNG-Q and I-GNG-Q combine rein-
forcement learning with adaptive neural algorithms and enable the agent to learn
behavior in parallel with its representation. Both are based upon the growing neural
gas, which is an unsupervised learning approach that learns a vector quantization
by placing units in areas of the input space from which input data can be expected.
GNG-Q groups states that are spatial close and share the same behavior while
I-GNG-Q combines the learned behavior from a larger area of the approximation
which results in a smoother value function. Thus, GNG-Q performs a state-space
abstraction and I-GNG-Q approximates the value function. Both approaches monitor
the agent’s policy during its interaction with the environment to find regions of the
approximation that have to be refined. Amongst many others, the core advantages
of the developed approaches are that they do not need the model of the environment
and that the resolution of the approximation is determined automatically and does
not depend on domain knowledge. Additionally, such approaches omit storing values
for all state-action pairs and are thus directly applicable to continuous state spaces.

The experimental evaluation underlines that the behaviors learned using our
approaches are highly efficient and that the storage needed for the computed approx-
imation is much smaller compared to an extensive representation.

v

Zusammenfassung

Roboter, die Schafe hüten sowie die dazu notwendigen Strategien zum kontrollierten
Bewegen von Individuen zu einem gegebenen Ziel, bieten vielfältige Anwendungen
in unterschiedlichsten Situationen. So wäre der Einsatz von mobilen Robotern bei
Rettung von Menschen aus gefährlichen Lagen ein durchaus realistisches Einsatzfeld.
Darüber hinaus könnten schwimmende Roboter bei der Beseitigung von Ölteppichen
eingesetzt werden. Unabhängig von der tatsächlichen Umsetzung dieser Strategien
durch Roboter, kann die Untersuchung solcher Taktiken helfen, die Logistik im
Rettungswesen, im Umweltschutz oder in anderen Bereichen deutlich zu verbessern.

In dieser Arbeit verwenden wir ein Multiagentensystem mit aktiven Agenten als
Modell für die Roboter und reaktiven Agenten als Pendant für die Schafe. Wir unter-
suchen die Komplexität des Schafehütens und entwickeln einen Greedy-Algorithmus,
der in linearer Laufzeit eine fast optimale Lösung berechnet. Tatsächlich ist die
maximale Abweichung von der optimalen Lösung linear in der Größe der Sichtweite
des Schafs. Zusätzlich zu diesen Ergebnissen analysieren wir, wie solche Strategien
gelernt werden können, da maschinelles Lernen oftmals zu effizienten und effektiven
Lösungen führt. Im Folgenden nutzen wir Reinforcement Learning als Lernmethode.

Damit Reinforcement Learning Agenten ihr gelerntes Wissen auch in kontinuier-
lichen oder sehr großen Zustandsräumen vorhalten können, werden Methoden zur
Wissensabstraktion benötigt. Diese erlauben dem Agenten bereits erlerntes Wissen
auf ähnliche Situationen zu übertragen. Eine solche Fähigkeit wird beispielsweise
beim maschinellen Schafehüten benötigt. Dazu untersuchen wir zwei unterschiedliche
Ansätze: Die Zustandsraumapproximation aggregiert ähnliche Zustände und erzeugt
einen kompakteren, abstrakten Zustandsraum, während Funktionsapproximationen
die Bewertungsfunktionen des Reinforcement Learning Agenten approximieren.

Die Ansätze in dieser Arbeit kombinieren Reinforcement Learning mit adap-
tiven neuronalen Algorithmen. Sie ermöglichen dem Agenten sowohl seine Strategien
als auch die Repräsentation dieses Wissens gleichzeitig zu lernen. Beide Verfahren
basieren auf dem unüberwachten Lernverfahren Growing Neural Gas, das eine Vek-
torquantisierung lernt, indem es neuronale Einheiten in Regionen des Eingaberaums
platziert, in denen Eingabedaten erwartet werden können. GNG-Q gruppiert benach-
barte Zustände die das gleiche Verhalten erfordern; I-GNG-Q wiederum kombiniert
Wissen aus größeren Gegenden der Approximation, um eine gleichmäßige Bewer-
tungsfunktion zu erhalten. Beide Verfahren überwachen das Verhalten des Agenten
während der Interaktion mit der Umgebung, um die Stellen der Approximation
aufzufinden, die noch verfeinert werden müssen. Die Hauptvorteile der entwickel-
ten Verfahren sind u.a., dass sie kein Modell der Umgebung benötigen und dass
die Auflösung der Approximation automatisch und ohne Vorwissen bestimmt wird.
Darüber hinaus müssen solche Approximationsmethoden nicht für jedes Zustands-
Aktions-Paar Wissen vorhalten womit sie direkt für kontinuierliche Zustandsräume

vii

anwendbar sind.
Die experimentelle Analyse unterstreicht, dass die Verhaltensmuster, die mit-

tels unserer Ansätze gelernt wurden, sehr effizient sind und dass gleichzeitig der
Speicherbedarf für die berechnete Approximation deutlich kleiner ist als für eine
erschöpfende Repräsentation.

viii

Contents

1 Introduction 1

2 Background 9
2.1 (Multi-)Agent Systems . 9
2.2 Single Agent Reinforcement Learning 12
2.3 Growing Neural Gas for Vector Quantization 24

3 Related Work 35
3.1 Shepherding Approaches . 35
3.2 Discussion of Shepherding Tasks and Approaches 37
3.3 Approximations for Reinforcement Learning 38
3.4 Discussion of Approximation Approaches 43

4 The Shepherding Task 49
4.1 Motivation . 50
4.2 Biological Background . 51
4.3 Description of the Shepherding Task 53
4.4 Modeling the Shepherding Task as Multiagent System 56
4.5 Sheep Behavior . 61
4.6 Complexity of the Shepherding Task 62
4.7 Conclusion . 66

5 Single Agent Shepherding 67
5.1 Foundations . 68
5.2 A Greedy Shepherding Algorithm . 78
5.3 Analysis of the GCC Algorithm . 85
5.4 Conclusion . 91

6 Learning Shepherding Behavior 93

7 Adaptive State Aggregation 95
7.1 Motivation . 97
7.2 Theoretical Model of State Space Abstraction 103
7.3 General Approach . 104
7.4 From States to State Regions . 107
7.5 Neighborhood Connections . 109
7.6 Adapting the Approximation . 112
7.7 Refining the Approximation . 115
7.8 Stopping Criteria . 118

ix

7.9 Eligibility Traces for State Regions 119
7.10 Complete Algorithm . 119
7.11 Analysis . 120
7.12 Conclusion . 124

8 Adaptive Function Approximation 127
8.1 Motivation . 129
8.2 Function Approximation for Reinforcement Learning 133
8.3 Adjusting the Approximation . 136
8.4 Smoothing the Approximation . 137
8.5 Update Rule . 143
8.6 Complete Algorithm . 144
8.7 Computational Complexity . 146
8.8 Comparison GNG-Q vs. I-GNG-Q 146
8.9 Conclusion . 148

9 Evaluation 149

10 Experimental Results 151
10.1 Experimental Setup . 151
10.2 Comparison of Base Configurations for GNG-Q and I-GNG-Q 154
10.3 Evaluation of GNG-Q . 156
10.4 Evaluation of I-GNG-Q . 166
10.5 Comparison to Other Approaches . 177
10.6 Advantages of Adaptive Approximations in Unknown Environments 179
10.7 Shepherding . 184
10.8 Conclusion . 193

11 Conclusion and Future Work 195
11.1 Conclusions . 195
11.2 Future Work . 197

Bibliography 199

x

1
Introduction

The questions whether robots can learn how to successfully control sheep and how
well they would perform are one of the two main subjects of this thesis. The second
and more vital topic is developing methods that allow agents (as computational model
of robots) to store learned knowledge efficiently and investigates how generalizing
from historic knowledge can improve the performance of the learning agent.

The dissection of the initially posed questions will reveal the importance and
the benefits of dealing with artificial shepherding and point out how “shepherding”
strategies could be applied to real world tasks. Additionally, such tasks immediately
call for adequate means of storing and (re)using knowledge.

We consider the following task with two kinds of protagonists: The dogs have
to drive the reactive sheep to a designated target area (cf. Figure 1.1 that shows a
dog, a sheep with its viewing range, and the goal F). To do so, the dogs approach
the sheep, which triggers the sheep’s flight instinct. In order to perform well, the
dogs have to carefully walk around the viewing ranges of the sheep and only enter it
with caution to ensure a controlled movement. This model abstracts from the real
interaction between sheep and dogs as it can be found in the real world.

Although shepherding is an interesting task from which we could learn a lot for
other real world situations, shepherding has not yet been investigated thoroughly:
Many everyday tasks can be formulated in a way such that shepherding strategies (i.e.
strategies that enable a robot to control (artificial) sheep) are able to support their
solution. The following examples demonstrate alternative applications that could
exploit theories developed in this thesis. Remember e.g. the “Deepwater Horizon Oil
Spill” (also called “BP Oil Spill”) from 2010 where roughly 4.9 million barrels oil
were leaked into the Gulf of Mexico (United States Coast Guard, 2011). In addition
to the conventional way of using dispersants or controlled burning (Fingas, 2002),
small swimming devices could have been used to encircle oil slicks with containment
booms. These “oil clusters” could then have been processed by skimmer ships.

A more frequent application is the task of guiding people through e.g. exhibitions
or museums as it was tested by Thrun et al. (2000). Such a service robot would

1

Chapter 1 Introduction

F

(a) (b)

Figure 1.1: The task for the dog is to drive the sheep into the target (F) by reasonably
entering its viewing range (grey). Note, that it does not matter where exactly the dog ends
up after its task is completed (b).

be able to lead the visitors from exhibit to exhibit while simultaneously offering
information about the attraction at hand.

Another particularly useful method is to use such robots to evacuate places,
halls or even complete buildings. Deployed (initially passive) robots at relevant places
could bee activated in case of an emergency which allows them to help guide people to
safety. This idea is supported by research of human crowds whose behavior has been
shown to be very similar to that of animal herds (Dyer et al., 2008). Independent of
an implementation of the strategies on real robots, such strategies can help to improve
the reaction behavior of stewards or other security service personnel. Additionally,
the layout of places or buildings may be optimized due to results of this task.

Relying on robots is particularly useful in situations where real dogs (that are
highly skilled at controlling real sheep) cannot be used due to the possibly hazardous
surrounding environment: Clearly dogs are not supposed to swim in oil-impacted
waters nor to sit for hours in a room waiting for an (hopefully never) occurring crisis.

This thesis uses a multiagent system (Ferber, 1999; Russell and Norvig, 2010)
as model for the robots: Such systems consist of entities called agents that act
autonomous in the system’s environment. A simple example is a robotic vacuum
cleaner (agent) that cleans an apartment (environment). In our scenario, the sheep
are modeled with reactive behaviors and for the dog we propose a greedy algorithm
as well as different strategies learned with reinforcement learning.

Other authors investigated shepherding tasks using neural networks (Potter et al.,
2001), potential fields (Vaughan et al., 1998), rules learned by a genetic algorithm
(Schultz et al., 1996), or algorithms using hand-coded strategies (Lien et al., 2004).
Unfortunately, existing approaches do neither present provable optimal solutions
nor assessments of how good the found solution is. Additionally, no theoretical
investigation of the shepherding task or its solutions have been conducted.

This thesis offers a greedy algorithm with linear computational complexity that
computes solutions for one sheep and one dog within close proven bounds (i.e. the
length of the worst case solution only differs from the lower bound by a term linear in
the sheep’s viewing range). Furthermore, we model the shepherding task as learning
task and compare the learned behaviors with the solutions computed by the greedy

2

algorithm. Thus, we know how much these strategies possibly deviate from an optimal
solution.

With this we are back to our initial questions of whether or not such strategies
can be learned. When discussing reasons for learning, Russel (2010) argued that
“We need learning not only for erudition, but also because it improves our ability
to generate effective behavior”. In fact, learning is particularly useful if the solution
of a task is not known beforehand and thus, i.e. the agent can neither follow a
predetermined way nor can it be instructed. Additionally, learned behaviors enable
the agent to solve tasks where algorithms or hand-coded strategies are difficult or
even impossible to design. This thesis discusses how learning processes might not
only generate effective but also efficient behavior.

In our opinion, a very suitable concept is reinforcement learning (RL) (Sutton
and Barto, 1998) that enables agents to learn how to solve a given task from
interaction with an environment. This environment has to offer a reward function
that states the merit of performing an action in a given state without revealing the
“optimal” behavior. The agent’s goal is to learn a policy—i.e. a mapping from states
of the environment to actions the agent can perform—that maximizes the sum of
these rewards. This can be thought of as a teacher that does not tell the correct
solution as in supervised learning but provides more feedback than in unsupervised
learning. The core idea of reinforcement learning is to advise the agent what it should
do without telling it how to do it. This presents a powerful strategy, similar to
learning in nature, i.e. children touch the oven usually at most once, and animals
learn by repeating behavior that leads to reward and avoid behavior that leads to
punishment. Furthermore, designing a reward function is often more straightforward
than presenting samples of how to behave correctly, efficiently, or effectively.

Although reinforcement learning is a very potent method, some challenges do
exist. Delayed or sparse rewards pose the first challenge; it refers to the problem of
determining which action triggered a later reward. Special attention is required to
minimize ambiguity when giving feedback—although this does in general not solve
the issue. The second challenge is called exploration vs. exploitation trade-off and
refers to the necessary decision whether to explore new strategies instead of following
the current best behavior. Exploring new ways potentially allows the agent to improve
its behavior and prevents it from getting stuck in local optima. Third, there is the
curse of dimensionality, which implies that the search space grows exponentially in
number of states and actions. This latter challenge is what this thesis focuses on and
aims to overcome with the help of generalization.

This concept of generalization can be used to tackle three problems with large or
even continuous state spaces: Firstly, at the beginning of learning, the agent usually
has no knowledge about the environment and does not know, where the “valuable”
states are located in the state space. As the agent generally does not know what it has
to learn—the reward function is designed to provide the agent with this information
but only during the agent’s interaction with the environment—it does not have a
clue of how it should behave. Thus, in the beginning the agent usually stumbles in
a trial-and-error manner through the environment until it finds states that provide
feedback and eventually “lead” to the sought behavior (1. “search problem”).

As already said, we focus on the curse of dimensionality which is responsible for

3

Chapter 1 Introduction

(a) (b)

Figure 1.2: Usually, the agent is faced with a situation as in (a): It has knowledge (i.e.
a direction like ↑ or →) for some states, only. Generalization offers a means to transfer
knowledge to similar states (b).

the other two problems tackled in this thesis: Most reinforcement learning algorithms
assume a tabular representation of the acquired knowledge which demands enormous
or even infeasible requirements for storage and runtime for the RL algorithms (2.
“computational problem”). Additionally, the higher the number of states the smaller the
probability to experience a particular state more than once—a fact that counteract
the need of witnessing the required high number of repetitions of each state-action
combination that are needed to derive useful strategies (3. “repetition problem”).

In continuous state spaces (i.e. state spaces in which the state description
contains continuous values), some form of discretization has to be performed in
order to allow the application of table-based algorithms. Here the goal is to find
the smallest resolution that is fine enough to capture all necessary details of the
environment but that is also coarse enough to allow compact storing. Of course, with
domain knowledge, the discretization can be tailored to fit the current state space
but usually, this information is not accessible.

A widely used solution for these problems is the concept of generalization that
allows to transfer knowledge from a small set of experiences to a larger set of unknown
situations. See e.g. Figure 1.2 where the agent has knowledge about some states
(depicted by the arrows in Figure 1.2(a)). It can be seen that only the arrows in
the red area are pointing right while the others point upwards. Of course, there
are some states for which no knowledge is available (the empty cells) but one could
assume that these unknown states need the same behavior as their neighbors. Thus,
in order to reduce the number of states and to transfer knowledge to unknown states,
combining single states to larger groups of states is beneficial (cf. Figure 1.2(b)). With
clever chosen approximation methods, the agent is able to use historic experience on
states that it has never seen before—a fact that helps to increase the efficiency of
the learning process while simultaneously decreasing the amount of needed storage.

This thesis investigates two different kinds of generalization: The first one, state-
space abstraction, combines “similar” states to derive a smaller, abstract state space.
With this approximated (discrete) state space, the agent can then perform standard
reinforcement learning approaches even in continuous state spaces. The second field
directly approximates the value functions of the reinforcement learning agent and
is thus called function approximation. Both approaches omit storing values for all

4

state-action pairs and are thus directly applicable to continuous state spaces.
Possible approaches to aggregate states include tile coding (Sherstov and Stone,

2005; Whiteson et al., 2007; Lin and Wright, 2010), tree-based approaches (Chapman
and Kaelbling, 1991; McCallum, 1995) or approximations based on vector quantization
(Lee and Lau, 2004). Also, different approaches to approximate the value function
exist, including the use of radial basis functions (RBFs) (Menache et al., 2005;
da Motta Salles Barreto and Anderson, 2008) or using other approximation methods
(e.g. (Konidaris et al., 2011; Whiteson and Stone, 2006)). Unfortunately, these
approaches often assume domain knowledge or have computational issues as they
have to solve the reinforcement task for different resolutions of the aggregation.

The challenge in generalization is the underlying task of finding a proper repre-
sentation of the agent’s knowledge: For state aggregation methods, the goal is to find
an abstract state space that has the minimal number of states while still allowing
to find a policy that is (close to) optimal in the original state space. Thus, often
a large portion of domain knowledge is necessary to obtain useful results. Without
domain knowledge, finding an optimal abstract state space is NP-hard (Even-Dar
and Mansour, 2003b). The challenge in function approximation is to find parameters
for the approximation scheme that allow the agent to learn a proper policy.

In this work we introduce two adaptive approximation methods to offer gener-
alization for reinforcement learning. Both are based upon the growing neural gas
(Fritzke, 1994b) that is an unsupervised learning approach that learns a vector
quantization by placing units in areas of the input space from which input data can
be expected. We extend this approach to correctly approximate the state space in
parallel with the agent’s trajectories through the environment. The learning of the
behavior is done by the well-known reinforcement learning algorithm Q-Learning
(Watkins, 1989). During the interaction of the agent with the environment, its policy
is monitored to find areas that have to be refined. The result is an adaptive online
approximation approach that uses feedback from learning to adjust the agent’s
knowledge representation.

The first algorithm is called Growing Neural Gas Q-Learning (GNG-Q) that
aims at finding states that are both “similar” (i.e. they are spatial close) and that
additionally require the same behavior. Such states are aggregated to abstract
states and treated identically. This results in a smaller abstract state space in
which Q-Learning can work efficiently and effectively. GNG-Q starts with a very
coarse approximation consisting of just two abstract states that is refined based on
information gathered from the agent’s interaction with the environment. For every
abstract state, the agent keeps track of how often it has to change its policy and
refines abstract states in which too many changes occur. Amongst many others, the
core advantages of the GNG-Q are that the approach does not need the model of the
environment and the granularity of the approximation is determined automatically
and does not depend on domain knowledge. Clearly, this approach assumes that the
environment contains neighboring states that share the same action—but usually,
this is true in many reinforcement learning scenarios in particular in continuous
environments like the real world.

In our second approach, we use the growing neural gas to build an adaptive func-
tion approximation algorithm called Interpolating Growing Neural Gas Q-Learning

5

Chapter 1 Introduction

(I-GNG-Q). Here, we use a feature description for every state of the environment
and the agent directly updates its approximation of the state-action value function.
The core idea of I-GNG-Q is to place units in the domain of the value function (i.e.
the state space) and to equip each neuron with a vector of values for the state-action
value function at this position. These combinations resemble the data points of
the function that should be interpolated (i.e. the value function). For each state
description, I-GNG-Q selects the value vectors of the k most similar neurons and
uses these values to compute the value at this point as a combination that is inversely
weighted by the intermediary distances. This approach is very performant as no
(rather slow) exponential functions have to be computed. As GNG-Q, the I-GNG-Q-
approach starts with a very “rough” approximation of the value function that only
consists of two neurons (i.e. two data points). During the agent’s interaction with
the environment, the resolution of the value function’s approximation is refined by
adding neurons in erroneous areas.

The distinction between GNG-Q and I-GNG-Q is primarily the layout of the
resulting value function: While in GNG-Q the aggregation of similar states leads
to a piecewise linear value function, the value function of I-GNG-Q is very smooth.
Secondly, GNG-Q delivers information about the topology of the state space. On the
other hand, I-GNG-Q does not equalize states but computes a separate value for
every possible state.

To conclude, the parallel learning of behavior and its representation is highly
valuable but unfortunately, hard to achieve (van Otterlo, 2009). Nevertheless, the
approaches developed in this thesis offer a great way to deal with this issue.

Contributions of This Thesis

This work basically consists of two topics: Analyzing to what extend agents are able
to learn shepherding strategies as well as developing adaptive approximation methods
for reinforcement learning. In the following, we describe the main contributions of
this thesis.

Shepherding
For the shepherding task we
• give a formal definition of the Shepherding task in Section 4.3, model the

Shepherding task as (multi-)agent system, and relate this system to existing
agent system taxonomies in Section 4.4.

• carefully analyze the state-space complexity of the Shepherding task in
Section 4.6 and show that the number of states grows exponentially in the
number of agents. Furthermore, we show how the dog’s shepherding behavior
can be analyzed using Manhattan geometry in Section 5.1. To the best of our
knowledge, this is the first theoretical analysis on such tasks.

• present the greedy coordinate correction (GCC) approach that solves obstacle-
free instances with one target, one dog, and one sheep in Section 5.2 and prove
its linear runtime in Section 5.3.4.

• provide close upper and lower bounds on the solution lengths computed by
the GCC approach in Section 5.3. For this, the maximal length of an solution

6

computed by GCC as well as the minimal length of any solution are proven.
Our analysis reveals that the solutions computed by the GCC algorithm are
close to the optimal solution, i.e. the upper and the lower bound differ by a
term linear in the size of the sheep’s viewing range.

• model the Shepherding task as reinforcement learning task in Chapter 6
and compare the learned behaviors to solutions that were computed by the
GCC -approach in Chapter 10.

Adaptive State Aggregation
The state aggregation approach developed in this thesis, GNG-Q, is presented by
• showing how the growing neural gas approach can be extended to work as an
online adaptive state aggregation in Section 7.4. Additionally, two different
interpretations of the neighborhood connections are discussed in Section 7.5.

• describing a means of monitoring the agent’s policy in order to identify areas
of the state space that need to be refined.

• introducing the concept of regional states in Section 7.6 that allows a secure
adaptation of the approximation although the agent’s behavior is a moving
target.

• defining a new operation to refine the approximation based on the current error
in Section 7.7. Furthermore, Section 7.8 provides criteria for the approximation’s
refinement and adaptation and argues how these criteria lead to an implicit
stopping condition for adjustments.

• analyzing the computational complexity of the proposed approach in Sec-
tion 7.11 and pointing out limitations of state aggregating approximations.

Adaptive Function Approximation
For the adaptive function approximation approach, I-GNG-Q, we
• motivate the use of a distance-based interpolation to respect the distance of
a state to its nearest prototype Q-vectors and why it is useful to incorporate
several prototype Q-vectors in Section 8.1.

• describe when it is useful to change the approximation and when this adjusting
should be stopped in Section 8.3.

• present an inverse distance weighting approach to derive a smooth value function
in Section 8.4.

• show how the I-GNG-Q-approach modifies the agent’s policy with an improved
update rule that is proven to avoid divergence (Reynolds, 2002) in Section 8.5.

• analyze the computational complexity of the I-GNG-Q-approach in Section 8.7
and in Section 8.8 we compare GNG-Q and I-GNG-Q.

Structure of the Thesis

Before we start presenting our results, we briefly introduce existing concepts in Chap-
ter 2. In particular, we review (multi-)agent systems as the core model used in this
thesis and give a short overview of single-agent reinforcement learning. Additionally,
the growing neural gas approach is described which is later used to compute the

7

Chapter 1 Introduction

approximations for the reinforcement learning agent. Chapter 3 surveys related con-
cepts from literature both for shepherding and for approximations in reinforcement
learning.

As said before, our main contributions are two fold. We begin with the intro-
duction and the analysis of the shepherding task in Chapter 4. Then, in Chapter 5
we present our greedy solution for tasks with one sheep and one dog, prove bounds
on the quality of the solutions computed by this approach, and investigate its run-
time. Furthermore, we model the shepherding task as reinforcement learning task in
Chapter 6.

The second part of our contribution is centered around approximations for rein-
forcement learning. Thus, Chapter 7 is devoted to the presentation of our adaptive
state-space aggregation method GNG-Q, while Chapter 8 introduces our adaptive
function approximation approach I-GNG-Q. Each of these chapters cover the descrip-
tion of the algorithm, the underlying ideas as well as an analysis of the computational
complexity.

Chapter 9 recapitulates what we have achieved in the Shepherding task and in
Chapter 10 we experimentally evaluate our approximation approaches and investigate
their performance in the shepherding task. Finally, Chapter 11 summarizes the key
results of this thesis and points out suggestions for future work.

8

2
Background

This chapter reviews some background knowledge necessary for this thesis. In partic-
ular, Section 2.1 presents the idea of agents and their enclosing environment while
Section 2.2 surveys reinforcement learning. Finally, Section 2.3 reviews the growing
neural gas algorithm for vector quantization. These concepts are used in the remain-
der of this thesis: We introduce how to use the growing neural gas approach to obtain
an approximation for reinforcement learning and show how this hybrid learning
approach can be applied to a shepherding task implemented in an agentsystem.

2.1 (Multi-)Agent Systems

This thesis uses a multiagent system to model the task of robots shepherding flocks
of (artificial) sheep. In the following, we concisely introduce agentsystems while for
deeper insights we refer e.g. to (Lettmann et al., 2011; Wooldridge, 2009; Ferber,
1999; Russell and Norvig, 2010).

Agents (and agentsystems) can be divided into hardware agents and software
agents (Müller, 1999):
• Hardware agents (e.g. robots) interact with a physical environment and are
characterized by having a physical representation.

• Software agents (e.g. programs) may interact with either a physical or a virtual
environment.

As already mentioned above, we use an agentsystem to simulate the task of shep-
herding and thus, we restrict ourselves to software agents.

Note, that there is a strong connection between agents and environments: Each
agent is situated in and interacts (e.g. perceive or change different details) with
an environment of some sort. Everything outside that agent is combined in the
environment and thus, every agent can perceive other agents (or at least the results
of their actions) that are possibly present in the same environment.

Several models to implement multiagent systems exist that—although having
various similarities—differ in some details. In this thesis we use agents as representa-

9

Chapter 2 Background

tives of real robots (that in turn are representatives of sheep and dogs) and we do
not delve too deeply into agent systems per se. Instead, we here present the ideas
of such systems that are needed for this work and refer to (Lettmann et al., 2011)
where existing models were compared and a universal sight on multiagent systems
was introduced.

2.1.1 Agents

Several definitions of agents exists, we here contrast the most prominent ones, only
(for a more thorough comparison, we again refer to (Lettmann et al., 2011)). First,
the agent definition of Wooldridge:

“An agent is a computer system that is situated in some environment, and
that is capable of autonomous actions in this environment in order to meet its
delegated objectives.” (Wooldridge, 2009)

A different view on agents can be found in Ferber’s (1999) definition of agents:

“An agent is a physical or virtual entity

(a) which is capable of acting in an environment,
(b) which can communicate directly with other agents,
(c) which is driven by a set of tendencies (in the form of individual objectives

or of a satisfaction/survival function which it tries to optimise),
(d) which possesses resources of its own,
(e) which is capable of perceiving its environment (but to a limited extent),
(f) which has only a partial representation of this environment (and perhaps

none at all),
(g) which possesses skills and can offer services,
(h) which may be able to reproduce itself,
(i) whose behaviour tends towards satisfying its objectives, taking account of

the resources and skills available to it and depending on its perception, its
representations and the communications it receives.” (Ferber, 1999)

It is obvious that Wooldridge’s agent definition is rather concise while Ferber’s
definition is very detailed. Nevertheless, it is obvious that these definitions share
some commodities: Both include the fact that agents are autonomous, i.e. they
are not controlled by some external command but rather follow some objectives or
goals. Additionally, both definitions contain the facts, that agents are situated in an
environment and that they are able to interact with it by performing various actions.

We here use agents that possess all features of this intersection and—for the
investigation of reinforcement learning—require agents that are capable of learning.

2.1.2 Environments

Briefly speaking, the environment is everything outside the agent. Nevertheless, the
agent is closely connected to the environment as the environment contains the agent.
An example of an interaction between an agent and an environment would be a
cleaning robot that has to clean the floor of a room: In that scenario, the agent
represents the robot and the environment represents the room.

10

2.1 (Multi-)Agent Systems

Due to the close connection between agents and their surrounding environment,
we continue our introduction with a short insight into this part of an agent system.
Russell and Norvig (2010) presented several dimension along which environments
could be classified:
Fully Observable vs. Partially Observable In a fully observable environment, each

agent can precisely perceive all information about its environment that are
needed to fulfill its task. Partially observable environments only offer noisy
and/or missing information.

Single Agent vs. Multiagent At first sight, the differentiation between single- and
multiagent systems is quite obvious: A multiagent system is an agent system
with more than one agent. Surely, for some parts of the environment it can be
argued whether or not they are to be considered as agents. Multiagent systems
can be further divided into cooperative (e.g. all agents work together in some
kind of a team), competitive (e.g. at least some agents have contradicting goals),
or mixed (a combination of both) environments.

Deterministic vs. Stochastic In deterministic settings, performing an action in a
state always results in the same succeeding state while in stochastic environ-
ments the next state is drawn from a (usually unknown) probability distribution.

Episodic vs. Sequential Episodic environments are characterized by the fact that in
each episode the agent perceives its environment and performs a single action
that does not affect later episodes. Sequential environments on the other hand
are more complex. The agent has to think ahead as its actions may influence
the future. Note, that the terminology is different to that used in reinforcement
learning: There, an episode usually consists of several timesteps in each of
which the agent is allowed to perform an action.

Static vs. Dynamic Static environments do not change while the agent is deployed in
it while dynamic environments may change—perhaps due to actions performed
by the agent. Static environments are obviously easier to deal with as they will
not change during the time the agent needs to decide upon its action.

Discrete vs. Continuous The distinction between discrete and continuous is relevant
to the perception of the agent (i.e. can its perceptions be described by discrete
or continuous variables), the actions (i.e. is there a finite set of actions or not),
and the time (i.e. are there distinctive timesteps or is the time continuous).

Known vs. Unknown In known environments, the agent knows how the environment
works and has information about the outcome of all its actions before performing
them while in unknown environments, the agent has to somehow figure out
how the environment reacts to its action.
Obviously, the environment strongly influences the agent and the requirements

it has to fulfill in order to successfully work in it. Additionally, the characteristics of
the environment determine how hard it is to solve the task.

2.1.3 (Multi-)Agent Systems

Technically, every agent system that consists of more than one agent is considered
a multiagent system. Nevertheless, we here only deal with single-agent systems
although more agents are present: In this work, only one agent is capable of learning

11

Chapter 2 Background

(the shepherd) and the other agent(s) (the sheep) react(s) to the learning agent’s
actions.

Thus, it suffices to consider a multiagent system as follows: The environment
encapsulates the computation of the sheep’s reaction to the shepherd’s actions. The
shepherding agent is capable of observing the current state of the environment and
based on this perception, it selects an action which may change the environment.
Note, that the only possibility of performing an action that does not directly change
the environment is to stand still as otherwise any movement of any agent changes
the state of the environment.

To sum up, we here consider a fully observable but unknown, discrete single-
agent system. Whether or not the here employed environment is deterministic or
stochastic as well as static or dynamic depends on the sheep behavior: A purely
reactive sheep that only moves if approached by the agent results in a deterministic
and static environment while sheep that react randomly call for a stochastic and
dynamic environment. In the terminology of Russell and Norvig (2010), the considered
environment is sequential.

We here omit the definition of a complete formal model as it was presented e.g.
by Lettmann et al. (2011) and refer to Figure 2.1 for the parts of an agentsystem
that are relevant in this thesis. Note, that in Figure 2.1 the agent is drawn separately
from the environment to stress the interaction of the agent with the environment.

2.2 Single Agent Reinforcement Learning

“An agent is learning if it improves its performance on future tasks after making
observations about the world” (Russell and Norvig, 2010). In this work, we consider
one particular type of learning that is called reinforcement learning. Especially for
learning shepherding behavior, we deal with reinforcement learning tasks with discrete
time and actions. This section gives a brief introduction to reinforcement learning in
environments with discrete state signals while environments with continuous state
signals are considered in the part of this work that deals with approximation methods.

Reinforcement learning can be considered as a method in between supervised
and unsupervised learning:
• In supervised learning the learner (an agent) has access to labeled data and
tries to learn the concept behind these training data. The goal is to interfere
a function that maps a given input vector to the correct output vector and
that gives correct results even for unknown samples. Generally, in supervised
learning one distinguishes classification and regression tasks: Classification
deals with assigning a category to a given sample based on the concept derived
from the training data while in regression the relationship between variables
from the training data has to be transferred to unknown data.

• In unsupervised learning the structure of the completely unlabeled data has to
be learned. The learner cannot “compare” its estimate with a correct solution
and there is no external error or reward signal that helps the agent to improve
its estimation. Here, the goal is to identify patterns depart from unstructured
noise (Ghahramani, 2004). One prominent example is clustering where samples
are grouped according to their similarity that is defined by some distance

12

2.2 Single Agent Reinforcement Learning

measure. Here, it often cannot be checked if the solution is “right” or “wrong”.

Reinforcement learning deals with an agent learning which actions to perform in
order to fulfill a certain task—solely from interaction with an unknown environment
(Sutton and Barto, 1998). This interaction is composed of the agent performing
actions and the environment answering with a reward signal. This reward expresses
the value of performing this action in the current environment state. The reward
function has to be designed such that the agent can learn a useful behavior by
maximizing these rewards over time without having access to the “optimal” behavior.
Hence, the goal of the agent is to learn a policy—i.e. a mapping from states of the
environment to the agent’s actions—that maximizes the sum of rewards over time.
This policy then models the behavior of the agent.

In contrast to supervised learning, the agent is not told which actions are
advisable; it has to discover their utilities in possible environment states on its own.
Comparing to unsupervised learning, in reinforcement learning the agent gets some
sort of feedback, although the rewards may be delayed (e.g. awarded after reaching
a target or winning a game) and each action performed may of course affect later
rewards.

In other words, reinforcement learning only states what to do without telling
the learner how and is thus well applicable if designing a reward function is easier
than generating training samples for supervised learning.

2.2.1 Reinforcement Learning Tasks

Reinforcement learning tasks usually consist of

• an environment with a set of states S that may e.g. be described by discrete or
continuous values.

• a set of actions A the agent can perform.
• a function T that models the system’s dynamics, i.e. the influence of actions

on the states of the environment. This function is called transition function.
• a function r that offers the agent a reward (positive feedback) or a punishment
(negative feedback) for being in a given state of for performing an action in a
given state.

Additionally, we assume that the complete system (i.e. environment and agent) has
a discrete time signal and that the agent can somehow “see” the state st ∈ S of the
environment at time t.

Figure 2.1 shows an example of the agent-environment interaction (Sutton and
Barto, 1998) in reinforcement learning: The agent observes the current state st of
the environment (1) and selects and performs (2) an action at. The environment
responds (3) with a reward r(st, at) and transitions (4) into the succeeding state
st+1 with probability T(st, at, st+1). Some tasks involve delayed rewards, that are
e.g. awarded after achieving a goal which makes such tasks hard to solve due to this
sparse feedback. In those tasks it is particularly unclear which actions were good and
which not.

13

Chapter 2 Background

Environment

state st action atAgent

state st+1

reward r(st,at)

(1)

(2)(3)

(4)

Figure 2.1: Agent-environment interaction, adapted from (Sutton and Barto, 1998)

2.2.2 The Reward Function

A crucial part of each reinforcement learning tasks is the reward function as this
function formalizes the task or the goal of the agent. The reward is modeled as a
single number and can be positive, negative or neutral. Here, we consider an agent
that maximizes its reward and thus, the interpretation of the reward r will be as
follows:
r > 0 This is a signal, that actually is considered a reward in terms of “gain some-

thing”. It is appropriate e.g. for winning a game or more generally for reaching
a (sub-)goal.

r < 0 A negative reward is considered a punishment and is attributed e.g. for losing
a game or in a more general sense for “misbehavior”.

r = 0 Neutral rewards are used to assess behavior that is neither good nor bad. For
example all situations in a game that are not winning or losing may be valued
with a neutral reward.

Nevertheless, we always refer to this signal as “reward”, even if it expresses a
punishment. The usage of such rewards is very convenient as it only demands to rate
the agent’s behavior instead of specifying samples of the desired behavior beforehand.

The most important aspect of the reward function is that the agent must be able
to learn what the designer wants by maximizing the rewards over time. Although
the reward function may be used to incorporate domain knowledge (Matarić, 1994)
it should not state how the agent should fulfill its task (Sutton and Barto, 1998).
Additionally, great care has to be taken when paying reward for reaching subgoals:
On the one hand, this may improve the speed of learning as the agent gets feedback
earlier and its learning may become more targeted. On the other hand, this might
lead to unwanted behavior: If the reward function is not well designed, the agent may
collect a huge cumulative reward by fulfilling subgoals over and over again without
ever achieving the actual goal.

In contrast to experiencing rewards in nature, where rewarding signals are at
least partially produced inside the individual’s body, the rewards used here are
generated outside the agent in the environment. Thus, the entity giving the rewards
is out of the agent’s reach to prevent the agent from “manipulating” the overall task.
Furthermore, it is somewhat imaginary for an agent to strive for rewards but one
can clearly think of an agent that tries to maximize a function (here the reward
function).

14

2.2 Single Agent Reinforcement Learning

The agent receives the reward r(s, a) after performing action a in state s. Other
definitions may offer a reward for being in a particular state or for a particular
transition between two states (van Otterlo, 2009). Clearly, both of these deviations
can be expressed by the notation used here.

2.2.3 Returns

After introducing the reward function, we are now going to further specify the
objective of learning. As mentioned before, the task of the agent is to learn an
optimal policy—but which policy is considered optimal?

Over the time, the agent gathers the value rt+rt+1+rt+2+. . . where rt = r(st, at)
is the reward received at the end of time t after performing at in st. The value to be
maximized is called expected return (Sutton and Barto, 1998) and is defined in its
easiest form as the sum of every reward received after time t:

Rt = rt + rt+1 + . . .+ rT

where T is the final time step (e.g. after reaching some terminal state). This form of
return is well applicable in reinforcement learning tasks that have a defined end, e.g.
a game that is either won or lost. One iteration of the task from the beginning to
the end is called episode.

In continuing tasks—e.g. control tasks—that have no definitive terminal state
this definition is fraught with problems as the final time step as well as the sum of
rewards may become infinite. A more general concept in these situations is called
expected discounted return (Sutton and Barto, 1998) and is defined as:

Rt = rt + γrt+1 + γ2rt+2 + . . .

=
∞∑
i=0

γirt+i (2.1)

with an discount factor 0 ≤ γ ≤ 1. This discount factor is used to rate the current
value of a reward that is received in the future. A reward with a value of r̂ that is
received at time t+ k is worth γk−1r̂ at the current time t. For γ < 1, the sum in
Equation (2.1) is finite for bounded rewards. If γ approaches zero, the agent is more
interested in immediate rewards (i.e. it tries to maximize sooner rewards) while if γ
approaches one, the agent tries to maximizes the reward on the long run.

2.2.4 The Markov Assumption

In the most general case, the probability of transitioning from st to a particular
successor state s′ and the reception of a certain reward r after performing action at
depends on the complete “state-action-reward” history since the beginning of the
current episode:

P{s′ = st+1, r = r(st, at) | s0, a0, r0, s1, a1, r1, . . . , st−1, at−1, rt−1, st, at} (2.2)

A very handy relief—if supported by the environment—is to make the so-called
Markov assumption that allows that the current state and the current reward only

15

Chapter 2 Background

depends on a finite fixed number of previous states (Russell and Norvig, 2010). With
that assumption, it suffices to consider only elements from the k last time steps
as the probability of ending up in state s′ and receiving reward r after performing
action at in st only depends on the most recent history:

P{s′ = st+1, r = r(st, at) | st−k+1, at−k+1, rt−k+1, st−k+2, at−k+2, rt−k+2, . . . , st, at}
(2.3)

The simplest form are first-order Markov processes (as often used in reinforcement
learning (Sutton and Barto, 1998; Mitchell, 1997)) where the succeeding state and
the received reward only depends on the current state st and the action at performed
in it:

P{s′ = st+1, r = r(st, at) | st, at} (2.4)

Signals for which Equation (2.2) is equivalent to Equation (2.3), are called kth-order
Markov processes (Russell and Norvig, 2010). In the reinforcement learning literature
it is often assumed that the current state contains enough information to completely
disregard the past by only considering state and reward signals that are first-order
Markov processes (i.e. processes for which Equation (2.2) equals Equation (2.4)). In
this work, we also focus on first-order Markov processes.

An environment has the Markov property if its responses (i.e. the succeeding
state as well as the reward) are Markov processes (Sutton and Barto, 1998). Such
environments allow the agent to select an action based on its current observation
without knowing the complete history of states, actions and rewards it has received
before. Summing up, we can now introduce the Markov decision processes (MDP)
(Puterman, 2005), a common model for dealing with reinforcement learning tasks:

Definition 1 (Markov Decision Process). A Markov decision process (MDP) is
a tuple M = (S,A,T, r) where the transition function T : S × A × S → [0, 1] is a
probability distribution over the succeeding states, i.e. T(st, at, st+1) is the probability
of transitioning to state st+1 after performing action at in state st. To guarantee
a proper probability distribution, 0 ≤ T(s, a, s′) ≤ 1 has to hold for all states s, s′
and all actions a. Additionally,

∑
s′∈S T(s, a, s′) = 1 has to hold for all states s

and all actions a. The reward function r : S ×A→ R reflects the immediate merit
rt = r(st, at) of performing at in st.

Note that a deterministic transition function can be described by T(s, a, s′) = 1
for at most one s′ for all state-action pairs (s, a) and zero for all other s′. In these
settings, we write T(s, a) = s′ for the state s′ having T(s, a, s′) = 1.

Summing up, the key advantage of Markovian environments is that each time
the agent performs a specific action a in one particular state s, the outcome depends
on the same probability distribution every time the last k time steps were identical.
In the most common model of first-order Markov environments the probability
distribution for the succeeding state only depends on the current state and action.
For deterministic MDPs, the current state together with the current action definitively
determines the following state regardless what has happened before.

A short example for the Markov property is the following: Consider a door that
opens only after a button has been pressed before. So, in order to go through that
door, the agent has to first press the button and can then approach the door. An

16

2.2 Single Agent Reinforcement Learning

environment that only offers a state perception that contains the current position
of the agent is not Markovian: The agent would know where it is and would thus
know if it is close to the door but it could not know if the button was pressed before
(if it was not pressed indeed or the agent had not stored this information in some
way). In a Markovian environment, the description of the current state contains
the information of whether or not the button was pressed and then, the agent can
actually learn the concept of passing through that door.

As mentioned before, the agent’s policy is a function that “contains” the behavior
of the agent. It does so by mapping a state s to an action a which tells the agent what
to do in the current situation. Thus, the policy has to be defined over all states the
agent can possibly perceive to allow for a correct behavior in all circumstances. Usual
models for the policy are look-up tables or, when the amount of possible states renders
this approach infeasible, other means of storage have to be considered. Although it
is possible to define a stochastic policy1, we here only consider a deterministic policy
π : S → A that is used by the agent to determine which action at = π(st) to perform
in a given state st.

The agent’s goal is to learn an optimal policy to make a useful action selection
based on the current state of the environment. This policy should not focus on the
immediate rewards the agent may receive but maximize the expected discounted
return in order to reach the overall goal. To get a more precise view on what the
agent should maximize, reinforcement learning makes use of so-called value functions.

1 A stochastic policy π : S ×A→ [0, 1] expresses the probability of performing action a in s.

17

Chapter 2 Background

2.2.5 Value Functions

Reinforcement learning algorithms usually center around functions that estimate the
value (i.e. the accumulated expected discounted return) of being in a particular state
(state-value functions) or the value of performing a particular action in a given state
(action-value functions).

State-Value Function

We start by introducing the state-value function that denotes the value of a state s
if the agent starts its trajectory in s and follows the policy π afterwards. This value
uses the expected return given in Equation (2.1). If the reinforcement learning task
is modeled as MDP, the state-value function is defined (Sutton and Barto, 1998) as

V π(s) := Eπ
[
Rt
∣∣ st = s

]
= Eπ

[∞∑
i=0

γirt+i

∣∣∣∣∣ st = s

]
(2.5)

= Eπ

[
rt + γ

∞∑
i=0

γirt+i+1

∣∣∣∣∣ st = s

]

= Eπ
[
rt + γV π(st+1)

∣∣∣ st = s
]

=
∑
s′∈S

T(s, π(s), s′)
(
r(s, π(s))︸ ︷︷ ︸

rt

+γV π(s′)
)

(2.6)

where Eπ[·] is the expected value for the returns produced by starting in state
s and following π at any timestep t. Note, that the expectation operator is only
necessary in stochastic environments as then T(s, a, s′) and/or r(s, a) may have
several outcomes (i.e. the agent may end up in different states s′ after performing
action a in state s and/or receive different rewards for the same transition). For
deterministic environments (i.e. environments where performing an action a in a state
s always results in a transition to only one state s′ and an unambiguous reward),
Equation (2.5) simplifies to

V π(s) :=
∞∑
i=0

γirt+i (2.7)

= rt + γ
∞∑
i=0

γirt+i+1

= r(s, π(s))︸ ︷︷ ︸
rt

+γV π(st+1) .

With Equation (2.5) (or Equation (2.7) respectively), we can now precisely state
the learning goal of the agent. It has to learn an optimal policy

π? = arg max
π

V π(s),∀s ∈ S

18

2.2 Single Agent Reinforcement Learning

that maximizes the sum of discounted rewards over time. Simultaneously, the optimal
state-value function is derived by following the optimal policy:

V ?(s) = max
π

V π(s) .

The optimal state-value function V ?(s) is the maximal accumulated expected
discounted return the agent can collect by starting in state s and following an optimal
policy in any state of its trajectory.

With this state value function, we can now describe an optimal policy for the
agent in more detail:

π?(st) = arg max
a

(r(st, a) + γV ?(st+1)) (2.8)

Unfortunately, to compute this optimal policy, the agent would need to have access
to the reward function and the state-transition function to compute the outcome of
its actions—an assumption that is unfeasible in most reinforcement learning tasks. A
possible remedy is the use of the action-value function described next that can e.g.
be learned by Q-Learning (Watkins, 1989).

Action-Value Function

Since the agent chooses an action in a given state, it can use the action-value function
Q(st, at) that expresses the expected accumulated reward for performing action at in
state st and then selecting the following actions from an optimal policy afterwards:

Q(st, at) = r(st, at) + γV ?(st+1) (2.9)

Thus, the function Q(s, a) covers the immediate reward assigned by the environment
for performing the action a in state s and the by γ discounted return that can be
achieved if the agent adheres to an optimal policy thereafter.

Comparing Equation (2.8) and Equation (2.9), it can be seen, that the right-hand
part of Equation (2.9) is exactly what is maximized in Equation (2.8):

π?(st) = arg max
a

Q(st, at) (2.10)

Thus, an optimal policy π? for the agent can be derived by learning an optimal
action-value function Q without the need of knowing the reward function or the
state-transition function. Instead, the agent can behave optimally by choosing an
action a that maximizes Q(s, a) in the current state s. This is of course only possible
in a Markov decision process as defined in Definition 1 that presents the agent with
sufficient information in the state description s.

A big advantage of the action-value function Q is that it allows the agent to
learn a globally optimal policy by repeatedly updating a local part Q(s, a) of the
function (Mitchell, 1997). This is exactly what Q-Learning (Watkins, 1989) does to
obtain an optimal policy for the agent.

In the following we denote by Q and V the actual—but usually unknown—value
functions. The value of a state if the agent selects all its actions from a policy π is
denoted by V π or by V ? if the policy is optimal. Similarly, Q? is the action-value

19

Chapter 2 Background

function when following an optimal policy. During learning (especially during the
execution of Q-Learning), the agent only possesses an estimation Q̂ of the original
action-value function.

Summing up, the goal of the agent is to learn an action policy that maximizes
the total reward it will receive from any starting state. This can be done in several
ways, but we here focus on Q-Learning (Watkins, 1989).

2.2.6 Overview of Approaches that Solve Reinforcement Learning Tasks

As discussed before, the agent’s goal is to maximize these rewards over time. A great
variety of methods to solve such RL tasks exists (see e.g. (Sutton and Barto, 1998) or
(Szepesvári, 2010) for comprehensive and in-depth surveys of relevant approaches).
We here just mention the most prominent ones.

If the agent has access to all information of the reinforcement learning and
especially to the reward function and the state-transition function, an optimal policy
can be computed offline by using dynamic programming to solve the associated
Bellman equations (van Otterlo and Wiering, 2012). Usually, either the policy or
the value function is iteratively evaluated and improved to derive the optimal value
function. Fundamental downsides of this approach are the enormous time- and space-
consumption for realistic reinforcement learning models and, most prevailing the
absence of knowledge of the underlying model.

Monte Carlo methods do not require knowledge of the reinforcement learning
task’s model but instead learn from interaction with the environment. They do so
by assuming the expected return to be a random variable to approximate the value
function V by averaging rewards obtained by the agent after the end of an episode.
As the agent uses a fixed policy, it may not experience sufficiently many state-action
transitions per se but needs to sample every transition possible with a non-zero
probability (Sutton and Barto, 1998).

A third category of approaches is called temporal difference methods that
iteratively reduce the difference between estimates for any state-action pair over
time. Temporal difference learning does not need the model of the environment and
updates the agent’s approximation based on experiences like Monte Carlo methods.
These updates are similar to the idea of updates in dynamic programming approaches
as they use intermediate estimates after each step instead of waiting for the actual
return that is used by Monte Carlo methods (Sutton and Barto, 1998). Especially, in
temporal difference approaches the updates of the agent’s estimates are partly based
on other, previously computed estimates.

Reinforcement learning approaches can be classified along several dimensions of
which the most prevailing are model-free vs. model-based, on-policy vs. off-policy and
online vs. offline approaches.

In a model-based setting, the agent has access to the underlying model—i.e. to
the reward function and the state-transition function—of the reinforcement learning
tasks as e.g. employed in dynamic programming approaches. Model-free approaches
on the other hand assume no such knowledge which forces the agent to start learn
everything from interaction with the surrounding environment. This is usually the
case for Monte Carlo or temporal difference methods.

Online learning approaches as e.g. temporal difference methods update the

20

2.2 Single Agent Reinforcement Learning

agent’s behavior during its interaction with the environment (or they are at least
able to do so) while methods that compute the value functions based on a complete
given model of the environment are called offline approaches. Methods from the first
category are able to adjust the agent’s behavior during the agent’s deployment while
methods from the second category usually need a new simulation on the adjusted
environment model.

The distinction between on-policy and off-policy methods boils down to the
question of which policy is affected by performed updates to the approximation:
On-policy algorithms as e.g. SARSA (Rummery and Niranjan, 1994) update the
value function along the currently followed policy while off-policy methods update
the policy that the agent currently assumes to be the best (e.g. Q-Learning). The
difference between these two characteristics is plainest in the presence of exploration2:
On-policy methods update the estimate for the state-action pair that actually was
experienced while offline methods would update the state-action pair that would
have been experienced if the agent had followed the best policy even if the agent did
not follow this policy at the current timestep.

2.2.7 Q-Learning

In this thesis, we use Q-Learning (Watkins, 1989), one frequently employed algorithm
to learn an optimal policy by incrementally updating an estimation Q̂ of the action-
value function Q during interaction with the environment (and which is thus a model
free algorithm). The learning is done by iteratively reducing the differences between
the Q-value of the current state st and that of the succeeding state st+1 and thus,
Q-Learning falls into the class of temporal difference learning (Mitchell, 1997) as
these values are estimated at different times. Additionally, Q-Learning is an off-policy
method as it always updates the agent’s estimates according to the policy that is
currently optimal.

The key idea of Q-Learning (Watkins, 1989) is the recursive character of the
action-value function Q: Given Q(s, a), V ?(s) can be derived as

V ?(s) = max
a

Q(s, a)

and thus, the Q-function given in Equation (2.9) can be expressed solely based on Q
itself:

Q(st, at) = r(st, at) + γmax
a

Q(st+1, a) (2.11)

After learning, the optimal action-value function Q?(s, a) tells the agent the value
of performing action a in state s and then following an optimal policy. Thus, the
Q-function provides the agent with an ordering of its actions in a given state regarding
its value. Even during the learning process, i.e. when the agent may not have obtained
the final estimates for the action-value function, the agent can derive a greedy policy
from its current estimates by performing the action with the highest value.

The estimation Q̂ of the agent is initially set to zero (or random values) for
all state-action pairs and then updated based on the agent’s interaction with the

2 Exploration occurs if the agent sometimes tries an action that deviates from the current policy
to get broader knowledge of the environment.

21

Chapter 2 Background

environment: In each timestep t, the agent observes the current state st and selects (e.g.
with a greedy policy as described above) an action at which is the being performed.
After performing this action, the agent receives the immediate reward r(st, at) and
perceives the succeeding state st+1 (cf. Figure 2.1). With these information, the agent
updates its estimate for the state st:

Q̂t(st, at) = r(st, at) + γmax
a

Q̂(st+1, a) (2.12)

This rule closely resembles Equation (2.11) but Equation (2.12) works solely on the
agent’s estimation Q̂ while Equation (2.11) is defined over the actual action-value
function Q that is in general unknown to the agent and is the target of the estimate
Q̂.

Note, that the update rule in Equation (2.12) only works for deterministic
environments (Mitchell, 1997). If the transition function and/or the reward function
are non-deterministic (but still Markovian) their unstable outcomes may lead to
oscillating Q-values which would prohibit the agent to obtain a useful policy. In
Equation (2.6) we already saw the state-value function for non-deterministic MDPs
and similarly, the following action-value function for non-deterministic MDPs can be
formulated:

Q(s, a) =
∑
s′∈S

T(s, π(s), s′)
(
r(s, π(s)) + γmax

a′
Q̂(s′, a′)

)
(2.13)

where T(s, a, s′) is the probability that the state s′ is reached after performing action
a in state s. To apply Q-Learning in non-deterministic environments, a more general
update rule (that is also applicable in deterministic environments) can be used
(Watkins and Dayan, 1992):

Q̂t+1(st, at) := (1− αt)Q̂t(st, at) + αt
[
r(st, at) + γmax

a′∈A
Q̂t(st+1, a

′)
]

(2.14)

with the learning rate αt ∈ (0, 1] which is the most prevailing difference to the update
rule in Equation (2.12). Its purpose is to decrease the impact of updates over time
and thus, a learning rate αt for each state-action pair could e.g. be chosen to diminish
as the number of updates for that pair increases. If α was set to one, Equation (2.14)
would turn into the learning rule given in Equation (2.12).

Notice, that although both Q-updates make use of the reward and the succeeding
state, the agent does not need to know the reward function or the transition function:
The update for the state-action pair (st, at) is performed after transitioning to the
succeeding state st+1 and receiving the reward r(st, at). The complete Q-Learning
algorithm can be found in Algorithm 1.

Q-Learning is proven to converge to the true Q-function given that each state-
action pair is updated infinitely often, an exact representation of the policy is used
(i.e. tabular with one cell for each state-action pair), the rewards for each state-action
pair are bounded, a discount factor 0 ≤ γ < 1 is used, and the learning rate αt fulfills∑
t αt =∞ and

∑
t α

2
t <∞ (Watkins and Dayan, 1992).

An additional advantage of Q-Learning is the fact that it can be used to learn
behavior even if the learning agent has no information about the effects of its actions
(Mitchell, 1997). Nevertheless, Q-Learning shares problems that are common to
reinforcement learning tasks and that are discussed later in Section 2.2.9.

22

2.2 Single Agent Reinforcement Learning

Algorithm 1: Q-Learning (Watkins and Dayan, 1992)
1 ∀s, a initialize Q̂(s, a) to zero
2 loop
3 observe state s
4 select action a and execute it
5 receive immediate reward r
6 observe succeeding state s′

7 update Q̂(s, a):

Q̂t+1(st, at) := (1− αt)Q̂t(st, at) + αt
[
r(st, at) + γmax

a′∈A
Q̂t(st+1, a

′)
]

2.2.8 Exploration

From the learned Q-function, it is easy to derive an optimal (or during learning a
greedy) policy by performing the action with the highest Q-value in each state. To
avoid local optima, it is crucial to try actions other than those with the highest Q-
value during learning, i.e. to explore different behaviors: In the beginning of learning,
the agent usually has no knowledge about how to act correctly (i.e. all entries of its
Q-table are zero or randomly set to small values) and thus, it “wanders” through
the environment in a trial-and-error manner. After receiving some rewards, always
sticking to a greedy policy would lead the agent to fixating on these early found
solutions which would in turn increase the Q-values of the affected transitions and
ignore Q-values of the rest.

Surely, this may lead to a solution but it may only be a local optimum of the value
function: As the first steps of the agent in the environment are basically a random
walk, it is highly unlikely that the first found solution is indeed optimal. Instead, the
agent should try variations of solutions found so far which will most probably lead to
better and eventually to optimal solutions. In fact, the aforementioned convergence
proof for Q-Learning only requires sufficiently many visits of each state-action pair
and makes no assumption of the order in which these pairs are visited. Q-Learning is
thus exploration-insensitive, meaning that the optimal solution can be found using
an arbitrary exploration method as long as the criteria stated above are met (van
Otterlo, 2009).

We here use ε-greedy action selection, i.e. with probability 1− ε the action with
the highest Q-value and with probability ε, a random action is performed. Other
approaches implement exploration e.g. by performing an action a in a state s with a
probability that partly depends on the Q-value Q̂(s, a). This approach uses a so-called
Boltzmann (or softmax) distribution that assigns higher probabilities to actions with
high Q-values while assuring that every action has a non-zero probability. For other
approaches we refer e.g. to (Wiering, 1999).

23

Chapter 2 Background

2.2.9 Challenges in Reinforcement Learning

Unfortunately, besides the benefits of reinforcement learning in general and Q-
Learning in particular, this concept of learning faces some challenges:

Delayed Reward The agent gets rewards after each state transition but these rewards
may be mostly neutral. This means that the agent cannot always clearly
associate the received reward with a particular state-action pair: Although a
reward given at timestep t was triggered by the action in that timestep but all
previous actions may have influenced this reward, too. In an extreme case, the
agent only gets a positive reward after the episode is over and—especially in
the beginning of learning—the agent does not know, which actions eventually
have led to a valuable outcome.

Exploration vs. Exploitation During learning, the agent has to balance the urge
to gather lots of returns (i.e. to exploit its currently learned behavior by
selecting actions that offer the highest outcome) and the need to explore the
environments to possibly find an even more valuable behavior by also selecting
actions that initially do not look as promising as the greedy policy. While only
using the greedy policy would most probably restrict the agent to finding a
local optimum, only choosing exploratory actions would hinder the agent to
collect sufficient returns. Thus, the agent has to appropriately trade-off its
exploration and exploitation.

Curse of Dimensionality The “curse of dimensionality” (Bellman, 1957) denotes
the fact that the search space grows exponentially in the number of states
and actions as this space is generally composed as Cartesian product of all
dimensions. This implies a tremendous demand for storage (remember that
e.g. the convergence proof for Q-Learning requires that the agent can store its
behavior in a table-based format) and usually long times for the learning as
the agent has to visit each state-action pair sufficiently often.

Partially Observable States Most algorithms assume that the agent has perfect
knowledge of its current state. While this assumption is pretty convenient to
analyze the algorithms theoretically, in practice it is often hard to present
the agent (or the robot) with means to observe its environment without any
noise or distortion. The “worst case” is a Partially observable MDP (POMDP)
(Kaelbling et al., 1998).

The next section reviews vector quantization and presents the growing neural
gas; an approach which can be used to compute an approximation of the input space.

2.3 Growing Neural Gas for Vector Quantization

In this section, we present vector quantization as one method to reduce data and we
introduce Fritzke’s growing neural gas (Fritzke, 1994b) to adaptively compute the
centers of a Voronoi partition that is one method to accomplish this. We will come
back to these ideas in Chapter 7 and Chapter 8 as the growing neural gas (GNG)
approach forms the base of the approximation algorithms developed in this work.

24

2.3 Growing Neural Gas for Vector Quantization

2.3.1 Vector Quantization

Vector quantization is a data compression method often used in communication or
storage (Gray, 1984) that eliminates the necessity of transmitting or storing every
signal from a possibly continuous sequence (e.g. speech or image data). It uses a
finite set

C = {~w0, . . . , ~wm}
called codebook of codeword vectors ~wi ∈ Rd to map input vectors to the scalar index
of a codeword and thus reduces the problem of dealing with vectors to dealing with
scalars instead3.

In a nearest neighbor or Voronoi quantizer, every codeword is the representative
for all input vectors that are closer to it than to all other codewords. Consequently,
this introduces a Voronoi region4 for every codeword ~wi (cf. Figure 2.2) that consists
of all points that are closer to its generating codeword ~wi than to any other codeword:

R(~wi) = {x ∈ Rd | d(x, ~wi) ≤ d(x, ~wj) ∀~wj ∈ C}
using e.g. the Euclidean distance

d(u, v) = ‖u− v‖2 =

√√√√ d∑
i=1

(ui − vi)2 (2.15)

to compute the distance between two d-dimensional vectors u and v. Thus, a nearest
neighbor quantizer partitions the input space into disjoint Voronoi regions.

After defining the codewords, any vector x from the input space is mapped with
the nearest neighbor rule

nn(x) = arg min
~wj∈C

d(x, ~wj) (2.16)

to its closest codeword that is called nearest neighbor of x. Thus, the approximation
consists of the codebook and the function nn that maps all input vectors to their
codeword (Linde et al., 1980).

Unfortunately, such compressions cause distortion as information of the “real”
inputs is lost. The example in Figure 2.2 points out advantages and drawbacks of
vector quantization: The vectors x1 and x2 are mapped to the same codeword i as
they are both in the region R(i). The codeword i is obviously a good estimation
for x1 as the distance d(x1, ~wi) is small and thus, the distortion is neglectable. The
vector x2 on the other hand has a much larger distance to i and, although being
closer to i than to any other codeword, it is also very close to the border of the
neighboring codeword j. Thus, the distortion caused by this vector is much larger.

Usually, a codebook C should minimize the overall squared quantization error
for a set of datapoints D:

E(D,C) =
∑
x∈D

d(x,nn(x))2 (2.17)

3 In the following we will use the term “codeword i” to refer to the vector ~wi.
4 Throughout this work, we will use the term region to refer to all positions that are closer to

the center (e.g. the codeword) of this region than to any other center even though the polytope
will not be flat for state spaces with more than two dimensions.

25

Chapter 2 Background

vector x1

codeword wi

vector x2

codeword wj

voronoi region

Figure 2.2: Example codebook consisting of six codewords (•) together with two sample
vectors x1, x2 (×) from the input space. The lines indicate the borders of the induced Voronoi
regions defined by the codewords.

The goal of a useful quantization is to distribute the codewords in a way that the
overall quantization error is minimized. Unfortunately, this is often made difficult by
the distribution of the input data: For every distribution of the input data several
optimal quantizer layouts may exist. Usually, the distribution is unknown and thus,
an approximation of the optimal codebook has to be computed. One widely used
approach is the LBG algorithm (Linde et al., 1980) that is named after its inventors.
However, this approach is computationally expensive as it requires several iterations
over a set of training vectors. The following section presents an approach that
iteratively learns the centers of a Voronoi quantizer.

2.3.2 Core Idea of Growing Neural Gas

The growing neural gas (GNG) algorithm (Fritzke, 1994b) is an unsupervised learning
approach which employs a network of interconnected units. These units are called
neurons and are successively inserted in an initially small network according to samples
from the input space. Additionally, existing neurons are moved to better match the
distribution from which the input data is sampled. Each neuron n is assigned a
reference vector ~wn ∈ Rd that resembles—in the here considered application—the
codewords described before, and a local error variable error(n). The goal of GNG
is to place neurons in areas of the input space where most data can be expected to
minimize the quantization error.

The GNG approach is based upon three principles (Fritzke, 1998):
1. The information accumulated in error(n) respects the overall optimization goal.
2. The error measure is chosen such that the insertion of a new neuron decreases

the error in its proximity.
3. The largest decrease in the error can be expected if the new neuron is inserted

in a region with maximal local error.
The general approach of GNG is as follows: It starts with a minimal network

consisting of two randomly positioned neurons and iteratively it adds new neurons
in areas where the greatest reduction of the distortion can be expected.

26

2.3 Growing Neural Gas for Vector Quantization

n1

n2

Figure 2.3: The neuron n1 on the right (red) has a high error value as it has been the
nearest neuron for many inputs of which some have a relatively large distance to the neuron.

In each step of training, a randomly chosen vector x from the input space
is presented to the network and the neurons n1 = nn(x) with the nearest and
n2 = nn2(x) with the second nearest reference vector are computed:

nn(x) = arg min
n∈Nt

d(x, n) (2.18)

nn2(x) = arg min
n∈Nt\{nn(x)}

d(x, n) (2.19)

where Nt is the current set of neurons. Note, that we often talk about a neuron n but
depict the neurons reference vector ~wn as this is its position. Additionally, we use
the notation d(x, n) to refer to the distance between some vector x and the reference
vector of neuron n, i.e. d(x, n) := d(x, ~wn).

Obviously, nn resembles the nearest neighbor rule from Equation (2.16) and nn2
can be considered as a second application of the nearest neighbor rule that ignores
nn(x). The neurons n1 = nn(x) and n2 = nn2(x) are called nearest and second
nearest neurons to x. This notion of nearest and second nearest neuron is in terms
of the similarity measure (e.g. based on the Euclidean distance) in the state space
while the terms neighbors and neighborhood are defined over the topology induced
by the connections of the neurons in the growing neural gas.

2.3.3 Error Measure

As mentioned before, each neuron is assigned a variable error(n) that accumulates
local error information for n’s region. This error is used by the GNG approach to
detect regions that have to be refined by inserting additional neurons into the network.
This error has to respect the optimization goal and it shall be locally reducible by
adding a new neuron in that region (Fritzke, 1996). The concrete design of the error
measure depends on the purpose of the growing neural gas: For the here employed
vector quantization, the quantization error (cf Equation (2.17)) is most appropriate
while for classification or entropy maximization other measures should be considered
(Fritzke, 1996).

The error can become especially high if e.g. a neuron n “is responsible” for a
large portion (either by size of the space or by the number of samples) of the input
space. Then again, input vectors may have a large distance to its closest neuron,
which introduces a large distortion, too. To respect this, the error variable of the

27

Chapter 2 Background

nearest neuron is increased by the squared distance between x and n1’s reference
vector to incorporate the distortion caused by the recent sample:

∆error(n1) = d(x, n1)2 .

Regions with larger error values can then be easily identified and relieved by the
insertion of a new neuron. For example, neuron n1 (red) in Figure 2.3 has a much
larger error value than neuron n2 as it has been the nearest neuron n1 for more input
vectors and some of them have a relatively large distance to it. Thus the distortion
in this region is large which results in a large error value.

The neurons’ error values endure over several training cycles and “memorize”
where errors occur. To emphasize recent errors, after each training step all error
values are multiplied with a factor β ∈ (0, 1) to obtain an exponential decay.

2.3.4 Neighborhood Connections

If the two nearest neurons n1 and n2 to a sample x are not connected yet, a
neighborhood connection is established and n1 and n2 become topological neighbors.
Each connection is an undirected edge {nu, nv} that is equipped with an age to
remove outdated connections. If the nearest neurons to the current sample are already
connected (i.e. they were the nearest neighbors to a sample presented before), the
age of that connection is reset to zero. By way of illustration one can think of a
decreasing strength for each connection that is renewed every time the adjacent
neurons are the closest neurons to an input sample.

These connections form the edges of the induced Delaunay triangulation that is
the dual graph to the Voronoi tesselation: In this triangulation, every pair of nodes
(here neurons) that have neighboring regions is connected with an edge. In the GNG
approach, these connections are established during learning and thus only consider
the layout present at the time of creation. Over time, regions that were neighboring
can of course become separated by the adaptation of the network (cf. Section 2.3.5).
In fact, the induced Delaunay triangulation in the GNG is a slowly moving target
(Fritzke, 1994b).

A connection between two neurons implies that these two neurons had the closest
and the second closest distance to a sample during learning. Thus, their respective
regions were neighboring at the time the connection was created. As the neurons
are moved during learning and additional neurons are inserted into the network, the
layout of the regions changes. To consider this, the ages of the connections is used: If
the age of a connection {nu, nv} exceeds the predefined maximal age this is evidence,
that the layout of the network has changed in a way that the respective edge is no
longer part of the Delaunay triangulation. These overage connections are removed
which can cause isolated neurons that are removed as well. Note, that it is always
assured that at least two neurons remain in the network.

The approach to handle the aging is as follows: In every training step, the age of
all connections emanating from the nearest neuron n1 is increased while the age of
the connections between n1 and n2 is reset to zero. Thus, every time, two neurons are
the nearest and the second nearest neurons to one sample, the connection between
them is renewed while all other edges are aged.

28

2.3 Growing Neural Gas for Vector Quantization

10

1

1

3

1

5

2

3

49

1

nu
nv

nz

Figure 2.4: Layout of a network with six neurons (•), solid lines depicting neighborhood
connections, and dotted lines being the borders of the Voronoi regions. The numbers labeling
the connections are the ages. It can be seen, that the connection between nu and nv has a
high age: Thus, the two neurons’ regions were neighboring at some point in time (i.e. they
were the nearest and the second nearest neuron to at least one sample) but due to changes
in the layout the regions are no longer neighboring. Thus, the connections between nu and
nv will be deleted soon.

Figure 2.4 shows an example of how the connections’ ages are used to detect
outdated edges: The regions of the neurons nu and nv were the nearest and second
nearest neighbors to some input. Now, after refinement and movement, the region
R(nz) lies in between. The age of the edge {nu, nv} is increased every time nu = nn(x)
is the nearest neuron to an input x while nv is not the second nearest neuron (or
vice versa). Thus, the age of this edge is never reset to zero and after agemax training
rounds in which exactly one neuron of nu and nv was the nearest neuron to some
input x, the edge is removed.

2.3.5 Adaptation of the Network

The idea of the adaption that moves the nearest neuron and all of its topological
neighbors towards the current sample is to position the neurons in areas of the input
space from which data can be expected. Neurons in those “producing” subspaces
help to reduce the distortion and thus to minimize the quantization error. This is
especially useful in high-dimensional spaces in which the data only comes from a
low-dimensional subspace.

The movement is carried out by moving the reference vector of the nearest
neuron n1 towards the sample x by moving it by

∆~wn1 = εb(x− ~wn1) . (2.20)

Furthermore, the reference vectors of all neighbors j (defined by the neighborhood
connections) of n1 are moved by

∆~wj = εn(x− ~wj) (2.21)

towards x with movement strengths 0 ≤ εn � εb ≤ 1. These movements provide an
adaptation towards the samples from the input space as can be seen in Figure 2.5.

29

Chapter 2 Background

x

n1

n2

nj

nj′

6 8

(a)

x

n1

n2

nj

nj′
nnew
j′

nnew
j

nnew
1

(b)

x

n2

nj′

nj

n11

7 9

(c)

Figure 2.5: Example of the movement phase: In (a), the nearest and the second nearest
neuron n1 = nn(x) and n2 = nn2(x) to x are determined. The solid lines are the neighborhood
connections with their respective age. After this, the nearest neuron n1 and all of its neighbors
nj and nj′ are moved towards the input vector x by using Equation (2.20) and Equation (2.21).
The dotted lines in (b) are the direct connections between the neurons and the sample x.
The new positions for the neurons are depicted by a square on this line. In (c), the final
layout of this area is shown: The neurons n1 and n2 are now connected by a neighborhood
connection and the ages of all connections are increased.

The above mentioned movement of neurons is only one part of the network’s
adaptation to the distribution of the input space. The second and even bigger portion
is caused by inserting new neurons in areas where the distortion is high. These
inserted neurons interpolate their positions from existing neurons and acquire a
portion of the error value in the respective area.

Every λinsert ’th step, a new neuron is added in a region with maximal distor-
tion, i.e. the new neuron n+ is added halfway between the neuron nq with largest
accumulated error and the neuron nf with nf the largest accumulated error in nq’s
neighborhood. The insertion procedure is as follows (depicted in Figure 2.6):

1. The neuron nq with the largest accumulated error is selected. This neuron is
the center of the region R(~wq) with maximal distortion (cf. Figure 2.6(a)).

2. All of nq’s topological neighbors are inspected and the neighbor nf with the
largest accumulated among them is selected (cf. Figure 2.6(b)).

3. A new neuron n+ is created and positioned halfway between nq and nf (cf.
Figure 2.6(c)):

~wn+ = ~wq + ~wf
2 . (2.22)

4. The neighborhood connection between nq and nf is removed. Simultaneously,
the neuron n+ is connected to nq and nf , i.e. the connections {n+, nq} and
{n+, nf} are established (cf. Figure 2.6(d)).

The newly inserted neuron n+ will relieve nq and nf because a portion of the input
will now be mapped to n+. Thus the errors of nq and nf is decreased by a factor
α. This increases the probability that the next insertion will take place in another
region (Fritzke, 1996). The error of the new neuron is then initialized with nq’s new
error value.

The motivation behind the insertion is the following: Every neuron accumulates
the quantization error for all samples in its region. Thus, the sum of all error variables

30

2.3 Growing Neural Gas for Vector Quantization

nq

(a)

nq

nf

(b)

nq

nf
n+

(c)

nq

nf
n+

(d)

Figure 2.6: In this example, the crosses are samples and the solid and dashed lines are
neighborhood connections. The dotted lines in (a) indicate the Voronoi borders for the
regions of the left and the right neurons (•) and illustrate which samples are assigned to
which neuron. For the insertion procedure, the left neuron nq is selected because it has the
highest error value in this example (a). The neuron nf has the highest error value among
nq’s neighbors (b). The high error values for both nq and nf are particularly caused by the
group of samples in the bottom as the distances to their respective reference vectors are
relatively large. In (c), the new neuron n+ is placed halfway between nq and nf . Finally, the
connection between nq and nf is removed and new connections between n+ and nq as well
as between n+ and nf are established (d).

is the quantization error for all samples seen so far (except for the reduction by β). If
a new neuron is inserted, the overall quantization error is prone to decrease. Without
knowledge of the distribution of the input space, the most promising position is in
close proximity of the neuron with the highest error (Fritzke, 1998).

2.3.6 Growing Neural Gas Algorithm

Algorithm 2 shows the complete growing neural gas approach. Note, that the pseudo
code is organized such that it is explanatory and thus, the performance could clearly
be improved by combining the loops.

31

Chapter 2 Background

Algorithm 2: GNG (Fritzke, 1994b)
1 create two neurons na and nb with random positions ~wa, ~wb ∈ Rd
2 i← 0 // initialize counter for training rounds
3 repeat
4 generate random sample x from the input space
5 compute nearest n1 = nn(x) and second nearest neuron n2 = nn2(x) to x

/* update error of nearest neuron n1 */
6 error(n1)← error(n1) + d(x, n1)2

/* move nearest neuron and its neighbors */
7 ~wn1 ← ~wn1 + εb(x− ~wn1)
8 foreach neighbor j of n1 do
9 ~wj ← ~wj + εn(x− ~wj)

/* create or reset neighborhood connection */
10 if n1 and n2 are connected then
11 set age of connection {n1, n2} to zero
12 else
13 create new connection {n1, n2}

/* aging / removal of connections emanating from n1 */
14 foreach neighbor j of n1 do
15 increment age of connection {n1, j}
16 if age of {n1, j} is larger than threshold agemax then
17 remove connection {n1, j}
18 remove possible isolated neurons if at least two neurons remain

/* insertion of new neuron */
19 if i mod λinsert ≡ 0 then /* every λinsert training round */
20 select neuron nq with maximal error
21 select neuron nf that has the maximal error among nq’s neighbors
22 insert new neuron n+ halfway between nq and nf :

~wn+ = ~wq + ~wf
2

23 remove connection {nq, nf} between nq and nf
24 connect n+ with nq and nf
25 error(nq)← α · error(nq)
26 error(nf)← α · error(nf)
27 error(n+)← error(nq)

/* error decay */
28 foreach neuron n ∈ Nt do
29 error(n)← β · error(n)
30 i← i+ 1 // increase counter for training rounds
31 until stopping criterion is fulfilled

32

2.3 Growing Neural Gas for Vector Quantization

2.3.7 Concluding Remarks

Using the reference vectors of all neurons as codewords, GNG builds a Voronoi
quantizer. The movement and the insertion of the neurons provides an adaptation
of the nearest neuron and its neighbors to the underlying input space with a fixed
intensity. The algorithm is executed until some convergence criterion is met (e.g. size
restriction, a quality threshold, or maximal number of iterations).

All parameters used in this approach are constant over time and thus allow a
continuous adaptation to the input space. In fact, there are five parameters necessary
for the GNG approach:
Movement The parameters εb and εn control the movement of the nearest neuron

and its neighbors. Thus, these values influence the strength of the adaptation
to the currently presented sample.

Insertion Delay λinsert is the periodicity in which new neurons are inserted into the
network. If its value is to high, insertions for rare classes may be prohibited
(Heinke and Hamker, 1998).

Maximal Age The maximal age of connections agemax determines how fast connec-
tions are removed which has an influence on the currency of the topology.

Error Decay β is used to highlight more recent errors and thus, its value determines
how fast the impact of errors diminishes.

These parameters are well investigated and it turned out that GNG is relatively
insensitive to their values (Heinke and Hamker, 1998).

The growing neural gas approach relies on two earlier presented works: Kohonen
(1982) introduced the Self Organizing Feature Map that computes a usually two-
dimensional representation of a given input space with an arbitrary dimensionality and
thus usually incorporates a dimensionality reduction while Martinetz and Schulten
(1991) created a vector quantization by using units with the same dimensionality as
the input space.

The parameters in the neural gas approach (Martinetz and Schulten, 1991) are
decreased over time, which on the one hand leads to a stabilization of the network but
on the other hand prohibits a continual execution of the learning algorithm. In GNG
the network is able to grow by adding new neurons or to shrink by removing isolated
neurons, the size of the network does not have to be predefined as for example in
the neural gas (Martinetz and Schulten, 1991) and neither size nor topology has
to be fixed beforehand in contrast to self-organizing maps (Kohonen, 1982). Thus,
no knowledge about the input space despite the dimensionality is needed. During
learning, the network computed by GNG is always a good approximation of the input
space while Martinetz and Schulten’s neural gas has intermediate states in which
the approximation is relatively poor due to unevenly distributed centers and a high
number of redundant connections (Fritzke, 1997).

33

3
Related Work

This chapter gives a short introduction to approaches that are to some extend
similar to the work presented in this thesis. Section 3.1 reviews works that deal
with computational methods for shepherding tasks and in Section 3.2 we compare
the approaches. Section 3.3 surveys approaches that obtained generalization by
aggregating states or by approximating the value functions of the reinforcement
learning agent. We conclude this chapter in Section 3.4 where we categorize the
mentioned approaches and contrast them to the algorithms developed in this thesis.

3.1 Shepherding Approaches

We here review related work on algorithmic or machine learning solutions for shep-
herding or shepherding-related tasks. Unfortunately, only a small amount of such
literature exists. For overviews of the biological background of shepherding or possible
applications of such approaches we refer to Section 4.2 or Section 4.1, respectively.

The first investigation of learning shepherd behaviors was performed by Schultz
et al. (1996). There, the authors use a genetic algorithm to learn rules in a simulator
that were later implemented in a real robot. This dog robot had to drive sheep-robots
with a fixed behavior into a predefined area. The sheep initially wander around
randomly until the dog comes into sight at which point the sheep switched to a
fleeing behavior and tried to get away from the approaching dog. The dog-robot had
several sensors that captured its orientation and its distance to the target as well
as to the sheep. Additionally, it had information about the orientation of the sheep.
These values were matched against the rules which commanded the dog to move or
adjust its orientation by turning.

Vaughan et al. (1998) presented a potential field based approach to let a robot
gather a group of ducks (whose herding behavior can be considered similar to that of
sheep) in a target area. This approach was evaluated in simulation and transferred
to a mobile robot. The shepherding robot had access to information of an overhead
camera that overlooked the complete scene and thus, the robot had (nearly) perfect

35

Chapter 3 Related Work

knowledge of its position, the positions of the ducks as well as the position of the
target. The potential field algorithm used three forces to compute the movement of
the shepherd:

1. An attraction of the shepherd to the center (i.e. their average position) of the
flock with a magnitude proportional to the distance in between.

2. A repulsion of the shepherd from the center of the flock to prevent collisions.
The magnitude of this force was proportional to the inverse square of the
distance.

3. A repulsion of the shepherd from the target with constant magnitude.
These forces lead to a minimum behind the flock in relation to the target and thus,
the shepherd tends to move to this point. This movement drives the flock away from
the shepherd and towards the target. Additionally, it is assured that the shepherd
does not crash into walls.

Sigaud and Gérard (2000) used Learning Classifier Systems (LCS) in the same
task as Vaughan et al. (1998) with three shepherds and six ducks. The authors
manually designed features to describe situations of the task: These features captured
e.g. the positioning of the shepherds itself (e.g. “isOnWay”), information about other
shepherds (e.g. “nobodyBehindFlock”), as well as their orientation to the ducks (e.g.
“isBehindFlock”) and the target (e.g. “isAtTarget”). Additionally, high-level actions
like “go behind the flock” or “drive closest duck to flock” were implemented. LCS
used this expert knowledge and learned a mapping between features and actions to
steer the flock to the target.

Potter et al. (2001) introduced a scenario with up to three shepherds, that had
to drive one sheep into a target area. The sheep followed a fixed strategy that kept it
away from other agents and additionally let it avoid the target and instead trying to
flee to the open side of the environment. Optionally, a fox was introduced that also
followed a fixed behavior and tried to kill the sheep. The behavior of the shepherds
were implemented with neural networks whose weights were evolved with a genetic
algorithm. The authors investigated homogeneous (i.e. all shepherds used the same
network) and heterogeneous (i.e. each agent learned a different network) behaviors of
the shepherds and observed that in the heterogeneous case one shepherd learned to
guard the sheep by blocking the fox. Features for the dog(s) were derived in relation
to the sheep; they included the sheep’s orientation and distance to the target as well
as to the dog(s). From these values, the neural network determined the translation
and the bearing of the shepherd.

Most recently, Gomes et al. (2015) applied cooperative coevolution algorithms
(CCEAs) in the same task as Potter et al. (2001). CCEAs allow the evolution of
a heterogeneous set of agent behaviors in which each agent develops a specialized
behavior. To improve the scalability of CCEAs, Gomes et al. propose a hybrid
approach Hyb-CCEA in which agents that behave similar share a controller. They
argue that their approach is able to compute solutions with similar performances
more efficiently than standard CCEAs and that this gain is higher with growing
numbers of agents.

Lien et al. (2004) presented several strategies to approach and steer a flock of
sheep with one shepherding agent. They argued that a side-to-side motion of the
shepherd—i.e. moving from left to right and back while approaching the flock—is

36

3.2 Discussion of Shepherding Tasks and Approaches

most powerful. Additionally, the agent stays outside the bounding box of the flock to
avoid too much disturbance. The authors mention that a similar strategy is actually
used by Border Collies. One benefit of this strategy is that in addition to steering
the flock the shepherd compresses the flock structure. Lien et al. (2009) extended
the approach to include human interaction with the shepherd.

Strömbom et al. (2014) implemented a heuristic shepherding algorithm to work
on agents that are modeled as particle model. The sheep agents try to remain their
flocking structure while avoiding to be too close to the shepherd. The shepherd’s task
is to collect all sheep and drive the herd to the lower left corner of the environment.
To do so, the shepherd-agent uses three rules:

1. If the shepherding agent is closer than a given “interaction distance” to any
sheep-agent, it remains on its position to avoid disturbance.

2. If all sheep agents are within a given radius around their center of mass—i.e.
the flock structure is sufficiently dense—the shepherding agent drives the sheep
towards the target by approaching them from a position behind the flock in
relation to the target.

3. If at least one sheep-agent is farther apart, the shepherding agent starts
collecting these agents to improve the flocking structure.

These rules lead to a behavior that is similar to the hand-coded strategies reported
by Lien et al. (2004): The shepherd uses a side-to-side movement to collect separated
sheep and otherwise drives the sheep towards the target. Strömbom et al. compared
results of their approach with empirical data derived from an actual sheep dog and
note that both behaviors are similar.

A different approach to solve the shepherding task was followed by Razali et
al. (2012) who presented an algorithm that used a memory-based artificial immune
system (an approach that share some commodities with neural networks) to optimize
the control for the shepherding agents. An also slightly different task was investigated
by Çelikkanat and Sahin (2010): There, some members of the flock that should
be controlled were informed about the intended direction. These individuals could
not be identified as leaders but helped “anonymously” steer the flock into the right
direction.

Thakkar and Wesley (2005) described an approach where a robot supported
a human in a shepherding task. Although only restricted to herding robots, this
work is similar to (Lien and Pratt, 2009) as both approaches incorporate human
interaction into the process. Thakkar and Wesley used gestures to communicate with
the shepherding robot while Lien et al. used laser pointers.

3.2 Discussion of Shepherding Tasks and Approaches

Here, we relate our work to the approaches described before.
The shepherding task considered in Chapter 4 does not include informed sheep

as in the approach presented by Çelikkanat and Sahin (2010) and does not rely on
human assistance as in the works of Lien et al. (2009) or Thakkar and Wesley (2005).

Schultz et al. (1996), Sigaud and Gérard (2000), and Potter et al. (2001) also used
learning approaches to solve several instantiations of a shepherding task but none
of these works compared their performance with an optimal solution. These works

37

Chapter 3 Related Work

used various learning approaches but neglect the usage of reinforcement learning—a
learning scheme that is in our opinion well suited for these kinds of tasks. Another
problem may occur as Sigaud and Gérard present hand-coded high-level actions that
highly depend on the expertise of the designer.

Vaughan et al. (1998) and Razali et al. (2012) applied different optimization
approaches to solve the shepherding task. Especially Vaughan et al.’s idea of computing
a solution with a vector field is very interesting although its performance depends on
an observing camera. Furthermore, neither approach offers a means of rating how
good the computed solution actually is.

The hand-coded strategies in the works of Lien et al. (2004) and Strömbom et
al. (2014) appear to be well suitable and the authors argue that real shepherding
dogs use similar strategies. Nevertheless, these works omit the comparison with an
optimal solution, too.

In this thesis, we present an algorithm that computes a solution that is within
proven bounds around the optimal solution and we can thus not only make claims
about the quality of the algorithm’s solution but also compare the learned strategies
to this baseline. This is a valuable contribution to the interesting field of learning
and computing shepherding strategies.

Furthermore, the shepherding task introduced in Chapter 4 can be adjusted to
match the formulations of Schulz et al. (1996), Vaughan et al. (1998), Lien et al.
(2004) and with the slight extension of including a predator even to that of Potter et
al. (2001).

3.3 Approximations for Reinforcement Learning

This section gives an overview of other approaches that use various machine learning
methods to obtain approximation in reinforcement learning. We describe their core
ideas and point out major differences to the approaches proposed in this thesis.
Table 3.1 presents a short overview of the approximation approaches described
hereafter. We here mostly focus on approaches, that aggregate states adaptively or
that directly approximate the value function of the reinforcement learning task. We
refer the reader e.g. to (van Otterlo, 2009) or (Buşoniu et al., 2011a) for even broader
overviews of approximations in reinforcement learning.

3.3.1 State Aggregation Approaches

Many state aggregating methods are built upon vector quantization (e.g. clustering or
more generally groups of states that are somehow “similar”). Bertsekas and Castañon
(1989) introduced an adaptive approach that groups states with similar magnitude
of their Bellman residuals. Since these residuals are prone to change over the time of
learning, the state groups may be readjusted repeatedly.

Smith (2002) used two self-organizing maps to deal with continuous state and
action spaces. This setup results in a discretization of both spaces so that standard
Q-Learning could be applied: The neural units approximating the continuous state
vector are interpreted as discrete states and the units representing the action space
are treated as discrete actions. Thus, a tabular implementation of Q-Learning can
be applied. One general drawback of using self-organizing maps may be that the

38

3.3 Approximations for Reinforcement Learning

dimensionality and the number of neurons is predefined and does not change during
learning. Without knowledge of the environment, these values have to be determined
experimentally in order to cover the state space sufficiently.

The approach of Gomes et al. (Gomes et al., 2015) is similar in spirit: They
try to share agent controllers among sub-teams of homogenous agents inside a
group of heterogeneous agents. Thus, they perform a structural approximation on
the system level by grouping agents that behave similar in one group while the
approaches presented in this thesis perform approximations on the level of agents by
approximating knowledge inside one agent.

Lee and Lau (2004) used an adaptive vector quantizer to partition the state
space while the agent is learning. The resulting partitioning is based on proximity
in the state space and it respects similarity of Q-vectors computed by Q-Learning.
The approximation is refined if the reward accumulated in one region is exceeding
some threshold and a predefined minimal distance to all neighboring centers is kept.
If after an episode ends two cells are nearest neighbors and both Q-vectors are more
similar than a given threshold, they are merged. In this approach, the centers of the
created regions are not able to move and domain knowledge especially about the
values and the shape of the reward function is required to determine useful values
for the thresholds used. Similar to the GNG-Q approach described in Chapter 7, all
states in one region are treated identically. GNG-Q and (to some degree) I-GNG-Q
(introduced in Chapter 8) also respect similarity in the state and action space; but
both approaches do this by counting changes in the local policy instead of predefined
thresholds. Additionally, GNG-Q and I-GNG-Q adapt their approximation to the
state space while the centers in the work of Lee and Lau (2004) are fixed. One
problem with Lee et al.’s approach may be the unpredictable effect of the merging
operation on all surrounding regions.

Fernández and Borrajo (2000) presented the VQQL model that consists of the
generalized Lloyd algorithm for vector quantization and Q-Learning. It uses vector
quantization to obtain a set of codebook vectors that represent the state space.
In a subsequent step, Q-Learning is used to learn a policy based on this reduced
representation. The key difference to the GNG-Q and I-GNG-Q approaches is that
Fernández and Borrajo construct the state-space representation independently from
learning.

A different field of aggregation methods use space partitioning data structures
to split the state space into portions of states that are treated equally. Chapman and
Kaelbling (1991) introduced the G-algorithm that groups states with the same reward
and identical Q-values with the use of a decision tree. It starts with one abstract
state for the complete state space and recursively splits all abstract states wherever
incompatibilities arise. A similar approach was proposed by McCallum (1995): The
Utile Suffix Memory also uses a decision tree and aims at finding groups of states
with identical optimal actions. It does so by performing a Kolmogorov-Smirnov test
to compare the distributions of future rewards for the same action performed in
different path through the tree. These approaches were extended by Uther and Veloso
(1998) to also work in reinforcement learning tasks with continuous state spaces.
Pyeatt and Howe (1998) also introduced a means of dealing with continuous state
spaces to the G-algorithm and additionally investigated other criteria of when and

39

Chapter 3 Related Work

where to split.
Often, tile coding approaches are used to deal with large or continuous state

spaces. Figuratively, overlapping tilings are laid over the state space and each state
activates all tiles, it appears in. These activations then form a new description of the
state. Sherstov and Stone (2005) investigated the influence of parameter choices for
tile coding and pointed out the need of adjusting these parameter values over time.
Following these results, several adaptive tile coding approaches were proposed.

Adaptive Tile Coding (ATC) (Whiteson et al., 2007) is an approach that learns
a policy in parallel with an appropriate state-space abstraction. Starting with a very
coarse approximation consisting of just one tile, it is refined based on information
(i.e. the Bellman error) from learning (model based dynamic programming) until
the task can be learned adequately on this piecewise constant approximation. The
refinement operation splits one tile evenly in half, which will often lead to problems
as it may happen that many splits are needed until incompatible states are separated.
Obviously, this might result in a too fine approximation in some parts of the state
space. Whiteson et al. (2007) present two criteria for selecting the tile that should be
split: One refines the approximation to obtain a finer policy; the other refines areas
where the value function changes rapidly.

Lin and Wright (2010) present evolutionary tile coding (EvoTC), a model free
approach that uses a genetic algorithm to decide where and when tiles should be
split. Contrary to the ATC approach of Whiteson et al. (2007), the approach of Lin
and Wright (2010) is able to split tiles unevenly and thus avoids some unnecessary
splits. However, the splits remain parallel. The genetic algorithm optimizes the
performance of the RL algorithm (e.g. SARSA) and uses this performance to evaluate
the chromosomes’ fitness. New tilings are created by the mutation operation that
affect the structure and the resolution of tilings. A drawback of this algorithm may
be that the RL algorithm has to be executed for each chromosome and that the
approximation is not computed in parallel with the learning of the RL task as it is
done in GNG-Q and I-GNG-Q.

A different direction is taken by model minimization approaches that usually
work on the MDP model itself and are thus generally applied prior to learning the
reinforcement learning task. The reduced model can then be solved with standard re-
inforcement learning algorithms. Dean and Givan (1997) used stochastic bi-simulation
to create the coarsest refinement of the state space into stable blocks of states. Givan
et al. (2003) extended the work of Dean and Givan to handle stochastic transition
and reward functions. A similar approach was presented by Ranvindran and Barto
(2002) who proposed a model minimization method that exploits symmetry and
redundancy of the MDP to obtain a more compact representation. These approaches
preserve the actual state transitions and the corresponding rewards.

3.3.2 Function Approximation Approaches

While the approaches discussed until now dealt with finding a suitable aggregation
of somehow compatible states, we now focus on methods that strive to approximate
the value function(s) of the reinforcement learning agent directly.

Ormoneit and Sen (2002) present a kernel-based approximation for reinforcement
learning with value iteration in continuous state spaces. The model based approach

40

3.3 Approximations for Reinforcement Learning

interpolates the action-value function by a sum of weighted kernels. The probability
that it converges to the true action-value function increases if the kernel bandwidths
are decreased appropriately during learning and the number of samples increases.
Drawbacks of this approach include the fact that the learning is offline and a set of
sample trajectories in the MDP is needed. Furthermore, no exploration is considered.

Šter and Dobnikar (2003) use a neural network constructed of radial basis
functions to approximate the action-value function of Q-Learning. The adaptive
radial basis decomposition (ARBD) approach starts with medium sized (regarding the
width) basis functions and finds areas, where they have to be replaced by functions
with smaller widths. Two processes control this refinement: The first process adds
new basis functions when the current state is not sufficiently covered, the temporal
difference error is high and a given minimal resolution is respected. The second
process employs a vector quantization algorithm that approximates the temporal
difference error distribution. It uses conditions on this error to decide when to
refine the approximation by placing new basis functions on the centers of the vector
quantization. Similar to the GNG-Q and I-GNG-Q approach, vector quantization
is employed to compute centers for the approximation. The decision to refine the
approximation in (Šter and Dobnikar, 2003) is based on a predefined threshold
and the approximation has to adhere to a given minimal resolution. While Šter
and Dobnikar (2003) base the quantization on the temporal difference error, the
quantization in GNG-Q and I-GNG-Q is based on the similarity in the state-action
space.

Menache et al. (2005) present two model free methods to adjust the parameters
of predefined basis functions during learning with a fixed control policy: The first
uses gradient descent optimization while the second uses cross-entropy optimization.
Both approaches optimize the Bellman error and approximate the value function.
The approaches consists of two interleaved phases: One phase updates the behavior of
the reinforcement learning agent using LSTD(λ) while all RBF-network parameters
were fixed while the second phase updates the parameters of all RBFs. A difference to
I-GNG-Q is that in the adjustment step of (Menache et al., 2005) all basis functions
are changed while I-GNG-Q only performs local adjustments.

Mahadevan (2005) introduced so-called proto-value functions, that are learned
by analyzing the structure of the state space. This approach models the MDP as a
graph and uses least-squares policy iteration to learn the agent’s policy. Here, the
learning is done by analyzing the topology of the state space instead of learning from
the rewards the agent receives.

In the work of Keller et al. (2006), a model based approach to construct a
linear approximation of the value function with basis functions is presented. This
approach builds on the work of Bertsekas and Castañon (1989) and uses neighborhood
component analysis together with dynamic programming to combine states which
have similar Bellman errors. The goal is to reduce the dimensionality of the state
space by placing basis function in those clusters of “similar” states.

In (da Motta Salles Barreto and Anderson, 2008), an approach to automatically
construct a RBF network similar to the work of Ormoneit and Sen (2002) is used to
approximate RL value functions. Its restricted gradient descent (RGD) method is
designed to reduce divergence of the approximation. The approach conservatively

41

Chapter 3 Related Work

adjusts the centers of the RBFs as well as their widths during learning with SARSA.
The basic idea is similar to I-GNG-Q but the criterion for the refinement is different.
Da Motta Salles Barreto and Anderson (2008) add a new basis function when the
activation of the most activated RBF is below a predefined threshold while I-GNG-Q
refines the region where the policy changed most frequently.

Buşoniu et al. (2011b) introduce a direct search approach to approximate a
policy for continuous state RL tasks. The presented algorithm computes a policy
that maximizes the empirical reward from on a representative set of start states
using the cross-entropy method. Each basis function of a predefined set is assigned
to one discrete action and these assignments as well as their shapes and locations
are adjusted during learning. Unfortunately, this approach requires a predefined set
of basis functions while I-GNG-Q starts with a very coarse approximation that is
refined whenever necessary.

Konidaris et al. (2011) approximate the value function of continuous environ-
ments with a method that employs Fourier series and SARSA. They compare their
approach empirically to various other basis function approaches and conclude that
its performance is similarly good. However, this approach seems to be rather runtime
consuming.

A slightly different direction was followed by Engel et al. (2003) who approxi-
mated the value function with a Bayesian probabilistic model defined over a Gaussian
prior. This approach was extended by Engel et al. (2005) to work with stochastic
state transitions.

Munos and Moore (2002) present a model-based approach for continuous state
RL tasks with continuous time. They approximate the state space with different kinds
of binary trees that are iteratively refined by splitting cells. In (Munos and Moore,
2002), different splitting criteria are investigated, ranging from local ones that are e.g.
based on the policy to global ones that respect the impact of one particular split on
surrounding cells. The MDP for each level of approximation is solved with dynamic
programming, which is computationally expensive. Furthermore, this approach works
only offline and needs the model of the RL task that should be solved. Munos and
Moore’s method may suffer from a too fine resolution as (Whiteson et al., 2007)
since both methods refine cells in a similar manner. The I-GNG-Q and the GNG-Q
approaches described in this thesis work online, i.e. at any given time during learning,
the agent can exploit knowledge gained so far.

Ratitch and Precup’s (2004) model free approach places Sparse Distributed
Memory units as centers for the approximation. The value of a state is then inter-
polated between the values of activated units. New units are added during learning
with SARSA if for the current state the number of activated nearby units is below
some threshold. In contrast to the approach presented here, Ratitch and Precup
need predefined thresholds and the units are not able to adapt to the distribution of
the state space by moving. If an adjustment of the approximation is needed, new
units are added and others are possibly deleted. Ratitch and Precup’s method is
partly similar to the approaches of e.g. Fernández and Borrajo (2000), Lee and Lau
(2004) or GNG-Q but in (Ratitch and Precup, 2004) and I-GNG-Q the values are
interpolated between different prototype states.

Ernst et al. (2005) follow a similar idea as Ormoneit and Sen (2002) and intro-

42

3.4 Discussion of Approximation Approaches

duced fitted Q-iteration, an approach that approximates the action-value function.
It uses a set of samples that reflect the agent’s experience within the environment.
By using this set of samples, the RL task is transformed into a number of supervised
learning tasks that are approached with several tree-based methods. The storage of
the samples for this approach may become an issue as the agent constantly interacts
with the environment.

Whiteson and Stone (2006) combine neuroevolutionary optimization with Q-
Learning to build an evolutionary function approximation: A population of candidate
neural networks is trained based on information from Q-Learning and crossover and
mutation operators are used to create new generations of hopefully fitter networks.
The value function is then modeled by the neural network. Although this approach
finds good approximations, it requires a rather long time for training.

Bradtke and Barto (1996) proposed to apply least-squares algorithms for tem-
poral difference approaches (LSTD) in reinforcement learning. These methods are
able to efficiently compute the value function for a given (fixed) policy. Lagoudakis
and Parr (2003) enhanced LSTD to allow the computation of a good policy with
the least-squares policy-iteration (LSPI) algorithm. Later, these approaches were
augmented with regularization to prevent over-fitting (Kolter and Ng, 2009).

3.4 Discussion of Approximation Approaches

The approximations from before can be classified and distinguished along several
dimensions. For this analysis we incorporate the following:
Different Ways of Refining the Approximation focuses on the method that is used

to alter the resolution of the approximation.
Layout and Shape of Abstract States compares whether the layouts of the abstract

state spaces are predetermined. Clearly, this dimension is only relevant for
state-space abstraction approaches.

Necessary Knowledge of the MDP Model points out if the approach makes use of
the reinforcement learning task’s MDP or if it is capable of learning from the
agent’s interaction with its environment.

Required Batches of Experience means that representative samples of an agent
interacting with the environment have to be recorded. This dimension states
whether the approach needs these information or if the agent learns “live” from
its own experiences.

Online vs. Offline Learning compares whether the agent can use its knowledge at
any time during training, with some delay, or only after training.

Needed Domain Knowledge measures how much domain knowledge of the designer
has to be incorporated in order to derive useful approximations.

Runtime compares the approaches regarding the overhead that is caused by the
approximation method.

3.4.1 Different Ways of Refining the Approximation

There are several ways of adapting the resolution of the approximation: Usually
methods start with a very coarse resolution (e.g. only consisting of one abstract

43

C
hapter

3
R

elated
W

ork

Table 3.1: Overview of related approaches

Approach Type of
approximation Online Used

RL method
Model

free

St
at
e
A
gg
re
ga
tio

n

IA-DP (Bertsekas and Castañon, 1989) piecewise constant no DP no
Neighbourhood Q-Learning(Smith, 2002) piecewise constant X Q-Learning X
VQQL (Fernández and Borrajo, 2000) piecewise constant no Q-Learning X

G-Algorithm (Chapman and Kaelbling, 1991) piecewise constant no Q-Learning X
Continuous G-Algorithm (Pyeatt and Howe, 1998) piecewise constant X Q-Learning X

U-Tree (McCallum, 1995) piecewise constant X DP learns approximation of model
Continuous U-Tree (Uther and Veloso, 1998) piecewise constant X DP learns approximation of model

TD-AVQ (Lee and Lau, 2004) piecewise constant X Q-Learning X

T
ile

C
od

in
g ATC (Whiteson et al., 2007) piecewise constant X DP no

EvoTC (Lin and Wright, 2010) piecewise constant no SARSA X

Fu
nc
tio

n
A
pp

ro
xi
m
at
io
n

Variable Resolution Discretization (Munos and Moore, 2002) piecewise linear no DP no
SDM RL (Ratitch and Precup, 2004) SDM X SARSA X
NEAT+Q (Whiteson and Stone, 2006) neural network X Q-Learning X

kernel based RL (Ormoneit and Sen, 2002) Kernel based no value iteration no
ARBD (Šter and Dobnikar, 2003) RBF X Q-Learning X

Menache et al. (Menache et al., 2005) RBF no LSTD(λ) X
RGD (da Motta Salles Barreto and Anderson, 2008) RBF X SARSA X

CE policy search (Buşoniu et al., 2011b) RBF X policy search X
Proto-Value (Mahadevan, 2005) Fourier no LSTDQ X

Fourier Basis (Konidaris et al., 2011) Fourier X SARSA X
GPTD (Engel et al., 2003, 2005) Gaussian X SARSA X

Fitted Q Iteration (Ernst et al., 2005) various no value iteration X
LARS-TD (Kolter and Ng, 2009) RBF no LSTD X

44

3.4 Discussion of Approximation Approaches

state) and based on different criteria this resolution is refined.
The approaches from (Munos and Moore, 2002) and (Whiteson et al., 2007)

both make use of the policy to determine areas that have to be refined. Munos and
Moore (2002) search for places where the policy changes by comparing the policy
derived from the original MDP with the approximated policy and Whiteson et al.
(2007) locate changes in the policy by computing the influence on the value function
for potential splits. The other tree-based approaches (Chapman and Kaelbling, 1991;
McCallum, 1995; Uther and Veloso, 1998; Pyeatt and Howe, 1998) use statistical
measures mostly on differences in the distributions of expected (future) rewards.

Lee and Lau (2004) refine the approximation if the reward accumulated in one
region is larger than a predefined threshold and a given minimal resolution is kept.
(Ratitch and Precup, 2004), (Šter and Dobnikar, 2003), and (da Motta Salles Barreto
and Anderson, 2008) use similar approaches to determine the time and place of a
refinement: Ratitch and Precup add a new element whenever less than a given number
of elements is activated while Barreto and Anderson refine the approximation if the
maximal activation of the network is below some threshold. Šter and Dobnikar add a
new unit each time the current temporal difference error is larger than a predefined
threshold and the activation of the network is below a different threshold.

Other approaches such as e.g. (Menache et al., 2005), (Whiteson and Stone,
2006), (Lin and Wright, 2010) implicitly refine the approximation without directly
using feedback from the learning agent. For example, the mutation operator of the
evolutionary algorithm that computes the weights for the neural network in Whiteson
and Stone’s approach is responsible for adding new neurons while Lin and Wright’s
approach directly implements the refinement of the tilings in the mutation operator.

In contrast, GNG-Q and I-GNG-Q count how often the action with the maximal
Q̂-value changes in order to determine when and where to refine the aggregation or
the approximation. This information can be achieved during learning by monitoring
the maximal policy of the agent while emphasizing more recent changes. To us
adapting the approximation to the input space by movements is more promising
than only placing centers in sparse regions and keeping their positions fixed as in the
work of Lee and Lau (2004).

3.4.2 Layout and Shape of Abstract States

The approaches (Whiteson et al., 2007) and (Lin and Wright, 2010) define abstract
states by borders that are always parallel. Nevertheless, both approaches differ in
the way of where tiles are split: Whiteson et al. always split the tiles in half while
Lin and Wright’s approach looks for the best place to split.

Tree-based approaches are usually also bound to orthogonal splits. Additionally,
approaches that split (abstract) states according to the relevance of one specific
dimension of the state space at a time as e.g. (Chapman and Kaelbling, 1991;
McCallum, 1995; Uther and Veloso, 1998; Pyeatt and Howe, 1998) are not able to
recognize the significance of feature combinations. Munos and Moore (2002) also
use tree structures to store the knowledge of the learning agent but use information
of the value function or the agent’s policy to decide on the need of refining the
approximation.

45

Chapter 3 Related Work

Approaches based on vector quantization on the other hand do not predetermine
the shape of abstract states: (Lee and Lau, 2004), (Fernández and Borrajo, 2008),
(Smith, 2002), and GNG-Q allow arbitrary layouts of the abstract states.

Clearly, hard-coded shapes of the abstract states may become problematic if
the predefined shape does not directly match the shape of irregularities in the actual
model, or when several splits are needed just to cover one particular feature of the
environment.

3.4.3 Necessary Knowledge of the MDP Model

Some approaches need access to the model of the reinforcement learning task. In
general, this includes the complete MDP with the transition function and the reward
function.

The model-minimization approaches (Dean and Givan, 1997; Givan et al., 2003;
Ravindran and Barto, 2002) clearly need the model that should be minimized which
restricts the applicability to tasks where this information is available. Undoubtedly,
this may allow to find even compacter approximations than approaches that do not
have access to the reinforcement learning task’s MDP.

McCallum’s (1995) and Uther and Veloso’s (1998) approaches perform dynamic
programming on approximations of the actual MDP model that is derived from
interaction with the environment. Other approaches that use dynamic programming
and are thus also dependent on access to the MDP include (Ormoneit and Sen, 2002),
(Munos and Moore, 2002), (Whiteson et al., 2007), and (Lin and Wright, 2010).

All other approaches mentioned in this section and especially the approaches
presented in this thesis (GNG-Q and I-GNG-Q) do not need the model of the
reinforcement learning task at hand.

Although such approaches usually perform well, the need for the complete model
of a reinforcement learning task is a rather tough assumption. Often such a model is
not available and agents that are able to work successfully even when faced with this
absence appear to be very powerful.

3.4.4 Required Batches of Experience

Another, somewhat less demanding requirement is the access to batches of experience:
This means that the learning agent gets data of possible interactions with the
environment including the states, the performed actions, the received rewards, and
the resulting state.

The difference to the approaches that learn an approximation of the model as
e.g. (McCallum, 1995; Uther and Veloso, 1998) is that those approaches collect data
during the agent’s interaction with the environment while the following approaches
need the data prior to learning. Similarly, Engel et al. (2003; 2005) rely on batches
of transitions that have been experienced by the agent before. The approach in
(Mahadevan, 2005) uses sampled trajectories to build an approximation of the state
space’s topology while Ernst et al. (2005) use a regression algorithm to induce the
action-value function from a set of training samples. Other sample-based approaches
include e.g. (Lagoudakis and Parr, 2003) or (Kolter and Ng, 2009).

46

3.4 Discussion of Approximation Approaches

A problem with learning from samples may be the increasing need for storage
to collect enough sample trajectories to allow successful learning. The approaches
presented in this thesis do not need to collect samples of the interaction with the
environment.

3.4.5 Online vs. Offline Learning

Online learning means that the learning of the task is done while the agent interacts
with the enclosing environment. Particularly, the agent can use the current state of
its knowledge at any time even though this knowledge may be not be very expressive
in the early stages of its interaction with the environment. Offline learning occurs if
the agent learns in advance.

The batch-based approaches mentioned before (e.g. (Lagoudakis and Parr, 2003)
or (Munos and Moore, 2002)) as well as the evolutionary tile-coding approach (Lin
and Wright, 2010) work offline. Additional approaches that are intended to work
offline include (Fernández and Borrajo, 2000), (Menache et al., 2005) or (Mahadevan,
2005).

Advantages of such offline approaches are the separation of the exploration from
the actual learning of the behavior (which improves the dealing with the exploration-
exploitation tradeoff) as well as a sometimes more efficient use of the experience.
The downside is that these approaches share the drawbacks in the previous section
(Required Batches of Experience).

Conversely, the other approaches reviewed in this chapter as well as GNG-Q
and I-GNG-Q refine the approximation in parallel with the RL algorithm and thus,
newly gained knowledge can directly be exploited in the learning process.

3.4.6 Needed Domain Knowledge

Some approaches need domain knowledge to function satisfying: For example, the
SOM-based approach by Smith (2002) needs a predefined dimension of the approxi-
mating network. Other approaches employ thresholds to refine the approximation
(e.g. (Ratitch and Precup, 2004), (Lee and Lau, 2004), or (da Motta Salles Barreto
and Anderson, 2008)). Lagoudakis and Parr (2003) used a predefined parametric
approximation whose parameters were estimated using a least squares method while
Ormoneit and Sen (2002) used a non-parametric kernel-based approximation. In
(Konidaris et al., 2011), the number and the order of the Fourier bases had to be
determined.

The tree-based approaches (McCallum, 1995; Uther and Veloso, 1998; Chapman
and Kaelbling, 1991; Pyeatt and Howe, 1998) that refine the state-space abstraction
based on thresholds for statistic tests rely on thresholds whose values influence the
layout of the approximation and thus the performance of the learning agent.

Since the performance of these approaches usually depends on appropriate values
for these thresholds, often deep domain knowledge and/or repeated executions of the
approaches are necessary.

Our GNG-Q approach only requires parameters that are well explored and
GNG turns out to be quite insensitive to its parameter values (Heinke and Hamker,
1998) which essentially abandons the requirement of knowledge on the RL task. The

47

Chapter 3 Related Work

I-GNG-Q approach additionally needs two parameters that affect the amount of
smoothing of the value function.

3.4.7 Runtime

The approaches (Munos and Moore, 2002; Lin and Wright, 2010) are computationally
expensive as both need to solve the RL task for several grades of approximation.
Especially, Lin and Wright’s (2010) approach uses the solution quality of the re-
inforcement learning task as fitness for the evolutionary algorithm which implies
solving the task for each individual. Ernst et al. (2005) employ numerous runs for
the regression algorithm that extrapolates the knowledge beyond the training set.
Similarly, Mahadevan’s (2005) approach contains one execution of LSTDQ for each
iteration of the RBF parameter improvement.

The G-Algorithm (Chapman and Kaelbling, 1991) removes knowledge every
time a state is split. This may result in several redundant computations for some
parts of the state space.

Although computing smoother approximations, the evaluation of exponential
or trigonometric functions (e.g. exp, cos, sin) is in general computationally more
expensive than piecewise constant approaches. This applies to all approaches that
rely on RBF or Fourier bases: (Šter and Dobnikar, 2003), (Menache et al., 2005),
(Mahadevan, 2005), (da Motta Salles Barreto and Anderson, 2008), (Buşoniu et al.,
2011b), (Konidaris et al., 2011), (Kolter and Ng, 2009).

The online state-aggregating approaches as e.g. (Lee and Lau, 2004) or the
GNG-Q approach developed in Chapter 7 do not need the computation of such
functions and they interleave the learning of the task with the adjustment of its
representation. Similarly, the I-GNG-Q approach in Chapter 8 learns online and uses
a much more performant base than the RBF approaches.

48

4
The Shepherding Task

This chapter introduces the Shepherding task in a multiagent system with two
different types of agents—sheep and dogs. The dogs’ goal is to drive the sheep to a
designated target area (cf. Figure 4.1). Practical applications of such shepherding
behaviors include—in addition to using robots to steer flocks of real animals as e.g.
investigated by Vaughan et al. (1998) or Evered et al. (2014)—evacuation tasks (Dyer
et al. (2008) found that large crowds of people show a similar behavior as herds of
animals) or swimming robots that encircle oil spills to improve the manual strategies
mentioned in (Fingas, 2002).

Although other works have already investigated similar shepherding tasks (see
e.g. (Vaughan et al., 1998) or (Lien et al., 2004)), existing work does not present a
theoretical analysis of the task as we present in Section 4.6.

The main results given in this chapter are the following:
• We formally define the Shepherding task in Section 4.3.
• We describe a (multi-)agent system for the Shepherding task and relate it to

existing taxonomies in Section 4.4.
• We carefully analyze the state-space complexity of the Shepherding task in
Section 4.6 and show that the size of the state space grows exponentially in
the number of dogs and sheep.

F

Figure 4.1: Example of a Shepherding instance with one dog, one sheep with a viewing
range of one, and one target (F). The dog enters the viewing range of the sheep that now has
three possible actions to maximize the distance to the dog. According to the model presented
in Section 4.5, it performs the action “forward” (relative to the dog).

49

Chapter 4 The Shepherding Task

In addition to the content mentioned before, Section 4.1 presents a motivation
and applications for our work while Section 4.7 concludes this chapter. Some of the
results presented here are partly based on previously published material (Baumann
and Kleine Büning, 2013).

4.1 Motivation

In recent years, the number of robots sold has steadily risen and an increasing
variety of services have been provided by robots (IFR Statistical Department, 2013).
Application areas include assembly (e.g. in the automotive industry), explosive
ordnance disposal (Kron et al., 2004), surveillance tasks (Parker and Touzet, 2000),
or service robots that e.g. autonomously vacuum the floor. For further applications
of (multi-)robot systems, we refer e.g. to (Parker, 2003).

In certain situations, robots have advantages over living beings, especially in
hazardous or inaccessible places, or in settings where the creatures are prone to be
hurt (Casper and Murphy, 2003). Due to the increasing number of tasks that could
be assigned to robots and the concludingly growing number of robots needed to
undertake these tasks the industry would immensely benefit from well-developed
strategies. We here consider a multiagent system to simulate multiple robots and their
tasks. This approach of developing strategies in a simulation and to possibly later
transfer the knowledge is often used in order to prevent the robots from exhaustion
(Michel, 2004).

In this work, we investigate a shepherding task, a task that is usually accom-
plished by shepherding dogs. The shepherding task is a type of manipulation planning
(Lien and Pratt, 2009) or group motion control (Harrison et al., 2010; Vo et al.,
2009), i.e. a group of units (the sheep) is manipulated by another group of units
(the shepherds or dogs) in order to fulfill a given task (e.g. reaching a predefined
target area). We model both the dogs and the sheep as agents to simulate several
behaviors and to investigate effective strategies. Our agents abstract real robots and
thus, the strategies discussed here are well adaptable to work on robots in the real
world. Although little work has been done to use robots to control a herd of sheep,
the results are encouraging: Vaughan et al. (2000) used real robots to control a group
of ducks, whose behavior is similar to that of sheep. In a more recent work, the flight
distance of sheep in response to a mobile robot was investigated and it turned out,
that the sheep got accustomed to it which allows for new ways of steering the sheep
(Evered et al., 2014).

But even apart from using robots in agriculture, strategies to control sheep have
manifold areas of important applications:

Evacuation tasks, i.e. leading people from dangerous places to safety could be
accomplished by previously placed robots that are activated in case of emergency
(Martiínez-García et al., 2005). Kenny et al. (2001) emphasized the need to better
understand crowds and their behaviors. Dyer et al. (2008) found that large crowds of
people show a behavior similar to those of herds of animals and thus, shepherding
strategies could be used to simulate the flow of units (animals or people) in a
building or an urban area to help architects in creating save setups (Kirkland and
Maciejewski, 2003). Additionally, those simulations could be used to organize and

50

4.2 Biological Background

improve evacuations or the responses to riots.
Guidance tasks, as e.g. studied by Burgard et al. (1998), Thrun et al. (2000) or

Nourbakhsh et al. (2003) deal with people that are e.g. moved through a museum
or around touristic attractions. These tasks are comparable to the above mentioned
evacuation tasks but generally they can disregard critical situations and the intended
movement of the people aims at entertaining the guests or visiting a given set of
places of interest.

(Box-)Pushing (see e.g. (Donald et al., 1994) or (Matarić et al., 1995)) is
another application of shepherding strategies: There, an object has to be moved to a
destination by a set of robots. The object is sometimes too heavy or too large to be
handled by one robot, only. Thus, they have to cooperate to accomplish the task.
Also, construction operations or bulldozing assignments (Lau et al., 2011) could be
solved with the help of shepherding behaviors. An additional example of pushing
strategies are swimming robots that could encircle oil after oil spills and thus improve
the manual strategies mentioned by Fingas (2002).

In the entertainment area, Cowling and Gmeinwieser (2010) discuss the usage
of shepherding strategies in various video games. Further applications of shepherding
strategies could e.g. be found in robot soccer (Lau et al., 2011).

The shepherding task is computationally hard as the size of the state is extremely
large and requires multiagent cooperation (Vo et al., 2009). Although there already
exists some research on shepherding in (multi-)agent or (multi-)robot systems using
neural networks (Potter et al., 2001), potential fields (Vaughan et al., 1998), rules
learned by a genetic algorithm (Schultz et al., 1996), or algorithms using hand-coded
strategies (Lien et al., 2004), existing work does neither consider the theoretical
background of the shepherding task nor offer considerations on the optimal solution.

In this work, we investigate the size of the state space and measure the influence
of the numbers of the different agents types. To the best of our knowledge, this
is the first theoretical investigation of such tasks. Later in Chapter 5, we develop
strategies to solve the shepherding task, provide a measure to relate the performance
to an optimal solution (i.e. we provide an upper and a lower bound for any optimal
solution), and explore the power of learning in this particular task.

4.2 Biological Background

In order to highlight the authenticity of our model a brief biological background of
shepherding needs to be provided.

Like several other animals (e.g. cattle, goats, poultry, or pigs) sheep were kept to
provide for food, milk, or wool. In this work we restrict ourselves to the shepherding
of sheep but note the transferability to other herded animals. Sheep are graminivore
and are characterized as gregarious animals with a strong herd instinct and therefore
individual members of the herd tend to follow the group. Flocking provides both
each sheep and the group as a whole with safety (Hamilton, 1971; McFarland, 2006):
• While some members may graze, others can “stand guard” and watch out for

predators.
• Furthermore, a large group even of weak animals can discourage attackers: Due

to the size of the herd carnivores are often irritated because they cannot decide

51

Chapter 4 The Shepherding Task

Flight Zone

Figure 4.2: Flightzone of sheep: The dark grey area is the blind spot of a sheared sheep
while the lighter grey area is the blind spot of a wooly sheep. The white area constitutes a
coverage of 270 to 320 degrees (Shulaw, 2005).

which individual to hunt.
• Even if some members of the herd are caught the group itself survives.

Due to their good eyesight sheep are able to detect threats early. Additionally, sheep
have a visual field of 270 to 320 degrees (Shulaw, 2005) which allows to detect danger
from behind without even turning their heads. Sheep react to other approaching
individuals (e.g. people or animals) that enter the sheep’s flight zone by backing
away. This area is determined by the visual field which is influenced by the anatomy
(e.g. form of head or the amount of wool) of the sheep and is depicted in Figure 4.2.
The size of the flight zone is connected to the tameness of the individual animal
(Grandin, 1994).

Dogs, which are often used to drive and protect sheep, have a visual field of 250
degrees (Walls, 1963). Trained working dogs are able to act on commands of a human
shepherd or even partly independently. Their tasks include the protection of the
herd against predators as well as maintaining a compact flock structure even in the
absence of fences. Additionally, they are used for guiding and moving the sheep. This
is done in several ways that include entering the flight zone, barking, or snapping.

On the one hand, herding is crucial to protect the flock against theft, flight,
or attacks. On the other hand, it may be necessary to move the flock e.g. to other
pastures, to the shearer, or to the slaughterhouse. In this work we focus on the
movement of sheep and therefore use the terms herding or shepherding only for this
purpose.

In general, sheep are driven by entering their flight zone (cf. Figure 4.2): This
will result in the sheep moving away from the intruder1; the direction and the speed
of movement can be influenced by the angle or the speed of approaching the sheep
(Grandin, 1994). If the intruder leaves the flight zone the sheep usually stops moving
and it continues its previous activity as e.g. grazing. The behavior of dogs that is
exploited to use them for shepherding emerged from predation which is present to
some extend in any dog (Coppinger and Coppinger, 2007). Selective breeding has

1 Note, that a sheep (mostly rams or female sheep with lambs) may choose to attack the intruder
if it comes to close or if the animal is cornered.

52

4.3 Description of the Shepherding Task

lead to effective herding dogs: Although the dogs’ hunting instinct—or, to be more
precise, the prey drive—is still present, they no longer see the sheep as food and thus
refrain from serious attacks (Sundance, 2009).

Due to the flocking behavior of sheep, even those sheep that are not directly
affected will follow the collective flight. This allows effective shepherding as in general
the number of dogs is by magnitudes smaller than the number of sheep (Green and
Woodruff, 1993).

4.3 Description of the Shepherding Task

The Shepherding task for a group of n agents (the dogs) is to drive a herd of m
reactive agents (the sheep) into a designated target area with as little steps (for the
dogs) as possible (cf. Figure 4.1). The sheep have a limited viewing range and are
afraid of the dogs, i.e. they try to flee if the distance between sheep and dog is less
than the sheep’s viewing range. Although the dogs may have a limited view as well,
they are basically allowed to always perceive the sheep’s positions which could be
seen as an infinitely large viewing range. All agents are able to perceive the position
and the type of all agents and obstacles inside their viewing range.

The implementation of the dogs and the sheep differ in their discriminability:
Dogs can be identified and discriminated (they “look different” and each dog has a
unique ID) while each sheep can only be identified as “the sheep at position (x, y),
i.e. they “look identical”.

The environment is modeled as a grid world with cells that can be occupied by
at most one agent or an obstacle and neither the dogs nor the sheep can leave the
environment. Obstacles are modeled such that they cannot be passed but agents are
able to look over them (e.g. think of obstacles as being pits).

In the following definition, we introduce instances of the Shepherding task:

Definition 2 (Shepherding Instance (Baumann and Kleine Büning, 2013)).
An instance of Shepherding(n,m) is described by a tuple (w, h, rsheep, rdog,G,D,S,
O, Cdog, Csheep) where
• n,m are the numbers of dogs and sheep.
• w, h ∈ N are the numbers of cells in x- and y-direction. These values define a
set A = {(xa, ya) | xa, ya ∈ N0 ∧ xa < w ∧ ya < h} of all cells in the area.

• rsheep, rdog ∈ N0 are the viewing ranges of the sheep and the dogs, respectively.
We use ∞ to denote an unlimited viewing range (i.e. the agent(s) can perceive
the complete environment).

• G ⊂ A is a set of target cells.
• D is a set of n dog agents.
• S is a set of m sheep agents.
• O ⊂ A is a set of cells that are occupied by obstacles and that cannot be entered
by agents.

• Cdog = {(xi, yi) | xi, yi ∈ (A \ O), i ∈ D} is a set of n cells that are occupied
by dogs.

• Csheep = {(xj , yj) | xj , yj ∈ (A \O), j ∈ S} is a set of m cells that are occupied
by sheep.

53

Chapter 4 The Shepherding Task

The following example shows the instance that is depicted in this chapter’s
introduction:

Example 1. The instance in Figure 4.1 can be described as Shepherding(1, 1) = (w,
h, rsheep, rdog,G,D,S,O, Cdog, Csheep) with w = 4, h = 3, rsheep = 1, rdog = ∞,
G = {(3, 2)}, O = ∅, Cdog = {(0, 1)}, Csheep = {(2, 1)}.

Note, that we slightly abstract from the biological model of dogs and sheep by
e.g. allowing a visual field of 360 degrees although the visual field in sheep is between
270 to 320 degrees (Shulaw, 2005) and around 250 degrees in dogs (Walls, 1963).
Additionally, we do not discriminate between the visual field and the flight zone
(Shulaw, 2005) of sheep: As all agents are without orientation, there is no natural
way of defining places “behind” the sheep. Thus, the flight zone here is circular
instead of conical as in real sheep and is considered to be identical to the visual field.
Furthermore, we find the term “viewing range” most appropriate as the agents only
have access to information within this distance. On the contrary, the reaction of the
sheep in our task is coherent to “real” sheep: In both cases the sheep moves as long
as there is an intruder in its flight zone.

In this work, we only deal with initially solvable instances, and to ensure this
solvability, every Shepherding instance is initialized such that
• all agents are placed randomly in the environment.
• each cell contains at most one agent.
• no agent is placed upon an obstacle.
• no dog agent is visible to any sheep.
• no sheep is on a target cell.
• is has at least as many target cells as sheep (i.e. |G| ≥ |S|).
• there is an unblocked path for any sheep such that all sheep may end up on a

target cell.
We consider a discrete time model and thus we can look at “snapshots” (in the

future called states) of the system at any given time step. To formally capture this,
we define states2 of Shepherding instances:

Definition 3 (States of Shepherding Instances). A state of a Shepherding
instance (w, h, rsheep, rdog,G,D,S,O, Cdog, Csheep) is a tuple (dog1, . . . , dogn, sheep1,
. . . , sheepm) where
• dog1, . . . , dogn are the positions of the dogs in fixed order (e.g. ordered by the
agents’ ids), and

• sheep1, . . . , sheepm are the positions of the sheep sorted increasing by their
x-coordinates (with increasing y-coordinates as tie breaker)

at the current time step and thus comprises all information that may change. A state
is called a goal state if all sheep are placed on a target cell and thus the instance is
solved.

2 The difference between instances and states lies in the contained information: A state, although
maybe correct in several instances, depends on its instance as the state includes e.g. no
information on the size of the environment.

54

4.3 Description of the Shepherding Task

F
F

1 2

(a)
12

F
F

(b)

1

2

F
F

(c)

1

2

F
F

(d)

Figure 4.3: The two states in (a) and (b) should be distinguishable as dog 1 and dog 2
may have learned different strategies to deal with this situation. On the contrary, since all
sheep behave identically and follow a fixed strategy, sheep 1 and sheep 2 do not need to be
distinguished and the states depicted in (c) and (d) can be treated equally.

As mentioned before, the states of Shepherding instances allow the distinction
of dogs whereas sheep are indistinguishable. This reflects the fact, that we are
concerned to derive a useful behavior for the more sophisticated dog agents (e.g. by
learning different strategies as it was discussed e.g. by Potter et al. (2001)). The
sheep’s behavior can be considered identical for each sheep and should thus be
considered as part of the environment. Figure 4.3 shows an example of several states
that should be distinguishable (Figures 4.3(a) and 4.3(b)) as well as states that do
not need to be distinguishable (Figures 4.3(c) and 4.3(d)). The sorting with respect
to the coordinates as described in Definition 3 ensures determinism. Note, that due
to this, there may be several goal states even if the number of target cells equals the
number of sheep: Consider the set of target cells that is occupied by a set of sheep.
We can now interchange the sheep on the same set of target cells while the state that
describes the situation remains the same. But, as argued before, this is not necessary.

If each sheep should be able to have a different behavior it may be necessary to
store the sheep’s positions as described for the dogs.

Example 2. The states depicted in Figure 4.3 can be described as

(a) ((0, 0), (2, 0), (1, 2), (2, 2)).
(b) ((2, 0), (0, 0), (1, 2,)(2, 2)).

(c) and (d) ((0, 0), (1, 2), (2, 1)).

where the dog’s positions are underlined.

As the dogs and the sheep move around, the sets Cdog and Csheep change over
time but have to always be legal, i.e.
• each cell is occupied by at most one agent (dog or sheep).
• no agent is located on or has crossed an obstacle.
• the maximal distance of one step is respected.
• no agents collided during movement.
• all agents are within the boundaries of the environment.

This means that the state transition function (i.e. the function that models the
impacts of the agent’s actions) has to consider these rules. In fact, the system only
changes its state st at time t to a different succeeding state st+1 if the action at

55

Chapter 4 The Shepherding Task

performed in st was legitimate3.
To describe what we are looking for, we give the following definition for solutions

of Shepherding instances:

Definition 4 (Solution of a Shepherding Instance). A solution of a given
Shepherding instance is a sequence of states, that are visited to transform the
initial state of the instance into a goal state. This sequence includes the goal state
and all transitions between each two succeeding states have to regard all constraints
mentioned before. The number of these transitions is called solution length.

Based on Definition 4 we can compare solutions regarding their solution lengths.
We are interested in an optimal solution, i.e. a solution that has minimal length as
this implies a solution with the smallest number of steps needed by the dogs.

Although we only consider solvable instances, an initially solvable instance can
result in a state that is not solvable. Depending on the sheep behavior, the sheep
can be moved to a position from which it cannot be moved to a target cell.

With this formulation in mind, we are now able to implement the Shepherding
task with in a multiagent system.

4.4 Modeling the Shepherding Task as Multiagent System

As mentioned above, the Shepherding task is modeled in a (multi-)agent system
(cf. Section 2.1). Although both the dogs as well as the sheep are agents that are
situated in an environment, there is an important distinction between them: The
sheep are part of the environment and are thus controlled by it whereas the dogs are
not controlled by the environment. In the remainder of this work, we will consider
two ways of controlling the dogs; namely an algorithmic approach (cf. Section 5.2)
as well as the learning of appropriate behavior (cf. Chapter 6).

4.4.1 Agent Architecture

Here, we describe the used agent models and relate them to existing models and
paradigms from literature.

In the taxonomy of Russel and Norvig (2010), the sheep agents are simple reflex
agents as they only utilize behavior that breaks down to condition-action rules.
Furthermore, they only react to external events (this could be a dog entering the
sheep’s viewing range or a random event that triggers the flee instinct). The dog
agents are model-based, goal-based agents4 and are more sophisticated as they have
knowledge of the environment’s model and know about their goals.

According to Stone and Veloso’s (2000) description of agent architectures, the
agents employed here are homogeneous and non-communicating. Another character-
istic of the agent architecture measures the sophistication of agents: While reactive

3 In Section 4.4.2 and Section 4.4.3 we describe the possible actions and the transition function
in more detail.

4 Even the learning approach in this work does not completely fit Russel and Norvig’s view
of a learning agent, as their model is rather an online learning agent whereas reinforcement
learning agents usually learn offline and use the learned policy the same way as any other
action selection method would be used.

56

4.4 Modeling the Shepherding Task as Multiagent System

agents only react (i.e. choose a predetermined behavior) to a certain situation or to
an external stimulus, deliberative agents behave more “intelligently”. The latter model
includes an internal representation of the enclosing environment and the ability to
predict the effects of performing specific actions in certain situations. Applying these
characterizations to the agents of the Shepherding task, it is quite obvious, that
the sheep can be considered reactive (they only move if they are externally triggered
to do so) while the dogs are deliberative as they possess a model of the environment
and move reasonably to pursue their goal of collecting all sheep in the target area.
Note that the sheep may be considered to be not purely reactive as the sheep try
to maximize the distance to all visible sheep (thus, they have some kind of a goal).
This “fuzziness” in classifying agents as reactive or deliberative has already been
mentioned by Stone and Veloso:

“Although the line between reactive and deliberative agents can be somewhat
blurry, an agent with no internal state is certainly reactive, and one which bases
its actions on the predicted actions of other agents is deliberative.”

(Stone and Veloso, 2000)

Iocchi et al. (2001) present a taxonomy for multirobot systems that consists of
four different levels:
• Cooperation, i.e. the execution of a given task depends on or is improved by

the presence of several robots.
• Knowledge of the other robots’ presence in the system.
• Coordination, i.e. the robots take into account the other robots’ actions in
order to guarantee a performant system.

• Organization, i.e. whether the decision making is centralized or distributed.
Additionally, there are two dimensions that are orthogonal to the previous four: The
usage of communication as well as the distinction between homogenous and heteroge-
neous agents, where homogenous agents have differences either in the hardware or in
the software.

Although our multiagent system consists of two types of agents and would thus
be heterogeneous per se, we classify the agents considered in this work separately5.
The sheep agents are
• non-cooperative, as the sheep neither operate together nor do they follow a
global task.

• aware of the other agents inside their viewing range (knowledge).
• not coordinated, i.e. they do not base their decision on the actions performed

by other sheep.
• organized completely distributed, i.e. there is no central instance that dictates
their movement.

• neither communicating among each other nor with the dog(s).
• homogeneous, i.e. every sheep has the same behavior and in a given situation
every sheep will react identically.

5 Clearly, all agent characteristics can be altered to resemble a different interpretation of the
given task. The sheep for example may of course be coordinated or even communicating if this
becomes necessary. Additionally, they may e.g. follow a flocking behavior.

57

Chapter 4 The Shepherding Task

The dogs on the other hand

• are cooperative as all dog agents have the common goal to drive the sheep into
the target area.

• have knowledge of the other agents inside their viewing range (that is in general
assumed to be infinite but may of course be restricted).

• can be coordinated depending on the behavior.
• form some kind of organization that highly depend on the fact of whether they

are aware of each other and what the do with this potential knowledge.
• do not communicate if the approaches described in this work are used but in
general, the dogs could clearly make use of communication.

• homogenous if they use the algorithmic approach and may be heterogeneous if
the use the learning approaches.

Iocchi et al. (2001) also distinguish between reactive and deliberative behavior:
The sheep agents are reactive because of their behavior based controller that is
activated by the agents’ sensors. The dogs are more complex and their architecture
is a hybrid between the behavior-based controller of the sheep and a Sense-Model-
Plan-Act architecture that consists of four steps:

1. Sensing to collect sensor information of the environment.
2. Building a model of the current state of the environment.
3. Based on the model created in the last step, a planner builds a plan that

contains the actions to be performed to reach a certain goal.
4. After an appropriate sequence of actions has been found, the commands are

converted in low level commands that allow the robot to act accordingly.

The distinction of our approaches lies in the fact, that they only compute the next
action to perform instead of a sequence, that is needed to reach the goal. A clear
advantage of our approach is the fact that the system is able to react quickly to
changes in the environment.

Figure 4.4 adapts the view of Lettmann et al. (2011) that builds upon Russel and
Norvig’s representation (Russell and Norvig, 2010): We use a box to represent the
sheep’s reflex controller and a cloud to depict the deliberative controller of the dogs.
While Russel and Norvig place the agents outside the environment, in (Lettmann
et al., 2011) we argue to embed the agents into the environment. We here follow
the same approach but we emphasize the clear differences between dogs and sheep
regarding their capabilities and their knowledge of the environment or of the task.

One could of course argue, that the sheep are only entities that add dynamic
to the environment and are not “real” agents. Nevertheless, we modeled the sheep
as agents to provide the possibility of implementing more elaborate sheep behavior.
The close connection of the reactive sheep to the environment is expressed by the
greenish color of the agents in Figure 4.4.

Although the representation in Figure 4.4 is two-dimensional, only, we point
out that the mental processes (i.e. interpretation of perceptions and selection of
appropriate actions) of the agents take place on the agent model level. This level can
be thought above the system level where the “real” interaction between agents and
environment take place (see e.g. Fig. 3 in (Lettmann et al., 2011)).

58

4.4 Modeling the Shepherding Task as Multiagent System

Environment

Actuators

Sensors

Reactive
Controller

1

Actuators

Sensors

Reactive
Controller

m

...

Sensors

Actuators

Deliberative
Controller

1

Sensors

Actuators

State

Action
n

...

State

Action

State

State

Action

Action

Deliberative
Controller

Figure 4.4: The shepherding task modeled as agent system (following the notion of Lettmann
et al. (2011))

4.4.2 The Agents’ Action Space

The agents can move one step in any cardinal direction or decide not to move at
all. Thus, a von Neumann neighborhood is used. As already mentioned, all agents in
this work are considered to be without orientation (i.e. they move in any direction
without having to turn before). Whenever we talk about an orientation like “the dog
is moving left”, we give the orientation relative to another object of the environment.

To globally describe the actions, we chose the cardinal points (i.e. “north”
corresponds to upwards on the grid and “east” corresponds to right). Thus, the
action sets for the sheep agents and the dog agents are Asheep = Adog := {stepnorth ,
stepeast , stepsouth , stepwest , stand}, respectively. See e.g. Figure 4.7 on page 62: If the
sheep goes to its left, the global action would be stepnorth and it goes forward, the
global action would be stepeast . Note that an agent can be forced to remain on its
position although it decided to move, e.g. if it would collide with another agent
or tries to leave the environment and thus, there may be a difference between the
desired action and the one that is actually performed.

The joint action is build in the same order as mentioned in Definition 3. Note,
that the joint action to perform in one round is built step by step as first the dogs
decide upon their action and the sheep react to these actions.

4.4.3 State Transition Function

As we have already seen, the environment passes several states from its initialization
until an instance is solved. We call the transition between two consecutive states
a round (cf. Figure 4.5). With Definition 4 in mind, the solution length of a given
solution equals the number of rounds needed for this solution.

59

Chapter 4 The Shepherding Task

roundt
state st state st+1

Figure 4.5: Schematic image of the relation between states and rounds

new dog positions

new state of environment

[not all sheep in target]

joint action

resolve collisions
and compute new

dog positions

state of environment

dog1's action dogn's action

...

sheep1's reaction sheepm's reaction

...

[all sheep in target]

resolve collisions
and

move agents

new sheep positions

Figure 4.6: Sequence of one round where the dogs compute their actions individually and
the sheep react to the possibly corrected movement.

Figure 4.6 depicts the procedure of one round and is the content of the “blackbox“
drawn in Figure 4.5. Every round (we here consider the agent system of being in
timestep t at the beginning of the round) consists of:

1. The dogs perceive the current state st of the environment.
2. Based on st each dog decides upon its preferred action to perform next.
3. The joint action that comprises all actions selected by the dogs is passed to

the environment.
4. The environment resolves all collisions and ensures that no agent tries to leave

the environment.
5. After executing the resulting joint action of the dogs, the new dog positions

are passed to the sheep.
6. Based on the sheep’s behavior (cf. Section 4.5), the sheep possibly move.
7. If the new state of the environment is neither a goal state nor a game-over state,

the new current state is passed to the dogs again, and the cycle is restarted at
Item 1.

Note, that the dogs decide in parallel and, if they are not communicating, they
do not take into account actions selected by other agents in the very same round.
From all these individual actions of the dog agents, the joint vector is built and then
fed into the environment.

This joint-action vector is checked by the environment to guarantee that each
transition from a state to its successor is legal. First, the environment ensures that

60

4.5 Sheep Behavior

no dog tries to leave the environment or clashes with an obstacle. Second, collisions
between agents (dogs and sheep) are resolved by forcing all involved agents to remain
on their current positions. Additionally, the immediate position change of two agents
is prohibited.

After all collisions are resolved, the dogs’ positions are passed over to the sheep
which can then react to the dog’s movement. Each sheep6 takes the positions of the
dogs after movement and the positions of the sheep before movement and locally
computes a new position. These positions are then checked for collisions as described
before and, after all collisions are resolved, all agents move to their new positions.

After the movement of the sheep, the environment checks, if the instance is
solved (i.e. all sheep are on target cells) or if the goal can never be achieved from
the current state (depending on the sheep behavior, game-over states are possible).
Otherwise, the resulting state of the environment is passed to the dogs for the next
round.

Up do now, we only said that the sheep somehow move. In the next section, we
take a deeper look into the decision process that leads to the movement.

4.5 Sheep Behavior

The deterministic behavior models a reactive sheep that only moves if a dog entered
its viewing range (i.e. at least one dog is closer than rsheep to it). The main goal of
each sheep is to maximize the sum of (Manhattan-)distances to all visible dogs. Note,
that this computation uses the positions of the dogs after their movement in round t.
Although other dogs may come into sight (or others diminish) by moving to a new
position, only the dogs visible before the sheep’s movement are considered (i.e. the
positions of the dogs computed in round t− 1).

The sheep are allowed to move one step to a neighboring cell. Thus, the potential
new positions of the sheep are all in the von Neumann neighborhood of range one
around the current position (cf. Figure 4.8(a)). Of course, the movement has to
be legal, i.e. the new position has to be inside the boundaries of the environment,
and must not be occupied by another agent or an obstacle. If several positions with
identical sums of distances exist, the order of preference is (relative to the nearest
dog7): straight away, left, right, standing still, and towards the dog as can be seen
in Figure 4.7. Note that the movement of other sheep can block the movement
as all sheep decide individually and move in parallel (cf. Section 4.4.3). Albeit
being reasonable, this preference (except the evasive movement) is arbitrary but to
guarantee a deterministic behavior, some tie-breaking rules had to be established.

Figure 4.8 shows an example of the sheep’s tie-breaking preferences: Generally,
the sheep has five possible targets (the four neighboring cells as well as the current
position, cf. Figure 4.8(a)). In the considered situation, two dogs approach the sheep
resulting in the situation depicted in Figure 4.8(b). There, the sums of distances to
the dogs are denoted. Obviously, there are two positions, that both maximize the
distances and, according to the sheep preferences described before and illustrated in
Figure 4.7, the sheep takes one step to its left (in relation to the dog).

6 The order of the sheep is the same as described in Definition 3.
7 Or the dog with the smallest ID, if there are several dogs with identical distance to the sheep.

61

Chapter 4 The Shepherding Task

backwards

forward
(1)

left
(2)

right
(3)

(4)

(5)

stand still

Figure 4.7: Movement preferences of the sheep (relative to the dog that approaches the
sheep from the left): The sheep would move forward by performing the global action stepeast .
In this example the relations to the other “global” actions in the agent system are: “left” =̂
stepnorth, “right” =̂ stepsouth, and “backwards” =̂ stepwest .

Note, that a deterministic reactive sheep can be moved to a border cell from
where it cannot be freed by a single dog agent. Thus with this behavior, initially
solvable instances can result in states from which the goal (i.e. all sheep are situated
on target cells) cannot be achieved.

4.6 Complexity of the Shepherding Task

In this section we investigate the state-space complexity of the Shepherding task.
In the following, we use n = |D| and m = |S| to denote the numbers of dogs and
sheep, respectively (cf. Definition 2). Additionally, we use O to refer to the Landau
notation.

One metric to measure the complexity of tasks is the branching factor for the
nodes of the corresponding search tree. The branching factor is the number of children
this particular node has (Edelkamp and Korf, 1998). As the behavior of the sheep
depends deterministically on all actions of the dogs (and thus on the joint-action
vector) for each state there exist |A|n = 5n possible following states which serves as
upper bound for the branching factor.

In the following, we compute the state-space complexity of the Shepherding
task. This measure of complexity is defined as the number of legal states that may
emerge from the initial state of an instance (Allis, 1994).

For an instance (w, h, rsheep, rdog,G,D,S,O, Cdog, Csheep) of the Shepherding
task, the size of the state space, i.e. the number of possible states is bounded by

(w · h)(n+m) .

Note that this number contains invalid states, e.g. states in which several agents
are positioned on one cell and obstacles are not considered, either. A closer bound
can be derived by considering two crucial facts that follow from Definition 3: First,

62

4.6 Complexity of the Shepherding Task

1

2

(a)

1 244

6

6

4

(b)

Figure 4.8: Example showing the possible new positions for the sheep in (a) as well as their
corresponding sums of distances to the dogs in (b). The bold number in (b) marks the target
of the sheep according to the preference in Figure 4.7.

dog agents are distinguishable and second, sheep agents are not distinguishable. The
number of legal states is thus given by(

w · h− |O|
n

)
· n!︸ ︷︷ ︸

possible dog positions

·
(
w · h− |O| − n

m

)
︸ ︷︷ ︸
possible sheep positions

(4.1)

as the dogs are distributed with considering the order (i.e. it does matter “which dog
sits where”) and the sheep are distributed without taking into account the order (i.e.
it is disregarded “which sheep sits where”).

Before we move on to the simplification of Equation (4.1) and to a further
analysis, we first introduce some helping statements. To begin with, Lemma 1 shows
that we can change the order of permutation (i.e. selection that disregards order) and
combination (i.e. selection that considers the order) on a given set without changing
the result:

Lemma 1 (Interchangeability of Permutation and Combination). Given
a set with n elements and k1, k2 ∈ N0 with k1 + k2 ≤ n, the number of possible
combinations for the following approaches are the same:
• First selecting k1 from n elements with order taken into account (permutation,
nPk1) and then selecting k2 elements from the remaining n−k1 elements without
considering the order (combination, Cn−k1

k2
).

• First selecting k2 from n elements without considering the order (combination,
Cnk2

) and then selecting k1 elements with order taken into account from the
remaining n− k2 elements (permutation, n−k2Pk1).

Thus, the following two terms are equivalent:(
n

k1

)
· k1!︸ ︷︷ ︸

nPk1

·
(
n− k1
k2

)
︸ ︷︷ ︸
C
n−k1
k2

=
(
n

k2

)
︸ ︷︷ ︸
Cn
k2

·
(
n− k2
k1

)
· k1!︸ ︷︷ ︸

n−k2Pk1

63

Chapter 4 The Shepherding Task

Proof. Reformulation and rearrangement gives:(
n

k1

)
· k1! ·

(
n− k1
k2

)
= n! · k1! · (n− k1)!
k1! · (n− k1)! · k2! · (n− k1 − k2)!

= n! · k1!
k1! · k2! · (n− k1 − k2)!

= n! · k1!
k1! · k2! · (n− k2 − k1)!

= n! · k1! · (n− k2)!
k1! · k2! · (n− k2 − k1)! · (n− k2)!

= n!
k2! · (n− k2)! ·

(n− k2)!
k1! · (n− k2 − k1)! · k1!

=
(
n

k2

)
·
(
n− k2
k1

)
· k1!

Next, Corollary 1 allows to rewrite certain fractions that consist of factorials as
a product:

Corollary 1. Let n, k ∈ N0 be two numbers with k ≤ n, then

n!
(n− k)! =

n∏
i=n−k+1

i .

Proof. Reformulation gives:

n!
(n− k)! = 1 · 2 · . . . · (n− k − 1) · (n− k) · (n− k + 1) · . . . · n

1 · 2 · . . . · (n− k − 1) · (n− k)
= (n− k + 1) · . . . · n

=
n∏

i=n−k+1
i

The next corollary gives an estimate for products of numbers from a given range:

Corollary 2. Let k, l ∈ N0 be two numbers with k ≤ l, then

l∏
i=k

i ≤ l(l−k+1)

with equality for k = l.

From Lemma 1 it follows, that it is irrelevant whether one first places the dogs
or the sheep and thus, it is sufficient to consider Equation (4.1). Next, we derive a
more compact term for the size of the state space (Note, that we use Corollary 1 to
derive Equation (4.3) from Equation (4.2) and Corollary 2 to obtain Equation (4.4)

64

4.6 Complexity of the Shepherding Task

from Equation (4.3).):(
w · h− |O|

n

)
· n! ·

(
w · h− |O| − n

m

)

= (w · h− |O|)! · n! · (w · h− |O| − n)!
n! · (w · h− |O| − n)! ·m! · (w · h− |O| − n−m)!

= (w · h− |O|)!
m! · (w · h− |O| − n−m)! (4.2)

= 1
m! ·

w·h−|O|∏
i=w·h−|O|−n−m+1

i (4.3)

≤ 1
m! · (w · h− |O|)

(n+m) (4.4)

The bound on the number of possible states given in Equation (4.3) is clearly in
O
(
(w · h − |O|)!

)
where w · h − |O| is the number of (potentially) accessible cells8.

For an increasing number of agents (i.e. n and/or m increase), the number of states
increases exponentially, while for small n,m the number of states approaches the
number of allowed cells. Clearly, the number of dogs is much more influential9 as the
faculty of the number of sheep is also in the denominator of Equation (4.2) and thus
reduces the growth of the number of states.

Corollary 3 (Number of Possible States for Shepherding Instances). For
an instance (w, h, rsheep, rdog,G,D,S,O, Cdog, Csheep) of the Shepherding task, the
size of the state space is bounded by

(w · h− |O|)!
m! · (w · h− |O| − n−m)! ≤

1
m! · (w · h− |O|)

(n+m)

where w · h− |O| is the number of (potentially) accessible cells. Thus, the bound on
the number of possible states grows exponentially in the number of agents.

Figure 4.9 illustrates the connection between the number of the sheep and the
number of the dogs: The considered environment had w = 10 cells times h = 10 cells
without any obstacle which results in 100 cells. For this setting, legal instances with
varying numbers of agents were evaluated. Thus, for all combinations of dogs and
sheep with at most 100 agents in total the size of the state space was computed. The
maximal number of 9.407 · 10157 states is achieved with n = 98 and m = 1 (98 dogs
and one sheep). It is obvious, that the number of dogs has a much larger impact on
the size of the state space than the number of sheep.

After this analysis, we like to relate the above results to other tasks. To compare,
the game of Go on a 10 × 10 board has a search space complexity of 9.64 · 1046

while Go with a by-the-book board of 19× 19 fields has a search space complexity
8 Note that there may e.g. exist cells that are not accessible because they are “encircled” by

obstacles and thus, the effective number of accessible cells may be lower than w · h− |O|.
9 Roughly speaking, for each additional dog the number of states is multiplied by the number of

accessible cells.

65

Chapter 4 The Shepherding Task

number of sheep number of dogs
40

20
60

80
100

040 206080100

nu
m

be
r

of
 s

ta
te

s
(lo

ga
rit

hm
ic

 s
ca

le
)

1080

1040

1

10120

10160

Figure 4.9: Number of states for an instance with 100 cells and varying numbers of dogs
and sheep.

of 2.082 · 10170 (Tromp and Farnebäck, 2007). Similarly, chess on a standard 8× 8
board has a state-space complexity of about 5 · 1052 (Allis, 1994).

In 2007, checkers with approximately 5 · 1020 states was solved (Schaeffer et al.,
2007) but even with this result, the solving of chess is not yet in sight. The next
game to be solved is most probably Othello (also named Reversi) with a state-space
complexity of about 1028 (Allis, 1994) although even this rather moderate step
towards the state-space size of chess will require substantially more resources than
the solution of checkers (Schaeffer et al., 2007).

4.7 Conclusion

In this chapter, the Shepherding task for agents was introduced. We highlighted
the importance of this particular task and pointed out similar tasks that would
benefit—either directly or with some adjustments—from shepherding strategies.

First, we had a look at the biological background of shepherding and the
behavioral interaction of dogs and sheep that allow the control of large flocks by a
small number of dogs. With this foundation, we formalized the task of dogs driving
sheep to a target area. The Shepherding task was then implemented as multiagent
system and we related the resulting system to existing taxonomies from literature.

We carefully analyzed the state-space complexity of the Shepherding task
and showed that it grows exponentially in the number of agents. These results were
compared to the complexities of other games and we saw that even the most recent
results in solving board games are far away from state space with sizes similar to the
task of controlling sheep.

In the succeeding chapter, we present a greedy approach that solves the Shep-
herding task with one sheep and one dog in linear time and whose solution are
proven to be within tight bounds around the optimal solution.

66

5
Single Agent Shepherding

After having already pointed out the significance of dealing with shepherding(-related)
tasks in Section 4.1, we here focus on means to solve such tasks.

In this chapter, we present solutions for instances of Shepherding(1, 1) using a
greedy algorithm whose worst-case solutions are close to optimal and whose runtime is
linear for plausible scenarios. The core idea of our greedy coordinate correction (GCC)
approach is to iteratively correct the sheep’s coordinates: From Section 4.3 we know
that the only way to reposition the dog to change the orientation of the sheep without
disturbance is to walk around the viewing range. As every such circumnavigation
costs additional steps we strive to minimize the need of repositioning the sheep by
computing a shortest path with the minimal number of bends. The central approach
of GCC is depicted in Figure 5.1: The dog selects the closest feasible position to
control the sheep and then drives it along one axis (the x-axis in the example) until
the first coordinate (the x-coordinate in the example) of the sheep is equal to the
corresponding target coordinate. Finally, the remaining coordinate (the y-coordinate
in the example) is corrected until the sheep is on the target. This behavior prevents
the usage of an arbitrary shortest path (dashed lines) with up to four orientation
changes but instead results in a path for the sheep with only one bend.

F

Figure 5.1: The dog goes to the nearest driving position of the sheep and moves the sheep
to the target in such a way that at most one repositioning is necessary.

67

Chapter 5 Single Agent Shepherding

We analyze the proposed algorithm and prove that its solution lies within close
bounds, i.e. the lower and the upper bound for any Shepherding(1, 1) instance
only differ by a term linear in the sheep’s viewing range. Thus, for any obstacle-free
instance of Shepherding(1, 1), GCC guarantees a solution from within this bound
without knowing the actual setup of the instance.

Additionally, we model the Shepherding task as reinforcement learning task
and later in Section 10.7 we compare the behavior computed by the GCC algorithm
to learned strategies. There, we also analyze in which situations which approach is
superior.

Some authors investigated the learning of shepherding tasks using neural net-
works (Potter et al., 2001), or rules learned by a genetic algorithm (Schultz et al.,
1996). Others used potential fields (Vaughan et al., 1998), algorithms with hand-
coded strategies (Lien et al., 2004), or heuristics imitating the behavior of real dogs
(Strömbom et al., 2014). Unfortunately, existing works do not give provably optimal
solutions and the quality of the learned behavior is hard to assess.

In essence, the intention of this chapter is to build a theoretical basis to assess
the quality of learned strategies, which subsequently aggravates the possibility of
assessing the learned behaviors.

The main results given in this chapter are the following:
• We analyze the shepherding task from Chapter 4 using Manhattan geometry
in Section 5.1 where we review existing results as well as providing some new
statements to help us analyze the proposed algorithm.

• We introduce the greedy coordinate correction (GCC) algorithm that solves
obstacle-free instances with one target of Shepherding(1, 1) in Section 5.2.

• In Section 5.3, we provide close upper and lower bounds on the solution lengths
computed by the GCC approach: The maximal length of any optimal solution
is proven in Lemma 3 and Lemma 4 while the minimal length (that might even
not be reached by an optimal solution) is proven in Lemma 5. The main result
is then provided in Theorem 1 which shows that the solutions computed by
the GCC algorithm are close to the optimal solution, i.e. the upper and the
lower bound differ by a term linear in the sheep’s viewing range.

• Section 5.3.4 shows that any instance of Shepherding(1, 1) can be solved with
the aforementioned quality in linear time using the GCC algorithm.

• We model the Shepherding task as reinforcement learning task in Chapter 6
Apart from the above mentioned contributions, we analyze the GCC algorithm and
explain instances that are hard to solve for GCC in Section 5.3.2. Finally, Section 5.4
concludes this chapter.

Some of the results presented here are extensions of previously published material
(Baumann and Kleine Büning, 2013) which, to the best of our knowledge, was the
first theoretical investigation of this kind of tasks.

5.1 Foundations

This section reviews the concept of Manhattan geometry to analyze the GCC
approach and to derive the bounds on the optimal solution in Section 5.3. We review
properties of paths in Manhattan geometry in order to formulate how the dog agent

68

5.1 Foundations

0 1 2

0

1

2

(0, 0)(0, 1)(0, 2)

(1, 0)

(2, 0)

(1, 1)

· · ·

...

. .
.

x ∈ N0

y ∈ N0

(a)
x ∈ N0

y ∈ N0

0 1 2
0

1

2

· · ·

...

. .
.

3

3

(b)

Figure 5.2: Enumeration of cells in our model: (a) shows how the cells are enumerated
while (b) displays the equivalent lattice in the N2

0 space.

should move best. As the viewing range of the sheep defines a circle, we review the
concept of circles and circumferences in Manhattan geometry. The reader familiar
with those concepts may want to skip this section (and continue reading on page 78)
and return when necessary.

5.1.1 Manhattan Geometry

In this work we model the environment surrounding the agents as a two-dimensional
grid with discrete cells. We enumerate the cells of the grid as depicted in Figure 5.2(a)
with the cell in the lower left being the origin. In Figure 5.2(b) the corresponding
lattice in the coordinate system of the N2

0 space is shown.
We employ the following convention: For a position or a point p from a two-

dimensional space we write xp for its x-value and yp for its y-value. Furthermore, a
cell is part of the environment and an agent has a position that is located on a cell.

In order to measure distances, a norm is needed to assign a positive length (or
zero) to a given vector. An important class of vector spaces is the Lp space, in which
the length of a vector x = (x1, x2, . . . , xd) ∈ Rd is usually given by the p-norm:

‖x‖p =
(

d∑
i=1
|xi|p

)1/p

(5.1)

with p ≥ 1 ∈ Rd. With this, the general metric d : Rd × Rd → R between two points
u, v can be constructed:

dp(u, v) = ‖u− v‖p (5.2)
The probably most prominent example of this metric is the Euclidean norm for p = 2
that was mentioned in Section 2.3 and that is used in later parts of this thesis, as
well. Since we are dealing with a grid world and the agents are limited to only make
steps to directly neighboring cells, we use the Manhattan distance (p = 1) between
two given points.
Definition 5 (Manhattan Distance). The Manhattan Distance between two po-
sitions u, v ∈ Rd, is defined as

dM (u, v) = ‖u− v‖1 =
d∑
i=1
|ui − vi| .

69

Chapter 5 Single Agent Shepherding

In our grid representation for the environment, this definition is adjusted to
consider the fact that the cells’ coordinates are two-dimensional and integer:

Definition 6 (Manhattan Distance in a 2D-Grid). Given two positions p1 =
(x1, y1) and p2 = (x2, y2) with x1, x2, y1, y2 ∈ N0, the Manhattan distance between
these two positions is

dM (p1, p2) = |x1 − x2|+ |y1 − y2|

with dM (p1, p2) ∈ N0.

With this definition we are able to talk about paths and especially, shortest
paths in the considered grid environment.

5.1.2 Manhattan Paths

In the following, we introduce two possibilities to express paths in the Manhattan
metric. The first one, rectilinear paths will be the mostly used concept while the
second, lattice paths is presented solely to prove some properties of such paths. Other
means of dealing with paths in different applications exist although they are out of
scope for this thesis.

As described in Section 4.4.2 we are dealing with a von Neumann neighborhood
in Manhattan geometry and thus, the agent is allowed to take steps to its directly
neighboring cells. In the context of analyzing paths we define steps as follows:

Definition 7 (Steps in Gridworlds). A step ~s between two neighboring positions
p1 and p2 in a grid with dM (p1, p2) = 1 is given by the vector

~s(p1, p2) = −−→p1p2 =
(
x2 − x1
y2 − y1

)
.

Taking into account the properties of the von Neumann neighborhood, the above
definition results in four possible steps that will be abbreviated as stepnorth := (0, 1)
for a step up, stepeast := (1, 0) for a step to the right, stepsouth := (0,−1) for a step
down, and stepwest := (−1, 0) for a step to the left (cf. Figure 4.7). These steps are
collected in the set S of all allowed steps.

Rectilinear Paths

Our ultimate goal is to find paths that require as few turnings of the robot as possible.
The motivation for this approach stems from practical considerations as every turn
of a real robot would require slowing down, turning, and accelerating again (de Berg,
1991). One highly appropriate concept to model such paths is called rectilinear paths
(see e.g. (Larson and Li, 1981; de Berg, 1991)):

Definition 8 (Rectilinear Paths). A rectilinear path

P (u0, un) = ((u0, u1), (u1, u2), . . . , (un−1, un))

is a sequence of connected segments segi = (ui, ui+1) with 0 ≤ i ≤ n − 1 such that
each segment segi connecting the points ui of the path and ui+1 is axis-parallel.

70

5.1 Foundations

The most efficient approach is clearly to store segments of maximal length,
i.e. combining consecutive segments with the same direction. We make use of this
assumption in the following.

Lattice Paths

A different approach for dealing with rectilinear paths is their representation as
lattice paths as e.g. presented by Hilton and Pedersen (1991). Its main difference to
rectilinear paths as mentioned before is the modeling: While the first approach uses
line segments, the latter one stores every point of the path appearing between the
start and the end:

Definition 9 (Lattice Path). A lattice path is a sequence of positions u0, u1, . . . , un
where each position ui is located on the grid and for all ui, ui+1 where 0 ≤ i < n the
vector −−−−→uiui+1 is in the set S of allowed steps.

As we will see later, this concept easily allows to count the number of possible
shortest paths. Other definitions of lattice paths store the sequence of steps taken but
clearly, these approaches are easily transferable. Furthermore, additional extensions
like diagonal steps are possible but beyond the scope of this thesis.

Comparison of the Above Concepts

Both concepts introduced before are here used to model paths in Manhattan geometry
that only consist of segments that are each parallel to the coordinate axes. Thus, the
transformation from one approach to the other (and vice versa) is straightforward:
Given a rectilinear path as defined in Definition 8, a lattice path can be constructed
by storing every position that is visited while follwing the path. The other way round
is similar as segments are created from sequences of points during which the direction
does not change.

5.1.3 Path Metrics

In this thesis, the most relevant measures of paths are their lengths and their numbers
of bends. The general challenge that we are confronted with is the task of finding a
path that has the minimal length and, if there are several shortest paths, selecting
one that has the minimal number of bends1.

Length of a Path

We start with the introduction of lengths for given paths:

Definition 10 (Length of a Path). Given a path P (u0, un) = ((u0, u1), (u1, u2),
. . . , (un−1, un)) and some distance measure d : Rd×Rd → R, the length of P is given
by

L(P) =
∑

(ui,ui+1)∈P
d(ui, ui+1) .

1 This problem was also dealt with e.g. by Yang et al. (1991) where the authors used the term
“minimal bend shortest path”.

71

Chapter 5 Single Agent Shepherding

Analogously, the length of a path equals the number of steps needed to go from
the start point to the target.

With the above definition, one can easily define the shortest path, i.e. a path
connecting two positions with the shortest length among all possible paths between
those points:

Definition 11 (Shortest Paths). Given two positions s, t ∈ Rd and some distance
measure d : Rd × Rd → R, the shortest path P ?L from s to t is given by

P ?L(s, t) := arg min
P (s,t)∈P

L(P (s, t))

where P is the set of all allowed paths.

In Definition 11 as well as in Definition 12, the set P is used to model only
allowed paths as in the general case, obstacles may prohibit some path layouts.

Additionally, we need the number of bends of a path as this value tells how
often the agent has to be repositioned.

Bends of a Path

In addition to the length of a path two other (closely related) measures can be
expressed: The number of segments counts the axis-parallel segments and the number
of bends expresses how often the agent following the path has to turn.

As already mentioned before, we assume all segments to be of maximal length,
i.e. a segment covers all positions in the same direction and is not divided into several
“sub-segments”.

As the number of segments |P |seg of a rectilinear path can easily be derived
from the size of the sequence representing the path, the most obvious way to derive
the number of segments for a lattice path is to first transform it into the rectilinear
representation as described before.

The connection between the number of segments and the number of bends
|P |bend is obvious: Obviously, a path with n segments needs n− 1 turns and thus:

|P |bend = |P |seg − 1

Clearly, a minimization task for the number of bends can be formulated similar
to the definition of shortest paths in Definition 11.

Definition 12 (Minimal Bend Path). Given two positions s, t ∈ Rd, the minimal
bend path P ?bends from s to t is given by

P ?bends(s, t) := arg min
P (s,t)∈P

|P (s, t)|bend

where P is the set of all allowed paths.

This concept of minimizing bends in paths is highly relevant for the development
of chips or circuits (see e.g. (Raghunath et al., 1986)). Other names for the number
of segments include e.g. link distance (Mitchell et al., 1992).

72

5.1 Foundations

5.1.4 Monotone Paths

One property of shortest paths in Manhattan geometry (and also in other metrics) is
monotonicity: When following a shortest path in environments without obstacles,
the distance of the agent to the target never increases. We use this concept of
monotonicity to enable the transfer of results for lattice paths to rectilinear paths.

Other definitions for monotonicity of paths include e.g. argumentations with
non-negative inner products (Arkin et al., 1989) or orderings of the orthogonal
projections of all path vertices on the vector −→st from the start s to end t (Lee and
Preparata, 1984). Here, we use the following definition of monotone paths:
Definition 13 (Monotone Paths). A path P (u, v) between positions u and v is
called uv-monotone if for every segment segi = (ui, ui+1) of the path

xi ≤ xi+1 ∧ yi ≤ yi+1 if xu ≤ xv ∧ yu ≤ yv
xi ≤ xi+1 ∧ yi ≥ yi+1 if xu ≤ xv ∧ yu ≥ yv
xi ≥ xi+1 ∧ yi ≤ yi+1 if xu ≥ xv ∧ yu ≤ yv
xi ≥ xi+1 ∧ yi ≥ yi+1 if xu ≥ xv ∧ yu ≥ yv

holds. Thus, a path for which the above holds for every segment between the start s
and the end t is completely monotone and is called st-monotone.

Whenever we talk of monotone paths we mean st-monotone paths unless other-
wise stated. Additionally, we assume that by employing the concept of monotonicity
the agent does not walk beyond the target in any direction.

5.1.5 Properties of Shortest Manhattan Paths

We now state some properties of shortest paths in Manhattan geometry that become
important in the remainder of this chapter. The first one is the fact that every
shortest path fullfils the monotonicity requirements stated in Definition 13.
Remark 1 (Every Shortest Path in Manhattan Geometry Without Ob-
stacles is Monotone). Given a Manhattan environment without any obstacle, then
any shortest path P (s, t) between any two positions s, t is monotone as defined in
Definition 13.

Proof. We prove this statement by contradiction: Let us assume a shortest path
P (s, t) that is not monotone. Without loss of generality let this path go “up and right”,
i.e. P fulfills xs ≤ xt∧ys ≤ yt (the other seven cases can be proven analogously). Since
path P is not monotone, P contains at least one segment segi = (ui, ui+1) that does
not fulfill the monotonicity requirements from Definition 13. Thus, for such a segment
segi it holds xi > xi+1 ∨ yi > yi+1. Since dM (s, ui+1) < dM (s, ui) + dM (ui, ui+1) we
can adjust the path P and obtain a shorter path P ′ by going directly to ui+1 instead
of going the detour over ui. This is contradiction to the assumption that P was a
shortest path.

With the above mentioned fact, we can go on and investigate the number of
different shortest paths between two positions. It is worth to note that we know from
the proof of Remark 1 that every shortest path in our setting contains at most two
directions; namely the ones that are directed towards the target.

73

Chapter 5 Single Agent Shepherding

Ambiguity of Shortest Manhattan Paths

Whereas a shortest path between two points in the (obstacle-free) Euclidean plane
is unique, in the Manhattan metric this is not the case (Gardner, 1997). We here
investigate the number of such shortest Manhattan paths and argue that there exist
paths with a certain property, namely to have at most one bend.

As a first step, we give the number of shortest path from (0, 0) to (x, y) with
x, y ∈ N0 when the movement is restricted to going up (along the positive y-axis)
and right (along the positive x-axis). As we have already seen earlier during the
investigation of monotonicity, it is sufficient to only consider this kind of paths.

Due to the symmetry of Manhattan geometry, we show the number of paths only
for the upper right quadrant. Later, the straightforward transformation to shortest
paths with arbitrary start and target positions will be shown.

Proposition 1 (Number of Obstacle-Free Shortest Lattice Paths with Re-
stricted Set of Directions (Hilton and Pedersen, 1991)). Given a position
p = (a, b) with a, b ∈ N0 in a Manhattan grid without obstacles, the number of
shortest paths from (0, 0) to p with allowed movements “going up” (↑) and “going to
the right” (→) is (

a+ b

a

)
.

Proof. We here follow the idea of Hilton and Pedersen (1991). Clearly, we need |a|+|b|
steps to go from (0, 0) position p = (a, b). It is also obvious, that we need |a| steps
along the x-axis and |b| steps along the y-axis. To get the number of possible shortest
paths between (0, 0) and (a, b), we need to determine the number of combinations of
“right” steps and “up” steps. This is equivalent to the question “how many ways to
choose which of the steps goes up (right) exist“ which is(

a+ b

b

)
︸ ︷︷ ︸

“up”

=
(
a+ b

a

)
︸ ︷︷ ︸
“right”

.

For a path that does not start in (0, 0) an easy transformation can be applied
such that the above proposition holds.

Corollary 4 (Number of Shortest Paths Between Arbitrary Positions).
Given two positions p1 = (a1, b1) and p2 = (a2, b2) in an obstacle-free Manhattan
grid having a1 ≤ a2 and b1 ≤ b2, the number of shortest paths from p1 to p2 with
allowed movements “going up” (↑) and “going to the right” (→) is(

(a2 − a1) + (b2 − b1)
(b2 − b1)

)
.

Because of the symmetry of the Manhattan distance the above formula holds
for any two positions in a Manhattan grid.

74

5.1 Foundations

Corollary 5 (Number of Shortest Paths in Manhattan Geometry Without
Obstacles). Given two positions p1 = (a1, b1) and p2 = (a2, b2) in a Manhattan grid
without obstacles having a1, a2, b1, b2 ∈ Z, then the number of different shortest paths
between p1 and p2 is given by(

|a1 − a2|+ |b1 − b2|
|b1 − b2|

)
= (|a1 − a2|+ |b1 − b2|)!
|a1 − a2|! · |b1 − b2|!

= dM (p1, p2)!
|a1 − a2|! · |b1 − b2|!

.

Since we have several shortest paths between any two positions in Manhattan
geometry, we can select the one that best fits our needs. In our case this will be the
shortest path with the minimal number of bends, i.e. among all the shortest paths
between two positions, we select one with the smallest number of turnings necessary.

Clearly, the smallest number of bends between two positions p1, p2 with p1 6= p2
in an obstacle-free environment is one for a straight line (i.e. p1 and p2 only differ in
one coordinate) and two if p1 and p2 differ two coordinates.

Shortest Manhattan Paths with at Most One Bend

For Manhattan geometry, de Berg (1991) stated that between any two points in a
polygon there always exists a shortest path with the minimum number of bends.
Since we deal with an obstacle-free environment, there exist two shortest paths each
with the minimal number of bends (i.e. at most one).

Corollary 6 (Existence of Single-Bend Shortest Paths). In an obstacle-free
environment with Manhattan geometry between any two positions p1, p2 there exists
two shortest paths that each have at most one bend.

Proof. For the case when both points only differ in one coordinate the shortest path
is clearly a straight line without any bends.

If the positions differ in two coordinates, we follow the idea from Proposition 1.
We need to make |x1 − x2| steps in along the x-axis and |y1 − y2| steps along the
y-axis. Without loss of generality let us assume that x1 < x2 and y1 < y2 and thus we
only need to go up (↑) and right (→). Once again, we follow the same argumentation
as in Proposition 1 and state that we can derive a shortest path in exactly two
different ways:
• First go |x1 − x2| steps to the right and then go |y1 − y2| steps upwards, or
• first go |y1 − y2| steps upwards and then go |x1 − x2| steps to the right.

Clearly, each of these paths is a shortest path as the number of steps equals the
Manhattan distance between p1 and p2 and both paths each consist of one bend.

In the remainder of this thesis we will talk about “paths” without further
specifying which concept we refer to. Since we pointed out the equivalency of both
approaches we will use rectilinear paths unless otherwise stated.

5.1.6 Circles in Manhattan Geometry

After having talked about norms and distances, we can now begin to talk about
circles, i.e. sets of all points that have the same distance (the radius) to the circle’s

75

Chapter 5 Single Agent Shepherding

p1 p2

Figure 5.3: Circle with radius r = 1 around p1 and radius r = 2 around p2. The dashed
lines indicate the circumference that consists of the points of the circle (filled points) as well
as the outlined points. The hatched fields are cells that are part of the circumference but are
not included in the circle.

center. This is necessary as the viewing range of the sheep defines a circle in which it
reacts to approaching dogs. Later, we will use the circumference to count the number
of steps to walk around a given position (the sheep) without coming closer than a
predefined distance (the viewing range) to that position.

Although this concept is valid for arbitrary dimensions, we here restrict ourselves
to the two-dimensional case. A two-dimensional circle with radius r ∈ R around the
center c◦ in p-norm is defined as

◦p(c◦, r) := {(x, y) ∈ R2 | dp(c◦, (x, y)) = r} (5.3)

:=
{

(x, y) ∈ R2
∣∣∣ (|x◦ − x|p + |y◦ − y|p)1/p = r

}
(5.4)

With the Manhattan metric, a circle becomes a square that is rotated by 45
degrees relative to the coordinate axes as can be seen in Figure 5.3. Note, that for
grids as considered here, the radius r can only be an integer which is dictated by the
definition of the Manhattan distance (cf. Definition 6):

◦(c◦, r) := {p ∈ Z2 | dM (c◦, p) = r} (5.5)
:= {p ∈ Z2 | |x◦ − xp|+ |y◦ − yp| = r} (5.6)

In the following we will use the term “circle” interchangeably for the boundary
of the figure (dark gray in Figure 5.3) as well as for all positions inside this boundary
(dark gray and light gray cells in Figure 5.3).

In addition to the definition of a circle, the circumference of a given circle is
defined as the distance around that circle. In Figure 5.3 it can be seen, that the
circumference consists of all the points that are in the “circle set” from Equation (5.5)
(marked in dark gray) as well as some points outside the circle (gray shaded).

In Manhattan geometry, the formula differs from the well-known formula in
Euclidean metric:

Proposition 2 (Circumference of a Circle in Manhattan Geometry). The
circumference of a circle with radius r in Manhattan distance is C(r) = 8r.

76

5.1 Foundations

Proof. We adopt Adler and Tanton’s (2000) approach in which
r∫

0

(∣∣∣∣dxdu
∣∣∣∣p +

∣∣∣∣dydu
∣∣∣∣p) du

was presented as formula for the arc length of the first quadrant and was used to
compute values of π in different p-norms. Accordingly, we follow Adler and Tanton
and parametrize the equation for circles as given in Equation (5.4) as follows:

x = u1/p

y = (r − u)1/p

With this, we are now able to express the circumference C(r) of a circle with
radius r which—due to the symmetry of the Manhattan geometry—is four times the
arc length given above:

C(r) = 4 ·
r∫

0

(∣∣∣∣dxdu
∣∣∣∣p +

∣∣∣∣dydu
∣∣∣∣p) du

= 4 ·
r∫

0

(∣∣∣∣∣u1/p−1

p

∣∣∣∣∣
p

+
∣∣∣∣∣−(r − x)1/p−1

p

∣∣∣∣∣
p)1/p

du

= 4
p
·
r∫

0

(
|u|1−p + |−(r − x)|1−p

)1/p
du (5.7)

In this thesis, we are interested in the Manhattan geometry (i.e. p = 1) and
thus, Equation (5.7) becomes:

C(r) = 4 ·
r∫

0

(1 + 1)1du

= 4 · [2u]r0 = 4 · (2r − 0) = 8r

5.1.7 Properties of Circles in Manhattan Geometry

We now recall some properties of circles in Manhattan geometry that are used in the
remainder of this thesis:

We start with the (shortest) distance of arbitrary positions to given circles:
Proposition 3 (Distance to a Circle in Manhattan Geometry). The Man-
hattan distance from a position p1 to a circle of radius r around a position p2 is

dM (p1, p2)− r .

Proof. Consider a different circle, centered in p1 whose radius r′ is increased until
both circles meet. Let p? be one of those closest meeting points (cf. Figure 5.4).
The distance from p1 to this point p? ∈ ◦(p2, r) on the original circle can clearly be
expressed as dM (p1, p

?) = r′. Since all positions in the circle set ◦(p2, r) have distance
r to p2, the distance from p1 to p2 can be expressed as dM (p1, p2) = dM (p1, p

?) + r.
Thus, the claim follows.

77

Chapter 5 Single Agent Shepherding

p1

p?

p?

p?

p2c2

p′ c1

Figure 5.4: Example of a circle with radius r = 2 around position p2 (gray cells). The cells
p? have the shortest distance to cell p1 while p′ is an arbitrary position on the circumference
(orange cells) with distance r′ = 3 to p2. The thick framed cells are called corners of which
c1 and c2 are two examples.

Obviously, Proposition 3 only applies to (one of) the nearest position(s) in the
circle. With the following proposition, we are able to express distances to arbitrary
positions in the circle ◦(p2, r).

Proposition 4 (Distance to any Point on a Circle in Manhattan Geometry).
Given a position p1, any position p′ with distance r to a position p2 can be reached
with at most

dM (p1, p2)− r + 1
2C(r)

steps without coming closer than r to p2.

Proof. From Proposition 3, it follows, that at least one position with distance r to p2
can be reached in dM (p1, p2)− r steps. Starting at this position any other position p′
with distance r to p2 can be reached with at most 1

2C(r) steps by either following the
circumference of the circle around p2 clockwise or counterclockwise on the outside
(cf. Figure 5.4).

Figure 5.4 shows examples for the terms used in the preceding propositions.
With these facts, we are now equipped to present our greedy shepherding algorithm
in the following section.

5.2 A Greedy Shepherding Algorithm

In this section we present a greedy algorithm that solves obstacle-free Shepherding-
instances with one dog and one sheep, i.e. (w, h, rsheep,∞, {target},∅, {dog},
{sheep}). Narrowing down the task allows us to establish a theoretical basis for
the analysis of such tasks.

The core idea of our greedy coordinate correction (GCC) algorithm in Algorithm 3
is to drive the sheep until one coordinate equals the according target coordinate
and then to steer the sheep to the target along the remaining axis as can be seen
in Figure 5.5. To steer the sheep in a controlled way, the dog approaches the sheep

78

5.2 A Greedy Shepherding Algorithm

F

(a)

F

(b)

F

(c)

F

(d)

Figure 5.5: Example of how the dog drives the sheep to the target (F): It walks around
the viewing range of the sheep (marked in gray) and then pushes the sheep until it is exactly
below the target ((a)-(c)). Then, the dog walks again around the viewing range and drives
the sheep to the target ((c)-(d)).

only from the corners of its viewing range. From the four corners, only two (the
east and the south corner in Figure 5.5(a)) are feasible in order to move the sheep
towards the target; approaching the sheep from any other corner would drive it
farther away from the target. The dog chooses the closest corner (in this example
the east corner) and walks to this position. In Figure 5.5(b), the dog approaches
the sheep until the x-coordinates of the target and the sheep are identical (i.e. the
sheep’s first coordinate is corrected). After this, only the y-coordinate needs to be
corrected and just one corner (in Figure 5.5(c) the south corner) remains feasible to
approach. Finally, the dog has to walk around the viewing range of the sheep and
drives the sheep towards the target until the last coordinate of the sheep is corrected
and the sheep reaches the target (Figure 5.5(d)).

The benefits of the GCC approach include a runtime linear in the solution
length and that it requires only constant storage (cf. Section 5.3.4).

5.2.1 Assumptions for the Greedy Shepherding Algorithm

To describe our algorithm and to prove its properties, we need several assumptions.
Some of them are directly implied by the model while Assumption 5 (that is tighter

79

Chapter 5 Single Agent Shepherding

than Assumption 1 but we later show how to extenuate it) eases the proofs.
1. The sheep does not start on a border cell, i.e. xsheep ∈ [1, w − 2] and ysheep ∈

[1, h− 2].
2. At the beginning the dog is outside the viewing range of the sheep, i.e.

dM (dog, sheep) > rsheep.
3. In each step the dog has perfect knowledge about the sheep’s position, e.g.
rdog =∞.

4. The environment is larger than the sheep’s field of view: min{w, h} ≥ rsheep−2.
5. In the beginning, the sheep has a distance of rsheep + 1 to the border.

Note that Assumption 1 is necessary as the (deterministic reactive) sheep cannot be
freed from a border cell and due to the sheep’s model situations where the sheep is
on a border cell, while the target is not, are unsolvable.

The second assumption’s purpose is to ease the argumentation and can easily be
(re-)established: As the sheep tries to get away from the dog it would start walking
until the dog is outside the sheep’s viewing range. This would result in an addition of
rsheep steps if the dog remains on its position or in rsheep/2 steps if the dog actively
tries to get out of the sheep’s viewing range.

Assumption 3 is crucial to the later presented algorithm. Nevertheless, the task
of finding the sheep in the first place is a different task and could be solved by
environment exploration strategies as e.g. presented by Batalin and Sukhatme (2003).
For the sake of argumentation we here rely on the dog’s sensory superiority.

The fourth assumption ensures, that the sheep can be encircled by the dog
without driving the sheep to the border. As a counterexample one can assume that
the width or the height of the environment would exceed the viewing range of the
sheep only by one. Then, the sheep’s viewing range would “bounce” from one border
to the other as only one field would be free for the dog to pass by. On the contrary,
if the viewing range and the size of the environments satisfy the condition given in
Assumption 4, the sheep can be driven such that the dog can freely walk around the
sheep’s viewing range.

As already mentioned above, the last assumption is used to ease the proof of
the upper bound on the solution length in Lemma 3. Furthermore, in Lemma 4
we describe, how the sheep that is not on a border cell (and thus only fulfilling
Assumption 1) can be moved such that Assumption 5 holds afterwards and how
many steps are necessary for this. Although Assumption 1 is required only for initial
states, we call the sheep detached if this assumption holds at any time during the
solution.

5.2.2 Core Idea: Correcting One Coordinate at a Time

As mentioned before, we are interested in an optimal solution, i.e. a shortest sequence
of states to transform the initial state of the instance into a solved one. Thus, we are
clearly looking for a shortest path from the sheep’s initial position to the target and,
additionally, the dog should move as few steps as possible.

As the sheep reacts to the dog if it is inside the sheep’s viewing distance, the
dog can only move without disturbing the sheep if it is outside this distance. This
results in the following challenge: If the sheep should be moved on a way that involves

80

5.2 A Greedy Shepherding Algorithm

F

(a)

F

(b)

Figure 5.6: The GCC algorithm selects a shortest path with the minimal number of turnings
(b) instead of using an arbitrary shortest path that requires several repositionings of the
herding dog (a).

a turn (i.e. a change of direction), the dog has to step back and walk around the
viewing distance of the sheep and then continue the driving. Since this results in
additional steps, the dog has to carefully decide where and when it approaches the
sheep. Thus, our approach attempts to move the sheep with minimal number of
turnings, i.e. driving the sheep in one direction as long as possible.

The idea of the greedy coordinate correction algorithm is to first drive the sheep to
a position where one of the sheep’s coordinate equals the according target coordinate
and then driving the sheep to the target by correcting the second coordinate (cf. the
example given in Figure 5.5). Thus, we define coordinate corrections as:

Definition 14 (Coordinate Correction). A coordinate of the sheep is correct, if
its value equals the value of the according target coordinate. Correcting a coordinate
is to steer the sheep along the respective axis until this coordinate is correct as just
defined.

After introducing this central idea, we continue to describe the objective of our
GCC approach.

Figure 5.6 depicts the core idea of our algorithm: In order to move the sheep in
Figure 5.6(b) from its initial position to the target (F) the dog first drives the sheep
to the top (i.e. correcting the first coordinate) and then to the right (i.e. correcting
the second coordinate) instead of driving the sheep along an arbitrary shortest path
as indicated in Figure 5.6(a). Note, that the dashed line in Figure 5.6(b) is also a
viable solution but the positioning of the dog and the sheep clearly requires the path
depicted by the solid line. Both of the paths in Figure 5.6(b) contain the minimal
number (i.e. one) of turnings (marked by the discs) while the path in Figure 5.6(a)
would need three turnings. Remember, that each turning in the path would require
the dog to reposition itself by walking around the viewing distance of the sheep.

We begin with showing that the idea of our algorithm is legitimate, i.e. that we
can solve every instance of Shepherding that adheres to the assumptions mentioned
before. Particularly, we transfer the findings from Section 5.1.1 to the scenario at
hand.

Corollary 7 argues that this approach is legitimate, i.e. the sheep can be moved
to the target by successively correcting its coordinates. The absence of the dog is

81

Chapter 5 Single Agent Shepherding

easy to achieve as due to the assumptions given before the dog starts outside of the
viewing range of the sheep and thus, the dog can “move out of the way” without
disturbing the sheep.

Corollary 7 (Existence of Single-Bend Shortest Paths in Shepherding).
Given a grid in Manhattan geometry without any obstacles and only one moving
entity (an agent), then every shortest path between two positions p1 and p2 can
be arranged such that the agent has to change its direction at most once without
increasing the path’s length (see Figure 5.6 for an example).

Proof. Follows directly from Corollary 6 on page 75 that states, that any shortest
path between two positions can be arranged in such a way that it contains at most
one bend.

After having talked about how the sheep has to move we now analyze in detail
how the dog can drive the sheep to the target by applying the GCC approach.

5.2.3 Safely Controlling the Sheep

In order to drive the sheep in a controlled way the dog approaches the sheep from the
corners of the viewing range (cf. Figure 5.8). We define driving positions in relation
to the sheep’s coordinates and indicate the positioning of allowed driving positions in
Definition 16. The driving positions ensure, that approaching the sheep from those
positions decreases the sheep’s distance to the target. Additionally, they guarantee,
that the sheep is driven to the border cells only if the target is on a border cell.

We start with the definition of a spatial relation to later select driving positions
that are viable for the current position of the sheep.

Definition 15 (Spatial Relations). Given two positions a, b, position a is behind
b in relation to the target if both of the following conditions hold:

dM (b, target) < dM (a, target)
dM (a, b) < dM (a, target) .

Thus, position a is behind b (in relation to the target) if b is closer to the target
and the distance between a and b is smaller than the distance between a and the
target (cf. Figure 5.7). Clearly, a more general condition for behindness in relation
to an arbitrary position can easily be defined.

With this definition, we can now define the set of (allowed) driving positions:

Definition 16 ((Allowed) Driving Position). The driving positions dpi are
located at the corners (cf. Figure 5.4 on page 78) outside the sheep’s viewing range
and have distance rsheep + 1 to the sheep, i.e.

dp0 = (xsheep, ysheep + rsheep + 1)
dp1 = (xsheep + rsheep + 1, ysheep)
dp2 = (xsheep, ysheep − rsheep − 1)
dp3 = (xsheep − rsheep − 1, ysheep) .

82

5.2 A Greedy Shepherding Algorithm

F

Figure 5.7: The green fields mark the cells that are behind the sheep regarding to Defini-
tion 15.

F

dp2

dp1dp3

dp0

Figure 5.8: Example of allowed driving positions: If the sheep is e.g. below and right of the
target (F), the only allowed driving position dp1 is on the right of the viewing range (gray
cells). Note, that dp2 is not allowed as it is outside the environment and dp0 and dp3 are not
allowed as approaching the sheep from these directions would drive the sheep away from the
target.

The set ADP of allowed driving positions contains all driving positions that are
behind the sheep relative to the target (cf. Figure 5.8) and inside the environment (cf.
Definition 15). Additionally, the corresponding coordinate does not have to and must
not be corrected.

Now we are ready to introduce the complete approach of our GCC algorithm.

5.2.4 Complete Approach

The GCC approach in Algorithm 3 first ensures that all allowed driving positions are
accessible, i.e. the sheep has a distance of at least rsheep +1 to all borders. There exist
two possible violations: One with the sheep being closer than rsheep + 1 to one border
and one with the sheep closer than rsheep + 1 to two borders. The first situation can
be solved by walking between the border and the sheep (cf. Figure 5.9) which is due

83

Chapter 5 Single Agent Shepherding

Algorithm 3: Greedy Coordinate Correction (GCC)
input : instance of Shepherding(1, 1) = (w, h, rsheep, {target},∅, {dog},

{sheep})
output : greedy solution for the given instance if the instance adheres to the

assumptions given before
1 (select target ∈ G closest to the sheep)
2 if not all allowed driving positions are inside the environment then
3 move clockwise around sheep
4 dp? =⊥
5 while the sheep is not in the target do
6 if dp? =⊥ ∨ current coordinate correct then
7 select closest allowed driving position dp? as in Definition 16
8 move to dp? ∈ ADP without penetrating the viewing range

9 approach the sheep in direction
−−−−−−→
dp? sheep

⇒ ⇒

Figure 5.9: If the sheep is closer than rsheep + 1 to one but not on the border, it can be
driven from a wall if the dog approaches it clockwise until the respective coordinate is equal.

to Assumption 1 always possible. The solution for the second case is achieved by two
repetitions of the behavior just mentioned (cf. Figure 5.11). Thus, the first lines of
Algorithm 3 ensure that Assumption 5 holds if the initial instance only fulfills the
first four assumptions. In addition to the correct behavior to free the sheep from the
wall as depicted in Figure 5.9, Figure 5.10 shows a negative example in which the
sheep will due to its behavior never be freed from the wall.

Obviously, at most two coordinates have to be corrected in any instance as the
environment is a two-dimensional plane. As already mentioned, our approach corrects
the sheep’s coordinates consecutively: The algorithm chooses the closest allowed
driving position dp? ∈ ADP , and moves the dog to this position without penetrating
the viewing range of the sheep. Clearly, such a path exists as the sheep has now a
distance of rsheep + 1 to any border which leaves a gap of at least one between the
viewing range and any border.

From the selected driving position, the according direction is directly implied by
the vector

−−−−−−→
dp? sheep. Then, the dog approaches the sheep and it walks straight away

as depicted in Figure 5.5(b). The dog approaches the sheep to the left or right (up
or down) until the x-values (the y-values) of the sheep and the target are equal.

84

5.3 Analysis of the GCC Algorithm

⇒

Figure 5.10: Contrary to the correct example in Figure 5.9 where the sheep was approached
clockwise, the sheep walks in the same direction as the dog (cf. Section 4.5) and would keep
its distance to the border if it is approached counterclockwise.

(a) (b) (c)

Figure 5.11: The dog can free the sheep from a corner (i.e. if the sheep is closer than
rsheep + 1 to two borders but not on any border) of the environment by circling the viewing
range (b) and entering the corners of the viewing range ((a) and (c)).

After the current coordinate is corrected, the dog stops approaching the sheep
and walks to the next allowed driving position if the sheep is not in the target, yet.
This next driving position is on the other axis (cf. Figure 5.5(c)) which means that
the dog has to travel a distance of 1

4C(rsheep + 1) around the viewing range2. Finally,
the dog approaches the sheep again until both coordinates are corrected and the
sheep is in the target.

5.3 Analysis of the GCC Algorithm

In the following, we analyze the properties of GCC for instances with one target but
the extension to dealing with several targets has a straightforward approximation:
For every instance the closest target can be considered. Clearly, a global optimal
solution could be computed by taking into account an optimal distribution of sheep
to targets. Nevertheless, realistic scenarios would include one cohesive target area
that may of course consist of one cell per sheep.

2 From Proposition 2 on page 76 we know that the circumference of a circle in Manhattan
geometry is C(r) = 8r and thus the dog can walk on a C(rsheep + 1) steps long circle with
radius rsheep + 1 around the sheep’s viewing range rsheep without being noticed by the sheep.

85

Chapter 5 Single Agent Shepherding

5.3.1 Correctness of the Approach

We now continue with the analysis of the GCC algorithm. In Lemma 2, we prove
that our approach finds a solution in cases in which the sheep is farther away than
rsheep to all borders (i.e. lines 5–9 of Algorithm 3).

Lemma 2 (GCC Solves Shepherding Instances). Given the Assumptions 1–5,
the dog can steer the sheep from any cell to any target cell by subsequently correcting
the sheep’s coordinates.

Proof. Due to Corollary 7, every shortest path of the sheep from its initial position
to the target can be arranged such that at most one turning is necessary. As the
sheep has a distance of at least rsheep + 1 to any border, the dog can reach any
position outside the sheep’s viewing range without moving the sheep. Particularly,
the dog can reach all driving positions (cf. Definition 16). From the task definition in
Section 4.5 follows that the sheep prefers moving straight away from the dog in case
there are several positions with equal distance to the dog (cf. Figure 5.5). Thus, the
dog can access any driving position and correct one of the sheep’s coordinates using
the nearest allowed driving position dp?.

After this, the dog can reach three or four driving positions:
• Three driving positions are reachable if the target is closer than rsheep to the
border and now the sheep is closer than rsheep to the border, too. Then the
driving position opposing dp? is no longer reachable since it is outside the
environment.

• Otherwise, four driving positions are accessible.
Nevertheless, the dog has to access one of the driving positions on the other axis
as the first coordinate of the sheep is now identical to the corresponding target
coordinate. Thus, due to Assumption 4, the dog can walk around the viewing range
to correct the last coordinate.

As next step, we begin the detailed analysis with Lemma 3 that provides an
upper bound on the number of steps that are needed to solve a given Shepherding
instance.

5.3.2 Upper Bound for the Solution Length

As for Lemma 2, we assume that all of the assumptions mentioned before hold and
thus, the sheep has a distance of at most rsheep +1 to every border of the environment.

Lemma 3 (Upper Bound for Detached Sheep). Any legal instance (w, h, rsheep,
∞, {target},∅, {dog}, {sheep}) of Shepherding(1, 1) that fulfills Assumptions 1–5
can be solved with at most

dM (dog, sheep) + 4(rsheep + 1) + dM (sheep, target)

steps using lines 5–9 of Algorithm 3.

Proof. Due to Assumption 5, the sheep has a distance of rsheep + 1 to any border and
thus, the dog can reach at least one allowed driving position as defined in Definition 16.

86

5.3 Analysis of the GCC Algorithm

Let dp? ∈ ADP be the nearest such position. From Proposition 4 on page 78 we
know that the distance from position p1 to any position on the circumference of a
circle with radius r around p2 can be reached with at most

dM (p1, p2)− r + 1
2C(r)

steps without coming closer than r to p2. As all driving positions dpi have distance
rsheep + 1 to the sheep, the distances of the dog to any (allowed) driving position
dpi ∈ ADP is given by

dM (dog, dpi) ≤ dM (dog, sheep)− (rsheep + 1) + 1
2C(rsheep + 1) .

Now, the dog can correct one of the sheep’s coordinates by moving from dp?
towards the sheep until the sheep’s currently corrected coordinate equals the according
target coordinate. If the target is not reached, the last coordinate has to be corrected
and only one allowed driving position remains. As this driving position is on the other
axis, it can be reached by following the sheep’s viewing range’s circumference for
1
4C(rsheep +1) steps (for an example see Figure 5.5(c)). Finally, the current coordinate
is corrected as described before until the sheep reaches the target.

Now, we give the number of steps that are needed:

dM (dog, sheep)− (rsheep + 1) + 1
2C(rsheep + 1) + 1

4C(rsheep + 1) + dM (sheep, target)

= dM (dog, sheep)− (rsheep + 1) + 5
8 · 8(rsheep + 1) + dM (sheep, target)

= dM (dog, sheep) + 4(rsheep + 1) + dM (sheep, target)

Note, that dM (sheep, target) covers all corrections of the sheep’s coordinates (i.e. the
number of all steps that the sheep performs until it reaches the target).

We now show, how Assumption 5 for Lemma 2 and Lemma 3 can be established,
i.e. how many steps are needed to free the sheep from the border cells. For the sake
of argumentation, we assume, that the dog is directly outside the viewing range of
the sheep.

Lemma 4 (Number of Steps to Detach the Sheep). In any admissible in-
stance (w, h, rsheep,∞, {target},∅, {dog}, {sheep}) of Shepherding(1, 1) with the
sheep closer than rsheep + 1 to at least one border but having Assumptions 1–4 intact,
and dM (sheep, dog) = rsheep + 1 the sheep can be moved with at most

C(rsheep + 1) = 8(rsheep + 1)

steps such that the sheep has a distance of at least rsheep + 1 to all borders (i.e.
Assumption 5 holds afterwards).

Proof. Due to dM (sheep, dog) = rsheep + 1 the dog is directly at the sheep’s viewing
range and by the formula for the length of the circumference of circles in Manhattan
geometry given in Proposition 2 on page 76 the dog can circumnavigate the sheep
and return to its initial position in

C(rsheep + 1) = 8(rsheep + 1)

87

Chapter 5 Single Agent Shepherding

steps. As the dog walks outside the viewing range’s circumference with a distance of
rsheep + 1 to the sheep, the sheep does not move.

To see that the sheep can be moved from the wall by this maneuver, consider
the situation depicted in Figure 5.9: If the dog approaches the sheep’s viewing range
at positions different from the corners the sheep flees—as described in the sheep
behavior in Section 4.5—to the right (relative to the dog). Thus, the dog can go
clockwise between the border and sheep to push the sheep away from the wall.

In the worst case, i.e. if the sheep is in a corner (cf. Figure 5.11) it needs a
complete circumnavigation and C(rsheep + 1) = 8(rsheep + 1) steps are needed.

Although Lemma 4 only considered the case where the dog is directly at the
viewing range, the bound holds for the general case as well: As the dog has to move
to the viewing range only once, the number of steps are already covered by Lemma 3.
If line 3 of our GCC approach in Algorithm 3 has to be executed, the dog is directly
at the viewing range afterward and thus, the number of steps to get to the driving
position in lines 5–9 is accordingly smaller.
Corollary 8 (Upper Bound for Shepherding Instances). The upper bound, i.e.
the maximal number of steps needed to solve any instance (w, h, rsheep,∞, {target},∅,
{dog}, {sheep}) of Shepherding(1, 1) that fulfills the given assumptions is

dM (dog, sheep) + 12(rsheep + 1) + dM (sheep, target) .

Proof. From Lemma 3 we know that at most dM (dog, sheep) + 8(rsheep + 1) +
dM (sheep, target) steps are needed to drive the sheep to the target if Assumption 5
holds (i.e. all corners of the sheep’s viewing range are accessible). Otherwise, due to
Lemma 4 8(rsheep + 1) steps are needed to establish the accessibility of the corners.
Thus, any instance (w, h, rsheep,∞, {target},∅, {dog}, {sheep}) of Shepherding(1, 1)
can be solved with at most dM (dog, sheep) + 12(rsheep + 1) + dM (sheep, target) steps
using GCC (Algorithm 3).

The bound given in Corollary 8 is the worst case for all possible (allowed)
instances of Shepherding(1, 1). With a more detailed treatment of special situations
(i.e. situations in which the sheep is close to a corner of the environment), one could
e.g. formulate a more narrow upper bound for these cases. Nevertheless, we will see
in the following that the given bound is pretty close.

Finally, in Example 3 we describe instances in which GCC (Algorithm 3) needs
a number of steps equal to the upper bound proven before:
Example 3 (Worst Case Situation for GCC). The worst case for GCC (cf.
Algorithm 3) are instances, in which

1. the target is located at one border and has a distance of rsheep to another border
2. the sheep is positioned such that it has a distance of rsheep − 1 to the same

borders as in Item 1
3. the dog is positioned outside the viewing range

The instances given in Example 3 are expensive as the sheep has to be driven
away from the target before it can be driven towards the target (cf. Figure 5.12).
Thus, the viewing range of the sheep has to be circumnavigated completely before
its coordinates can be corrected.

88

5.3 Analysis of the GCC Algorithm

F

(a)

F

(b)

F

(c)

F

(d)

Figure 5.12: Explanatory execution of GCC for a worst case situation with rsheep = 2 and
the target positioned at F.

5.3.3 Length of Any Optimal Solution

First we give a lower bound on the number of steps of an optimal solution for any
instance with one sheep, one dog, and no obstacles. The lower bound is the minimal
number of steps, in which a setting could potentially be solved. For a given setting,
even the optimal solution might of course need more steps than the lower bound for
the very same instance; it only means that there cannot be a solution with fewer
steps than stated by the lower bound.

Lemma 5 (Lower Bound for Shepherding Instances). The minimal length
of any optimal solution sequence for any legal instance (w, h, rsheep,∞, {target},∅,
{dog}, {sheep}) of Shepherding(1, 1) is

lmin = dM (sheep, target) + dM (dog, sheep)− (rsheep + 1) .

Proof. The sheep needs dM (sheep, target) steps to move from its initial position to
the target and it only moves if a dog is in its viewing range. By Proposition 3 on
page 77 dM (dog, sheep) − (rsheep + 1) steps are needed to get the dog in distance
rsheep + 1 to the sheep such that it can be controlled. Thus, lmin is the minimal
number of steps needed to drive the sheep to the target.

The bound in Lemma 5 is tight e.g. for instances in which one coordinate of
sheep and target are equal and the dog is “behind” the sheep relative to the target
as can be seen in Figure 5.13.

With this value for the lower bound we can now conclude our analysis with our
main result, i.e. bounds on the number of steps for any optimal solution based on the

89

Chapter 5 Single Agent Shepherding

F

Figure 5.13: Example in which the sheep can be driven with the minimal number of steps
given in Lemma 5.

lower bound established in Lemma 5 and the upper bound of GCC (Algorithm 3)
given in Corollary 8.

Theorem 1 (Length of Any Optimal Solution). The length lopt of any opti-
mal solution for any instance (w, h, rsheep,∞, {target},∅, {dog}, {sheep}) of Shep-
herding(1,1) is

lmin ≤ lopt ≤ lmin + 11(rsheep + 1)

and the two bounds differ by 11(rsheep + 1).

Proof. From Corollary 8 we have the upper bound of

dM (dog, sheep) + 12(rsheep + 1) + dM (sheep, target)

and subtracting the lower bound

dM (sheep, target) + dM (dog, sheep)− rsheep − 1

given in Lemma 5, leads to the stated boundaries.

Theorem 1 states that GCC computes a solution that needs at most 11(rsheep +1)
steps more than any optimal algorithm. This value covers the circumnavigation
of the sheep to make all corners of the viewing range accessible as well as the
repositioning of the dog in case both coordinates have to be corrected: 11(rsheep +1) =
C(rsheep + 1) + 1

2C(rsheep + 1)− (rsheep + 1) where the last subtrahend results from
the fact that the dog only has to move to the viewing range.

5.3.4 Computational Complexity of GCC

After having analyzed the upper and lower bounds of Shepherding(1, 1) instances
in terms of steps needed, we now turn our attention to the computational complexity
of the GCC approach.

The first line of GCC in Algorithm 3 is only necessary if more than one target is
present. Then, for each target in the set of targets G the distance has to be computed
which each takes O(1) and resulting in O(|G|).

Checking if all four allowed driving positions are accessible can be done in O(1):
For each driving position dp as defined in Definition 16 it has to be checked, if dp is
behind the sheep in relation to the target to determine if dp is allowed. This can be
done with three distance computations per driving position as given in Definition 15.

90

5.4 Conclusion

Additionally it only has to be assured that the allowed positions are inside the
boundaries of the environment.

If the sheep has to be detached from the border (i.e. if line 3 of GCC in
Algorithm 3 has to be executed), this can be done in O(rsheep) due to Lemma 4.

As argued above, the computation of ADP can be done in O(1) and the check
whether the sheep is in the target is also possible in constant time. Thus, the time
spend in the loop is bounded by the number of steps dM (dog, sheep) + 4(rsheep + 1) +
dM (sheep, target) as given in Lemma 3.

Summing up, the total computational complexity of GCC is O(|G|+w+h+rsheep).
Generally (i.e. in settings with several targets), the size of G is bounded by the number
of sheep m. Thus, the complexity is given by O(w + h+ rsheep).

The storage needed for GCC is constant as only the position of the sheep as
well as the position of the dog have do be provided.

Corollary 9 (Complexity of the GCC approach). GCC can solve any instance
of Shepherding(1, 1) in time O(w + h+ rsheep) and is thus linear in the length of
the solution.

5.4 Conclusion

In this chapter we proved close upper and lower bounds on the optimal solution and
showed that these upper and lower bounds differ by a term linear in the viewing range
of the sheep. This difference is caused by the possibly necessary circumnavigation of
the sheep’s viewing range without disturbance (cf. Figure 5.5(c)). In order to derive
aforementioned bounds, we geometrically analyzed the strategy followed by the GCC
approach with the results presented in the beginning of this chapter.

We introduced the Greedy Coordinate Correction (GCC) approached, a greedy
algorithm that solves Shepherding(1, 1)-instances within these bounds. In Sec-
tion 5.3.4 we showed that the computational complexity of GCC is linear and, more
precisely, that the runtime only depends on the length of the solution. Additionally,
the algorithm only needs a constant amount of storage. This result is especially inter-
esting considering the state-space complexity of the Shepherding task as analyzed
in Section 4.6.

The performance of GCC as well as the tightness of the bounds could be further
improved by taking into account special cases as e.g. presented in Example 3 and
e.g. derive separate bounds for situations in which the sheep is close to the border in
contrast to situations in which the sheep is remote from the border. Nevertheless, this
is dispensable as the bounds are already sufficiently close and the overhead would be
disproportionate.

91

6
Learning Shepherding Behavior

Coming back to the initially posed question of whether agents can learn shepherding
behaviors and how good the learned behavior actually is, we here model the Shep-
herding task as reinforcement learning task.

The GCC algorithm described before requires domain knowledge as the approach
needs to know how the sheep moves and from which positions the sheep can be
controlled safely. Thus, we investigate how learning can be used to supersede this
requirement and to possibly find even more effective behaviors.

We formulate the Shepherding task as RL task by giving the following MDP
M = (S,A,T, r):
Transition Function The transition function T models the behavior of the environ-

ment described in the description given in Section 4.4.
Reward A reward of 0 is given to the shepherding agent for the action that pushed

the sheep to the target while every other step is punished with −1.
Action Set The action set

A := {stepeast , stepnorth , stepwest , stepsouth , stand}

for the shepherding agent is also dictated by the task definition from Chapter 4
where each step takes the agent to an adjacent cell.

State Space The state description consists of the exact positions of the sheep and
the shepherding agent (cf. Definition 3):

S := {(dx, dy, sx, sy) | 0 ≤ dx, sx < w and 0 ≤ dy, sy < h} .

As the Shepherding task is episodic (i.e. it consists of several episodes that
each ends when a goal state is reached), we use the approach described by Sutton
and Barto (1998) to adjust the concept of MDP to handle such tasks: We introduce
so called absorbing states that are entered whenever a goal state is reached and an
episode has ended. Each absorbing state only transitions to itself with an neutral

93

Chapter 6 Learning Shepherding Behavior

reward of zero. After such an absorbing state is reached, the system is reset to a new
start state.

As described in Section 2.2, the transition function and the reward function are
unknown to the reinforcement learning agent. In fact, the agent does not even know
what exactly it should do. The only information “known” to the agent is the fact
that it has to maximize its rewards.

The analysis of the complexity of the Shepherding task in Section 4.6 revealed
that the state spaces are huge. Although reinforcement learning has many benefits
and is well suited for learning such behaviors, the curse of dimensionality becomes
challenging. Thus, in the following chapters, we present two approaches that help to
deal with large state spaces: First, we introduce the Growing Neural Gas Q-Learning
(GNG-Q) that aggregates neighboring states that can be treated equally. The second
approach is the Interpolating Growing Neural Gas Q-Learning (I-GNG-Q) that
approximates the value function of the reinforcement learning agent.

With the above model, any reinforcement learning algorithm can be employed
to learn the desired behavior. In this thesis, we use Q-Learning (cf. (Watkins, 1989))
as well as GNG-Q and I-GNG-Q (described in Chapter 7 and Chapter 8) for this
purpose. Finally, we compare the behavior computed by the GCC algorithm to those
learned strategies in Section 10.7.

94

7
Adaptive State Aggregation

In this chapter, we consider the automatic aggregation of states to build an abstract
state space. Such aggregations are useful for both discrete as well as for continuous
state signals: In the first setting, several states are combined to form one abstract state
(cf. Figure 7.1) while in the second setting some kind of discretization is inherently
necessary to use tabular representations for the learned behavior in RL as already
mentioned in Section 2.2. Of course, one can think of the continuous case as a discrete
case with an infinitely small resolution.

The creation of useful aggregations is hard to accomplish: On the one hand,
it should be as compact as possible to reduce the needed storage and the required
learning. On the other hand it has to be fine enough to cover all relevant information
of the original state space which may again result in a large abstract state space.
Indeed, Even-Dar and Mansour (2003b) showed that the computation of a minimal
aggregation is NP-hard.

There are severe problems with large (abstract) state spaces: First, the huge
number of states results in an immense memory usage. Second and even worse is
the fact that the higher the number of state-action pairs, the lower the probability

(a) Fine grained policy (b) Aggregated states

Figure 7.1: In (a) the policy is stored on a “per state” granularity while in (b) several states
with the same action are combined to form blocks of states.

95

Chapter 7 Adaptive State Aggregation

to visit a certain state again and thus most states appear to be unknown although
possibly very similar states have been already seen. Thus, it is necessary to enable
the transfer of past knowledge to similar states to speed up learning and to exploit
past experience.

Possible approaches to aggregate states include tile coding (Sherstov and Stone,
2005; Whiteson et al., 2007; Lin and Wright, 2010), tree-based approaches (Chapman
and Kaelbling, 1991; McCallum, 1995) or vector quantization (Lee and Lau, 2004).
However, these approaches often assume domain knowledge or have computational
issues as they have to solve the reinforcement task for different resolutions of the
aggregation.

To us, the most promising approach is to use an adaptive approximation that is
updated during learning to incorporate knowledge gained so far. Thus, we present
Growing Neural Gas Q-Learning (GNG-Q) that combines Q-Learning (Watkins,
1989) and the unsupervised growing neural gas (Fritzke, 1994b) to automatically
compute a state aggregation while learning the respective reinforcement learning
task. This approach solves reinforcement learning tasks in continuous or discrete
state spaces with a discrete time signal and discrete actions of the agent. GNG-Q
respects similarity in the state and action space and its approximation is refined
during learning based on information achieved from interaction with the environment.

To summarize, the GNG-Q approach

• computes an approximated state space using information achieved during
learning without the need of labeled data.

• shares the advantage of off-policy reinforcement learning approaches, i.e. fol-
lowing a policy and learn about many (other) policies in parallel.

• respects similarity in state and action space.
• is an online learning approach, i.e. at any time during learning, the agent can
rely on the knowledge gained so far.

• enables the reinforcement learning agent to learn the behavior and its represen-
tation in parallel.

• efficiently computes a useful policy in terms of training episodes and storage
needed.

• is easy to implement.
• does not need a model of the considered reinforcement learning task (i.e. GNG-Q
is model free).

• uses local criteria and computes a convenient discretization without domain
knowledge.

• allows flexible and adaptive shapes of the discretization, which results in a
compact representation.

The main results given here are the following:

• We review the theoretical model of state aggregation in Section 7.2.
• In Section 7.3, we introduce the main idea of the GNG-Q approach from a
high level perspective.

• Section 7.4 shows how the growing neural gas approach can be extended to
work as an adaptive state aggregation. Additionally, we discuss two different
interpretations of the neighborhood connections in Section 7.5.

96

7.1 Motivation

• In Section 7.6 the concept of regional states is introduced to allow a secure
adaptation of the approximation although the movement of the agent introduces
a moving target for the approximation.

• We introduce a new operation to refine the approximation that is based on the
current error in Section 7.7. Furthermore, Section 7.8 provides criteria for the
approximation’s refinement and adaptation and argues how these criteria lead
to an implicit stopping condition for adjustments.

• Section 7.11 analyzes the computational complexity of the proposed approach
and points out limitations of state aggregating approximations.

• Eligibility traces are incorporated in Section 7.9 to speed up learning by better
distributing Q-updates among earlier actions that lead to a particular reward.

Additionally, Section 7.1 motivates the use of an adaptive state aggregation algorithm
while Section 7.12 concludes this chapter. Parts of this chapter are based on or are
partly reformulated from (Baumann and Kleine Büning, 2011) and (Baumann et al.,
2012).

7.1 Motivation

The ability to learn is a crucial requirement for agents to qualify as intelligent (Russell
and Norvig, 2010). Learning agents can solve problems where pre-programmed
strategies are hard or even impossible to create. Additionally, they are able to deal
with changes in the environment and are able to improve their performance over
time.

In reinforcement learning (RL), an agent is situated in an (possibly unknown)
environment and has to learn a policy (i.e. a mapping from states of the environment
to actions of the agent) to fulfill a given task1. This learning is carried out by
interaction, i.e. the agent performs actions and observes the environment’s responses
in form of numerical rewards. Reinforcement learning is well applicable in tasks for
which it is easier to describe what should be achieved than to state how it should be
done.

In order to introduce and to theoretically investigate algorithms that compute
optimal (or near optimal) solutions for such RL tasks it is usually assumed to store
the learned behavior for each state-action pair in tabular representations. Thus, those
approaches are often not directly applicable to difficult tasks with large or continuous
state spaces, as they tend to appear in reality. To apply such algorithms in continuous
state spaces, some kind of discretization2 or some other approximation method has to
be used to allow the agent to store its knowledge3. Often, a discretization sufficiently
fine to cover all relevant information results in an extremely large state space, again.

1 For a more comprehensive introduction to RL we refer to Section 2.2 and the references therein.
2 A discretization transforms continuous values into discrete values e.g. by partitioning a given

range into a small set of intervals (Kotsiantis and Kanellopoulos, 2006).
3 In Chapter 8 we consider an approach that directly approximates the RL value function and is

thus directly applicable to RL tasks with continuous state signals.

97

Chapter 7 Adaptive State Aggregation

7.1.1 Challenges of Large State Spaces

Confronted with such large state spaces, three problems arise: The first problem
was termed “needle-in-a-haystack problem” (van Otterlo, 2009) and deals with
the issue of finding states (e.g. terminal states) that provide feedback to guide
the agent that initially only “stumbles” randomly through the environment. Since
this problem can be dealt with e.g. by the use of sensible exploration strategies
(Thrun, 1992), reward shaping (Ng et al., 1999), or offering guidance (Driessens and
Dzeroski, 2004), we here strive to tackle the following two major problems: The
curse of dimensionality (Bellman, 1957) (i.e. the search space grows exponentially in
the number of states and actions) induces high memory requirements to store the
learned behavior and hinders a performant learning even for algorithms with runtimes
linear in the number of states. Additionally, and even worse, the large amount of
state-action pairs complicates becoming familiar with each possible state in order to
act reasonably: Usually, algorithms that compute value functions or policies need
tremendously many iterations through the state and action space in order to converge
or to even derive a useful solution.

With this argument, Sutton and Barto motivate the use of generalization:

“In many tasks to which we would like to apply reinforcement learning, most
states encountered will never have been experienced exactly before. This will
almost always be the case when the state or action spaces include continuous
variables. The problem is not just the memory needed for large tables, but the
time and data needed to fill them accurately. In other words, the key issue is
that of generalization. How can experience with a limited subset of the state
space be usefully generalized to produce a good approximation over a much
larger subset?” (Sutton and Barto, 1998)

In other words, the higher the number of state-action pairs, the lower the probability
to visit a certain state again and thus most states appear to be unknown although
possibly very similar states have been already seen. Thus, it is necessary to enable
the transfer of past knowledge to new situations to speed up learning and to reuse
past experience. This ability to generalize knowledge is especially valuable in online
reinforcement learning, i.e. if the agent has to fulfill tasks interleaved with its learning
(Buşoniu, 2008).

7.1.2 Generalization as a Means of Dealing with Large State Spaces

Basically, two different approaches exist: state-space abstractions and function ap-
proximations. In this chapter we present an adaptive approach for state aggregation
to automatically compute a compact representation of the original state space while
in Chapter 8 we adapt some of the ideas employed here to create an adaptive function
approximation approach.

The core idea of state-space abstraction (or state aggregation) is to combine
several equivalent or at least similar4 states of the original Markov decision process
(MDP) to form a smaller abstract MDP. In this abstract MDP several states of the
original MDP are represented by one abstract state and due to the smaller number of
states the learning agent usually finds good solutions much faster. Additionally, this
4 We will later discuss what exactly qualifies states to be combined.

98

7.1 Motivation

approach offers generalization: All states of the original MDP that are combined in
the same abstract state are treated equally. Thus, the agent can transfer knowledge
to unseen but similar states.

Such abstractions usually introduce a trade off between sample complexity and
computational complexity (Kakade, 2003): The sample complexity of a reinforcement
learning algorithm is the amount of experience the agent has to obtain in order to
learn a (near)optimal policy. Basically, the general goal of approximation schemes is to
reduce the sample complexity without increasing the computational complexity—i.e.
the computational costs of creating, maintaining, and using the approximation—too
much.

Spatial aggregation—i.e. aggregations that at least to some extend respect
similarity between states—are especially effective if the environment includes areas
in which the same action is useful. An example for such aggregations can be seen in
Figure 7.1.

7.1.3 Finding the Right Generalization

The goal of state-space abstraction is to compute an optimal aggregation, i.e. an
aggregation that has a minimal number of states but still allows to learn a policy
on the abstract MDP that leads to the optimal behavior in the original MDP. Note,
that both criteria have to be respected: Of course, an aggregation that only consists
of one state would be very compact but would in general never allow to learn any
useful behavior.

Additionally, it is important to choose the right method for partitioning the
state space: Using a regular partitioning approach is easy to implement but often
results in a too large number of abstract states (Bertsekas and Tsitsiklis, 1996). Even
if the environment allows a rectangular partition, the resolution has to be chosen
appropriately.

An optimal state-space aggregation could be constructed a posteriori by first
learning (an approximation of) the optimal Q-function and aggregate similar states
that share the same optimal action afterwards. Unfortunately, this approach neither
reduces the storage needed nor offers generalization during learning, since estimations
for each state-action pair have to be computed. In fact, finding a minimal state
aggregation is NP-hard (Even-Dar and Mansour, 2003b).

On the other hand, the manual creation of a state-space aggregation a priori
requires immense domain knowledge; otherwise, it may be
• too coarse to capture all relevant features of the environment, or
• too fine and will thus result in a very large abstract state space.

Both cases would lead to unsatisfactory or ineffective learning. See e.g. Figure 7.2(a)
where the resolution allows the agent to learn a useful policy while the resolution in
Figure 7.2(b) does not: The size of the grid is too coarse to represent all necessary
features of the environment (i.e. the cell that contains the target also includes states
that are not part of the target) and thus, the agent would have problems to identify
the real goal. On the other hand, a too fine approximation as e.g. in Figure 7.2(c)
would allow for correct learning but this learning would be rather slow due to the
large state space.

99

Chapter 7 Adaptive State Aggregation

target

(a)

target

(b)

target

(c)

Figure 7.2: Different discretizations for a task in which the agent has to find a target: The
resolution in (a) is correct as it allows the agent to capture all necessary information. The
one in (b) is too coarse and would hinder the agent to learn an appropriate behavior since
the agent would not be able to select one optimal action in the red area around the target.
Finally, the resolution in (c) is too fine which would result in long learning times.

On the other hand, if one is in the possession of domain knowledge, then this
knowledge can be used to greatly improve the performance of a state-space abstraction:
The first possibility of incorporating prior knowledge about the reinforcement learning
task at hand is to choose features (i.e. how the state signal is presented to the learning
agent) that are appropriate for the given task (Sutton and Barto, 1998). An alternative
is to refine the resolution in important parts of the approximation (Santamária et al.,
1997).

In the general (and the most difficult) case the designer of an approximation
scheme has no prior knowledge of the task’s properties and can thus not rely on
this helpful information. When building a general purpose aggregation approach (i.e.
an approach that finds (sub-)optimal solutions without knowing the reinforcement
learning task beforehand) the easiest way to derive an appropriate resolution would
be to try several granularities and select the most performant approximation (trial
and error). Obviously, this would result in many iterations as there exists several
“dimensions” that can be changed:
Uniformity of Shape: i.e. whether or not all abstract states have the same geometric

shape
Uniformity of Size: “all abstract states have the same size” vs. “the size of abstract

states differs”5
Temporally Constancy: if the layout of the approximation is fixed throughout the

execution or if it is subjected to change
This thesis presents an adaptive method to derive an effective resolution of the

state-space aggregation that automatically detects areas in which the granularity
of the approximation has to be refined. Thus, this approach computes non-uniform
shaped and differently sized abstract states that change over time without domain
knowledge.

5 With the size of an abstract state ŝ we denote the number of states of the original MDP that
are mapped to ŝ.

100

7.1 Motivation

7.1.4 Benefits of Adaptive Generalization

Humans are usually more skilled in abstracting knowledge and in recognizing struc-
tures or concepts in their perception. In fact, humans often excel in fulfilling complex
tasks by ignoring irrelevant details (Goldstone and Barsalou, 1998) while computers
struggle due to the overwhelming amount of data.

For an agent, deciding which suitable scheme is most appropriate for a given task
or how to set its parameters is a difficult open problem (Ponsen et al., 2009). Often,
these decisions are made by humans which biases the learning to a particular task and
limits the reusability of this distinct combination. If the agent is presented with the
“tools” to build and use an approximation, it is able to create an approximation that is
highly specialized to the environment it is currently confronted with. Simultaneously,
the agent is able to adjust to new challenges if necessary.

An adaptive approximation that is refined and adjusted by the agent without
external control is highly valuable as this capability equips the agent with autonomy.
Thus, the agent can adapt to changes in its task or the environment with no or at most
minimal human supervision. Additionally, if agents are capable to “find” their own
abstraction their learning will not be affected negatively by superficial intervention.
It has been argued that the capability to autonomously create abstractions and to
use generalization to solve tasks is the essence of intelligence (Brooks, 1991).

The gradual refinement allows an efficient usage of knowledge: In the beginning
the learning affects large portions of the state space as the resolution of the approxi-
mation is very coarse and only consists of few abstract states. Each newly created
abstract state is a local refinement and the behavior for the new state is derived from
the split state. Additionally, a broader generalization in the beginning is valuable to
allow quick learning of the rough idea while later a much finer generalization allows
to discover all the details. Sherstov and Stone (2005) argued that the best results
are to be expected if the generalization is gradually reduced.

Otterlo (2009) claims that automatically finding a suitable approximation is
hard to achieve and that the agent should be supported by as much prior knowledge
as possible. Although we completely agree that this task is very complicated, we note
that easing the approximation process by adding domain knowledge undermines the
agent’s autonomy.

7.1.5 Learning Goal in Adaptive Generalization

The overall goal of the GNG-Q approach is to learn a policy defined on the abstract
state space that is (near-)optimal in the original MDP. Particularly, the learning
of the approximation (which results in the abstract state space) should be done
concurrently to the agent’s interaction with the environment (i.e. the original MDP).

While adapting the approximation in parallel with the learning process is highly
beneficial, one additional challenge is introduced: Reinforcement learning without
approximation is one learning task that has a (set of equally good) solution(s),
namely the optimal policy(ies) (Sutton and Barto, 1998). Adding approximation to
reinforcement learning introduces a new learning task, i.e. the interleaved learning of
the knowledge representation which can e.g. be seen in the schematic depiction of
our approach in Figure 7.3.

101

Chapter 7 Adaptive State Aggregation

Agent

Approximation Learning

Environment
continuous state

discrete state

action

reward

influence

Figure 7.3: Abstract framework of our approach.

Often, learning approaches (supervised as well as unsupervised as e.g. the growing
neural gas approach) assume a fixed set of training samples that is used to train
the approximation by probably numerous iterations over this set until a desired
solution quality is achieved. This learning then only affects the task of estimating
the parameters for this particular method.

When using approximation methods inside reinforcement learning, two major
challenges appear:

1. The policy depends on the value function that is learned by the reinforcement
learning agent. As such, the target values are not known beforehand but
computed and updated during the interaction with the environment and thus,
the learning goal (i.e. the value function) is non-stationary. This is a severe
difference to the general assumption prevalent in supervised learning where
“correct” answers are present for the training data.

2. Also, the learned policy is used by the agent to interact with the environment
which influences the sampling of states to the agent. Thus, even the sampling is
non-stationary as opposed by the existence of a fixed training set in supervised
learning.

7.1.6 Core Idea of Our Approach

To us, the most promising approach is to use an adaptive approximation that is up-
dated during learning to incorporate knowledge gained so far. Figure 7.3 summarizes
the key idea of our approach: In each learning step, the agent learns using the current
state-space approximation. Simultaneously, the applied learning method influences
the state-space approximation as knowledge gained during learning is used to find
and refine too coarse areas. Since GNG computes a graph consisting of Voronoi
centers (cf. Section 2.3), a nearest neighbor rule introduces generalization as every
state of the original state space is treated equivalent to the most similar reference
vector.

Our combination of Q-Learning and GNG offers many advantages: The approach
operates online, does not need the MDP of the RL task, and is easy to implement. The
usage of an unsupervised learning method abandons the requirement of experience
tuples as e.g. in the work of Ernst et al. (2005) and is especially useful if the training
samples are presented successively and not known in their entirety (van Otterlo,
2009). Furthermore, the GNG is insensitive against changes in its parameters (Heinke
and Hamker, 1998) and is thus well applicable without deeper domain knowledge.

102

7.2 Theoretical Model of State Space Abstraction

GNG-Q is able to efficiently compute a useful policy in parallel with a compact
state-space approximation that respects similarity in state and action space. The goal
is to find a partition of the state space in so-called state regions so that each region
contains states which are similar and can be treated equally. In most reinforcement
learning tasks we can assume that there are areas of spatially close states that
require the same behavior (cf. Figure 7.4 on page 105 where a robot has stored the
shortest path to a target). Neither the number nor the positioning of the reference
vectors has to be predetermined but is instead derived from interaction with the
environment: The initially coarse approximation is locally refined in areas that need a
finer resolution. Thus, there is no need to decide on the granularity of approximation
beforehand.

After learning, the policy can be stored very efficiently as only the Voronoi
centers of the approximation and the associated action values are needed. During
learning, the additionally stored information is linear in the number of centers. The
mapping of one state of the original state space to its abstraction is realized by a
nearest neighbor rule and is thus very fast and easy to implement.

7.1.7 Concluding Remarks

Practical applications of adaptive approximation methods are manifold.
For example behaviors for robots can be learned by simulation: An agent

(representing the robot) learns in a simulated world (i.e. the environment) in order
to protect the hardware of the real robot and to accelerate learning. This (initial)
knowledge can then be implemented in the real robot and the adaptive approximation
method may be used to adjust the behavior in order to compensate for changes
in or unknown dynamics of the real environment (Kakade, 2003). Storage-efficient
methods also are interesting for the application in (mobile) robots: As their storage
capacity is usually limited, compact approximations are helpful to save expenses on
hardware.

The fact that the approximation is adapted during learning allows the agent
to use its generalization capabilities while interacting with the environment and
additionally, the interleaved learning of behavior and its representation allows an
efficient fitting to the learning task at hand.

7.2 Theoretical Model of State Space Abstraction

As pointed out earlier, large state spaces introduce severe issues and it is thus
highly beneficial to introduce some kind of generalization (Sutton and Barto, 1998).
Amongst many others (for detailed overviews see (van Otterlo, 2009) or (Buşoniu
et al., 2011a)), one approach to deal with large state spaces is the use of state-space
abstractions. Following (van Otterlo, 2009), we define an abstract state space as
follows:

Definition 17 (State Space Abstraction). Let M = (S,A,T, r) be a deterministic
Markov decision process as defined in Definition 1. We define the corresponding
abstract MDP M̂ = (Ŝ, A,T, r) where Ŝ is a partition of the actual state space S and
usually |Ŝ| � |S| holds. Each abstract state ŝ ∈ Ŝ is defined as a set ŝ := {s | ψ(s) =

103

Chapter 7 Adaptive State Aggregation

ŝ, s ∈ S} where the abstraction function ψ is a mapping ψ : S → Ŝ that maps
each state of S to one of the states of the abstract state space Ŝ. Thus, ψ provides a
partition of S with

⋃
ŝ∈Ŝ ŝ = S and ŝi ∩ ŝj = ∅, ∀ ŝi 6= ŝj ∈ Ŝ.

The value functions in RL for an abstract MDP M̂ can be learned from inter-
actions with the original MDP M: The agent observes a state st ∈ S and performs
action at that takes it to the subsequent state st+1 = T(st, at) and results in a reward
r(st, at). This information can be used e.g. in a Q-Learning update for the abstract
MDP (van Otterlo, 2009):

Q̂t+1(ψ(st), at) := (1− αt)Q̂t(ψ(st), at)

+ αt
[
r(st, at) + γmax

a′∈A
Q̂t(ψ(st+1), a′)

]
(7.1)

Note, that the update for one abstract state ŝ affects all states s ∈ S that are
abstracted to ŝ, i.e. all states s for which ψ(s) = ŝ hold. This is a major advantage
as one update affects several states and each (maybe unseen) state is treated as any
other state abstracted to the same abstract state.

7.3 General Approach

This section presents the general approach as well as the core idea of GNG-Q, which
is detailed in the following sections. The intention of GNG-Q is to learn the behavior
and its representation in parallel using a combination of Q-Learning (cf. Section 2.2)
and the unsupervised growing neural gas (GNG) vector quantizer (cf. Section 2.3).
Our approach assumes that similar states need similar behavior—an assumption
that is often true in large portions of reinforcement learning state spaces. If the state
space does not contain similar states that need similar behavior one region per state
is needed which would be identical to storing the complete value function.

We consider units called neurons as described in Section 2.3 that each have
a reference vector that can be seen as position, an index, and a variable for the
accumulated error associated with this unit. This error contains information gathered
by monitoring the agent’s policy. Additionally, each neuron is assigned a prototype
Q-vector that comprises all updates that were performed in the respective region by
Q-Learning. In fact, the prototype Q-vector can be thought of as Q-vector for the
abstract state created by its corresponding region. The nearest neuron is the neuron
with the most similar reference vector to a given state and, similarly the second
nearest neuron has the second most similar reference vector to the same given state.
For clarity, we here assume a state space consisting of real-valued vectors, otherwise,
the methods to measure the similarity and to adapt neurons to states have to be
altered.

Typically, reinforcement learning deals with single states, but to improve the
efficiency of learning we search for groups of neighboring states in which the RL
agent’s behavior is similar. These groups are identified with the help of GNG that
computes a Voronoi tessellation of the state space. Then, our approach treats all
states in one region equally (i.e. all states in one region as defined in Section 2.3 are
seen as one abstract state). The Q-function in our approach is defined as a mapping
from those regions to the Q-vectors.

104

7.3 General Approach

.

? ? ?

Figure 7.4: GNG-Q refines the approximation based on information gained during learning.
The neurons (circles with arrows that depict the action with the maximal Q-value) are as
described in Section 2.3, but additionally, each neuron has one Q-vector whose values are
updated during learning. The dotted lines indicate the borders of the Voronoi regions for
each layout.

The core idea of GNG-Q is as follows: As in the generic GNG approach, the
approximation is initially very coarse and it refines regions that contain incompatible
states. In each learning step in the reinforcement learning environment, the agent
uses the current approximation to update its estimated policy using Q-Learning.
Simultaneously, changes in the learned policy point out regions that have to be
refined. Thus, an abstract state space is built by aggregating compatible states into
so-called state regions which are represented by neurons. The size, the shape, as well
as the positions of these state regions are adjusted based on the interaction during
learning without knowing the environment in advance.

The goal is to partition the state space in regions of similar states such that all
states in one region can be treated equally. Q-Learning updates its estimations of
the Q-values iteratively which may influence the behavior in a larger area. Thus, it
is favorable to adjust the approximation by inserting and moving neurons in parallel
with changes in the policy defined by the estimated Q-values. In particular, GNG-Q
uses those changes to determine areas of the approximation that are too coarse and
need to be refined. As GNG-Q starts with a coarse approximation and regions that
are not visited are removed, the learned layout of the abstract state space is very
compact.

Figure 7.4 shows an example of how the state regions are adjusted during
learning: GNG-Q starts with a very coarse approximation, initially consisting of
two regions (i.e. the abstract state space consists of only two states). In each step
the learner’s estimation of the Q-values Q̂ is updated with the Q-Learning update
rule based on the regions of the abstract state space’s current layout. The learner’s
policy is monitored during learning and these information are then used to adjust
the layout of the abstract state space. These adjustments (movement of neurons and
refinement) carry on until a sufficiently fine approximation is found.

Thus, the abstraction function ψ from Section 7.2 and the agent’s approximation
Q̂ for the abstract MDP are learned in parallel: The abstraction function ψ is derived
from the layout (i.e. the number of the neurons and their positions) and the nearest
neighbor rule. At any time during learning, the agent can make use of the information
and experience gathered so far although in most cases, the approximation of the
state space as well as the learned Q-values need some time to evolve.

Figure 7.5 adapts the agent-environment cycle presented by Sutton and Barto

105

Chapter 7 Adaptive State Aggregation

Agent

GNG
State2Quantizer

Q-Table
for2(n,a)

Q-Learning

Environment

st
nn1(st) at

st+1

r(st,at)

(1)
(2)

(3)
(4)

update error update Q-value

nn1(st+1)

Figure 7.5: GNG-Q in Sutton and Barto’s (1998) agent-environment interaction.

(1998): In each step, the agent perceives the current state of the environment st ∈ S
and uses the state-space approximation to compute an internal representation of the
state (1). The nearest neuron nn(st) to the present state st is used to perform a look
up in the Q-table consisting of Q-values for every neuron-action pair (and thus for
every Voronoi region). This results in the prototype Q-vector of the nearest neuron’s
region from which the action with the maximal Q-value can be derived (i.e. the agent
can use the approximation to get a maximal or greedy policy by performing the
action with maximal Q-value from the region of the nearest neuron to the current
state). During learning, the agent may use some exploration strategy (e.g. ε-greedy)
to determine the next action at. After performing (2) the action at, the environment
responds (3) with a reward rt = r(st, at) that represents the immediate value of
performing at in state st and simultaneously transitions (4) into a subsequent state
st+1. While learning, the agent uses this reward to update its estimation of the
Q-function at Q̂(n1, at) taking into account the estimate for the succeeding state
st+1 computed with the same approximation (depicted as dotted line in Figure 7.5).
If this update leads to a change in the maximal policy, the error variable of n1 is
updated to indicate the possible need for refinement in this region.

Additionally to the nearest neurons to the current state st and the subsequent
state st+1, the GNG component of our approach computes the second nearest
neuron to the current state, too. This information is used to build neighborhood
connections as described in Section 7.5. While the generic GNG approach updates
the approximation (i.e. the positions of the neurons) after every presented training
sample (in our case a sample would be the state st although the update takes place
after performing the action at that leads to the succeeding state st+1), our approach
updates the positions of the neurons after one complete reinforcement learning
episode, i.e. after a goal state is reached6. To consider all states that have been
visited during one episode, each neuron has an additional set to collect states that
are visited during the current episode. After each episode, every neuron adapts to the
centroid of all states that have been visited in its region (cf. Section 7.6). By doing
so, the GNG-Q approach ensures that the approximation is stationary during each
6 In non-episodic reinforcement learning tasks a comparable solution can be easily defined by e.g.

using a fixed interval for the updates.

106

7.4 From States to State Regions

episode and only adjusts the approximation in between two succeeding episodes.
Thus, our approach computes an approximation that respects similarity in both

the state and the action space in parallel with the learning of the behavior. The
Q-function in our approach is defined over neurons and actions and can be learned
with tabular Q-Learning using one entry for every neuron-action pair. All states in
one state region are treated equally, i.e. they all share one prototype Q-vector. The
GNG-Q approach leads to a piecewise constant approximation of the Q-function
as all states in a region are treated equally. The nearest neighbor rule introduces
generalization: Each neuron defines a region of states that are treated equally and an
update of the Q-vector for one region affects all states in this region. Simultaneously,
an unseen state can be handled as similar states seen before as it is treated as any
other state in its region.

7.4 From States to State Regions

In this chapter, we present an approach to aggregate several states to an abstract state.
This state aggregation is one possibility for function approximation in reinforcement
learning. A very concise formulation of the goal for approximation in reinforcement
learning was presented by Sutton and Barto (1998):

“How can experience with a limited subset of the state space be usefully gener-
alized to produce a good approximation over a much larger subset?”

(Sutton and Barto, 1998)

Usually, reinforcement learning works with single states, but here, similar states
are aggregated to so-called state regions. From the theoretical model presented in
Section 7.2 we know that we need a function ψ that maps from the set of all possible
states of the reinforcement learning task to a set of abstract states. The theoretical
model, however, does not specify how to realize such a function. Clearly there are
several possibilities including very rudimentary methods like a set approach: Each
abstract state is modeled as a set for all states from the “real” state space and
the ψ would reduce to the set membership relation ∈. Using this naïve approach,
the only improvement to a standard tabular approach would be that one Q-update
would influence several states with (i.e. all states in the set for the current abstract
state). Unfortunately, the amount of storage needed is identical to the amount needed
without this kind of approximation. Additionally, this approach would neither be
directly applicable to continuous reinforcement learning tasks nor exploiting the fact
that reinforcement learning tasks often have neighboring states that require the same
behavior.

We present an approach that allows to efficiently compute the abstraction
function ψ and additionally, this function can be stored very compactly. To achieve
this, we present two crucial requirements for aggregated states:

1. The states have to be similar regarding some similarity measure (e.g. constructed
based on the Euclidean distance) in the state space.

2. The (currently) optimal behavior in those states has to be the same.
Figure 7.6 shows an example which emphasizes the importance of both requirements
for aggregated states: The states s1 and s2 are obviously spatial close but they cannot

107

Chapter 7 Adaptive State Aggregation

s1
s2

Figure 7.6: Example of state regions for a policy to walk around a wall

be aggregated to one abstract state as the needed behavior is different.
We employ the ideas described in Section 2.3 to create the state regions. GNG-Q

uses neurons that are inserted and distributed in the state space7. The abstraction
function ψ is thus defined by the set Nt of neurons present at time t and the nearest
and second nearest neuron functions8 that are derived from the nearest neighbor
rule. As a reminder to Section 2.3, these functions determine the neuron nn(s) with
the most and the neuron nn2(s) with the second most similar reference vectors to a
given state s ∈ S (ties are broken by selecting the neuron with minimal index):

nn(s) = arg min
n∈Nt

d(s, ~wn)

nn2(s) = arg min
n∈Nt\{nn(s)}

d(s, ~wn)

We use the neurons’ reference vectors as representatives of the state regions9
and adapt the Q-update from Equation (2.14) to define the reinforcement learning
agent’s estimation Q̂ over the neurons of the network and actions. We can then use
a tabular representation for Q̂ : Nt ×A→ R.

All states in one state region are treated identically and they all share one
prototype Q-vector that comprises all Q-updates performed in the respective region.
This Q-update only depends on the Q-value of the region containing the current
state st and the Q-value of the region containing the succeeding state st+1:

Q̂t+1(nn(st), at) := (1− αt)Q̂t(nn(st), at)
+αt

[
r(st, at) + γmax

a′∈A
Q̂t(nn(st+1), a′)

]
(7.2)

See Figure 7.7 where the agent performs action at in state st and transitions to
state st+1. This transition leads to an update of Q̂(nn(st)) that uses the estimate

7 For now we just assume, that the neurons are placed somehow in the state space; in Sec-
tion 7.6 and Section 7.7 we will describe how the neurons are repositioned as well as how the
approximation is refined by adding new neurons.

8 Since we made the assumption that we deal with states that are described by real-valued vectors
we here use the same distance d as in Section 2.3. Thus, we use d(s, ~wn) to measure the distance
between the vector describing state s and the reference vector of neuron n.

9 Remember that the neurons’ reference vectors can be used as codewords as described in
Section 2.3.

108

7.5 Neighborhood Connections

st

st+1

at
region of n1

region of n′
1

Figure 7.7: After performing action at in state st that is in the region of neuron n1, the
agent transitions to state st+1. The Q-update affects all states in the region of neuron n1
and incorporates the maximal Q-value of the region that contains state st+1 (i.e. defined by
neuron n′

1).

Q̂(nn(st+1)). Note, that this update influences the values of all states in the region
of neuron n1 = nn(st) but no values outside this region. The aggregation creates a
partition of the state space and thus leads to a piecewise constant approximation of
Q and the generalization is achieved by the nearest neighbor rule as all states in one
region are treated equally.

From the fact that all neurons in one region share a single prototype Q-vector
it directly follows that the agent’s policy also depends on the current state region:
Thus, the maximal policy (or greedy policy) is defined as

π̂?(st) = arg max
a

Q̂t(n1, a) (7.3)

with n1 = nn(st) being the neuron with the most similar reference vector to st. This
is the learner’s approximation of the optimal policy as defined in Equation (2.10) that
requires the actual, but usually unknown, optimal Q-function Q̂?. Thus, using in each
region the action with highest Q-value results in a policy defined over state regions
as depicted in Figure 7.4 or Figure 7.6. Of course, during learning it is useful to
choose the actions incorporating some kind of exploration strategy as e.g. described
in Section 2.2.8.

7.5 Neighborhood Connections

In this work we explore two different interpretations for the neighborhood connections
of the GNG approach: First, they can be used identically to the intention in the
generic GNG approach (i.e. a connection between two neurons is evidence that the
two corresponding Voronoi were neighboring at the time of their creation). Second,
we discuss how to use neighborhood connections to derive an abstraction of the
transition function for the abstract MDP from Section 7.2.

Note, that the connections in our approach are not essential but merely used to
gain insights in the layout of the state space. While in the generic GNG approach the
connections are used to adjust the topological neighbors of a neuron as well, we here
use the neighborhood connections to update the network’s topology or to determine
“dead” abstract states, i.e. regions that have not been visited for a long time.

109

Chapter 7 Adaptive State Aggregation

7.5.1 Topological Connections

The first method that can be used to create neighborhood connections was introduced
in (Baumann and Kleine Büning, 2011) and stems from the creation process in the
generic GNG. A connection in this context states that the two connected neurons
were the nearest and second nearest neurons to a given input at the time of its
creation. Thus, this approach creates a network of neurons, whose connections give
insights into the topology of the state space.

As in the generic GNG, we compute the nearest neuron n1 and the second
nearest neuron n2 to the current input (in our case the current state st)

n1 = nn(st)
n2 = nn2(st)

with the nearest and second nearest neighbor rules as described in Section 2.3. These
neurons n1, n2 are connected with a neighborhood connection {n1, n2} and are now
topological neighbors.

With this method, clues about the topology of the state space can be derived:
As two neurons n1 and n2 are connected if they were the nearest and second nearest
neurons to a sample (in our case a state) and thus, the respective regions R(n1)
and R(n2) are neighboring10. From this fact, we can infer that the abstract states
represented by these particular neurons are spatial neighboring but we do not know,
if there is an action with which the agent transitions from a state in region R(n1) to
a state in region R(n2) (or vice versa). Nevertheless, one might want to analyze the
Q-vectors of neighboring neurons in order to investigate whether there are areas in
the state space that are spatially close but require different behavior. A clue for this
might be found in severe differences in the maximal policy.

To keep the representation of the state space’s topology up to date, each
neighborhood connection is equipped with an age. If two neurons n1, n2 are the
nearest and second nearest neurons but are already connected with a neighborhood
connection the age of that existing connection is reset to zero. Furthermore, the ages
of all connections emerging from the nearest neuron n1 are increased.

Due to the adaptation and the refinement of the network’s layout (or due to
changes in the environment), some neighborhood connections may become outdated.
This would result in high ages of the relevant connections as they would not be reset
to zero for a given amount of iterations.

In the topological context, the removal of a neuron n results in a coarsening
of the approximation: The states of the original MDP that fell into the region of n
would afterwards be approximated by surrounding neurons. Nevertheless, it is more
probable that no or only very few states will be affected by this; otherwise, the region
would not have been removed.

7.5.2 Abstraction of Transition Function

The second approach for the creation of connections is more suitable for reinforcement
learning as the quantization motive described before only covers a portion of what

10 To be precise, the neurons’ regions were neighboring at the time of the connection’s creation.

110

7.5 Neighborhood Connections

is desirable in this particular kind of approximation (Baumann et al., 2012). Here,
two neurons n1 = nn(st) and n′1 = nn(st+1) are connected if an action performed in
the region R(n1) of neuron n1 resulted in a state in the region R(n′1) of neuron n′1.
Thus, the connections can be used to approximate the abstract transition function
of the original MDP as each connection between two neurons n1 and n′1 implies that
an action performed in a state of n1’s region ended in a state in the region of neuron
n′1 (or vice versa as the connections are undirected).

In each learning step, the nearest neuron to the current state st and the nearest
neuron to the succeeding state st+1 are determined:

n1 = nn(st)
n′1 = nn(st+1)

and both neurons are connected with a neighborhood connection to become topological
neighbors. Note, that in this approach loops (i.e. edges {nu, nv} with nu = nv) may
occur as the agent might transition between two different states that are in the same
region. This cannot happen in the first approach described before or in the generic
GNG approach as there the nearest and second nearest neuron to a given input is
connected and the network always consists of at least two neurons.

To completely capture the abstract transition function, two extensions are
needed:

1. For each action that can be performed, one unique connection has to be stored:
If an action a performed in the current state st in R(n1) results in a succeeding
state st+1 in region R(n′1), the connection between n1 and n′1 has to be labeled
with the performed action a.

2. The connections have to be oriented to consider the direction of the transition
from region R(n1) to region R(n′1) and vice versa.

Thus, an abstract transition function T̂ : Ŝ ×A→ Ŝ for the abstract MDP M̂ can
be created from the neighborhood connections.

These two extensions result in an upper bound of |Nt| · |A| connections for a de-
terministic MDP. In case of non-determinism in the abstract MDP (cf. Section 7.11.2
for an explanation of how non-determinism can occur even in deterministic environ-
ments), a neuron may have several emanating edges for one action. This results in
an upper bound of |A| · |Nt| · |Nt| connections for this scenario.

To identify outdated connections, each neighborhood connection is equipped
with an age which is initialized with zero. If two neurons n1, n

′
1 are already connected

with a neighborhood connection but are again designated to be connected, the age
of that existing connection is reset to zero. Additionally, the ages of all connections
emerging from the nearest neuron n1 are increased. If the age of any connection
exceeds agemax , the connection is removed as this is evidence, that this connection is
outdated: Consider the latest agemax transitions (s, a, s′) that involved n1 or n′1 (i.e.
transitions for which s and/or s′ was in R(n1) or R(n′1)), then there was no action
that led from a state in region R(n1) to a state in region R(n′1) (or vice versa). In
other words: For the last agemax transitions (s, a, s′) that involved at least one of the
regions R(n1),R(n′1) there was no transition such that the agent “traveled” from
one of the two regions to the other. Thus it is save to assume that the approximation

111

Chapter 7 Adaptive State Aggregation

changed in a way that no action leads from any state abstracted by nu to any state
abstracted by nv (or vice versa).

If the deletion of connections results in isolated neurons, these may be removed as
well, as they are most likely unreachable following the same argumentation: Consider
a neuron n that has no neighborhood connections left. At some point in time, there
was an action that led from a state s to a state s′ in R(n) or that led from a state
in R(n) to another region. Due to the current layout of the approximation, this
is no longer the case and thus, the region can be considered to be dead. Reasons
for the development of such “redundant” abstract states could be changes in the
environment or changes in the approximation due to adaptations or refinements.

7.6 Adapting the Approximation

The basic idea of the movement of neurons in the generic GNG is to adapt the
network’s topology to the probability distribution by which the samples of the input
space are drawn (Fritzke, 1994b). In other words, the neurons should be placed
in areas in which input samples can be expected. Although we follow the same
intention we have to respect a certain property of the agent-environment interaction
in reinforcement learning.

7.6.1 Adaptation of the Approximation in Reinforcement Learning

While learning from such episodic interaction with the environment the agent passes
numerous state sequences: It starts in an initial state and transitions repeatedly
to subsequent states until a goal state is reached. This time dependence (i.e. the
agents wanders through the environment and thus the visited states depend on the
current time and the transition model of the environment instead of some underlying
topology) would “pull” the network towards the goal states, as in each time step the
neurons would adapt to the current state trying to follow the agent’s trajectories.
Furthermore, a constant movement of the approximation would hinder the learning
of a steady policy as Q-Learning concurrently operates on the current approximation.

To prohibit this moving target and to guarantee a static approximation during
each episode, an additional set is introduced for each region: For every neuron n
the set of regional states Rn stores all states the agent visited in n’s region R(n) in
the current episode, i.e. all states s for which n = nn(s) held during the visit (cf.
Figure 7.8). After each episode, the centroid sn of Rn is computed for each neuron
n:

sn = 1
|Rn|

∑
s′∈Rn

s′ (7.4)

The actual movement after each episode is derived from the adaptation of the
generic GNG algorithm:

∆~wn = εb · (sn − ~wn) (7.5)

Here, each neuron n is moved towards the centroid sn from Equation (7.4) with
0 ≤ εb ≤ 1 determining the strength of the adaptation. Thus, each centroid sn of all
states visited in neuron n’s region R(n) during one episode resemble the samples as
targets of the adaptation. In this context, each visited state s of the reinforcement

112

7.6 Adapting the Approximation

n

(a)

n
sn

(b)

Figure 7.8: The neuron n is moved towards the centroid sn (◦ in (b)) of the regional states
to adapt to states that the agent has visited in the current episode (� in (a)).

learning task is part of the centroid sn1 of its nearest neuron n1 = nn(s) and has thus
also impact on the adaptation. Note, that in a first step all centroids are computed
and in a second step all neurons are moved towards their centroids. Due to the
resulting change in the layout it may of course happen that after or even during the
movement a state that was in the region R(n) of a neuron n during the episode (and
thus contributed to the centroid sn) is no longer in R(n) afterwards.

In the reinforcement learning context, the overall performance of the learning
agent depends on the layout (i.e. the positions of the neurons) of the approximation
as well as on the learned behavior on the current approximation. Too extensive
changes in this layout may temper the performance and thus, the delayed adaption
helps to increase the stability of the approximation as the approximation’s layout
remains static throughout each episode.

7.6.2 Differences to the Adaptation in the Generic GNG

While in the generic GNG every neuron is moved regardless of any condition, we
here move a neuron n only if its associated error value is larger than a threshold ∆
(e.g. ∆ = 1). The intention is to not move a neuron which is well positioned and
has a useful Q-vector. It is intuitive to consider the neuron’s error for this purpose
as this error value is increased every time the policy in its region changes. Thus,
the performance in areas with high error values should increase by repositioning
the included neurons whereas neurons whose local policy was stable shall keep their
position. Conversely, if the errors of all neurons are small the policy has stabilized.

Furthermore, in the generic GNG approach, each neuron is moved towards every
presented sample x directly after the presentation of that very sample x while in
GNG-Q only the nearest neuron to a state s is influenced by s. Additionally, in GNG
each sample x has an (much smaller) influence on neurons outside the region of its
nearest neuron n1 = nn(x) as also the topological neighbors of n1 are moved towards
x whereas in GNG-Q no state has an influence on the adaptation of neurons outside
the region of its nearest neuron.

113

Chapter 7 Adaptive State Aggregation

7.6.3 Analysis of Our Strategy

Having neurons in areas that are visited frequently is beneficial as these regions
are important for reaching the goal of the reinforcement learning task at hand.
Theoretically the idea of regional states can be motivated with the help of the
so-called centroid condition: The centroid condition (Gersho and Gray, 1991) states
that the quantization error for a set of reference vectors is minimized if each reference
vector lies on the centroid of all data in its Voronoi region11. As we do not know
all states in one region, our approach of storing all states the agent visited in one
region R(n) can be seen as an approximation of all states s that are actually in the
region R(n) (i.e. Rn ⊆ R(n) ∀n ∈ Nt). To respect the approximative character of the
regional states, we only move neurons a fraction of the distance towards the centroid
of all those states instead of moving the reference vector directly on the centroid.
Additionally, regions are split if the policy changes too frequently which indicates
incompatible states. Especially in the beginning, the policy changes during learning
e.g. caused by the needed exploration, but after some time high error values will most
likely occur in impure regions. Thus, moving the neurons towards the centroids of
their regional states helps to minimize the quantization error which helps to improve
the performance of the learned policy.

As GNG-Q updates the approximation during learning, we have a moving target
for the learning goal. In the adaptation phase of our approach new neurons may be
added or existing neurons may be moved. Thus, these adaptions also change the
abstraction function because ψ is defined by the positions of the neurons and the
used distance measure.

After moving the neurons, one state s may be abstracted by a different abstract
state than before because it may now be in a different region. Additionally, if a
new neuron is added, the number of regions change and thus, states may be in a
different region after the refinement, too. The refinement also changes the domain
of the estimated Q-function but the influence is rather low as the Q-vector in the
two new regions is the same as before the insertion. Dead regions that are deleted
also change the domain of Q̂ but this does not influence the approximation as these
regions were not visited for a long time.

7.6.4 Remarks for the Implementation

To avoid the storage of all visited states in one region, a cumulative moving average
can be used, i.e. sn is updated according to

vk+1 = 1
k + 1 · (k · vk + st)

to compute the centroid of all states visited until the current step (Welford, 1962) as
presented by Knuth (1997).

11 This is the core idea of the Linde–Buzo–Gray algorithm (Linde et al., 1980) that successively
moves each reference vector to the centroid of its Voronoi region until the layout of the complete
network stops changing. This approach finds a local minimum of the squared-error distortion
measure.

114

7.7 Refining the Approximation

7.7 Refining the Approximation

Finding suitable criteria of when and where to refine the approximation is one of the
central challenges in adaptive resolution approaches for reinforcement learning (van
Otterlo, 2009). We here present the adjustments to the original GNG-appraoch as it
is described in Section 2.3.

As the generic GNG approach, the GNG-Q algorithm starts with a network
consisting of two neurons. Thus, at the beginning, the reinforcement learning agent can
only distinguish two regions and has two Q-vectors available to store its estimations
(cf. Figure 7.4). On the one hand, it is desirable to have as few neurons as possible
but on the other hand, there are of course situations when the network has to grow.
Especially in the beginning, the network needs to grow in order to improve the
learner’s performance.

It is important that the approximation consists of regions that need only one
Q-vector to express a useful behavior for every state in this region. We call a state
region pure, if all states mapped into that region are similar and require similar
behavior, i.e. the prototype Q-vector of this region’s neuron is appropriate for all
contained states. Impure regions contain states that require different Q-vectors to
derive a useful policy.

We follow a top-down approach in which an initially coarse approximation is
repeatedly refined in areas where the agent’s behavior can be improved. While the
Q-Learning algorithm learns the RL task on the approximated state space, the gained
experience is used to determine impure regions that need a higher resolution.

7.7.1 Error Measure

The growing neural gas algorithm described in Section 2.3 maintains a local error
variable for each neuron to determine where new neurons should be inserted. Usually,
the quantization error is used for this purpose. In general, the error has to be
a measure that shall be reduced and should indicate regions whose error will be
decreased by inserting further neurons into that region (Fritzke, 1996). For state
aggregation, the quantization error is not sufficient as it would only consider the
similarity in the state space but disregard the similarity in the action space.

The goal of the refinement is to split impure regions with incompatible states.
To design the error measure, we make use of the following observation: If the policy
in the region of one specific neuron changes often, this is evidence that the states in
this region require different behaviors and cannot be treated equally.

In GNG-Q, this error is expressed by counting changes in the local policy of
each neuron’s region. Initially, the resolution of the approximation is very coarse
and in each learning step, Q-Learning is applied to the current approximation (cf.
Figure 7.4). Regions that need refinement are identified by monitoring changes in
the policy learned so far: Every time, a Q-update causes that

arg max
a

Q̂t(n1, a) 6= arg max
a

Q̂t+1(n1, a) (7.6)

holds, the error for the current state’s region (i.e. defined by neuron n1) is increased
because the agent would now prefer a different action for this region. Thus, frequent
changes in the policy indicate the need to split.

115

Chapter 7 Adaptive State Aggregation

Regions with high error values are periodically refined as these region contain
states that have to be separated to learn a good policy. Regions with low error values
consist of states, that are compatible and a useful behavior for all of them can be
expressed with a single Q-vector. In each step, the error values of all neurons are
decayed by multiplication with a factor 0 < β < 1. This exponential decay emphasizes
recent errors.

7.7.2 Inserting New Neurons

As the error depends on the changes of the maximal policy in the corresponding
region, it is beneficial to add a new neuron close to the neuron with the maximal
error value. Thus, the newly inserted neuron can help to reduce the error in the
respective region. This intention is identical in the generic GNG approach.

In our work, we explore two different methods to insert a new neuron:

1. The new neuron is inserted identical to the insertion in the generic GNG.
2. New neurons are inserted by cloning an existing neuron.

For the first method, the reference vector of the a newly inserted neuron n+ is
positioned halfway between the neuron ne with the largest accumulated error and
the neuron nf that has the maximal accumulated error value of ne’s topological
neighbors. To exploit knowledge gained so far, the Q-vectors of those two neurons
are averaged to form the initial Q-estimation for the new neuron:

Q̂(n+, a) = Q̂(ne, a) + Q̂(nf , a)
2 ∀a ∈ A (7.7)

Additionally, the connection between ne and nf is removed and the new neuron n+
is connected to ne and nf .

The second method works by cloning the neuron ne with the highest error value
and perturbate ne and the new neuron n+ by a small amount to ensure that their
initial positions differ slightly. This splits the former erroneous region and supports
the creation of pure regions. The new neuron n+ is initialized with the Q-vector of
ne and connected to the same topological neighbors.

Both methods relieve regions in which the local policy changes often (e.g.
oscillating between different actions) by adding a new neuron n+ in the proximity
of the neuron ne with the highest accumulated error value. This results in a local
refinement of the approximation as a portion of the states formerly assigned to ne
will now be assigned to n+. The idea is that the new regions tend to be more pure.
Especially in the beginning, the policy changes during learning e.g. caused by the
needed exploration, but after some iterations high error values will most likely occur
in impure regions.

The difference between the presented methods is rather marginal: The first
method places the new neuron on the border of ne’s region while the second method
places the new neuron inside the region close to ne (cf. Figure 7.9). One advantage
of the second method is that it does not depend on the neighborhood connections.
In Figure 7.9(b) it can be seen that the region of neuron ne is split approximately in
half while the surrounding regions are only marginally affected.

116

7.7 Refining the Approximation

ne

(a)

ne

n+

(b)

Figure 7.9: The region of the neuron ne in (a) is refined by inserting the neuron n+ into
the vicinity of neuron ne.

? target
E

(a)

?

?

(b)

Figure 7.10: The approximation in (a) contains a small area (marked with E), in which the
policy learned so far is erroneous. If this area is visited often enough, the Q-updates cause
frequent changes in the local policy. After some time, this problem is resolved by adding a
new neuron in that region (b).

The generic GNG approach redistributes the error information by initializing
the error value of the new neuron n+ with a value derived from the values of ne
and nf . In contrast, GNG-Q resets the error values of all neurons present to zero to
reflect the fact that the abstraction function ψ has changed.

In both insertion methods, the Q-vector of the new neuron reuses knowledge
gained so far: In the method that “clones” the neuron with the error, it is useful
to also copy the Q-vector as it contains values that have been learned for this area.
For the second method, the new Q-vector is interpolated from the Q-vectors of the
neurons between which the new neuron is inserted.

See e.g. Figure 7.10 where the current approximation contains a small re-
gion (marked with E) that causes problems with the currently learned policy (Fig-
ure 7.10(a)). The policy changes frequently as the agent learns that in that region
“going right” is better than “going up” as the policy suggests. This is evidence that the
current approximation includes regions with incompatible states. After the refinement
(which is done identically to the insertion of the generic GNG), the approximation
allows the agent to learn a proper policy (Figure 7.10(b)).

117

Chapter 7 Adaptive State Aggregation

7.8 Stopping Criteria

As mentioned before, finding the right time to refine the approximation is a severe
challenge. Clearly, this includes finding the time of when to stop the adaptation
process (van Otterlo, 2009). Otterlo terms this the stability-plasticity dilemma as it
is a trade-off between allowing the approximation to adapt (plasticity) and keeping
the approximation stable in order to reduce variance (stability). In the generic
GNG algorithm (Fritzke, 1994b) all parameters are constant over time to allow
an adaption to changes in the distribution of the input space. This behavior can
introduce over-fitting as more and more neurons would be added to the network.

A simple stopping criterion could be constructed by limiting the maximal number
of neurons. However, the determination of a useful bound would require either much
domain knowledge or extensive experiments with different thresholds. The goal of an
adaptive state-space abstraction should therefore be to automatically stop growing
when the approximation is fine enough to represent all relevant information of the
state space.

One common approach in machine learning to avoid over-fitting in supervised
learning tasks is the use of a validation set to monitor the current performance of
the learning algorithm. Although we usually have no information about the correct
behavior in RL tasks, a stopping criterion based on the validation set approach could
be constructed by drawing an expressive (or in the absence of domain knowledge a
large enough randomly chosen) set of initial states and to follow the maximal policy
until a terminal state is reached. If the performance on this set is well enough, the
insertion of neurons can be stopped. Furthermore, the movement and the removal
of isolated neurons are stopped and the state-space approximation is fixated. The
error information however is updated continuously to enable the network to resume
movement and growing if the performance decreases.

In the GNG-Q approach, we refine the approximation after an episode, if∑
n∈Nt

error(n) > |Nt| (7.8)

holds and at least λinsert episodes have passed since the last insertion of a new neuron.
Thus, the refined approximation can be adapted for some time and the Q-vectors for
the new approximation can be learned accordingly. Of course, one could refine the
approximation whenever the sum of all errors is larger than zero. However, this might
cause a too fine approximation, as sometimes a change in the policy is inevitable.
The motivation for the condition above is, that on average each neuron is “allowed”
to change its policy once per episode.

The condition stated above implicitly provides a stopping criterion for adjust-
ments to the approximation: If the errors of all neurons are small, this is evidence,
that the overall policy has not changed often since the last insertion and the current
policy can be expressed sufficiently with the current resolution. GNG-Q uses the
above criteria on the error to decide when the approximation should be refined or
moved.

After the state-space approximation is fixed, our algorithm reduces to the generic
Q-Learning algorithm and updates the Q-vectors for the neuron-action pairs on the
approximation.

118

7.9 Eligibility Traces for State Regions

7.9 Eligibility Traces for State Regions

One way to deal with reinforcement learning tasks that have scarce or long delayed
rewards is the use of eligibility traces (Dayan and Sejnowski, 1994). Although requiring
more computation time per iteration they usually offer faster learning (Sutton and
Barto, 1998). Eligibility traces combine features of both temporal difference methods
and Monte Carlo methods.

Eligibility traces keep track of all state-action pairs the agent encountered
during the current episode and offer a means to distribute immediate reward to
all state-action pairs (s, a) that have been visited before. The strength of this
“backpropagation” is done according to each state-action pairs’ eligibility e(s, a). This
counter is increased by 1 every time the action at is performed in the current state st
and if at is the action with the highest Q-value for state st. If at is not the maximal
action, the eligibility traces for all state-action pairs are reset to zero. Additionally,
each e(s, a) is decayed by a factor λ ∈ [0, 1] for all state-action pairs:

et+1(s, a) =

γλ(et(s, a) + 1) if s = st and a = at = a?

0 if at 6= a?

γλet(s, a) if s 6= st or a 6= at

(7.9)

with a? = arg maxa′ Q̂t(s, a′). Thus, reward or punishment can be credited for all
state-action pairs that were “responsible” for it. If the agent performs an exploratory
action (i.e. an action that has not the highest Q-value for the current state), the
eligibility traces are cut off.

The method used here is called Watkins’s Q(λ) (Sutton and Barto, 1998);
for a comparison of other approaches see (Sutton and Barto, 1998; Dayan and
Sejnowski, 1994). In every update, the temporal difference error δt is computed as
δt = r−Q̂t(st, at)+γmaxa′ Q̂t(s′t, a′) between the current state st and the succeeding
state st+1. This value is added to the Q-value of every state-action pair:

Q̂t+1(s, a) = Q̂t(s, a) + αtδtet(s, a), ∀s ∈ S,∀a ∈ A (7.10)

Thus, the reward received for performing at in state st influences the learned
Q-function along the actions derived from the greedy policy instead of only directly
affecting Q̂(st, at).

The transformation of this approach to neurons is straightforward: For each
neuron n, we use et(n, a) to express the eligibility for this neuron-action pair (compare
Algorithm 4). In fact, this is identical to using eligibility traces on the abstract MDP
M̂.

7.10 Complete Algorithm

Algorithm 4 summarizes the pseudo code for our GNG-Q approach. To deal with
different sized dimensions, it is useful to scale the values of the states to be from the
same interval. A common approach is to normalize (Chakrabarti et al., 2008) a value
x ∈ [xmin , xmax] to a value xscaled ∈ [xmin

scaled , x
max
scaled] such that

xscaled = x− xmin
xmax − xmin

·
(
xmax

scaled − xmin
scaled

)
+ xmin

scaled .

119

Chapter 7 Adaptive State Aggregation

Thus, the distance function employed in the nearest neighbor rule weights all dimen-
sions equally and no dimension will be favored just because its values are from a
larger scale. In our approach we use a normalization to the interval [0, 1].

In line 7 of Algorithm 4, the agent selects its next action. At this point, it can
either use the best action at this point (derived from the greedy policy as given in
Equation (7.3)) or a random action to explore possibly better strategies. Usually
we use the standard ε-greedy approach (i.e. the agent chooses a random action
with probability ε and the maximal action with probability 1− ε) but clearly, any
exploration scheme may be employed.

7.11 Analysis

In this section, we analyze the GNG-Q approach. First, we analyze the computational
complexity of the GNG-Q approach. And second, we investigate the possible creation
of non-determinism that may happen even in deterministic MDPs. Finally, we show
an example of a state aggregation performed by GNG-Q.

7.11.1 Computational Complexity

We here analyze the complexity of our GNG-Q approach that is depicted in Al-
gorithm 4. Note that due to the learning mode of reinforcement learning, several
episodes each with an unknown number of steps are required to learn a satisfiable
behavior. Our analysis thus only covers the runtime independent of these factors.
For the interaction with the environment we assume that the agent can perceive the
current state in time O(1).

The initialization in line one can be done in O(|A|) which is—due to the fact
that the number of actions is constant—constant time. For each episode, the lines
three and four have to be executed which both cost O(|Nt|) where |Nt| is the number
of neurons at timestep t.

The rest of the approach can be split into four parts (we only discuss the
instructions that cannot be done in constant time):
Maintaining the Error Values In the process of refining the approximation (line 33)

after an episode, the neuron with the highest error value has to be determined.
Concurrently, the errors of the neurons are adjusted in every episode: In line
13, the errors are discounted and in line 27 the error is potentially increased
due to changes in the policy. Thus the naïve approach results in a list with a
linear runtime of O(|Nt|) for both the updates as well as the selection of the
neuron with the highest error value. Concurrently, the ages of the neighboring
neurons can be adjusted as well.
One could improve the error handling by using a lazy heap (Fišer et al., 2013):
The combination of a heap with a “waiting” list allows the update to be
performed in O(log |Nt|) and the selection of the neuron with the highest error
value in O(1).

Policy The computation of the nearest neuron necessary for the policy (lines 7–8) and
the computation of the estimation for the succeeding state (line 10) can easily
be done with a linear search that has a runtime of O(|Nt|). Tree structures (as

120

7.11 Analysis

Algorithm 4: GNG-Q
1 add two neurons n′, n′′ with random reference vectors and

Q̂(n′, a) = Q̂(n′′, a) = 0, ∀a ∈ A
2 foreach episode do
3 initialize regional states Rn = ∅, ∀n ∈ Nt

4 initialize eligibility traces: e(n, a) = 0, ∀n ∈ Nt, ∀a ∈ A
5 while episode not finished do

/* interaction with environment */
6 observe current state st and determine nearest neuron n1 = nn(st)
7 select and perform action at
8 observe subsequent state st+1, identify nearest neuron n′1 = nn(st+1)

/* update neurons */
9 visits(n1, at)← visits(n1, at) + 1

10 store st in n1’s regional states: Rn1 ← Rn1 ∪ {st}
11 discount errors for all neurons
12 connect neurons n1, n

′
1

13 increase age of all neighborhood connections of n1

/* update Q̂ */
14 αt = 1

visits(n1,at)ω

15 δt = r − Q̂t(n1, at) + γmaxa′ Q̂t(n′1, a′)
16 et+1(n, a)← et(n, a) + 1
17 foreach neuron n ∈ N do
18 foreach action a ∈ A do
19 Q̂t+1(n, a)← Q̂t(n, a) + αtδtet(n, a)
20 if at = arg maxa′ Q̂t(st, a′) then
21 et+1(n, a)← γλet(n, a)
22 else
23 et+1(n, a)← 0

/* Monitor changes in policy */
24 if arg maxa Q̂t(n1, a) 6= arg maxa Q̂t+1(n1, a) then
25 increase error(n1)

/* Adaptation of approximation */
26 foreach neuron n ∈ Nt do
27 if error(n) > ∆ then
28 compute centroid sn of regional states for neuron n:

sn = 1
|Rn|

∑
s′∈Rn

s′

29 adaptation of neuron n to sn:
~wn ← ~wn + εb · (sn − ~wn)

/* Refinement of approximation */
30 if

∑
n∈Nt error(n) > |Nt| then

31 insert new neuron in most erroneous region

121

Chapter 7 Adaptive State Aggregation

e.g. a k-d tree) that partition the space into a binary tree are not applicable
since the neurons are continuously moved, which would require many (rather
expensive) insertions.
Fišer et al. (2013) suggest to store the neurons in a grid structure that allows
linear runtime for the updates and “near constant” time for the search of the
nearest neuron.
Additionally, O(|A|) time is needed to select the action with the highest Q-value
(line 8).

Eligibility Traces The computation of the eligibility traces needs time O(|Nt||A|)
and is thus rather costly but they usually improve the learning time in terms
of episodes for the agent.

Adaptation The adaptation of the neurons after each episode (i.e. the movement in
lines 28–31) can clearly be done in linear time.
Thus, each episode (that consists of e steps) needs O(e · (4 · |Nt|+ |A|+ |Nt| ·

|A|) + |Nt|) with the naïve approach and O(e · (|Nt|+ |A|+ log |Nt|+ |Nt| · |A|) + |Nt|)
with Fišer et al.’s approach.

With these results, each episode can be done in O(e · |Nt| · |A|) with a naïve
implementation. Using the improvements of Fišer et al. (2013) would also lead to an
asymptotic runtime of O(e · |Nt| · |A|) which could be improved to O(e · |Nt|) if the
eligibility traces were omitted. Nevertheless, even with eligibility traces the overall
performance of Fišer et al.’s approach is clearly an improvement.

Especially after learning, the usage of a tree-based structure to store the knowl-
edge is highly beneficial in terms of storage and computation time for policy.

Corollary 10 (Complexity of GNG-Q). With a naïve implementation, each
episode with e steps of GNG-Q can be done in time O(e · |Nt| · |A|) where |Nt| is the
number of neurons at time t and |A| is the number of actions of the reinforcement
learning task. This could be improved to O(e · |Nt|) using Fišer et al.’s (2013) approach
and omitting the usage of eligibility traces.

7.11.2 “Induced Non-Determinism”

Even in deterministic environments—i.e. the state transition function as well as
the reward function is deterministic—the aggregation of states can introduce non-
determinism in the abstract MDP: Consider the situation in a shortest path scenario
depicted in Figure 7.11: If the agent performs the action “go right” in one of the
states abstracted by the region ŝ1, then, depending on its location in this region,
the subsequent state can be “in” the abstract state ŝ2 or ŝ3. As the agent updates
its estimates of Q̂(ŝ1,→) depending on the Q-vector of the succeeding state, the
Q-values are prone to oscillate. This problem occurs, if there are at least two states
s1, s2 in one region ŝ that result in states that are abstracted by different abstract
states after performing the same action, formally:

∃s1 6= s2 ∈ ŝ,∃a ∈ A : ψ(T(s1, a)) 6= ψ(T(s2, a)). (7.11)

This kind of non-determinism can be caused by irregularly shaped regions
(as in the GNG-Q approach, cf. Figure 7.11(a)) but may also occur whenever
transitions between differently sized abstract states are possible (cf. Figure 7.11(b)).

122

7.11 Analysis

ŝ1 ŝ2

ŝ3

→ ↑

↓

(a)

ŝ2↑
→ŝ1

ŝ3↓

(b)

Figure 7.11: Induced non-determinism in different approximation schemes: The action →
in ŝ1 may lead to different succeeding states depending on the actual state that is abstracted
to ŝ1. If the action → is performed above the dotted line in (a) or (b) then the agent ends
up in a state that is abstracted by ŝ2 and in a state that is abstracted by ŝ3 if the action
was performed below the dotted line.

In (Fernández and Borrajo, 2008), this non-determinism is also called “the loss of
the Markov property” as the subsequent state ŝt+1 now not only depends on ŝt but
also the actual state st of the original MDP and on the (actual) states visited before
time t.

To improve the dealing with this non-determinism in the abstract MDP, we
equip GNG-Q with a decreasing learning rate αt that guarantee

∑
t

αt =∞ and
∑
t

α2
t <∞ . (7.12)

Note, that this is the same condition on the learning rate as given by Watkins and
Dayan (1992) for the convergence of Q-Learning.

Following the idea of (Even-Dar and Mansour, 2003a), such a learning rate can
be constructed as

αt = 1
1 + visits(ŝ, a)ω (7.13)

where visits(ŝ, a) refers to the number of how often action a was executed in the
abstract state ŝ and ω is a constant to regulate the decrease of the learning rate
over time. To fulfill the condition above, 0.5 < ω ≤ 1 has to hold. This learning rate
decreases the influence of updates of each (ŝ, a) over time and helps to reduce the
oscillation of the Q-values.

Abstracting states transforms the learning task into a partially observable MDP
(POMDP) (Singh et al., 1994; van Otterlo, 2009). Unfortunately, the improvement
mentioned above does not provide a solution for the POMDP, yet it introduces more
stability to the learning process: The core difference to “normal” non-determinism
(that can successfully be solved by reinforcement learning) is the fact that the abstract
successor state is not drawn identically distributed for a given abstract state and a
given action but this distribution differs for different actual states that are abstracted
by the same state (cf. Figure 7.11).

123

Chapter 7 Adaptive State Aggregation

1

10
0

Figure 7.12: Example policy learned by GNG-Q.

7.11.3 Example Abstract State Space

Finally, we show an example of the state spaces computed by GNG-Q. The learning
task is similar to that used later in the evaluation: The agent is situated in a grid
world as in Figure 10.16 on page 180 with the target located at (1, 1). The goal
of the agent is to find the shortest paths from any position in the world to the
target. For this, it perceives the continuous state that consists of its position (x, y)
with x, y ∈ [0, 1]2 ⊂ R2. It can perform steps of length 0.05 in any of the cardinal
directions.

In Figure 7.12, an example policy of GNG-Q is shown. It can be seen that
the neurons arrange more closely around the target resulting in a finer resolution
while the region farther away from the target is broader. This makes sense as for
the states more distant from the target it is useful to first “somehow” walk in the
correct direction while the closer the agent gets to the target, the more accentuated
the agent’s behavior becomes.

Figure 7.13 shows a heat map that plots the distribution of all neuron positions
in the final episode of 100 runs. It can be seen that most of the neurons are located
on the diagonal towards the target. The heat map underlines the explanation given
before: More neurons are located close to the target while the area farther away from
the goal has in general a broader generalization.

7.12 Conclusion

We presented GNG-Q, a combination of Q-Learning and growing neural gas (GNG)
that builds a state-space aggregation for reinforcement learning while the agent
interacts with its enclosing environment. Our core idea is to use the GNG quantizer
to aggregate similar states into regions that can be treated equally. GNG-Q refines
regions where the learner’s estimated policy changes often as this is evidence for
a region that consists of incompatible states. Thus, similarity in both the state

124

7.12 Conclusion

Figure 7.13: Heat map of the neurons’ distribution over 100 runs.

and action space is respected. Of course, such approaches are only applicable if the
reinforcement learning task contains states that are neighboring and share the same
behavior—fortunately, this is usually the case.

The local refinement in erroneous regions improves the policy without affecting
distant regions and is called “hard competitive learning” (Fritzke, 1998). The adaption
of the approximation used in GNG-Q can be seen as parameter exploration as
discussed e.g. by Rückstieß et al. (2010).

Our approach builds an approximation of the state space that is suitable to the
particular reinforcement learning task in parallel with the learning. The Q-function
in our approach is defined over neurons and actions and can be learned with tabular
Q-Learning using one entry for every neuron-action pair. All states in one state
region are treated equally, i.e. they all share one prototype Q-vector which leads to a
piecewise constant approximation of the Q-function.

After finding a sufficiently fine approximation of the state space, each region
consists of states that have the same optimal action. Then, our approach reduces to
generic Q-Learning—now on a smaller and discrete state space. Advantages of GNG-
Q include that knowledge achieved during learning is used to refine the approximation
which supersedes the need of deciding on the granularity of approximation beforehand.
Additionally, GNG-Q works online (i.e. at any time during learning, the agent can
make use of the knowledge acquired so far) and does not need the model of the
reinforcement learning task to compute an efficient discretization.

The agent needs to store solely the positions and the prototype Q-vectors of
the neurons which results in a very compact representation. The state aggregation
function is covered by the nearest neighbor rule and thus, this approach is well
suitable for an implementation on robots. One additional possible application of

125

Chapter 7 Adaptive State Aggregation

GNG-Q could be the usage as preprocessing step for other reinforcement learning
algorithms: GNG-Q is used to compute an approximation for the RL task and then,
every state-action pair is initialized with its estimation. After this, Q-Learning (or in
fact any tabular reinforcement learning algorithm) can be used to adjust the values
such that the optimal solution is found. This idea is similar in spirit to transfer
learning as e.g. reported by Barrett et al. (2010) and might reduce the time needed
while still ensuring to find the optimal solution.

126

8
Adaptive Function Approximation

As argued before, it is highly beneficial to add generalization to reinforcement learning
and thus enabling the transfer of experience to unseen but similar states to speed
up learning and to exploit gained experience more efficiently. Contrary to Chapter 7
where we aggregated states into state regions (i.e. we approximated the state space
with a state-space abstraction), we here introduce the Interpolating GNG-Q (I-GNG-
Q) that learns an approximation of the value function of the reinforcement learning
task at hand.

Different approaches to approximate the value function exist, including the use
of radial basis functions (RBFs) (Menache et al., 2005; da Motta Salles Barreto and
Anderson, 2008) or by using other approximation methods (e.g. (Konidaris et al.,
2011; Whiteson and Stone, 2006)). For detailed overviews of other approaches, we
again refer to (Buşoniu et al., 2011a; van Otterlo, 2009).

Although GNG-Q offers many advantages and performs well in different rein-
forcement learning tasks, we here introduce an additional approach that uses the ideas
of the GNG-Q-framework. Figure 8.1 illustrates the core idea of the new I-GNG-Q
approach: While in GNG-Q all states in one region have the same Q-vector (which
leads to a piecewise constant value function) here the Q-vector for a state is computed
as combination of several prototype Q-vectors (that are assigned to neurons) and
that the strength of each neuron’s influence depends on the distance to the state.

In Figure 8.1(a) it can be seen, that GNG-Q would treat the states s1 and
s2 identically as both are in the region of the neuron n1. Nevertheless, the state
s2 is close to the boundary of neuron n2’s region and due to adaptations of the
approximation (i.e. movement of neurons), the state may even fall into this region. It
seems natural to assume, that the knowledge at the position of state s2 may resemble
a mixture of the knowledge encoded at the positions of neurons n1 and n2.

Our new approach also takes this into account: The Q-vector for state s1 most
strongly relies on the Q-vector associated with n1 but also considers neuron n2’s
Q-vector. Similarly, the Q-vector for s2 consists of two nearly equal portions of both
neurons’ Q-vectors (although clearly the influence of n1 is stronger since this neuron

127

Chapter 8 Adaptive Function Approximation

n1 n2

s1

s2

(a)

n1 n2

s1

s2

(b)

Figure 8.1: Two states s1, s2 in the same region of n1 are treated differently in GNG-Q and
I-GNG-Q: In (a) it can be seen that GNG-Q treats s1 and s2 identical while (b) shows that
I-GNG-Q computes the estimation for a state by combining several neurons of this state’s
vicinity.

is the nearest neuron to s2).
We implement this extension in a more general way: Instead of only using the

two nearest neurons, we consider the k nearest neurons and derive the influence of
each neurons’ Q-vector with the method just mentioned. In fact, the borders depicted
in Figure 8.1 are no longer present in the approximation for k > 1.

We use the idea of combining a growing neural gas and Q-Learning from the
GNG-Q-framework and include the aforementioned ideas in order to further improve
the performance of the approximation. In summary, the new I-GNG-Q approach has
the following features:
• distance-based interpolation between learned prototype Q-vectors computes a

smooth value function approximation:
• eligibility traces to features to speed up learning
• shares the advantages of GNG-Q: operates online and does not need the
underlying model of the considered RL task

• as the computation of exponential functions used for RBFs is usually very slow
(Schraudolph, 1999), the inverse distance weighting used here is a performant
alternative

• incorporates an update rule that is proven to not diverge (Reynolds, 2002)
The key difference between GNG-Q and I-GNG-Q is that GNG-Q approximates

the state space by aggregating similar states while I-GNG-Q directly approximates
the value function of the reinforcement learning agent.

The main results in this chapter are the following:
• We motivate the use of a distance-based interpolation between Q-vectors
to respect the distance of a state to its nearest prototype Q-vector and to
incorporate several prototype Q-vectors in Section 8.1.

• In Section 8.3 we describe when it is useful to change the approximation and
when this adjusting should be stopped.

• The core idea of the I-GNG-Q approach is described in Section 8.4 where
we present the inverse distance weighting approach to derive a smooth value
function.

• In Section 8.5, we show how the I-GNG-Q approach modifies the agent’s policy

128

8.1 Motivation

with an improved update rule that is proven to avoid divergence (Reynolds,
2002).

• We present a theoretical model of value function approximation in reinforcement
learning and show how to include eligibility traces that allow a more efficient
use of experience in Section 8.2.1.

• Section 8.7 analyzes the computational complexity of the I-GNG-Q approach
and Section 8.8 compares GNG-Q and I-GNG-Q.

Additionally, Section 8.6 presents the pseudocode of the I-GNG-Q approach and
Section 8.9 concludes this chapter. Parts of this chapter are based on (Baumann and
Kleine Büning, 2014) which is the extend version of (Baumann and Kleine Büning,
2012).

8.1 Motivation

As Chapter 7, this chapter also deals with the approximation of reinforcement
learning tasks with huge or even continuous state spaces. Nevertheless, we here
employ a perspective that is different than before: I-GNG-Q directly approximates
the value function V instead of aggregating states and concurrently learning on that
approximated state space.

8.1.1 Benefits of Function Approximation

As already motivated in Section 7.1, the use of generalization highly improves the
efficiency of reinforcement learning in complex tasks.

In the general reinforcement learning setting, for each state s and each possible
action a the value Q̂(s, a) is stored in some kind of tabular representation. The
GNG-Q approach presented in the preceding chapter also stores the learned behavior
for each abstract state and each action of the agent in e.g. a table.

One challenge while computing a policy on a state aggregation in parallel with
updates to that aggregation is the fact that the value function may have steep
transitions and changing the layout of the approximation may have a large impact
on states close to the borders. Especially, two states of the original MPD that are
neighboring but that are assigned to different abstract states may have Q-values that
differ significantly even though the states in question may be arbitrarily close (in
the case of continuous environments). Of course, this may also apply even to states
that are not located at a border between abstract states. A potential cure for this
exact problem is an approach called soft partitioning that allows the abstract states
to overlap and to thus smoothen the borders between the abstract states (Bertsekas
and Tsitsiklis, 1996).

We here implement the approach of directly approximating the value function
of the reinforcement learning agent in an adaptive approximation scheme similar to
the one introduced before. In that setup, the former Q-table with an entry for every
state-action pair is replaced by a functional representation that is parameterized by
a weight vector ~θ (Sutton and Barto, 1998). Usually, in this approach the number
of parameters is much smaller than the number of all possible state-action pairs
the agent could encounter in the original reinforcement learning task and thus, the

129

Chapter 8 Adaptive Function Approximation

complexity primarily depends on the dimensionality of the state space rather than
on its size (van Otterlo, 2009).

In contrast to the table-based approach that is often employed in reinforcement
learning, where each possible state of the environment has one entry in a table we
here use a feature vector φ(s) to describe a state s. Usually, this allows a more
compact representation by mapping the state space into a feature space (i.e. as the
states are now represented by features, the associated search space is given by the
combination of all features). This set of features can be built in diverse ways as we
will discuss in the following.

8.1.2 Related Concepts

Although we here use a different approach to enrich the reinforcement learning
agent with an approximation than in Chapter 7, the goal of approximating the value
function is the same. We introduce generalization, i.e. we aim to enable the agent to
transfer knowledge from experienced states to unseen states that may be similar to
the ones already seen.

Approximating the reinforcement learning value functions can be done using
different approaches, e.g. by using radial basis functions (RBFs) (Menache et al.,
2005; da Motta Salles Barreto and Anderson, 2008) or by using other approximation
schemes (e.g. (Konidaris et al., 2011; Whiteson and Stone, 2006)). For detailed
overviews of other approaches, we refer e.g. to Section 3.3 or (Buşoniu et al., 2011a;
van Otterlo, 2009).

As we will see in Section 8.2.1, each state is here represented by a feature vector.
A convenient way to obtain such a feature description is using an approach similar
to neural networks where the hidden neurons’ activation functions are radial basis
functions (for generic radial basis function networks see e.g. (Haykin, 1998)). Here, the

feature value of the i-th center ci for state s is computed by φi(s) = 1√
2πσi2

e
−d(s,ci)

2σi2

where σi is the “width” of the bell-curved function and d(s, ci) is the distance between
the state s and the center ci of the function. Although being influenced by all centers
ci of the network, the activation is highest in close vicinity of s.

Although similar in concept, (Konidaris et al., 2011) uses the Fourier basis
to compute the features for a given state. Slightly more different is the approach
presented by Whiteson and Stone (2006) that used a neural network trained by an
evolutionary algorithm to approximate the agent’s value function.

Drawbacks of such approaches often include runtime issues as the reinforcement
learning task at hand has to be solved several times (i.e. once for each level of
granularity of the approximation) or they require knowledge of the underlying MDP.
Additionally, some approaches need batches of historic interactions of the agent:
While this is sometimes useful, it cannot be used in online learning.

As the computation of exponential functions used for RBFs is usually time
consuming (Schraudolph, 1999), the inverse distance weighting used here is a perfor-
mant alternative. Additionally, the basis functions incorporated in approximation
algorithms require to be designed a priori: Often, the algorithm heavily relies on
proper choices of the relevant parameters (Ponsen et al., 2009). Additionally, infor-
mation about the shape of the value function to be approximated is often required.

130

8.1 Motivation

Without this information, such approaches often compensate with a (too) fine uniform
resolution throughout the state space (Buşoniu et al., 2008).

8.1.3 Challenges in Function Approximation

A problem that may occur with approximations for reinforcement learning is called
exaggeration: Learned values can be overestimated which can lead to divergence in
the worst case (see e.g. (Thrun and Schwartz, 1993; Wiering, 2004)). This problem
can occur if the estimats of the current state and the following state share parameters
and thus errors in one state may lead to errors in other, depending states. Especially,
the max operator in the temporal difference in Equation (8.3) can exaggerate the
imprecise estimates of the learned value function. This problem is worsened if the
agent stays (e.g. due to exploration) in specific areas of the state space.

Basically, there exists a trade-off between generalization and locality: On the
one hand, a broader generalization affects more states and thus, the learner can use
its experience more efficiently. On the other hand, updates that only affect small
portions of the state space are less prone to overestimation: In the extreme case,
every state of the state space has its own feature which is equivalent to having a
table based approach.

A different trade-off has been noted by Sherstov and Stone (2005): There,
approximation approaches are said to balance “representational power, computational
costs, and ease of use”. Otterlo (2009) addresses a similar trade-off; for him the
relevant elements are computational costs to build and maintain the approximation,
the possibility of allowing the agent to learn the correct task, and added benefits of
the approximation.

8.1.4 Learning Goal in Adaptive Function Approximation

Similar to the goal in state-space aggregation, we here aim to find an approximation
of the value function that allows the agent to learn a useful policy in the original
MDP. One difference is the fact that we here only work on this original MDP instead
of creating an abstract MDP as in GNG-Q.

Nevertheless, the learning of knowledge in parallel with its representation re-
mains a challenging task. Indeed, one challenge in the training of adaptive function
approximations arises from the fact that two learning tasks have to be solved: The
first task is concerned with learning or updating the layout of the approximation.
In our case this means the number as well as the positions of the neurons. The
second task is to use the approximation to learn the best policy for the reinforcement
learning task at hand. Here, this boils down to updating the weight vectors1 ~θn for
each neuron n.

In classical function approximation this task is usually an instance of supervised
learning which means that the correct values for a given set of data points is known
beforehand. Usually supervised learning approaches iterate numerous times over this
training set until the performance of the learned function is satisfying. In the cases of
adaptive value function approximation in reinforcement learning, the target value (i.e.
the value of the value function) for an input (i.e. a state) is not known in advance.
1 See Section 8.2.1 for the general model of function approximation in reinforcement learning.

131

Chapter 8 Adaptive Function Approximation

These values are updated during learning which leads to constant changes of the
target. Since the trajectories of the agent depend on the value function as well, even
the strategy that samples training data changes over the time of learning.

Note, that these two learning tasks are mutually dependent: Changes in the
policy of the learning agent may lead to changes in the approximation (insertion of
new neurons or repositioning of existing neurons, cf. Section 7.7 and Section 7.6).
On the other hand, the performance of the learned policy also highly depends on the
current approximation (see e.g. the example given in Figure 7.2) as the agent must
have an appropriate approximation to cover all possible situations.

8.1.5 Benefits of Our Approach

Together with a rule that updates prototype Q-vectors depending on their influence
on the current state, experience is generalized not only inside one region (as e.g.
in the GNG-Q approach presented in Chapter 7) but also to Q-vectors outside the
current region. In Section 8.5 we equip our approach with an averaging update
rule inspired by the work of Reynolds (2002) that is proven to not exaggerate and
that thus prevents the aforementioned problems for function approximation which
have also been reported e.g. by Thrun and Schwartz (1993), Reynolds (2002), or
Wiering (2004). Additionally, we incorporate eligibility traces to further increase the
performance of the approximative reinforcement learning approach (cf. Section 7.9
where we implemented this approach for state aggregation).

The I-GNG-Q approach and GNG-Q share the advantage of using GNG that
is quite insensitive to its parameter setting. One general advantage of using “grow-
ing” approximation approaches is the fact that they usually start with a coarse
approximation that is refined which usually leads to smaller approximators.

New to I-GNG-Q is the combination of several prototype Q-vectors to from the
value for a given state which offers several advantages. First, the interpolation between
numerous prototype vectors offers a smoother value function than the piecewise
constant function from state aggregation approaches. Second, the combination of
more than one prototype Q-vector helps mitigating the negative impacts of possibly
wrong estimations. Additionally, the distances between the state and the nearest
neurons also play an important role in determining the estimated value which
improves the performances especially for states that are rather far away from their
nearest prototype Q-vector. Thus, nearby neurons have a larger impact on states
than neurons farther away.

Figure 8.2 presents the I-GNG-Q approach in Sutton and Barto’s (1998) agent-
environment cycle. In each step, the agent perceives the current state st of the
environment (1). This state is then fed into the GNG state quantizer where the k
nearest neurons to st are computed. For each of these neurons, the associated weight
vector is derived and all these information are fed into the function approximator.
There, the estimate Q̂(st, ·) for st is computed such that the influence of each of the
k nearest neuron’s weight vector depends on the distance of the respective neuron
to st. From this resulting Q-vector, the agent can derive a greedy policy. During
learning, the agent may use some exploration strategy (e.g. ε-greedy) to determine
the next action at. After performing (2) this action at, the environment responds
(3) with a reward rt = r(st, at) that represents the immediate value of performing at

132

8.2 Function Approximation for Reinforcement Learning

Agent

Environment

st

at

st+1

r(st,at)

(1)

(2)
(3)

(4)

update error

update Q-value

GNG
StateFQuantizer

weightF
vectors

Function
Approximator

Q-Learning

Figure 8.2: I-GNG-Q in Sutton and Barto’s (1998) agent-environment interaction.

in state st and simultaneously transitions (4) into a subsequent state st+1. While
learning, this reward and the estimate Q̂(st+1, ·) for st+1 is used by the agent to
update its estimation of the Q-function (dotted lines in Figure 8.2). If this update
leads to a change in the maximal policy, the error variable of the nearest neuron n1
to st is updated to indicate the possible need for refinement in this region.

To summarize, the approximation computed by I-GNG-Q has the following
properties:
• Estimated Q-values are built as combination of several prototype Q-vectors.
• The distance between the state and each of the nearest neurons affects their
prototype Q-vector’s influence on the estimation.

• Well balanced trade-off between locality and broadness of the influence both
for the computation of Q-vectors and for their update.

• Neither exaggeration of the feature function nor of the update.

8.2 Function Approximation for Reinforcement Learning

Different to the approach presented in Chapter 7, we here strive to represent the
agent’s value function with a parameterized function. Usually, these function approx-
imations have an exponentially smaller number of parameters than the number of
state-action pairs in the original MDP (van Otterlo, 2009).

Solving the reinforcement learning task while simultaneously adapting the ap-
proximation is hard to achieve and thus, most methods use a fixed level of abstraction
(e.g. a handmade setup of radial basis functions with predefined parameters) during
learning (van Otterlo, 2009).

A crucial challenge with using function approximations (in general as well as
in the context of reinforcement learning) is the requirement that a function should
produce reasonable results throughout the function’s domain given only a very limited
set correct (labeled) data to rely on. In this context, it has to be ensured that the

133

Chapter 8 Adaptive Function Approximation

samples from the known data are representative for the structure of the task such
that anything that is learned with these data can be extended to usefully operate in
the real task.

8.2.1 Theoretical Model

Amongst many others (for detailed overviews see e.g. (Buşoniu et al., 2011a) or (van
Otterlo, 2009)), one approach to deal with large or continuous state spaces is to use
a functional representation for the learned values that is parameterized by weight
vectors ~θ (Sutton and Barto, 1998). Depending on the behavior of the employed
function, updating these vectors affects the values of numerous states and thus, the
agent is able to generalize its knowledge. Often, linear functions

Q̂~θt(s, a) =
l∑

i=1
φi(s)~θt(i, a) (8.1)

of ~θ are used (Sutton and Barto, 1998; Melo and Ribeiro, 2007) where ~θt ∈ Rl×|A| is
a l × |A| matrix. The row vector ~θt(i) is associated with feature i and ~θt(i, a) is its
component for action a. Here, instead of having a table cell for every state-action
pair, l vectors ~θt(i) with |A| entries each are used as surrogate for the Q-vectors.

The feature vector φ(s) is a description of state s and consists of l features that
are independent of the action:

φ(s) = (φ1(s), . . . , φl(s)) ∈ Rl . (8.2)

Each of these features φi(s) measures the influence of the i-th component on the
state s and can be computed with different means (common choices include RBFs or
similar functions).

The learning of ~θ can e.g. be performed based on gradient descent (Sutton and
Barto, 1998; Melo and Ribeiro, 2007) (for brevity we write Q̂t(s, a) for Q̂~θt(s, a)):

~θt+1 = ~θt + αt∇~θ Q̂t(st, at)δt (8.3)

with the temporal difference

δt = r(st, at) + γmax
a′∈A

Q̂t(st+1, a
′)− Q̂t(s, a) (8.4)

and where ∇~θ Q̂(st, at) = φ(st) holds, if φ is a linear approximation. This learning
rule influences the values for all features and all actions where the strength of the
influence is determined by the feature vector φ(st) of the current state st.

8.2.2 Function Approximation with Eligibility Traces

As in GNG-Q (cf. Section 7.9) we include eligibility traces to the I-GNG-Q approach.
The transformation of this approach to features is straightforward: For each

feature (i.e. neuron) i, we use et(i, a) to express the eligibility for this neuron-action
pair and each et(n, a) is increased by the value of φn(st) for all features:

et+1(n, a) =

γλ(et(n, a) + φn(st)) if a = at = a?

γλet(n, a) if at = a? 6= a

0 if at 6= a?
(8.5)

134

8.2 Function Approximation for Reinforcement Learning

with a? = arg maxa′ Q̂t(s, a′). The value φn(st) can be considered as portion of
eligibility of feature (i.e. neuron in the remainder of this chapter) n: Since the weight
vector ~θ(n) of feature n contributed with the strength of φn(st) to the Q-vector of
the state st this fact should also be reflected in the distribution of the error. This
transforms the concept of eligibility traces from the case where we have a counter for
each state to feature based function approximation.

8.2.3 Classification of Approximation Approaches

In function approximation, the functions φi(s) are often referred to as basis functions
that in combination build the approximation. Such approaches can be classified along
several dimensions:
Fixed vs. Adaptable Fixed approximations are initialized once and never changed

(i.e. the learning that takes place only affects the knowledge stored in the
approximation and does not affect the approximation itself). On the other
hand, adaptable approximators may also e.g. change the parameters or even the
granularity of the approximation. This is a great advantage since it eliminates
the need of defining the parameters that control the layout and the behavior of
the approximation a priori. The downside is that adaptive architectures are
usually more difficult to train (van Otterlo, 2009).

Local vs. Global Local approaches use only a small part of the approximation to
derive a value for one state (most local “approximation”: table) while global
approaches use the complete approximation to compute the value for a given
input (e.g. multi layer neural networks) (van Otterlo, 2009).
Global approximations are mostly more smooth, which can be both a curse
and a blessing: On the one hand, we want the function to be smooth at some
areas. On the other hand, a too smooth function may “smudge” soft details
of the underlying data. Additionally, global approximations are prone to a
phenomenon called forgetting: The learning approximator tries to minimize
the deviation between the expected and the computed output by tuning its
adjustable parameters. Due to the globality of the approximation scheme, these
adjustments may not be limited to the close vicinity of the input but also affect
portions of the approximation more distant. This might be desirable but often
these distant adjustments “override” knowledge and thus, the approximation
forgets historic data (French, 1999).
On the contrary, local approximators restrict updates to the learned knowledge
to only a small part of the approximation. This might of course lead to the need
of larger approximations to capture all necessary details of the input space.

Online vs. Offline Usually, function approximation methods are trained with re-
peated iterations over a batch of given training samples which is clearly an
offline approximation. In reinforcement learning, no such training set is available
as the samples (states with estimated Q-values) become available during the
agent’s interaction with the environment. This setting calls for online training
methods.
The I-GNG-Q approach described in the following is adaptable and online.

Additionally, the employed inverse distance weighting uses a trade-off between the

135

Chapter 8 Adaptive Function Approximation

two extremes local and global.

8.3 Adjusting the Approximation

As in the GNG-Q approach, the approximation in I-GNG-Q can also be adjusted by
two operations: The adaptation moves the neurons in such a way that they represent
the approximated function as well as possible and the refinement is used to refine
the resolution of the approximation. Once again, these changes to the approximation
are performed after each episode to improve the stability of the learning progress.

8.3.1 Adaption in our Approach

The adaptation of the approximation in I-GNG-Q is performed identically to the
adaption in GNG-Q: Each neuron n is moved towards the centroid of all states
the agent has visited inside n’s Voronoi region R(n) in the current episode (cf.
Section 7.6).

Here, the need for refining the approximation is also based on the current policy
of the agent. In GNG-Q, the policy is monitored to figure out states that cannot
be treated equally (which is resolved by creating a new abstract state) while in
I-GNG-Q the refinement becomes necessary if a part of the value function cannot be
represented sufficiently by the current approximation. Nevertheless, GNG-Q as well
as I-GNG-Q use the same approach of deciding whether or not to refine the current
approximation (i.e. both approaches use the amount of changes in the agent’s policy
as error measure).

Refining of the approximation is done by cloning the neuron ne with the highest
error value and perturbate ne and the new neuron n+ by a small distance to ensure
that their initial positions differ slightly. The weight ~θ+ of the new neuron n+ is
initialized with the weight vector ~θe of ne. After this refinement, the error values of
all neurons are reset to zero, to reflect the fact that the approximation has changed.
Having in mind that the weight vector of a neuron n can be interpreted as the
Q-vector at the neuron’s position, it is obvious that the adjustment operations are
identical in both approaches.

8.3.2 Differences to the Generic Adaptation

Nevertheless, the motivation as well as the influence of these operations differ. In
GNG-Q, we searched for “pure” regions of states that can be treated equally while
in I-GNG-Q we refine the approximation in areas where the current value function
causes an unsatisfactory policy. The repositioning of the neurons towards the centroid
of the visited states is in GNG-Q used to support the creation of “pure” regions. In
I-GNG-Q on the other hand, we move the neurons to areas that have been visited
by the learning agent.

The intention of the adaptation in I-GNG-Q is that the bases of the approx-
imation (i.e. the neurons) are moved to a different position while in GNG-Q the
abstract states are moved. In general, the influence of moving one neuron is stronger
in GNG-Q than in I-GNG-Q because in the latter approach, each approximated

136

8.4 Smoothing the Approximation

value is computed from several bases and thus, the transition of the Q-value before
the movement to the Q-value after the movement is smoother.

As stated above, the motivation for adaptation in GNG is to move neurons in
areas where inputs can be expected. This behavior is useful only to a certain degree:
As in GNG-Q, the neurons should find the subspaces of (probably high-dimensional)
input spaces where samples can be expected (cf. (Fritzke, 1994a)) but we do not
want the network to follow every state the agent has visited which would result in a
highly unstable approximation. Thus, in I-GNG-Q the adaptation is also done after
one episode has finished.

Adding a neuron in I-GNG-Q is also equivalent to refining the approximation
but here, the approximation becomes more expressive while in GNG-Q a completely
new state is created.

Nevertheless, GNG-Q and I-GNG-Q share similarity since both approaches work
on the state space: GNG-Q works directly on the state space by grouping “similar”
states while I-GNG-Q approximates the value function that is defined over the state
space. The outcome is also similar as neurons are concentrated in areas that need a
finer resolution.

8.3.3 Redundancy of Neighborhood Connections

In I-GNG-Q, the connections between neurons from the original GNG approach
are not necessary. The insertion is handled by cloning the neuron with the highest
error value and no further information can be drawn from maintaining the inter-
neuron connections: I-GNG-Q does not learn an abstract MDP and maintaining
a topological representation of the state space is possible but not very meaningful.
Similarly, the approach presented by Fritzke (1994a) only uses the connections of the
underlying GNG to determine the widths of the radial basis functions. As can be
seen in Section 8.4, this is unnecessary in our approach.

8.4 Smoothing the Approximation

The GNG-Q approach as it is described in Chapter 7 treats every state in one region
identically. Consider e.g. the value function in Figure 8.3(a) that has been learned on
the same scenario as in Section 7.11.3: As all states in one region are treated equally,
the value function is piecewise constant and thus, plateaus with steep transitions in
between emerge. Although this approach is computationally fast, considering more
than one Q-vector to compute the approximated values can improve the policy for
states that are e.g. close to the regions’ borders. Combining several Q-vectors results
in a smoother value function and thus, the hard transitions tend to diminish (cf.
Figure 8.3(b)). Having a smoother value function can especially help during the
beginning of learning when the layout of the approximation is possibly not in its
final form. Then, a state next to the border of its nearest neuron’s Voronoi region
may profit from not only depending on this region’s value but also on those of its
neighbors.

One example that illustrates the benefits of combining several prototype Q-
vectors is given in Figure 8.1: In GNG-Q, the corresponding prototype Q-vectors are
the same for both states s1 and s2 as they belong to the same region (Figure 8.1(a)).

137

Chapter 8 Adaptive Function Approximation

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

-5
-4
-3
-2
-1
0

-5

-4

-3

-2

-1

0

V(s)

x

y

V(s)

(a)
0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

-5
-4
-3
-2
-1
0

-5

-4

-3

-2

-1

0

x

V(s) V(s)

y

(b)

Figure 8.3: Value function comparison of a piecewise constant approximation (a) as com-
puted by GNG-Q and an interpolated approximation (b) computed by I-GNG-Q in the same
domain as in Section 7.11.3.

Since s2 is close to the border of n2’s region, it would be more useful to compute the
approximated Q-vector for s2 as a combination of the Q-vectors associated with n1
and n2 inverse proportional to the distances of s2 to n1 and n2. The same should
hold for s1, although the influence of n1 will be much larger than the influence of n2.
In this context, the weight vector ~θ(i) can be considered as the prototype Q-vector
at the position of neuron i and the features φj(s) ∈ φ(s) determine the influence of
each neuron j on the state s (Figure 8.1(b)).

In this section, we implement the aforementioned approach to construct features
for a given state while in Section 8.5 we add a rule that updates the same proto-
type Q-vectors that have contributed to the computation of the respective Q-value.
Particularly, this means that
• the computation of the Q-vector for a state uses several Q-vectors outside the

region of the nearest neuron.
• the update that is caused by the current state-action pair influences the Q-
function outside the region of the nearest neuron.

The strengths of these updates will also be made according to the influences stated
by the feature vector.

As already described earlier, the weight vector ~θ(i) can be thought of as prototype
Q-vector at the position of neuron i. Thus, at timestep t, the I-GNG-Q approach
has l = |Nt| neurons n, each equipped with one weight vector ~θt(n). Note, that we
assume that the ids of the neurons are updated such that all neurons present at
timestep t can be addressed by 1, ..., |Nt|.

8.4.1 Inverse Distance Weighting

In the I-GNG-Q approach, we compute the features φn(s) (cf. Section 8.2.1) that
are used to describe a state s with a concept called inverse distance weighting (IDW)
(Shepard, 1968).

The IDW approach was introduced to compute a continuous surface from
irregularly spaced (empirical) data points. These data points may consist of a number
of coordinates along with the associated value at the respective points. As the
available data points might be thinly scattered over a large area, it is desirable to

138

8.4 Smoothing the Approximation

interpolate the unknown function or process that generated the data to be able to
obtain approximated values at arbitrary coordinates.

Shepard’s approach is an interpolation that passes through all given data by
computing a weighted average of the known samples. One possibility for such a
weighting scheme is an inverse function that assigns large influence of data points
nearby and less influence of data points farther away (Shepard, 1968):

f(x) =

yi if ∃i : d(x,xi) = 0
n∑
i=1

yi
d(x,xi)p

n∑
i=1

1
d(x,xi)p

otherwise.
(8.6)

In Equation (8.6) yi are the values for the n data points at positions xi and d(x,xi)
is the distance of a point x in the plane to the known data point xi.

8.4.2 Inverse Distance Weighting Transferred to our Approach

Transferring Shephard’s approach to our setting, we obtain the following weighting
function:

u(s, n) = 1
d(s, n)p (8.7)

Using Equation (8.7) our approach assigns large influence of prototype Q-vectors
close to the respective state and less influence of prototype Q-vectors farther away:

d(s, ni) < d(s, nj)⇒ u(s, ni) > u(s, nj) (8.8)

holds for all neurons ni 6= nj ∈ Nt and for all p ≥ 1. Thus, we can easily construct
features for state s that respects the aforementioned properties:

φn(s) = u(s, n)∑
n′∈Nt u(s, n′) (8.9)

The normalization in Equation (8.9) allows an improved generalization compared to
non-normalized approaches (Bugmann, 1998). If not all distances between the state
s and the neurons are greater zero (i.e. if at least one state is exactly located on a
neuron n0) φn(s) the estimated Q-vector is set to the prototype Q-vector of n0.

Each feature value φn(s) indicates the influence of the Q-vector of neuron n for
the computation of the Q-vector for the state s. Since we compute a feature value
φn(s) for each neuron, the size l of the feature vector is determined by the current
number of neurons |Nt|. Note that we also use φi(s) instead of φni(s) to refer to the
feature value of neuron ni.

Obviously all features computed as described above are greater or equal to zero
and the sum of all features is one:

φi(s) ≥ 0 ∀i,∀s and
∑
i

φi(s) = 1 (8.10)

Thus, the approximated values for any state-action pair is always less than or equal
to any value of the considered prototype Q-vectors. This guarantees that the feature
function does not exaggerate.

139

Chapter 8 Adaptive Function Approximation

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n1

n2

n3

states

Q
-V

al
u

e

Q-Valuehofhneuron

piecewisehconstanthapproximation
interpolationhwithhp=1
interpolationhwithhp=3
interpolationhwithhp=5

p=5

p=3

p=1

p.w.hconst.

Figure 8.4: Different estimations of a value function for a one-dimensional state space: The
Q-value for each neuron ni is depicted as vertical bar and the dotted black line shows a
piecewise constant estimation as e.g. computed by GNG-Q. The colored lines show estimations
for the value function with k = 2 neurons and varying values for the exponent p of the feature
function.

In general, the Q-vector for any state s would consist of a weighted combination
of all |Nt| Q-vectors associated with the currently present neurons. Clearly, this
would lead to tasks as then every state would depend on every neuron in the current
approximation and any update caused by a state would affect all prototype Q-vectors.
To respect the desired locality, we only consider the k ≥ 1 nearest neurons to state
s to compute the features φ(s). Accordingly, u(s, i) = 0, if neuron ni is not among
the k nearest neurons to s. Thus, k elements of φ(s) are greater than zero (i.e. the
features related to the k nearest neurons) while the other l − k elements of φ(s) are
zero. The Q-value for a state-action pair (s, a) is then derived by a combination of
the prototype Q-vectors of the k nearest neurons weighted by φ(s).

Figure 8.4 shows different degrees of smoothness for the estimation of a one
dimensional value function using k = 2 neurons for each estimation. The Q-value of
each neuron is depicted as vertical bar and thus the approximation in this example
incorporates three neurons. The dotted black line is a piecewise constant approx-
imation e.g. computed by GNG-Q2. It can be seen that the estimation becomes
smoother as p increases. The step at around 0.5 (visible for p = 1 and p = 3) is
caused by the layout of the approximation: For every state less than 0.5, the neurons
n1 and n2 are the nearest neurons and thus, for every state between n2 and 0.5, the
estimation interpolates between the Q-values of these two neurons. The value of k
defines the number of prototype Q-vectors that are incorporated for the estimation
of each Q-value and p influences the smoothness of the approximation: Higher values
of the exponent p increase the influence of nearby prototype Q-vectors.

2 Of course, this behavior can be invoked by setting k = 1.

140

8.4 Smoothing the Approximation

0.6

0.7

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.8

0.9

1 0

0.1

0.2

0.3

0.4

0.5

0.8

0.9

1

distance to n1,n2

in
flu

en
ce

 o
f n

1

in
flu

en
ce

 o
f n

2

n1 n2s

p→∞

p=0
p=1
p=3
p=5

p=0

p=1

p=3

p=5p→∞

Figure 8.5: Influence of Q-vectors of k = 2 nearest neurons n1 and n2 with varying p for
the computation of Q̂(s, ·) for a state s. The dotted lines are located at the intersection of
the dashed line indicating the state s and the plot for each p and show the influence for
neuron n1 on the left and the influence of neuron n2 on the right. For p = 1, φ1(s) ≈ 0.64 and
φ2(s) ≈ 0.36, for p = 3, φ1(s) ≈ 0.85 and φ2(s) ≈ 0.15 and for p = 5 we have φ1(s) ≈ 0.94
and φ2(s) ≈ 0.06.

Figure 8.5 depicts the influence of the exponential parameter p slightly different:
Consider a state s whose Q̂-value is approximated by the Q̂-values of k = 2 neurons.
For p = 0 each of the nearest neurons’ Q̂-vectors have an influence of 0.5 regardless of
the state’s distance to the neurons. For p > 0 the features φi depend on the distance
of s to the neurons ni: With p = 1 we have a linear influence and with increasing p,
the influence of the nearest neuron increases. For p→∞, only the Q̂-vector of the
nearest neuron is considered which is identical to the behavior in GNG-Q.

In Figure 8.6 we present a more geometrical interpretation of how p affects the
influence of the k = 2 involved prototype Q-vectors. The two neurons are depicted
as red (n1) and blue (n2) dots and the black areas are areas in which the prototype
Q-vector of red dominates the term while the prototype Q-vector of blue dominates
for states in the white areas.

In the following, we present a short example of the computation that is performed
by the I-GNG-Q approach.

Example 4 (Inverse Distance Weighting for Neurons). Given the situation
from Figure 8.1, we show the influence of each neurons’ Q-vector on the approximated
Q-vector for states s1 and s2:

n1 n2

s1

s2

141

Chapter 8 Adaptive Function Approximation

(a) p = 2 (b) p = 4

(c) p = 8 (d) p = 16

Figure 8.6: Influence of exponent p in a two-dimensional setting where the black colored
areas mark the influence of the red neuron (n1, lower) and the white areas show the influence
of the blue (n2, upper) neuron. The gray areas indicate areas where both neurons influence
the outcome of the approximation (cf. (a)–(b)) while for increasing p the approximation
depends more and more on the nearest neuron, only ((c)–(d)).

We here use p = 3 and k = 2 and show how the Q-vectors for the states s1, s2 are
computed as weighted combination of the prototype Q-vectors of the neurons n1, n2.

We begin with Equation (8.7) and compute the weighting u(s, n) for each com-
bination of states s1, s2 and neurons n1, n2. These values are used to compute the
following features with the use of Equation (8.9):

φ1(s1) ≈ 0.99
φ2(s1) ≈ 0.01
φ1(s2) ≈ 0.66
φ2(s2) ≈ 0.34

Thus, the feature vectors according to Equation (8.2) are

φ(s1) = (0.99, 0.01)
φ(s2) = (0.66, 0.34)

142

8.5 Update Rule

Assume now that the approximation is made for a reinforcement learning task
with four actions Ae = {a1, a2, a3, a4} and that the prototype Q-vectors3 are Q̂t(n1) =
(95, 100, 81, 81) and Q̂t(n2) = (100, 81, 90, 81).

Using Equation (8.1), the Q-values Q̂t(s1), Q̂(s2) for all actions are computed:

Q̂t(s1, a1) = 0.99 · 100 + 0.01 · 81 = 95.05
Q̂t(s1, a2) = 0.99 · 90 + 0.01 · 81 = 99.81
Q̂t(s1, a3) = 0.99 · 81 + 0.01 · 100 = 81.09
Q̂t(s1, a4) = 0.99 · 81 + 0.01 · 90 = 81.00

Q̂t(s2, a1) = 0.66 · 100 + 0.34 · 81 = 96.70
Q̂t(s2, a2) = 0.66 · 90 + 0.34 · 81 = 93.54
Q̂t(s2, a3) = 0.66 · 81 + 0.34 · 100 = 84.06
Q̂t(s2, a4) = 0.66 · 81 + 0.34 · 90 = 81.00

So, for s1, the action a2 has the maximal value and would thus be chosen if the
agent follows a maximal policy. This is identical to the action that would have been
chosen with GNG-Q. For s2 on the other hand, the action with the maximal value is
a1 which differs from the choice computed by GNG-Q (i.e. action a1 as all states are
treated identical as the neuron in whose region they are in).

After the new approach of combining several prototype Q-vectors (represented
by the weight vector ~θt(n)) has been introduced we show in the next section how
these weights can be updated so that each update affects all prototype Q-vectors
that have contributed to the approximated Q-vector of the current state.

8.5 Update Rule

Although the Q-update rule of the generic GNG-Q affected several states—to be
precise all states in the region of the nearest neuron to the current state—no Q-value
outside the region was updated even if the current state was close to the region’s
boundary. In I-GNG-Q, we update the weights (i.e. the prototype Q-vectors) of all
neurons that contributed to the computation for the Q-vector of the current state.
Generally, all neurons would be updated but we here follow the same approach as in
Section 8.4: Every neuron n is updated by an action performed in a state s with the
strength of the feature φn(s) as computed in Equation (8.9). In fact, each update
triggered by an action a that was performed in a state s changes the values probably
for many s′ with s′ 6= s and a′ with a′ 6= a.

Unfortunately, this setup can be fraught with problems as function approxi-
mation with reinforcement learning can overestimate learned values and even lead
to divergence in the worst case (see e.g. (Thrun and Schwartz, 1993; Reynolds,

3 Note, that we here use the simplified concept of Q-vectors instead of the weights ~θ as described
earlier.

143

Chapter 8 Adaptive Function Approximation

2002; Wiering, 2004)). This problem can occur if the values of the current state
and the following state share parameters and thus errors in one state may lead to
errors in other, depending states. The max operator in the temporal difference in
Equation (8.3) can exaggerate the imprecise estimates of the learned value function.
This problem is worsened if the agent stays (e.g. due to exploration) in specific areas
of the state space.

As we have already seen in Section 8.4, the feature computation in Equation (8.9)
guarantees that no weight is exaggerated by ensuring that every computed value is
smaller/equal than any interpolation base.

I-GNG-Q updates the Q-vectors with a gradient-descent approach (i.e. moving
the vector in the direction that will reduce the error the most) that aims to minimize
the difference between each ~θ and the Q-vector of the succeeding state. The standard
update rule for function approximation in reinforcement learning moves the weight
vector of the current state-action pair in direction of the reward plus the Q-value
(that is computed using the complete weight matrix) of the next state.

In averaging reinforcement learning, the difference between the reward plus the
Q-value of the succeeding state and the weight vector itself is used. The update rule
from (Reynolds, 2002)

~θt+1 = ~θt + αt

(
r(st, at) + γmax

a′
Q̂(st+1, a

′)− ~θt
)
φ(s) (8.11)

is called averaging update and thus uses the difference between the Q-value of the
succeeding state and the vector ~θ.

Reynolds (2002) proved that Q-Learning in combination with this update rule
does not diverge. Later, Szepesvári and Smart (2004) proved the convergence of
averaging Q-Learning for an interpolative mapping and following a stationary policy.

As mentioned before, we incorporate eligibility traces as described in Section 8.2.2,
and thus the complete update in each step is given by

~θt+1(i, a) = ~θt(i, a) + αtδtet(i, a) (8.12)

for all features i and all actions a with

δt = r(st, at) + γmax
a′

Q̂(st+1, a
′)− ~θt(i, a) (8.13)

being the temporal difference at time t.

8.6 Complete Algorithm

Here we combine the previously presented adaptations to GNG-Q to form the new
Interpolating GNG-Q (I-GNG-Q) approach in Algorithm 5. For the sake of simplicity,
we assume that the states consist of vectors with (real-valued) numbers. Otherwise,
methods to measure the distance between neurons and states as well as to adapt the
approximation have to be defined.

Similar to the GNG-Q algorithm, we also scale the state vectors as described in
Equation (7.11). Identically, in line 8 any exploration approach can be employed.

144

8.6 Complete Algorithm

Algorithm 5: I-GNG-Q
1 add two neurons n′, n′′ with random reference vectors and

~θ(n′, a) = ~θ(n′′, a) = 0, ∀a ∈ A
2 foreach episode do
3 initialize regional states
4 initialize eligibility traces
5 while episode not finished do

/* interaction with environment */
6 observe current state st
7 determine nearest neuron n1 = nn(st) to st
8 select and perform action at
9 observe subsequent state st+1 and reward r

10 determine nearest neuron n′1 = nn(st+1) to st+1
/* update neurons */

11 store st in regional states: Rn1 ← Rn1 ∪ {st}
12 discount errors for all neurons
13 connect neurons n1 and n′1
14 increase age of n1’s neighborhood connections

/* update Q̂ */
15 compute φ(st) using Equation (8.9)
16 foreach neuron n ∈ N do
17 et+1(n, a)← et(n, a) + φn(st)
18 foreach action a ∈ A do
19 δt = r + γmaxa′ Q̂t(st+1, a

′)− ~θt(n, a)
20 ~θt+1(n, a)← ~θt(n, a) + αtδtet(n, a)
21 if at = arg maxa′ Q̂t(st, a′) then
22 et+1(n, a)← γλet(n, a)
23 else
24 et+1(n, a)← 0

/* Monitor changes in policy */
25 if arg maxa Q̂t(n1, a) 6= arg maxa Q̂t+1(n1, a) then increase error(n1)
26

/* Adaptation of approximation */
27 foreach neuron n ∈ N do
28 if error(n) > ∆ then

/* compute centroid of Rn */
29 sn = 1

|Rn|
∑

sr∈Rn
sr

/* adapt n to sn */
30 ~wn ← ~wn + εb · (sn − ~wn)

/* Refinement of approximation */
31 if

∑
n∈N error(n) > |N | then

32 insert new neuron in most erroneous region

145

Chapter 8 Adaptive Function Approximation

8.7 Computational Complexity

This section analyzes the complexity of the I-GNG-Q approach that is described
in pseudocode in Algorithm 5. Once again, we analyze the algorithm’s runtime per
episode and assume that the agent can perceive the current state of the environment
in time O(1).

As in the GNG-Q approach, the initialization (line one) can be done in time
O(|A|) which is—due to the fact that the number of actions is constant or at least
bound—constant time. For each episode, the lines three and four have to be executed
which both cost O(|Nt|) where |Nt| is the number of neurons at timestep t.

The portion of the code that maintains the error values is identical to the on
in the GNG-Q approach and thus takes time O(|Nt|) for each update. Identically,
the selection of the neuron with the highest error can be done in linear time. With
the mentioned improvements (cf. Section 7.11.1), the update can be performed in
time O(log |Nt|) and the selection of the neuron with the highest error in time O(1).
Adapting the neurons after each episode (i.e. the movement in lines 27–30) can clearly
be done in linear time.

For the policy (lines 7–8), the k nearest neurons to the state s have to be
computed. With a linear search, this can be done in time O(k · |Nt|). Using the
approach of Fišer et al. (2013) as it was mentioned in Section 7.11.1, the updates
can be done in linear time and the search of the nearest neurons would take “near
constant” time. Additionally, O(|A|) is needed to select the action with the highest
Q-value (line 8).

Finally, the computation of the eligibility traces needs time O(|Nt| · |A|) and is
thus rather costly but they usually reduce the number of learning episodes for the
agent.

Summing up, each episode (with e steps) of I-GNG-Q needs O(e · (2 · k|Nt|+
|A| + 2 · |Nt| + |Nt| · |A|) + |Nt|) with the naïve approach and O(e · (2 · k + |Nt| +
|A|+ log |Nt|+ |Nt| · |A|) + |Nt|) using Fišer et al.’s update approach.

Corollary 11 (Complexity of I-GNG-Q). Each episode with e steps of I-GNG-
Q can be done in O(e · k · |Nt| · |A|) with a naïve implementation where k is the
number of interpolation bases, |Nt| is the number of neurons at time t and |A| is the
number of actions of the reinforcement learning task.

8.8 Comparison GNG-Q vs. I-GNG-Q

One key difference between GNG-Q and I-GNG-Q is that GNG-Q approximates the
state space by aggregating similar states (which leads to a piecewise constant value
function) while I-GNG-Q directly approximates the value function. This difference
can e.g. be seen in the frameworks in Figure 7.5 and Figure 8.2: For GNG-Q, a
direct connection between the neurons and the Q-vectors exists while for I-GNG-Q,
a Q-vector for each state is computed as combination of the weight vectors and
the distances to the neurons. This is performed in the Function Approximator in
Figure 8.2.

State aggregation methods usually compute a new abstract MDP on which
learning is performed. The goal is to construct this MDP in a way that the derived

146

8.8 Comparison GNG-Q vs. I-GNG-Q

policy is also optimal (or at least useful) in the original MDP. In fact, aggregating
states imply a loss of information: States from the original state space are combined
in order to form a new abstract state and thus, a new representation is formed.
Having this new representation, any suitable learning approach could be applied
to derive a possibly different policy. Additionally, the abstract MDP may lead to
further insights into the reinforcement learning task and point e.g. out areas that
need special consideration. A drawback may be the fact that this operation cannot
be reversed, i.e. it is in general not possible to deduce the original state from an
abstracted state.

On the other hand, function approximation approaches do not create a new
representation of the state space: The goal of function approximation is to formulate
a hypothesis that allows to work for unseen samples. Thus, the aspect of general-
izing knowledge is more prevalent than in state-space aggregation. Value function
approximation does not perform a look up in order to derive the value for a given
state but rather computes the value at this point (i.e. the state), instead.

Both concepts share the need for a suitable definition of similarity: State space
abstractions need to know which states can be treated equally while the performance
of function approximation usually gets worse for samples that are highly different
from samples that have already been processed. In the latter case, this is often taken
care of by the employed function approximation.

Coming back to the reinforcement learning value functions, it has to be noted
that the value function on the abstract state space computed by GNG-Q is piecewise
constant and thus discontinuous between two abstract states (cf. Figure 8.3(a)).
After learning, the discontinuity may of course be unavoidable (and unproblematic),
but during the course of learning, one state of the original MDP may be mapped
to a different abstract state which in turn leads to a different Q-vector. On the
contrary, the value function computed by I-GNG-Q is continuous (Shepard, 1968).
This difference is also reflected in the way the learned values are stored: GNG-Q
uses a tabular approach with a cell for each abstract state whereas I-GNG-Q has a
weight vector ~θn for every neuron n.

Note that the updates of both approaches influence numerous states: The update
performed in GNG-Q influences all states of the original MDP that are mapped to
the currently updated abstract state while I-GNG-Q influences states even beyond
the Voronoi region of the nearest neuron. Additionally, GNG-Q treats every original
state mapped into one abstract state identical regardless of its distance to the center
(i.e. the neuron) of the abstract state while I-GNG-Q always respects the distance to
all relevant neurons.

Using the terminology from Section 8.2.1, the feature function φ of GNG-Q is
binary as it is defined as

φi(s) =
{

1 if i = nn(s)
0 otherwise.

Thus, each original state s only activates one entry of the feature vector φ(s) while
in I-GNG-Q k entries are non-zero.

Although the computational complexities of both approaches introduced in this
thesis have the same asymptotic behavior of O(|Nt|2), I-GNG-Q is more expensive

147

Chapter 8 Adaptive Function Approximation

as it has to compute the k nearest neurons instead of only computing nearest
neurons. Then again, this clearly helps to improve the reinforcement learning agent’s
performance.

8.9 Conclusion

We saw that the GNG can also be used to create an adaptive function approximation
that is adjusted during the interaction of the reinforcement learning agent with
its environment. The enhancements in Interpolating GNG-Q (I-GNG-Q) reduced
the time until stable behaviors are found and improved the regulation of the refine-
ment and adaptation. Additionally, the approximated value function is smoother
(Figure 8.3(b)) than the former piecewise constant approximation of GNG-Q (Fig-
ure 8.3(a)) because now Q-values are computed as weighted combinations of several
prototype Q-vectors. I-GNG-Q is capable of learning compact approximations in
parallel with an (nearly) optimal policy and its performance is well competitive with
other approaches from literature without the need of knowing the considered RL task
beforehand (cf. Chapter 10). Furthermore, we showed how to incorporate eligibility
traces to speed up learning and to more efficiently use the agent’s experiences and
we formulated criteria for the adjustments of the approximation.

One major problem with function approximation in reinforcement learning is
the exaggeration of the Q-values (e.g. (Thrun and Schwartz, 1993; Reynolds, 2002)).
I-GNG-Q uses an update function and a feature function that are designed to prevent
such an overestimation. Additionally, the combination of several prototype Q-vectors
helps to stabilize the learning as possible erroneous knowledge can be corrected faster
and does not have such high influence.

The I-GNG-Q approach has a computational complexity of O(|Nt|2) where Nt is
the set of neurons that are present at timestep t. As the computation of exponential
functions often employed for RBFs is usually very slow (Schraudolph, 1999), the
inverse distance weighting used here is a performant alternative. The I-GNG-Q
approach can rely on the fact, that the parameters for the GNG vector quantization
only requires parameters that are well explored and that GNG is quite insensitive
to these parameter values (Heinke and Hamker, 1998). Additionally, we only need
two more parameters: The first, k, controls how much the approximation should
generalize its knowledge while the second, p, is used to control emphasis of the nearest
neuron’s prototype Q-vector.

148

9
Evaluation

In this work, we presented the Shepherding task and investigated solutions for
instances with one sheep and one dog. For this, we presented the GCC algorithm
that solves Shepherding(1, 1) tasks within close bounds (i.e. the upper and the
lower bound differ in a term linear in the sheep’s viewing range) on the solution
length and present learned strategies in the following chapter.

Obvious extensions of the task are given by increasing the number of dogs n
and the number of sheep m resulting in instances of Shepherding(n,m).

As long as the instances involve one dog but several sheep (i.e. Shepherding(1,
m)), the task could still be solved with single-agent reinforcement learning methods.
However, considering more sheep raises the question of how the sheep behave and
interact with the dog as well as with each other (see e.g. the part on the biological
background of shepherding in Section 4.2). The most simple approach would consider
each sheep as being completely independent. In this case, the dog could employ the
GCC algorithm for each sheep individually and drive the sheep one after another
into the target. Possible models for herding behaviors include the boid approach by
Reynolds (1987) that uses simple rules to derive quite realistic flocking behaviors. In
this setting, the GCC approach might be used as a starting point by considering
the complete flock as one “artificial” sheep that has to be controlled. Nevertheless,
this would probably not lead to completely satisfying results as GCC is explicitly
tailored to the behavior of one single sheep while controlling a flock of sheep would
require to incorporate all additional dynamics introduced to the flocking behavior.

The major challenge in Shepherding(1,m) instances is the larger state space
as for every sheep the dimensionality and thus the number of states increases. In
general, this would result in longer times for learning useful behaviors as the agent
has to become familiar enough with the states of the task.

When several dogs are included, the task becomes more complex as even the
computation of the shortest paths for a cooperative multiagent system is PSPACE-
hard (Hopcroft et al., 1984). Searching for an optimal solution with, e.g. A*, is often
problematic as not only the number of states (as e.g. shown for the Shepherding

149

Chapter 9 Evaluation

task in Section 4.6) but also the branching factor grows exponentially (Wang and
Botea, 2008).

Increasing the number of dogs n transfers the learning task from single-agent
learning to multiagent learning. Especially for multiagent reinforcement learning,
additional challenges arise (Buşoniu et al., 2010):
• The curse of dimensionality is intensified as the exponential growth of the state

space is now in the number of states, actions, and agents.
• Exploration vs. exploitation is now in terms of the environment as well as in
the other agents’ behaviors.

• The learning goal becomes non-stationary as changes in the policy of one agent
may affect the (optimal) policies of others.

• Coordination is needed since the effect of actions taken by one agent depends
on actions of the other agents.

Thus, approximation approaches as often applied in single-agent reinforcement
learning have to be evaluated regarding their applicability in multiagent reinforcement
learning tasks.

A straightforward application of GCC in settings with multiple dogs and one
sheep would let the nearest dog drive the sheep while the resulting dogs make sure to
not get in the way. Nevertheless, this approach would not make use of the additional
power provided by several dogs. A more sophisticated solution would introduce some
means of coordination such that the dogs take useful positions to possibly even
improve the upper bound on GCC ’s solution length.

In the general case of Shepherding(n,m), the core idea of GCC might still be
useful. However, major adjustments have to be made: First of all, the ideas mentioned
before for dealing with some kind of flock need to be implemented. Particularly
the dogs’ interaction with a group of sheep has to be carefully modeled in order to
not destroy the herding structure. Thus, cooperation and coordination of the dogs
becomes crucially important. Second, the positioning of the dogs in the space as well
as the paths the dogs use to get to their destination need in-depth considerations to
allow proper behaviors of the dogs.

150

10
Experimental Results

In this section, we first experimentally evaluate the GNG-Q and I-GNG-Q approaches
on benchmark tasks and later apply our adaptive approaches to the shepherding
task.

We begin by describing the evaluation procedure, followed by a description of the
different tasks. Then we describe and evaluate default parameter settings for GNG-Q
and I-GNG-Q. Afterwards, we analyze the influences of the approaches’ parameters
individually as well as their combined influences and interdependencies. The results
of this evaluation are compared to those of other approaches from literature. We
close this part by pointing out the benefits of automatically created approximations.

After that we apply reinforcement learning to the shepherding scenario and
investigate how this task can benefit from the adaptive approximation schemes
developed in this thesis. There, the reinforcement learning approaches are compared
with the solution of the greedy shepherding algorithm GCC and it is analyzed, in
which situations of the scenario which approach is superior.

10.1 Experimental Setup

In this section we describe the experimentation procedure as well as the benchmark
task used to evaluate our adaptive approximation approaches.

10.1.1 Experimentation Procedure

All algorithms were tested in several reinforcement learning tasks. For each algorithm
and each considered learning task we evaluated the performance for different settings
of the algorithm’s parameters. In the following we call such a combination of algorithm,
parameter settings, and reinforcement learning experiment. Each experiment was
simulated for 50 runs and the results were averaged. In every run, we initialized the
Q-tables or the vectors ~θ with zero for every entry and used a different random seed.

We divided the evaluation in alternating learning and test phases:

151

Chapter 10 Experimental Results

Learning During learning, the agent performs updates according to the update
mechanism of the tested approach and uses an ε-greedy approach (i.e. the
agent uses an action chosen uniformly at random with probability ε and an
action according to the greedy policy with probability (1 − ε)) to allow for
proper exploration. After learning for 10 episodes the performance of the agent’s
current policy is evaluated.

Evaluation In the following evaluation phase the agent does not learn and is thus
not allowed to change its policy. Instead, it always chooses the action with the
highest Q-value without falling back to exploratory actions. The agent starts on
randomly chosen start states and tries to reach a goal state. If the agent did not
reach the goal after a fixed number of steps (that depends on the reinforcement
learning task), the try was stopped. This is repeated for 100 different random
start states and the results for all the start states are averaged to represent
the performance at this point of time.
We measure the performance by counting the steps needed to reach the goal

which obviously should be minimized. A different measure would be the received
reward but as the agent should minimize the number of steps in any task considered
here, we stick to the more intuitive way of reporting the number of steps1. In addition
to this, we also evaluated the success ratio of the agent, i.e. how often the agent
succeeds to reach the goal with less than the task dependent maximal number of
steps. Nevertheless, we resort to this measure only when some additional insights
can be gained. This measure is clearly also closely connected to the number of steps:
For every situation from which the agent cannot reach the goal within the allowed
number of steps, the (possibly) high number of maximal steps is added to the counter.

Additionally, the size of the approximation is measured: For tabular Q-Learning,
the size is equal to the number of states of the environment while for GNG-Q and
for I-GNG-Q the number of neurons constitute this measure. In GNG-Q the number
of neurons is exactly the number of abstract states whereas in I-GNG-Q the number
of neurons indicates the number of possible prototype Q-vectors from which the
k nearest are chosen. Of course, the size of the approximation is not the primary
measure as the smallest approximation consisting of one abstract state (or neuron)
would almost never allow the agent to perform something useful. Nevertheless, for a
given performance it is desirable to have the smallest approximation that offers this
performance.

To sum up: Each run is evaluated after each ten episodes. The performance at
episode t is evaluated on a set of 100 start states and the average number of steps
to reach the goal from all these states is measured. Additionally, the size of the
approximation as well as the percentage of reaching the goal at episode t is recorded.
The performance of an experiment at episode t is the average of the respective
measure of all 50 runs at episode t.

1 Note, that the reward functions of the tasks are designed such that the agent minimizes the
number of steps by maximizing the received reward.

152

10.1 Experimental Setup

TargetMOUNTAIN CAR

-1.2 0.5x

Figure 10.1: The mountain car task (figure taken from (Sutton and Barto, 1998))

10.1.2 Benchmark Task: The Mountain Car Domain

To evaluate the GNG-Q and the I-GNG-Q approaches, we use the well-known
mountain car task (Boyan and Moore, 1994; Singh and Sutton, 1996). We use this
task for the comparison of the base configurations for our approaches in Section 10.2
as well as for the detailed evaluations of GNG-Q and I-GNG-Q in Section 10.3
and Section 10.4. Unless otherwise stated, each approach was evaluated for 20,000
episodes.

In the mountain car domain, a car has to drive up a hill (cf. Figure 10.1). As it
is too weak to accelerate up the slope at once, it has to drive in the opposite direction
to gain velocity. The possible actions are full throttle forward, full throttle backwards
or neutral throttle. The agent is rewarded with 0 for the action that leads to the
target and punished with -1 else. The continuous state space has two dimensions and
consists of the position x ∈ [−1.2, 0.5] and the velocity v ∈ [−0.07, 0.07]. We use the
physics as described in (Singh and Sutton, 1996):

• The valley is described by sin(3x).
• The allowed actions at are modeled as +1, 0,−1 for forward, neutral, backward.
• The state transition is given by vt+1 = bound(vt + 0.001at − g cos(3x)) and
xt+1 = bound(xt + vt+1).

In the above description, the value g = −0.0025 is the force of gravity and the
operation bound ensures that the value of each variable remains within the allowed
bounds.

In each episode, the car is placed in a randomly chosen allowed combination of
x, ẋ and an episode is finished if the agent either reached the target or it passed 2000
unsuccessful steps. If the car hits the wall at x = −1.2 the velocity is set to zero.

The challenge in the mountain car task is the fact that the agent has to first
depart from the target to build up enough momentum to finally reach the target
(Gatti and Embrechts, 2013). Thus, the agent’s reward has to first worsen before it
can get better which is difficult for the agent and which causes a discontinuity in the
value function (Drummond, 1996).

153

Chapter 10 Experimental Results

10.2 Comparison of Base Configurations for GNG-Q and I-GNG-Q

We here compare base configurations for GNG-Q and I-GNG-Q in the mountain
car domain as described before. Later, these results will be used to evaluate the
influences of the parameters in these approaches.

For the Q-Learning parameters, we chose the following values: discount factor
γ = 0.9, exploration probability ε = 0.05, exponent for the time dependent learning
rate2 ω = 0.65, and decay for eligibility traces λ = 0.9. The learning rate αt was
decreased over time for all approaches in relation to the number of visits of the
state-action-pair or the feature-action pair, respectively.

The parameters of the base configuration for GNG-Q were:
• episodes between two insertions λinsert = 40
• maximal age of neighbor connections agemax = 300
• adaptation strength εb = 0.05
• the neuron’s error decay β = 0.9999
For I-GNG-Q, the base configuration consists of all the parameter settings as

described above for GNG-Q and additionally:
• exponent p = 3 of the inverse distance weighting function
• number k = 3 of neurons to be considered for the computation
As we can see from Figure 10.2, GNG-Q finds a good policy slightly faster in

the beginning. Taking into consideration Figure 10.3, one can see that both GNG-Q
and I-GNG-Q start by adding many neurons resulting in a rather fine piecewise
constant approximation for GNG-Q. Each new state can be considered to be already
partially learned because the Q-vectors of new neurons are initialized with Q-vectors
of nearby neurons. Although this is true for both approaches, it appears as if GNG-Q
could make more use of this initial information than I-GNG-Q. After around 2300
episodes, I-GNG-Q becomes more stable than GNG-Q. Nevertheless, GNG-Q has
a final average value of steps of 58.7 while I-GNG-Q has a final average number of
steps of 60.9.

Figure 10.3 shows the number of neurons needed to represent the learned policy
for which the number steps are shown in Figure 10.2. In the end, I-GNG-Q needs
40 neurons on average whereas GNG-Q needs around 32 neurons on average. The
number of neurons stabilizes after around 4200 episodes for I-GNG-Q and after
around 7500 episodes for GNG-Q. The fact that GNG-Q needs more episodes to
stabilize the approximation can also be seen in Figure 10.2: There, the number of
steps also stabilizes at around 8000 episodes.

Although the average number of steps for both approaches is quite comparable,
I-GNG-Q only needs 5870 episodes on average to always reach the goal (i.e. to have
success rate of 1.0) while GNG-Q needs 13910 episodes to achieve this.

2 We use the approach described in Equation (7.13) in Section 7.11.2.

154

10.2 Comparison of Base Configurations for GNG-Q and I-GNG-Q

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

GNG-Q base configuration
I-GNG-Q base configuration

av
g.

 n
um

be
r

of
 s

te
ps

episodes

60.9
58.7

Figure 10.2: Average number of steps for the GNG-Q and I-GNG-Q base configurations in
the mountain car task.

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

40

32
GNG-Q base configuration

I-GNG-Q base configuration

episodes

av
g.

 n
um

be
r

of
 n

eu
ro

ns

Figure 10.3: Average number of neurons for the GNG-Q and I-GNG-Q base configurations
in the mountain car task.

155

Chapter 10 Experimental Results

10.3 Evaluation of GNG-Q

This section evaluates the performance in the mountain car domain (Section 10.1.2)
if we change one parameter of GNG-Q while keeping the remaining parameters at
the values of the basic configuration described in Section 10.2. For each variation we
analyze the influence on the average number of steps needed to solve the mountain car
task as well as the average sizes of the approximations. In each setting, we mark the
value of the basic configuration by underlining it. Section 10.3.4 analyzes the effects
of GNG-Q’s parameter on different metrics as well as possible interdependencies
between these values.

10.3.1 Influence of the Insertion Delay λinsert

Here, we investigate the influence of the insertion delay λinsert for GNG-Q that
defines the minimal number of episodes that have to pass since the last insertion
before an additional neuron is added. We analyze the approach’s behavior for
λinsert ∈ {10, 40, 80, 200, 400}.

As we can see in Figure 10.4, values for λinsert ∈ {10, 40, 80} result in finding a
good approximation rather quickly: After around 1000 episodes, the average number of
steps is already close to the final value. Nevertheless, the performance for λinsert = 80
is less stable than the ones for λinsert ∈ {10, 40}. Values of λinsert ∈ {200, 400} needs
more episodes to learn a good policy and it remains more unstable as the others.
This behavior is caused by the slower insertion of new neurons: As can be seen
in Figure 10.5, the number of neurons for λinsert ∈ {10, 40, 80} increases relatively
fast but stabilizes early. Thus, GNG-Q can distinguish more abstract states in the
beginning which allows for a quick discovery of efficient policies. The disadvantage of
such small insertion delays is clearly a probably a too fine approximation.

After 20,000 episodes, the average number of steps is between 55.72 (for λinsert =
10) and 62.82 (for λinsert = 400). The final average number of neurons varies from
13.88 with λinsert = 400 to 54.42 with λinsert = 10.

156

10.3 Evaluation of GNG-Q

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

λinsert=10
λinsert=40
λinsert=80
λinsert=200
λinsert=400

18000 18500 19000 19500 20000

56

58

60

62

64

66

68

70

episodes

av
g.

 n
um

be
r

of
 s

te
ps

Figure 10.4: Average number of steps for GNG-Q with insertion delay λinsert ∈ {10, 40,
80, 200, 400} in the mountain car task.

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

λinsert=10

λinsert=80

λinsert=200

λinsert=400

λinsert=40

episodes

av
g.

 n
um

be
r

of
 n

eu
ro

ns

54

28

14
17
17.4

Figure 10.5: Average number of neurons for GNG-Q with insertion delay λinsert ∈ {10, 40,
80, 200, 400} in the mountain car task.

157

Chapter 10 Experimental Results

10.3.2 Influence of the Movement Strength εb
In this section we investigate the behavior of GNG-Q with varying values for the
movement strengths of the neurons εb ∈ {0.01, 0.05, 0.1}. Small values of this pa-
rameter result in a slow adaptation to the visited states while large values result in
stronger adaptations: εb is the portion of how far the neuron is moved towards the
centroid of all visited states in the neuron’s region.

Figure 10.6 shows that the movement strength that adapts the neurons to the
visited states has no clear influence on the time of finding a good approximation.
All three values lead to a similar performances although εb ∈ {0.01, 0.1} leads to a
more unstable behavior. The average number of steps in the last episode is 56.5 for
εb ∈ {0.01, 0.1} and 58 for εb = 0.05 and thus, these values result in a slightly better
performance than the base configuration.

The average number of neurons can be seen in Figure 10.7: Here it is obvious
that εb = 0.01 needs more neurons on average (38) than εb = 0.1 or εb = 0.05 (32.36
and 32.06). Once again, the number of neurons is related to the stability of the
performance: The setting with εb = 0.01 only moves the neurons by very small
portions which results in some peaks over time. These peeks are then responsible for
the additional insertions of new neurons.

In the final episode, the final average number of steps is between 56.07 with
εb = 0.01 and 58.07 with εb = 0.05. The average number of neurons is between 32.06
for εb = 0.05 and 38.56 for εb = 0.01.

158

10.3 Evaluation of GNG-Q

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ϵb=0.01
ϵb=0.05
ϵb=0.1

18000 18500 19000 19500 20000

57

58

59

60

61

62

63

64

episodes

av
g.

 n
um

be
r

of
 s

te
ps

Figure 10.6: Average number of steps for the GNG-Q approach with movement strength
εb ∈ {0.01, 0.05, 0.1} in the mountain car task.

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ϵb=0.01

ϵb=0.05

ϵb=0.1

episodes

av
g.

 n
um

be
r

of
 n

eu
ro

ns

38

32.36
32.06

Figure 10.7: Average number of neurons for the GNG-Q approach with movement strength
εb ∈ {0.01, 0.05, 0.1} in the mountain car task.

159

Chapter 10 Experimental Results

10.3.3 Influence of the Maximal Connection Age agemax

As final parameter for GNG-Q we analyze the influence of the maximal connection age
agemax ∈ {50, 150, 300, 500}. This parameter controls how fast outdated connections
and isolated neurons are removed.

Figure 10.8 reveals that once again, no clear influence on the speed of finding a
good approximation can be established. For agemax = 50, the performance is rather
unstable which continues until the end. The other values perform quite similar with
the larger values (i.e. agemax ∈ {300, 500}) leading to the most stable behaviors. This
can be explained by taking into account the purpose of this parameter: Abstract
states that have not been visited for a certain time should be removed. Nevertheless,
the necessary and important exploration done by the agent may lead to some states
not being visited for some time. A too small value for agemax may then result in
prematurely removed states.

An investigation of the average number of neurons in Figure 10.9 shows that
both “extreme” values for agemax result in rather small approximations (31.20–32.06
neurons on average) while agemax ∈ {150, 300} results in average approximation sizes
of 26.76–27.45 neurons. Although all four values are quite close, it is interesting to
note that agemax = 50 results in a smaller approximation than agemax ∈ {150, 300}.
The explanation for this is aforementioned premature removal of abstract states for
small agemax that on the one hand reduces the size of the approximation but on the
other hand results in a more unstable behavior.

After 20,000 episodes, the average number of steps is between 58.30 for agemax =
500 and 59.58 for agemax = 150. The final average number of neurons is between 26.76
for agemax = 500 and 32.06 for agemax = 300. Especially the final average number of
steps is very close and thus, it can be assumed that the maximal connection age has
little influence on the solution quality.

160

10.3 Evaluation of GNG-Q

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

agemax=50
agemax=150

agemax=500
agemax=300

18000 18500 19000 19500 20000
55

60

65

70

75

80

85

90

av
g.

 n
um

be
r

of
 s

te
ps

episodes

Figure 10.8: Average number of steps for the GNG-Q approach with maximal connection
age agemax ∈ {50, 150, 300, 500} in the mountain car task.

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

agemax=50
agemax=150

agemax=500

agemax=300 32.06
31.20

27.45

26.76

av
g.

 n
um

be
r

of
 n

eu
ro

ns

episodes

Figure 10.9: Average number of neurons for the GNG-Q approach with maximal connection
age agemax ∈ {50, 150, 300, 500} in the mountain car task.

161

Chapter 10 Experimental Results

Table 10.1: Levels for each factor in the 2k factorial design for GNG-Q.

factor low value (-1) high value (+1)

λinsert 10 400
agemax 50 300
εb 0.05 0.1

10.3.4 Interdependencies between Parameters

Here, we identify the influences of each parameter as well as the influences of its
combinations by using a 2k factorial design (Jain, 1991). This experimentation design
investigates the effect of k factors (the parameters, here λinsert , εb, agemax) that each
have two levels (i.e. high and low values of the parameters) on a response variable
(i.e. the output of the experiment).

We investigate three response variables:
• the average number of steps in the last episode
• the number of episodes that is needed to first find a solution that differs by at
most 5% from the best result in the complete run

• the size of the approximation
Clearly, all these response variables should be as small as possible.

In this section, we investigate the influences of the insertion delay λinsert , the
adaptation strength εb, and the maximal connection age agemax . For each of these
factors, we specify low and high levels as given in Table 10.1.

For each combination of the high and low values of all parameters (i.e. one row
of the result tables) we used the same experimentation procedure as described in
Section 10.1.1 and thus, the values in the result columns are each averages of 50
repetitions for each 20,000 episodes. In the tables, +1 indicates the high value while
-1 indicates the low value as given in Table 10.1. The row Total/8 is the average
effect of a factor, i.e. the change in the response variable created by changing the
value of a factor from low to high averaged over all possible combinations of the
other factors. The importance of a factor f can be expressed by how much of the
variation it explains: This is given as the portion Total/8 of f divided by the sum
of all Total/8 (Jain, 1991). The parameters are labeled A, B, C and combinations
are labeled AB, AC, BC, ABC. For example the column AB measures the combined
influence of parameter A and B.

Influence on the Quality in the Last Step

In Table 10.2 we can see that the largest influence on the performance in the last
episode is the insertion delay for new neurons λinsert with 78.36%. The second most
influence has the combination of λinsert and the strength of the adaptation εb with
9.38%.

From this we can conclude that high values of λinsert will result in a higher
number of steps needed and thus, smaller values of λinsert are advisable. The influence
of the combination of the factors λinsert and εb is negative. In this case this means
that for both high and low levels of λinsert the value of εb has no influence while

162

10.3 Evaluation of GNG-Q

for a low level of εb a low level of λinsert is better. For a high level of εb the change
between high and low level for λinsert is not relevant.

Influence on Size of the Approximation

Obviously, λinsert has the largest influence on the size of the approximation (cf.
Table 10.3). This analysis was mainly done to investigate whether there are other
factors that have an impact on the number of neurons. Nevertheless, it turned out
that λinsert has an (negative) effect of 97.69%: This means that small number of
λinsert result in large approximations and large values result in small networks.

Influence on the Speed of Finding Good Approximations

Table 10.4 shows that λinsert has the largest influence (79.49%) on the speed of
developing a good approximation. This can be explained by the behavior already
investigated before: A small value of λinsert allows to the approximation to be refined
faster which results in a better performance early. So, too high values of λinsert should
be avoided.

The second large effect (9.79%) is the combination of λinsert and the maximal
age of the connections between neurons. This is also quite obvious as both factors
have an influence on the number of new neurons added to the approximation.

10.3.5 Results GNG-Q

We saw that the insertion delay λinsert has the largest influence on GNG-Q’s per-
formance: The value affects the speed of finding a good solution, the size of the
approximation and the final quality of the agent’s performance. Lager values of
λinsert result in more compact approximations while small values allow the agent to
find good solutions earlier. Additionally, smaller values of λinsert result in a better
solution quality both in terms of the final number of steps and of the steadiness of
the performance. The analysis of the interdependencies confirmed that roughly 90%
of the effects on all response variables can be explained by the insertion delay itself
or by combined influences that include λinsert . Nevertheless, the insertion delay had
always the single largest influence.

The movement strength εb only has minor influences on the time of finding a
good approximation and of the final solution quality. Still, too large and too small
values influence the stability of the performance.

For the maximal connection age agemax , too small values (in relation to the
insertion delay) result in less stable performances as well as in slightly longer times
for finding a good solution.

163

Chapter 10 Experimental Results

Table 10.2: Results of the factorial design for the performance in the last episode with
GNG-Q. The values in the result column are the average number of steps needed to solve the
task in the final episode.

λinsert agemax εb
I A B C AB AC BC ABC Result

+1 -1 -1 -1 +1 +1 +1 -1 55.64
+1 +1 -1 -1 -1 -1 +1 +1 61.05
+1 -1 +1 -1 -1 +1 -1 +1 54.68
+1 +1 +1 -1 +1 -1 -1 -1 60.65
+1 -1 -1 +1 +1 -1 -1 +1 57.92
+1 +1 -1 +1 -1 +1 -1 -1 58.46
+1 -1 +1 +1 -1 -1 +1 -1 55.77
+1 +1 +1 +1 +1 +1 +1 +1 60.76

464.93 16.91 -1.21 0.89 5.01 -5.85 1.51 3.89 Total
58.12 2.11 -0.15 0.11 0.63 -0.73 0.19 0.49 Total/8

4.47 0.02 0.01 0.39 0.53 0.04 0.24 SQ
71.49 0.37 0.20 6.28 8.56 0.57 3.78 SQ · 8

Effect 78.36% 0.40% 0.21% 6.88% 9.38% 0.62% 4.15%

Table 10.3: Results of the factorial design for the size of the approximation with GNG-Q.
The values in the result column are the average numbers of neurons in the final episode.

λinsert agemax εb
I A B C AB AC BC ABC Result

+1 -1 -1 -1 +1 +1 +1 -1 51.42
+1 +1 -1 -1 -1 -1 +1 +1 11.88
+1 -1 +1 -1 -1 +1 -1 +1 48.21
+1 +1 +1 -1 +1 -1 -1 -1 8.76
+1 -1 -1 +1 +1 -1 -1 +1 59.00
+1 +1 -1 +1 -1 +1 -1 -1 10.78
+1 -1 +1 +1 -1 -1 +1 -1 51.33
+1 +1 +1 +1 +1 +1 +1 +1 14.38

255.76 -164.16 -10.4 15.22 11.36 -6.18 2.26 11.18 Total
31.97 -20.52 -1.3 1.90 1.42 -0.77 0.28 1.40 Total/8

421.07 1.69 3.61 2.02 0.60 0.08 1.95 SQ
6737.13 27.04 57.91 32.26 9.55 1.28 31.25 SQ · 8

Effect 97.69% 0.39% 0.84% 0.47% 0.14% 0.02% 0.45%

164

10.3
E

valuation
of

G
N
G
-Q

Table 10.4: Results of the factorial design for the number of episodes until GNG-Q finds the first time a solution that is at most 5% worse than
the best solution. The values in the result columns are the number of episodes after which the average behavior reaches the required quality.

λinsert agemax εb
I A B C AB AC BC ABC Result

+1 -1 -1 -1 +1 +1 +1 -1 8750
+1 +1 -1 -1 -1 -1 +1 +1 10820
+1 -1 +1 -1 -1 +1 -1 +1 6300
+1 +1 1 -1 +1 -1 -1 -1 11300
+1 -1 -1 +1 1 -1 -1 +1 9200
+1 +1 -1 +1 -1 +1 -1 -1 12270
+1 -1 +1 1 -1 -1 +1 -1 6650
+1 +1 1 +1 1 +1 1 +1 12350

77640 15840 -4440 3300 5560 1700 -500 -300 Total
9705 1980 -555 412.5 695 212.5 -62.5 -37.5 Total/8

3920400 308025 170156.25 483025 45156.25 3906.25 1406.25 SQ
62726400 4928400 2722500 7728400 722500 62500 22500 SQ · 8

Effect 79.49% 6.25% 3.45% 9.79% 0.92% 0.08% 0.03%

165

Chapter 10 Experimental Results

10.4 Evaluation of I-GNG-Q

This section evaluates I-GNG-Q’s performance in the mountain car domain from
Section 10.1.2 if we change one parameter while keeping the remaining parameters at
the values of the basic configuration described in Section 10.2. For each variation we
analyze the influence on the average number of steps needed to solve the task as well
as the average sizes of the approximations. Once again, we underline the value of the
basic configuration. Section 10.4.4 analyzes the effects of I-GNG-Q’s parameter on
different metrics as well as possible interdependencies between these values.

10.4.1 Influence of the Insertion Delay λinsert

Figure 10.10 shows the average number of steps for λinsert ∈ {10, 40, 80, 200, 400}.
The influence is similar to that in GNG-Q: Once again, the setting with λinsert = 10
finds a good solution rather quickly and then remains relatively stable. Nevertheless,
the final result of all other settings except λinsert = 400 are better than the final
result for λinsert = 10. With increasing λinsert , the time until the performance reaches
its final level increases. This is similar to the results we saw before in the analysis
of GNG-Q: The smaller λinsert the faster new neurons are added which results in a
finer approximation. In the case of I-GNG-Q more neurons mean more prototype
Q-vectors that potentially influence the value of for a given state. Thus, for small
values of λinsert I-GNG-Q can learn a very nuanced policy even in the beginning.

This fact is also reflected in Figure 10.11 where the average number of neu-
rons is plotted over the episodes. It can be seen that λinsert = 10 results in the
highest number of neurons. With increasing λinsert , the average number of neurons
decreases. Obviously, an increasing λinsert delays the time needed to fix the size of
the approximation.

Comparing the results to the ones of GNG-Q, it can be seen that I-GNG-
Q is more sensible to the choice of λinsert than GNG-Q: For the same values of
λinsert GNG-Q needed 14–54 neurons while I-GNG-Q needed 15–94 neurons (for
λinsert = 400 and λinsert = 10). Nevertheless, I-GNG-Q is able to produce a more
stable behavior earlier than GNG-Q.

After 20,000 episodes, the average number of steps range from 60.32 with
λinsert = 80 to 71.84 with λinsert = 400. The final average number of neurons is
between 15 for λinsert = 400 and 94 for λinsert = 10.

166

10.4 Evaluation of I-GNG-Q

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

λinsert=10
λinsert=40
λinsert=80
λinsert=200
λinsert=400

episodes

av
g.

 n
um

be
r

of
 s

te
ps

18000 18500 19000 19500 20000

72

70

68

66

64

62

60

Figure 10.10: Average number of steps for I-GNG-Q with insertion delay λinsert ∈ {10, 40,
80, 200, 400} in the mountain car task.

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

λinsert=10

λinsert=40

λinsert=80

λinsert=200

λinsert=400

episodes

av
g.

 n
um

be
r

of
 n

eu
ro

ns

94

40

27

18

15

Figure 10.11: Average number of neurons for I-GNG-Q with insertion delay λinsert ∈ {10,
40, 80, 200, 400} in the mountain car task.

167

Chapter 10 Experimental Results

10.4.2 Influence of the Distance Exponent p

In Figure 10.12, the average number of steps for p ∈ {2, 3, 4, 5} is shown. No clear
influence on the speed of finding a good approximation can be reported. Nevertheless,
higher values for p result in a more stable behavior. The quality of the solution
also depends on the number of p: The higher p the smaller the average number of
steps needed to solve the task. This can be explained by taking into account the
purpose of the exponent: As explained in Section 8.4.2 and depicted in Figure 8.4,
the exponent influences the smoothness of the interpolation between the sampling
points (i.e. the neurons). Thus, the agent can develop better behaviors in certain
areas of the environment.

In addition to this, Figure 10.13 shows the average numbers of neurons for the
different settings. In general it holds that the higher p the smaller the average number
of neurons although the effect is quite small: The smallest number of neurons is
achieved with p = 5 where 39.01 neurons are needed. The maximal number is reached
with p = 2 and 41 neurons on average. Thus, the sizes of approximations for varying
the exponent p are quite close.

In the final episode, the average number of steps is between 59.21 for p = 5 and
66.83 for p = 2. The final average number of neurons varies from 39.04 for p = 5 to
41.69 for p = 2. Thus, the impact on the size of the approximation is quite limited.

168

10.4 Evaluation of I-GNG-Q

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

p=2
p=3
p=4

18000 18500 19000 19500 20000

67

66

65

64

63

62

61

60

59

episodes

av
g.

 n
um

be
r

of
 s

te
ps

p=5

Figure 10.12: Average number of steps for I-GNG-Q with distance exponent p ∈ {2, 3, 4, 5}
in the mountain car task.

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

p=2p=3

p=5

episodes

av
g.

 n
um

be
r

of
 n

eu
ro

ns

41
40

39.01

p=4

39.74

Figure 10.13: Average number of neurons for I-GNG-Q with distance exponent p ∈
{2, 3, 4, 5} in the mountain car task.

169

Chapter 10 Experimental Results

10.4.3 Influence of the Number of Interpolation Bases k

As final parameter for I-GNG-Q we analyze the influence of the number of interpola-
tion bases k ∈ {2, 3, 4, 5}. This parameter controls the number of prototype Q-vectors
that are considered for the computation of the Q-value for a particular state, i.e. the
prototype Q-vectors of the k nearest neurons are inversely weighted by the distances
between the neurons and the state to make up the approximated Q-value.

Figure 10.14 shows the number of steps needed to solve the mountain car task.
All four settings find a good behavior roughly equally fast and all converge to their
finale performance after around 6000 episodes. From then on, all settings remain
stable. Additionally, the final performance for all values of k are close: The best
performing value (k = 2) needs 60.5 steps on average while the worst performing
value (k = 5) needs approximately 62.3 steps on average. Thus, the higher k the
higher the average number of steps. An explanation for this behavior is the following:
While it is advantageous to compute the approximated Q-vector not only based
on one prototype Q-vector, relying on too many prototype may be problematic as
some of these additional neurons might be within the k nearest neurons but may be
“responsible” for different portions of the state space. Obviously, the performance
of the I-GNG-Q approach in different tasks might benefit from fine tuning this
parameter.

The average number of neurons needed for different values of k are depicted in
Figure 10.15. Once again, the difference is rather marginal: The smallest average
number of neurons (39.21) is achieved with k = 5 and the highest average number of
neurons (41.09) is achieved with k = 2. Thus, it can be assumed that the higher k,
the smaller the final resulting approximation. Nevertheless, k = 4 converges to the
final number of neurons later than the other settings.

After 20,000 episodes, the differences between the performances are close: For
k = 2 the average number of steps is minimal (60.27) while for k = 5 the highest
average number of steps (62.08) is reached. The final average number of neurons is
between 39.21 for k = 5 and 41.09 for k = 2. Thus, neither the solution quality nor
the size of the approximation depends seriously on the number of interpolation bases
k.

170

10.4 Evaluation of I-GNG-Q

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

episodes

av
g.

 n
um

be
r

of
 s

te
ps

k=2
k=3
k=4
k=5

18000 18500 19000 19500 20000
60

60.5

61

61.5

62

62.5

Figure 10.14: Average number of steps for I-GNG-Q with number of interpolation bases
k ∈ {2, 3, 4, 5} in the mountain car task.

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

k=2
k=3
k=4
k=5

episodes

av
g.

 n
um

be
r

of
 n

eu
ro

ns 39.21
39.74

41.09
40.53

Figure 10.15: Average number of neurons for I-GNG-Q with number of interpolation bases
k ∈ {2, 3, 4, 5} in the mountain car task.

171

Chapter 10 Experimental Results

10.4.4 Interdependencies between Parameters

This section investigates the influences of relevant parameters on I-GNG-Q’s perfor-
mance as well as their interdependencies. We use the 2k factorial design as described
in Section 10.3.4 on the parameters insertion delay λinsert , number of interpolation
bases k, and the exponet of the inverse distance weighting function p. For each of
these factors, we specify low and high levels as given in Table 10.5.

As before, we investigate the three response variables which should be as small
as possible:
• average number of steps in the last episode
• number of episodes needed to first find a solution that differs at most 5% from
the best result in the complete run

• size of the approximation

Influence on the Solution Quality

Table 10.6 shows that the largest influence on the solution quality in the last episode
is given by the exponent p of the inverse distance weighting function. Its effect is
45.72%. The second largest effect (31.62%) is due to the number of interpolation
bases k. Interestingly, the influence of the insertion delay λinsert is here only the
fourth important factor while in GNG-Q, this was the parameter that had the largest
influence on all considered response variables.

The influence of p is negative, i.e. large values of p result in a small number of
steps. Contrary to this, the influence of k is positive which means that the higher
the number of neurons considered for the computation of the Q-values, the higher
the average number of steps in the last episode.

Influence on the Size of the Approximation

As in GNG-Q, the insertion delay λinsert has the largest effect on the size of the
approximation: Here, this effect is 84.56% and it is negative, i.e. the larger the
value of λinsert , the smaller the resulting approximation. The second large influence
(12.56%) has the number k of neurons that are included in the computation of each
approximated Q-vector. This effect is positive which means that a larger value of k
results in a larger approximation.

Influence on the Speed of Finding Good Approximations

In Table 10.8 we can see, that the insertion delay λinsert has the largest effect on
the first time a good solution is found. This is similar to the results in GNG-Q

Table 10.5: Levels for each factor in the 2k factorial design for I-GNG-Q.

factor low value (-1) high value (+1)

λinsert 10 200
k 2 5
p 2 5

172

10.4 Evaluation of I-GNG-Q

although there, the effect is larger: For I-GNG-Q the effect of λinsert is 55.02% and
for GNG-Q the effect of λinsert is 79.49%. Both effects are positive which means that
a smaller value of λinsert results in finding an good approximation earlier. When we
compare the values of the response variable for GNG-Q and I-GNG-Q, we can see
that I-GNG-Q is generally faster than GNG-Q.

The number k of neurons that are included in the computation of the Q-values
has the second largest effect on the speed of finding a good approximation with
I-GNG-Q: The influence is 15.89% and the third largest influence is the combination
of λinsert and k. The parameter k has an negative effect on the number of episodes
needed to find a proper approximation. This means that the more neurons are
included in the computation, the faster a good approximation is found.

173

Chapter 10 Experimental Results

Table 10.6: Results of the factorial design for the performance in the last episode with
I-GNG-Q. The values in the result column are the final average number of steps needed to
solve the task.

λinsert k p
I A B C AB AC BC ABC Result

+1 -1 -1 -1 +1 +1 +1 -1 62.19
+1 +1 -1 -1 -1 -1 +1 +1 58.99
+1 -1 +1 -1 -1 +1 -1 +1 64.04
+1 +1 +1 -1 +1 -1 -1 -1 61.64
+1 -1 -1 +1 +1 -1 -1 +1 57.52
+1 +1 -1 +1 -1 +1 -1 -1 57.72
+1 -1 +1 +1 -1 -1 +1 -1 60.14
+1 +1 +1 +1 +1 +1 +1 +1 60.08

482.32 -5.46 9.48 -11.4 0.54 5.74 0.48 -1.06 Total
60.29 -0.68 1.19 -1.43 0.07 0.72 0.06 -0.13 Total/8

0.47 1.40 2.03 0.01 0.51 0.01 0.02 SQ
7.45 22.47 32.49 0.07 8.24 0.06 0.28 SQ · 8

Effect 10.49% 31.62% 45.72% 0.10% 11.59% 0.08% 0.40%

Table 10.7: Results of the factorial design for the size of the approximation with I-GNG-Q.
The values in the result column are the average number of neurons in the final episode.

λinsert k p
I A B C AB AC BC ABC Result

+1 -1 -1 -1 +1 +1 +1 -1 69.12
+1 +1 -1 -1 -1 -1 +1 +1 39.78
+1 -1 +1 -1 -1 +1 -1 +1 73.48
+1 +1 +1 -1 +1 -1 -1 -1 51.19
+1 -1 -1 +1 +1 -1 -1 +1 68.6
+1 +1 -1 +1 -1 +1 -1 -1 39.06
+1 -1 +1 +1 -1 -1 +1 -1 75.84
+1 +1 +1 +1 +1 +1 +1 +1 55.29

472.36 -101.72 39.24 5.22 16.04 1.54 7.7 1.94 Total
59.05 -12.72 4.91 0.65 2.01 0.19 0.96 0.24 Total/8

161.67 24.06 0.43 4.02 0.04 0.93 0.06 SQ
2586.74 384.94 6.8 64.32 0.59 14.82 0.94 SQ · 8

Effect 84.56% 12.58% 0.22% 2.10% 0.02% 0.48% 0.03%

174

10.4
E

valuation
of

I-G
N
G
-Q

Table 10.8: Results of the factorial design for the number of episodes until I-GNG-Q finds the first time a solution that is at most 5% worse than
the best solution in all runs. The values in the result columns are the number of episodes after which the average behavior reaches the required
quality.

λinsert k p
I A B C AB AC BC ABC Result

+1 -1 -1 -1 +1 +1 +1 -1 2960
+1 +1 -1 -1 -1 -1 +1 +1 4530
+1 -1 +1 -1 -1 +1 -1 +1 2930
+1 +1 +1 -1 +1 -1 -1 -1 3450
+1 -1 -1 +1 +1 -1 -1 +1 3410
+1 +1 -1 +1 -1 +1 -1 -1 4180
+1 -1 +1 +1 -1 -1 +1 -1 3420
+1 +1 +1 +1 +1 +1 +1 +1 3630

28510 3070 -1650 770 -1610 -1110 570 490 Total
3563.75 383.75 -206.25 96.25 -201.25 -138.75 71.25 61.25 Total/8

147264.06 42539.06 9264.06 40501.56 19251.56 5076.56 3751.56 SQ
2356225 680625 148225 648025 308025 81225 60025 SQ · 8

Effect 55.02% 15.89% 3.46% 15.13% 7.19% 1.90% 1.40%

175

Chapter 10 Experimental Results

10.4.5 Results I-GNG-Q

We saw again, that larger values of the insertion delay λinsert causes I-GNG-Q to
need more time for finding a good solution and that smaller values for λinsert results
in larger approximations in terms of the number of neurons. In contrast to GNG-Q,
the largest influence on the final performance is not caused by the insertion delay
λinsert (except for λinsert = 400, the final performances for varying λinsert are quite
close).

Here, the distance exponent p has the largest influence on the final performance
while the insertion delay λinsert has the fourth largest influence after the number of
interpolation bases and the combined influence of λinsert and p. In general it holds
that the higher p the smaller the average number of steps needed to solve the task
and the smaller the average number of neurons although the latter effect is quite
small.

For the number of interpolation bases k, we saw that the higher k the higher
the average number of steps which can be explained by the fact that then possibly
too many neurons influence the Q-value for a given state. In addition, the higher k,
the smaller the final approximation although this influence is very small.

Once again, the largest influence on the size of the approximation and the time
to find a good solution is caused by the insertion delay λinsert .

Comparing GNG-Q and I-GNG-Q, it can be seen that I-GNG-Q is able to
produce a more stable behavior earlier than GNG-Q (cf. Table 10.8 and Table 10.4).

176

10.5 Comparison to Other Approaches

10.5 Comparison to Other Approaches

In this section we compare the results of GNG-Q and I-GNG-Q with each other as
well as with results of other approaches from literature.

Table 10.9 shows a comparison of the results obtained after 20,000 episodes by
GNG-Q and I-GNG-Q in the mountain car task. We report results for
• the base configurations as described in Section 10.2.
• the experiments for the evaluations of parameter changes (Sections 10.3.1–
10.3.3 and Sections 10.4.1–10.4.3). We denote by base(par = val) the base
configuration with parameter par set to val while leaving all other parameters
unchanged.

• the experiments for the factorial designs (Section 10.3.4 and Section 10.4.4).

For each of the latter two groups of experiments, we selected the parameter settings
that led to the
• minimal average number of steps
• maximal average number of steps
• minimal average number of neurons
• maximal average number of neurons

over all runs with this parameter setting (i.e. one experiment) in the final episode. For
every such set of runs, we report the best and the worst values achieved by one run
for the final number of steps and the final number of neurons (in each case columns
Min and Max). Additionally, for each experiment we analyze the mean, standard
deviation, and the radii for the 95% confidence intervals for the average number of
steps as well as for the average number neurons (columns Mean, Std. Dev., CI). We
mark the minimal average value of one group by underlining and the maximal value
of one group with an overbar.

For example, the parameter setting base(λinsert = 10) hat the minimal average
number of steps (55.72) and simultaneously the maximal number of neurons (54.42)
from all the experiments in Sections 10.3.1–10.3.3.

To clarify, the columns Min and Max for the steps (similar for the number of
neurons) needed are the final average number of steps needed by the agent to reach
the goal from 100 randomly chosen start states (cf. Section 10.1.1). The columns
Mean, Std. Dev., CI are statistics over all final average numbers of steps of all runs
for this setting (e.g. Mean is the average of all average numbers of steps for this
setting).

The best average final number of steps for each approach is marked bold: 54.68
steps on average for GNG-Q with λinsert = 10, agemax = 500, εb = 0.01 and 57.52
steps on average for I-GNG-Q with λinsert = 10, k = 2, p = 5.

We compare our results to the following approximation approaches from literature
that used the same evaluation approach as in this work: In (da Motta Salles Barreto
and Anderson, 2008), average numbers of steps of 52 (with nine RBF units) and 76
(with four RBF units) are reported for their adaptive RBF approximation. Their
approach needs around 50,000 episodes to reach a stable solution. When using 9 RBF
units, the approach finds a solution whose quality is close to the final performance
after roughly 25,000 episodes.

177

C
hapter

10
E

xperim
ental

R
esults

Table 10.9: Comparison of the best and the worst parameter settings of GNG-Q and I-GNG-Q in terms of the average number of steps as well as
the number of neurons in the last episode: Minimal and maximal values of all runs for that parameter setting, mean with standard deviation and
radii of the 95% confidence interval for all runs of this parameter setting for both measures.

Steps needed Number of neurons

Parameter setting Min Max Mean Std. Dev. CI Min Max Mean Std. Dev. CI

G
N
G
-Q

base 46.88 75.97 58.72 7.14 2.62 5 94 32.06 22.32 8.19

base(λinsert = 10) 41.35 88.18 55.72 7.79 2.43 19 123 54.42 23.57 7.35
base(λinsert = 400) 43.29 101.86 62.82 13.08 5.18 3 49 13.89 12.23 4.84

λinsert = 400, agemax = 50, εb = 0.01 46.72 80.33 61.05 8.89 4.57 3 45 11.88 10.42 5.36
λinsert = 10, agemax = 500, εb = 0.01 43.91 77.17 54.68 6.90 1.92 15 158 48.21 29.24 8.14
λinsert = 10, agemax = 50, εb = 0.1 45.76 93.80 57.92 8.78 2.55 15 175 59.00 32.18 9.34

λinsert = 400, agemax = 500, εb = 0.01 44.04 76.43 60.65 9.61 3.97 3 26 8.76 5.88 2.43

I-
G
N
G
-Q

base 41.95 102.23 60.90 11.22 3.06 20 107 40.33 14.28 3.90

base(λinsert = 10) 47.24 92.19 63.32 9.62 2.51 31 154 94.28 29.08 7.90
base(λinsert = 400) 48.10 139.60 71.84 22.12 7.97 6 51 15.28 9.21 3.32

base(p = 5) 46.45 89.81 59.21 8.94 2.66 12 71 39.04 12.31 3.66

λinsert = 10, k = 5, p = 2 45.15 89.70 64.04 11.09 3.75 54 95 73.48 11.39 3.85
λinsert = 10, k = 2, p = 5 46.55 81.21 57.52 8.18 2.43 50 97 68.61 10.59 3.14
λinsert = 10, k = 5, p = 5 48.46 76.60 60.14 6.97 2.09 34 150 75.84 24.03 7.21
λinsert = 200, k = 2, p = 5 44.91 76.37 57.72 7.88 2.42 12 64 39.06 10.76 3.31

178

10.6 Advantages of Adaptive Approximations in Unknown Environments

Whiteson and Stone (2006) also report a number of approximately 52 steps for
their adaptive tile coding approximation but because of a high sample complexity
(Whiteson and Stone, 2006), this approach needs much more than 100,000 episodes
to come to stable results. Lin and Wright (2010) evaluated their evolutionary tile
coding approximation and report an average of around 50 steps to solve the task.

Especially the latter two approaches have the drawback of using the performance
of reinforcement learning as fitness function. Thus, each of those approaches needs
number of generations times size of the population executions of the RL task. Each
of these executions may of course need several episodes of the RL task in order to
finish learning.

Nevertheless, Lin and Wright (2010) report that their approach is able to find
a state-space approximation consisting only of two abstract states which is highly
efficient. For GNG-Q some of the experiments with insertion delay λinsert = 400
included runs with a final number of three neurons (i.e. three abstract states). Each
of those were able to solve the task in 44.04–48.64 steps on average which is quite
remarkable.

We also evaluated a grid approximation for standard Q-Learning on the task
where we experimented with different approximation sizes and allowed Q-Learning to
run for 5,000,000 episodes. The best setting had 50× 50 cells and needed an average
of 43.14 steps on the 100 start states for evaluation. The best results of GNG-Q and
I-GNG-Q were able to achieve better results (the lowest average number of steps for
GNG-Q in the above set was 41.35 and 41.95 for I-GNG-Q. Thus, both approaches
are able to compute efficient approximations during learning. Nevertheless, both
measures (average number of steps and the size of the approximation) depend on the
choice of the parameter. In addition to this, the initial placement of the first neurons
may lead to results with inferior policies. This can be seen by the maximal values
given in Table 10.9. Nevertheless, the values of the standard deviation and the radii
of the 95% confidence intervals suggest that these high values are outliers and that
the average performance is usually decent.

Comparing GNG-Q and I-GNG-Q it can be seen that GNG-Q is able to find
slightly better and smaller approximations than I-GNG-Q. Nevertheless, I-GNG-Q is
usually faster in finding good and stable approximations as can be seen in Table 10.4
and Table 10.8.

To sum up, the results of GNG-Q and I-GNG-Q are well comparable to similar
approaches. Especially the approximations derived from evolutionary algorithms are
much more computationally expensive than the adaptive approaches presented in
this thesis.

10.6 Advantages of Adaptive Approximations in Unknown Environments

To stress the advantages of adaptive approximation methods, we evaluated our
approaches in the following random world environment:

We adapt the continuous world from (Boyan and Moore, 1994) that was employed
in (Baumann and Kleine Büning, 2011): The agent has to learn the shortest path from
all positions to a target. The agent can perform actions that take it one step in any
of the four cardinal directions and the state space is S = {(x, y) | x, y ∈ [0, 1]2 ⊂ R2}.

179

Chapter 10 Experimental Results

1

10

A

?
target

Figure 10.16: The world with a randomly placed target.

During creation of the world, the target is randomly placed inside the pane and fixed
at this position until the end (cf. Figure 10.16). Thus, every instance looks different
but the layout of the world is fixed during each run. The size of the target is equal
to the size of the agent’s step size sstep.

At the beginning of each episode, the agent is randomly placed inside the world
and if it tries to leave the world in any dimension, it is positioned on the border of
this dimension. For the action that leads the agent to the target, a reward of 0 is
awarded, for all other action, the reward is −0.5 which motivates the agent to find
paths as short as possible. Unless otherwise stated, we use sstep = 0.05 (i.e. the agent
needs 1/sstep = 20 steps to go from one border to the opposing border) and if the
agent did not reach the target after a given amount of steps (for a stepsize of 0.05
we set this threshold to 400), the trial is stopped.

The challenge in this task is that even if one would know the underlying MDP,
no information could be drawn from it: The target is positioned at the creation of
the task and then fixated. Figuratively, the agent is put in the environment and
then the position of the target is decided. Thus, it would be very hard to “guess” a
good hand-made discretization of the state space (cf. Section 7.1.3 and especially
Figure 7.2). Solutions to such tasks are especially interesting as often no knowledge
is available about the state space or the related value function.

To compare the approaches, we use a grid approximation for Q-Learning such
that the agent transitions into a new cell every time it performs a step. As the
target can be located anywhere in the plane, situations similar to the one depicted
in Figure 7.2(b) can occur (i.e. some parts of a cell may be overlapped by the
target while others consists of non-goal states. We tested two grid sizes: For the
first we divided each dimension in 1

sstep
intervals and for the second we divided each

dimension in 1
2·sstep

intervals. In our scenario this results in 20× 20, and 40× 40 cells,
respectively. Especially for the first case, it may happen quite often that the target
is not completely inside only one cell of the approximation (cf. Figure 7.2(b) while
for the second case, the resolution of the grid will be too fine (cf. Figure 7.2(c)).

For GNG-Q and I-GNG-Q we used our base configurations from Section 10.2

180

10.6 Advantages of Adaptive Approximations in Unknown Environments

0

100

200

300

400

500

600

700

800

900

1000

0 10000 20000 30000 40000 50000

episodes

av
g.

Nn
um

be
rN

of
Ns

te
ps

I-GNG-Q
GNG-Q

Q-LearningN(20N×N20)
Q-LearningN(40N×N40)

47500 48000 48500 49000 49500 50000
0

5

10

15

20

25

30

Figure 10.17: Average number of steps with GNG-Q, I-GNG-Q, and Q-Learning (20× 20
and 40× 40 grid) in the random world task.

target

Figure 10.18: Additional problem when using a fixed grid approximation: Parts of the
target may be in several cells.

on the same task. In this investigation, we allowed every approach to run for 50,000
episodes.

Figure 10.17 shows how the performance for GNG-Q, I-GNG-Q and the two
grid discretizations for Q-Learning evolve over time. The Q-Learning approach with
20× 20 cells is the fastest to find a good policy on average. This is due to the fact
that this setup already starts with a quite fine approximation which allows the agent
to often find the target somehow but maybe not in the best way. Thus, the learned
behavior for this approach is unstable and its final policy needs close to 20 steps on
average to reach the goal (cf. the zoomed area in Figure 10.17). In Figure 10.18 one
explanation for this is shown: As the target can be anywhere in the environment, it
may happen that it is partially contained in several cells. Thus, for such cells the
agent cannot know for certain whether it is in the target.

The 40× 40 grid approximation for Q-Learning results in a more stable behavior
but it is much slower and the average number of steps is around 25. The finer
approximation slightly reduces the problem depicted in Figure 10.18 but still faces
the drawback of being too fine huge areas of the state space as depicted in Figure 7.2(c).

181

Chapter 10 Experimental Results

0 500 1000 1500 2000 40000 45000 50000

episodes

1

10

100

10000

1000

av
g.

Gs
iz

eG
of

Ga
pp

ro
xi

m
at

io
n

G(
lo

g)

Q-LearningG(40G×G40)

Q-LearningG(20G×G20)

I-GNG-Q

GNG-Q
24
32

400

1600

Figure 10.19: Size of the approximation (logarithmic scale) in number of needed neurons
with GNG-Q and I-GNG-Q as well as in number of states for Q-Learning in the random
world task.

Additionally, the larger state space results in a longer time to find a reasonable policy.
I-GNG-Q and GNG-Q find good approximations slightly slower than the 20×20

grid approximation for Q-Learning. Nevertheless the final results are better: Here,
only around 15 steps (14.60 for GNG-Q and 14.75 for I-GNG-Q) on average are
needed to reach the target. Additionally, the more stable behavior indicates that
the automatically found approximations are well suited and allow the agent to
efficiently and effectively store its behavior. The last argument can especially be
seen in Figure 10.19 where the size of the approximations are compared. I-GNG-Q
and GNG-Q need 32 and 24 neurons on average to store the learned behavior while
the Q-Learning approaches need 400 states for the 20× 20 and 1600 states for the
40× 40 approximation. Thus, starting with a coarse approximation and inserting new
neurons (i.e. abstract states) as it is done in GNG-Q and I-GNG-Q offers a means to
find compact approximations in (possibly) unknown environments. Both approaches
developed in this thesis offer the most stable behaviors, the smallest number of steps
needed, as well as the most compact abstract state space.

For comparison, we employed the following baseline approach: We employ Q-
Learning on a predefined uniform discretization with a similar (abstract) state-space
size as computed by GNG-Q and I-GNG-Q after 50,000 episodes. Without any
knowledge on the task at hand, it is advisable to use the same resolution for each
dimension. Of course, this may not be optimal as some dimensions might require a
finer resolution than others. As these approaches need 24 and 32 neurons on average
we split each dimension in

⌈√
24
⌉

= 5 intervals for the first baseline and in
⌈√

32
⌉

= 6
intervals for the second baseline. Figure 10.20 shows the average number of steps
needed by the baselines: It can be seen that both approaches fail to converge to a
stable behavior and that the average number of steps needed is quite high.

182

10.6 Advantages of Adaptive Approximations in Unknown Environments

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Q-Learning 5 × 5
Q-Learning 6 × 6

episodes

av
g.

 n
um

be
r

of
 s

te
ps 715

667

Figure 10.20: Comparison of the average number of steps for the baseline Q-Learning
approaches in the random world task. The dashed lines are the trend lines for each approach.

Table 10.10: Comparison of the average success rates (i.e. how often the agent reached
the goal) after 50,000 episodes with standard deviation (Std. Dev.) and radii of the 95%
confidence interval (95% CI) for the considered approaches.

Approach Avg. SR Std. Dev. 95% CI

GNG-Q 0.9966 0.0148 0.0004
I-GNG-Q 0.9965 0.0077 0.0004

Q-Learning (20× 20) 0.9933 0.0256 0.0001
Q-Learning (40× 40) 0.9919 0.0190 0.0002

Q-Learning (5× 5) 0.3161 0.2861 0.0009
Q-Learning (6× 6) 0.3241 0.3286 0.0011

In Table 10.10 we report on the average success rates (i.e. how often the goal is
reached on average) of all approaches. It can be seen that GNG-Q and I-GNG-Q
have the highest success rates (0.9966 and 0.9965) and that the 95% confidence
interval is tight. The 20× 20 and the 40× 40 approximation for Q-Learning have
slightly lower success rates of 0.9933 and 0.9919, also with close endpoints of the
95% confidence interval. Additionally, the (sample) standard deviations of I-GNG-Q,
GNG-Q, as well as of the 20× 20 and the 40× 40 approximations are quite small and
thus, the success rates for each single run are quite similar. The baseline approaches
perform really bad as the agent only has success rates of 31% and 32%.

Finally, we let the Q-Learning approaches complete 1,000,000 episodes to inves-
tigate if they improve their performances with longer training time. The baseline
approaches cannot be improved by allowing the agent more time to learn. Obviously,
the approximation only insufficiently captures the features of the environment. The
20 × 20 and the 40 × 40 approximations on the other hand slightly improve over

183

Chapter 10 Experimental Results

time: For the 20 × 20 grid, the average success rate increases by 0.0002 while the
average number of steps remains the same. The finer 40× 40 resolution results in a
policy with an average number of steps of 14.69 after 1,000,000 episodes and is thus
in between the performances of GNG-Q and I-GNG-Q. Additionally, the success rate
increases to 0.9959. After around 500,000 episodes, the 40× 40 grid approximation
reaches a similar performance as GNG-Q and I-GNG-Q.

In scenarios where no information about the environment is available, it is hard
to create a suitable approximation by hand. Especially for such situations, adaptive
approximation schemes as the ones presented in this thesis are well suited to help
the agent find efficient and compact representations of the state space. Although the
20× 20 discretization for Q-Learning is faster to find a good policy in the beginning,
GNG-Q and I-GNG-Q compute a better and more stable policy. Additionally, the
approximations of our approaches are very compact: GNG-Q needs 24 neurons
(i.e. abstract states) on average and I-GNG-Q uses 32 neurons on average. Grid
approximations that divide each dimension in equally sized intervals are not able to
compute useful strategies with the same number of abstract states.

10.7 Shepherding

This section analyzes the performance of reinforcement learning in the Shepherding
task. We first compare the solution of the standard tabular Q-Learning as described
in Section 2.2.7 and later we investigate how the approximation methods developed
in this thesis perform.

10.7.1 Learning Shepherding with Q-Learning

In the following, we compare the solutions computed by the reinforcement learning
approach (cf. Chapter 6) with the GCC algorithm from Section 5.2. Note, that the
RL agent has no information about the goal for the task and it does not know the
position of the target. It only knows its own position as well as the position of the
sheep. During learning it interacts with the environment and based on the reward it
learns after some time that it is valuable to reach certain states (i.e. the states in
which the sheep is in the target). This is contrary to GCC where the agent needs
explicit knowledge about the location of the target.

For Q-Learning we used a discount factor γ = 0.95, a decreasing learning rate
αt = 1

1+visits(s,a) with visits(s, a) counting the number of performing a in s, and
varied the exploration probability ε ∈ {0.05, 0.1, 0.2, 0.4, 0.6}. The environment had
21× 21 cells with the target in the center and the viewing ranges for the sheep were
rsheep ∈ {1, 2, 3, 4, 5}. We allowed Q-Learning to learn for 1,000,000 episodes for each
parameter combination. Each combination was repeated 100 times with different
random seeds resulting in 100 policies per combination.

We evaluated every RL policy π by comparing its performance with that of
GCC : For each possible (i.e all states where the sheep is neither placed on the target
nor directly positioned at a border, cf. Figure 10.22) start state s we computed the
number of steps #stepsGCC (s) with GCC , the number of steps #stepsπQL(s) needed

184

10.7 Shepherding

Table 10.11: Results of the comparison of GCC and Q-Learning: Mean values (with 95%
confidence interval radii), standard deviation, minimal, and maximal values of the differences
#stepsπdiff (s) as well as success rates (SR) of the Q-Learning policies for varying viewing
ranges rsheep of the sheep and varying exploration probabilities ε.

rsheep ε Mean Std. Dev. Min Max SR

1

0.05 0.70± 0.002 3.29 -30 14 0.9997
0.1 1.70± 0.001 2.79 -30 14 0.9998
0.2 2.73± 0.001 2.11 -22 14 0.9999
0.4 3.32± 0.001 1.69 -12 14 0.9999
0.6 3.38± 0.001 1.67 -4 14 0.9999

2

0.05 2.88± 0.002 4.46 -24 24 0.9997
0.1 4.05± 0.002 4.00 -28 24 0.9998
0.2 5.26± 0.002 3.49 -18 24 0.9999
0.4 6.02± 0.002 3.16 -10 24 0.9999
0.6 6.13± 0.002 3.14 -4 24 0.9999

3

0.05 5.53± 0.003 5.98 -32 34 0.9997
0.1 6.83± 0.003 5.55 -30 34 0.9999
0.2 8.14± 0.003 5.07 -22 34 0.9999
0.4 8.98± 0.002 4.64 -12 34 0.9999
0.6 9.12± 0.002 4.64 -10 34 0.9999

4

0.05 8.35± 0.004 7.51 -34 44 0.9997
0.1 9.79± 0.004 7.03 -30 44 0.9998
0.2 11.23± 0.003 6.49 -28 44 0.9999
0.4 12.11± 0.003 5.97 -14 44 0.9999
0.6 12.29± 0.003 5.95 -8 44 0.9999

5

0.05 11.29± 0.004 8.76 -36 54 0.9998
0.1 12.78± 0.004 8.29 -34 54 0.9998
0.2 14.39± 0.004 7.65 -32 54 0.9999
0.4 15.31± 0.004 7.02 -18 54 0.9999
0.6 15.52± 0.004 6.98 -6 54 0.9999

by the investigated policy π, and analyzed the difference

#stepsπdiff (s) = #stepsGCC (s)−#stepsπQL(s) . (10.1)

The difference #stepsπdiff (s) is positive if the number of steps needed by the policy
is smaller (i.e. the policy is better) and negative if GCC needed less steps than
Q-Learning.

In Table 10.11 we report the mean difference (with 95% confidence interval radii)
for each combination of viewing range rsheep and exploration probability ε (i.e. the
mean difference of all policies for that combination evaluated on all allowed start
states). In addition to this, we show the standard deviation, minimal, and maximal
values of the differences #stepsπdiff (s) as well as success rates (SR) of the Q-Learning
policies.

It turned out, that Q-Learning solved at least 99.97% (for ε = 0.05 and rsheep = 1)
of the start states and that the success ratio increased to 99.99% for increasing ε and
fixed rsheep. Additionally, the success ratio increased with increasing rsheep and fixed

185

Chapter 10 Experimental Results

F
(a)

F
(b)

F
(c)

Figure 10.21: Comparison of the GCC strategy (dotted) and a learned behavior (dashed).
GCC needs nine steps for each correction while the Q-Learning strategy only needs five
by approaching the sheep at the edge of its viewing range instead of only approaching the
corners.

ε. A closer inspection revealed that the reason for not solving some start states is due
to the lack of visits which could be improved by e.g. implementing more elaborate
exploration strategies for RL. With increasing ε (i.e. allowing the agent to explore
more) and fixed viewing range, the mean value and the minimal value increases while
the standard deviation decreases which results in better policies. Additionally, the
width of the 95% confidence intervals decreases.

As the mean value of the differences is always positive, learning turned out to
be superior. Especially for larger viewing ranges of the sheep, the learned policies
are much more powerful than the solutions computed by GCC . Figure 10.21 shows
an example policy for an instance with viewing range rsheep = 2 for the sheep: It
can be seen that the dog has learned a very efficient way of driving the sheep by
approaching the edges of the viewing range instead of only steering the sheep from
the corners as it is done in GCC .

In addition to this, we analyze the performance for different distributions of the
start states. Instead of allowing the sheep to start from any admissible position, we
consider different settings (cf. Figure 10.22):

• The first setting fulfills Assumption 5 (i.e. the sheep has a distance of rsheep + 1
to the border which allows the dog to directly control the sheep without having
to detach it first) and thus, the sheep is only placed on inner cells (but not on
the target).

• The second setting investigates the behavior if Assumption 5 does not hold
(i.e. the dog has to first detach the sheep), and thus, the sheep is placed on an
outer cell but not on the border.

In both settings, the dog is allowed to start on any free cell.
We used the same procedure to evaluate the policies as described before with the

restriction that the start states are generated according to the above settings. Again,

186

10.7 Shepherding

1 cell

F

rS cells

1,2

1,2

1,2

1

2

inner
cells

outer
cells

border
cells

N

S
EW
NE

SESW

NW

Figure 10.22: Schematic overview of the settings we used in the evaluation: The first setting
has the sheep on an inner cell (but not on the target (F)) and the second setting has the
sheep on an outer cell. In both settings, the dog is allowed to start on any free cell. The
dashed lines indicate sectors that we use to explain the learned behaviors.

we computed the average difference over 100 repetitions for both settings and each
combination of the sheep’s viewing range rsheep ∈ {1, 2, 3, 4, 5} and the exploration
probability ε ∈ {0.05, 0.1, 0.2, 0.4, 0.6}.

Table 10.12 summarizes the results of this analysis. Once again, the mean value
of the differences is always positive, and thus, learning turned out to be superior. With
a fixed viewing range and increasing ε (i.e. allowing the agent to explore more), the
mean value and the minimal value increases while the standard deviation decreases
which is evidence that the RL policies are better than GCC . For fixed values of ε,
and increasing values for the viewing range, the RL policies become much better
than the GCC solutions which can again be explained by the performant learned
behavior (cf. Figure 10.21).

The average superiority of the learning agent over GCC in the outer settings is
larger than in the inner settings: The states in the inner part of the environment
are “easier” as the sheep needs not to be freed from the border. Thus, GCC already
presents a powerful solution. Conversely, the situations with the sheep close to the
border are harder to solve: Here, the shepherding agent has to figure out how to
get behind the sheep in relation to the target. Especially such situations where the
sheep has to be detached from the border are solved highly efficiently by the learning
approach. The RL agent does not walk around the sheep’s viewing range as it is done
by GCC (depicted in Figure 5.9 or Figure 5.11) but instead uses the same behavior
as shown in Figure 10.21.

The results show that increasing the viewing range of the sheep leads to an
increase of the average difference and an increase of the standard deviation. Once
again, the mean difference is larger in the outer settings. This allows the conclusion
that learning is particularly beneficial for settings with larger viewing ranges and

187

C
hapter

10
E

xperim
ental

R
esults

Table 10.12: Results of the comparison of GCC and Q-Learning with different settings of the start states: Mean values (with 95% confidence
radii), standard deviation, minimal, and maximal values of the differences #stepsπdiff (s) as well as success rates (SR) of the Q-Learning policies.

Only inner cells Only outer cells

rsheep ε Mean Std. Dev. Min Max SR Mean Std. Dev. Min Max SR

1

0.05 0.50± 0.002 2.99 -30 4 0.9997 1.48± 0.005 4.22 -30 14 0.9997
0.1 1.47± 0.001 2.47 -30 4 0.9998 2.59± 0.004 3.68 -26 14 0.9998
0.2 2.45± 0.001 1.71 -22 4 0.9999 3.84± 0.003 3.03 -20 14 0.9999
0.4 2.99± 0.001 1.14 -10 4 0.9999 4.66± 0.003 2.62 -12 14 0.9999
0.6 3.04± 0.001 1.09 -2 4 0.9999 4.75± 0.003 2.62 -4 14 0.9999

2

0.05 2.07± 0.003 3.98 -28 8 0.9997 4.20± 0.004 4.87 -28 24 0.9997
0.1 3.22± 0.002 3.53 -28 8 0.9998 5.42± 0.004 4.34 -24 24 0.9998
0.2 4.38± 0.002 2.98 -18 8 0.9999 6.70± 0.003 3.77 -16 24 0.9999
0.4 5.09± 0.002 2.46 -10 8 0.9999 7.56± 0.003 3.59 -6 24 0.9999
0.6 5.17± 0.002 2.40 -4 8 0.9999 7.70± 0.003 3.51 -2 24 0.9999

3

0.05 3.36± 0.004 5.58 -30 12 0.9997 7.43± 0.004 5.66 -32 34 0.9997
0.1 4.64± 0.004 5.16 -26 12 0.9998 8.75± 0.004 5.15 -30 34 0.9998
0.2 5.96± 0.003 4.61 -22 12 0.9999 10.03± 0.003 4.69 -16 34 0.9999
0.4 6.88± 0.003 3.84 -12 12 0.9999 10.80± 0.003 4.60 -8 34 0.9999
0.6 7.02± 0.003 3.70 -10 12 0.9999 10.96± 0.003 4.51 -4 34 0.9999

4

0.05 3.81± 0.006 7.40 -34 16 0.9998 10.60± 0.004 6.48 -32 44 0.9997
0.1 5.39± 0.006 6.89 -30 16 0.9998 11.97± 0.004 6.00 -30 44 0.9998
0.2 7.02± 0.005 6.20 -28 16 0.9999 13.30± 0.003 5.56 -20 44 0.9999
0.4 8.24± 0.004 5.02 -14 16 0.9999 14.02± 0.003 5.56 -8 44 0.9999
0.6 8.45± 0.004 4.75 -8 16 0.9999 14.18± 0.004 5.46 -4 44 0.9999

5

0.05 3.26± 0.010 9.00 -36 18 0.9999 13.54± 0.004 7.24 -30 54 0.9998
0.1 5.00± 0.009 8.60 -34 18 0.9999 14.96± 0.004 6.75 -28 54 0.9998
0.2 7.16± 0.009 7.68 -32 18 0.9999 16.10± 0.004 6.38 -16 54 0.9999
0.4 8.92± 0.006 5.78 -18 18 0.9999 16.41± 0.004 6.29 -8 54 0.9999
0.6 9.26± 0.006 5.26 -6 18 1.0 17.27± 0.004 6.25 -2 54 0.9999

188

10.7 Shepherding

situations in which the sheep is close to the border. Nevertheless, the impact of the
viewing range on the performance was already investigated in Section 5.3 where we
showed that the upper bound on the lengths of solutions computed by GCC depends
on the size of the viewing range: As an agent that uses GCC has to encircle the
sheep completely in order to detach it from the wall the overhead in terms of needed
steps grows with the size of the viewing range. Learning on the other hand is able to
derive a powerful strategy without relying on domain knowledge. In fact, the learned
strategies performed better even in the inner setting where the dog can immediately
start controlling the sheep.

A more detailed investigation revealed that learning is substantially better than
the GCC approach for situations in which the target is somewhere between the dog
and sheep, e.g. the dog is south (in sectors SW or SE, cf. Figure 10.22) and the
sheep is north (NW or NE) of the target. In situations where the sheep starts in
one of the cardinal sectors (i.e. N, E, S, W) the performance is usually identical, i.e.
#stepsπdiff (s) ≈ 0.

10.7.2 Learning Shepherding with GNG-Q and I-GNG-Q

We use the same setting and procedure as described before to evaluate GNG-Q and
I-GNG-Q on the Shepherding task.

In initial experiments we found that neither GNG-Q nor I-GNG-Q showed a
relevant influence of the exploration parameter ε on the performance. We thus used
a medium value of ε = 0.2 for the following analysis. For I-GNG-Q we used two
interpolation bases (k = 2) and a distance exponent of p = 5. GNG-Q was set to the
base configuration described in Section 10.2 except for the insertion delay that was
set to λinsert = 200. This value for λinsert was also used in I-GNG-Q.

Both approaches were allowed 500,000 episodes of training. It turned out, that
GNG-Q needed around 50,000 episodes to compute stable solutions while I-GNG-Q
found stable solutions after around 20,000 episodes. For both approaches, settings
with smaller viewing ranges of the sheep were solved earlier. In comparison, the
solutions computed by I-GNG-Q were in general more stable than those computed
by GNG-Q which is consistent to the behavior we saw earlier.

Table 10.13 compares the statistics about the differences #stepsπdiff (s) for policies
π computed by GNG-Q and I-GNG-Q for each viewing range rsheep ∈ {1, 2, 3, 4, 5}:
As before in Table 10.11 we report the mean difference (with 95% confidence interval
radii), the standard deviation, minimal, and maximal values of the differences for
each approach and viewing range, as well as the success rates (SR) of the policies
computed by GNG-Q and I-GNG-Q.

The mean differences for both approaches increase while the radii of the 95%
confidence intervals decrease with increasing viewing ranges as we have already seen
in the analysis of the policies computed by standard Q-Learning. Additionally, the
maximal value (which relates to the best solutions found) increases to the same
values as in Q-Learning. The minimal values (which concerns the situations that are
problematic for the considered policy) are in the same intervals we saw for Q-Learning
in Table 10.11. Although the mean differences for viewing ranges rsheep ∈ {1, 2, 3}
are in the same intervals as those for the policies computed by Q-Learning, the mean
values for both GNG-Q and I-GNG-Q do not reach the same levels as Q-Learning

189

Chapter 10 Experimental Results

Table 10.13: Results of the comparison of GCC and our adaptive approximation schemes
GNG-Q and I-GNG-Q: Mean values (with radii of the 95% confidence interval), standard
deviation, minimal, and maximal values of the differences #stepsπdiff (s) as well as success
rates (SR) of the policies computed by GNG-Q and I-GNG-Q for varying viewing ranges
rsheep of the sheep.

rsheep Mean Std. Dev. Min Max SR
G
N
G
-Q

1 3.21± 0.08 3.62 -14 14 0.9956
2 6.11± 0.07 4.96 -18 24 0.9961
3 6.69± 0.05 6.14 -12 34 0.9932
4 8.12± 0.03 8.03 -32 44 0.9911
5 8.77± 0.03 9.86 -12 54 0.9919

I-
G
N
G
-Q

1 2.68± 0.15 4.51 -12 14 0.9952
2 5.26± 0.09 5.22 -13 24 0.9931
3 5.70± 0.08 6.83 -19 34 0.9898
4 7.44± 0.06 8.56 -25 44 0.9926
5 8.18± 0.05 10.36 -34 54 0.9958

for rsheep ∈ {4, 5}. Comparing GNG-Q and I-GNG-Q it can be seen that the mean
differences for the policies computed by GNG-Q are better than that computed
by I-GNG-Q. Nevertheless, the mean difference is always positive and thus the
solutions computed by GNG-Q and I-GNG-Q are on average better than the baseline
computed by GCC .

It can be seen that the radii of the 95% confidence intervals for the solutions
computed by Q-Learning are smaller than that computed by GNG-Q and I-GNG-Q.
The reason for this is the fact that Q-Learning uses an exhaustive tabular storage
that has one entry for every state-action pair which allows Q-Learning to store its
knowledge very detailed and which also results in highly similar policies. Thus, the
confidence intervals are very close. On the other hand, the resulting approximations
for GNG-Q and I-GNG-Q are less similar.

The success rates of Q-Learning are also slightly higher as those for GNG-Q and
I-GNG-Q. As argued in the analysis of the solutions computed by Q-Learning, some
regions of the state space are not sufficiently explored. While in Q-Learning usually
only one or at most a small number of state(s) suffer from this, in approximation
schemes often slightly larger numbers of states are affected. This explains the difference
in the success rates.

Additionally, we also analyzed the performances of GNG-Q and I-GNG-Q (cf.
Table 10.14) when the start states are chosen according to the two settings described
on page 186: Once again, the learned strategies were always better than the baseline
computed by GCC . In general, GNG-Q performed better than I-GNG-Q and both
approaches were clearly stronger than GCC in the outer setting. Remarkably, for a
viewing range of five, GNG-Q had a minimal difference of zero which means that
the solutions of all policies computed by GNG-Q on all start states in this settings
were equal to or better than the solutions computed by GCC . On the downside,
solutions computed by I-GNG-Q in the inner setting are only slightly better than
those computed by GCC .

In order to get insights into the “optimal” policy in Shepherding, we investi-

190

10.7
Shepherding

Table 10.14: Results of the comparison of GCC and the approaches developed in this thesis with different settings of the start states: Mean
values (with 95% confidence interval radii), standard deviation, minimal, and maximal values of the differences #stepsπdiff (s) as well as success rates
(SR) of the policies computed by GNG-Q and I-GNG-Q for varying viewing ranges rsheep of the sheep.

Only inner cells Only outer cells

rsheep Mean Std. Dev. Min Max SR Mean Std. Dev. Min Max SR

G
N
G
-Q

1 1.76± 0.18 2.66 -8 4 1.0000 3.42± 0.11 3.77 -14 14 0.9950
2 3.09± 0.18 2.99 -13 8 1.0000 6.27± 0.07 5.01 -18 24 0.9959
3 4.79± 0.18 3.51 -9 12 1.0000 6.69± 0.05 6.16 -12 34 0.9930
4 6.94± 0.12 3.64 -2 16 0.9939 8.14± 0.03 8.15 -32 44 0.9911
5 7.88± 0.12 3.84 0 18 0.9995 8.80± 0.03 9.88 -12 54 0.9923

I-
G
N
G
-Q

1 0.01± 0.39 3.52 -10 4 1.0000 3.02± 0.16 4.60 -12 14 0.9946
2 0.52± 0.37 3.79 -9 8 0.9917 5.44± 0.09 5.22 -13 24 0.9932
3 1.06± 0.35 5.17 -17 12 0.9976 5.73± 0.08 6.81 -19 34 0.9894
4 1.70± 0.33 7.47 -23 16 0.9851 7.56± 0.06 8.54 -25 44 0.9926
5 1.86± 0.27 8.83 -31 18 0.9953 8.24± 0.05 10.32 -34 54 0.9958

191

Chapter 10 Experimental Results

62.21%

17.67%

7.78%
4.00% 2.26%

5.48%

0.19% 0.28% 0.06% 0.07%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6-50 51-100 101-500 501-1000 >1000

Frequency

Cumulative %

sizes of possible state regions

pe
rc

en
ta

ge

fr
eq

ue
n

cy

Figure 10.23: Frequencies (left axis) and cumulative percentage (right axix) for the sizes of
possible state regions.

gated the best policy derived by Q-Learning in the previous analysis and analyzed
the sizes of possible state regions3: After 1,000,000 episodes, all groups of states were
computed that are neighboring and that share the same optimal action (i.e. states
that could possibly become a state region as described in Section 7.4). Figure 10.23
shows the result of this analysis. It can be seen that roughly 62% of all states had
no neighboring state with the same optimal action and nearly 18% only had one
neighboring state that additionally needed the same behavior. Those states could
thus not be usefully approximated by treating them equally. Only about 6% of all
states (i.e. groups with more than five states) could really profit from a state-space
aggregation as performed by GNG-Q since neurons could probably been placed in
those areas. Additionally, this result also concerns the performance of I-GNG-Q:
The rapid changes in the value function that are closely connected to the numerous
differences of the optimal action are hard to approximate with a (smooth) value
function approximation. This observation was also made by Menache et al. (2005)
who noticed that the largest errors in their approximation were in regions where the
optimal policy changes frequently in a small area. Similarly, Smart (2004) pointed
out that approximation schemes that are based on some sort of similarity or distance
may blur discontinuities of the value function.

The reason why GNG-Q and I-GNG-Q are able to function even in the pres-
ence of such discontinuities is the following: Some neighboring states might have
different optimal actions in the policy learned by Q-Learning although they may be
treated equally without loosing too much performance. These areas are found by the
approximations and thus, the number of required states is reduced.

We also investigated where GNG-Q and I-GNG-Q placed the neurons: It could
be seen that both approaches placed most of the neurons in regions where at least
some neighboring states with the same optimal action exist. Additionally, the density
of neurons is higher in regions closer to the goal as already seen in the analysis of a
two-dimensional state space in Section 7.11.3.

Although the success rates of tabular Q-Learning were higher than those of
GNG-Q and I-GNG-Q, both approaches offer a crucial advantage: GNG-Q computed

3 In fact, we did this analysis for all combinations of exploration probability ε and viewing range
rsheep. As the results were nearly identical, we here show the result for rsheep = 1 and ε = 0.6.

192

10.8 Conclusion

an abstract state space that only needed 4.3% of the number of the total states while
I-GNG-Q needed 4.2%. Thus, both approaches are able to compute compact policies
while only suffering a slight drop of performance.

10.8 Conclusion

We saw that GNG-Q and I-GNG-Q perform well on the benchmark tasks and that
both were able to computed compact policies. In general, the solutions computed by
I-GNG-Q are more stable and I-GNG-Q finds good policies earlier. Both approaches
presented in this thesis allow the automatic computation of effective policies that
abandon the need to decide the level of approximation beforehand.

The investigation of the approaches’ parameter revealed influences on the final
performance, the size of the approximation, and the time for finding a good solution
(i.e. a solution that is as most 5% worse than the final policy) for the first time.

For GNG-Q the largest influence on all three measures is given by the number of
episodes between each two insertion of new neurons (insertion delay λinsert). Larger
values of λinsert usually result in larger approximations and longer times for finding
good policies. Smaller values allow the agent to faster find good policies that are
usually larger. The movement strength εb of GNG-Q influences the time of finding a
good approximation and of the final solution quality only slightly. Still, too large
or too small values influence the stability of the performance. For the maximal
connection age agemax in GNG-Q, smaller values result in less stable performances
as well as in slightly longer times for finding a good solution.

In I-GNG-Q, the influence of λinsert on the size of the approximation as well
as the time of finding good solutions is similar but not as strong as in GNG-Q. For
the speed of learning, λinsert has an influence of 55% while in GNG-Q the influence
was 70%. The largest difference can be found in the parameters’ influences on the
final performance: Here the exponent p of the inverse distance weighting function
has the largest influence followed by the number of interpolation bases. Generally,
the higher p the better the final performance. If the number of interpolation bases k
is too high, the final performance is reduced which can be explained by the fact that
then possibly too many prototype Q-vectors are involved.

The Shepherding task confirmed that learning is particularly advantageous if
designing a solution strategy beforehand is difficult because the task is only partially
known or not known at all. We here saw an example where a learning approach
outperformed hand coded strategies: The GCC approach is arguably cautious and
only approaches the sheep from “safe” positions which results in superfluous steps.
The reinforcement learning agent on the other hand tries different strategies and is
able to learn efficient ways of handling the sheep (see e.g. the strategy comparison in
Figure 10.21). Clearly, a similar behavior could be hard coded into GCC but this
would require the consideration of many special cases and tremendous amounts of
domain knowledge.

Especially for growing viewing ranges of the sheep, the reinforcement learning
approach was much more powerful (i.e. the differences in terms of number of steps
between the learned behaviors and GCC were relatively high). This also strengthens
the above point as these high differences are in general due to encircling of the sheep’s

193

Chapter 10 Experimental Results

viewing range as it is performed in GCC .
We saw that the performance of the reinforcement learning approach depends

on the exploration probability ε: The higher the value of ε, the better the success
rate and the larger the improvement in terms of number of steps over the solutions
computed by GCC . This observation is true for the comparison on all states as well
as for the detailed comparison that separated the states into inner and outer cells.
We also saw that reinforcement learning was in some cases not able to solve the task
due to the lack of experience in the affected start states.

The approximation approaches presented in this thesis performed similar to
standard Q-Learning. Nevertheless, neither GNG-Q nor I-GNG-Q were as sensitive
to the exploration as Q-Learning. Both approximation approaches computed policies
that only needed about 4% of the storage Q-Learning needed and, additionally, the
solutions were found faster than with Q-Learning. On the downside, the success rates
of the approximations were slightly worse than those of tabular Q-Learning.

In our opinion, learning is clearly advantageous as the policies are in general
better than the baseline computed by GCC . Additionally, no domain knowledge is
needed to derive powerful strategies. The drawbacks of tabular Q-Learning (i.e. the
long training time and the large amount of needed storage) can be resolved e.g. by
the approximations presented in this thesis.

194

11
Conclusion and Future Work

This chapter summarizes the conclusion and the results of this thesis. In addition to
this, we point out some directions for future work.

11.1 Conclusions

In general, we saw that learning presents a powerful solution for dealing with Shep-
herding tasks. We also saw that it is possible to adjust adaptive neural methods to
serve as approximations for reinforcement learning.

We started in Chapter 4 by introducing the Shepherding task, highlighted
the importance of this particular task, and pointed out similar real world tasks
that would benefit—either directly or with some adjustments—from shepherding
strategies. In addition to this, we showed how the biological background can be
modeled as agentsystem and formalized the task of dogs driving sheep to a target
area. The resulting system was classified into existing agentsystem taxonomies from
literature. For the general task of shepherding agents, we carefully analyzed the
state-space complexity and compared the results to the complexities of other tasks.
We saw that even the most recent results in solving board games are far away from
state space with sizes similar to the task of controlling sheep.

In Chapter 5, we proved close upper and lower bounds on the optimal solution
and showed that these upper and lower bounds differ by a term linear in the viewing
range of the sheep. We showed that this difference is caused by the possibly neces-
sary circumnavigation of the sheep’s viewing range without causing an unintended
movement of the sheep. We introduced the Greedy Coordinate Correction (GCC)
approached, a greedy algorithm that solves Shepherding(1, 1)-instances within
these bounds. For this algorithm, we showed that the computational complexity of
GCC is linear and, more precisely, that the runtime only depends on the length of the
solution. Additionally, the algorithm only needs a constant amount of storage. This
result is especially interesting considering the exponential state-space complexity of
the Shepherding task as analyzed before.

195

Chapter 11 Conclusion and Future Work

Supplementary to the GCC -approach, we modeled the shepherding task as rein-
forcement learning task. As we saw in Chapter 10 learning presents an advantageous
solution because it often finds very good solutions while not depending on domain
knowledge as the algorithmic solution. A drawback of learning may of course be that
the agent has to store and to repeatedly improve knowledge for every possible state
of the environment—facts that are particularly serious in state spaces as large as
of the Shepherding task. Fortunately, the approximation approaches developed in
this thesis offer a remedy for this.

Chapter 7 presented GNG-Q, a combination of Q-Learning and growing neural
gas (GNG) that builds a state-space aggregation for reinforcement learning while
the agent interacts with its environment. The core idea of our approach is to use the
GNG quantizer to aggregate similar states into regions that can be treated equally.
In parallel, we apply Q-Learning on the current approximation and use feedback
from learning to adjust the approximation if necessary. The approximation is refined
in areas where the learner’s estimated policy changes often and thus, similarity in
both the state and action space is respected. The Q-function in the GNG-Q-approach
is defined over neurons and actions and can be learned with tabular Q-Learning
using one entry for every neuron-action pair. This approximation leads to a piecewise
constant approximation of the Q-function as all states in a region are treated equally.

The advantages of GNG-Q include that knowledge achieved during learning
is used to refine the approximation which supersedes the need of deciding on the
granularity of approximation beforehand. Additionally, GNG-Q works online (i.e.
at any time during learning, the agent can make use of the knowledge acquired so
far) and does not need the model of the reinforcement learning task to compute an
efficient discretization. The agent only has to store the positions and the prototype
Q-vectors of the neurons which results in a very compact representation. The state
aggregation function is covered by the nearest neighbor rule and thus, this approach
is well suitable for an implementation on actual robots.

In Chapter 8 we presented a function approximation approach for reinforcement
learning that is also based on the growing neural gas. The enhancements in the
I-GNG-Q-approach lead to a faster stabilization of the performance and an improved
regulation of the refinement and adaptation. As I-GNG-Q computes Q-values as
weighted combinations of several prototype Q-vectors, the approximated value func-
tion is no longer piecewise constant but smooth. Additionally, the combination of
several prototype Q-vectors helps to stabilize the learning as possible erroneous
knowledge can be corrected faster and does not have such high influence.

I-GNG-Q is capable of learning compact approximations in parallel with an
(nearly) optimal policy and its performance is well competitive with other approaches
from literature without the need of knowing the considered RL task beforehand.
Furthermore, we showed how to incorporate eligibility traces to speed up learning
and to more efficiently use the agent’s experience. In addition to this, we formulated
criteria for the decision of when to adjust the approximation. I-GNG-Q uses an update
function and a feature computation that are designed to prevent an exaggeration of
Q-values.

GNG-Q and I-GNG-Q share that both approaches compute approximations for
reinforcement learning in parallel with the agent’s interaction with its environment.

196

11.2 Future Work

Additionally, the agent’s behavior and its representation is subjected to learning. We
argued that this fact leads to two interleaved learning tasks: The first task is to learn
the approximation’s parameter (i.e. the positions and the number of the neurons)
and, simultaneously, the second task is to use this approximation to learn the agent’s
behavior. Additionally, the adaption of the approximation used in GNG-Q can also
be seen as parameter exploration as discussed e.g. by Rückstieß et al. (2010).

Both of our approaches share that the underlying GNG vector quantizer is
quite insensitive to the values of its required parameters (Heinke and Hamker, 1998).
I-GNG-Q needs only two additional parameters: The first, k, controls how much
the approximation should generalize its knowledge while the second, p is used to
control the emphasis of the nearest neuron’s prototype Q-vector. As the computation
of exponential functions often employed for RBF-based function approximators is
usually very slow (Schraudolph, 1999), the inverse distance weighting used here is a
performant alternative.

In Chapter 10 we thoroughly analyzed the influences of the parameters for
our approaches on the final performance, the size of the approximation, and the
speed of finding good solutions. We saw that GNG-Q and I-GNG-Q perform well on
benchmark tasks and that both were able to compute compact policies. In general, the
solutions computed by I-GNG-Q are more stable and I-GNG-Q finds good policies
earlier than GNG-Q. Nevertheless, both approaches presented in this thesis allow
the automatic computation of effective policies that abandon the need to decide the
level of approximation beforehand.

Generally, learning is particularly advantageous if designing a solution strategy
beforehand is difficult because the task is only partially known or not known at
all. For the Shepherding task, the reinforcement learning approach was much
more powerful (i.e. the differences in terms of number of steps between the learned
behaviors and GCC were relatively high) for growing viewing ranges of the sheep.
Additionally, both approximation approaches computed policies that only used a
fraction of the storage needed by Q-Learning and, additionally, the solutions were
found faster than with Q-Learning.

In our opinion, learning in the Shepherding task is clearly advantageous as the
policies are generally better than the baseline computed by GCC . Additionally, no
domain knowledge is needed to derive powerful strategies. The drawbacks of tabular
Q-Learning (i.e. the long training time and the large amount of needed storage) can
be resolved e.g. by the approximations presented in this thesis.

11.2 Future Work

For the future, several directions can be followed based on the findings in this thesis.
To us, the most interesting point is the extension to multiple agents. In the Shep-

herding task the number of dogs as well as the number of sheep can be increased.
Having a small number of dogs (e.g. two or three) control a large flock of sheep as it
is done in the real world makes the task even more interesting. Nevertheless, this also
makes the task more complex as we have seen in Section 4.6. In fact, the agents shall
still learn the needed behavior—requiring e.g. cooperation or coordination—without
a central instance and with as little communication as possible.

197

Chapter 11 Conclusion and Future Work

In order to bring the Shepherding task even closer to its origin in the nature,
several possibilities exist. For example, the viewing ranges of the agents may be
limited which would force the dogs to decide and to cooperate based on these local
perceptions which would lead to an partially observable Markov decision process.
Then of course, the Shepherding task may be investigated in continuous state
spaces or in the presence of predators.

This thesis investigated one—in our opinion the most suitable—out of numerous
learning methods to learn shepherding behavior. Nonetheless, other approaches may
be further explored. Especially imitation—i.e. adopting behavior learned by other
agents—can be considered as a means to improve the learning performance and the
speed of learning.

The transition to multiple agents is also of interest in the field of approxima-
tion schemes for reinforcement learning. As those systems suffer even more from
the aforementioned curse of dimensionality, state aggregation as well as function
approximation should highly improve their performance. To date, most (adaptive)
approximation schemes are investigated in single-agent settings as the transition
from single-agent to multiagent reinforcement learning itself introduces a moving
learning goal. In this context, the question to what extend adaptive approaches (i.e.
learning behavior and its representation in parallel) like the neural approximations
introduced in this thesis can be applied to multiagent reinforcement learning. There,
it could e.g. be investigated, how such approaches can deal with partial observability.
Additionally, it could be analyzed to what extend agents can generalize knowledge
gained with a small number of agents to a setting with many more agents.

198

Bibliography

Charles L. Adler and James Tanton. π is the Minimum Value for Pi. The College
Mathematics Journal, 31(2):102–106, 2000.

Victor L. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD
thesis, University of Limburg, 1994.

Esther M. Arkin, Robert Connelly, and Joseph S. B. Mitchell. On Monotone Paths
Among Obstacles with Applications to Planning Assemblies. In Proceedings of
the Fifth Annual Symposium on Computational Geometry (SoCG 1989), pages
334–343, 1989.

Samuel Barrett, Matthew E. Taylor, and Peter Stone. Transfer Learning for Rein-
forcement Learning on a Physical Robot. In Proceedings of the Ninth International
Conference on Autonomous Agents and Multiagent Systems - Adaptive Learning
Agents Workshop (ALA 2010), 2010.

Maxim A. Batalin and Gaurav S. Sukhatme. Coverage, Exploration, and Deployment
by a Mobile Robot and Communication Network. In Proceedings of the Second
International Workshop on Information Processing in Sensor Networks (IPSN
2003), volume 2634 of Lecture Notes in Computer Science, pages 376–391, Berlin,
Heidelberg, Germany, 2003. Springer.

Michael Baumann and Hans Kleine Büning. State Aggregation by Growing Neural
Gas for Reinforcement Learning in Continuous State Spaces. In Proceedings of the
Tenth International Conference on Machine Learning and Applications (ICMLA
2011), pages 430–435, 2011.

Michael Baumann and Hans Kleine Büning. Adaptive Function Approximation in
Reinforcement Learning with an Interpolating Growing Neural Gas. In Proceedings
of the Twelfth International Conference on Hybrid Intelligent Systems (HIS 2012),
pages 512–517, 2012.

Michael Baumann and Hans Kleine Büning. Learning Shepherding Behavior. In
Advances in Artificial Intelligence—Local Proceedings of the Sixteenth Portuguese
Conference on Artificial Intelligence (EPIA 2013), pages 166–178, 2013.

Michael Baumann and Hans Kleine Büning. Adaptive Function Approximation in
Reinforcement Learning with an Interpolating Growing Neural Gas. International
Journal of Hybrid Intelligent Systems, 11(1):55–69, 2014.

Michael Baumann, Timo Klerx, and Hans Kleine Büning. Improved State Aggregation
with Growing Neural Gas in Multidimensional State Spaces. In Proceedings of

199

BIBLIOGRAPHY

the Fifth International Workshop on Evolutionary and Reinforcement Learning for
Autonomous Robot Systems (ERLARS 2012), pages 27–36, 2012.

Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, USA, 1957.

Dimitri P. Bertsekas and David A. Castañon. Adaptive Aggregation Methods for
Infinite Horizon Dynamic Programming. IEEE Transactions on Automatic Control,
34(6):589–598, 1989.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, USA, 1996.

Justin A. Boyan and Andrew W. Moore. Generalization in Reinforcement Learning:
Safely Approximating the Value Function. In Advances in Neural Information
Processing Systems 7: Proceedings of the 1994 NIPS Conference, pages 369–376,
1994.

Steven J. Bradtke and Andrew G. Barto. Linear Least-Squares Algorithms for
Temporal Difference Learning. Machine Learning, 22(1-3):33–57, 1996.

Rodney A. Brooks. Intelligence without Representation. Artificial Intelligence, 47
(1-3):139–159, 1991.

Guido Bugmann. Normalized Gaussian Radial Basis Function Networks. Neurocom-
puting, 20(1-3):97–110, 1998.

Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer,
Dirk Schulz, Walter Steiner, and Sebastian Thrun. The Interactive Museum Tour-
Guide Robot. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference
(AAAI 1998 / IAAI 1998), pages 11–18, 1998.

Lucian Buşoniu. Reinforcement Learning in Continuous State and Action Spaces.
PhD thesis, Delft University of Techology, 2008.

Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška. Fuzzy
Partition Optimization for Approximate Fuzzy Q-iteration. In Proceedings of the
Seventeenth IFAC World Congress (IFAC 2008), pages 5629–5634, 2008.

Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent Reinforce-
ment Learning: An Overview. In Dipti Srinivasan and Lakhmi C. Jain, editors,
Innovations in Multi-Agent Systems and Applications, volume 310 of Studies in
Computational Intelligence, pages 183–221. Springer, Berlin, Heidelberg, Germany,
2010.

Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška. Approximate
Reinforcement Learning: An Overview. In Proceedings of the Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL 2011),
pages 1–8, 2011a.

200

BIBLIOGRAPHY

Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška. Cross-
Entropy Optimization of Control Policies With Adaptive Basis Functions. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 41(1):196–209, 2011b.

Jennifer Casper and Robin R. Murphy. Human-Robot Interactions During the
Robot-Assisted Urban Search and Rescue Response at the World Trade Center.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 33(3):367–385,
2003.

Hande Çelikkanat and Erol Sahin. Steering Self-Organized Robot Flocks through
Externally Guided Individuals. Neural Computing and Applications, 19(6):849–865,
2010.

Soumen Chakrabarti, Earl Cox, Eibe Frank, Ralf Hartmut Gting, Jiawei Han, Xia
Jiang, Micheline Kamber, Sam S. Lightstone, Thomas P. Nadeau, Richard E
Neapolitan, Dorian Pyle, Mamdouh Refaat, Markus Schneider, Toby J. Teorey,
and Ian H. Witten. Data Mining: Know It All. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2008.

David Chapman and Leslie Pack Kaelbling. Input Generalization in Delayed Rein-
forcement Learning: An Algorithm and Performance Comparisons. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI
1991), pages 726–731, 1991.

Lorna Coppinger and Raymond Coppinger. Dogs for Herding and Guarding Livestock.
In Temple Grandin, editor, Livestock Handling and Transport, pages 199–214. CABI
International, third edition, 2007.

Peter I. Cowling and Christian Gmeinwieser. AI for Herding Sheep. In Proceedings
of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE 2010), pages 2–7, 2010.

André da Motta Salles Barreto and Charles W. Anderson. Restricted Gradient-
Descent Algorithm for Value-Function Approximation in Reinforcement Learning.
Artificial Intelligence, 172:454–482, 2008.

Peter Dayan and Terrence J. Sejnowski. TD(lambda) Converges with Probability 1.
Machine Learning, 14(1):295–301, 1994.

Mark de Berg. On Rectilinear Link Distance. Computational Geometry, 1:13–34,
1991.

Thomas L. Dean and Robert Givan. Model Minimization in Markov Decision
Processes. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference
(AAAI 1997 / IAAI 1997), pages 106–111, 1997.

Bruce R. Donald, James Jennings, and Daniela Rus. Analyzing Teams of Cooperating
Mobile Robots. In Proceedings of the 1994 International Conference on Robotics
and Automation (ICRA 1994), pages 1896–1903, 1994.

201

BIBLIOGRAPHY

Kurt Driessens and Saso Dzeroski. Integrating Guidance into Relational Reinforce-
ment Learning. Machine Learning, 57(3):271–304, 2004.

Chris Drummond. Preventing Overshoot of Splines with Application to Reinforcement
Learning. Technical Report TR-96-05, University of Ottawa, 1996.

John R.G. Dyer, Christos C. Ioannou, Lesley J. Morrell, Darren P. Croft, Iain D.
Couzin, Dean A. Waters, and Jens Krause. Consensus Decision Making in Human
Crowds. Animal Behaviour, 75(2):461–470, 2008.

Stefan Edelkamp and Richard E. Korf. The Branching Factor of Regular Search
Spaces. In Proceedings of the Fifteenth National Conference on Artificial Intelligence
and Tenth Conference on Innovative Applications of Artificial Intelligence (AAAI
1998 / IAAI 1998), pages 299–304, 1998.

Yaakov Engel, Shie Mannor, and Ron Meir. Bayes Meets Bellman: The Gaussian
Process Approach to Temporal Difference Learning. In Proceedings of the Twentieth
International Conference on Machine Learning (ICML 2003), pages 154–161, 2003.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement Learning with Gaussian
Processes. In Proceedings of the Twenty-Second International Conference on
Machine Learning (ICML 2005), pages 201–208, 2005.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-Based Batch Mode Rein-
forcement Learning. Journal of Machine Learning Research, 6:503–556, 2005.

Eyal Even-Dar and Yishay Mansour. Learning Rates for Q-Learning. Journal of
Machine Learning Research, 5:1–25, 2003a.

Eyal Even-Dar and Yishay Mansour. Approximate Equivalence of Markov Decision
Processes. In Proceedings of the Sixteenth Annual Conference on Computational
Learning Theory and Seventh Kernel Workshop (COLT 2003 / Kernel 2003), pages
581–594, 2003b.

Mark Evered, Peter Burling, and Mark Trotter. An Investigation of Predator Response
in Robotic Herding of Sheep. In International Proceedings of Chemical, Biological
and Environmental Engineering, volume 63, pages 49–54, 2014.

Jacques Ferber. Multi-agent systems - An Introduction to Distributed Artificial
Intelligence. Addison-Wesley-Longman, Chichester, UK, 1999.

Fernando Fernández and Daniel Borrajo. VQQL. Applying Vector Quantization
to Reinforcement Learning. In RoboCup-99: Robot Soccer World Cup III, pages
292–303, 2000.

Fernando Fernández and Daniel Borrajo. Two Steps Reinforcement Learning. Inter-
national Journal of Intelligent Systems, 23:213–245, 2008.

Merv Fingas. The Basics of Oil Spill Cleanup. Taylor & Francis, Boca Raton, FL,
USA, second edition, 2002.

202

BIBLIOGRAPHY

Daniel Fišer, Jan Faigl, and Miroslav Kulich. Growing Neural Gas Efficiently.
Neurocomputing, 104:72–82, 2013.

Robert M. French. Catastrophic Forgetting in Connectionist Networks. Trends in
Cognitive Sciences, 3(4):128–135, 1999.

Bernd Fritzke. Fast Learning with Incremental RBF Networks. Neural Processing
Letters, 1(1):2–5, 1994a.

Bernd Fritzke. A Growing Neural Gas Network Learns Topologies. In Advances in
Neural Information Processing Systems 7: Proceedings of the 1994 NIPS Conference,
pages 625–632. MIT Press, 1994b.

Bernd Fritzke. Growing self-organizing networks – why? In Proceedings of the
European Symposium on Artificial Neural Networks (ESANN 1996), pages 61–72,
1996.

Bernd Fritzke. Handbook of Neural Computation, chapter Unsupervised ontogenetic
networks. IOP Publishing Ltd and Oxford University Press, 1997.

Bernd Fritzke. Vektorbasierte Neuronale Netze. Professorial dissertation, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Erlangen, 1998.

Martin Gardner. The Last Recreations: Hydras, Eggs, and Other Mathematical
Mystifications. Springer, New York, NY, USA, 1997.

Christopher J. Gatti and Mark J. Embrechts. Reinforcement Learning with Neural
Networks: Tricks of the Trade. In Advances in Intelligent Signal Processing and
Data Mining, pages 275–310. Springer, Berlin, Heidelberg, Germany, 2013.

Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Norwell, MA, USA, 1991.

Zoubin Ghahramani. Unsupervised Learning. In Olivier Bousquet, Ulrike Luxburg,
and Gunnar Rätsch, editors, Advanced Lectures on Machine Learning, volume 3176
of Lecture Notes in Computer Science, pages 72–112. Springer, Berlin, Heidelberg,
Germany, 2004.

Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence Notions and
Model Minimization in Markov Decision Processes. Artificial Intelligence, 147(1-2):
163–223, 2003.

Robert L. Goldstone and Lawrence W. Barsalou. Reuniting Perception and Concep-
tion. Cognition, 65(2-3):231–262, 1998.

Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. Cooperative Co-
evolution of Partially Heterogeneous Multiagent Systems. In Proceedings of the
Fourteenth International Conference on Autonomous Agents & Multiagent Systems
(AAMAS 2015), pages 297–305, 2015.

Temple Grandin. Farm Animal Welfare during Handling, Transport, and Slaughter.
Journal of the American Veterinary Medical Association, 204:372–377, 1994.

203

BIBLIOGRAPHY

Robert M. Gray. Vector Quantization. ASSP Magazine, IEEE, 1:4–29, 1984.

Jeffrey S. Green and Roger A. Woodruff. Livestock Guarding Dogs: Protecting
Sheep from Predators. U.S. Department of Agriculture, Animal and Plant Health
Inspection Service, Washington D.C., USA, 1993.

William D. Hamilton. Geometry for the Selfish Herd. Journal of Theoretical Biology,
31(2):295–311, 1971.

Joseph F. Harrison, Christopher Vo, and Jyh-Ming Lien. Scalable and Robust
Shepherding via Deformable Shapes. In Proceedings of the Third International
Conference on Motion in Games (MIG 2010), pages 218–229, 2010.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,
Upper Saddle River, NJ, USA, second edition, 1998.

Dietmar Heinke and Fred H. Hamker. Comparing Neural Networks: A Benchmark
on Growing Neural Gas, Growing Cell Structures, and Fuzzy ARTMAP. IEEE
Transactions on Neural Networks, 9:1279–1291, 1998.

Peter Hilton and Jean Pedersen. Catalan Numbers, Their Generalization, and Their
Uses. The Mathematical Intelligencer, 13(2):64–75, 1991.

John E. Hopcroft, Jacob T. Schwartz, and Micha Sharir. On the Complexity of
Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the
“Warehouseman’s Problem”. The International Journal of Robotics Research, 3(4):
76–88, 1984.

IFR Statistical Department. Service Robot Statistics, 2013. URL http://www.ifr.
org/service-robots/statistics/. visited July 4, 2015.

Luca Iocchi, Daniele Nardi, and Massimiliano Salerno. Reactivity and Deliberation:
A Survey on Multi-Robot Systems. In Balancing Reactivity and Social Deliberation
in Multi-Agent Systems: From RoboCup to Real-World Applications (selected papers
from the (ECAI 2000) Workshop and additional contributions), pages 9–34, 2001.

Raj Jain. The Art of Computer System Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation and Modeling. John Wiley, New
York, NY, USA, 1991.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and Acting in Partially Observable Stochastic Domains. Artificial Intelligence, 101
(1-2):99–134, 1998.

Sham Machandranath Kakade. On the Sample Complexity of Reinforcement Learning.
PhD thesis, Gatsby Computational Neuroscience Unit, University College London,
2003.

Philipp W. Keller, Shie Mannor, and Doina Precup. Automatic Basis Function
Construction for Approximate Dynamic Programming and Reinforcement Learning.
In Proceedings of the Twenty-Third International Conference on Machine Learning
(ICML 2006), pages 449–456, 2006.

204

http://www.ifr.org/service-robots/statistics/
http://www.ifr.org/service-robots/statistics/

BIBLIOGRAPHY

John M. Kenny, Clark McPhail, Donald. N. Farrer, Dick Odenthal, Sid Heal, Jim
Taylor, Steve Ijames, and Peter Waddington. Crowd Behavior, Crowd Control, and
the Use of Non-Lethal Weapons. Technical Report A274644, Penn State Applied
Research Laboratory, 2001.

Joel A. Kirkland and Anthony A. Maciejewski. A Simulation of Attempts to Influence
Crowd Dynamics. In Proceedings of the International Conference on Systems, Man
& Cybernetics (SMC 2003), pages 4328–4333, 2003.

Donald E. Knuth. The Art of Computer Programming, Volume 2 (Third Edition):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997.

Teuvo Kohonen. Self-Organized Formation of Topologically Correct Feature Maps.
Biological Cybernetics, 43:59–69, 1982.

J. Zico Kolter and Andrew Y. Ng. Regularization and Feature Selection in Least-
Squares Temporal Difference Learning. In Proceedings of the Twenty-Sixth Inter-
national Conference on Machine Learning (ICML 2009), pages 521–528, 2009.

George Konidaris, Sarah Osentoski, and Philip S. Thomas. Value Function Approx-
imation in Reinforcement Learning Using the Fourier Basis. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2011), pages
380–385, 2011.

Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization Techniques: A Recent
Survey. GESTS International Transactions on Computer Science and Engineering,
32(1):47–58, 2006.

Alexander Kron, Günther Schmidt, Bernd Petzold, Michael F. Zaeh, Peter Hinterseer,
and Eckehard G. Steinbach. Disposal of Explosive Ordnances by Use of a Bimanual
Haptic Telepresence System. In Proceedings of the 2004 International Conference
on Robotics and Automation (ICRA 2004), pages 1968–1973, 2004.

Michail G. Lagoudakis and Ronald Parr. Least-Squares Policy Iteration. Journal of
Machine Learning Research, 4:1107–1149, 2003.

Richard C. Larson and Victor O. K. Li. Finding Minimum Rectilinear Distance
Paths in the Presence of Barriers. Networks, 11(3):285–304, 1981.

Manfred Lau, Jun Mitani, and Takeo Igarashi. Automatic Learning of Pushing
Strategy for Delivery of Irregular-Shaped Objects. In Proceedings of the 2011
International Conference on Robotics and Automation (ICRA 2011), pages 3733–
3738, 2011.

Der-Tsai Lee and Franco P. Preparata. Euclidean Shortest Paths in the Presence of
Rectilinear Barriers. Networks, 14(3):393–410, 1984.

Ivan S. Lee and Henry Y. Lau. Adaptive State Space Partitioning for Reinforcement
Learning. Engineering Applications of Artificial Intelligence, 17:577–588, 2004.

205

BIBLIOGRAPHY

Theodor Lettmann, Michael Baumann, Markus Eberling, and Thomas Kemmerich.
Modeling Agents and Agent Systems. Transactions on Computational Collective
Intelligence, 5:157–181, 2011.

Jyh-Ming Lien and Emlyn Pratt. Interactive Planning for Shepherd Motion. In
Papers from the 2009 AAAI Spring Symposium: Agents that Learn from Human
Teachers, pages 95–102, 2009.

Jyh-Ming Lien, O. Burçhan Bayazit, Ross T. Sowell, Samuel Rodríguez, and Nancy M.
Amato. Shepherding Behaviors. In Proceedings of the 2004 International Conference
on Robotics and Automation (ICRA 2004), pages 4159–4164, 2004.

Stephen Lin and Robert Wright. Evolutionary Tile Coding: An Automated State
Abstraction Algorithm for Reinforcement Learning. In Proceedings of the (AAAI
2010) Workshop on Abstraction, Reformulation, and Approximation (WARA 2010),
pages 42–47, 2010.

Yoseph Linde, Andrés Buzo, and Robert M. Gray. An Algorithm for Vector Quantizer
Design. IEEE Transactions on Communications, 28(1):84–95, 1980.

Sridhar Mahadevan. Proto-Value Functions: Developmental Reinforcement Learning.
In Proceedings of the Twenty-Second International Conference on Machine Learning
(ICML 2005), pages 553–560, 2005.

Edgar A. Martiínez-García, Ohya Akihisa, and Shin’ichi Yuta. Crowding and Guiding
Groups of Humans by Teams of Mobile Robots. In Proceedings of the 2005 Workshop
on Advanced Robotics and its Social Impacts (ARSO 2005), pages 91–96, 2005.

Thomas Martinetz and Klaus Schulten. A “Neural-Gas” Network Learns Topologies.
Artificial Neural Networks, 1:397–402, 1991.

Maja J. Matarić. Reward Functions for Accelerated Learning. In Proceedings of
the Eleventh International Conference on Machine Learning (ICML 1994), pages
181–189, 1994.

Maja J. Matarić, Martin Nilsson, and Kristian T. Simsarin. Cooperative Multi-Robot
Box-Pushing. In Proceedings of the 1995 International Conference on Intelligent
Robots and Systems (IROS 1995), pages 556–561, 1995.

Andrew McCallum. Instance-Based Utile Distinctions for Reinforcement Learning
with Hidden State. In Proceedings of the Twelfth International Conference on
Machine Learning (ICML 1995), pages 387–395, 1995.

David McFarland. A Dictionary of Animal Behaviour. Oxford University Press, New
York, NY, USA, 2006.

Francisco S. Melo and Isabel Ribeiro. Q-Learning with Linear Function Approxi-
mation. In Proceedings of the Twentieth Annual Conference on Learning Theory
(COLT 2007), pages 308–322, 2007.

206

BIBLIOGRAPHY

Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis Function Adaptation in
Temporal Difference Reinforcement Learning. Annals of Operations Research, 134
(1):215–238, 2005.

Olivier Michel. Webots: Professional Mobile Robot Simulation. Journal of Advanced
Robotics Systems, 1(1):39–42, 2004.

Joseph S. B. Mitchell, Günter Rote, and Gerhard J. Woeginger. Minimum-Link
Paths Among Obstacles in the Plane. Algorithmica, 8(5&6):431–459, 1992.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, NY, USA, 1997.

Jörg P. Müller. The Right Agent (Architecture) to do the Right Thing. In Proceed-
ings of the Fifth International Workshop on Agent Theories, Architectures, and
Languages, (ATAL 1998), pages 211–225, 1999.

Rémi Munos and Andrew Moore. Variable Resolution Discretization in Optimal
Control. Machine Learning, 49:291–323, 2002.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping. In Proceedings of
the Sixteenth International Conference on Machine Learning (ICML 1999), pages
278–287, 1999.

Illah R. Nourbakhsh, Clayton Kunz, and Thomas Willeke. The Mobot Museum Robot
Installations: A Five Year Experiment. In Proceedings of the 2003 International
Conference on Intelligent Robots and Systems (IROS 2003), pages 3636–3641, 2003.

Dirk Ormoneit and Saunak Sen. Kernel-Based Reinforcement Learning. Machine
Learning, 49(2-3):161–178, 2002.

Lynne E. Parker. Current Research in Multirobot Systems. Artificial Life and
Robotics, 7(1-2):1–5, 2003.

Lynne E. Parker and Claude F. Touzet. Multi-Robot Learning in a Cooperative
Observation Task. In Distributed Autonomous Robotic Systems 4, Proceedings of
the Fifth International Symposium on Distributed Autonomous Robotic Systems
(DARS 2000), pages 391–402, 2000.

Marc J. V. Ponsen, Matthew E. Taylor, and Karl Tuyls. Abstraction and Generaliza-
tion in Reinforcement Learning: A Summary and Framework. In Revised Selected
Papers of the Second Workshop on Adaptive and Learning Agents (ALA 2009),
pages 1–32, 2009.

Mitchell A. Potter, Lisa Meeden, and Alan C. Schultz. Heterogeneity in the Coevolved
Behaviors of Mobile Robots: The Emergence of Specialists. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001),
pages 1337–1343, 2001.

Martin. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, Hoboken, NJ, USA, 2005.

207

BIBLIOGRAPHY

Larry D. Pyeatt and Adele E. Howe. Decision Tree Function Approximation in
Reinforcement Learning. In Proceedings of the Third International Symposium
on Adaptive Systems (ISAS 2001): Evolutionary Computation and Probabilistic
Graphical Models, 1998.

Raghunath, James Cohoon, and Sartaj Sahni. Single Bend Wiring. Journal of
Algorithms, 7(2):232–257, 1986.

Bohdana Ratitch and Doina Precup. Sparse Distributed Memories for On-Line
Value-Based Reinforcement Learning. In Proceedings of the Fifteenth European
Conference on Machine Learning (ECML 2004), pages 347–358, 2004.

Balaraman Ravindran and Andrew G. Barto. Model Minimization in Hierarchical
Reinforcement Learning. In Proceedings of the Fifth International Symposium
on Abstraction, Reformulation, and Approximation (SARA 2002), pages 196–211,
2002.

Sazalinsyah Razali, Qinggang Meng, and Shuang-Hua Yang. Immune-Inspired Coop-
erative Mechanism with Refined Low-Level Behaviors for Multi-Robot Shepherding.
International Journal of Computational Intelligence and Applications, 11(1), 2012.

Craig W. Reynolds. Flocks, Herds and Schools: A Distributed Behavioral Model.
In Proceedings of the Fourteenth Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 1987), pages 25–34. ACM, 1987.

Stuart I. Reynolds. The Stability of General Discounted Reinforcement Learning
with Linear Function Approximation. In Proceedings of the Second UK Workshop
on Computational Intelligence (UKCI 2002), pages 139–146, 2002.

Thomas Rückstieß, Frank Sehnke, Tom Schaul, Daan Wierstra, Sun Yi, and Jürgen
Schmidhuber. Exploring Parameter Space in Reinforcement Learning. Paladyn
Journal of Behavioral Robotics, 1(1):14–24, 2010.

Gavin A. Rummery and Mahesan Niranjan. On-Line Q-Learning Using Connectionist
Systems. Technical report, Cambridge University, Engineering Department, 1994.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach
(Third Edition). Pearson Education, Upper Saddle River, NJ, USA, 2010.

Juan C. Santamária, Richard Sutton, and Ashwin Ram. Experiments with rein-
forcement learning in problems with continuous state and action spaces. Adaptive
Behavior, 6(2):163–217, 1997.

Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller,
Robert Lake, Paul Lu, and Steve Sutphen. Checkers Is Solved. Science, 317(5844):
1518–1522, 2007.

Nicol N. Schraudolph. A Fast, Compact Approximation of the Exponential Function.
Neural Computation, 11:853–862, 1999.

208

BIBLIOGRAPHY

Alan Schultz, John J. Grefenstette, and William Adams. Robo-Shepherd: Learning
Complex Robotic Behaviors. In Robotics and Manufacturing: Recent Trends in
Research and Applications, volume 6, pages 763–768, 1996.

Donald Shepard. A Two-Dimensional Interpolation Function for Irregularly-Spaced
Data. In Proceedings of the Twenty-Third ACM National Conference (ACM 1968),
pages 517–524, 1968.

Alexander A. Sherstov and Peter Stone. Function Approximation via Tile Coding:
Automating Parameter Choice. In Proceedings of the Sixth International Conference
on Abstraction, Reformulation and Approximation (SARA 2005), 2005.

William P. Shulaw. Sheep Care Guide. American Sheep Industry Association,
Englewood, CO, USA, 2005.

Olivier Sigaud and Pierre Gérard. Using Classifier Systems as Adaptive Expert
Systems for Control. In Third International Workshop on Advances in Learning
Classifier Systems (IWLCS 2000), pages 138–157, 2000.

Satinder P. Singh and Richard S. Sutton. Reinforcement Learning with Replacing
Eligibility Traces. Machine Learning, 22:123–158, 1996.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement Learning
with Soft State Aggregation. In Advances in Neural Information Processing Systems
7: Proceedings of the 1994 NIPS Conference, 1994.

William D. Smart. Explicit Manifold Representations for Value-Function Approx-
imation in Reinforcement Learning. In Proceedings of the Eighth International
Symposium on Artificial Intelligence and Mathematics (AI&M 1-2004), 2004.

Andrew J. Smith. Applications of the Self-Organising Map to Reinforcement Learning.
Neural Networks, 15:1107–1124, 2002.

Peter Stone and Manuela M. Veloso. Multiagent Systems: A Survey from a Machine
Learning Perspective. Autonomous Robots, 8(3):345–383, 2000.

Daniel Strömbom, Richard P. Mann, Alan M. Wilson, Stephen Hailes, A. Jennifer
Morton, David J. T. Sumpter, and Andrew J. King. Solving the Shepherding
Problem: Heuristics for Herding Autonomous, Interacting Agents. Journal of The
Royal Society Interface, 11(100), 2014.

Kyra Sundance. The Dog Rules: 14 Secrets to Developing the Dog YOU Want.
Touchstone, New York, NY, USA, 2009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, MA, USA, 1998.

Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan and Claypool,
San Rafael, CA, USA, 2010.

209

BIBLIOGRAPHY

Csaba Szepesvári and William D. Smart. Interpolation-Based Q-Learning. In
Proceedings of the Twenty-First International Conference on Machine Learning
(ICML 2004), pages 791–798, 2004.

Pinky Thakkar and Leonard P. Wesley. Autonomous mobile robot assisted herding.
In Proceedings of the Second International Conference on Informatics in Control,
Automation, and Robotics (ICINCO 2005), pages 73–81, 2005.

Sebastian Thrun. Efficient Exploration In Reinforcement Learning. Technical report,
School of Computer Science, Carnegie-Mellon University, 1992.

Sebastian Thrun and Anton Schwartz. Issues in Using Function Approximation for
Reinforcement Learning. In Proceedings of the 1993 Connectionist Models Summer
School, pages 255–263, 1993.

Sebastian Thrun, Michael Beetz, Maren Bennewitz, Wolfram Burgard, Armin B.
Cremers, Frank Dellaert, Dieter Fox, Dirk Hähnel, Charles R. Rosenberg, Nicholas
Roy, Jamieson Schulte, and Dirk Schulz. Probabilistic Algorithms and the Interac-
tive Museum Tour-Guide Robot Minerva. Journal of Robotics Research, 19(11):
972–999, 2000.

John Tromp and Gunnar Farnebäck. Combinatorics of Go. In Computers and Games.
Springer, Berlin, Heidelberg, Germany, 2007.

United States Coast Guard. On Scene Coordinator Report “Deepwater Horizon Oil
Spill”, 2011. URL http://noaa.ntis.gov/view.php?pid=NOAA:ocn760102831.

William T. B. Uther and Manuela M. Veloso. Tree Based Discretization for Continuous
State Space Reinforcement Learning. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial
Intelligence Conference (AAAI 1998 / IAAI 1998), pages 769–774, 1998.

Martijn van Otterlo. The Logic of Adaptive Behavior. IOS Press, Amsterdam, 2009.

Martijn van Otterlo and Marco Wiering. Reinforcement Learning and Markov
Decision Processes. In Reinforcement Learning, volume 12 of Adaptation, Learning,
and Optimization, pages 3–42. Springer, Berlin, Heidelberg, Germany, 2012.

Richard Vaughan, Neil Sumpter, Andy Frost, and Stephen Cameron. Robot Sheepdog
Project Achieves Automatic Flock Control. In Proceedings of the Fifth International
Conference on the Simulation of Adaptive Behaviour (SAB 1998), pages 489–493,
1998.

Richard T. Vaughan, Neil Sumpter, Jane V. Henderson, Andy Frost, and Stephen
Cameron. Experiments in Automatic Flock Control. Robotics and Autonomous
Systems, 31:109–117, 2000.

Christopher Vo, Joseph F. Harrison, and Jyh-Ming Lien. Behavior-Based Motion
Planning for Group Control. In Proceedings of the 2009 International Conference
on Intelligent Robots and Systems (IROS 2009), pages 3768–3773, 2009.

210

http://noaa.ntis.gov/view.php?pid=NOAA:ocn760102831

BIBLIOGRAPHY

Branko Šter and Andrej Dobnikar. Adaptive Radial Basis Decomposition by Learning
Vector Quantization. Neural Processing Letters, 18(1):17–27, 2003.

Gordon L. Walls. The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Institute
of Science, Bloomfield Hills, MI, USA, 1963.

Ko-Hsin Cindy Wang and Adi Botea. Fast and Memory-Efficient Multi-Agent
Pathfinding. In Proceedings of the Eighteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2008), pages 380–387. AAAI, 2008.

Christopher J. C. H. Watkins and Peter Dayan. Q-Learning. Machine Learning, 8:
272–292, 1992.

Cristopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, 1989.

B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics, 4(3):419–420, 1962.

Shimon Whiteson and Peter Stone. Evolutionary Function Approximation for
Reinforcement Learning. Journal of Machine Learning Research, 7:877–917, 2006.

Shimon Whiteson, Matthew E. Taylor, and Peter Stone. Adaptive Tile Coding for
Value Function Approximation. Technical Report AI-TR-07-339, University of
Texas at Austin, 2007.

Marco A. Wiering. Explorations in Efficient Reinforcement Learning. PhD thesis,
Utrecht University, 1999.

Marco A. Wiering. Convergence and Divergence in Standard and Averaging Re-
inforcement Learning. In Proceedings of the Fifteenth European Conference on
Machine Learning (ECML 2004), pages 477–488, 2004.

Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing,
Chichester, UK, second edition, 2009.

Chung-Do Yang, Der-Tsai Lee, and Chak-Kuen Wong. On Bends and Lengths of
Rectilinear Paths: A Graph-Theoretic Approach. In Proceedings of the Second
Workshop on Algorithms and Data Structures (WADS 1991), pages 320–330, 1991.

211

	Introduction
	Background
	(Multi-)Agent Systems
	Single Agent Reinforcement Learning
	Growing Neural Gas for Vector Quantization

	Related Work
	Shepherding Approaches
	Discussion of Shepherding Tasks and Approaches
	Approximations for Reinforcement Learning
	Discussion of Approximation Approaches

	The Shepherding Task
	Motivation
	Biological Background
	Description of the Shepherding Task
	Modeling the Shepherding Task as Multiagent System
	Sheep Behavior
	Complexity of the Shepherding Task
	Conclusion

	Single Agent Shepherding
	Foundations
	A Greedy Shepherding Algorithm
	Analysis of the GCC Algorithm
	Conclusion

	Learning Shepherding Behavior
	Adaptive State Aggregation
	Motivation
	Theoretical Model of State Space Abstraction
	General Approach
	From States to State Regions
	Neighborhood Connections
	Adapting the Approximation
	Refining the Approximation
	Stopping Criteria
	Eligibility Traces for State Regions
	Complete Algorithm
	Analysis
	Conclusion

	Adaptive Function Approximation
	Motivation
	Function Approximation for Reinforcement Learning
	Adjusting the Approximation
	Smoothing the Approximation
	Update Rule
	Complete Algorithm
	Computational Complexity
	Comparison GNG-Q vs. I-GNG-Q
	Conclusion

	Evaluation
	Experimental Results
	Experimental Setup
	Comparison of Base Configurations for GNG-Q and I-GNG-Q
	Evaluation of GNG-Q
	Evaluation of I-GNG-Q
	Comparison to Other Approaches
	Advantages of Adaptive Approximations in Unknown Environments
	Shepherding
	Conclusion

	Conclusion and Future Work
	Conclusions
	Future Work

	Bibliography

