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Abstract

The increasing complexity of technical systems inspires software and sys-
tems engineering scientists to improve the state of the art in designing such
systems. Among these improvements is the integration of cognitive functions
into approaches to model-driven software development. Such cognitive functions
enable an autonomous operation of the system, e.g., by planning reconfiguration
behavior affecting the software architecture of the system. In this context, this
thesis is concerned with the automated generation of reconfiguration plans.

By providing a formal framework for the rule-based modification of graphs
or graph-like structures, graph transformation systems enable to model the
dynamics of structures. As a consequence, they are particularly convenient for
modeling reconfiguration behavior of software architectures. However, graph
transformation systems have only rarely been employed as system models for
planning techniques.

Motivated by different requirements arising from two fundamentally different
application examples, two approaches for graph transformation planning have
been developed in this thesis.

The first approach preserves the expressiveness of graph transformation
systems by directly working on a graph transformation system’s state space. As
a result, it can handle system models with an infinite state space. It employs
a domain-specific heuristic function that uses the solution length of a relaxed
planning problem as heuristic estimate. Taking both the structure of graphs and
applicable graph transformations into account, this is a considerable improvement
over related work.

The second approach puts its focus on timing aspects and concurrency. It
comes with a new formalism for the specification of durative graph transforma-
tions. This formalism ensures that multiple durative graph transformations with
conflicting behavior cannot be executed concurrently. Furthermore, it enables the
explicit, rule-based specification of requirements regarding their concurrent and
urgent execution. By being based on timed graph transformation systems, it also
allows to employ available verification procedures. System models that have been
designed in this formalism can be translated into planning domains, for which
problem instances can be solved by employing off-the-shelf planning systems.
Evaluation results give insight on how to decide between different translation
variants and convoy an idea how certain aspects of planning domains influence
planning performance.
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Zusammenfassung

Die zunehmende Komplexität von technischen Systemen motiviert Forscher
im Software und Systems Engineering den Stand der Technik der Entwicklung
solcher Systeme zu verbessern. Zu diesen Verbesserungen gehört die Integration
kognitiver Funktionen in Ansätze der modellgetriebenen Softwareentwicklung.
Solche kognitive Funktionen ermöglichen einen autonomen Betrieb des Systems,
z.B. durch eine Planung von Rekonfigurationen, die die Softwarearchitektur des
Systems beeinflussen. In diesem Zusammenhang beschäftigt sich diese Arbeit
mit der automatischen Erstellung von Plänen solcher Rekonfigurationen.

Indem sie ein formales Framework für die regelbasierte Modifikation von
Graphen und Graph-ähnlichen Strukturen zur Verfügung stellen, ermöglichen
es Graphtransformationssysteme, die Dynamik von Strukturen zu modellieren.
Sie sind damit besonders zur Modellierung von Rekonfigurationen einer Soft-
warearchitektur geeignet. Bisher wurden Graphtransformationssysteme jedoch
nur selten als Modelle für Planungsverfahren eingesetzt.

Motiviert durch die unterschiedlichen Anforderungen zweier grundver-
schiedener Anwendungsbeispiele, wurden in dieser Arbeit zwei Verfahren zur
Planung mit Graphtransformationen entwickelt.

Das erste Verfahren erhält die Ausdruckskraft von Graphtransformations-
systemen, indem es direkt auf dem Zustandsraum eines Graphtransforma-
tionssystems arbeitet. Aus diesem Grund kann es mit Modellen umgehen, die
einen unendlichen Zustandsraum aufspannen. Es verwendet eine domänenunab-
hängige Heuristik, die die Länge der Lösung eines relaxierten Planungsproblems
als Schätzwert liefert. Sie berücksichtigt sowohl die Struktur des Graphen als
auch die anwendbaren Graphtransformationen, was eine deutliche Verbesserung
gegenüber verwandten Arbeiten darstellt.

Das zweite Verfahren legt seinen Fokus auf Zeitaspekte und Nebenläufigkeit.
Es bringt einen neuen Formalismus zur Spezifikation von zeitkonsumierenden
Graphtransformationen mit sich. Dieser Formalismus stellt sicher, dass mehrere
zueinander im Konflikt stehende zeitkonsumierende Graphtransformationen
nicht nebenläufig ausgeführt werden können. Des Weiteren ermöglicht er die
explizite, regelbasierte Spezifikation von Anforderungen bezüglich ihrer neben-
läufigen und eiligen Ausführung. Indem er auf zeitbehafteten Graphtransforma-
tionen aufsetzt, ermöglicht er außerdem die Verwendung bereits verfügbarer
Verifikationsverfahren. In diesem Formalismus entwickelte Modelle können in
Planungsdomänen übersetzt werden, dessen Probleminstanzen mit Standard-
Planungssystemen gelöst werden können. Auswertungsergebnisse helfen zwi-
schen unterschiedlichen Varianten dieser Übersetzung zu entscheiden und ver-
mitteln eine Idee, inwiefern die Performanz der Planung durch verschiedene
Aspekte der Planungsdomäne beeinflusst wird.
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1
Introduction

In today’s economy, more and more technical systems contain large amounts of
software. The increasing complexity of these systems gave rise to the use of modeling
languages, which allow to create a model of the system that is to be developed.
Such a model usually abstracts details of the system away or allows to hide them
in different views, thus making the model easier to understand. However, the
opportunities of employing modeling languages during the development of software
systems go far beyond that of abstractly representing systems for easier discussion
and documentation.

Model-Driven Software Development (MDSD) [SV06] tries to benefit from the exis-
tence of models by considering them as first-class artifacts during the development
of software systems. The aim of MDSD is to enable the generation of code from
models, e.g., via model transformation techniques [OMG11], making a lengthy and
error-prone direct implementation unnecessary. A related goal is to enable the
analysis of the same models, e.g., to verify their correctness or to ensure a certain
level of quality. The benefits of a well-functioning MDSD approach are obvious:
software systems are much easier to develop and errors can be found earlier in the
development process.

For an MDSD approach to function properly, its system models need to have a
formal foundation, i.e., a mathematical basis that unambiguously defines a model’s
meaning. Development techniques in the area of software engineering and hardware
design that provide such a formal foundation are called formal methods. Examples
for formal methods include process calculi, like Hoare’s Communicating Sequential
Processes (CSP) [Hoa78] and Milner’s Calculus of Communicating Systems (CCS) [Mil80],
formal specification languages, like the Z notation [Spi92; ISO02] and Alloy [Jac06],
and automata theory.

MDSD approaches, like MechatronicUML [Bec+12], are likely to combine mul-
tiple domain-specific modeling languages, each specialized to a certain kind of
modeling task. Examples for such modeling tasks include modeling the structural
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2 CHAPTER 1. INTRODUCTION

relationship of software components, communication behavior between different com-
ponents, and reconfiguration behavior. The latter states how the structural relationship
of software components may change over time. Because reconfiguration impacts
the software architecture of a system, it is usually treated separately from other
behavior.

The increasing complexity of technical systems also inspired software and sys-
tems engineering scientists to look into different fields, like control theory, optimiza-
tion, and artificial intelligence, to improve the state of the art in designing those
systems, cf. [GRS14]. Among these improvements is the integration of cognitive
functions into MDSD approaches. This enables subsystems of the system under
consideration to operate autonomously and thus ensures that they require only low
maintenance. These cognitive functions allow to perceive situations and add some
kind of partial intelligence to the technical system.

To enable a technical system to operate autonomously, one has to integrate a
means of making decisions into this system. For each decision, there may be a large
set of alternatives. Selecting which alternative to put into practice should not be
done in isolation from other decisions. Systems operating autonomously usually
have goals that are supposed to be reached during operation, like optimizing the
consumption of time or resources, or achieving user-specified objectives. These goals
have to be taken into account when deciding which alternatives to realize. However,
recognizing those alternatives that are likely to help in achieving the goal can be
a complex task. If these decisions were to be made by humans, the response-time
requirements of many technical systems would not be met. As a consequence, the
system needs a software component that plans which alternatives to take.

Executing some of the chosen alternatives may involve reconfigurations to the
system’s software architecture, such as the creation and deletion of software compo-
nent instances or communication links between them. Systems that autonomously
decide when and how to perform these reconfigurations, are said to have a self-
organizing [GMK02] or self-managing [Bra+04] architecture. Multiple architectural
models have been proposed for the development of such systems, e.g., the Operator-
Controller Module (OCM) [HOG04], which was developed as part of the Collaborative
Research Centre “Self-Optimizing Concepts and Structures in Mechanical Engineering”
(CRC 614), or Kramer and Magee’s reference model for self-managing systems [KM07].
A schematic representation of the OCM is given in Figure 1.1.

Both architectural models consist of three layers. The bottom layer, called con-
troller (in the OCM) or component control (in the reference model), accomplishes
the most basic tasks of the system. It essentially provides the implementation of
primitive features related to sensors and actuators. The middle layer, called reflective
operator (in the OCM) or change management (in the reference model), has the capa-
bility to modify the system’s architecture, e.g., it selects operating parameters for
the bottom layer or executes software architecture reconfigurations. The top layer,
called cognitive operator (in the OCM) or goal management (in the reference model),
accomplishes time-consuming tasks, like the computation of a plan that determines
which decision alternatives to realize. In a system with a self-managing architecture,
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Figure 1.1: Structure of the Operator-Controller Module

such a plan states which architecture reconfigurations to perform and when. This
thesis is specifically concerned with this last layer of those architectural models, i.e.,
with the automated generation of reconfiguration plans.

1.1 Automated Planning

Automated planning is a discipline in the area of artificial intelligence, coming along
in many different variants. In most of these variants, some kind of agent has to
choose among some set of activities which one to perform. Usually, there is a notion
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of a state or configuration, and each activity defines a transition between two such
states. States and state transitions can be represented in almost any kind of form.

Independently of the manner chosen to represent system states, a planning task
always has some kind of initial state and a goal specification. The goal specification
determines whether a state of the state space is a valid end state for the purpose of
the planning task. If a planning system finds such an end state in the state space
originating from the initial state of a planning task, then the path from the initial
state to the end state constitutes a valid plan. Usually, there is also some kind of
objective involved, e.g., state changes can have costs, which are to be minimized. In
the most simple case, these costs are distributed uniformly, i.e., the objective is to
reach the goal in as few steps as possible. If time is of the essence, the objective is
usually to reach the goal in as little time as possible.

A conventional representation for actions and states of planning problems, which
is used throughout the AI planning research community, is based on (quantifier-free)
predicate calculus. In this representation, an action is schematically defined via
a set of atomic formulas that are required to hold, a set of atomic formulas that
are asserted as true, and a set of atomic formulas that are asserted as false. This
classical formalism is called STRIPS, named after a planning system developed
by Fikes and Nilsson [FN71] in 1971. It is still in use today within the planning
research community and has been integrated into a common language, called
the Planning Domain Definition Language (PDDL), by McDermott and the AIPS-98
Planning Competition Committee [MA98] in 1998. PDDL has since been extended
by several other contributors. The most relevant extensions with regard to this thesis
are typing, which allows to employ a type hierarchy for objects appearing as terms
in atomic formulas, and durative actions [FL03], which introduce a notion of time
and concurrent execution into PDDL. Further extensions that are made use of in this
thesis include the support for numeric formulas and quantification.

Naturally, the application of planning techniques is not restricted to such classical
representations. Planning has also been applied to graphical models such as Petri
nets [Pet62], e.g., for solving assembly problems in manufacturing [Zha89; McC94],
and in more recent times, to graph transformation systems [Ehr+06], e.g., for solving
reconfiguration problems in the context of cyber-physical systems [EW11].

Both Petri nets and graph transformation systems are formal modeling languages
with rigorous mathematical definitions and execution semantics. Petri nets are very
well suited for modeling the concurrent behavior of distributed systems, and graph
transformation systems enable to model the dynamics of structures by providing a for-
mal framework for a rule-based modification of graphs or graph-like structures. The
latter is particularly convenient for modeling reconfiguration behavior of software
architectures.

1.2 Rule-Based Modification of Graphs

In graph transformation systems, the modification of graphs is specified via graph
transformation rules. Each graph transformation rule defines a condition that has to
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be fulfilled by a graph so that the rule may be applied to this graph. If the condition
is fulfilled, the rule gives one or more options how the graph may be transformed
into a new graph.

Since graphs provide an intuitive way to describe complex concepts and relations,
graph transformations offer a wide range of application areas. Research on graph
transformation started in the late 1960s in the fields of pattern recognition and
compiler construction. Since then, graph transformations have been applied in
software engineering, database design, modeling of concurrent systems, logical
programming, model transformation, and many other areas. Their strength lies in
their ability to model the dynamics of graphical structures. For this reason, graph
transformations have been considered a new paradigm for developing software,
especially if this software is of complex structure.

A lot of structural information appears in the fields of software development
and visual modeling. In object-oriented design, for example, there is structural
information in the relationship between different classes and objects. Computer
networks and component-based software systems are also built using a large amount
of structural information. All this structural information can be expressed via graphs,
and their evolution can be expressed via graph transformations.

Due to its ability to specify how structures evolve over time, graph transforma-
tions have been used for the specification of software architecture reconfiguration,
e.g., by Wermelinger and Fiadeiro [WF99; WF02], by Taentzer at al. [TGM00], or
by Le Métayer [Le 98]. Since graph transformations have a formal foundation,
they have also been used for verification. A prominent example is the tool set
GROOVE [Ren04], which provides explicit CTL and LTL model checking for graph
transformation systems [KR06; Ren08]. There are also approaches to the more
specific case of verifying software architecture reconfiguration, e.g., a symbolic
invariant checking technique by Becker et al. [Bec+06], which allows to prove the
absence of forbidden graph patterns, and a compositional verification approach by
Eckardt et al. [Eck+13], which includes the verification of timed properties. However,
graph transformation systems have only rarely been employed as system models for
planning techniques.

1.3 Research Tasks and Contributions

The main purpose of this thesis is to design planning techniques based on graph
transformations. The use of graph transformations renders these planning techniques
suitable for software architecture reconfiguration and allows for an integration with
MDSD approaches. Depending on the application scenarios of interest, e.g., whether
or not they involve timing aspects and concurrent behavior, there are different
requirements for such graph transformation planning systems.

In general, reconfigurations of a system’s software architecture take time. If multi-
ple such temporal reconfigurations are non-conflicting, they can probably be carried
out in parallel. Requiring a strictly sequential execution of reconfigurations might
even be counterintuitive in certain application domains, e.g., where reconfigurations
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concern highly independent components or different agents in multi-agent systems.
However, most current planning approaches to architectural reconfiguration do not
support time, and consequently only generate non-temporal plans, which do not
include concurrent execution.

Leaving aside planning and concerning only specification, there are timed story
patterns and timed story diagrams [HH11] for defining timed architectural reconfigu-
rations. They are an extension of story patterns and story diagrams, which combine
UML activity diagrams with story patterns, and have a formal semantics based
on timed graph transformation systems (TGTS) [Neu07]. However, they provide only
functionality for specifying when something is supposed to happen, not for how long
it is supposed to happen.

To enable an intuitive specification of reconfigurations whose execution requires
time, we also need a formalism in which durations can be assigned to reconfigurations.
In such a formalism, temporal reconfigurations should be allowed to be executed
concurrently if no conflict arises in doing so. Multiple concurrent reconfigurations
with conflicting behavior, e.g., the deinstantiation and use of a software component
at the same time, should be prevented from being executed without the need for
a domain modeler to explicitly address their potential conflicts. The formalism
should also have a means to conveniently express certain dependencies between
reconfigurations, e.g., that certain reconfigurations have to be applied concurrently
or only a very small time frame between two reconfigurations is allowed. Finally, the
formalism should go well with existing approaches for the verification of software
architecture reconfigurations, but also allow for an application of temporal planning
techniques.

Since graph transformation systems have been deemed suitable for modeling
software architecture reconfiguration, it seems like a natural choice to use graph
transformations for the formal syntax and semantics of such a formalism. A possible
alternative to graph transformation systems would have been to employ a variant
of Petri nets. There are extensions of Petri nets that have been used for modeling
systems that rewrite their structure dynamically, e.g., (high-level) net transformation
systems [PER95], dynamically modifiable Petri nets [RR04], and reconfigurable Petri
nets [LO04]. Petri nets have also been extended to support notions of time, e.g., time
Petri nets [Mer74; BD91], where transitions are augmented with enabling intervals,
timed Petri nets [Ram73; VFC95], which associate transitions with firing durations,
and interval timed colored Petri nets [AO95], which attach time to tokens and require
them to reside in transitions’ output places for certain holding durations. In the AI
planning research community, Petri nets have also been used for analyzing planning
domains [Vaq+09].

Nevertheless, the decision has been made in favor of graph transformation sys-
tems. This decision was supported by its great suitability for modeling architecture
reconfiguration and the benefit of employing timed graph transformation systems.
Timed graph transformation systems extend graph transformation systems with
clocks and time constraints, in a similar way that timed automata [AD94] extend
ordinary automata. While the application of rules is instantaneous in timed graph



1.3. RESEARCH TASKS AND CONTRIBUTIONS 7

transformation systems, their time constraints provide a convenient means for devel-
oping a formal semantics where the execution of a graph transformation consumes
time. Furthermore, there exist verification procedures for timed graph transfor-
mation systems: Heinzemann et al. [HE10] provide a reachability analysis, which
supports to check whether or not a certain subgraph exists in any state graph of the
state space, and Suck et al. [SHS11] developed an approach that translates a timed
graph transformation system and a specification given as a first-order TCTL formula
into a TCTL model checking problem [ACD93] for timed automata.

The contributions of this thesis cover two different approaches to planning with
graph transformations. The first approach is concerned with untimed planning tasks.
It works directly on the state space of a graph transformation system by employing
a domain-independent heuristic function during the generation of the state space.
An important aspect of this approach is that it preserves the expressiveness of graph
transformation systems, where it is possible to model infinite systems. Related
planning approaches that also employ domain-independent heuristic functions
while searching through the state space of a graph transformation system are
rather simple: either their heuristic function does not take the applicable graph
transformation rules into account, cf. [EJL06; Sni11], or the actual structure of state
graphs, cf. [HHV11].

The second approach to planning with graph transformation puts the focus on
timing aspects and concurrency. For this reason, the contributions of this thesis
include the design of a formalism for the specification of durative graph transfor-
mations as well as a means to generate temporal reconfiguration plans for domain
models that have been specified using this formalism. Due to the formal syntax
and semantics this formalism provides, it is suitable for safety-critical environments
where a precise timed execution is essential.

The formal semantics is based on the timed graph transformation framework
mentioned above. Syntactically, a durative graph transformation rule extends
an ordinary graph transformation rule by a natural number, called its duration,
representing its execution time. To yield a semantics, these durative rules are
mapped to existing concepts of the timed graph transformation framework. This
mapping integrates a locking mechanism, which guarantees that the execution of
multiple durative rules with conflicting behavior is avoided. As a consequence,
there is no need for a modeler to explicitly address potentially dangerous conflicts
between concurrent reconfigurations on the level of syntax.

In addition to the durative rules mentioned above, this formalism provides
concepts to express certain dependencies regarding their application. These concepts
have been designed specifically for the use in concurrent contexts. They allow
to express that certain reconfigurations require the concurrent execution of other
reconfigurations or that they have to follow other reconfigurations within a given
deadline.

In order to generate temporal plans, we perform a translation of system models
that have been specified in this new formalism into PDDL planning domains. The
result of running an off-the-shelf planning system on problem instances over such
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a generated planning domain is a temporal plan that yields the exact points in
time when a reconfiguration starts and finishes. This translation reproduces the
fundamental features of the formal semantics, thus ensuring that PDDL-based
planning systems generate plans that are valid under the semantics of durative
graph transformations.

While the formal syntax and semantics of durative graph transformations have
been designed such that a translation into PDDL is possible and reasonable, they
are conceptually independent of PDDL or any planning techniques. The semantics
is solely based on timed graph transformation systems. For this reason, we can also
make use of the verification procedures for timed graph transformation systems
given in [HE10; SHS11].

1.4 Application Examples

The motivation for exploring planning systems working with graph transformations
stems from several application examples. These application examples are funda-
mentally different in structure, leading to different requirements for the planning
system. This is why different approaches to graph transformation planning have
been developed, each with different strengths and weaknesses.

In this section, we informally introduce those application examples that were
used for validating the planning systems developed as part of this thesis.

Reconfiguration of ECUs Our first application scenario is the reconfiguration
of electronic control units (ECU) in automotive systems. The AUTOSAR consor-
tium proposed a component-based software architecture standard [AUT14] for the
development of ECU software. Following the AUTOSAR standard, a Runtime Envi-
ronment (RTE) is generated out of a predefined set of components. This RTE acts as
a middleware, which connects software components with Basic Software (BSW) that
controls the hardware, see Figure 1.2.

In current development, software components are deployed on ECUs at design-
time. We expect that in the future, only interfaces to the hardware have to be
deployed at design-time and software components can be deployed at runtime. This
allows to react to hardware failures by initiating a self-healing process, which in-
volves software architecture reconfiguration, cf. [Klö+10]. Such a self-healing process
computes a reconfiguration plan and executes it subsequently. In this application
example, reconfiguration plans include actions to deploy software components on
ECUs, create and destroy component instances, and shut down ECUs.

Note that we assume important system tasks to be performed redundantly.
Therefore, hardware failures do not necessarily result in the failure of such crucial
tasks. As a consequence, the safe operation of the system is not affected immediately
and the self-healing process can be executed in soft real-time. As soon as the
reconfiguration of the system is completed, the redundancy in the system is fully
reestablished.
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Figure 1.2: Layered architecture of AUTOSAR1

RailCab system Our second application scenario is the RailCab system, which
is developed at the University of Paderborn. The RailCab system consists of au-
tonomous, driverless shuttles, called RailCabs, that operate on a railway system.
Each RailCab has an individual goal, e.g., transporting passengers or goods to a
specified target station. An important feature of the RailCab system is the RailCabs’
ability to drive in a convoy, i.e., RailCabs can minimize the distance between each
other, thus saving energy due to the reduced drag caused by the slipstream effect.
To safely operate in a convoy, acceleration and braking has to be coordinated and
managed between convoy members. RailCabs also communicate with trackside
base stations to inquire properties of upcoming track segments, like their expected
coefficients of friction.

The software of the RailCab system is developed in MechatronicUML, where
software components interact via communication protocols by means of message
passing. To define these communication protocols MechatronicUML provides real-
time coordination patterns (RTCP).

Figure 1.3 shows a configuration where such RTCPs are connected to component
instances. It consists of three RailCab component instances driving in a convoy. They

1Reproduced by kind permission of dSPACE GmbH.
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:coordinator :member

r1 : RailCab r2 : RailCab r3 : RailCab

:DistanceControl :DistanceControl

:front :rear :front :rear

:member

: ConvoyCoordination

Figure 1.3: Component instance configuration of three RailCabs operating in a
convoy

execute the RTCPs ConvoyCoordination and DistanceControl. Each of these RTCPs
consists of two interfaces, called ports, and a connector, i.e., there is a coordinator

and member port for the RTCP ConvoyCoordination and a front and rear port for
the RTCP DistanceControl.

The behavior of the involved communication partners, called roles, is specified
via real-time statecharts (RTSC), which combine UML state machines [OMG09] with
timed automata. The RTCP ConvoyCoordination defines a 1-to-n communication.
During convoy operation, one RailCab serves as a coordinator, which defines a
reference speed and coordinates acceleration and braking by communicating with
all other convoy members. Therefore, RailCab r1 executes an instance of the
coordinator role – more precisely a multi-role instance which consists of multiple
sub-role instances [Bec+12] – while RailCabs r2 and r3 each execute an instance of
the member role. The two instances of the RTCP DistanceControl are each used by
two adjacent RailCabs to keep a constant driving distance.

The RTSCs implementing this role behavior reside in the reflective operator, i.e.,
the middle layer of the OCM. They can trigger architectural reconfiguration, e.g.,
the deinstantiation of a subcomponent that directly manages the driving speed
and the simultaneous instantiation of another subcomponent that determines the
driving speed based on a reference value provided by the convoy coordinator and
the distance to the RailCab in front. However, RTSCs do not decide themselves
whether driving in a convoy is useful or not. This is done by the cognitive operator,
i.e., the top layer of the OCM. This layer generates temporal plans that contain
the information when to instantiate which RTCP. Executing such a generated plan
results in specific transitions of RTSCs being triggered via asynchronous messages,
which is done precisely at those times given in the plan. Note that these plans do
not have to be generated by a single, autonomous RailCab, but can be generated by
a cross-linked mechatronic system consisting of several RailCabs, cf. [LHL01], and
that RailCabs execute multiple planning processes at different levels of abstraction,
cf. [RZ13].
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1.5 Thesis Outline

The next two chapters introduce the foundations this thesis builds upon. Chapter 2
covers the two main algebraic approaches to graph transformation considered in
this thesis. It includes the notions of parallel and sequential independence, which
are relevant for deciding whether multiple graph transformations are free of any
conflicts. Chapter 3 gives a short introduction to PDDL, focusing on those extensions
that are used in this thesis, and explains the notion of required concurrency in planning
domains.

Chapters 4 to 6 present the main contributions of this thesis. Chapter 4 explains
the untimed planning approach, which works directly on the state space of a graph
transformation system. The new formalism for the specification of durative graph
transformations and their dependencies regarding concurrent and urgent execution
is presented in Chapter 5, and its translation into PDDL domain models, which
enables the generation of temporal plans, is explained in Chapter 6. In each of the
three chapters, related work specific to the chapter’s contribution is covered directly
within the chapter in a separate section.

Finally, Chapter 7 summarizes the results and concludes with a perspective
on future work. Discussions on future work can be found both in discussion
sections specific to each of the three chapters (with a narrow perspective) and in the
conclusion (with a wider perspective).





2
Background on Graph
Transformations

In graph grammars and graph transformation systems, the modification of graphs
is specified via graph transformation rules1. Each rule consists of a pair of graphs,
called left-hand side (LHS) and right-hand side (RHS), which schematically define how
a graph may be transformed into a new graph. Applying a graph transformation
rule to a graph can be seen as replacing a subgraph corresponding to the rule’s
LHS with a copy of its RHS. More precisely, elements that are specified in both
LHS and RHS are preserved by the rule application, elements specified only in
the LHS are deleted, and elements specified only in the RHS are created. When a
graph transformation rule is applied to a graph, this graph is called host graph to not
confuse it with the LHS and RHS of the rule, which are also graphs.

Naturally, the possibility of applying a graph transformation rule to a host graph
underlies the condition that a subgraph corresponding to the rule’s LHS can be
found. Furthermore, it is also possible that multiple matching subgraphs exist in
a host graph. In such a case, multiple rule applications of the same rule can be
performed. These rule applications are not necessarily independent. It might be
the case that a choice has to be made at which match to transform the host graph,
e.g., when different matches overlap and each their respective graph transformation
modifies element contained in the other match.

A set of graph transformation rules together with an initial graph spans a
transition system. In this transition system, graphs are represented as states and
graph transformations as transitions between states. It is important to realize that
the nondeterminism indicated by multiple outgoing transitions of a state has two
sources: multiple rules may be applicable to a graph and they may potentially be
applied at multiple matches.

There exist various approaches to realize graph transformations. They are broadly
classified into connecting approaches and gluing approaches. The main difference of
these approaches is how they attach a new replacement subgraph to the remainder

1A graph transformation rule is also known as graph production, cf. [Cor+97; Ehr+06].
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of the host graph. Connecting approaches introduce new edges to connect the new
subgraph to the remainder graph. Gluing approaches identify or “glue together”
certain elements of the new subgraph with elements of the remainder graph.

In the node replacement approach [JR80; ER97], a graph transformation replaces
a single node in a graph with a new subgraph. This subgraph is connected with
new edges to the remainder graph according to an embedding relation. There are
various ways to define such an embedding relation. Consequently, there are several
extensions and variations of this approach. All of these variations belong to the
connecting approaches.

In the hyperedge replacement approach [Fed71; Pav72; DKH97], a hyperedge is
replaced by a new hypergraph. This approach does not require an embedding
relation. The new hypergraph is glued to the remainder hypergraph by identify-
ing designated attachment nodes with nodes of the remainder hypergraph. This
approach belongs to the group of gluing approaches.

There are two notable algebraic approaches, the double pushout (DPO), which
was invented by Ehrig et al. [EPS73; Cor+97; Ehr+06] and the single pushout (SPO)
approach, which was invented by Löwe et al. [Löw93; Ehr+97]. Both approaches
are based on category theory and the categorical term of a pushout. In DPO, a
transformation is formalized via two pushouts in the category of graphs and (total)
graph morphisms. One of the pushouts realizes the deletion of elements and the
other one realizes their addition. In SPO, only a single pushout is used, which is a
pushout in the category of graphs and partial graph morphisms. Both approaches
belong to the gluing approaches.

The two algebraic approaches differ in how they handle certain situations. In
DPO, the application of a rule is not allowed at a match if it causes one or more
dangling edges. The DPO approach also requires that no element in the host graph
may have more than one preimage under the match if any of these preimages is
to be deleted. Therefore, a transformation deletes exactly as many elements as
specified in the rule. The SPO approach has no such restrictions on the applicability
of rules. Dangling edges are simply deleted, and situations where an element in the
host graph has multiple preimages under the match, one of them specified to be
deleted and the other one to be preserved, are also resolved by deleting the element
in question.

The algebraic approaches also have alternative set-theoretic presentations, which
are commonly seen in tutorial introductions, e.g. [EKL91; BH02], and include explicit
constructions of successor graphs. As for practical matters, their workings and
outcome are the same. The successor graphs of the set-theoretic and those of the
algebraic versions are equivalent up to isomorphism. We adhere to the algebraic
versions, which are deemed more suitable for proofs than the explicit constructions,
cf. [Cor+97, p. 187].

Other well-known approaches to graph transformation are Courcelle’s monadic
second-order logic of graphs [Cou90; Cou97], which uses logical formulas to specify
graph properties and graph transformations, the theory of 2-structures by Ehrenfeucht
el al. [EHR97], which is a relational framework for the decomposition and transfor-
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mation of graphs, as well as approaches to programmed graph replacement [Sch97],
which employ control programs to steer the application of graph transformation
rules.

The formal semantics of timed and durative graph transformation systems, which
is provided in Chapter 5, follows the SPO approach. However, there is no conceptual
restriction to the SPO approach; the presented concepts work perfectly well in a DPO
context. This is why the translation of durative graph transformation system models
into PDDL allows to choose whether to comply with the DPO or SPO semantics.

The next sections present the fundamentals of these two approaches. Section 2.1
lays the algebraic foundation for both approaches. It introduces the notions of graphs,
graph morphisms, and pushouts. Sections 2.2 and 2.3 explain the workings of graph
transformations in the DPO and SPO approach, respectively. Section 2.4 introduces
negative application conditions and illustrates the graphical representation used for
graph transformation rules in this thesis. The last section, Section 2.5, introduces the
notions of parallel and sequential independence of graph transformations. These
notions play a vital role in proving properties of the semantics of durative graph
transformation systems.

The definitions provided in this chapter are loosely based on the monograph
Fundamentals of Algebraic Graph Transformation [Ehr+06] and the first volume of the
Handbook of Graph Grammars and Computation by Graph Transformation, in particular
the chapters on the DPO approach [Cor+97] and the SPO approach [Ehr+97]. The
DPO approach primarily follows the formalization provided in [Ehr+06]; the SPO
approach follows that provided in [Ehr+97]. The notions of parallel and sequential
independence follow that of Habel et al. [HHT96]. We also provide less strict
variants of parallel and sequential independence that take advantage of the existence
of isomorphic matches. Although the idea of graph rewriting modulo isomorphism
is not new, cf. [Plu05], we did not find definitions for parallel and sequential
independence modulo isomorphism in related work.

2.1 Graphs, Graph Morphisms, and Pushouts

A graph is a structure that represents a set of objects along with relations between
them. Here, we consider only directed graphs. Undirected graphs can be simulated
by adding both directed edges for each undirected edge.

Definition 2.1.1 (Graph). A (directed) graph G = (VG, EG, srcG, tgtG) consists of a set
of nodes VG, a set of edges EG, and source and target functions srcG, tgtG : EG → VG.

This definition of a graph allows parallel edges, i.e., edges whose pair of source
and target node is identical to the pair of source and target node of another edge.
Our semantics of durative graph transformations makes use of parallel edges. Each
read access to a node or edge is realized as another (possibly parallel) edge. Multiple
concurrent read accesses to the same node or edge thus result in multiple parallel
edges. Another common definition of graphs defines the set of edges such that
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E ⊆ V ×V. Such a definition does not allow parallel edges. However, it can be used
to simulate graphs that do support parallel edges, cf. [Bon+07].

Relations between graphs can be expressed through graph morphisms. A graph
morphism is a mapping of nodes and edges of one graph to nodes and edges of
another graph such that the source and target nodes of edges are preserved. Such
morphisms are used in graph transformation rules to define which nodes and edges
are created, deleted, or preserved when the rule is applied to a graph.

Definition 2.1.2 (Graph morphism, partial graph morphism). A graph morphism
f : G → H between two graphs is a pair of mappings f = ( fE, fV) with fE : EG →
EH and fV : VG → VH that commutes with the source and target functions, i.e.,
fV ◦ srcG = srcH ◦ fE and fV ◦ tgtG = tgtH ◦ fE. A graph morphism f = ( fE, fV)

is called injective if fE and fV are injective and called isomorphic if fE and fV are
bijective.

A subgraph S of G, written S ⊆ G or S ↪→ G, is a graph with VS ⊆ VG and
ES ⊆ EG such that srcS = srcG|ES and tgtS = tgtG|ES . A partial graph morphism g
from G to H is a (total) graph morphism from a subgraph of G to H. This subgraph
is called the restricted domain of g, written dom(g). The range of a graph morphism
g′ : G → H, written ran(g′), is a subgraph S′ of H where VS′ is the image set of g′V
and ES′ is the image set of g′E.

The application of graph transformation rules is based on the concept of “gluing”
graphs together. Two different graphs sharing a common subgraph can be glued
together by adding the uncommon nodes and edges of both graphs to the common
subgraph. This is formalized by the categorical notion of a pushout.

Definition 2.1.3 (Pushout). Let f : A → B and g : A → C be two morphisms in a
category C. A pushout (D, f ′, g′) over f and g is defined by a pushout object D and
morphisms f ′ : C → D and g′ : B→ D such that

• g′ ◦ f = f ′ ◦ g and (commutativity)

• for all objects X and morphisms h : B → X and k : C → X with h ◦ f = k ◦ g,
there is a unique morphism x : D → X such that x ◦ g′ = h and x ◦ f ′ = k.

(universal property)

A B

C D

f

g

f ′

g′

X

x

h

k

=

=

=
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Here, A is the common subgraph. The pushout object D is the result of gluing
B and C via A, f , and g. The commutativity ensures that all elements of B and C
that have a common preimage in A are glued together in D. The universal property
ensures that

• elements of B and C that do not have a common preimage in A are not glued
together in D and

• D does not contain elements that neither exist in B nor C.

If elements of B and C were glued together in D, then there would exist a graph X
for which no morphism x : D → X satisfies x ◦ g′ = h and x ◦ f ′ = k, because x had
to map the glued element simultaneously to different elements in X for x ◦ g′ = h
and x ◦ f ′ = k to hold. If D did contain elements that exist neither in B nor C, there
would also exist such a graph, e.g., a subgraph of D that does not contain these
elements.

2.2 Double Pushout Approach

In the double pushout approach, a graph transformation rule connects its LHS and
RHS via a so-called gluing graph2, which is a common subgraph of the LHS and RHS.
The gluing graph represents those nodes and edges that are preserved during the
application of the rule. To identify these nodes and edges in the LHS and RHS, two
total graph morphisms are used. Elements of the LHS and RHS that are outside of
the range of these morphisms represent those elements that are being deleted and
created by the application of the rule, respectively.

Definition 2.2.1 (Graph transformation rule (DPO)). A graph transformation rule p =

(L, K, R, l, r) consists of three graphs L, K, and R, called left-hand side (LHS), gluing
graph, and right-hand side (RHS), respectively, and two injective graph morphisms
l : K → L and r : K → R.

The semantics of the application of a rule is given by two pushouts in Graph,
the category of graphs and (total) graph morphisms, cf. [Ehr+06]. The first pushout
handles the deletion of nodes and edges, the second pushout their addition. However,
whether or not the first pushout can be constructed depends on the host graph and
the match of the LHS to the host graph.

Definition 2.2.2 (Applicability of a rule (DPO)). A graph transformation rule p =

(L, K, R, l, r) is applicable at a match m : L→ G, if and only if a context graph D can be
constructed such that there exists a pushout (G, l∗, m) over l : K → L and k : K → D
in Graph.

2The gluing graph of a graph transformation rule is also known as interface, cf. [Cor+97].
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K R

D

r

k

L

G

l

l∗

m (PO)

The context graph is unique up to isomorphism if it exists. However, if the
deletion of nodes results in the existence of dangling edges, the context graph cannot
be constructed. This is because the definition of a graph does not allow any dangling
edges. The pushout can also not be constructed if the images of elements in L have
been merged by m into the same element in G and at least one of these elements is
not going to be preserved. In such a case the universal property of the pushout does
not hold.

Unfortunately, this definition makes it rather difficult to see whether a graph
transformation rule is applicable at a given match. Fortunately, there exists an
equivalent notion of a rule’s applicability, called the gluing condition, cf. [Ehr+06].

Definition 2.2.3 (Gluing condition (DPO)). Let p = (L, K, R, l, r) be a graph transfor-
mation rule, G a graph, and m : L→ G a match. Then,

• GP denotes those nodes and edges in L, called gluing points, that are not
deleted by p, i.e., GP = l(K),

• IP denotes those nodes and edges in L, called identification points, whose
images under m have been merged into the same element in G, i.e., IP = {v ∈
VL|∃w ∈ VL, w 6= v : m(v) = m(w)} ∪ {e ∈ EL|∃ f ∈ EL, f 6= e : m(e) = m( f )},
and

• DP denotes those nodes in L, called dangling points, whose images under m
are the source or target of an edge in G that is not contained in m(L), i.e.,
DP = {v ∈ VL|∃e ∈ EG \m(EL) : src(e) = m(v) ∨ tgt(e) = m(v)}.

If all identification points and all dangling points are also gluing points, i.e., IP ∪ DP ⊆
GP, then p and m satisfy the gluing condition (and thus p is applicable at m).

If a DPO graph transformation rule is applicable at a match m, its graph transfor-
mation is defined by a double pushout in Graph.

Definition 2.2.4 (Graph transformation (DPO)). Let p = (L, K, R, l, r) be a graph
transformation rule and m : L→ G a match of its LHS L to a graph G such that p is
applicable at m. The (direct) graph transformation3 from G to H via p at m, written

G
p,m
=⇒ H, is given by the pushouts (G, l∗, m) and (H, r∗, m∗) in Graph.

3A (direct) graph transformation is also known as (direct) derivation, cf. [Cor+97]
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K R

D H

r

r∗

k m∗

L

G

l

l∗

m (PO) (PO)

The first pushout results in the construction of a context graph D, which cor-
responds to a temporary, intermediate graph where all deletion but no creation is
performed. Then, the second pushout, which always exists if the first pushout exists,
adds new elements of the rule’s RHS by gluing them together with the context
graph.

2.3 Single Pushout Approach

In the single pushout approach, graph transformation rules are defined by only one
morphism. This morphism directly maps from the LHS to the RHS, without the use
of a gluing graph. To allow the deletion of elements, this morphism is partial instead
of total. Intuitively, elements of the LHS that are outside of the morphism’s restricted
domain are deleted, and elements of the RHS that are outside of the morphism’s
range are created.

Definition 2.3.1 (Graph transformation rule (SPO)). A graph transformation rule
p = (L, R, r) consists of two graphs L and R, called left-hand side (LHS) and right-hand
side (RHS), and an injective partial graph morphism r : L→ R, called rule morphism.

In an SPO graph transformation rule, the rule morphism specifies both addition
and deletion. Therefore, the pushout construction for the SPO approach is more
complicated than for the DPO approach. In addition to the concept of gluing, it has
to realize deletion.

Deletion is realized in the SPO approach by “equalizing” two partial morphisms
that are defined on the same domain of definition but on different restricted domains.
This is done by removing all elements from their range that have different preimages
under both morphisms. This concept is formalized by the categorical notion of a
co-equalizer.

The SPO approach constructs a specific co-equalizer, cf. [Ehr+97]. Its construction
assumes that, for each element that is contained in the restricted domains of both
morphisms, both morphisms map to the same image. We will see that this is
sufficient for the construction of a pushout in GraphP, the category of graphs and
partial graph morphisms, in Definition 2.3.3.

Definition 2.3.2 (Specific co-equalizer in GraphP). Let a, b : A→ B be two (partial)
morphisms such that ∀x ∈ dom(a) ∩ dom(b) : a(x) = b(x). The co-equalizer of a and
b in GraphP is the tuple (C, c) where

• C ⊆ B is the largest subgraph of B \ a(dom(b)) \ b(dom(a)) and

• c : B→ C, with dom(c) = C, is the identity morphism on C.
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To construct C, the co-equalizer filters out from B all elements for which there is a
preimage under one of the morphisms a or b that is not defined under the other mor-
phism. Therefore, only elements remain in C that have either the same preimage(s)
under both morphisms or no preimages at all. Dangling edges are deleted because
the definition constructs C as the greatest subgraph of B \ a(dom(b)) \ b(dom(a)),
which is a graph-like structure containing dangling edges.

The construction of a pushout in GraphP is realized via two pushouts in Graph
and a co-equalizer, cf. [Ehr+97]. The total morphisms for the two pushouts in Graph
are defined in dependence on the partial morphism of the pushout in GraphP. The
co-equalizer is used to realize deletion in the construction of a pushout in GraphP.

Definition 2.3.3 (Pushout in GraphP). Let b : A→ B and c : A→ C be two partial
graph morphisms. The pushout over b and c in GraphP always exists and can be
constructed in three steps:

1. Construct the pushout (C′, A→ C′, C → C′) of the total morphisms dom(c)→
C and dom(c)→ A in Graph. (gluing 1)

2. Construct the pushout (D, B→ D, C′ → D) of the total morphisms dom(b)→
A→ C′ and dom(b)→ B in Graph. (gluing 2)

3. Construct the co-equalizer (E, D → E) of the partial morphisms A→ B→ D
and A→ C → C′ → D in GraphP. (deletion)

The pushout over b and c in GraphP is the tuple (E, C → C′ → D → E, B→ D → E).

dom(c) A

C C′

dom(b) B

D E

(PO) (PO)

Since the pushout in GraphP always exists, there is no counterpart to the gluing
condition in SPO. We can simply define the application of an SPO graph transforma-
tion rule as a pushout in GraphP.

Definition 2.3.4 (Graph transformation (SPO)). Let p = (L, R, r) be a graph trans-
formation rule and m : L → G a match of its LHS L to a graph G. The graph
transformation from G to H via p at m, written as G

p,m
=⇒ H, is given by the pushout

(H, r∗, m∗) over r and m in GraphP.

L R

G H

r

m

r∗

m∗(PO)

The morphisms r∗ and m∗ are called the derivation morphism and the co-match of

G
p,m
=⇒ H, respectively.
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The match m and the rule morphism r correspond to A → C and A → B of
Definition 2.3.3, respectively. Since the match of an LHS to a host graph is always
total, the first pushout in Graph does not do anything. The second pushout in
Graph adds elements, similar to the second pushout during the application of a
DPO rule. Due to the second pushout, A → B → D and A → C → C′ → D
commute, which allows to construct their co-equalizer. At the end, the co-equalizer
deletes all elements for which there is a preimage under m that is not defined under
r. Regardless of whether or not such an element has another preimage under m that
is defined under r, the element is deleted. The existence of another preimage is not
relevant, see Definition 2.3.2. To end up in a valid graph, the co-equalizer deletes
dangling edges as well.

2.4 Negative Application Conditions, Types, and Visual
Representation

The visual representation of graph transformation rules used in this thesis follows the
story pattern formalism [Det+12]. A story pattern represents a graph transformation
rule by integrating the LHS and RHS into one graph and using stereotypes to
indicate elements that are only present in the LHS or RHS.

:RailCab

:Track:Track:Track

:RailCab:RailCab

:Convoy:Convoy

«++»
on

«++»
membermember

on

next

on

member

next

«- -»
on

Figure 2.1: An example of a story pattern

Figure 2.1 shows a story pattern from one of the two RailCab domains used in
this thesis. The story pattern shows a RailCab joining a convoy of RailCabs. Nodes
and edges that are being created by the application of the story pattern, i.e., appear
only in the RHS, or deleted, i.e., appear only in the LHS, are labeled with stereotypes
«++» and «--» and drawn in green and red, respectively. Elements being created are
also referred to as creation node/edge and elements being deleted as deletion node/edge.
This story pattern specifies the creation of a member edge representing the RailCab’s
participation in the convoy operation simultaneously with its movement to the next
track segment.

To restrict the applicability of a rule, a negative application condition (NAC) can
be used. A negative application condition forbids specific graph structures from
being present in the host graph. The story pattern formalism also allows to express
negative application conditions. In Figure 2.1, the crossed out Convoy node and
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the member edge connecting it to one of the RailCab nodes constitute a NAC. The
crossed out RailCab node and the on edge connecting it to a Track node constitute
another NAC. In principle, each group of adjacent crossed out nodes and edges
constitutes a single NAC.

Definition 2.4.1 (Negative application condition). Let p = (L, R, r) be a graph
transformation rule, G a graph, and m : L → G a match. A negative application
condition (NAC) is a tuple (N, n) where N is a graph and n : L → N an injective
morphism. If there exists no morphism q : N → G such that q ◦n = m, then m satisfies
(N, n), written m |= (N, n). Given a set of NACs N , if ∀(N, n) ∈ N : m |= (N, n),
then m satisfies N , written m |= N . For a graph transformation rule p = (L, R, r)
with a set of NACs N , we also write p = (L, R, r,N ).

The above definition of a NAC follows the SPO approach. A definition for the
DPO approach can be made analogously.

We use the terms forbidden edge and forbidden pair to refer to specific kinds of
NACs. A forbidden edge denotes a NAC that consists of a single edge only, i.e., in
addition to a subgraph that equals to the LHS of the graph transformation rule. A
forbidden pair denotes a NAC that consists of a single node and an edge connecting
this node to the LHS. An example for this is the crossed out Convoy node and the
member edge in Figure 2.1. A node within an LHS that is adjacent to a forbidden
pair, e.g., the left RailCab node in Figure 2.1, is called connecting node. In the story
pattern formalism, NACs other than forbidden edges and forbidden pairs are usually
disallowed, cf. [Det+12].

The formal syntaxes and semantics of timed and durative graph transformation
systems build upon typed graphs. Note that typed graphs can be simulated via
labeled graphs and vice versa, cf. [Ehr+06, pp. 23–24].

Definition 2.4.2 (Typed graph). Let TG be a distinguished graph, called type graph.
A typed graph GT = (G, type) consists of a graph G = (V, E, src, tgt) and a graph
morphism type : G → TG.

To be able to define timed and durative graph transformation rules and represent
their matches to state graphs, we also need a concept of morphisms on typed graphs.
A typed graph morphism commutes for the source and target function and preserves
the types of nodes and edges.

Definition 2.4.3 (Typed graph morphism). A typed graph morphism between two
typed graphs GT

1 and GT
2 is a partial graph morphism f : GT

1 → GT
2 such that

• f commutes for the source and target function, i.e., src2 ◦ f = f ◦ src1 and
tgt2 ◦ f = f ◦ tgt1, and

• f preserves types, i.e., type2 ◦ f = type1.

Story patterns can also assign object names to nodes by writing them before the
colon stating a node’s type. Within the scope of this thesis, object names are used
either to
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• fix node bindings for matches, in which case they are simply realized as self
edges, or

• allow referring to certain nodes of a rule in graphical representations.

Both usages do not require an integration of object names in formal definitions,
which is why we refrain from addressing them formally.

The formal semantics of story patterns is based on (typed) graph transformation
systems and follows the SPO approach. While the semantics of timed and durative
graph transformation systems is also based on the SPO approach, most of the
presented concepts also work in the DPO approach. The semantics of story patterns
further employs injective matching. Nevertheless, since most of the presented
concepts in this thesis also work fine with non-injective matching, we employ
non-injective matching unless otherwise noted.

2.5 Parallel and Sequential Independence

When considering two different graph transformations that can be applied in the
same configuration, a relevant question might be whether or not both transforma-
tions may be executed one after another. If the execution of one of these graph
transformation leads to a configuration where the other graph transformation cannot
be applied, there seems to be some kind of conflict. If we have two graph transfor-
mations that can be executed in sequence, can they be executed in any order and still
result in the same graph? If not, then there is obviously some kind of causal depen-
dence between these two graph transformations. Being able to deduce whether or
not there is such a causal dependence between two graph transformations is crucial
for proving the meaningfulness of the semantics of durative graph transformation
systems in Chapter 5.

The above questions result in two different notions of independence: parallel
and sequential independence. Intuitively, parallel independence means that each of
the graph transformations can be delayed until after the other transformation has
been executed. This is the case, if the range of each graph transformation’s match
is preserved by the other graph transformation. If the range is not preserved, we
call this a delete-use (or use-delete) conflict, cf. [LEO06]. When considering NACs, it is
also necessary that each graph transformation’s NAC is not invalidated by those
elements that the other graph transformation created. If a NAC is invalidated, we
call this a produce-forbid (or forbid-produce) conflict.

Definition 2.5.1 (Parallel independence). Let G
p1,m1
===⇒ H1 and G

p2,m2
===⇒ H2 be two

graph transformations, r∗m1
the derivation morphism of G

p1,m1
===⇒ H1, and p2 =

(L2, R2, r2,N2) the graph transformation rule of G
p2,m2
===⇒ H2.

1. G
p2,m2
===⇒ H2 is weakly parallel independent of G

p1,m1
===⇒ H1 if there exists a total

morphism x2 : L2 → H1 such that x2 = r∗m1
◦m2 and x2 |= N2.
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G

X
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R1

r1

L2

R2

r2

H1

m1

m∗1

r∗m1

H2

m2

m∗2

r∗m2

x2

x∗2

r∗x2

2. G
p1,m1
===⇒ H1 and G

p2,m2
===⇒ H2 are parallel independent if G

p1,m1
===⇒ H1 is weakly

parallel independent of G
p2,m2
===⇒ H2 and vice versa.

The concept of sequential independence is analogue to that of parallel inde-
pendence. The difference is that we assume a consecutive execution of the two
graph transformations as a starting point. Sequential independence of two graph
transformations means that the graph transformations may be reordered. For this to
be possible, the second transformation is not allowed to match elements that have
been created by the first transformation. Furthermore, the second transformation
is not allowed to delete elements that the first transformation preserves. When
considering NACs, the second transformation is also not allowed to depend on a
delete operation of the first transformation or create elements that invalidate a NAC
of the first transformation.

Definition 2.5.2 (Sequential independence). Let G
p1,m1
===⇒ H1 and H1

p2,x2
==⇒ X be

two graph transformations, r∗m1
the derivation morphism of G

p1,m1
===⇒ H1, and p2 =

(L2, R2, r2,N2) the graph transformation rule of H1
p2,x2
==⇒ X.

1. H1
p2,x2
==⇒ X is weakly sequentially independent of G

p1,m1
===⇒ H1 if there exists a total

morphism m2 : L2 → G such that r∗m1
◦m2 = x2 and m2 |= N2.

G

X

L1

R1

r1

L2

R2

r2

H1

m1

m∗1

r∗m1

H2

m2

m∗2

r∗m2

x2

x∗2

r∗x2

2. G
p1,m1
===⇒ H1 and H1

p2,x2
==⇒ X are sequentially independent if H1

p2,x2
==⇒ X is weakly

sequentially independent of G
p1,m1
===⇒ H1 and G

p1,m1
===⇒ H1 is weakly parallel

independent of G
p2,m2
===⇒ H2.
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Since the identities of nodes and edges are rarely relevant for the purposes that
graph transformations are employed, isomorphic graphs are usually considered as
equal. The semantics we present in Chapter 5 also considers isomorphic graphs are
equal. However, the above definitions of parallel and sequential independence do not
meet these expectations. The definitions are too strict: they disallow the deletion of
elements that are preserved by a second graph transformation, although isomorphic
elements (and thus an isomorphic match for the second graph transformation) might
exist. Therefore, we replace parallel and sequential independence with parallel and
sequential independence modulo isomorphism.

The main difference between parallel independence and parallel independence
modulo isomorphism is that in the former, we construct x2 directly in dependence
of m2, whereas in the latter, we construct x2 in dependence of a match that is
isomorphic to m2.

Definition 2.5.3 (Parallel independence modulo isomorphism). Let G
p1,m1
===⇒ H1

and G
p2,m2
===⇒ H2 be two graph transformations, r∗m1

the derivation morphism of

G
p1,m1
===⇒ H1, and p2 = (L2, R2, r2,N2) the graph transformation rule of G

p2,m2
===⇒ H2.

1. G
p2,m2
===⇒ H2 is weakly parallel independent modulo isomorphism of G

p1,m1
===⇒ H1 if

• there exists a total morphism x2 : L2 → H1 such that x2 = r∗m1
◦m2 and

x2 |= N2 or

• there exist total morphisms m̃2 : L2 → G and x2 : L2 → H1 such that m̃2

is isomorphic to m2 and x2 = r∗m1
◦ m̃2 and x2 |= N2.

2. G
p1,m1
===⇒ H1 and G

p2,m2
===⇒ H2 are parallel independent modulo isomorphism if

G
p1,m1
===⇒ H1 is weakly parallel independent modulo isomorphism of G

p2,m2
===⇒ H2

and vice versa.

The difference between sequential independence and sequential independence
modulo isomorphism is similar to the difference between parallel independence and
parallel independence modulo isomorphism. Instead of constructing m2 directly in
dependence of x2, we construct m2 in dependence of a match that is isomorphic to
x2.

Definition 2.5.4 (Sequential independence modulo isomorphism). Let G
p1,m1
===⇒ H1

and H1
p2,x2
==⇒ X be two graph transformations, r∗m1

the derivation morphism of

G
p1,m1
===⇒ H1, and p2 = (L2, R2, r2,N2) the graph transformation rule of H1

p2,x2
==⇒ X.

1. H1
p2,x2
==⇒ X is weakly sequentially independent modulo isomorphism of G

p1,m1
===⇒ H1

if

• there exists a total morphism m2 : L2 → G such that r∗m1
◦m2 = x2 and

m2 |= N2 or

• there exist total morphisms x̃2 : L2 → H2 and m2 : L2 → G such that x̃2 is
isomorphic to x2 and r∗m1

◦m2 = x̃2 and m2 |= N2.
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2. G
p1,m1
===⇒ H1 and H1

p2,x2
==⇒ X are sequentially independent modulo isomorphism

if H1
p2,x2
==⇒ X is weakly sequentially independent modulo isomorphism of

G
p1,m1
===⇒ H1 and G

p1,m1
===⇒ H1 is weakly parallel independent modulo isomor-

phism of G
p2,m2
===⇒ H2.

Parallel and sequential independence are symmetric concepts. If we delay one of
two parallel independent graph transformations until after the other transformation
has been executed, we obtain two sequentially independent graph transformations.
We can also consider two sequentially independent graph transformations as two
parallel independent graph transformations by applying both to the host graph of
the first transformation or reorder them and still end up in the same graph. This
is formalized as the Local Church-Rosser Theorem, cf. [HHT96; Ehr+97]. We use
this theorem to prove the correct behavior of durative graph transformation rules in
Chapter 5.

Theorem 2.5.1 (Local Church-Rosser). Let G
p1,m1
===⇒ H1 and G

p2,m2
===⇒ H2 be two parallel

independent graph transformations (modulo isomorphism). Then, there exist a graph X and

• a graph transformation H1
p2,x2
==⇒ X such that G

p1,m1
===⇒ H1 and H1

p2,x2
==⇒ X are

sequentially independent (modulo isomorphism) and

• a graph transformation H2
p1,x1
==⇒ X such that G

p2,m2
===⇒ H2 and H2

p1,x1
==⇒ X are

sequentially independent (modulo isomorphism).

Let G
p1,m1
===⇒ H1 and H1

p2,x2
==⇒ X be two sequentially independent graph transformations

(modulo isomorphism). Then, there exist a graph H2 and

• a graph transformation G
p2,m2
===⇒ H2 such that G

p1,m1
===⇒ H1 and G

p2,m2
===⇒ H2 are

parallel independent (modulo isomorphism) and

• graph transformations G
p2,m2
===⇒ H2 and H2

p1,x1
==⇒ X such that G

p2,m2
===⇒ H2

p1,x1
==⇒ X

are sequentially independent (modulo isomorphism).

G

H1 H2

X

p1, m1 p2, m2

p2, x2 p1, x1

A bijective correspondence between the parallel independent graph transformations G
p1,m1
===⇒

H1 and G
p2,m2
===⇒ H2 and the sequentially independent graph transformations G

p1,m1
===⇒ H1

and H1
p2,x2
==⇒ X (as well as G

p2,m2
===⇒ H2 and H2

p1,x1
==⇒ X) is given by x2 = r∗m1

◦m2 (and
x1 = r∗m2

◦m1, respectively).
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Background on AI Planning

Planning is a central part of artificial intelligence research and has been an active
research field for several decades. It is a cognitive ability, which is customary
performed by people for making decisions in their daily lives. The key point of
planning is the analysis of alternatives and reasoning about their consequences. Due
to its great relevance for many sciences and businesses, interest in automated and
semi-automated planning methods has been increasing lately.

As a result of the many different requirements and application areas for planning
tasks, e.g., robotics, manufacturing, logistics, or business process management, there
is a vast number of different computer-aided planning techniques available today. In
general, planning techniques differ in whether actions are executed deterministically
or non-deterministically, the environment is totally or partially observable, there is
only a single agent or multiple agents, actions have durations or not, what kind of
state representations and state changes are permitted, and what the objective of a
planning process is. Classical planning techniques usually consider a single agent
with deterministic actions in a totally observable environment without any concept
of time or concurrency.

Most languages for describing planning tasks have an action-centric perspective.
Depending on the requirements for the planning tasks, there are different planning
languages available from academia. Classical planning tasks can be specified in the
Planning Domain Definition Language (PDDL) [MA98], which is the de facto standard
for International Planning Competitions (IPCs) organized by the ICAPS conference
series. The same goes for temporal planning problems; they are supported since
version 2.1 of PDDL [FL03].

For probabilistic planning, there exists a variant of PDDL called Probabilistic
PDDL (PPDDL) [YL04]. This variant extends PDDL 2.1 with probabilistic effects and
rewards so that planning methods based on Markov Decision Processes (MDPs) can
be realized. A successor of PPDDL, which also supports Partially Observable Markov
Decision Processes (POMDPs), is the Relational Dynamic influence Diagram Language

27
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(RDDL) [San10]. It is the planning language currently used in probabilistic tracks of
IPCs.

For distributed and multi-agent planning, multiple planning languages have
been proposed, some of them extensions to PDDL. The most recent and promising
one is Multi-Agent PDDL (MA-PDDL) [Kov12]. It supports both planning for and
planning by multiple agents, was used in 2015 during a multi-agent planning
competition organized by the ICAPS Workshop on Distributed and Multi-Agent
Planning (DMAP 2015), and is expected to become the input language for possible
multi-agent planning tracks on future IPCs.

For arbitrary planning problems in the propositional STRIPS formalism, deciding
the existence of a plan is PSPACE-complete, cf. [Byl94]. If actions are only allowed
to add but not to delete atomic formulas, it is NP-complete. Fortunately, in many
transportation domains (where the consumption of fuel is not constrained), a satisfy-
ing plan can be found in polynomial time, cf. [Hel14]. However, finding a satisfying
plan if fuel is restricted and finding an optimal plan both are NP-complete.

3.1 PDDL Fundamentals

In PDDL, a planning task is separated into a domain and a problem description. A
domain description characterizes the mechanics of a domain, i.e., it defines (param-
eterized) operations, called action schemata, as well as object types and predicates,
which are used within those action schemata. Here, a predicate means the set-
theoretic meaning of a predicate, i.e., a Boolean-valued function. As usual, the term
predicate refers to a predicate symbol (or name), and the term literal refers to an
atomic formula, which is a predicate symbol together with a list of arguments, or its
negation.

Problem instance information, like specific objects available in the planning task’s
“world”, are defined in problem descriptions. Such a problem description also
defines an initial state, which is represented as a set of ground atomic formulas, and
a goal specification. Multiple problem descriptions can be associated with the same
domain description, thus yielding different planning tasks on the same application
domain. Note that states follow the closed-world assumption: any atomic formula that
is not known to be true in a state is indeed false.

An action schema within a domain description consists of a list of parameters, a
precondition, and an effect. In the precondition, a list of literals that are required
for applying the action can be specified. Similarly, the effect of an action specifies
a list of literals that are obtained when the action is applied. An action schema
is instantiated – in the context of PDDL, this is called grounding – by substituting
the list of parameters with objects defined in the problem description. Since the
arguments of all literals are contained in the list of parameters, this transforms the
literals into ground literals, which do not contain any free variables.

Examples for a domain and an associated problem description are given in
Listings 3.1 and 3.2. According to the domain description, vehicles can move between
locations by consuming fuel. To capture this possibility, the domain declares the



3.1. PDDL FUNDAMENTALS 29

Listing 3.1: An example domain desciption in PDDL [FL03]

1: (define (domain vehicle)

2: (:requirements :strips :typing)

3: (:types vehicle location fuel-level)

4: (:predicates

5: (at ?v - vehicle ?p - location)

6: (fuel ?v - vehicle ?f - fuel-level)

7: (accessible ?v - vehicle ?p1 ?p2 - location)

8: (next ?f1 ?f2 - fuel-level)

9: )

10: (:action drive

11: :parameters (?v - vehicle ?from ?to - location ?fbefore ?fafter - ⤦

↪ fuel-level)

12: :precondition (and

13: (at ?v ?from)

14: (accessible ?v ?from ?to)

15: (fuel ?v ?fbefore)

16: (next ?fbefore ?fafter)

17: )

18: :effect (and

19: (not (at ?v ?from))

20: (at ?v ?to)

21: (not (fuel ?v ?fbefore))

22: (fuel ?v ?fafter)

23: )

24: )

25: )

types vehicle, location, and fuel-level and four predicates that state at which
location each vehicle is (line 5), which fuel level each vehicle has (line 6), which
location is accessible from which other location for each vehicle (line 7), and which
fuel level follows which fuel level after fuel has been consumed (line 8).

The action schema’s precondition ensures that the vehicle is at the starting
position assumed by the ground action (line 13), the end position is accessible by
the vehicle from the starting position (line 14), the vehicle has the fuel level assumed
by the ground action (line 15), and a next lower fuel level exists (line 16). Its effect
changes the vehicles position to the end location (lines 19 and 20) and reduces the
fuel level of the vehicle (lines 21 and 22). Note that variable names always start with
a question mark, and parameters of predicates or actions are denoted by variable
names followed by their type.

The given problem description defines two vehicles, three fuel levels, and four
locations as available objects (lines 4 to 6). Its initial state defines dynamic state
information, like the positions of vehicles and their fuel level (lines 9 to 12), but
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Listing 3.2: A problem description to the domain of Listing 3.1 [FL03]

1: (define (problem vehicle-example)

2: (:domain vehicle)

3: (:objects

4: truck car - vehicle

5: full half empty - fuel-level

6: Paris Berlin Rome Madrid - location

7: )

8: (:init

9: (at truck Rome)

10: (at car Paris)

11: (fuel truck half)

12: (fuel car full)

13: (next full half)

14: (next half empty)

15: (accessible car Paris Berlin)

16: (accessible car Berlin Rome)

17: (accessible car Rome Madrid)

18: (accessible truck Rome Paris)

19: (accessible truck Rome Berlin)

20: (accessible truck Berlin Paris)

21: )

22: (:goal (and

23: (at truck Paris)

24: (at car Rome)

25: ))

26: )

also static problem instance information, like the connections between different fuel
levels and locations (lines 13 to 20).

PDDL provides several extensions to the core functionality explained above,
which essentially constitute the STRIPS formalism. The only extension already used
in the examples shown above is typing, which allows to use a type hierarchy for
objects. This extension is supported by every relevant PDDL-based planning system
today. Unfortunately, other extensions are not supported universally; their support
depends on the employed planning system. For example, the extension negative
preconditions enables the use of negative literals in an action’s precondition, which
is a very useful feature in domain modeling. Another extension, which is made
use of in Chapter 6, is equality. It allows to use the equal sign as a predicate that is
interpreted as equality. Disjunctions and quantifiers can be used in preconditions
and goals via the extensions disjunctive preconditions and quantified preconditions,
respectively. Universally quantified and conditional effects can both be supported
via the extension conditional effects.
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3.2 Numeric Expressions

To support planning domains involving non-binary resources, version 2.1 of PDDL
introduced numeric expressions. Numeric expressions use numeric-valued functions
to associate values with objects of the domain. The declaration of these functions
works analogously to that of predicates: it requires only a function name and a list
of argument types. The support for numeric expressions can be enabled via the
extension fluents.

The value of a numeric-valued function for a specific list of arguments constitutes
a primitive numeric expression. Values are not restricted or distinguished in what
they represent; they can represent quantities of resources, counters, indices, or
some dimension of utility. Using arithmetic operators, a numeric expression can be
constructed from several primitive numeric expressions.

Numeric expressions are only allowed to appear as part of numeric facts or numeric
assignments. A numeric fact can be used to compare the values of two numeric
expressions in an action’s condition or the condition of a conditional effect. A
numeric assignment can be used in the effect of an action to assign a new value
to a primitive numeric expression. Numeric expressions are not allowed in action
parameters or as arguments to literals or other numeric expressions.

Listing 3.3: A domain description with numeric expressions [FL03]

1: (define (domain jug-pouring)

2: (:requirements :typing :fluents)

3: (:types jug)

4: (:functions

5: (amount ?j - jug)

6: (capacity ?j - jug)

7: )

8: (:action pour

9: :parameters (?jug1 ?jug2 - jug)

10: :precondition (>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))

11: :effect (and

12: (assign (amount ?jug1) 0)

13: (increase (amount ?jug2) (amount ?jug1))

14: )

15: )

16: )

An example using numeric expressions is given in Listing 3.3. The domain
models an action of the jugs-and-water problem, where jugs of different sizes are
available, and the goal is to achieve a certain filling level for each jug. There are
two numeric-valued function in this domain: a function that yields the filling level
of each jug (line 5) as well as a function that yields their holding capacity (line 6).
The modeled action allows to pour the water contained in one jug into a second jug
under the condition that the second jug has enough empty space left to hold the
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additional water. The precondition specifies this condition by use of a numeric fact
calculating the empty space of the second jug and comparing it with the amount of
water in the first (line 10). The effect specifies two numeric assignments: the first is
an absolute assignment that empties the first jug (line 12); the second is a relative
assignment increasing the amount of water in the second jug by that of the first jug
(line 13).

Along with numeric expressions came plan metrics, which evaluate the quality of
plans based on numeric expressions. A plan metric can be provided in the problem
description to define an objective for the planning process different from minimizing
the number of used actions (in sequential planning) or the timespan of the entire
plan (in temporal planning). An example of a plan metric for the vehicles domain is
to minimize the amount of fuel used by each vehicle. Obviously, the domain has to
specify a suitable function for representing this quantity and update its values each
time fuel is consumed. Note that this thesis does not make use of plan metrics other
than the built-in metric total-time, which refers to the plan’s timespan.

3.3 Durative Actions

Like numeric expressions, durative actions have been introduced in version 2.1 of
PDDL. There are two kinds of durative actions: discretized and continuous durative
actions. Here, we consider discretized durative actions only.

Durative actions split the literals, numeric facts, and numeric assignments used
in each their precondition and effect into different sets according to their time of
evaluation. They can be required at_start, over_all, and at_end when used in the
precondition and be effective at_start and at_end when used in the effect. While
at_start and at_end refer to the beginning and ending of an action, over_all refers
to the (open) interval during the action’s execution. As a result, a durative action
behaves like two untimed but temporally linked actions with an invariant condition
that must be met by all states occurring during their application interval.

Without a notion of time, plans were simply interpreted as sequences of states.
With durative actions, the application intervals of actions can overlap, which leads
to the question under what constraints they are allowed to do so. To answer this
question, we first take a look at the notion of states in this temporal context. States
are stretched over intervals, which are separated by points in time on a global clock.
State change occurs only at those points in time, and all state change at a given time
point occurs instantaneously. The time points where state changes occur are given
by the beginnings and endings of durative actions. Multiple beginnings or endings
of different actions may fall at the same point in time if their conditions and effects
do not interfere. In the semantics of durative actions, such a set of action beginnings
and endings is called a happening and treated like an ordinary untimed action.

Within a happening, it is not allowed to assert a literal and its negation at the
same time. It is also forbidden to assert a literal at the same time it is required by
another action’s beginning or ending in the same happening. No condition may
rely on an effect in the same happening. Even if the condition is true before and
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after executing a concurrent effect, it may not rely on the value of a literal if the
effect updates the value. Fox and Long [FL03] called this the no moving targets rule.
Note that the beginning or ending of a single action is allowed to access a value in
its condition and update it in its effect at the same time. This is only forbidden if
performed by different actions, essentially like mutual exclusion for shared variables.

A similar restriction holds for numeric facts and assignments in happenings. The
only difference is that multiple simultaneous updates are allowed if they commute,
i.e., each of them is a relative assignment.

A consequence of the no moving targets rule is a non-zero separation between
each pair of happenings: unlike timed automata and related constructs, where the
passing of time is not required between two successive changes of the logical state,
two happenings have to occur at least a minimum time of ε > 0 apart from each
other. Temporal planning systems often use a value of 0.001 as minimum unit of
time.

Durative actions complicate the picture of a planning task’s state space in that
they involve a commitment. A durative action that has been started in a state, has to
be finished at a later point in time. All states up to this point in time have to fulfill
the over_all conditions of the durative action, and the state at this point in time
has to fulfill its at_end conditions. However, since the at_end condition does not
have to be fulfilled when the action starts, it can be achieved by concurrent actions.
For this reason, the decision whether a durative action is applicable cannot be made
alone by looking at all actions that have been applied already.

Instead of defining the semantics of durative rules in terms of state space con-
struction, Fox and Long [FL03] defined it in terms of executability of happening
sequences. Each happening has to fulfill the no moving targets rule, their accumu-
lated action beginnings and endings have to be executable in the order given by the
happening sequence, and the state resulting by executing the complete happening
sequence has to satisfy the goal specification of the planning task. The happen-
ing sequence also contains artificial monitoring actions responsible for checking
invariant conditions. These monitoring actions do not contain any effects. They
are placed after a durative action with invariant conditions has been started and
after each other happening occurring during its application interval. Note that the
search through the state space might also consider happening sequences that are
not executable, because additional durative actions enabling their executability have
not yet been scheduled.

3.4 Required Concurrency

The introduction of durative actions into planning domains added a scheduling
problem to the planning tasks. A widely used approach to solve these planning tasks
is to separate logical from temporal reasoning and solve the planning and scheduling
problems separately. By treating durative actions as single instantaneous actions –
this is called action compression [LF03] – and thus neglecting any opportunities for
the concurrent execution of actions, a plan is computed by employing a classical
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sequential planner. Afterwards, actions are scheduled in a post-process to achieve a
better plan length. As one might expect, such a pragmatic approach is very fast.

Unfortunately, approaches that separate planning and scheduling are not com-
plete. There are planning problems for which no sequential solution exists. A
planning problems where at least one action has to be applied concurrently to
another action in order to reach the goal is said to have required concurrency. Such a
planning problem cannot be solved by a sequential planning system. If a planning
problem with required concurrency can be formulated on a planning domain, this
domain is said to support required concurrency. Note that a planning problem on
a domain supporting required concurrency does not automatically have required
concurrency itself; it is easily possible to model a planning problem without required
concurrency on any domain.

While the term required concurrency was coined by Cushing et al. [Cus+07]
in 2007, it has been known before that planning systems solving temporal plan-
ning tasks via action compression and sequential planning, like SGPlan [CWH06] or
MIPS [Ede03], are fast but not complete. Temporal planning systems that did not per-
form action compression, like LPGP [LF03] or VHPOP [YS03], were not competitive.
For this reason, Halsey et al. [HLF04] developed a planning system that integrates
scheduling phases into the planning phase. Its idea is to integrate scheduling phases
only where necessary, but postpone scheduling where possible, without sacrificing
completeness. Their planner CRIKEY and its successors CRIKEYSHE [Col+09b] and
CRIKEY3 [Col+08] detect situations where this integration is necessary by identify-
ing specific patterns in conditions and effects of actions. If such a pattern is found
in an action, its ending is considered a choice point for state space exploration;
otherwise it is simply applied directly or as soon as it is needed [Col+09a]. CRIKEY3
provides the code base for several state-of-the-art planning systems developed by
the Planning Group at King’s College London1, among them the temporal planning
system POPF [Col+10], which is used in Chapter 6 for evaluating different planning
domains with required concurrency.

1The Planning Group of Maria Fox and Derek Long moved from the University of Strathclyde to
King’s College London in 2011.



4
Planning with Graph
Transformations

This chapter presents an approach that allows technical systems to autonomously
decide how to reconfigure their software architecture by performing planning tasks
on graph transformation systems. Focusing solely on structural aspects, this ap-
proach excludes any timing and concurrency issues. This allows to use ordinary
(typed) graph transformation rules to model possible reconfigurations of the system.

Classical planning approaches for fully observable and deterministic environ-
ments work with notions of state and action: the execution of an action results in a
state change. In the case of graph transformation planning, states are represented as
graphs, and those actions available in a planning domain result from a set of graph
transformation rules. More precisely, a graph transformation rule is a parameterized
action and graph transformations are grounded actions in which elements of the LHS
have been substituted with elements from the host graph.

The transition system of a graph transformation system can be constructed by
successively applying graph transformations to the initial graph and its successor
graphs. The planning task is to find a path in this transition system ending in a
graph satisfying a goal specification. The transitions on this path constitute the
plan. Since the transition system suffers from a state explosion problem, i.e., a
combinatorial blowup of the state space, constructing the complete transition system
is not an appropriate option to find a plan. To find a plan efficiently, we need a
suitable planning technique.

Planning with graph transformations has been covered before, e.g., in [EW11]
for coordinating behavior in cyber-physical systems and in [TK11] for planning
a self-healing process in automotive systems. The planning problems are usually
solved by one of the following two approaches: either a translation into a dedicated
planning language, like PDDL, is performed or a planning system is developed that
works directly on a graph transformation system. Unfortunately, both approaches
have their drawbacks.

Employing a translation-based approach is tempting because it exploits decades

35
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of research in AI planning by applying state-of-the-art planning systems. However,
translation-based approaches suffer from a different expressiveness of GTSs and
PDDL: while the creation and deletion of nodes is a fundamental feature of graph
transformation systems, there is no such thing in PDDL. By not supporting the
instantiation and deinstantiation of objects, PDDL maintains a finite state space. In
order to handle the object instantiation and deinstantiation in PDDL nevertheless,
a modeling workaround can be used that declares all uninstantiated objects in
the initial state, but uses a predicate to state their actual existence. However, the
workaround is based on the assumption that a maximal number of objects is known
beforehand or can be deduced from the graph transformation system.

Unfortunately, planning systems working directly on the transition system of a
graph transformation system are not highly evolved. Up until today, there are only
few systems that use domain-independent heuristics to guide their search through
the state space of a graph transformation system. Their domain-independent heuris-
tics are rather simple: they compute values for the structural similarity of the current
configuration and the goal specification. Multiple such similarity-based heuristics
are presented in [EJL06]. Several of them are different variants of counting those
nodes and edges that have to be created or deleted to reach a target configuration,
e.g., they differ in whether or not it is allowed to rely on the identity of nodes
and edges, and then using this number as a distance measure. A slightly different
variant of such a heuristic has also been presented in [Sni11]. Another idea for a
similarity-based heuristics given in [EJL06] is to transform the goal specification into
a formula and evaluate how many predicates of this formula are false in a given state.
Other graph transformation planning systems not employing domain-independent
heuristics, e.g., semi-automatically deducing domain-specific heuristics based on
expert knowledge [EW11] or performing entirely different kinds of analyses to guide
the search in the state space [HHV11], are explained in more detail in Section 4.5,
the related work section of this chapter.

A problem of the aforementioned similarity-based heuristics is that they do not
take any graph transformation rules into account. A high similarity between the
current state and the goal specification is irrelevant if there are no rules available that
can efficiently transform the current state into a state satisfying the goal specification.
Therefore, we believe that it is mandatory for an efficient planning system working
directly with graph transformations to look into search techniques of state-of-the-
art AI planning systems. Adapting already established techniques from modern
PDDL-based planners to graph transformation systems might be straightforward in
some cases or impossible due to the different expressiveness of graph transformation
systems and PDDL in other cases, e.g., due to the possibility of instantiating nodes in
graph transformation systems. Furthermore, the process of adapting such techniques
might lead to ideas that were impossible or very unintuitive in PDDL-based repre-
sentations, e.g., merging of nodes. This renders the adaptation of known planning
approaches to graph transformation systems an interesting research perspective.

We developed a new planning system working with graph transformations,
cf. [Zie14]. It employs a domain-independent heuristic function, which can be used
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in combination with different search algorithms. The heuristic function is mainly
inspired by the planning system Fast-Forward (FF) [HN01], which is a forward-
chaining planner with a heuristic function that uses the solution length of a relaxed
problem as heuristic estimate. It won the 2nd International Planning Competition
(IPC-2000), which led to a shift of planning research towards heuristic-guided
approaches. Variants of its techniques are used in many of today’s state-of-the-art
planners, e.g., LAMA [RW10a]. In our approach, the relaxation is performed by
reinterpreting certain parts of the rules’ application conditions. Thanks to this
reinterpretation, the relaxed problem is easier to solve than the original problem. As
part of this contribution, we compare the performance of our heuristic against the
performance of a similarity-based heuristic.

The next section introduces the notion of planning problems on graph trans-
formations systems. The reconfiguration of ECUs serves as a running example
for this chapter. Its graph transformation system is presented in Section 4.2 and
used in Section 4.3 to explain our heuristic approach. An evaluation comparing the
performance of our heuristic against the performance of a similarity-based heuristic
is given in Section 4.4. We discuss related work in the narrow area of graph transfor-
mation planning in Section 4.5. Then, we conclude this chapter with a discussion on
the differences of our heuristic function to that employed by FF and an outlook on
further possibilities for graph transformation planners in Section 4.6.

4.1 Problem Statement

To define the graph transformation planning problem, we first need a means to
specify a goal. Such a goal specification can, for example, be a graph, which has to
be found by the planning system by applying graph transformations to the initial
graph. In general, we do not search for the exact graph but for a larger graph that
contains the graph we are looking for as a subgraph. We also do not require the
same identity of nodes and edges, i.e., we search for a subgraph isomorphism.

Goal specifications also supports NACs. Therefore, a goal specification is sort of
like a graph transformation rule without an RHS. We call this a graph pattern.

Definition 4.1.1 (Graph pattern). A graph pattern P = (L,N ) consists of a graph
L and a set of NACs N where each NAC ∈ N is a tuple NAC = (N, n) with
n : L→ N and n being injective. NAC satisfaction is defined as in Definition 2.4.1.

Having a means of specifying target configurations of a planning problem, we
can now define the planning problem itself.

Definition 4.1.2 (Graph transformation planning problem). A graph transformation
planning problem P = (G0,R, Ptgt) consists of

• an initial graph G0,

• a set of graph transformation rules R, and

• a target graph pattern Ptgt = (Ltgt,Ntgt).
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The initial graph and the set of graph transformation rules define a graph
grammar, i.e., the structure on which a graph transformation planner has to perform
its search. The target graph pattern defines the goal for this search. Each path
through the state space that ends in a target configuration is a solution to the
planning problem, i.e., a graph transformation plan.

Definition 4.1.3 (Graph transformation plan). Given a graph transformation plan-
ning problem P = (G0,R, Ptgt) with a target graph pattern Ptgt = (Ltgt,Ntgt),
a graph transformation plan for P is a sequence of (direct) graph transformations
G0 ⇒ . . .⇒ Gk such that Ltgt has an injective match m in Gk and m satisfies Ntgt.

Note that it is possible that multiple plans for a given planning problem exist.
One obvious reason for this is that there might be multiple configurations satisfying
the target graph pattern. Another possibility is that there are multiple paths to the
same target configuration.

Depending on the area of application, the objective might be to find a plan as
fast as possible or to also regard a notion of plan quality, e.g., to prefer a short plan
rather than a long one.

4.2 Application Example: Reconfiguration of ECUs

This approach to planning with graph transformations is specifically targeted at
systems where it is not possible to limit the maximal number of instantiable objects
in general. Therefore, we use the reconfiguration of ECUs, which heavily relies on
the instantiation and deinstantiation of objects, see Section 1.4, as an application
example for this chapter. Remember that this application example addresses the
deployment of software components on ECUs and their instantiation at runtime. In
this application example, the number of instances is potentially infinite. Furthermore,
it involves only few and very compact graph transformation rules, making it suitable
for illustrating the workings of the relaxed planning heuristic.

When a self-healing process is triggered by a hardware failure, the current
configuration of the system can be used as initial configuration for the planning
problem. Consider the graph in Figure 4.1 as the current configuration. There are
two ECUs, n1 and n2, and two software components, c1 and c2. For each component
there is a component instance running on one of the ECUs. Object names before
colons are realized as self edges and used to identify objects unambiguously in goal
specifications.

Figure 4.2 shows the graph transformation rules of this application example. In
Figure 4.2(a) component data is deployed on an ECU so that the component can
be instantiated. Figure 4.2(b) specifies the creation of a component instance. For
the rule to be applicable, no other instance of the same component is allowed to
run on the same or a different ECU. In general, multiple instances of the same
component are allowed and even desirable due to safety reasons, as argued in
Section 1.4. Nevertheless, we disallow redundant instances for this rule because the
NAC added to disallow redundant instances enables a more thorough explanation
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Figure 4.1: An initial configuration for the ECUs domain

of the heuristic function in Section 4.3.2. In Figure 4.2(c) an instance that is running
on an ECU is destroyed. At last, Figure 4.2(d) specifies shutting down an ECU if no
instances are running on it.
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«++»
deployed

(a) deployComponent
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:Ecu «++»
:CInst

:CInst

deployed «++»
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«--»
inst

«--»
running

(c) destroyInstance

:Ecu :CInstrunning

«++»
down

(d) shutdownEcu

Figure 4.2: Graph transformation rules of the ECUs domain

The goal of the planning problem is specified as a target graph pattern in
Figure 4.3. It states that ECU n1 should be shut down and components c1 and c2

should both be instantiated. Since a component instance of c1 is running on n1

in the initial state and n1 is going to be shut down, we added a NAC disallowing
component instances of c1 to run on n1 in goal states.

An example plan arriving in a target configuration deploys component c1 at
ECU n2 via the first transformation, then destroys the component instance i1, then
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:CInst
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c2:Cmpnt

:CInst

inst

n1:Ecu

runningdown

Figure 4.3: A target graph pattern for the ECUs domain

shuts down n1, and at last creates a new instance of c1 that runs on n2. This example
plan is given in Figure 4.4.

4.3 Relaxed Planning Heuristic

Our approach to solve the graph transformation planning problem is an informed
search in the state space of the graph transformation system. Since this approach uses
the same graph transformation system for specification and planning, it preserves
the expressiveness of graph transformation systems and allows for an integration of
the planning process into the state space generation. As a consequence, it supports
graph transformations systems that specify infinite systems, which is a significant
advantage over translation-based approaches.

Informed searches are usually driven by some kind of evaluation function, which
determines which state to expand next. An important part of such an evaluation
function is a heuristic function. A heuristic function estimates the costs of the
shortest or cheapest path of a given state to a goal state. Heuristic functions can
be employed by global searches, which systematically explore different paths and
keep track of which states have been explored so far, as well as local searches, which
consider only neighbored states of a current state when deciding which state to
expand next.

The main feature of our system is a heuristic function that itself solves a planning
problem. This planning problem is a relaxation of the original problem considered
from a state given by the search algorithm calling the heuristic function. Information
gained during solving the relaxed problem is used to guide the search of the original
problem.

The choice of search algorithm employing the heuristic function is not restricted
by this approach. We employed both a global and a local search algorithm, i.e.,
Greedy Best-First (GBF) and Enforced Hill-Climbing (EHC). Both are well-known
and thus not considered a part of this contribution. They are briefly explained in
Section 4.4, the evaluation section of this chapter.

4.3.1 Abstract State Sequences

In order to compute a plan like the one given in Figure 4.4, the planning system
employs a heuristic function that solves a relaxation of the original problem. Such
a relaxed problem is solved for each state in the state space that is encountered by
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Figure 4.4: An example plan in the ECUs domain. Elements colored in blue indicate
those elements contained in the match of the succeeding graph transformation, or in
case of the last state, the goal match.
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the employed search algorithm. Since, in general, this are a lot of relaxed problems,
it is crucial that they can be solved efficiently. In order to do this, the heuristic
function combines two ideas. The first idea is to relax the applicability of a rule, i.e.,
to apply only changes that enable succeeding rule applications, but discard changes
that disable succeeding rule applications. In essence, this is realized by not deleting
elements when rules are applied, which relaxes LHS matching because succeeding
matches are more likely, and the use of markings, which allows to reinterpret and
thus relax NAC matching. The second idea is to apply all applicable transformations
in parallel to construct the next (abstract) state, instead of choosing one state to
expand next. This results in a linear (abstract) state space and thus allows to solve
the relaxed problem efficiently. Two applicable transformations cannot be in conflict
with each other due to the applied relaxation.

Figure 4.5 shows the abstract state sequence from the initial state of the problem
to the first state that satisfies the target graph pattern. Each transition corresponds
to one parallel and relaxed execution of all applicable transformations. In the
first transition, all graph transformations deploying components are executed in
parallel as well as all graph transformations destroying component instances. In the
second transition, new instances are created and both ECUs are shutdown. Note
that object names of newly created instances do not actually exist as self edges in
states. The object names of component instances i3 to i6 exist solely to allow for an
unambiguous reference in tables and writing.

The idea of applying the relaxation is to discard changes that disable succeeding
rule applications. Because LHS matching profits from the creation of elements
whereas NAC matching profits from their deletion, the tricky part is how to relax
LHS matching and NAC matching at the same time. Roughly speaking, this is done
by not carrying out the deletion of elements and reinterpreting certain parts of the
rules’ application conditions. Each element that is supposed to be deleted according
to the rule morphism of an applicable transformation is maintained in the abstract
successor graph, but marked as deleted instead. Each element that is supposed to be
created is added to the abstract successor graph as usual but also marked as created.
These markings give the option to disregard their elements when considering the
applicability of transformations in later iterations. This has happened in the second
transition of Figure 4.5 with the component instances i1 and i2: since they have
been marked as deleted by the first transition, new instances can be created during
the second transition by applying the createInstance rule. In general terms, in
order for a transformation to be considered applicable (despite a matching NAC),
there has to be at least one element that is marked as deleted or created in the part of
the host graph that is matched by the NAC. If there are multiple NACs or a NAC
has multiple matches, then each NAC match has to contain at least one element that
is marked as deleted or created for the transformation to be applicable.

The generation of the abstract state sequence stops as soon as it reached a state
that satisfies the target graph pattern. However, it is also possible that there is no
path from the initial abstract state to a state that satisfies the target graph pattern.
Therefore, we also abort the generation of the abstract state sequence after we
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Figure 4.5: An abstract state sequence ending in a state satisfying the target graph
pattern of Figure 4.3. Elements colored in red and green indicate those elements
marked as deleted and created, respectively.
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Table 4.1: Rule application labels of the first abstract successor state

Element Attached labels
i1 ‹#1, ’destroyInst.’, #1›
i2 ‹#1, ’destroyInst.’, #2›
inst(c1,i1) ‹#1, ’destroyInst.’, #1›
inst(c2,i2) ‹#1, ’destroyInst.’, #2›
running(i1,n1) ‹#1, ’destroyInst.’, #1›
running(i2,n2) ‹#1, ’destroyInst.’, #2›
deployed(c1,n2) ‹#1, ’deployComp.’, #1›
deployed(c2,n1) ‹#1, ’deployComp.’, #2›

generated x successor states, where x is two times the heuristic value of the initial
state of the concrete planning problem. This ensures that the computation of a
heuristic value terminates and that the search algorithm can continue with other
states if the relaxed problem is not solvable from a certain state.

4.3.2 Rule Application Labels

Our planning system performs a state space exploration by successively choosing a
state and expanding it, i.e., applying each rule at each possible match to generate
its successor states. To decide which state to expand next, the system calculates a
heuristic value for each unexpanded state. Calculating a heuristic value for a state
involves generating the abstract state sequence starting in this state until we reach a
state that satisfies the target graph pattern.

Having constructed the abstract state sequence, a naive idea would be to use
its length as heuristic estimate. Although the abstract state sequence is expected
to be shorter for states which are near to a goal state and longer for states which
are further away from a goal state, this value is still rather imprecise. A better idea
is to give the approximate number of individual graph transformations needed for
reaching the (abstract) goal state. However, we cannot simply count all applied
transformations per transition to calculate this number, because this would include
a lot of transformations that were not needed to reach the (abstract) goal state. The
transformations that were needed to reach the (abstract) goal state are called a relaxed
plan and their number is called the length of the relaxed plan.

Our approach to calculate this number incorporates rule application information
into the newly created elements of each successor graph. Each created element is
labeled with information about the transformation that caused its creation. This
label consists of the iteration number of the successor graph creation loop, the name
of the applied rule, and a distinct identifier for the match of the rule to the host
graph. As an example, the deployed edge from component c1 to ECU n2 is labeled
with ‹iteration #1, ’deployComponent’, match #1›, see Table 4.1 and the second state in
Figure 4.5.

When the goal match is found, we can count the number of distinct rule appli-
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Table 4.2: Rule application labels of the second abstract successor state

Element Directly attached labels Propagated labels
i1 ‹#1, ’destroyInst.’, #1›
i2 ‹#1, ’destroyInst.’, #2›
inst(c1,i1) ‹#1, ’destroyInst.’, #1›
inst(c2,i2) ‹#1, ’destroyInst.’, #2›
running(i1,n1) ‹#1, ’destroyInst.’, #1›
running(i2,n2) ‹#1, ’destroyInst.’, #2›
deployed(c1,n2) ‹#1, ’deployComp.’, #1›
deployed(c2,n1) ‹#1, ’deployComp.’, #2›
i3 ‹#2, ’createInst.’, #1› ‹#1, ’destroyInst.’, #1›
i4 ‹#2, ’createInst.’, #2› ‹#1, ’destroyInst.’, #2›
i5 ‹#2, ’createInst.’, #3› ‹#1, ’deployComp.’, #1›
i6 ‹#2, ’createInst.’, #4› ‹#1, ’deployComp.’, #2›
inst(c1,i3) ‹#2, ’createInst.’, #1› ‹#1, ’destroyInst.’, #1›
inst(c2,i4) ‹#2, ’createInst.’, #2› ‹#1, ’destroyInst.’, #2›
inst(c1,i5) ‹#2, ’createInst.’, #3› ‹#1, ’deployComp.’, #1›
inst(c2,i6) ‹#2, ’createInst.’, #4› ‹#1, ’deployComp.’, #2›
running(i3,n1) ‹#2, ’createInst.’, #1› ‹#1, ’destroyInst.’, #1›
running(i4,n2) ‹#2, ’createInst.’, #2› ‹#1, ’destroyInst.’, #2›
running(i5,n2) ‹#2, ’createInst.’, #3› ‹#1, ’deployComp.’, #1›
running(i6,n1) ‹#2, ’createInst.’, #4› ‹#1, ’deployComp.’, #2›
down(n1,n1) ‹#2, ’shutdownEcu’, #1› ‹#1, ’destroyInst.’, #1›
down(n2,n2) ‹#2, ’shutdownEcu’, #2› ‹#1, ’destroyInst.’, #2›

cation labels that are contained in the elements of the goal match. This number
is the number of transformations needed to create the elements in the goal match.
However, these labels contains only labels of elements that appear directly in the goal
match. It does not yet contain labels of elements that were needed to arrive at the
goal match. An example for this is the label of the aforementioned deployed edge
from component c1 to ECU n2. While the deployed edge is not contained in the goal
match, its creation during the first transition was necessary for the application of
another transformation during the second transition to create an element in the goal
match. In this example, the application of createInstance that creates component
instance i5 during the second transition required the deployed edge from c1 to n2.
Our approach includes labels of such elements when counting the rule application
labels in the goal match: each element created by a transformation – in addition
to its own label – inherits the labels of all elements in the LHS match of the rule
application. In the example above, the rule application label of the deployed edge
created during the first transition is propagated to the newly created instance i5

during the second transition, see Table 4.2 and the third state in Figure 4.5.

Elements that have been marked as deleted are handled similarly. For exam-
ple, the component instance i1 receives the rule application label ‹iteration #1,
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’destroyInstance’, match #1› when it is marked as deleted by the application of
the destroyInstance rule, see Table 4.1. Labels of elements being marked as deleted
are propagated to newly created (or deleted) elements if the labeled element is
contained in a NAC match, e.g., the label of i1 is propagated to the down edge at
ECU n1 when shutdownNode is applied during the second transition, see Table 4.2.
Note that elements being marked as deleted inherit labels in the same manner as
elements marked as created : they inherit labels of created elements if contained in
the LHS match and labels of deleted elements if contained in the NAC match. By
inheriting the labels of other elements, the elements in the goal match do not only
contain labels of transformations that directly created them, but also about all prior
transformations that made their creation possible – whether by means of element
creation or deletion.

The heuristic value is now simply defined as the number of rule application
labels that are attached to all elements in the goal match. This is reasonable because
rule application labels have been propagated to elements in the goal match if the
referenced rule application assisted in establishing the goal match. In doing so,
counting rule application labels follows set semantics, i.e., if elements that were
created from different transformations share the same inherited labels, these labels
are counted only once. In general, the rule application label set contains at least one
label for each iteration of the successor graph creation loop.

Applied to the example of Figure 4.5, the goal match containing i5 and i2 results
in a heuristic value of 4. This value comes from two rule application labels of i5
and the two of n1’s down edge. The rule application label of i2 is not counted,
because i2 is marked as deleted. It would have been counted if i2 was contained in
a NAC. When there exist multiple goal matches present in an abstract state, we use
the smaller value. This prevents from basing the heuristic value on a goal match
containing i4 instead of i2. If we had not used the NAC for the running edge
between the component instance of c1 and n1 in the target graph pattern, a goal
match containing i1 and thus a heuristic value of 2 would also have been possible.
However, since we knew from the initial configuration that i1 is running on an ECU
that is supposed to be shut down, specifying this NAC was reasonable to prevent
such an unfavorable goal match from being possible.

4.3.3 Program Code

The heuristic function incorporates two important functionalities. The first func-
tionality is the use of markings during the creation of abstract successor graphs.
These markings allow to reinterpret NAC matching such that an element contained
in the match of a NAC can be disregarded if it is marked as created or deleted. As
a consequence, the use of these markings relaxes NAC matching and enables –
together with the relaxed LHS matching, which results from not deleting elements
when transformations are applied – the parallel execution of all applicable trans-
formations. The second functionality is the use of rule application labels and their
propagation to newly created or deleted elements. These labels allow to count those
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rule applications that assisted in reaching the (abstract) goal state, which constitutes
the heuristic value.

Next, we provide program code for this heuristic function. It is divided into three
procedures. The first procedure implements the relaxed NAC matching functionality.
The second procedure is a simple helper function that collects rule application labels
from elements in the LHS match. The third procedure realizes the heuristic function
and calls the other two procedures to do so.

Algorithm 4.1: Relaxed NAC matching

Input: Match m : L→ G, NACs N , Set labels
Output: Boolean allNacsOk, Set labels

1: procedure checkAllNacMatches(m, N , labels)
2: for all q : N → G with (N, n) ∈ N and q ◦ n = m do
3: thisNacOk← f alse
4: for all e ∈ ran(q) with e /∈ ran(m) do
5: if e is marked as created then
6: thisNacOk← true
7: break . no need to check other elements
8: end if
9: if e is marked as deleted then

10: thisNacOk← true
11: insert labels attached to e into labels
12: break . no need to check other elements
13: end if
14: end for
15: if ¬thisNacOk then
16: return f alse . no need to check other NAC matches
17: end if
18: end for
19: return true
20: end procedure

The first procedure, checkAllNacMatches, is given in Algorithm 4.1. Given an
LHS match and the NACs of a graph transformation rule, it checks for each match
of a NAC (line 2) whether it contains an element (line 4) that may be disregarded
because it has been marked as created (line 5) or deleted (line 6). If such an element
has been found, the current NAC match can be neglected under relaxed NAC
matching. This also means that it is not necessary to check any remaining elements
in this NAC match (lines 7 and 12). Note that elements that are already contained
in the LHS are not considered by this check (line 4), because it is not reasonable to
regard them as existing for LHS matching but as not present for NAC matching.

As soon as a single NAC match is found that contains no element marked as
either created or deleted, we know that this NAC is not satisfied, despite the applied
relaxation. In such a case, there is no need to check any remaining NACs and
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the procedure returns f alse (line 16). If each NAC match can be neglected due to
marked elements, the procedure returns true (line 19).

As a side effect, this procedure collects rule application labels from those elements
that allowed neglecting a NAC match (line 11). This is only done for elements
marked as deleted but not for elements marked as created, because you need to apply
a transformation for deleting elements but not for not creating them. Note that the
set of rule application labels is given as a reference, i.e., there is no need to return
this set.

Algorithm 4.2: Collecting rule application labels from an LHS match

Input: Match m : L→ G, Set labels
Output: Set labels

1: procedure collectRuleApplicationLabels(m, labels)
2: for all e ∈ ran(m) do
3: if e is marked as created then
4: insert labels attached to e into labels
5: end if
6: end for
7: end procedure

The second procedure, collectRuleApplicationLabels, is given in Algo-
rithm 4.2. All it does is collect rule application of those elements that are marked as
created. It is called from the third procedure, either with an LHS match or with a
goal match as parameter.

The procedure realizing the heuristic function, computeHeuristicValue, is
given in Algorithm 4.3. Given the set of graph transformation rules, an initial graph
for the relaxed problem, the target graph pattern, and an upper bound for the length
of the abstract state sequence, it constructs successor states until either the most
recently created successor state satisfies the target graph pattern or the upper bound
is reached (line 4).

The successor graph creation loop is roughly dividable into two parts. The first
part (lines 5 to 20) constructs the next abstract successor state. The second part
(lines 22 to 29) checks whether it satisfies the target graph pattern.

To construct an abstract successor state, the procedure first searches all LHS
matches of all graph transformation rules and checks whether all their NAC matches
are satisfied under relaxed NAC matching by calling the procedure checkAllNac-
Matches (line 9). For all LHS matches that satisfy their NAC matches, new elements
are created according to the rule morphism, but none are deleted (line 11). Then,
these new elements are marked as created (line 12), and elements supposed to be
deleted according to the rule morphism are marked as ‹(line 13). Note that each of
these elements is only marked if it has not been marked before.

After the marking of elements is completed, the procedure attaches rule ap-
plication labels to newly marked elements. Labels of elements that enabled the
rule application by being marked as deleted, i.e., they allowed to neglect one of the
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Algorithm 4.3: Heuristic function yielding the length of a relaxed plan

Input: Rules R, Graph G0, GraphPattern Gtgt, Integer maxLength
Output: Integer heuristicValue

1: procedure computeHeuristicValue(R, G0, Gtgt, maxLength)
2: G ← G0

3: length← 0
4: while length ≤ maxLength do
5: Gsucc ← G
6: for all p = (L, R, r,N ) ∈ R do
7: for all m : L→ G do
8: labels← ∅
9: allNacsOk← checkAllNacMatches(m, N , labels)

10: if allNacsOk then
11: add created elements of G

p,m
=⇒ H to Gsucc

12: mark created elements of G
p,m
=⇒ H in Gsucc as created

13: mark deleted elements of G
p,m
=⇒ H in Gsucc as deleted

14: collectRuleApplicationLabels(m, labels)
15: insert ‹length, p.name, m.id› into labels
16: attach labels to newly marked elements in Gsucc

17: end if
18: end for
19: end for
20: G ← Gsucc

21: length← length + 1
22: for all g : Ltgt → G with Gtgt = (Ltgt,Ntgt) do
23: labels← ∅
24: allNacsOk← checkAllNacMatches(g, Ntgt, labels)
25: if allNacsOk then
26: collectRuleApplicationLabels(g, labels)
27: return cardinality of labels
28: end if
29: end for
30: end while
31: return highest possible value of Integer
32: end procedure

NAC matches, are already contained in the set labels due to a side effect of the
procedure checkAllNacMatches (line 9). Now, the procedure also collects labels
from elements that made the LHS match possible, i.e., elements that are marked as
created and contained in the LHS match, by calling the procedure collectRuleAp-
plicationLabels (line 14). Then, it also puts a label for the rule application that
was just executed into the set labels (line 15) and attaches this set to all elements
that have been marked as created or deleted by this rule application (line 16). As
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a consequence, each element is labeled with both a label for the rule application
that created the element and/or its marking as well as labels that made this rule
application possible.

After the next abstract successor state has been created, the procedure checks
whether this state satisfies the target graph pattern. Like the application of graph
transformation rules, this check is performed under relaxed NAC matching (line 24).
In case it does satisfy the target graph patten, the procedure collects labels from
elements that are marked as created and contained in the goal match before returning
the size of this set as heuristic value. Labels from elements marked as deleted have
already been collected when checking relaxed NAC matching.

4.4 Evaluation

We compared the performance of our relaxed planning heuristic (hrp) against that
of a similarity-based heuristic (hsim), which resembles those heuristic functions
employed by Edelkamp et al. [EJL06] and Snippe [Sni11].

The similarity-based heuristic counts the number of nodes and edges that exist
in both the current configuration and the target configuration. It relies on the types
of nodes and edges to judge whether a node or edge is counted as existing. More
precisely, it puts the type of each node and edge of a configuration into a multiset
and takes the cardinality of the intersection of the current configuration’s multiset
and the target configuration’s multiset as a similarity measure. The heuristic value
is then defined as the additive inverse of this measure.

Both heuristics have been implemented in GROOVE [Ren04]. To eliminate any
potential side effects with a particular search algorithm, each of the heuristics was
employed multiple times in combination with a different search algorithm. This
evaluation was performed on two different problem domains.

Search algorithms Both heuristic functions were evaluated in combination with
greedy best-first and a variant of enforced hill-climbing.

Greedy best-first (GBF) [RN03] is a well-known search algorithm for informed
search. It uses a closed list and an open list of states. After expanding a state, i.e.,
all successor states have been generated, this state is placed in the closed list. For
each new successor state found, its heuristic value is computed and then the state
is placed in the open list. The decision which state to expand next is solely based
on the heuristic values of the states in the open list. The costs to reach the current
state are not considered. As a result, the algorithm greedily chooses among all known
states that state with the smallest expected distance to the goal state.

We also tested a variant of GBF that differs from this approach in that it also
greedily expands the next state, cf. [CS07, Sect. 3.2]. If a successor state with a better
heuristic than the current state is found, this variant immediately chooses this state
to expand, without checking any remaining sibling states. When this happens, the
current state is not placed in the closed list; it remains in the open list, directly
behind the new state. By doing so, the heuristic values of its remaining successor
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states can be computed later if the new state turns out to lead to worse successor
states. Since there was no significant difference in performance between those two
variants of GBF, this section includes only results of the traditional variant.

Enforced hill-climbing (EHC) [HN01] is a local search algorithm. In each iteration
it performs a breadth-first search from the current state until it finds a state with a
better heuristic value. When such a state is found, it updates the current state and
continues with the next iteration. We use a modified EHC that applies best-first
search instead of breadth-first search in each iteration. This results in different
behavior if EHC encounters plateaus, i.e., regions in the state space where the
heuristic values of all successor states are not lower than the current best heuristic
value. Using a best-first search rather than a breadth-first search is expected to
result in shorter planning times or yield shorter plans on some domains, cf. [CS07,
Sect. 6.3].

Problem domains The two problem domains used for our experiments are Blocks
World and ECUs.

Blocks World is a classical problem domain in the area of AI planning. It consists
of a table with a set of cubes that can be stacked upon each other. A cube can only
be moved if there are no other cubes on top of it, and there is only one arm that can
hold a cube, i.e., two cubes cannot be moved simultaneously. Finding an optimal
solution in this domain has been shown to be NP-hard [GN92].

The ECUs domain works as explained in Section 4.2. In contrast to the Blocks
World domain, which does not involve the object instantiation, the ECUs domain
contains rules creating new nodes.

Experiment setup For the Blocks World domain, we used 8 different problem sizes
(4, 6, 8, 10, 12, 14, 16, and 18 blocks) and 4 different problem instances (2 random
initial and 2 random target configurations) per problem size.

For the ECUs domain, we used 4 different problem sizes (2, 3, 4, and 5 ECUs),
each with 4 different problem instances. Two of these problem instances had the
same number of component instances running in the initial configuration as ECUs
were available. The other two problem instances had an additional component
instance running. Each target configuration specified every second ECU (rounding
down at odd numbers of ECUs) to be shut down.

The experiments were conducted on a Dual Intel Xeon E5520 compute server
with 16 (virtual) cores running at 2.27GHz. Each experiment was given 4 cores
and 4GB of RAM. If no plan could be computed within 20 minutes, the job was
terminated.

Results First, we give an overview of the number of explored states for each
combination of heuristic function and search algorithm. The number of explored
states counts only those states that have been chosen for expansion and is generally
less than the number of all generated states. Therefore, it is a suitable measure for
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how well the employed heuristic prunes the state space. Note that this number also
does not include abstract states computed by hrp.

Figure 4.6 shows a histogram of the average number of states for the BlocksWorld
domain, Figure 4.7 for the ECUs domain. Note the logarithmic scale in both his-
tograms. With increasing problem size hrp makes its superiority clear. Combinations
with hsim failed to provide a solution within 20 minutes for the problems of size 10
blocks and above (on the BlocksWorld domain) and 5 ECUs (on the ECUs domain).
There is no significant difference in performance between GBF and EHC.

Considering the average planning times in Figures 4.8 and 4.9, we can observe
that hsim performs better than hrp on small domains. The performance of hrp on
small domains is worse than that of hsim because the computation costs of finding a
relaxed plan is in general much higher than the computation costs of counting the
number of nodes and edges in a state. However, the performance changes to the
favor of hrp as the problem size increases: the planning time of hrp scales better than
the planning time of hsim. This is expected because the number of generated states
also scales better.

Note the small discrepancy between the number of explored states and the
total planning time in the case of 5 ECUs. The number of explored states did not
increase when switching from instances with 4 ECUs to instances with 5 ECUs,
whereas the planning time did increase. This can be explained via the number of
generated states. The number of generated states increased when switching from
instances with 4 ECUs to instances with 5 ECUs. This led to more heuristic values
being calculated, which in turn led to more and better candidates being available for
further exploration. Better candidates led to a smaller number of states chosen for
exploration due to a smaller average plan length.

Table 4.3: Percentage of time spent calculating heuristic values in BlocksWorld
domains

#blocks 4 6 8 10 12 14 16 18
GBF/hsim 4,58 3,44 4,97 — — — — —
EHC/hsim 4,83 3,56 4,18 — — — — —
GBF/hrp 89,80 93,65 94,31 95,16 97,28 97,81 99,40 99,02
EHC/hrp 88,10 92,67 94,62 95,24 97,32 97,77 99,14 99,37

Table 4.4: Percentage of
time spent calculating
heuristic values in ECUs
domains

#ECUs 2 3 4 5
GBF/hsim 3,70 5,02 3,95 —
EHC/hsim 3,99 6,74 9,87 —
GBF/hrp 87,32 94,15 98,38 99,58
EHC/hrp 81,60 91,88 98,46 99,74

Next, we take a detailed look at the time spent for calculating heuristic values.
Tables 4.3 and 4.4 show these times in percentage of total planning time. While
hsim consumes only approx. 4% of the total planning time, hrp consumes over 81%,
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Figure 4.8: Histogram of planning times in Blocks World domains
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independently of whether used by GBF or EHC. Furthermore, the proportional share
of hrp increases with growing problem size. At the same time, the percentage of time
needed for matching and transformation increases, which are the main contributors
to the time spent for calculating heuristic values in the case of hrp.

Note that our implementation is not optimized for efficiency. Therefore, it is
more appropriate to consider the scaling behavior of both heuristic functions than
their absolute planning times.

Table 4.5: Scaling factor of planning time in BlocksWorld domains. For each problem
size, the entry is the quotient of the average planning time from all instances of this
problem size and that of all instances from the next smaller problem size.

#blocks 6 8 10 12 14 16 18
GBF/hsim 20,2 5,1 — — — — —
EHC/hsim 16,8 19,4 — — — — —
GBF/hrp 2,6 2,2 1,7 2,2 1,7 12,0 0,7
EHC/hrp 2,9 2,1 2,0 3,1 1,6 3,4 2,4

Table 4.6: Scaling factor of planning
time in ECUs domains. For each prob-
lem size, the entry is the quotient of
the average planning time from all in-
stances of this problem size and that
of all instances from the next smaller
problem size.

#ECUs 3 4 5
GBF/hsim 15,7 18,6 —
EHC/hsim 12,8 22,8 —
GBF/hrp 3,9 8,0 3,7
EHC/hrp 5,1 12,6 4,2

Tables 4.5 and 4.6 show the scaling behavior of both heuristics on both domains.
Each entry shows a factor x, which is the quotient between the average planning
time t2 of all instances from one problem size and the average planning time t1 of all
instances from the next smaller problem size, i.e., t1 · x = t2. Comparing the scaling
factors of Tables 4.5 and 4.6 with one another, we can observe that hsim performed
equally bad on both domains, whereas hrp performed slightly worse on the ECUs
domain.

We suspect the inferior scaling behavior of hrp on the ECUs domain to be caused
by the amount of nodes being created during each abstract planning phase. This
can possibly be improved by reducing this amount. The idea is to merge all nodes
of the same type that are created during the same transition of an abstract state
sequence into one node. When we do this, the labeling of new nodes also has to
be modified: the question is which rule application label to attach to a new node if
there were multiple transformations creating this node. Here, the idea is to choose
that transformation whose applicability is easier to fulfill, i.e., that has the least
number of rule application labels in its match. As a consequence of such a node
merging approach, the amount of nodes being created during each abstract planning
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phase is decreased, which should result in lower time requirements for applying
rules to abstract states while preserving the quality of the heuristic.

4.5 Related Work

In the introduction of this chapter, we mentioned approaches that translate the graph
transformation planning problem into PDDL as an alternative to planning directly
on graph transformation systems. Unfortunately, such a translation imposes some
restrictions due to the different expressive power of PDDL and graph transformation
systems:

1. Today’s proposed translation schemes [TK11; Mei12] support only a restricted
set of negative application conditions. While it is technically possible to
translate arbitrarily large negative application conditions into PDDL, such
a translation requires the extension disjunctive preconditions, which is rarely
supported by planners, or compiling the disjunctions away, i.e., by flattening
those actions containing them, which results in a blowup of the number of
actions.

2. Since PDDL does not support object instantiation, a translation-based approach
cannot be used for planning problems where an unlimited number of nodes
can be created. For such planning problems, a planning model designer has to
specify the maximal number of objects before translating the model.

By planning directly within the transition system defined by the graph transforma-
tion system, we avoid these problems.

Röhs and Wehrheim [RW10b; Röh09] developed an approach to graph transfor-
mation planning that diverts a model checker from its intended use of searching
for a counterexample of a given property. It plans by reformulating the planning
problem into a model checking problem and then asking a model checker to verify
the property that no plan exists. If the property is false, i.e., a plan exists, the model
checker delivers a plan as counterexample of the property. While this approach is
very generic and fully automatic, it is not competitive in terms of speed and quality
compared to other planning techniques because the state space search of a model
checker is generally not optimized for planning, neither for finding a plan quickly
nor for finding a short plan.

Estler and Wehrheim [EW11; Est10] developed another approach to graph trans-
formation planning that is, like our approach, based on heuristic search. In contrast
to our approach, it employs a domain-specific heuristic to search through the state
space. In general, a disadvantage of domain-specific heuristics is that they have to
be developed specifically for each application domain. A heuristic that is working
fine on one domain might not be suitable for another domain. In this approach, the
solution to this problem is to learn heuristic functions automatically. A learning
algorithm derives a regression function that predicts the costs of solving the problem
from a given state. To derive the regression function, the learning algorithm needs a
predefined declaration of state features and a training set with problem instances.



4.5. RELATED WORK 57

While this solution is an improvement over developing heuristic functions manually,
it still requires the developer to declare a set of state features that is suitable for the
given application domain. Such a thing is not necessary in our approach, because
we employ a domain-independent heuristic.

Varró-Gyapay and Varró [VV06] also presented an approach to graph transforma-
tion planning, although not referred to as planning but optimization. Their approach,
which is a search for an optimal plan, employs a Petri net abstraction technique. This
Petri net abstraction technique derives a so-called cardinality Petri net, which counts
the number of elements of certain types via tokens. For each type, there is a distinct
place in this Petri net, and transitions simulate the effect of graph transformation
rules by adding and removing tokens from appropriate places. The goal of the
planning problem is then translated into a marking of the cardinality Petri net. The
coverability problem for this goal marking, i.e., the question whether a marking exists
that has at least the same amount of tokens on every place as the goal marking, is
encoded into an integer (linear) programming problem (IP) [Sch98]. The solution to
the IP is a vector, called occurrence vector, that states how many times each graph
transformation rule has to be applied to reach the goal. This occurrence vector is
used to cut off branches of the state space where the number of performed rule
applications exceeds the number given in the vector for a certain rule.

An obvious downside of this approach is that a path corresponding to the occur-
rence vector might not exist in the state space of the graph transformation system.
The reason for this is the applied abstraction: the cardinality Petri net abstracts away
all structural information of graph transformations rules and configurations. If a
path corresponding to the occurrence vector does not exist, the next best solution
of the IP is derived. This continues iteratively until an occurrence vector has been
derived for which a path exists.

Hegedüs et al. [HHV11] extended this approach by a second cut-off strategy and
a choice of two heuristics. Although related to AI planning techniques, this extended
approach was also not referred to as planning but guided trajectory exploration of
graph transformation systems. In addition to employing the aforementioned Petri
net abstraction technique, their approach computes a graph expressing dependency
relations between graph transformation rules. The information encoded into this
graph is used to define the new cut-off strategy and both heuristics. The new cut-off
strategy cuts off a path if there is a disabled rule that still has to be applied according
to the occurrence vector but cannot be enabled anymore, because each other rule
enabling it would exceed the number of applications given in the occurrence vector
for this rule. The first heuristic given is a least commitment strategy: it applies those
rules first that enable the most other rules according to the dependency relations
calculated before. The second heuristic applies those rules first that enable the
application of other rules whose applicability is considered most important. The
applicability of a rule is important if there is only a small number of rules enabling
it and those that do only have a small number of applications left.

This extension provides two relevant improvements over the original work. First,
by employing a heuristic function, the approach performs an informed search on
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those parts of the state space that are not cut off by one of the cut-off strategies. Sec-
ond, the new cut-off strategy and both heuristics are based on dependency relations
between rules, and these dependency relations are derived from the structure of
rules. Unfortunately, all cut-off strategies and heuristics are calculated entirely on
the level of rules, i.e., independent of the graphs they are applied on. Therefore,
none of them considers the actual structure of any host graph, e.g., the initial or
current configuration.

The Petri net abstraction technique has also been extended to support a notion
of time, essentially by modifying the encoding as IP, cf. [Var12], and the cardinality
Petri net has also been used to prove the termination of graph transformation
systems, cf. [Var+06]. Unfortunately, all these variants of the approach do not
support arbitrary kinds of NACs. They do support a restricted kind of NACs, i.e.,
NACs that prevent rules from being applied twice at the same match by mimicking
the RHS of a rule, cf. [Var+06].

Approaches to planning with graph transformations have also been employed in
safety-critical environments, cf. [Gau+14, Sect. 3.2.9]. Here, unsafe configurations,
e.g., an unsafe distance between two RailCabs or a RailCab not being registered at a
base station while driving, have to be prevented from occurring in a plan. To do so,
these approaches take safety requirements into account. These safety requirements
restrict the set of valid configurations, i.e., they specify which configurations are not
allowed to occur in a plan.

The objective of these approaches has similarities to that of verification ap-
proaches for graph transformations systems, cf. [GRS14, Sect. 5.2]. However, in
contrast to verification approaches, where the absence of unsafe states is categori-
cally guaranteed at design time, these techniques allow unsafe states to exist in the
reachability graph in general, but plan reconfigurations in such a way that no unsafe
state is reached.

Depending on the application domain, it can be very complicated to guarantee
the absence of all forbidden patterns by means of design-time verification. The
exclusion of a forbidden pattern via design-time verification imposes restrictions
on the state space of the system, as it is not allowed to contain states matching the
forbidden pattern. This, in turn, transfers these restrictions to the design of the
application domain’s reconfigurations. If these restrictions prove too cumbersome,
we can instead allow the forbidden patterns to appear in the state space in principle,
but plan such that they do not appear on the path to the target configuration. Of
course, when doing this, we do not need to take forbidden patterns into account
whose absence has already been verified by a design-time verification.

In safe planning environments, the planning task, as defined in Definition 4.1.2,
is extended such that it includes the requirement that no potentially unsafe con-
figuration is reached. In essence, this is done by adding a safety specification that
defines whether a configuration meets the safety requirements and is thus allowed
in a plan. The safety specification is given as a set of graph patterns, called forbidden
patterns. If any one of the forbidden patterns matches the host graph, the host
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graph is a forbidden configuration, i.e., a configuration that does not meet the safety
requirements.

All approaches to graph transformation planning mentioned above either support
or can easily be extended to support forbidden patterns and thus are capable of
solving the safe planning problem. In the approach based on model checking, the
problem is solved by including the safety requirements into the property to be
verified, cf. [RW10b]. In doing so, the property states that no safe plan exists, i.e.,
there is no path to a goal state free of intermediate states containing forbidden
patterns. Therefore, the model checker must also consider whether any state on
the path to the goal state contains a forbidden pattern. In the approach employing
a (learned) domain-specific heuristic, checking for forbidden patterns is simply
integrated into the search algorithm, cf. [EW11]. This integration is independent of
the learning algorithm and can be done in any forward search, i.e., it can be done
analogously in our approach or the approach employing the Petri net abstraction
technique.

Translations into PDDL (or any other dedicated planning language) do not
support forbidden patterns at the moment. Although PDDL supports constraints
over intermediate states of a plan since version 3.0 [GL05], translation schemes do
not yet support the translation of forbidden patterns into such constraints. Earlier
proposed translation schemes only support the translation of graph transformation
rules into action schemes of PDDL, cf. [TK11; Mei12]. As remarked above, their
capability to support negative application conditions is also limited.

Whether learning a domain-specific regression function or employing a domain-
independent heuristic function is preferable, depends on the application domain. If
the application domain allows for a straightforward design of a suitable heuristic
using human intuition or provides a meaningful set of state features to derive a
heuristic function using machine learning techniques, then the regression function
might be preferable. If, however, the domain does not provide a meaningful set
of state features, i.e., heuristic knowledge is not easy to obtain, then our domain-
independent heuristic is the more reasonable choice.

4.6 Discussion

Our approach to graph transformation planning is an adaptation of FF’s heuristic
function to graph transformation systems. In contrast to our system, which uses
label propagation to find the relaxed plan, FF computes the relaxed plan by a
backward search on a structure called the planning graph [BF97]. Such a planning
graph roughly resembles our list of successor graphs in the abstraction.

A planning graph is a directed graph with two kinds of nodes: nodes representing
literals and nodes representing (ground) actions. These nodes are arranged in
multiple layers. The planning graph starts with a layer of literals, i.e., with those
literals available in the initial state. The following layer of actions corresponds to
those actions that are applicable in the initial state. Such an action layer also contains
a no-op for each literal, i.e., an action that copies the literal into the next layer. A
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literal layer and an action layer together form a so-called step of the planning graph.
Each later step also contains two such layers. The i-th literal layer contains those
literals that can be asserted within i steps. The i-th action layer contains those actions
that are applicable given the i-th literal layer. Note that the first two layers form
step 0.

A planning graph has edges between nodes of different layers that mirror the
conditions and effects of actions. If a literal in step i is contained in the precondition
of an action in step i, there is an edge from the literal to the action. If an action in
step i asserts a literal in step i+ 1, there is an edge from the action to the literal. These
edges enable to consider the relation between literals and actions when searching
through the planning graph for a plan.

In general, planning graphs also have mutual exclusion edges between actions
that interfere with one another and between literals that cannot be achieved at the
same step simultaneously. However, in the case of a relaxed planning task, there
are no mutual exclusion edges because no literal is ever deleted, i.e., the relaxed
planning graph is a bipartite graph.

If a layer is reached that contains all goal literals, a backward search for a plan
is performed. This is done by selecting an achiever, i.e., a (ground) action asserting
the literal, for each literal in the goal set. Then, this selection is recursively applied
for all literals in the preconditions of the selected actions. When this search reaches
the first step, no actions need to be selected anymore and the set of selected actions
constitutes the plan. Note that in general, the backward search for a plan can require
backtracking when no action can be selected that is not exclusive to actions selected
earlier. Since there are no mutual exclusion edges in a relaxed planning graph, no
backtracking occurs here. This is what makes the search for a relaxed plan in a
planning graph much more efficient than the search for a non-relaxed plan.

By applying the idea of relaxed planning to graph transformation systems instead
of PDDL’s propositional state representations, we face multiple differences. These
differences stem from the fact that graph transformation systems, unlike PDDL,
support object instantiation and from the integration of NACs into the abstract
planning algorithm.

Achievers and admissibility In FF’s relaxed planning graph, a literal can have
multiple achievers. A relaxed plan is found by choosing an achiever for each
literal in the goal match and for each unfulfilled literal in the precondition
of other achievers. Finding the optimal relaxed plan, which results in an
admissible heuristic, is NP-hard, cf. [Byl94]. Therefore, FF uses a heuristic
for selecting achievers, which prefers those actions whose preconditions are
easier to fulfill. While this does not result in an admissible heuristic anymore,
it works well in practice and allows to find a relaxed plan in polynomial time.

In our case, there are no multiple achievers for created elements. Each created
element has a rule application label identifying the graph transformation that
created it. Therefore, no search for an optimal set of achievers is necessary
for created elements. Elements marked as deleted also have only one rule
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application label, i.e., the label from the first rule application that intended
to delete the element. When finding an element marked as deleted in a NAC
match while collecting all rule application labels, this amounts to choosing the
first transformation that intended to delete this element and thus resulted in
this element being marked. This is similar to FF’s approach of preferring those
actions whose preconditions are easier to fulfill.

Like the heuristic of FF, our heuristic is not admissible. We can easily create
an example domain where our heuristic function counts three graph trans-
formations, e.g., graph transformations that have been applied in parallel to
reach the (abstract) goal state in one iteration, although a plan of length two
exists, e.g., a plan that requires its two graph transformations to be applied
in sequence. In such an example, the overestimation of the costs of reaching
a target configuration is essentially caused by the early termination of the
successor graph creation loop.

Object instantiation The creation of nodes can lead to an explosion of the graph
size during the creation of successor graphs in the abstraction. During each
iteration of the successor graph creation loop, the size of the next abstract
state grows. This is because for each applicable transformation creating one
or more nodes, all those nodes are created by the parallel execution of these
transformations. Furthermore, each creation of an element results in a new
element even if such an element does already exist, possibly even created by
the same rule in an earlier iteration. This increases the graph size of each
abstract successor state and thus the matching costs. This is also the reason
that target graph patterns are likely to have multiple matches in an abstract
state, each with a different heuristic value. Such an explosion of the size of
a state is not an issue in PDDL-based planners because they do not support
object instantiation.

An idea to reduce the number of new elements per iteration is to merge all
new nodes of the same type into a single node. This, however, affects the
propagation of rule application labels. It is not possible anymore to distinctly
identify the rule application that was responsible for creating a new node if
there was more than one applicable transformation creating a node of the new
node’s type. In such a case, we can again prefer those graph transformations
whose preconditions are easier to fulfill, i.e., whose LHS matches needed less
newly created elements and less graph transformations to create them, similar
to FF’s heuristic for selecting achievers.

Negative application conditions The equivalent to NACs in PDDL are negative
existential quantifications over conjunctive facts. They are usually solved
by compiling them away, i.e., translating them into DNF, which results in
a blowup of the propositional domain representation, cf. [HN01]. In our
approach, we avoid such a blowup by building the support for NACs directly
into the abstract planning algorithm. As soon as a graph element marked as
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created or deleted is found within a NAC match, there is no need to check any
remaining elements in the same NAC match.

We motivated the development of our approach to graph transformation planning
by arguing about the need to retain the expressiveness of graph transformation
systems when solving graph transformation planning problems and the chances of
adapting already known techniques from PDDL-based planning systems. Adapting
the idea of FF’s heuristic function, i.e., using the solution length of a relaxed problem
as heuristic estimate, is only one of the possibilities. Another possibility that we
deem promising is the adaptation of landmark recognition techniques.

A landmark is a literal or a set of literals that occurs in every valid plan. Porteous,
Sebastia, and Hoffmann [PSH14] introduced the notion of landmarks in 2001. They
identify landmark candidates via a backward search through a relaxed planning
graph and verify that they are indeed landmarks by checking whether a relaxed
planning graph without those actions achieving a landmark candidate reaches a
state satisfying the goal. This approach, which can be performed in polynomial time,
is sound but not complete. Since checking whether or not a literal is a landmark is
PSPACE-complete, cf. [HPS04], a complete approach is not considered worth the
effort. By now, there are several techniques on finding landmarks. The work of
Marzal et al. [MSO11] presents a great overview of the most relevant techniques and
combines these techniques into one to increase the percentage of landmarks found.

When employing a heuristic based on landmarks, it is also important to find
useful orderings among landmarks. Landmarks can then be considered as subgoals
that have to be reached in sequence to reach the goal. They can either be used to
decompose the planning problem into several subproblems, cf. [PSH14], or to derive
a heuristic that states how many landmarks still have to be achieved in the correct
order. The LAMA planner [RW10a], which won the sequential satisficing track of
the 6th International Planning Competition (IPC-2008), uses such a heuristic in a
multi-heuristic search, i.e., it alternates between different heuristics, the landmark
heuristic and the heuristic of FF, to benefit from both approaches orthogonally.

The success of the LAMA planner gave motivation to adapt landmarks-based
techniques to graph transformation planning. A first step into this direction was
made by Ahmadian [Ahm12], who also developed a predecessor version of our
graph transformation planning approach, which uses the length of the parallel
relaxed plan as heuristic estimate. He adapted a technique of Zhu and Givan [ZG03],
which propagates landmark information through a planning graph via labels.

An important aspect of this adaptation concerns the representation of landmarks
itself. In propositional state representations, a landmark is a literal. Such a literal
can include information about related objects, e.g., a literal with two parameters can
express which software component is deployed on which ECU. This is not as easy
in graph transformation systems, because it is not possible to rely on the identity of
nodes that do not yet exist. Therefore, Ahmadian defined landmarks on the type
level. Unfortunately, this makes them imprecise because they do not provide any
structural information. A node landmark only states that a node of a certain type has
to exist, and an edge landmark only states that an edge of a certain edge type has to
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exist between two nodes of certain types. An idea to integrate structural information
into such landmarks is to consider the combination of multiple edge landmarks
involving the same nodes as a landmark on its own. Such a “higher-order” landmark
conforms to what is known in related work as a conjunctive landmark, cf. [KRH10].





5
Durative Graph Transformation
Systems

This chapter presents a formalism for graph transformations with time in concur-
rent contexts. This formalism, called durative graph transformation systems (DGTS),
provides concepts to specify structural reconfigurations whose execution consumes
time as well as dependencies between such reconfigurations. These concepts enable
an intuitive specification of temporal reconfigurations on a high level of abstraction.
Their formal semantics have been designed such that planning and verification
techniques can be applied reasonably.

Durative graph transformation systems provide three kinds of rules: durative
graph transformation rules, concurrency rules, and urgency rules. From these three
kinds of rules, durative graph transformation rules are the most intelligible concept.
Syntactically, they are a straightforward extension of ordinary graph transformation
rules, i.e., each graph transformation rule is annotated with a natural number
representing its execution time. The formal semantics employs a locking mechanism.
The idea of this locking mechanism is similar to concurrency control methods
implemented by database management systems. Basically, it restricts read or write
access to nodes and edges while they are involved in a durative graph transformation.
This guarantees that multiple durative graph transformations can not be executed
concurrently if they have conflicting needs, cf. [ZH13b]

Concurrency rules and urgency rules formalize temporal dependencies between
different durative graph transformation rules. The idea for concurrency rules is
inspired by the notion of envelope actions [HLF03] in PDDL planning domains. An
envelope action is an action whose execution acts as a time window for another
action, i.e., the other action requires the envelope action to be applied concurrently.
In durative graph transformation systems, we employ concurrency rules to specify
such dependencies. In doing so, we allow the envelope to be a disjunction of multiple
transformations: there may be multiple durative graph transformations t2 acting
as a time window for a durative graph transformation t1 and executing any one of
them is sufficient to allow the execution of t1.

65
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The idea of urgency rules is inspired by that of urgent locations, cf. [BDL04], and
urgent transitions, cf. [BST99; BT04], both concepts of timed automata. An urgency
rule specifies that a certain durative graph transformation t2 has to follow another
durative graph transformations t1 urgently, i.e., within a given time frame since the
execution of t1 finished.

Note that the temporal dependencies specified via concurrency and urgency
rules appear on the level of transformations, not the level of rules. Consider an
example of two robotic arms: one rule implements a robotic arm to continuously
rotate an object, another rule specifies a robotic arm to apply adhesive to an object
that is continuously being rotated by another robotic arm. In this example, the
second rule depends on a concurrent application of the first rule. However, if there
are multiple robotic arms and objects, it matters which robotic arm rotates which
object. Therefore, a concurrency rule that specifies such a dependency has to include
information that defines how the matches of different rules have to relate to each
other. The same holds for urgency rules.

The formal semantics of all these rules are based on timed graph transformation
systems, i.e., any given durative graph transformation system can be translated into a
timed graph transformation system. Obviously, instead of specifying a system model
as a durative graph transformation systems, a modeler could decide to specify the
system model directly as a timed graph transformation systems. However, this would
be much less convenient. In the TGTS formalism, the application of rules is timed,
but instantaneous, i.e., timed graph transformations do not consume time. Instead,
time passes in between two consecutive graph transformations. A durative graph
transformation rule could be simulated via two timed graph transformation rules,
but this would mean solving a problem manually and repeatedly hat has already
been solved by the semantics of durative graph transformation systems. Furthermore,
it would require the use of other constructs of timed graph transformation system,
i.e., clock instance rules, which enable the measurement of time, and invariant
rules, which specify timed conditions. However, the manual handling of clock
instances is a tedious duty and can be an error-prone endeavor. Durative graph
transformation systems have the advantage that such clock instances are abstracted
away and concurrent and urgent behavior are made explicit.

Due to being based on timed graph transformation systems, we can make use
of the verification procedures for timed graph transformation systems provided by
Heinzemann et al. [HE10] and Suck et al. [SHS11]. The approach by Heinzemann et
al. [HE10] enables to check whether or not a forbidden graph exists in any state of
a timed graph transformation system’s state space, i.e., it is possible to verify CTL
formulas of the form EFφ and AG¬φ. In this approach, the absence of a forbidden
graph is verified by a backward rule application from the forbidden graph to the
start graph. This has previously been done (for untimed graph transformation
systems) by Becker et al. [Bec+06] both via an explicit search and the use of symbolic
encodings. The approach by Suck et al. [SHS11] introduces a first-order variant of
TCTL [ACD93] and enables a verification of first-order TCTL formulas by translating
them into TCTL model checking problems for timed automata.
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After introducing the running example for this chapter in the next section, the
syntax and semantics of durative graph transformation rules is presented in Sec-
tion 5.2. Being based on timed graph transformation systems, this section also
explains the concepts available in the TGTS formalism. For reasons of clarity, the
support for negative application conditions is left out for now. Then, Section 5.3
covers how a durative graph transformation correlates with an untimed graph
transformation, the termination of durative rules, and possible interleavings among
multiple durative rules. The DGTS formalism is extended successively in Section 5.4
to support forbidden edges and forbidden pairs, in Section 5.5 to support concur-
rency rules, and in Section 5.6 to support urgency rules. Related work in the area of
graph transformations with time is covered in Section 5.7. Eventually, Section 5.8
concludes this chapter with a discussion on design decisions regarding the syntax
and semantics or concurrency and urgency rules.

5.1 Application Example: RailCab System

Each of the three kinds of rules in the DGTS formalism can be motivated with
the help of the RailCab system, see Section 1.4, which is why we use a domain of
the RailCab system as a running example in this chapter. Instead of providing all
rules for the RailCab system at once, we show them as needed, i.e., in introductory
paragraphs and syntax sections within the remainder this chapter. Here, we give a
general overview on how the RailCab system is modeled.

RailCab
driving
first
last

Track
free

Station

Convoy
driving

Publication

Base

onat

partOf

member

on

publisher

distributor

monitors

front

next

Figure 5.1: Type graph of the RailCab domain

Figure 5.1 shows a type graph for the rules in the durative graph transformation
system that models the RailCab domain. RailCabs operate on a railway system
whose physical structure is specified as part of the system configuration. The railway
system consists of track segments that are connected to each other via next edges. A
RailCab can occupy one such track segment at a time, which is represented by an on

edge to the track segment. Furthermore, RailCabs can coordinate with other RailCabs
to form a convoy. Such an active convoy operation is represented in a configuration
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by a node of the Convoy type. A Convoy node has a member edge to each participating
RailCab and represents an active instance of the RTCP ConvoyCoordination as well
as one instance of the RTCP DistanceControl for each pair of neighboring RailCabs
in the convoy. The position of each RailCab in the convoy is given by the first edge,
last edge, and front edges in a configuration. Within a convoy, there is a front

edge between each pair of neighboring RailCabs. The first and last edge are self
edges that represent the head and tail of the convoy.

The application scenario mainly consists of reconfigurations to move RailCabs
or convoys of RailCabs as well as reconfigurations related to convoy instantiation,
deinstantiation, and membership change. Each of these reconfigurations will be
specified as a durative graph transformation rule. RailCabs drive slower if they are
on their own because driving alone is less energy efficient than driving in a convoy.
Therefore, these rules will have different durations.

Remember that RailCabs also have to communicate with base stations of the
RailCab system. Each RailCab has to be registered at a base station that monitors
the track segment that the RailCab occupies. This is represented by an instance
of the RTCP Publication. When a RailCab moves from a track segment monitored
by one base station to a track segment monitored by another base station, it has
to deinstantiate this RTCP and instantiate a new one with the new base station.
This change of the RailCab’s registration is a reconfiguration that is required to be
executed concurrently to the movement of the RailCab. Therefore, this requirement
will be modeled as a concurrency rule.

In this application scenario, a RailCab is not allowed to stop abruptly if it is in
driving motion. To be allowed to stop, a RailCab first has to brake while still moving
to one track segment ahead. Being not allowed to stop abruptly means that there
may be no pause between multiple consecutive transformations moving a RailCab;
they have to be applied continuously without intermission. Technically, as soon as
a reconfiguration that moves a RailCab to another track segment finishes (and the
RailCab did not brake during this reconfiguration), another reconfiguration moving
this RailCab has to start. This requirement will be specified by means of urgency
rules.

5.2 Durative Graph Transformation Rules

Adding a notion of durations to graph transformation rules is trivial if the execution
of these rules is assumed to be strictly sequential. However, defining a timed
semantics for graph transformation rules allowing a concurrent execution is difficult
due to the many ways multiple transformations can interact with each other. While
unproblematic in some cases, the execution of multiple graph transformation rules
simultaneously, i.e., applying them to the same configuration in parallel, can lead to
conflicts in other cases.

Technically, durative graph transformations can be realized by translating them
into two discrete graph transformations that are temporally linked to each other.
One graph transformation represents the start of the durative transformation; a
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second one represents its end. In doing so, durative graph transformations have
application intervals, and as a result, it is possible to apply multiple durative graph
transformations concurrently.

The question is when to actually perform the reconfiguration that is specified
by the durative graph transformation rule. Performing it as part of the discrete
graph transformation that represents the start of the durative graph transformation
would not be a reasonable solution. The state of the system would be changed long
before the durative transformation finished its execution. Therefore, we execute the
reconfiguration as part of the second discrete graph transformation.

Unfortunately, there might be conflicts between two durative graph transforma-
tions if their matches are allowed to overlap arbitrarily. Such a conflict can cause
discrete graph transformations representing the end of a durative graph transfor-
mation not to be applicable when they are due. Consider a naive approach, which
simply uses the application conditions of those discrete graph transformations that
represent the start of a durative transformation to decide whether or not multiple
durative graph transformations may be applied concurrently. In this case, a discrete
graph transformation representing the end of a durative graph transformation might
not be applicable when it is due, because other graph transformations that have
been applied concurrently may have invalidated its application condition.

t1:Track t2:Track t3:Track
free

t4:Track
free

r1:RailCab
driving

r2:RailCab
last

r3:RailCab
first

c:Convoy
driving

next next next

on on

member member

front

Figure 5.2: A configuration in the RailCab domain

As an example, consider the configuration given in Figure 5.2 and the two graph
transformation rules joinConvoy and dissolveConvoy given in Figures 5.3 and 5.4.
Each of these rules has only one match in the configuration. The match of joinConvoy
maps to the Convoy node c, RailCab nodes r1 and r2, and Track nodes t1 to t3, that
of dissolveConvoy to Convoy node c, RailCab nodes r2 and r3, and Track nodes
t2 to t4. Let us assume that one of the two rules, dissolveConvoy, is currently
being applied. This means that its condition has already been checked but its actual
reconfiguration not yet been executed. Let us further assume that an execution of
joinConvoy is scheduled to start while dissolveConvoy is being executed and to end
after the execution of dissolveConvoy finished. Since dissolveConvoy ends before
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:Convoy
+ driving

:RailCab
–driving
+ last

:RailCab
–last

:Track
+ free

:Track
+ free

:Track
–free

next next

«--»
on

«--»
on

«++»
on

member«++»
member

«++»
front

d := 8

Figure 5.3: Durative rule joinConvoy

«--»
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–driving

:RailCab
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:Track
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:Track
–free

next next

«++»
on «++»

on

«--»
on

«--»
member

«--»
member

«--»
front

d := 8

Figure 5.4: Durative rule dissolveConvoy

joinConvoy ends, there will be no Convoy node anymore that the joining RailCab

node can be connected to. If such a sequence of reconfigurations was to be executed,
a rear-end collision might occur. Since the Convoy node is going to be deinstantiated
by dissolveConvoy, the execution of a graph transformation that makes use of
the Convoy node makes no sense and should not be allowed. The problem is that
the system is in the process of being reconfigured but this is not reflected in the
intermediate configuration. Checking the applicability at the beginning of a durative
graph transformation and performing the actual graph transformation discretely at
its end is ineligible as a general solution.

To solve this problem, we add information about the execution of durative graph
transformations into the configuration. This can be seen as locking access to the



5.2. DURATIVE GRAPH TRANSFORMATION RULES 71

elements of the configuration. Whether a second durative graph transformation is
allowed to be applied concurrently, can thus be checked by testing for the locks.

Given two durative graph transformations, there are four different interleavings
that might result in conflicts. In all of them, if the interleaving results in a conflict,
then at least one element is concurrently being read (required or forbidden) by one
durative graph transformation and being written (deleted or created) by another.
The four interleavings differ only in their beginning and ending times.

dissolveConvoy (writing)

joinConvoy (reading)

write lock

time

(a) First interleaving

dissolveConvoy (writing)

joinConvoy (reading)

write lock

time

(b) Second interleaving

dissolveConvoy (writing)

joinConvoy (reading)

read lock

time

(c) Third interleaving

dissolveConvoy (writing)

joinConvoy (reading)

read lock

time

(d) Fourth interleaving

Figure 5.5: Prevention of conflicting interleavings

A schematic overview of these four conflicting interleavings for the durative
graph transformation rules joinConvoy and dissolveConvoy is shown in Figure 5.5.
The aforementioned example, in which the execution of dissolveConvoy began
before joinConvoy started its execution, corresponds to the first two interleavings.
In both interleavings, dissolveConvoy removes the edge between RailCab node r2

and Convoy node c although it is required by joinConvoy. In the first interleaving,
the execution of dissolveConvoy ends first, which causes the convoy to be dein-
stantiated and the ongoing transformation of joinConvoy not to work anymore,
because the Convoy node has vanished. In the second interleaving, the execution
of joinConvoy ends first, which results in a new configuration where the execution
of dissolveConvoy can still perform its reconfiguration. However, such a concur-
rent execution of joinConvoy and dissolveConvoy is not intuitive: although r1

joined a convoy and was not involved in the durative graph transformation of
dissolveConvoy, there is no convoy that r1 can be member of after the execution of
both transformations has been finished. From the perspective of dissolveConvoy,
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the application of joinConvoy did not take the pending changes of dissolveConvoy’s
execution into account. Our solution to this problem incorporates information about
the deletion of the Convoy node into the configuration by acquiring a write lock on
the Convoy node when the execution of dissolveConvoy starts and releasing the lock
when it ends.

Although the third and fourth interleaving differ from the first two in their
ordering of the transformations’ starting points, they are essentially caused by the
same reason: either the changes resulting from dissolveConvoy’s execution cause
the convoy to be deinstantiated while r1 joins the convoy (third interleaving) or the
application of joinConvoy does not take the pending changes of dissolveConvoy’s
execution into account (fourth interleaving). These situations, however, require a
different solution due to their different ordering of starting points. Since the durative
graph transformation of joinConvoy starts first, the write lock on the Convoy node
has not yet been acquired by that of dissolveConvoy. Therefore, the transformation
of joinConvoy itself incorporates into the configuration that it requires the Convoy

node by acquiring a read lock of the Convoy node. In doing so, no concurrent graph
transformation of dissolveConvoy can deinstantiate the convoy.

In short, our solution approach uses write locks on parts of the system’s configu-
ration to avert conflicting interleavings similar to those illustrated in Figures 5.5(a)
and 5.5(b) and read locks to avert conflicting interleavings similar to those illustrated
in Figures 5.5(c) and 5.5(d). This is essentially an implementation of two-phase
locking (2PL) [BHG87] on timed graph transformation systems. Since the locking
and unlocking of all nodes and edges happen atomically at the beginning and end of
a durative graph transformation, no deadlocks can occur. As a result of this, durative
graph transformations that are not in conflict with each other allow to interleave
their end points in any order that is compatible with their specified durations.

The next section explains the syntax of durative graph transformation systems.
Section 5.2.2 introduces timed graphs and clock instances, which both are needed
for the notion of a configuration in timed graph transformation systems. Then,
Section 5.2.3 gives an informal overview of the semantic concepts of durative graph
transformation systems, i.e., it explains how the locking mechanism is technically
realized and how the execution of durative graph transformations is tracked. In
Sections 5.2.4 and 5.2.5, we map durative graph transformation rules to rules of the
TGTS formalism. These rules are then given an operational semantics in the form of
a transition system in Section 5.2.6. The formalization of timed graph transformation
systems provided in the following sections loosely follows that given by Suck et
al. [SHS11] and Eckardt et al. [Eck+13].

5.2.1 Syntax

Our notion of durative graph transformation rules is inspired by the fact that
reconfigurations in software systems require time. On the syntactic level, a durative
rule is merely an ordinary graph transformation rule with an annotated name
and a value for its duration. The idea is that the execution of a durative graph
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transformation cannot be aborted once it has been started. A modeler who uses
durative rules for specification does not need to deal with the error-prone definition
of multiple discrete rules and their correct timed behavior, potentially leading to
conflicts caused by a concurrent execution. This is completely resolved by the
semantics.

Definition 5.2.1 (Durative graph transformation rule). A durative graph transformation
rule D = (L, R, r, name, d) consists of

• two typed graphs, a left-hand side L and a right-hand side R,

• a partial graph morphism r : L→ R,

• a distinct name name, and

• a duration d ∈N>0.

To specify a complete durative graph transformation system, a modeler has to
specify a type graph and an initial graph in addition to the durative rules. The
semantics of such a durative graph transformation system is given by a timed graph
transformation system whose different kinds of rules are all induced by durative
rules.

Definition 5.2.2 (Durative graph transformation system). A durative graph transfor-
mation system DS = (T G, GT

0 ,DR) consists of

• a type graph T G,

• an initial typed graph GT
0 , which is typed over T G, and

• a set of durative graph transformation rules DR, each of whose LHS and RHS
are typed over T G.

5.2.2 Timed Graphs and Clock Instances

The semantics of durative graph transformations is defined by a mapping to rules
of the TGTS formalism. We refer to this mapping as an inducement of rules. A
durative rule induces a pair of timed graph transformation rules, called start rule and
end rule. Intuitively, the application of the start and end rule indicate the interval
of the durative rule’s execution. The durative rule further induces a clock instance
rule, which triggers the measuring of time, and an invariant rule, which enforces the
application of the end rule after d time units have passed since the application of
the start rule. A schematic overview of this approach is given in Figure 5.6.

All these rules work on timed graphs, which employ clock instances to support a
concept of time. The purpose of clock instances is to measure the passing of time
and to facilitate making timed statements, e.g., formulating a condition over the
allowed values of a clock instance. Such conditions have to be formulated along
with the graph transformation rules at design time.
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application of end rule
    ν(ci) ≥ d

application of start rule

and clock instance rule
    ν(ci) := 0

invariant rule
    ν(ci) ≤ d

tim
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Figure 5.6: Schematic overview of a durative rule’s execution

Similar to clocks in timed automata, cf. [AD94; BY04], the values of all clock
instances increase continuously and synchronously with the same rate. However,
clocks in timed automata pertain to a complete timed automaton or a complete
timed system. This is not reasonable in a timed graph transformation system due to
the dynamic nature of graph transformation systems. In timed graph transformation
systems, clock instances pertain to parts of a configuration, i.e., specific structures of
nodes and edges. These parts can be dynamically created and deleted; they might
even exist more than once in a configuration. As a consequence, it is impossible to
decide at design time how many clock instances a timed graph transformation system
needs. For this reason, timed graph transformation systems allow to instantiate and
deinstantiate clock instances at runtime.

We define timed graphs as an extension of typed graphs. A timed graph contains
two kinds of nodes: ordinary graph nodes and clock instances. Since a clock instance
pertains to a subgraph of a timed graph, it has an edge to each node of the subgraph
but no other edges.

Definition 5.2.3 (Timed graph). Let TG be a distinguished graph, called type graph.
A timed graph TiG = (G, type) consists of a graph G and a graph morphism type :
G → TG where G = (VG, VCI , EG, ECI , src, tgt) and

• VG and VCI denote the set of graph nodes and clock instances, respectively,

• EG and ECI denote the set of graph edges and clock instance edges, respectively,

• src : EG ∪ ECI → VG ∪ VCI denotes the source function for graph edges and
clock instance edges and is defined such that src|EG : EG → VG and src|ECI :
ECI → VCI , and
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• tgt : EG ∪ ECI → VG denotes the target function for graph edges and clock
instance edges.

To be able to define timed graph transformation rules and represent their matches
to a configuration, we also need a concept of morphisms on timed graphs. Such
timed graph morphisms work exactly like a typed graph morphisms, i.e., they
commute for the source and target function and preserve the types of nodes and
edges.

A timed graph itself does not have any values assigned to clock instances. How-
ever, to be able to represent the snapshot of a system, we also need an assignment of
values to clock instances.

Definition 5.2.4 (Clock instance value assignment). Let VCI be a set of clock instances.
A clock instance value assignment is a function ν : VCI → R+ that assigns a non-
negative real value to each clock instance. A clock instance reset changes the values
of a subset Vres of all clock instances in a clock instance value assignment to zero,
i.e., for Vres ⊆ VCI , ν′ = ν[Vres 7→ 0] is defined as ν′(ci) = 0 for all ci ∈ Vres and
ν′(ci) = ν(ci) for all ci ∈ VCI \Vres. A time delay is an addition of a non-negative real
value δ to the value of each clock instance in a clock instance value assignment, i.e.,
for δ ∈ R+, ν′′ = ν + δ is defined as ν′′(ci) = ν(ci) + δ for all ci ∈ VCI .

A timed graph and a clock instance value assignment together form a configura-
tion. The notion of a configuration serves as a basis for the operational semantics
we define later in Section 5.2.6.

Definition 5.2.5 (Configuration). A configuration is a tuple 〈TiG, ν〉 where TiG is a
timed graph and ν a clock instance value assignment.

The TGTS formalism includes rules enabling a modeler to formulate conditions
over the allowed values of a clock instance. To enable the specification of these
conditions, we need a definition of clock instance constraints. Such clock instance
constraints can be used to restrict the allowed values of a clock instance to a specific
interval. They can be employed either as an additional application condition of a
rule or as an invariant.

Definition 5.2.6 (Clock instance constraint). Let VCI be a set of clock instances. A
clock instance constraint is a conjunctive formula of atomic constraints of the form
ci ∼ n or ci − cj ∼ n where ci, cj ∈ VCI , ∼ ∈ {<,≤,=,≥,>}, and n ∈ N. Z(VCI)

denotes the set of clock instance constraints over VCI .

Of course, we also need to be able to express whether a clock instance constraint
is satisfied. Clock instance constraint satisfaction is a property of clock instance
value assignments.

Definition 5.2.7 (Clock instance constraint satisfaction). Let VCI be a set of clock
instances, z ∈ Z(VCI) a clock instance constraint over VCI , and ν a clock instance
value assignment over VCI . Then, ν satisfies z, written ν |= z, if and only if
z[ν(ci)/ci] ≡ true.
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5.2.3 Locking Edges and Application Indicators

In timed graphs, locking of nodes and edges is done via the creation and deletion
of additional edges, called locking edges. Elements of a configuration are locked by
applying start rules and unlocked by applying end rules to prevent a concurrent
access. There are separate locking edges for reading nodes, reading edges, writing
nodes, and writing edges. All these locking edges also have respective edge types in
a type graph.

To guarantee that the match of an end rule conforms with an earlier match of a
start rule, the match of each start rule has to be remembered in a configuration. This
is done by adding designated nodes, called application indicators, when applying a
start rule. Such an application indicator has an edge to each node in the match of
the start rule. These nodes indicate the application scope of the durative rule that
induced the start rule. When applying the end rule, we can ensure conformity with
the start rule’s match by requiring the same application scope. To properly indicate
to which durative rule an application indicator belongs, its type is distinct for each
durative rule.

All induced rules mentioned earlier are typed via a type graph of the TGTS
formalism. This type graph is induced by the type graph of the durative graph
transformation system under consideration and contains equivalent types and edge
types. In addition to these types and edge types, it needs types and edge types
to allow for the creation and deletion of locking edges and application indicators.
These types and edge types provide the basis for realizing the locking mechanism
and indicating the ongoing application of a durative rule in a configuration.

The next paragraphs explain the construction of an induced TGTS type graph
via examples, with special attention paid to locking edges and application indicators.
Its formal definition is given afterwards.

To conveniently refer to locking edge types, we use the functions rlnode : VTG →
ETG, wlnode : VTG → ETG, rledge : ETG → ETG, and wledge : ETG → ETG. Each
node type nt has two locking edge types, rlnode(nt) and wlnode(nt), as self edges in
the TGTS type graph. For every edge type et that is no locking edge type itself, there
are locking edges types rledge(et) and wledge(et) adjacent to the same source and
target node types. An example for the inducement of locking edge types is shown
in Figure 5.7.

In a configuration, an edge of type rlnode(nt) depicts an obtained read lock for a
node that has the type nt, and an edge of type wlnode(nt) depicts an obtained write
lock. Similarly, an edge of type rledge(et) depicts an obtained read lock for an edge
that has the type et, and an edge of type wledge(et) depicts an obtained write lock.

Application indicators are used to indicate the ongoing execution of a durative
graph transformation in a configuration. Their outgoing edges, called application in-
dicator edges, mark the match of the durative graph transformation rule that has been
used, i.e., the subgraph of the configuration that is changed by the transformation.
For a durative graph transformation rule with the name name, the node type of the
application indicators it instantiates is given by aiType(name); the edge type of an
edge connecting the application indicator with a node v is given by aiEdgeType(v).
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Figure 5.7: Inducement of locking edge types

The induced TGTS type graph shown in Figure 5.7(b) is not yet complete. In
addition to locking edges, it contains node types for application indicators: there
is a node type for each durative rule and edge types from this node type to every
other node type used within the rule, i.e., the TGTS type graph depends on the set
of durative rules contained in the durative graph transformation system. Figure 5.8
shows the inducement of a TGTS type graph for a durative graph transformation
system containing only a single rule.
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(a) A durative rule with the name
ExABB and a duration of 5
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(b) An induced TGTS type graph for a DGTS con-
taining only the rule ExABB

Figure 5.8: Inducement of a TGTS type graph
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Application indicator edges to different nodes of the same type have to be
distinguishable to guarantee that the match of the start rule can be inferred from
them. This is important because the end rule of a durative rule is supposed to
match the same nodes and edges as its start rule did. If there was no possibility to
distinguish application indicator edges, the end rule would still match the correct
set of nodes but not necessarily with a correct structure, i.e., it might not necessarily
match the correct set of edges. Therefore, application indicator edges to nodes
of the same type are individualized with numbers that are distinct within the
rule. Consequently, the TGTS type graph contains multiple application indicator
edge types from a single application indicator type to a single node type nt if the
application indicator’s rule specifies multiple nodes of type nt, see Figure 5.8(b).

Now, we give a formal definition for the induced TGTS type graph. Such a type
graph is needed by the various kinds of rules of the TGTS formalism. In addition
to the types and edge types defined by the DGTS type graph, the induced TGTS
type graph provides locking edge types and types for application indicators and its
edges.

Definition 5.2.8 (Induced TGTS type graph). Let T G be a type graph of a durative
graph transformation system. The induced TGTS type graph of T G is a type graph
TG where

• VTG = VT G ∪VAI ,

• ETG = ET G ∪ EAI ∪ ERL.node ∪ EWL.node ∪ ERL.edge ∪ EWL.edge,

• |VAI | = |DR| ∧
∀D ∈ DR : aiType(name) ∈ VAI ,

• |EAI | = ∑D∈DR |VG,L| ∧
∀D ∈ DR : ∀vt ∈ VT G : ∃EAI′ ⊆ EAI :
|EAI′ | = |{v ∈ VG,L|type(v) = vt}| ∧
src(EAI′) = aiType(name) ∧ tgt(EAI′) = vt,

• |ERL.node| = |VT G | ∧
∀vt ∈ VT G : rlnode(vt) ∈ ERL.node ∧
src ◦ rlnode(vt) = tgt ◦ rlnode(vt) = vt,

• |EWL.node| = |VT G | ∧
∀vt ∈ VT G : wlnode(vt) ∈ EWL.node ∧
src ◦ wlnode(vt) = tgt ◦ wlnode(vt) = vt,

• |ERL.edge| = |ET G | ∧
∀et ∈ ET G : rledge(et) ∈ ERL.edge ∧
src ◦ rledge(et) = src(et) ∧ tgt ◦ rledge(et) = tgt(et), and

• |EWL.edge| = |ET G | ∧
∀et ∈ ET G : wledge(et) ∈ EWL.edge ∧
src ◦ wledge(et) = src(et) ∧ tgt ◦ wledge(et) = tgt(et).
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There is exactly one application indicator for each durative rule, and each node
in its LHS has an own application indicator edge type, which connects its type with
the application indicator. The latter is so that application indicator edges to different
nodes of the same type are distinguishable, which ensures a correct match of the
end rule.

For each node type, the induced TGTS type graph has two locking edge types
as self edges, one for reading and one for writing. There are also two locking edge
types for each edge type that is no locking edge type itself. These locking edge types
have the same source and target node as the edge type.

5.2.4 Timed Graph Transformation Rules

The induced start rule and end rule of a durative graph transformation rule are both
defined on top of a timed graph transformation rule. A timed graph transformation
rule is similar to an ordinary graph transformation rule, except that it operates
on timed graphs instead of ordinary graphs. Finding a match for a timed graph
transformation rule works exactly in the same way as finding a match for an ordinary
graph transformation rule. In addition to the LHS, RHS, and rule morphism, a timed
graph transformation rule specifies a timed guard as well as a set of clock instances
to be reset. The time guard is a clock instance constraint that is expressed via clock
instances contained in the rule’s LHS. For the rule to be applicable, the time guard
has to be evaluated to true. When the rule is applied, those clock instances specified
in the set are reset to zero.

Definition 5.2.9 (Timed graph transformation rule). A timed graph transformation rule
tr = (L, R, r,N , z, Vres) consists of

• two timed graphs L and R,

• an injective rule morphism r : L → R with r(VCI,L) = VCI,R and |VCI,L| =
|VCI,R|,

• a set of NACs N where each NAC is a tuple (N, n) ∈ N with n : L→ N,

• a clock instance constraint z ∈ Z(VCI,L), called time guard, and

• a set of clock instances Vres ⊆ VCI,R.

This timed graph transformation rule is further specialized by the induced
start and end rule. Intuitively, the induced start rule serves two purposes. First,
it adds information about the execution of the durative rule into the host graph.
This is needed for the annotation of time and for the end rule to find a match
that corresponds to the match of the start rule. Finding a corresponding match is
important because together both rules are supposed to represent the application
interval of the durative graph transformation. With a wrong match there would be
no meaningful interpretation for the application of a durative rule. Second, it adds
locking edges into the host graph such that subsequent rules do not match if they
access the same elements in a conflicting manner.
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Definition 5.2.10 (Induced start rule). Let D = (LD , RD , rD , name, d) be a durative
rule. The induced start rule of D is a timed rule sr = (L, R, r,N , z, Vres) where

• VG,L = VLD ∧ EG,L = ELD ,

• VG,R = VLD ∪ {ai} ∧ type(ai) = aiType(name) ∧ EG,R = ELD ∪
{e|src(e) = ai ∧ tgt(e) ∈ VG,R \ {ai} ∧ type(e) = aiEdgeType ◦ tgt(e)} ∪
ERL.node,R ∪ EWL.node,R ∪ ERL.edge,R ∪ EWL.edge,R,

• VCI,L = VCI,R = ∅ ∧ ECI,L = ECI,R = ∅,

• iL : LD → L is the identity morphism on LD ∧ r is total,

• N = NWL.node ∪NRL.node ∪NWL.edge ∪NRL.edge,

• z = ∅ ∧Vres = ∅,

• ERL.node,R = {le|∃v ∈ VG,L : src(le) = tgt(le) = r(v) ∧
type(le) = rlnode ◦ type(v)},

• EWL.node,R = {le|∃v ∈ VG,L \ iL ◦ dom(rD) : src(le) = tgt(le) = r(v) ∧
type(le) = wlnode ◦ type(v)},

• ERL.edge,R = {le|∃e ∈ EG,L : src(le) = src ◦ r(e) ∧
tgt(le) = tgt ◦ r(e) ∧ type(le) = rledge ◦ type(e)},

• EWL.edge,R = {le|∃e ∈ EG,L \ iL ◦ dom(rD) : src(le) = src ◦ r(e) ∧
tgt(le) = tgt ◦ r(e) ∧ type(le) = wledge ◦ type(e)},

• NWL.node = {(N, n)|∃v ∈ VG,L : VN = VG,L ∧
EN = EG,L ∪ {ne} ∧ src(ne) = tgt(ne) = n(v) ∧
type(ne) = wlnode ◦ type(v) ∧ n is injective},

• NRL.node = {(N, n)|∃v ∈ VG,L \ iL ◦ dom(rD) : VN = VG,L ∧
EN = EG,L ∪ {ne} ∧ src(ne) = tgt(ne) = n(v) ∧
type(ne) = rlnode ◦ type(v) ∧ n is injective},

• NWL.edge = {(N, n)|∃e ∈ EG,L : VN = VG,L ∧
EN = EG,L ∪ {ne} ∧ src(ne) = src ◦ n(e) ∧
tgt(ne) = tgt ◦ n(e) ∧ type(ne) = wledge ◦ type(e) ∧
n is injective}, and

• NRL.edge = {(N, n)|∃e ∈ EG,L \ iL ◦ dom(rD) : VN = VG,L ∧
EN = EG,L ∪ {ne} ∧ src(ne) = src ◦ n(e) ∧
tgt(ne) = tgt ◦ n(e) ∧ type(ne) = rledge ◦ type(e) ∧
n is injective}.

The LHS of the induced start rule is the same as the LHS of the durative rule.
Its RHS is a copy of the LHS with an additional node ai, which is its application
indicator, additional application indicator edges from ai to all other nodes in the
RHS, and additional locking edges ERL.node,R, EWL.node,R, ERL.edge,R, and EWL.edge,R.
Intuitively, the existence of an application indicator in the host graph indicates the
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application of its durative rule, its application indicator edges mark the subgraph
that is being changed by the rule application, and locking edges in the host graph
indicate whether read or write access to specific nodes and edges is locked.

The start rule shall not delete any node or edge. Therefore, the rule morphism r
(restricted to graph nodes and edges) is total. According to the definition of a timed
graph transformation rule, it is also injective, and as a consequence of its LHS and
RHS, unique (up to isomorphism). This allows for a deterministic inducement of
start rules.

The sets of clock instances, clock instance edges, time guards, and clock instance
resets are empty because a start rule does not add a clock instance measuring the
execution time itself. Instead, the addition of a clock instance for the execution of a
durative rule is done by a clock instance rule, which is presented in Section 5.2.5.

The remainder conditions implement the locking functionality. The locking edge
sets ERL.node,R and ERL.edge,R specify the creation of a read lock for every required
node or edge, respectively. The sets EWL.node,R and EWL.edge,R specify the creation of
a write lock for every node or edge that is deleted according to the syntax of the
durative rule, i.e., that is not contained in iL ◦ dom(rD). The last four sets NWL.node,
NRL.node, NWL.edge, and NRL.edge define NACs that are used to check for the existence
of locking edges. For each read lock, there is a NAC that forbids the existence of a
write lock and vice versa.

If the host graph contains parallel edges, the locking mechanism operates more
restrictive than necessary. If any one of multiple parallel edges is accessed, this has
the effect of locking all those parallel edges. Fortunately, a less restrictive locking
of parallel edges can be achieved without changing the semantics: graphs that
support parallel edges can simply be simulated by graphs that do not support them,
as done in [Bon+07]. Thus, we can preprocess a durative graph transformation
system employing parallel edges by mapping it into an equivalent durative graph
transformation system without parallel edges.

The purpose of the induced end rule is to actually realize the transformation that
is syntactically specified by the durative rule and to remove those locking edges that
have been created by the start rule.

Definition 5.2.11 (Induced end rule). Let D = (LD , RD , rD , name, d) be a durative
rule. The induced end rule of D is a timed rule er = (L, R, r,N , z, Vres) where

• VG,L = VLD ∪ {ai} ∧ type(ai) = aiType(name) ∧ EG,L = ELD ∪
{e|src(e) = ai ∧ tgt(e) ∈ VG,L \ {ai} ∧ type(e) = aiEdgeType ◦ tgt(e)} ∪
ERL.node,L ∪ EWL.node,L ∪ ERL.edge,L ∪ EWL.edge,L,

• VG,R = VRD ∧ EG,R = ERD ,

• VCI,L = VCI,R = {ci} ∧ ECI,L = {(ci, ai)} ∧ ECI,R = ∅,

• iL : LD → L is a subgraph isomorphism ∧
iR : RD → R is the identity morphism on RD ∧
r|{VG,L ,EG,L} = iR ◦ rD ◦ i−1

L ∧ r|{VCI,L} is total,
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• N = ∅,

• z = {ci ≥ d} ∧Vres = ∅,

• ERL.node,L = {le|∃v ∈ VG,L : src(le) = tgt(le) = v ∧
type(le) = rlnode ◦ type(v)},

• EWL.node,L = {le|∃v ∈ VG,L \ dom(r) : src(le) = tgt(le) = v ∧
type(le) = wlnode ◦ type(v)},

• ERL.edge,L = {le|∃e ∈ EG,L : src(le) = src(e) ∧
tgt(le) = tgt(e) ∧ type(le) = rledge ◦ type(e)}, and

• EWL.edge,L = {le|∃e ∈ EG,L \ dom(r) : src(le) = src(e) ∧
tgt(le) = tgt(e) ∧ type(le) = wledge ◦ type(e)}.

The LHS of the induced end rule is defined analogously to the RHS of the
induced start rule, i.e., it corresponds to the LHS of the durative rule plus an
application indicator node, application indicator edges, and locking edges. The RHS
of the induced end rule is the same as the RHS of the durative rule. Therefore,
the application of the end rule removes the application indicator, the application
indicator edges, and the locking edges that were created when the start rule was
applied. The rule morphism r is defined in conformity with rD , i.e., the end rule
realizes the graph transformation syntactically specified by the durative rule.

The end rule also includes a time guard on the value of clock instance ci, which
guarantees that the proper amount of time is consumed before the end rule is
applied. Note that ci, which is connected via only one edge to ai, is not removed
by the end rule. This is because timed graph transformations may neither add nor
remove clock instances to or from a timed graph. Adding clock instances is subject
to clock instance rules and removing them is subject to a singleton clock instance
removal rule. Both are covered in Section 5.2.5.

Figure 5.9 shows an example of a durative graph transformation rule and its
induced start and end rule. The durative rule is named ExAB and specifies the
removal of an edge x during an interval of 5 time units, see Figure 5.9(a). Its induced
start rule specifies an application indicator node ExAB to be created, along with two
application indicator edges, one to the node of type A and one to the node of type
B, see Figure 5.9(b). Here, the target nodes of both application indicator edges are
of different type. Therefore, both edges are labeled with underApp1. If both target
nodes were of the same type, one of the application indicator edges would have
been labeled with underApp2 instead.

Since both of these nodes are preserved in the durative rule, only their read
access is locked by an attached creation edge rl in the start rule. For the edge,
which is deleted in the durative rule, both its read and write access are locked by
attached creation edges rl(x) and wl(x). Furthermore, forbidden edges allow the
application of the start rule only if write access to the preserved nodes and both
write and read access to the deletion edge are not locked.

The end rule deletes the application indicator node, its adjacent edges, and all
locking edges that the start rule creates, see Figure 5.9(c). The application indicator
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(a) A durative rule with the name
ExAB and a duration of 5
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(c) Its induced end rule

Figure 5.9: Inducement of start and end rule

edges ensure that the match of the end rule corresponds to the match of the start
rule when the end rule is applied. Note that if there were multiple nodes of the
same type in the durative rule, the application indicator edges being added to these
nodes by the induced start rule would be of different edge types to ensure a correct
match for the end rule.

The time guard z = {ci ≥ 5} is a condition for the rule’s application. It
guarantees that the rule cannot be applied before 5 time units have been passed on
the clock instance ci. In the graphical representation, the clock instance the time
guard refers to can be identified via its object name. In the formal syntax, we can
simply use variable names to make clear to which clock instance a time guard refers



84 CHAPTER 5. DURATIVE GRAPH TRANSFORMATION SYSTEMS

to. Therefore, we did not define such object names in the syntax of timed graphs or
timed graph transformation rules.

The time guard only guarantees that the induced end rule is not applied too
early. We also need to ensure that it is not applied too late. More precisely, we need
to enforce the application of the rule as soon as its time guard is fulfilled. In order
to do this, we use invariant rules, which are formally explained in the next section.

5.2.5 Clock Instance and Invariant Rules

In Section 5.2.2, we explained that clock instances pertain to parts of a configuration
– as opposed to timed automata, where clocks pertain to the complete automaton.
Since it is impossible to decide at design time how many clock instances a timed
graph transformation system needs, clock instances have to be instantiable. Their
instantiation could simply be supported by allowing timed rules to add clock
instances; however, the designers of the timed graph transformation formalism
decided to put this functionality into separate rules, called clock instance rules. This
decision can easily be explained by looking at the implementation of invariants.

Invariants are realized as invariant rules in the TGTS formalism. Invariant rules
state how long a specific structure is allowed to exist. This structure represents a
part of a configuration. It does not matter which transformations resulted in this
configuration or whether it is the result of a single or multiple transformations.
Since an invariant does not care which timed transformation led to a configuration,
why should a clock instance care? By putting the creation and deletion of clock
instances into separate rules, the existence of a clock instance in a configuration
depends entirely on its structure, not on what happened before.

Clock instance rules identify those parts of a configuration that clock instances
pertain to. They work similar to timed rules; however, they are specified such
that they do not delete anything and create only a single clock instance as well
as edges adjacent to this clock instance. To prevent the creation of more than one
clock instance to the same part of the configuration, the rule specifies a NAC that is
identical to its RHS.

Definition 5.2.12 (Clock instance rule). A clock instance rule cr = (L, R, r,N ) consists
of two timed graphs L and R, a rule morphism r : L→ R, and a negative application
condition (N, n) ∈ N where

• VG,L = VG,R ∧ EG,L = EG,R,

• VCI,L = ∅ ∧ |VCI,R| = 1∧ |ECI,R| ≥ 1,

• r is total, and

• N = R ∧ n = r ∧ |N | = 1.

In early variants of the timed graph transformation formalism [Neu07; Hir08],
clock instance rules have been derived from timed rules and invariant rules. Later
variants, such as [SHS11; Eck+13], also allow their explicit specification. Both variants
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are suitable for a semantics of durative rules. Here, we follow the latter approach,
i.e., we explicitly define the induced clock instance rule for a given durative rule.

An induced clock instance rule has only an application indicator node in its LHS.
Therefore, it attaches a clock instance only if a start rule that has been induced by
the same durative rule has been applied before. Since the application indicator is
typed via the name of the durative rule, there is exactly one induced clock instance
rule for each durative rule.

Definition 5.2.13 (Induced clock instance rule). Let D = (LD , RD , rD , name, d) be a
durative rule. The induced clock instance rule of D is a rule cr = (L, R, r,N ) where

• VG,L = VG,R = {ai} ∧ type(ai) = aiType(name) ∧ EG,L = EG,R = ∅ and

• VCI,L = ∅ ∧ ECI,L = ∅ ∧VCI,R = {ci} ∧ ECI,R = {(ci, ai)}.

The operational semantics in Section 5.2.6 is designed such that all applicable
clock instance rules are applied immediately after a timed rule has been applied.
Upon application, an induced clock instance rule attaches a clock instance to an
application indicator node that is not yet connected to a clock instance. Since start
rules create application indicator nodes, a clock instance rule creates a clock instance
directly after a start rule has been applied.

If the part of the configuration that the clock instance pertains to is no longer
present, the clock instance needs to be removed as well. This is the case when an
end rule is applied because each application of an end rule removes an application
indicator. Removing the clock instance is subject to a clock instance removal rule.
For a given set of clock instance rules, a clock instance removal rule can be derived
automatically. It has a single clock instance as its LHS and an empty RHS. In addition,
it specifies the RHSs of all clock instance rules as NACs. As a consequence, the clock
instance removal rule deletes a clock instance if the part of the configurations that
the clock instance pertains to is no longer present. There is only one clock instance
removal rule for the complete timed graph transformation system.

Definition 5.2.14 (Clock instance removal rule). Let CR be a set of clock instance
rules. A clock instance removal rule for CR is a rule rrCR = (L, R, r,N ) where

• VG,L = VG,R = ∅ ∧ EG,L = EG,R = ∅,

• VCI,L = {ci} ∧VCI,R = ∅ ∧ ECI,L = ECI,R = ∅,

• N = {(N, n)|∃cr = (Lcr, Rcr, rcr,Ncr) ∈ CR : N = Rcr ∧ n : L → N with
n(ci) ∈ VCI,Rcr}.

Invariant rules, which state how long a specific part of a configuration is allowed
exist, specify only an LHS. There is no need for an RHS, because invariant rules do
not perform transformations. The LHS of an invariant rule contains an arbitrary
number of graph node and edges, but exactly one clock instance. They also specify
a clock instance constraint.
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Definition 5.2.15 (Invariant rule). An invariant rule ir = (L, z) consists of a timed
graph L with |VCI,L| = 1 and a clock instance constraint z ∈ Z(VCI,L).

Whenever the LHS matches to the configuration via a match m, the clock instance
constraint has to be fulfilled for the image of that clock instance under m. This
results in a timed graph transformation rule being applied immediately before a
clock instance constraint of an invariant rule turns false. Its application prevents
the invariant rule’s match from existing and thus the clock instance constraint from
being evaluated. If no rule can be applied that destroys an invariant rule’s match
and time cannot elapse without violating its clock instance constraint, a time-stopping
deadlock occurs.

Remember that an induced end rule specifies a time guard z = {ci ≥ d}, which
is a condition for its application. This time guard guarantees the consumption of at
least d time units since the clock instance contained in the match has been created.
To correctly represent the end of a durative rule’s execution, we have to ensure
that the end rule is indeed applied after d time units instead of being postponed
arbitrarily. Unfortunately, the time guard only guarantees that it is not applied
earlier. To ensure that the end rule is applied after d time units have passed, a
durative rule also induces an invariant rule. It specifies an application indicator ai
and a clock instance ci as its only nodes and z = {ci ≤ d} as the constraint to be
fulfilled whenever the LHS is matched.

Definition 5.2.16 (Induced invariant rule). Let D = (LD , RD , rD , name, d) be a dura-
tive rule. The induced invariant rule of D is a rule ir = (L, z) where

• VG,L = {ai} ∧ type(ai) = aiType(name) ∧ EG,L = ∅,

• VCI,L = {ci} ∧ ECI,L = {(ci, ai)}, and

• z = {ci ≤ d}.

Intuitively, each match of an induced invariant rule’s LHS indicates that an
application of a durative rule is taking place. At every match there is a distinct
application indicator that was created by a start rule induced by the same durative
rule as the invariant rule. There is also a clock instance measuring the elapsed time
since the application of the start rule. Since an invariant rule forbids the existence of
an LHS match such that its clock instance constraint is unfulfilled, a timed graph
transformation rule has to be applied no later than the instant the constraint turns
false. This timed rule has to delete the application indicator ai to destroy the LHS
match of the invariant rule. Since the types of their application indicator nodes have
to match, the timed rule has to be an end rule that is induced by the same durative
rule as the invariant rule. Therefore, the invariant rule guarantees that the end rule
is indeed applied after d time units.

Figure 5.10 shows the induced clock instance rule and the induced invariant rule
for the durative rule of Figure 5.9(a). The structure of the durative rule’s LHS is
not relevant for the inducement of these two rules. The induced clock instance rule
depends only on the name of the durative rule, see Figure 5.10(a), and the induced
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(a) Induced clock instance rule of a durative
rule with the name ExAB
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(b) Induced invariant rule of a durative rule
with the name ExAB and a duration of 5

Figure 5.10: Inducement of clock instance and invariant rule

invariant rule depends only on the name and duration of the durative rule, see
Figure 5.10(b).

5.2.6 Operational Semantics

The semantics of a timed graph transformation system is based on the definitions
of the timed graph transformation rule, the clock instance rule, the clock instance
removal rule, and the invariant rule. Before defining the semantics of a timed graph
transformation system, we need a definition of a timed graph transformation system
itself.

Definition 5.2.17 (Timed graph transformation system). A timed graph transformation
system T S = (TG, TiG0, TR, IR, CR) consists of

• a type graph TG,

• an initial timed graph TiG0,

• a set of timed graph transformation rules TR,

• a set of invariant rules IR, and

• a set of clock instance rules CR.

Note that the definition of a timed graph transformation system does not include
a clock instance removal rule in the tuple. For a given set of clock instance rules CR,
the clock instance removal rule rrCR is deterministically implied, cf. Definition 5.2.14.

As stated in Definition 5.2.2, a durative graph transformation system is an initial
typed graph and a set of durative graph transformation rules. Its semantics is given
by a timed graph transformation system whose timed graph transformation rules
TR, invariant rules IR, and clock instance rules CR are all induced by durative rules.

Definition 5.2.18 (Induced timed graph transformation system). Given a durative
graph transformation system DS = (T G, GT

0 ,DR) with initial typed graph GT
0 =

(G0, type0) and G0 = (VG, EG, src, tgt), the induced timed graph transformation system
of DS is a timed graph transformation system T S = (TG, TiG0, TR, IR, CR) where
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• TG is the type graph induced by T G,

• TR are the timed graph transformations induced by DR,

• IR are the invariant rules induced by DR,

• CR are the clock instance rules induced by DR, and

• TiG0 = (G′0, type′0) is an initial timed graph with G′0 = (VG, ∅, EG, ∅, src, tgt),
type′0 = i ◦ type0, and i : TG → TG′ is a subgraph isomorphism.

When modeling with durative rules, all timed graph transformation rules TR,
invariant rules IR, and clock instance rules CR are induced by durative graph
transformation rules. Usually, there are no rules that are not induced by durative
rules. Modeling any rules of the timed graph transformation system formalism
directly could break the applicability of an end rule and hence might cause time-
stopping deadlocks.

As a basis for our operational semantics we use the notion of a configuration,
which we defined in Section 5.2.2. Intuitively, a configuration consists of a timed
graph and an assignment of values to the clock instances of the timed graph. Here,
we need the notion of an initial configuration.

Although not the case for the initial configuration of an induced timed graph
transformation system, an initial configuration might have matching clock instance
rules in general. Remember that clock instance rules are used to specify subgraphs
of the host graph that clock instances pertain to. For each match of a clock instance
rule there should be exactly one clock instance in the host graph. Consequently, an
initial timed graph should also have exactly one clock instance for each match of a
clock instance rule. The correct placement of clock instances is later maintained by a
regular application of all available clock instance rules as well as the clock instance
removal rule (as we will see later in Definition 5.2.21). An initial configuration is a
configuration that resets all existing clock instances.

Definition 5.2.19 (Initial configuration). Let T S = (TG, TiG0, TR, IR, CR) be a timed
graph transformation system. An initial configuration of T S is a configuration
〈TiG0, ν0〉 with TiG0 = (G0, type0) and G0 = (VG, VCI , EG, ECI , src, tgt) where

• for all clock instance rules cr ∈ CR and all matches m : Lcr → TiG0 there exists
a co-match m∗ : Rcr → TiG0 such that m∗ ◦ rcr = m,

• VCI = {ci|∃cr ∈ CR : ∃m∗ : Rcr → TiG0 : m∗(VCI,R) = {ci}}, and

• for all clock instances ci ∈ VCI : ν0(ci) 7→ 0.

For the general case, the above definition guarantees a correct placement of clock
instances in the initial timed graph. The first condition ensures that there is a clock
instance at each match of a clock instance rule, and the second condition ensures
that there are no further clock instances in the initial timed graph. The last condition
assigns zero to all clock instances.
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In case of an induced timed graph transformation system, the initial timed graph
does not contain any application indicators. Since each clock instance rule of an
induced timed graph transformation system has an application indicator in its LHS,
none of the clock instance rules matches and, consequently, the initial timed graph
contains no clock instances. Therefore, ν0 is an empty function in this case.

For defining the operational semantics of a timed graph transformation system,
we also need to be able express that the invariant of a timed graph is satisfied.
More precisely, we need to express whether the clock instance value assignment
of a configuration fulfills the conjunctive invariant defined by the clock instance
constraints of all invariant rules.

Definition 5.2.20 (Conjunctive invariant of a timed graph). The conjunctive invariant
I(TiG) of a timed graph TiG is defined as

I(TiG) =
∧

ir∈IR
Iir(TiG)

where Iir(TiG) is defined for a given timed graph TiG and a given invariant rule
ir = (L, z) ∈ IR with matches mi : L→ TiG for i = 1, . . . , k as

Iir(TiG) =
∧

i=1,...,k

z[∀ci ∈ VCI,L : mi(ci)/ci].

Now, we have everything we need to define the operational semantics of a
timed graph transformation system. The operational semantics defines two kinds of
transitions: delay transitions and action transitions. Its definition is similar to the
operational semantics defined for UPPAAL timed automata, cf. [BY04].

Definition 5.2.21 (Operational semantics of a timed graph transformation system).
Let T S = (TG, TiG0, TR, IR, CR) be a timed graph transformation system. The
operational semantics of T S is defined by a transition system whose states are con-
figurations 〈TiG, ν〉. Execution starts in the initial configuration 〈TiG0, ν0〉 and
transitions are defined by the following rules:

1. 〈TiG, ν〉 δ
=⇒ 〈TiG, ν + δ〉 if (ν + δ) |= I(TiG) for δ ∈ R+. (delay trans.)

2. 〈TiG, ν〉 tr,m
==⇒ 〈TiG′′′, ν′〉 if ν |= z[∀ci ∈ VCI,L : m(ci)/ci] for a timed graph

transformation rule tr = (L, R, r,N , z, Vres) ∈ TR and a match m : L → TiG
where

• TiG′ has been derived by applying tr at m to TiG,

• TiG′′ has been derived by applying rrCR to TiG′,

• TiG′′′ has been derived by applying all cr ∈ CR in any order to TiG′′, and

• ν′ = ν[Vres 7→ 0] with ν′ ∈ I(TiG′′′). (action trans.)

Delay transitions do not apply any rules. Instead, they increase the values
of all clock instances synchronously. As a condition for the transition, the new
clock instance value assignment has to satisfy I(G), which is the conjunction of all
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invariant clock instance constraints. While firing a delay transition in a configuration
with no clock instance is possible, it has no effect, i.e., it produces a self edge in the
state space.

Action transitions are defined by the application of timed graph transformation
rules. To create a successor configuration, each application of a timed graph transfor-
mation rule is accompanied by the deletion of clock instances through applications
of the clock instance removal rule as well as the creation of clock instances through
the application of clock instance rules. In the presence of durative rules, a clock
instance is created after applying an induced start rule and deleted after applying
an induced end rule.

5.3 Properties of Durative Graph Transformation Rules

In this section we explain and prove some properties that support that the DGTS
formalism works as a modeler might expect. One of these properties concerns the
application of durative rules. It states how the application of a durative graph trans-
formation rule correlates to the transformation of an untimed graph transformation
rule and explains the different transitions caused by its application. This property is
formalized in Section 5.3.1.

Two other properties concern the termination of durative rules and the possible
interleavings of start and end transformations when multiple durative rules are
applied concurrently. The first property states that each application of a durative
rule terminates properly. The second one ensures that each interleaving of two pairs
of start and end transformations results in the same configuration when finished.
Both properties are formalized in Section 5.3.2.

5.3.1 Correspondence of a Durative Graph Transformation

On a syntactical level, durative graph transformation rules seem like ordinary
untimed graph transformation rules with additional values for their application
duration. A modeler thus has an intuitive assumption how the application of such a
rule works, especially if the modeler is already acquainted with graph transformation
systems.

The semantics, however, is rather complex. A modeler should not need to be
familiar with timed graph transformation systems, but be spared from thinking
about clock instances and the many induced rules. Therefore, it is important that
the system works as a modeler expects.

During the execution of a durative graph transformation, the system is in a
configuration that neither represents the configuration before nor the configuration
after its execution. Instead, it contains application indicators and locking edges,
which have no meaning in the DGTS model. For ease of comprehensibility, it is vital
that the complete durative graph transformation results in a configuration that leaves
no application indicators or locking edges behind and corresponds to a successor
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configuration that would have been created in an untimed GTS formalism – in our
case, the SPO approach. Fortunately, the DGTS semantics fulfills this property.

Before formalizing this property in Proposition 5.3.2, we define a lemma stating
that after applying the induced start rule of a durative rule and letting its duration
pass, its induced end rule can be applied. This lemma is used during the proof of
Proposition 5.3.2.

Lemma 5.3.1 (Applicability of induced end rule). Let D be a durative rule with D =

(LD , RD , rD , name, d), TiG = (GTiG, typeTiG) a timed graph with GTiG = (VG, ∅, EG, ∅),
and ν = ∅ a clock instance value assignment. The induced start and end rule of D are
denoted by sr and er, respectively.

If there is a match m : Lsr → TiG and an action transition 〈TiG, ν〉 sr,m
==⇒ 〈TiG′, ν′〉, then

there is a unique (up to isomorphism) match x : Ler → TiG′ and transitions 〈TiG′, ν′〉 d
=⇒

〈TiG′, ν′′〉 er,x
=⇒ 〈TiH, ν〉.

Proof. Since Ler = Rsr holds and 〈TiG, ν〉 sr,m
==⇒ 〈TiG′, ν′〉 does not delete any elements,

we can define x : Ler → TiG such that x ◦ iL,er = r∗m ◦m ◦ iL,sr. Since the application
indicator edges created by 〈TiG, ν〉 sr,m

==⇒ 〈TiG′, ν′〉 are distinguishable, x is unique
(up to isomorphism).

According to the operational semantics given in Definition 5.2.21, the application
of 〈TiG, ν〉 sr,msr===⇒ 〈TiG′, ν′〉 creates a clock instance ci and ν′(ci) = 0 holds. The
induced invariant rule ir = (Lir, zir) now has a match g : Lir → TiG′ with g(ciir) = ci
to the current host graph TiG′ where coir denotes the clock instance specified in
Lir. Since this is the only invariant rule with a match to the host graph, I(G) =

zir[ci/ciir] = {ci ≤ d}. Since (ν′+ d) |= I(G) holds, the delay transition 〈TiG′, ν′〉 d
=⇒

〈TiG′, ν′′〉 is applicable. By applying the transition, we obtain ν′′ with ν′′(ci) = d
and thus fulfill the time guard zer[ci/cier] = {ci ≥ d} of 〈TiG′, ν′′〉 er,x

=⇒ 〈TiH, ν〉.
Now, we can construct TiH according to the operational semantics. The clock

instance ci is removed by an application of the clock instance removal rule. Thus,
the new clock instance value assignment is ν = ∅.

After applying the induced end rule of D and obtaining configuration 〈TiH, ν〉,
the application of D can be seen as finished. The resulting graph TiH corresponds
to a graph that would have been created by the application of D in an untimed
graph transformation framework. More precisely, the execution of the durative

graph transformation 〈TiG, ν〉 D,m
==⇒ 〈TiH, ν〉 results in a graph that is structurally

identical to the graph we receive by executing an untimed graph transformation that
is defined by an equivalent rule morphism and match. This property has already
been shown in [ZH13a]. It assumes that no other durative graph transformation is

executed concurrently during the execution of 〈TiG, ν〉 D,m
==⇒ 〈TiH, ν〉.

Proposition 5.3.2 (Correspondence of a durative transformation). Let D be a durative
rule with D = (LD , RD , rD , name, d), TiG = (GTiG, typeTiG) a timed graph with GTiG =

(VG, ∅, EG, ∅), and ν = ∅ a clock instance value assignment. The induced start and
end rule of D are denoted by sr and er, respectively. Further, let the graph transformation
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p = (LD , RD , rD) and the graph G = (VG, EG) be a projection of D and TiG to the untimed
case.

If and only if there is a match g : LD → G and a (direct) graph transformation

G
D,g
=⇒ H, then there are matches m : Lsr → TiG and x : Ler → TiG′ and transitions

〈TiG, ν〉 sr,m
==⇒ 〈TiG′, ν′〉 d

=⇒ 〈TiG′, ν′′〉 er,x
=⇒ 〈TiH, ν〉 such that

H = (VH , EH) and TiH = (HTiH , typeTiH) with HTiH = (VH , ∅, EH , ∅).

Proof. Let iG : G → TiG denote the isomorphism between G and TiG|{VG ,EG}.
First, we show that, given the match g : LD → G, we can define the matches

m : Lsr → TiG and x : Ler → TiG′ such that H = TiH|{VH ,EH}. Since Lsr = LD and
TiG|{VG ,EG} = G hold, we can define m = iG ◦ g ◦ i−1

L,sr. Then, we can construct TiG′

and ν′ according to the operational semantics given in Definition 5.2.21. TiG′ now
contains one clock instance ci and ν′(ci) = 0. According to Lemma 5.3.1, there is
a unique (up to isomorphism) match x : Ler → TiG′ with x ◦ iL,er = r∗m ◦ m ◦ iL,sr

and transitions 〈TiG′, ν′〉 d
=⇒ 〈TiG′, ν′′〉 er,x

=⇒ 〈TiH, ν〉. Since m = iG ◦ g ◦ i−1
L,sr and

x ◦ iL,er = r∗m ◦ m ◦ iL,sr hold, we have x = r∗m ◦ iG ◦ g ◦ i−1
L,er. Since r∗m is total,

H = TiH|{VH ,EH} holds.
Second, we show that, given the matches m : Lsr → TiG and x : Ler → TiG′, we

can define the match g : LD → G such that H = TiH|{VH ,EH}. Since LD ⊆ Ler holds,
we can define g = i−1

G ◦ x ◦ iL,er. Then, we can construct H according to the SPO
approach. Since rD = i−1

R,sr ◦ rer|{VG,L ,EG,L} ◦ iL,er and g = i−1
G ◦ x ◦ iL,er hold, we have

H = TiH|{VH ,EH}.

Intuitively, the resulting graphs H and TiH|{VH ,EH} are identical due to three
facts. First, executing the start transformation leaves the essential parts of the graph
unchanged. Second, all locking edges and special nodes, i.e., application indicators
and clock instances, that are created by executing the start transformation are deleted
again by executing the end transformation. Third, the end transformation realizes a
graph transformation that conforms to the untimed graph transformation – to be
precise, their RHSs are the same.

5.3.2 Rule Termination and Interleaving Transition Sequences

The application interval of a durative graph transformation is defined by the delay
transition that is executed between the application of its induced start and end rule.
At an arbitrary point in time during its application interval, an induced start or
end rule of another durative rule can be applied. This is intended; otherwise, no
concurrent execution would be possible.

The question is whether the end rule of an ongoing durative transformation can
still be applied if one or more start or end rules induced by other durative rules
have been applied during its application interval. The DGTS semantics is designed
such that this works, i.e., durative transformations are guaranteed to finish once
they have been started. This is formalized in Theorem 5.3.6.
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The concurrent application of two durative graph transformation rules means that
their induced start and end rules are applied in an interleaving manner. Multiple
such interleavings are possible and each such interleaving results in the same
configuration. This is formalized in Theorem 5.3.7.

Both of these properties build upon some lemmas, which are formalized first.
Each of these lemmas gives the sequential or parallel independence between two
applications of induced rules. We can then apply the Local Church-Rosser Theorem,
see Theorem 2.5.1, which states that two sequential or parallel independent (direct)
graph transformations can be applied in any order and both orderings result in the
same graph. This is useful when proving Theorems 5.3.6 and 5.3.7.

The first lemma considers two induced start rules that are applied in sequence.

Lemma 5.3.3 (Sequential independence between two start transformations). Let
D1 and D2 be two durative rules, TiG = (GTiG, typeTiG) a timed graph with GTiG =

(VG, VCI , EG, ECI), and ν a clock instance value assignment such that ν |= TiG. The
induced start rules of D1 and D2 are denoted by sr1 and sr2, respectively. Further, ci1
denotes the clock instance existing during the application interval of D1 and d1 its duration.

If there are two action transitions 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 with ν′(ci1) = 0 and
〈TiH1, ν′′〉 sr2,x2==⇒ 〈TiX, ν′′′〉 with 0 ≤ ν′′(ci1) ≤ d1, then they are sequentially indepen-
dent.

Proof. We have to show that (i) 〈TiH1, ν′′〉 sr2,x2==⇒ 〈TiX, ν′′′〉 is weakly sequentially
independent of 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 and (ii) 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 is weakly
parallel independent of 〈TiG, ν〉 sr2,m2===⇒ 〈TiH2, ν̂〉.

(i) TiG

TiX

Lsr1

Rsr1

rsr1

Lsr2

Rsr2

rsr2

TiH1

m1

m∗1

r∗m1

TiH2

m2

m∗2

r∗m2

x2

x∗2

r∗x2

Since there are no application indicators or locking edges in the LHS of sr2

(and thus there are none in the range of x2) and 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉
creates only such elements, ran(x2) ∩ TiH1 \ ran(r∗m1

) = ∅ holds. Thus, we
can construct m2 : Lsr2 → TiG such that r∗m1

◦m2 = x2.

NACs Furthermore, m2 fulfills each NAC in Nsr2 because 〈TiG, ν〉 sr1,m1===⇒
〈TiH1, ν′〉 does not delete any elements of TiG when deriving TiH1 and x2

already fulfills each NAC in Nsr2 by definition.
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(ii) TiG

TiX

Lsr1

Rsr1

rsr1

Lsr2

Rsr2

rsr2

TiH1

m1

m∗1

r∗m1

TiH2

m2

m∗2

r∗m2

x1

x∗1

r∗x1

Since 〈TiG, ν〉 sr2,m2===⇒ 〈TiH2, ν̂〉 does not delete any elements of TiG when
deriving TiH2, ran(m2) ∩ TiG \ dom(r∗m1

) = ∅ holds. Thus, we can construct
x1 : Lsr1 → TiH2 such that x1 = r∗m2

◦m1.

NACs We show that x1 fulfills each NAC in Nsr1 by contradiction. Let us
assume that 〈TiG, ν〉 sr2,m2===⇒ 〈TiH2, ν̂〉 creates locking edges that conflict with
a NAC in Nsr1 , i.e., there is a match q1 : Nsr1 → TiH2 with q1 ◦ nsr1 = x1 and
(Nsr1 , nsr1) ∈ Nsr1 such that ran(q1) ∩ TiH2 \ ran(r∗m2

) 6= ∅.

According to Definition 5.2.10, each NAC that realizes a check for a read lock
[write lock] is accompanied by attaching a write lock [read lock] to the same
element and vice versa. Thus, 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 creates locking edges
that conflict with a NAC of sr2, i.e., there is a match q2 : Nsr2 → TiH1 with
q2 ◦ nsr2 = x2 and (Nsr2 , nsr2) ∈ Nsr2 such that ran(q2) ∩ TiH1 \ ran(r∗m1

) 6= ∅.

This is a contradiction to the applicability of 〈TiH1, ν′′〉 sr2,x2==⇒ 〈TiX, ν′′′〉.

Intuitively, Lemma 5.3.3 holds due to two facts:

1. The latter start transformation only adds elements to the host graph but
deletes none, thus cannot conflict with the applicability of the earlier start
transformation. In other words, there cannot be a use-delete conflict.

2. Since no NAC of the latter start transformation matches, i.e., the two trans-
formations are free of produce-forbid conflicts, and the locking mechanism is
designed symmetrically, they also have to be free of forbid-produce conflicts.

The next lemma considers an end transformation being applied after a start
transformation. Instead of “ordinary” sequential independence, it states sequen-
tial independence modulo isomorphism. Ordinary sequential independence is not
sufficient due to the shared read locks. A locking edge created by the start transfor-
mation can be deleted by the end transformation if both transformations read the
same element. However, in such a case, there exists another locking edge, which is
isomorphic to the first one.

Lemma 5.3.4 (Sequential independence modulo isomorphism between a start and
an end transformation). Let D1 and D2 be two durative rules, TiG = (GTiG, typeTiG) a
timed graph with GTiG = (VG, VCI , EG, ECI), and ν a clock instance value assignment such
that ν |= TiG and 〈TiG, ν〉 is reachable from the initial configuration. The induced start rule
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of D1 and end rule of D2 are denoted by sr1 and er2, respectively. Further, ci1 denotes the
clock instance existing during the application interval of D1 and d1 its duration. Also, aisr1

and aier2 denote the application indicator in the RHS of sr1 and the LHS of er2, respectively.
If there are two action transitions 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 with ν′(ci1) = 0 and

〈TiH1, ν′′〉 er2,x2==⇒ 〈TiX, ν′′′〉 with 0 ≤ ν′′(ci1) ≤ d1 and x2(aier2) 6= m∗1(aisr1), then they
are sequentially independent modulo isomorphism.

Proof. We have to show that (i) 〈TiH1, ν′′〉 er2,x2==⇒ 〈TiX, ν′′′〉 is weakly sequentially in-
dependent modulo isomorphism of 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 and (ii) 〈TiG, ν〉 sr1,m1===⇒
〈TiH1, ν′〉 is weakly parallel independent modulo isomorphism of 〈TiG, ν〉 er2,m2===⇒
〈TiH2, ν̂〉.

(i) TiG

TiX

Lsr1

Rsr1

rsr1

Ler2

Rer2

rer2

TiH1

m1

m∗1

r∗m1

TiH2

m2

m∗2

r∗m2

x2

x∗2

r∗x2

If 〈TiH1, ν′′〉 er2,x2==⇒ 〈TiX, ν′′′〉 does not delete any locking edges that have been
created by 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉, we have ran(x2) ∩ TiH1 \ ran(r∗m1

) = ∅
and can thus construct m2 such that r∗m1

◦m2 = x2. For the case it does, we
have to show that m2 can be constructed such that r∗m1

◦m2 = x̃2 where x̃2 is
isomorphic to x2.

Since x2 is total, there exists an application indicator x2(aier2) in TiG. This
application indicator must have been created by the induced start rule sr2 of
D2. Thus, there has to be an application of sr2 in the transition sequence from
the initial configuration to TiG. Let y2 : Lsr2 → TiF denote its match and seq
the transition sequence from TiF to TiG.

Now we have two cases: either none of the locking edges created by the start

rule transformation
sr2,y2
==⇒ has been deleted by any of the transformations in

seq or at least one of the locking edges has been deleted.

a) None of the locking edges has been deleted by any of the transformations
in seq. In this case, we can construct m2 such that r∗m1

◦m2 = x̃2 where
x̃2 is isomorphic to x2 because TiG contains locking edges which are
isomorphic to the ones created by 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉.

b) At least one of the locking edges has been deleted by at least one of the
transformations in seq. To construct m2 such that r∗m1

◦ m2 = x̃2 where
x̃2 is isomorphic to x2, locking edges have to exist that are isomorphic

to the locking edges that have been created by
sr2,y2
==⇒ but deleted by a
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transformation in seq. Let ēri denote the rules of transformations deleting
the locking edges and m̄i : Lēri → TiEi their matches with i = 1, . . . , n
where n is the number of transformations deleting the locking edges.

Each transformation
ēri ,m̄i==⇒ must have been the application of an end rule

because start rules do not delete anything. Thus, for each
ēri ,m̄i==⇒, there must

have been a start rule transformation
s̄ri ,ȳi
==⇒ with ȳi : Ls̄ri → TiDi creating

the application indicator that
ēri ,m̄i==⇒ deletes. According to Definitions 5.2.10

and 5.2.11, each
s̄ri ,ȳi
==⇒ also creates locking edges which are isomorphic to

the ones that
ēri ,m̄i==⇒ deletes.

Again we have two cases: either they still exist in TiG or they have been
deleted. If they still exist in TiG, we can construct m2 as in (a). If not,
they have been deleted by transformations in the transition sequences
from TiDi to TiG. In such a case, we can repeat the argument of (b). This
argument loop terminates because the sequence of transitions from the
initial configuration to TiG is finite. Thus, locking edges exist in TiG that
are isomorphic to the ones created by 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 and m2

can be constructed such that r∗m1
◦m2 = x̃2 where x̃2 is isomorphic to x2.

NACs Furthermore, m2 |= Ner2 holds obviously because er2 does not contain
any NACs.

(ii) TiG

TiX

Lsr1

Rsr1

rsr1

Ler2

Rer2

rer2

TiH1

m1

m∗1

r∗m1

TiH2

m2

m∗2

r∗m2

x1

x∗1

r∗x1

We show that 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 is weakly parallel independent of
〈TiG, ν〉 er2,m2===⇒ 〈TiH2, ν̂〉. This implies its weak parallel independence modulo
isomorphism.

We show that the match x1 such that x1 = r∗m2
◦ m1 can be constructed by

contradiction. Let us assume that 〈TiG, ν〉 er2,m2===⇒ 〈TiH2, ν̂〉 deletes elements of
TiG which are required for x1 to be total, i.e., ran(m1) ∩ TiG \ dom(r∗m2

) 6= ∅.

According to Definition 5.2.11, the deletion of elements is accompanied by
releasing a write lock, i.e., deleting a locking edge that constitutes a write
operation. Thus, each of the elements in ran(m1)∩ TiG \ dom(r∗m2

) has a write
lock attached.

According to Definition 5.2.10, each element in the range of the LHS’s match
is accompanied by a NAC that checks for write locks. Since the elements
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in ran(m1) ∩ TiG \ dom(r∗m2
) are obviously contained in the range of m1 and

these elements have write locks attached, m1 does not fulfill each NAC in Nsr1 .
This is a contradiction to the applicability of 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉.

NACs Furthermore, x1 fulfills each NAC in Nsr1 because 〈TiG, ν〉 er2,m2===⇒
〈TiH2, ν̂〉 does not create any locking edges when deriving TiH2, Nsr1 contains
only NACs that constitute checks for locking edges, and m1 already fulfills
each NAC in Nsr1 by definition.

Intuitively, Lemma 5.3.4 holds due to two facts:

1. The end transformation consuming locking edges implies the existence of
another start transformation that created such locking edges earlier, thus
providing exactly the same (up to isomorphism) locking edges as if none of
the two transformations were applied.

2. Elements supposed to be deleted by a future end transformation, i.e., the
counterpart of the start transformation, cannot be deleted by any other trans-
formation because the start transformation attached locking edges to them.

The next lemma considers two end transformations being applicable in the
same configuration. For the first two lemmas, we assumed a situation where the
transformations are applied in sequence. This ensured their sequential independence.
If they were not sequentially independent, the second transformation would not
have been applicable at all. When considering two end transformations, this is
not necessary. Here, their applicability alone already ensures that they are parallel
independent.

Lemma 5.3.5 (Parallel independence modulo isomorphism between two end transfor-
mations). Let D1 and D2 be two durative rules, TiG = (GTiG, typeTiG) a timed graph with
GTiG = (VG, VCI , EG, ECI), and ν a clock instance value assignment such that ν |= TiG
and 〈TiG, ν〉 is reachable from the initial configuration. The induced end rules of D1 and
D2 are denoted by er1 and er2, respectively. Further, ci1 and ci2 denote the clock instance
existing during the application interval of D1 and D2, respectively. Also, aier1 and aier2

denote the application indicator in the LHS of er1 and er2, respectively.

If there are two action transitions 〈TiG, ν〉 er1,m1===⇒ 〈TiH1, ν′〉 with ν′(ci1) = 0 and
〈TiG, ν〉 er2,m2===⇒ 〈TiH2, ν′′〉 with ν′′(ci2) = 0 and m2(aier2) 6= m1(aier1), then they are
parallel independent modulo isomorphism.

Proof. We have to show that (i) 〈TiG, ν〉 er2,m2===⇒ 〈TiH2, ν′′〉 is weakly parallel inde-
pendent modulo isomorphism of 〈TiG, ν〉 er1,m1===⇒ 〈TiH1, ν′〉 and (ii) 〈TiG, ν〉 er1,m1===⇒
〈TiH1, ν′〉 is weakly parallel independent modulo isomorphism of 〈TiG, ν〉 er2,m2===⇒
〈TiH2, ν′′〉.
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(i) TiG

TiX

Ler1

Rer1

rer1

Ler2

Rer2

rer2

TiH1

m1

m∗1

r∗m1

TiH2

m2

m∗2

r∗m2

x2

x∗2

r∗x2

If r∗m1
◦m2 is total, i.e., ran(m2)∩ TiG \dom(r∗m1

) = ∅, we can simply construct
x2 : Ler2 → TiH1 such that x2 = r∗m1

◦ m2. Otherwise, we have to show that
there exist a total morphism m̃2 : Ler2 → TiG such that m̃2 is isomorphic to m2

and then construct x2 such that x2 = r∗m1
◦ m̃2 or there is a contradiction.

There are two cases: either ran(m2) ∩ TiG \ dom(r∗m1
) contains only locking

elements or it also contains other elements than locks.

a) ran(m2) ∩ TiG \ dom(r∗m1
) contains only locking elements. In this case,

there exist a m̃2 : Ler2 → TiG which is isomorphic to m2. Thus, we can
construct x2 : Ler2 → TiH1 such that x2 = r∗m1

◦ m̃2. The proof that m̃2

exists is analogous to the proof of Lemma 5.3.4 (i).

b) ran(m2) ∩ TiG \ dom(r∗m1
) contains elements other than locks. According

to Definition 5.2.11, the deletion of elements is accompanied by releasing
a write lock, i.e., deleting a locking edge that constitutes a write operation.
Thus, each of the elements in TiG \ dom(r∗m1

) has a write lock attached.

These write locks (or isomorphic ones) must have been created by an
application of a start rule sr1 of D1 that also created the application
indicator that

er1,m1===⇒ deletes. Similarly, each of the elements in ran(m2)

has a read lock attached, which (modulo isomorphism) must have been
created by an application of a start rule sr2 of D2. Let y1 : Lsr1 → TiF1 and
y2 : Lsr2 → TiF2 denote the the match of sr1 and sr2, respectively. Since
m2(aier2) 6= m1(aier1) holds, we have sr1 6= sr2 ∨ y1 6= y2.

Now, there are two possible orderings: either
sr1,y1
==⇒ happens before or

after
sr2,y2
==⇒ in the transition sequence from the initial configuration to

TiG. In case of the former,
sr1,y1
==⇒ creates a write lock that still exists in

TiF2. In case of the latter,
sr2,y2
==⇒ creates a read lock that still exists in

TiF1. The existence of these locking elements (or isomorphic ones) can be
shown analogously to the argument loop in the proof of Lemma 5.3.4 (i).
According to Definition 5.2.10, each creation of a write lock [read lock] is
accompanied by a NAC that realizes a check for a read lock [write lock].
Thus, the write lock [read lock] existing in TiF2 [TiF1] conflicts with a
NAC of sr2 [sr1]. Both constitute a contradiction to the applicability of
the second transformation.
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NACs Furthermore, x2 |= Ner2 holds obviously because er2 does not contain
any NACs.

(ii) TiG

TiX

Ler1

Rer1

rer1

Ler2

Rer2

rer2

TiH1

m1

m∗1

r∗m1

TiH2

m2

m∗2

r∗m2

x1

x∗1

r∗x1

This proof is analogous to the proof of (i).

Intuitively, the parallel independence of the end transformations results from the
independence of their start transformation counterparts. If the start transformations
were not independent, they could not have been applied during the transition
sequence from the initial configuration to the current configuration.

Now, we formalize the property that ensures that each durative graph transfor-
mation terminates properly, i.e., no other transformation can cause the induced end
rule of the ongoing durative graph transformation not to be applicable anymore. As
a consequence, durative graph transformations can only be executed if they do not
interfere with ongoing durative graph transformations.

Theorem 5.3.6 (Termination of a durative rule). Let D1 be a durative rule, TiG =

(GTiG, typeTiG) a timed graph with GTiG = (VG, VCI , EG, ECI), and ν a clock instance
value assignment such that ν |= TiG and 〈TiG, ν〉 is reachable from the initial configuration.
The induced start and end rule of D1 are denoted by sr1 and er1, respectively. Further, iL,sr1

and iL,er1 denote the morphisms identifying the elements of LD1 in Lsr1 and Ler1 , respectively.
Also, aisr1 and aier1 denote the application indicator in the RHS of sr1 and the LHS of er2,
respectively.

If there exists a transition sequence 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 seq 〈TiX, ν′′〉 with
〈TiA, ν̂〉 er1,a1==⇒ 〈TiB, ν̂′〉 /∈ seq for any match a1 : Ler1 → TiA such that a1(aier1) = r∗pre ◦
m∗1(aisr1) where r∗pre denotes the derivation morphism of a prefix transition sequence of seq
ending in TiA, then there exists a unique (up to isomorphism) match g1 : Ler1 → TiX such

that g1 ◦ iL,er1 = r∗seq ◦ r∗m1
◦m1 ◦ iL,sr1 and an action transition 〈TiX, ν′′〉 er1,g1

==⇒ 〈TiY, ν′′′〉.

Lsr1 Rsr1

TiG TiH1

Ler1 Rer1

TiX TiY

rsr1

m1 m∗1

r∗m1
r∗seq

rer1

g1 g∗1

r∗g1

Proof. We show this property by induction over the number of transitions in seq.
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Basis step. The transition sequence seq is empty. Thus, 〈TiH1, ν′〉 = 〈TiX, ν′′〉
holds. Now, we only have to show that there exists a match g1 : Ler1 → TiH1

such that g1 ◦ iL,er1 = r∗m1
◦ m1 ◦ iL,sr1 . According to Definitions 5.2.10 and 5.2.11,

Ler1 = Rsr1 holds. Thus, we can simply define g1 such that g1 ◦ iL,er1 = m∗1 ◦ rsr1 ◦
iL,sr1 = r∗m1

◦m1 ◦ iL,sr1 .

Induction step. Let
tr2,x2==⇒ denote the first transition in seq. That way, we

have 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 tr2,x2==⇒ 〈TiI, ξ〉 seq′ 〈TiX, ν′′〉. According to Lem-

mas 5.3.3 and 5.3.4 the transformations 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 tr2,x2==⇒ 〈TiI, ξ〉 are
sequentially independent (modulo isomorphism). Theorem 2.5.1 states that se-
quentially independent transformations can be reordered and still result in the

same graph. Thus, we get 〈TiG, ν〉 tr2,m2===⇒ 〈TiH2, ξ ′〉 sr1,x1==⇒ 〈TiI, ξ〉 seq′ 〈TiX, ν′′〉.
Now, we can apply the induction hypothesis, which results in the existence of
g1 : Ler1 → TiX such that g1 ◦ iL,er1 = r∗seq′ ◦ r∗x1

◦ x1 ◦ iL,sr1 . Using m1 instead of x1,
we get g1 ◦ iL,er1 = r∗seq′ ◦ r∗x2

◦ r∗m1
◦ m1 ◦ iL,sr1 . Since r∗seq = r∗seq′ ◦ r∗x2

holds, we get
g1 ◦ iL,er1 = r∗seq ◦ r∗m1

◦m1 ◦ iL,sr1 .

While Theorem 5.3.6 ensures that each durative graph transformation terminates
properly, even when other transformations are applied during its application interval,
it does not state anything about the configuration that results in such cases. The next
property does. It states that each interleaving of two durative graph transformations
results in the same configuration when both transformations finished (and no
other transformation is involved). From a more abstract perspective, this property
characterizes all possible interleavings of two durative graph transformations that
are independent of each other.

Theorem 5.3.7 (Existence of interleaving transition sequences). Let D1 and D2 be two
durative rules, TiG = (GTiG, typeTiG) a timed graph with GTiG = (VG, VCI , EG, ECI), and
ν a clock instance value assignment such that ν |= TiG and 〈TiG, ν〉 is reachable from the
initial configuration. The induced start and end rules of D1 and D2 are denoted by sr1, er1,
sr2, and er2, respectively.

If 〈TiG, ν〉 sr1,m1===⇒ 〈TiH1, ν′〉 and 〈TiG, ν〉 sr2,m2===⇒ 〈TiH2, ν′′〉 are parallel independent,
there exist matches ms1, me1, ms2, and me2 for sr1, er1, sr2, and er2, respectively, such that
each of the transition sequences fulfilling the partial order

•

•

sr1, ms1

er1, me1

sr2, ms2

er2, me2

exists and results in the same graph TiZ.



5.3. PROPERTIES OF DURATIVE GRAPH TRANSFORMATION RULES 101

TiG

TiH1 TiH2

TiI1 TiX TiI2

TiY1 TiY2

TiZ

sr1, m1

sr1, x1

sr1, y1

er1, f1

er1, g1

er1, h1

sr2, m2

sr2, x2

sr2, y2

er2, f2

er2, g2

er2, h2

Proof. According to the Local Church-Rosser Theorem, both sequentializations of
two parallel independent transformations result in the same graph. Thus, we have
the transition sequence shown in Figure 5.11(a).

According to Definitions 5.2.10 and 5.2.11, Ler1 = Rsr1 holds. Thus, the match
g1 : Ler1 → TiX can be defined such that g1 ◦ iL,er1 = x∗1 ◦ rsr1 ◦ iL,sr1 = r∗x1

◦ x1 ◦ iL,sr1 .
The match g2 : Ler2 → TiX can be defined analogously. Now, we have the transition
sequence shown in Figure 5.11(b).

According to Lemma 5.3.4, the transformations
sr2,x2==⇒ and

er1,g1
==⇒ are sequentially

independent. Since the Local Church-Rosser Theorem also works for sequentially
independent transformations, we get the transition sequence shown in Figure 5.11(c).

·

· ·

·

· ·

(a)

·

· ·

·

· ·

(b)

·

· ·

· · ·

· ·

(c)

·

· ·

· · ·

· ·

· ·
?
=

(d)

·

· ·

· · ·

· ·

·
?
=

(e)

Figure 5.11: Visual aid for the proof of Theorem 5.3.7
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Now, we can define h1 : Ler1 → TiY2 such that h1 ◦ iL,er1 = y∗1 ◦ rsr1 ◦ iL,sr1 =

r∗y1
◦ y1 ◦ iL,sr1 . Again, we can define h2 : Ler2 → TiY1 analogously. Thus, we get the

transition sequence shown in Figure 5.11(d).

According to Lemma 5.3.5, the transformations
er1,h1==⇒ and

er2,h2==⇒ are parallel
independent. By applying the Local Church-Rosser Theorem again, we get the
transition sequence shown in Figure 5.11(e).

5.4 Support for Negative Application Conditions

In Section 5.2, durative graph transformation rules have been defined without
the support for negative application conditions. Since produce-forbid and forbid-
produce conflicts cannot occur when there are no NACs, the locking mechanism
was implemented considering only delete-use and use-delete conflicts. Now, we
extend the syntax and semantics to support certain kinds of NACs, i.e., forbidden
edges and forbidden pairs, on the level of durative rules. Note that on the level of
timed graph transformation rules, NACs have already been used.

Definition 5.4.1 (Durative graph transformation rule with NACs). A durative graph
transformation rule with NACs D′ = (L, R, r,N , name, d) differs from a durative graph
transformations rule D = (L, R, r, name, d) in that it contains a set of NACs N where
each NAC is a tuple (N, n) ∈ N with n : VG,L ∪ EG,L → N, n being injective, and
either

• VN = VG,L ∧ EN = EG,L ∪ { f e}, (forbidden edge)

• VN = VG,L ∪ { f n} ∧ EN = EG,L ∪ { f e} ∧ src( f e) ∈ ran(n) ∧
tgt( f e) = f n, or (forbidden pair with outgoing edge)

• VN = VG,L ∪ { f n} ∧ EN = EG,L ∪ { f e} ∧ src( f e) = f n ∧
tgt( f e) ∈ ran(n). (forbidden pair with incoming edge)

The extension of the syntax is straightforward. To ensure a well-formed specifica-
tion, NACs are restricted to forbidden edges, forbidden pairs with outgoing edges,
and forbidden pairs with incoming edges.

In the RailCab example, the durative rule accelerateRailCab, which is given in
Figure 5.12, contains a forbidden pair. The rule specifies the movement of a RailCab
from one track section to the next. The RailCab’s acceleration is captured by the
driving self edge. In the rule’s LHS, there is no such edge, i.e., the RailCab is not
yet in driving motion. To ensure that the RailCab is also not involved in a convoy
operation (or engaged in establishing a convoy operation) when the rule is being
applied, it specifies a forbidden pair with an incoming edge adjacent to the RailCab

node.
The support for NACs brings about the existence of potential produce-forbid and

forbid-produce conflicts. Using locking for the prevention of such conflicts is slightly
more complicated than with delete-use and use-delete conflicts. The problem is
that elements contained in a forbidden pair are not available in the host graph an
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:RailCab
+ driving

:Track
+ free

:Track
–free

«++»
on

«--»
on

next

:Convoymember

d := 8

Figure 5.12: Durative rule accelerateRailCab

can thus not be locked. For this reason, locks are attached to the forbidden pairs’
connecting nodes instead.

The locking functionality required for supporting forbidden edges can be imple-
mented almost analogous to that of required edges. While we can can use the same
locking edge types for forbidden edges as for required edges, this is not possible
in the case of forbidden pairs. In order to support forbidden pairs, we extend the
type graph by two locking edge types for each potential forbidden pair: one of them
implements a read lock, the other one a write lock. By being distinctive for each
node, edge, and reading direction possible in a forbidden pair (incoming or outgoing
edge), each of these locking edge types unambiguously identifies the forbidden pair
it relates to.

To refer to these locking edge types, we use the functions rlpairsrc : ETG →
ETG, rlpairtgt : ETG → ETG, wlpairsrc : ETG → ETG, and wlpairtgt : ETG → ETG.
Each source type of an edge type et has two locking edge types, rlpairsrc(et) and
wlpairsrc(et) in the TGTS type graph. An edge of type rlpairsrc(et) denotes an
obtained read lock for a forbidden pair consisting of an outgoing edge of type et
and a node of its target’s type. An edge of type wlpairsrc(et) denotes an obtained
write lock representing the creation of graph elements matching this forbidden pair.
Analogously, for a forbidden pair consisting of an incoming edge of edge type et
and a node if its source type, rlpairtgt(et) and wlpairtgt(et) denote its locking edge
types.

As with delete-use and use-delete conflicts, the locking mechanism for the
prevention of produce-forbid and forbid-produce conflicts is realized via induced
start and end rules. Therefore, we now extend these rules to support durative graph
transformation systems where NACs do exist.

Definition 5.4.2 (Induced start rule supporting NACs). Given a durative graph
transformation rule with NACs D′ = (LD , RD , rD ,ND , name, d), the induced start rule
(supporting NACs) of D′ is a timed rule sr′ = (L, R′, r,N ′, z, Vres) that differs from
the induced start rule sr = (L, R, r,N , z, Vres) of a durative graph transformation
rule D = (LD , RD , rD , name, d) in that

• EG,R′ = EG,R ∪ ERL. f edge,R ∪ EWL. f edge,R ∪ ERL. f pair,R ∪ EWL. f pair,R,

• N ′ = N ∪ND ∪NWL. f edge ∪NRL. f edge ∪NWL. f pair ∪NRL. f pair,
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• ERL. f edge,R = {le|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
src( f e) ∈ ran(nD) ∧ tgt( f e) ∈ ran(nD) ∧
src(le) = r ◦ iL ◦ n−1

D ◦ src( f e) ∧
tgt(le) = r ◦ iL ◦ n−1

D ◦ tgt( f e) ∧
type(le) = rledge ◦ type( f e)},

• EWL. f edge,R = {le|∃e ∈ ERD \ ran(rD) :
src(e) ∈ ran(rD) ∧ tgt(e) ∈ ran(rD) ∧
src(le) = r ◦ iL ◦ r−1

D ◦ src(e) ∧
tgt(le) = r ◦ iL ◦ r−1

D ◦ tgt(e) ∧
type(le) = wledge ◦ type(e)},

• ERL. f pair,R = {le|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
∃ f n ∈ VND \VLD :
src( f e) ∈ ran(nD) ∧ tgt( f e) = f n ∧
src(le) = tgt(le) = r ◦ iL ◦ n−1

D ◦ src( f e) ∧
type(le) = rlpairsrc ◦ type( f e)} ∪
{le|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
∃ f n ∈ VND \VLD :
src( f e) = f n ∧ tgt( f e) ∈ ran(nD) ∧
src(le) = tgt(le) = r ◦ iL ◦ n−1

D ◦ tgt( f e) ∧
type(le) = rlpairtgt ◦ type( f e)},

• EWL. f pair,R = {le|∃e ∈ ERD \ ran(rD) :
src(e) ∈ ran(rD) ∧
src(le) = tgt(le) = r ◦ iL ◦ r−1

D ◦ src(e) ∧
type(le) = wlpairsrc ◦ type(e)} ∪
{le|∃e ∈ ERD \ ran(rD) :
tgt(e) ∈ ran(rD) ∧
src(le) = tgt(le) = r ◦ iL ◦ r−1

D ◦ tgt(e) ∧
type(le) = wlpairtgt ◦ type(e)},

• NWL. f edge = {(N, n)|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
src( f e) ∈ ran(nD) ∧ tgt( f e) ∈ ran(nD) ∧
VN = VG,L ∧ EN = EG,L ∪ {ne} ∧
src(ne) = n ◦ iL ◦ n−1

D ◦ src( f e) ∧
tgt(ne) = n ◦ iL ◦ n−1

D ◦ tgt( f e) ∧
type(ne) = wledge ◦ type( f e)},

• NRL. f edge = {(N, n)|∃e ∈ ERD \ ran(rD) :
src(e) ∈ ran(rD) ∧ tgt(e) ∈ ran(rD) ∧
VN = VG,L ∧ EN = EG,L ∪ {ne} ∧
src(ne) = n ◦ iL ◦ r−1

D ◦ src(e) ∧
tgt(ne) = n ◦ iL ◦ r−1

D ◦ tgt(e) ∧
type(ne) = wledge ◦ type(e)},
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• NWL. f pair = {(N, n)|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
∃ f n ∈ VND \VLD :
src( f e) ∈ ran(nD) ∧ tgt( f e) = f n ∧
VN = VG,L ∧ EN = EG,L ∪ {ne} ∧
src(ne) = tgt(ne) = n ◦ iL ◦ n−1

D ◦ src( f e) ∧
type(ne) = rlpairsrc ◦ type( f e)} ∪
{(N, n)|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
∃ f n ∈ VND \VLD :
src( f e) = f n ∧ tgt( f e) ∈ ran(nD) ∧
VN = VG,L ∧ EN = EG,L ∪ {ne} ∧
src(ne) = tgt(ne) = n ◦ iL ◦ n−1

D ◦ tgt( f e) ∧
type(ne) = rlpairtgt ◦ type( f e)},

• NRL. f pair = {(N, n)|∃e ∈ ERD \ ran(rD) :
src(e) ∈ ran(rD) ∧
VN = VG,L ∧ EN = EG,L ∪ {ne} ∧
src(ne) = tgt(ne) = n ◦ iL ◦ r−1

D ◦ src(e) ∧
type(ne) = wlpairsrc ◦ type(e)} ∪
{(N, n)|∃e ∈ ERD \ ran(rD) :
tgt(e) ∈ ran(rD) ∧
VN = VG,L ∧ EN = EG,L ∪ {ne} ∧
src(ne) = tgt(ne) = n ◦ iL ◦ r−1

D ◦ tgt(e) ∧
type(ne) = wlpairtgt ◦ type(e)},

The new induced start rule differs from the old one in its RHS and set of NACs.
Both are extended to account for new potential conflicts. The new set of NACs, of
course, also contains those NACs specified in the durative graph transformation
rule in addition to the new locking edges. The locking edge set ERL. f edge,R specifies
the creation of a read lock for each forbidden edge. The locking edge set EWL. f edge,R
specifies the creation of a write lock for each creation edge. Note that since the
locking edges used for forbidden edges are the same as those used for required
edges, the creation of an edge is also prevented from being executed concurrently
with the deletion or preservation of a parallel edge. However, since the creation of
an edge does not imply a read, i.e., the edge is not contained in the LHS, multiple
parallel edges can be created concurrently.

The locking edge set ERL. f pair,R specifies the creation of a read lock for each
forbidden pair. The creation edge of another rule conflicts with such a forbidden
pair if two conditions are met:

1. The connecting node adjacent to the forbidden pair matches the same node in
the host graph as a required node adjacent to the creation edge.

2. The edge type and direction of the forbidden pair are the same as that of the
creation edge.

Therefore, the locking edge set EWL. f pair,R specifies the creation of a write lock for
each pair of creation edge and adjacent required node. Note that it does not matter
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whether the node at the second end of the new edge is also new or was available
before, i.e., the rule completely builds the forbidden pair into the configuration or
the forbidden pair is constructed by connecting two already existing nodes with a
new edge.

As with the original definition of the induced start rule in Definition 5.2.10,
the rule has NACs to ensure the non-existence of certain locking edges. For each
read lock in one of the four sets ERL. f edge,R, EWL. f edge,R, ERL. f pair,R, and EWL. f pair,R,
there is a write lock in one of the respective sets NWL. f edge, NRL. f edge, NWL. f pair,
and NRL. f pair and vice versa. The sets NWL. f edge and NWL. f pair ensure that no
forbid-produce conflicts occur, and the sets NRL. f edge and NRL. f pair ensure that no
produce-forbid conflicts occur.

The induced end rule is extended analogously to the induced start rule, i.e., all
locking edges to account for produce-forbid and forbid-produce conflicts are deleted
again.

Definition 5.4.3 (Induced end rule supporting NACs). Given a durative graph
transformation rule with NACs D′ = (LD , RD , rD ,ND , name, d), the induced end rule
(supporting NACs) of D′ is a timed rule er′ = (L′, R, r,N , z, Vres) that differs from the
induced end rule er = (L, R, r,N , z, Vres) of a durative graph transformation rule
D = (LD , RD , rD , name, d) in that

• EG,L′ = EG,L ∪ ERL. f edge,L ∪ EWL. f edge,L ∪ ERL. f pair,L ∪ EWL. f pair,L,

• ERL. f edge,L = {le|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
src( f e) ∈ ran(nD) ∧ tgt( f e) ∈ ran(nD) ∧
src(le) = iL ◦ n−1

D ◦ src( f e) ∧
tgt(le) = iL ◦ n−1

D ◦ tgt( f e) ∧
type(le) = rledge ◦ type( f e)},

• EWL. f edge,L = {le|∃e ∈ ERD \ ran(rD) :
src(e) ∈ ran(rD) ∧ tgt(e) ∈ ran(rD) ∧
src(le) = iL ◦ r−1

D ◦ src(e) ∧
tgt(le) = iL ◦ r−1

D ◦ tgt(e) ∧
type(le) = wledge ◦ type(e)},

• ERL. f pair,L = {le|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
∃ f n ∈ VND \VLD :
src( f e) ∈ ran(nD) ∧ tgt( f e) = f n ∧
src(le) = tgt(le) = iL ◦ n−1

D ◦ src( f e) ∧
type(le) = rlpairsrc ◦ type( f e)} ∪
{le|∃(ND , nD) ∈ ND : ∃ f e ∈ END \ ELD :
∃ f n ∈ VND \VLD :
src( f e) = f n ∧ tgt( f e) ∈ ran(nD) ∧
src(le) = tgt(le) = iL ◦ n−1

D ◦ tgt( f e) ∧
type(le) = rlpairtgt ◦ type( f e)},
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• EWL. f pair,L = {le|∃e ∈ ERD \ ran(rD) :
src(e) ∈ ran(rD) ∧
src(le) = tgt(le) = iL ◦ r−1

D ◦ src(e) ∧
type(le) = wlpairsrc ◦ type(e)} ∪
{le|∃e ∈ ERD \ ran(rD) :
tgt(e) ∈ ran(rD) ∧
src(le) = tgt(le) = iL ◦ r−1

D ◦ tgt(e) ∧
type(le) = wlpairtgt ◦ type(e)},

The addition of the support for NACs does not invalidate the properties formal-
ized in Section 5.3. It affects only those lemmas that reason over possible conflicts
between induced start and end rules, i.e., Lemmas 5.3.3 to 5.3.5. Most of their proofs
work via the existence of locking edges and rely on the fact that each creation of a
read lock [write lock] is accompanied by a NAC that realizes a check for a write lock
[read lock] and vice versa. This holds for both, use and deletion, see Definition 5.2.10,
as well as forbiddance and creation, see Definition 5.4.2. Technically, some of the
proofs have to be extended to handle possible produce-forbid (and forbid-produce)
conflicts. This extension can be made analogously to the handling of delete-use and
(use-delete) conflicts.

5.5 Concurrency Rules

The application of a durative graph transformation rule limits which other durative
graph transformation rules may be applied concurrently. This excluding effect on
the applicability of rules can be seen as a negative kind of influence between durative
graph transformations. Specifying a positive kind of influence between durative
graph transformations is not possible with durative graph transformation rules
alone. This is what concurrency rules are used for.

A concurrency rule provides a means of specifying that certain durative graph
transformations enable the execution of other durative graph transformations. Con-
currency rules are not applied in the sense of a graph transformation; they simply
specify a dependency between different durative rules. This specification modifies
the induced rules of all involved durative rules such that the application of some of
these durative rules requires the concurrent application of others.

The use of concurrency rules increases the expressiveness of the DGTS formalism.
With concurrency rules, it is possible to specify systems that require the concurrent
application of durative rules instead of only allowing their concurrent application.

As with durative rules, the semantics of concurrency rules is specified using the
TGTS formalism. From the perspective of the TGTS formalism, concurrency rules
make required concurrency explicit. This is beneficial for modeling concurrent sys-
tems because reconfiguration and concurrency can thus be dealt with orthogonally.

We consider an example from the RailCab domain. As stated in Section 1.4, this
domain includes base stations, which monitor track segments of the railway network.
At any time during the movement of a RailCab, it has to be registered at such a
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base station. More precisely, a RailCab has to be registered at a base station that
monitors the track segment that the RailCab is currently occupying. The real-time
communication between a RailCab and the base station it is registered at is specified
by the RTCP Publication, which is represented within configurations and rules as a
node of type Pub.

When a RailCab moves from a track segment that is monitored by one base
station to a track segment that is monitored by another base station, it has to change
its publication. This is captured by the durative rule changePublication, which is
shown in Figure 5.13. It specifies the revocation of a publication at one base station
and the announcement of a publication at another base station.

:RailCab:Base :Base

«--»
:Pub

«++»
:Pub

«++»
publisher

«++»
distributor

«--»
publisher

«--»
distributor

d := 2

Figure 5.13: Durative rule changePublication

A condition for the application of the durative rule changePublication is the
concurrent application of another durative rule that moves the RailCab from one
track segment to the next. Besides moveRailCab, possible candidates providing such a
reconfiguration are moveConvoy and all durative rules related to membership change,
e.g., formConvoy or joinConvoy, since they also change the position of RailCabs. All
these durative rules are modeled independently from changePublication and their
applications exist independently from applications of changePublication.

Including the movement of a RailCab in changePublication is not advisable due
to two reasons. First, there is more than one reconfiguration that moves a RailCab to
the next track segment. A modeler would have to model a separate rule for each
such reconfiguration. Second, changing a publication and moving a RailCab are
different concerns, and modeling them as one reconfiguration can be considered
bad development style.

Since reconfigurations addressing different concerns are modeled independently
from one another, we need an external means of specifying requirements for their
concurrent execution. Concurrency rules provide this means by referencing durative
rules and specifying how these rules have to match relatively to one another.

5.5.1 Syntax

A concurrency rule specifies a dependency between two sets of durative rules: an
application of a durative rule in the first set requires a concurrent application of a
durative rule in the second set. Vice versa, the application interval of a durative
rule in the second set can be seen as a window of opportunity for rules in the first
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set. The involved durative rules of both sets have to match in a certain way for this
dependency to be fulfilled. This matching constraint is formalized in the syntax of
concurrency rules via two interface graphs and graph morphisms to the involved
durative rules.

Definition 5.5.1 (Concurrency rule). Let DR be a set of durative rules. A concurrency
rule C = (GT , DT , ST , D, S, name) consists of

• a typed graph GT , called connecting graph, with two subgraphs DT and ST ,
called (concurrency) demander interface and (concurrency) satisfier interface, respec-
tively,

• a non-empty set of tuples D, called (concurrency) demander tuples, where each
tuple (D, d) ∈ D references a durative rule D ∈ DR and determines a sub-
graph of its LHS via an injective morphism d : DT → LD , called (concurrency)
demander constraint morphism,

• a non-empty set of tuples S, called (concurrency) satisfier tuples, where each
tuple (D, s) ∈ S references a durative rule D ∈ DR and determines a subgraph
of its LHS via an injective morphism s : ST → LD , called (concurrency) satisfier
constraint morphism, and

• a distinct name name.

For a durative graph transformation system DS = (T G, GT
0 ,DR) with a set of

concurrency rules CR, we also write DS = (T G, GT
0 ,DR, CR).

A connecting graph has two dedicated subgraphs, which serve as interfaces
for the durative rules involved with a concurrency rule. They are called demander
interface and satisfier interface. So-called constraint morphisms from these subgraphs to
durative rules define which durative rules fulfill these interfaces and how they have
to match relatively to each other. All these constraint morphisms are – together with
the rules they map to – contained in the set of demander and satisfier tuples. Each
rule referenced by a demander or satisfier tuple fulfills the demander or satisfier
interface, respectively.

An application of a durative rule referenced by a demander tuple demands a
concurrent transformation, and an application of a durative rule referenced by
a satisfier tuple satisfies this demand. Therefore, we call a durative rule that is
referenced by a demander tuple a demanding rule. If it is referenced by a satisfier
tuple, we call it a satisfying rule.

The demander and satisfier constraint morphisms constitute matching constraints
for all involved durative rules. For a demanding and a satisfying rule to be applicable
concurrently, elements contained in the images of their demander and satisfier
constraint morphism that originate from the same element in the connecting graph
GT also have to match to the same element in the host graph. Elements that have a
preimage in only one of the interface subgraphs DT and ST also restrict the matching:
if an element of DT is somehow connected in GT to an element of ST , then the same
connection has to exist for their images in the host graph.
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:RailCab:Base :Base

«--»
:Pub

«++»
:Pub

«++»
publish.

«++»
distri.

«--»
publish.

«--»
distri.

:RailCab

:Track :Track

:Base :Base

monitors monitors

(a) A demander constraint morphism of allowChangePublication to changePublication

:RailCab
driving

:Track
+ free

:Track
–free

«++»
on

«--»
on

next

:RailCab

:Track :Track

:Base :Base

monitors monitors

(b) A satisfier constraint morphism of allowChangePublication to moveRailCab

Figure 5.14: A demander and a satisfier constraint morphism of the concurrency
rule allowChangePublication

As an example, Figure 5.14 shows a demander and a satisfier constraint mor-
phism for the concurrency rule allowChangePublication. A RailCab is only allowed
to change its publication if it is moving from one track segment to the next. There-
fore, changePublication is a demanding rule and moveRailCab a satisfying rule. To
be precise, changePublication is the only demanding rule, while moveRailCab is
one of multiple satisfying rules. All durative rules that move a RailCab from one
track segment to the next are valid satisfying rules for allowChangePublication.
Here, moveRailCab is exemplary for all satisfying rules of allowChangePublication.

The relevant node in this example is the RailCab node, which is why it is
contained in both interface subgraphs and thus defined under both demander and
satisfier constraint morphisms. However, the fact that the RailCab nodes of both
rules have to match the same node in the host graph is not the only matching
constraint for the concurrent application of both rules. The new base station also has
to monitor the track segment that the RailCab is moving to. This is neither specified
in changePublication nor in moveRailCab. It is not specified in changePublication,
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because changePublication is not concerned with the movement of RailCabs at
all, and it is not specified in moveRailCab, because moveRailCab is not concerned
with base stations and publications. Instead, this constraint is expressed via the
structure of the connecting graph and both interface subgraphs: each Base node
is connected to one of the Track nodes via a monitors edge, and while the Base

nodes are contained in the demander interface, the Track nodes are contained in the
satisfier interface. For the concurrent application of both rules, this structure also
has to exist in the host graph.

Note that there can be multiple demander or satisfier constraint morphisms to
the same demanding or satisfying rule. If there are multiple demander constraint
morphisms to a single demanding rule, this means that the demander interface
is fulfilled in multiple different ways, each with a different matching constraint,
and an application of this rule causes multiple demands. If there are multiple
satisfier constraint morphisms to a single satisfying rule, this means that the satisfier
interface can be fulfilled in multiple different ways, i.e., multiple matches can lead
to a satisfaction of the demand in concurrent execution. An example for this is the
rule formConvoy, which models two RailCabs driving in the same direction. In this
rule, a rearward RailCab catches up to a frontward RailCab by covering a distance of
two track segments. Figure 5.15 shows two satisfier constraint morphisms mapping
to this rule. The first constraint morphism maps the concurrency rule’s RailCab

node to the rearward RailCab and the second constraint morphism to the frontward
RailCab. Note that the second Track node does not have to be the direct successor
of the first Track node for the constraint morphisms to match.

When employing concurrency rules in software development, a modeler poten-
tially has to define a lot of demander and satisfier constraint morphisms. While
these constraint morphism can be defined conveniently using colors or highlighting,
a graphical representation of a concurrency rule involving multiple constraint mor-
phisms, like the ones in Figures 5.14 and 5.15, is rather impractical as an overview
because it is not presented coherently in a single diagram. Fortunately, the latter can
be done: by employing object names in durative rules, we allow to reference their
nodes directly from the connecting graph of a concurrency rule.

Figure 5.16 illustrates such a compact representation for the constraint morphisms
of Figures 5.14 and 5.15. As an example, consider the RailCab node in the center
of the connecting graph. The label #dc::‘rc’ means that the node maps to the node
with the object name rc under the constraint morphism dc, which is a demander
constraint morphism to the durative rule changePublication. The other three
labels define images of this node under the three satisfier constraint morphisms of
Figures 5.14(b), 5.15(a) and 5.15(b).
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«++»
:Convoy
+ driving

:RailCab
–driving
+ last

:RailCab
+ first

:Track
+ free

:Track
+ free

:Track
–free

next

«--»
on

«++»
on

«++»
member

«--»
on

«++»
member

next

«++»
front:RailCab

:Track :Track

:Base :Base

monitors monitors

(a) First satisfier constraint morphism of allowChangePublication to formConvoy

«++»
:Convoy
+ driving

:RailCab
–driving
+ last

:RailCab
+ first

:Track
+ free

:Track
+ free

:Track
–free

next

«--»
on

«++»
on

«++»
member

«--»
on

«++»
member

next

«++»
front:RailCab

:Track :Track

:Base :Base

monitors monitors

(b) Second satisfier constraint morphism of allowChangePublication to formConvoy

Figure 5.15: Two satisfier constraint morphisms of concurrency rule allowChangePub-

lication mapping to the same durative rule
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«d/s»
:RailCab
#dc::‘rc’
#sm::‘rc’
#sf1::‘rc1’
#sf2::‘rc2’

«dem»
:Base

#dc::‘b1’

«dem»
:Base

#dc::‘b2’

«sat»
:Track

#sm::‘t1’
#sf1::‘t1’
#sf2::‘t2’

«sat»
:Track

#sm::‘t2’
#sf1::‘t3’
#sf2::‘t3’

monitors monitors

#dc→ dem “changePublication”
#sm→ sat “moveRailCab”
#sf1→ sat “formConvoy”
#sf2→ sat “formConvoy”

Figure 5.16: Compact representation of demander and satisfier constraint morphisms
of Figures 5.14 and 5.15 for concurrency rule allowChangePublication
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5.5.2 Semantics

The semantics of concurrency rules is defined by extending those timed graph
transformation rules that have been induced by durative graph transformation
rules. This can be seen as modifying the semantics of all durative rules involved in
concurrency rules. Each start or end rule whose inducing durative rule is referenced
by a concurrency rule is extended. To motivate how these rules are extended, we
take a look at their interaction.

demanding rule

satisfying rule

requires concurrent application
to have started

requires concurrent application
to have finished (if existing)

sequence of rule applications

Figure 5.17: Concurrent execution of a demanding and a satisfying rule

Figure 5.17 illustrates the dependency between a demanding and a satisfying rule,
e.g., changePublication and moveRailCab. In terms of time, the demanding rule has
the “inner” and the satisfying rule the “outer” application interval. The semantics of
a concurrency rule extends the induced start and end rules of all involved durative
rules such that their application times have to be temporally ordered as in the figure.
More precisely, the demanding rule requires the application of the satisfying rule
both to have started earlier and to end later. To require the former, we extend the
induced rules of both rules such that the demanding transformation checks whether
the satisfying transformation is currently being applied. When requiring the latter,
we have to make sure that the current satisfying transformation is indeed the same
transformation as before. To prevent a second satisfier transformation (of the same
or a different rule) from taking the place of the first, we apply a lock and reverse the
direction of the dependency, i.e., by checking for potential locks, the satisfying rule
guarantees that no demanding transformation is being applied concurrently. Note
that a satisfying rule can still be applied independently of a demanding rule, which
is why the right arrow in Figure 5.17 has a different meaning than the left.

To properly extend the induced rules, we have to be able to check whether a
demand in concurrent execution, as specified by a concurrency rule, is satisfied.
The satisfaction of such a demand is indicated by a satisfaction indicator, which is a
concept that is analogous to an application indicator. Since concurrency rules are
not applied in the sense of graph transformations, satisfaction indicators are not
created and deleted by concurrency rules but by their referenced satisfying rules.

As a consequence of the use of satisfaction indicators, the induced TGTS type
graph has to be extended. This extension is made analogously to that of application
indicators. The TGTS type graph has to include a type for each satisfaction indicator.
For a concurrency rule with the name name, its satisfaction indicator type is given
by siType(name). Furthermore, there has to be a distinct satisfaction indicator edge



5.5. CONCURRENCY RULES 115

type for each node in the satisfier interface of the concurrency rule. For a node v, its
satisfaction indicator edge type is given by siEdgeType(v).

For a satisfying rule, a satisfaction indicator is simply attached via satisfaction
indicator edges to those nodes that are in the range of its satisfier constraint mor-
phism. Unfortunately, the appearance of satisfaction indicators in demanding rules
is slightly more complicated than in satisfying rules. Since demander and satisfier
constraint morphisms are defined under different subgraphs of the connecting graph,
those nodes that the satisfaction indicator has to be attached to do not necessarily
exist in a demanding rule’s LHS. Therefore, the LHSs of a demanding rule’s in-
duced start and end rule are extended with those elements in the connecting graph
that are not defined under the demander constraint morphism. Technically, this is
implemented via a pushout.

Adding these elements to the induced rules’ LHSs does not restrict the applica-
bility of the demanding rule. The added elements have to exist in the host graph in
either case because the satisfying rule, which is applied concurrently, requires them.

Next, we give definitions that state how the induced rules of demanding and
satisfying rules are extended. After each definition, we given an example of
the extended induced rule. These extensions follow the example of the concur-
rency rule allowChangePublication with changePublication as demanding rule
and moveRailCab as satisfying rule.

First, we extend the induced start and end rule of a concurrency demanding rule
such that they require the existence of a satisfaction indicator in the host graph.

Definition 5.5.2 (Extension of a concurrency demander’s induced start rule). Let
C = (GT , DT , ST , D, S, name) be a concurrency rule and DR a set of durative rules.
For each concurrency demander tuple (D, d) ∈ D, the induced start rule sr =

(L, R, r,N , z, Vres) ofD ∈ DR is extended into a timed rule sr′ = (L′, R′, r′,N ′, z, Vres)

where

• (Lx, g, i∗), with g : GT → Lx and i∗ : L→ Lx, is the pushout over
d : DT → L and the subgraph isomorphism i : DT → GT ,

• VSI = {si} ∧ type(si) = siType(name) ∧
ESI = {e|src(e) = si ∧ tgt(e) ∈ g(ST) ∧

type(e) = siEdgeType ◦ g−1 ◦ tgt(e)},

• VG,L′ = VG,Lx ∪VSI ∧ EG,L′ = EG,Lx ∪ ESI ,

• VG,R′ = VG,R ∪VSI ∧ EG,R′ = EG,R ∪ ESI ∪ ERL.node,R′ ,

• VCI,L′ = VCI,Lx ∧ ECI,L′ = ECI,Lx ∧VCI,R′ = VCI,R ∧ ECI,R′ = ECI,R

• r′ = r ∪ {∀x ∈ Vg(GT\DT) ∪ Eg(GT\DT) : x 7→ x} ∪
{si 7→ si} ∪ {∀y ∈ Vg(ST) : (si, y) 7→ (si, y)}, and

• N ′ is defined analogously to Definition 5.2.10 such that ∀(N, n) ∈ N ′ :
dom(n) = L′, and

• ERL.node,R′ = {e|src(e) = tgt(e) = si ∧ type(e) = rlnode ◦ type(si)}
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The pushout adds those elements that are existing in the connecting graph but
not in the subgraph constituting the demander interface to the LHS of the extended
start rule. This is necessary so that we can attach the satisfaction indicator at its
appropriate place. Besides requiring this satisfaction indicator and its satisfaction
indicator edges, the extended start rule creates a read lock on the satisfaction
indicator. The read lock is used to ensure that the execution of a demanding rule
finishes before the execution of a satisfying rule. Apart from that, the extended
start rule is almost identical to the original rule. The rule morphism and the NAC
morphisms are changed such that they are total on their new domain L′. This is
necessary only for reasons of technical correctness; it does not change their intended
purpose.

:RailCab
+ rl

:Base
+ rl

:Base
+ rl

«++»
:Pub
+ rl
+ wl

publish.distri.

«++»
rl(distri.)

«++»
wl(distri.)

«++»
rl(publish.)

«++»
wl(publish.)

:Track

monitors

:Track

monitors

:SI
+ rl

Figure 5.18: Demanding rule changePublication’s induced start rule extended
according to concurrency rule allowChangePublication

Figure 5.18 shows the extended induced start rule of changePublication. The
extension was done according to the demander constraint morphism of Figure 5.14(a).
For reasons of clarity, the extended rule does not show any NACs or locks that have
been generated to support NACs on the level of durative rules. The two Track nodes
along with the two monitors edges, which connect the Track nodes to the Base

nodes, have been added into the rule by the pushout. Then, the satisfaction indicator
is connected to these Track nodes and the only RailCab node. The satisfaction
indicator also receives a read lock. Note that the new Track nodes do not have any
locks, because they were not present in the original rule.

The end rule of a concurrency demanding rule is extended in a similar manner
as the start rule. The LHS and RHS include those elements from the connecting
graph needed for the satisfaction indicator, the satisfaction indicator itself, and its
satisfaction indicator edges. The LHS also includes a read lock on the satisfaction
indicator.
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Definition 5.5.3 (Extension of a concurrency demander’s induced end rule). Let
C = (GT , DT , ST , D, S, name) be a concurrency rule and DR a set of durative rules.
For each concurrency demander tuple (D, d) ∈ D, the induced end rule er =

(L, R, r,N , z, Vres) of D ∈ DR is extended into a timed rule er′ = (L′, R′, r′,N , z, Vres)

where

• (Lx, g, i∗), with g : GT → Lx and i∗ : L→ Lx, is the pushout over
d : DT → L and the subgraph isomorphism i : DT → GT ,

• VSI = {si} ∧ type(si) = siType(name) ∧
ESI = {e|src(e) = si ∧ tgt(e) ∈ g(ST) ∧

type(e) = siEdgeType ◦ g−1 ◦ tgt(e)},
• VG,L′ = VG,Lx ∪VSI ∧ EG,L′ = EG,Lx ∪ ESI ∪ ERL.node,L′ ,

• VG,R′ = VG,R ∪VSI ∧ EG,R′ = EG,R ∪ ESI ,

• VCI,L′ = VCI,Lx ∧ ECI,L′ = ECI,Lx ∧VCI,R′ = VCI,R ∧ ECI,R′ = ECI,R

• r′ = r ∪ {∀x ∈ Vg(GT\DT) ∪ Eg(GT\DT) : x 7→ x} ∪
{si 7→ si} ∪ {∀y ∈ Vg(ST) : (si, y) 7→ (si, y)}, and

• ERL.node,L′ = {e|src(e) = tgt(e) = si ∧ type(e) = rlnode ◦ type(si)}.

Figure 5.19 shows the extended induced end rule of changePublication. Its
extension is done analogously to that of the induced start rule in Figure 5.18.

:RailCab
–rl

:Base
–rl

:Base
–rl

«--»
:Pub
–rl
–wl

«++»
:Pub

«++»
publish.

«++»
distri.«--»

publish.«--»
distri.

«--»
rl(distri.)

«--»
wl(distri.)

«--»
rl(publish.)

«--»
wl(publish.)

:Track

monitors

:Track

monitors

:SI
–rl

Figure 5.19: Demanding rule changePublication’s induced end rule extended ac-
cording to concurrency rule allowChangePublication

The induced rules of a demanding rule require the existence of a satisfaction
indicator. The only rules able to create (and delete) this specific satisfaction indicator
are induced start (and end) rules of those satisfying rules that are referenced by the
same concurrency rule as the demanding rule.



118 CHAPTER 5. DURATIVE GRAPH TRANSFORMATION SYSTEMS

Now, we define how the induced start and end rules of satisfying rules are
extended such that they create and delete appropriate satisfaction indicators.

Definition 5.5.4 (Extension of a concurrency satisfier’s induced start rule). Let
C = (GT , DT , ST , D, S, name) be a concurrency rule and DR a set of durative
rules. For each concurrency satisfier tuple (D, s) ∈ S, the induced start rule sr =

(L, R, r,N , z, Vres) of D ∈ DR is extended into a timed rule sr′ = (L, R′, r,N , z, Vres)

where

• VG,R′ = VG,R ∪ {si} ∧ type(si) = siType(name) ∧
EG,R′ = EG,R ∪ {e|src(e) = si ∧ tgt(e) ∈ ran(s) ∧

type(e) = siEdgeType ◦ s−1 ◦ tgt(e)},

• VCI,R′ = VCI,R ∧ ECI,R′ = ECI,R

Figure 5.20 shows the extended induced start rule of moveRailCab. This extension
is done according to the satisfier constraint morphism of Figure 5.14(b). Here, the
satisfaction indicator is simply added to the available Track and RailCab nodes.

:RailCab
driving
+ rl
+ rl(driving)

:Track
+ rl

:Track
free
+ rl
+ rl(free)
+ wl(free)

on

«++»
rl(on)

«++»
wl(on)

next
«++»

rl(next)

«++»
:SI

Figure 5.20: Satisfying rule moveRailCab’s induced start rule extended according to
concurrency rule allowChangePublication

In addition to a satisfaction indicator, the induced end rule of a satisfying rule is
extended with a NAC, which forbids the existence of a read lock on the satisfaction
indicator. This ensures that the execution of each applied demanding rule finishes
before that of the satisfying rule does.

Definition 5.5.5 (Extension of a concurrency satisfier’s induced end rule). Let
C = (GT , DT , ST , D, S, name) be a concurrency rule and DR a set of durative
rules. For each concurrency satisfier tuple (D, s) ∈ S, the induced end rule er =

(L, R, r,N , z, Vres) of D ∈ DR is extended into a timed rule er′ = (L′, R, r,N ′, z, Vres)

where
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• VG,L′ = VG,L ∪ {si} ∧ type(si) = siType(name) ∧
EG,L′ = EG,L ∪ {e|src(e) = si ∧ tgt(e) ∈ ran(s) ∧

type(e) = siEdgeType ◦ s−1 ◦ tgt(e)},

• VCI,L′ = VCI,L ∧ ECI,L′ = ECI,L, and

• N ′ = {(N, n)} ∧VN = VG,L ∧ EN = EG,L ∪ {ne} ∧
src(ne) = tgt(ne) = n(si) ∧
type(ne) = wlnode ◦ type(si) ∧ n is injective.

Figure 5.21 shows the extended induced end rule of moveRailCab. Its extension is
done almost analogously to that of the induced start rule in Figure 5.20. In addition,
the satisfaction indicator is extended with a NAC that ensures that there is no
concurrent application of a demanding rule anymore.

:RailCab
driving
–rl
–rl(driving)

:Track
+ free
–rl

:Track
–free
–rl
–rl(free)
–wl(free)

«--»
on

«--»
rl(on)

«--»
wl(on)

«++»
on

next
«--»

rl(next)

«--»
:SI

rl

Figure 5.21: Satisfying rule moveRailCab’s induced end rule extended according to
concurrency rule allowChangePublication

Finally, we can define the semantics of a durative graph transformation system
with concurrency rules. As with a durative graph transformation system without
concurrency rules, it is given by its induced timed graph transformation system.
Since Definition 5.2.18 does not regard concurrency rules, we have to provide a new
definition for a durative graph transformation system with concurrency rules.

Definition 5.5.6 (Induced timed graph transformation system respecting concurrency
rules). Let DS = (T G, GT

0 ,DR, CR) be a durative graph transformation system that
contains a set of concurrency rules CR and T S = (TG, TiG0, TR, IR, CR) its induced
timed graph transformation system according to Definition 5.2.18. Its induced timed
graph transformation system respecting concurrency rules T S ′ = (TG′, TiG0, TR′, IR, CR)
differs from T S in that
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• the induced TGTS type graph TG has been extended into a type graph TG′

that contains a satisfaction indicator type for each concurrency rule in CR as
well as their satisfaction indicator edge types and

• each timed rule tr ∈ TR whose inducing durative rule D is referenced by
a (concurrency) demander or (concurrency) satisfier tuple of a concurrency
rule in CR has been extended into a timed rule tr′ ∈ TR′ as defined in
Definitions 5.5.2 to 5.5.5, and if D is referenced by multiple (concurrency)
demander or (concurrency) satisfier tuples (of one or more concurrency rules
in CR), then the timed rule is extended successively.

5.6 Urgency Rules

With durative graph transformation rules and concurrency rules, we have dealt with
two different kinds of influence among durative graph transformations: potential
conflicts and required concurrency. The locking mechanism of durative rules takes
care of potential conflicts between transformations, and concurrency rules allow
to specify when a concurrent application of certain durative rules is mandatory
for the application of others. A third kind of influence between durative graph
transformations is urgency, which can be specified in the DGTS formalism via
urgency rules.

An urgency rule provides a means of specifying that certain durative graph
transformations require an urgent execution of subsequent durative graph transfor-
mations. Between these transformations, only a certain amount of time is allowed to
pass. Like concurrency rules, urgency rules are not applied in the sense of graph
transformations. They modify some existing induced rules and induce further rules.

The benefits of using urgency rules are similar to those of concurrency rules.
First, like concurrency rules, urgency rules increase the expressiveness of the DGTS
formalism. Second, while the semantics of urgency rules is completely expressible
via rules of the TGTS formalism, using urgency rules makes the specification of
urgency explicit, which improves the readability of the specification.

Again, we consider an example from the RailCab domain. In this domain, a
RailCab is not allowed to stop abruptly if it is in driving motion. Such an abrupt
stop would be unrealistic because slowing down a RailCab takes time. Therefore,
we differentiate accelerating and braking from the ordinary movement of a RailCab
(or a convoy). Figures 5.22 and 5.23 show the durative graph transformation rules
moveRailCab and brakeRailCab. Both rules move a RailCab from on track segment
to the next. Besides having different execution times, these rules differ in the state
of the RailCab: in moveRailCab, the RailCab is in driving motion in both its LHS
and RHS; in brakeRailCab, it is in driving motion only in its LHS. In the rule
accelerateRailCab, which was shown in Figure 5.12, the RailCab is in driving
motion only in its RHS.

Modeling whether a RailCab is in driving motion or not does not yet remove
paths from the state space where RailCabs stop abruptly. Such paths still exist
because it is still possible to apply a delay transition in a state where a RailCab is in
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:RailCab
driving

:Track
+ free

:Track
–free

«++»
on

«--»
on

next

d := 6

Figure 5.22: Durative rule moveRailCab

:RailCab
–driving

:Track
+ free

:Track
–free

«++»
on

«--»
on

next

d := 8

Figure 5.23: Durative rule brakeRailCab

driving motion. To prevent the application of a delay transition to such a state, the
consumption of time has to be disallowed. Technically, this can be done by means of
invariant rules.

Urgency rules lift the functionality of invariant rules to the level of durative rules
by providing a convenient means of specifying the requirement that the time that is
allowed to pass between the successive application of two durative rules may not
exceed a certain amount of time units. As opposed to invariant rules, urgency rules
also explicitly indicate all involved durative rules.

The concept of urgency rules is inspired by that of urgent locations, cf. [BDL04],
and that of urgent transitions, cf. [BST99; BT04]. However, it neither corresponds
precisely to that of urgent locations nor urgent transitions.

An urgent location is a location where time is not allowed to pass. Its semantics
is implemented via an invariant on a clock specific to the location, which is reset on
all incoming edges. Therefore, the incoming and outgoing transitions of a location
do not matter; firing any incoming transition leads to the urgent location, and firing
any outgoing transition is sufficient for leaving it in time. The difference of urgency
rules to urgent locations is that an urgency rule explicitly indicates all involved
durative rules.

An urgent transition, as defined in [BST99], is a transition that is fired as soon
as it is enabled. This is similar to urgency satisfying rules. However, they are not
applied urgently to every configuration but only to certain configurations, which
are defined by the urgency rule. There are other approaches where the semantics
for urgent transitions deviates from that of [BST99]. In [BT04], an urgent transition
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has to be fired within a given time frame from being enabled, and urgent transitions
have priority over non-urgent transitions. In the case of urgency rules, specifying a
time frame is possible, but there are no priorities.

5.6.1 Syntax

While semantically different, the syntax of urgency rules is very similar to that of
concurrency rules. As with concurrency rules, an urgency rule specifies a depen-
dency between two sets of durative graph transformation rules, a set of demanding
rules and a set of satisfying rules, and they have to match in a certain way for the
dependency to be fulfilled. An application of a demanding rule requires an urgent
application of a satisfying rule, i.e., only delays up to a certain maximum of time
units, which can possibly be zero, between the two rule applications are allowed.

Definition 5.6.1 (Urgency rule). Let DR be a set of durative rules. An urgency rule
U = (GT , DT , ST , D, S, name, dl) consists of

• a typed graph GT , called connecting graph, with two subgraphs DT and ST ,
called (urgency) demander interface and (urgency) satisfier interface, respectively,

• a non-empty set of tuples D, called (urgency) demander tuples, where each tuple
(D, d) ∈ D references a durative rule D ∈ DR and determines a subgraph
of its RHS via an injective morphism d : DT → RD , called (urgency) demander
constraint morphism,

• a non-empty set of tuples S, called (urgency) satisfier tuples, where each tuple
(D, s) ∈ S references a durative rule D ∈ DR and determines a subgraph of its
LHS via an injective morphism s : ST → LD , called (urgency) satisfier constraint
morphism,

• a distinct name name, and

• a deadline dl ∈N.

For a durative graph transformation system DS = (T G, GT
0 ,DR) with a set

of concurrency rules CR and a set of urgency rules UR, we also write DS =

(T G, GT
0 ,DR, CR,UR).

Like a concurrency rule, the connecting graph of an urgency rule has two
dedicated subgraphs, which serve as interfaces for the demanding and satisfying
rules and as domains for their constraint morphisms. However, as opposed to
concurrency rules, each demander constraint morphism maps to the RHS of its
demanding rule, not its LHS. Abstractly speaking, this is because the moment
in which an urgent execution of a subsequent durative graph transformation is
necessary is past the execution of the former durative graph transformations has
ended. Remember that the purpose of these constraint morphisms is to formalize
matching constraints for the involved durative rules. Such matching constraints
have to be taken into consideration by the application of the durative rule that starts
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second. In the case of urgency rules, the satisfying rule starts second. Therefore, the
matching constraints are regarded when the application of the satisfying rule starts.
Since this is after the application of the demanding rule has finished already, the
demander constraint morphism maps to its RHS.

:RailCab
driving

:Track
+ free

:Track
–free

«++»
on

«--»
on

next

RailCab
driving

:Track

on

(a) A demander constraint morphism of immediatelyMoveRailCab to moveRailCab
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driving

:Track
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:Track
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driving
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(b) A satisfier constraint morphism of immediatelyMoveRailCab to moveRailCab
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(c) A satisfier constraint morphism of immediatelyMoveRailCab to brakeRailCab

Figure 5.24: Demander and satisfier constraint morphisms of urgency rule immedi-

atelyMoveRailCab

An example is the urgency rule immediatelyMoveRailCab. Figure 5.24 shows a
demander and two satisfier constraint morphisms for this rule. If a RailCab is in
driving motion, it is not possible to stop it abruptly. First, the RailCab needs to
perform a braking maneuver. Therefore, each durative rule that has an RHS with a
RailCab in driving motion is a demanding rule, and each durative rule that has an
LHS with a RailCab in driving motion is a satisfying rule. The constraint morphisms
shown in Figure 5.24 are exemplary for all these durative rules. Note that rules
can be referenced as both demanding rules and satisfying rules, as is done with
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«d/s»
RailCab

#dm::‘rc’
#sm::‘rc’
#sb::‘rc’
d/s driving

«d/s»
:Track

#dm::‘t’
#sm::‘t1’
#sb::‘t1’

«d/s»
on

#dm→ dem “moveRailCab”
#sm→ sat “moveRailCab”
#sb→ sat “brakeRailCab”

Figure 5.25: Compact representation of demander and satisfier constraint morphisms
of Figure 5.24 for urgency rule immediatelyMoveRailCab

moveRailCab in Figure 5.24. When referencing the same rule as demanding and
satisfying rule, the demander and satisfier constraint morphisms should be different,
which is the case here; otherwise, a rule application would satisfy its demand itself.

A compact representation for these three constraint morphisms is shown in
Figure 5.25. As opposed to the constraint morphisms of the concurrency rule
allowChangePublication, for which a compact representation was shown in Fig-
ure 5.16, the constraint morphisms here also involve edges. Fortunately, we do not
have to state the image of an edge under each constraint morphism. It is sufficient
to state which edge is involved in the demander and satisfier interface because the
correct source and target nodes of the edge’s image under each constraint morphism
can be deduced from the context, i.e., from the connecting graph and the nodes’
images.

In the example given here, the demander and satisfier interface are identical. In
general, the demander and satisfier interface of urgency rules are, of course, also
allowed to be different. An example where they are required to be different might
be the release of a driver’s safety belt and the subsequent unlocking of the driver’s
door.

5.6.2 Semantics

As in concurrency rules, the semantics of urgency rules are defined by extending
those start and end rules whose durative rules are referenced by urgency rules. In
contrast to concurrency rules, urgency rules also induce new timed rules, invariant
rules, and clock instance rules directly. To motivate their purpose, we take an
abstract look at how the semantics of an urgency rule is implemented.

Figure 5.26 illustrates how the application of a satisfying rule, e.g., brakeRailCab,
is enforced by the application of a demanding rule, e.g., moveRailCab. First, the
demanding rule indicates a demand in urgent execution. This is done by adding
a demand indicator into the host graph. To require that the demand is satisfied,



5.6. URGENCY RULES 125

demanding rule satisfying rule

satisfier-firing rule

satisfier-cleaning rule

requires concurrent application
to have started

urgent application enforced via
invariant rule

sequence of rule applications

Figure 5.26: Urgent execution of a satisfying rule after a demanding rule

i.e., the demand indicator is deleted again, within the time frame specified by the
urgency rule, we use an invariant rule over the demand indicator. The only rule able
to delete this demand indicator is the timed rule shown above the satisfying rule in
Figure 5.26. This rule is called satisfier-firing timed rule. Its application is enforced
via the invariant rule. The purpose of the satisfier-firing timed rule is to enforce the
application of a satisfying rule. To do so, the rule requires a satisfaction indicator to
exist in the host graph. Since the application of the satisfier-firing timed rule is itself
enforced via an invariant rule, a compatible satisfaction indicator has to be created
before its application. This is what causes a satisfying rule to be applied.

Note that a satisfying rule can also be applied when there is no demand in urgent
execution. In such a case, the satisfying rule creates a satisfaction indicator that
is not deleted by a satisfier-firing timed rule. If left behind in the host graph, a
satisfaction indicator might cause a problem when an urgency demanding rule is
applied a second time: since the old satisfaction indicator is still available, there is
no need for a satisfying rule to be applied. Therefore, satisfaction indicators are
deleted by another timed rule, called satisfier-cleaning timed rule. This rule, shown
below the satisfying rule in Figure 5.26, has to be applied for every satisfaction
indicator in the host graph that is not deleted by an application of the satisfier-firing
timed rule. As with the satisfier-firing timed rule, we enforce the application of the
satisfier-cleaning timed rule via an invariant rule.

The demand and satisfaction indicator can simply be attached to the RHS of
the demanding rule and the LHS of the satisfying rule, respectively. Their proper
relative positioning in a configuration, i.e., the matching constraints formalized via
the demander and satisfier constraint morphisms, is guaranteed by the satisfier-firing
timed rule. There is no need to extend the demanding rule with additional nodes
and edges as done in the case of concurrency rules. Extending the demanding rule
was necessary for concurrency rules because concurrency rules do not have demand
indicators.
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The induced TGTS type graph is extended by urgency rules to support their
demand and satisfaction indicators. For each demand and satisfaction indicator, it
includes a separate type. For an urgency rule with the name name, its demand and
satisfaction indicator type are given by diType(name) and siType(name), respectively.
Furthermore, there are distinct demand and satisfaction indicator edge types for
each node in the interface subgraphs of the urgency rule. For a node v, its demand
and satisfaction indicator edge type are given by diEdgeType(v) and siEdgeType(v),
respectively.

Next, we give the formal definitions for the semantics of urgency rules. Between
those definitions, we give examples of the extended induced rules and the timed
rules directly induced by urgency rules. They follow the example of urgency rule
immediatelyMoveRailCab with moveRailCab as demanding rule and brakeRailCab

as satisfying rule.
First, we extend the induced end rule of an urgency demanding rule such that it

creates a demand indicator in the host graph.

Definition 5.6.2 (Extension of an urgency demander’s induced end rule). Let
U = (GT , DT , ST , D, S, name, dl) be an urgency rule and DR a set of durative
rules. For each urgency demander tuple (D, d) ∈ D, the induced end rule er =

(L, R, r,N , z, Vres) of D ∈ DR is extended into a timed rule er′ = (L, R′, r,N , z, Vres)

where

• VDI = {di} ∧ type(di) = diType(name) ∧
EDI = {e|src(e) = di ∧ tgt(e) ∈ ran(d) ∧

type(e) = diEdgeType ◦ d−1 ◦ tgt(e)},

• VG,R′ = VG,R ∪VDI ∧ EG,R′ = EG,R ∪ EDI , and

• VCI,R′ = VCI,R ∧ ECI,R′ = ECI,R.

Figure 5.27 shows the extended induced end rule of moveRailCab. This extension
is done according to the demander constraint morphism of Figure 5.24(a). As with
the last section, the extended rule does not show any NACs or locks that have been

:RailCab
driving
–rl
–rl(driving)

:Track
+ free
–rl

:Track
–free
–rl
–rl(free)
–wl(free)

«--»
on

«--»
rl(on)

«--»
wl(on)

«++»
on

next
«--»

rl(next)

«++»
:DI

Figure 5.27: Demanding rule moveRailCab’s induced end rule extended according to
urgency rule immediatelyMoveRailCab
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generated to support NACs on the level of durative rules. The only new element
is a demand indicator, which is connected to the RailCab node and the right Track
node.

To enforce the application of the satisfying rule, the urgency rule induces a
satisfier-firing timed rule.

Definition 5.6.3 (Induced satisfier-firing timed rule). Given an urgency rule U =

(GT , DT , ST , D, S, name, dl), the induced satisfier-firing timed rule of U is a timed rule
s f tr = (L, R, r,N , z, Vres) where

• VDI = {di} ∧ type(di) = diType(name) ∧
EDI = {e|src(e) = di ∧ tgt(e) ∈ VDT ∧ type(e) = diEdgeType ◦ tgt(e)},

• VSI = {si} ∧ type(si) = siType(name) ∧
ESI = {e|src(e) = si ∧ tgt(e) ∈ VST ∧ type(e) = siEdgeType ◦ tgt(e)},

• VG,L = VGT ∪VDI ∪VSI ∧ EG,L = EGT ∪ EDI ∪ ESI ,

• VG,R = VGT ∧ EG,R = EGT ,

• VCI,L = VCI,R = ∅ ∧ ECI,L = ECI,R = ∅,

• r : L→ R, with dom(r) = R, is the identity morphism on R,

• N = ∅, and

• z = ∅ ∧Vres = ∅.

The placement of the demand and satisfaction indicator in a satisfier-firing timed
rule is determined by the demander and satisfier interface of its inducing urgency
rule. This ensures that the satisfying rule is applied at a compatible match, i.e., a
match that is compatible with the structure specified in the urgency rule.

:RailCab
driving

:Track

on

«--»
:DI

«--»
:SI

Figure 5.28: Induced satisfier-firing timed rule of urgency rule immediatelyMove-

RailCab

Figure 5.28 shows the satisfier-firing timed rule that has been directly induced
by immediatelyMoveRailCab. It consists of the connecting graph of immediately-
MoveRailCab with an additional demand and satisfaction indicator in its LHS. Here,
both indicators are connected to both nodes because both interface subgraphs are
identical to the connecting graph.
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The application of a satisfier-firing timed rule is coupled to the application of a
demanding rule’s induced end rule via a satisfier-firing invariant rule. Note that
the interplay between a satisfier-firing timed rule and a satisfier-firing invariant
rule is analogous to that of a durative rule’s induced end rule and invariant rule.
However, instead of a duration given by a durative rule, this invariant rule specifies
a deadline for firing the satisfier-firing timed rule according to the deadline given in
the urgency rule.

Definition 5.6.4 (Induced satisfier-firing invariant rule). Given an urgency rule
U = (GT , DT , ST , D, S, name, dl), the induced satisfier-firing invariant rule of U is an
invariant rule s f ir = (L, z) where

• VG,L = {di} ∧ type(di) = diType(name) ∧ EG,L = ∅,

• VCI,L = {ci} ∧ ECI,L = {(ci, di)}, and

• z = {ci ≤ dl}.

Both a satisfier-firing timed rule and a satisfier-firing invariant rule need a clock
instance to operate on. Such a clock instance is created by a satisfier-firing clock
instance rule.

Definition 5.6.5 (Induced satisfier-firing clock instance rule). Given an urgency rule
U = (GT , DT , ST , D, S, name, dl), the induced satisfier-firing clock instance rule of U is a
clock instance rule s f cr = (L, R, r,N ) where

• VG,L = VG,R = {di} ∧ type(di) = diType(name) ∧ EG,L = EG,R = ∅ and

• VCI,L = ∅ ∧ ECI,L = ∅ ∧VCI,R = {ci} ∧ ECI,R = {(ci, di)}.

Now, we extend the induced start rule of an urgency satisfying rule such that it
creates a satisfaction indicator in the host graph. This extension is done analogously
to the extension of the urgency demanding rule’s end rule.

Definition 5.6.6 (Extension of an urgency satisfier’s induced start rule). Let U =

(GT , DT , ST , D, S, name) be an urgency rule and DR a set of durative rules. For each
urgency satisfier tuple (D, s) ∈ S, the induced start rule sr = (L, R, r,N , z, Vres) of
D ∈ DR is extended into a timed rule sr′ = (L, R′, r,N , z, Vres) where

• VSI = {si} ∧ type(si) = siType(name) ∧
ESI = {e|src(e) = si ∧ tgt(e) ∈ ran(s) ∧

type(e) = siEdgeType ◦ s−1 ◦ tgt(e)},

• VG,R′ = VG,R ∪VSI ∧ EG,R′ = EG,R ∪ ESI , and

• VCI,R′ = VCI,R ∧ ECI,R′ = ECI,R.

Figure 5.29 shows the extended induced start rule of (urgency) satisfying rule
brakeRailCab. The extension is done according to the satisfier constraint morphism
of Figure 5.24(c). It is analogous to the extension of the induced end rule of the
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:RailCab
driving
+ rl
+ rl(driving)

:Track
+ rl

:Track
free
+ rl
+ rl(free)
+ wl(free)

on

«++»
rl(on)

«++»
wl(on)

next
«++»

rl(next)

«++»
:SI

Figure 5.29: Satisfying rule brakeRailCab’s induced start rule extended according to
urgency rule immediatelyMoveRailCab

demanding rule. The only new element is a satisfaction indicator, which is connected
to the RailCab node and the left Track node.

If the induced start rule of a satisfying rule is applied in a situation where there
was no demand in urgent execution, it creates a satisfaction indicator that is not
needed and thus not consumed by a satisfier-firing timed rule. To prevent such a
satisfaction indicator from remaining in the system until an unrelated satisfier-firing
timed rule is applied, we delete it immediately. This is done by a satisfier-cleaning
timed rule.

Definition 5.6.7 (Induced satisfier-cleaning timed rule). Given an urgency rule
U = (GT , DT , ST , D, S, name), the induced satisfier-cleaning timed rule of U is a timed
rule sctr = (L, R, r,N , z, Vres) where

• VSI = {si} ∧ type(si) = siType(name) ∧
ESI = {e|src(e) = si ∧ tgt(e) ∈ VST ∧ type(e) = siEdgeType ◦ tgt(e)},

• VG,L = VST ∪VSI ∧ EG,L = EST ∪ ESI ,

• VG,R = VST ∧ EG,R = EST ,

• VCI,L = VCI,R = ∅ ∧ ECI,L = ECI,R = ∅,

• r : L→ R, with dom(r) = R, is the identity morphism on R,

• N = ∅, and

• z = ∅ ∧Vres = ∅.

Figure 5.30 shows the satisfier-cleaning timed rule that has been directly induced
by immediatelyMoveRailCab. While this rule looks similar to the satisfier-firing
timed rule, except for the missing demand indicator, this does not have to be the case
for an arbitrary urgency rule. Instead of the complete connecting graph, satisfier-
cleaning timed rules only use the subgraph constituting the satisfier interface. The
demander interface is irrelevant for satisfier-cleaning timed rules, because there was
no application of a demanding rule when a satisfier-cleaning timed rule is applied.
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:RailCab
driving

:Track

on

«--»
:SI

Figure 5.30: Induced satisfier-cleaning timed rule of urgency rule immediatelyMove-

RailCab

The application of a satisfier-cleaning timed rule is coupled to the application of
a satisfying rule’s induced start rule via a satisfier-cleaning invariant rule.

Definition 5.6.8 (Induced satisfier-cleaning invariant rule). Given an urgency rule
U = (GT , DT , ST , D, S, name), the induced satisfier-cleaning invariant rule of U is an
invariant rule scir = (L, z) where

• VG,L = {si} ∧ type(si) = siType(name) ∧ EG,L = ∅,

• VCI,L = {ci} ∧ ECI,L = {(ci, si)}, and

• z = {ci = 0}.

Both a satisfier-cleaning timed rule and a satisfier-cleaning invariant rule operate
on a clock instance that is created by a satisfier-cleaning clock instance rule.

Definition 5.6.9 (Induced satisfier-cleaning clock instance rule). Given an urgency
rule U = (GT , DT , ST , D, S, name), the induced satisfier-cleaning clock instance rule of U
is a clock instance rule sccr = (L, R, r,N ) where

• VG,L = VG,R = {si} ∧ type(si) = siType(name) ∧ EG,L = EG,R = ∅ and

• VCI,L = ∅ ∧ ECI,L = ∅ ∧VCI,R = {ci} ∧ ECI,R = {(ci, si)}.

As with a durative graph transformation system without urgency rules, the
semantics of a durative graph transformation system with urgency rules is given by
its induced timed graph transformation system. Since Definitions 5.2.18 and 5.5.6 do
not regard urgency rules, we have to provide a new definition for a durative graph
transformation system with urgency rules.

Definition 5.6.10 (Induced timed graph transformation system respecting urgency
rules). Let DS = (T G, GT

0 ,DR, CR,UR) be a durative graph transformation system
that contains a set of concurrency rules CR and a set of urgency rules UR and T S =

(TG, TiG0, TR, IR, CR) its induced timed graph transformation system respecting
concurrency rules according to Definition 5.5.6. Its induced timed graph transformation
system respecting urgency rules T S ′ = (TG′, TiG0, TR′, IR′, CR′) differs from T S in
that
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• the induced TGTS type graph TG has been extended into a type graph TG′

that contains a demand indicator type and a satisfaction indicator type for
each urgency rule in UR as well as their demand indicator edge types and
satisfaction indicator edge types,

• each timed rule tr ∈ TR whose inducing durative rule D is referenced by
an (urgency) demander or (urgency) satisfier tuple of an urgency rule in UR
has been extended into a timed rule tr′ ∈ TR′ as defined in Definitions 5.6.2
and 5.6.6, and if D is referenced by multiple (urgency) demander or (urgency)
satisfier tuples (of one or more urgency rules in UR), then the timed rule is
extended successively, and

• in addition to the extended variants of those timed rules in TR, the invariant
rules in IR, and the clock instance rules in CR, the induced timed graph
transformation system T S ′ also contains those timed rules, invariant rules,
and clock instance rules that have been induced by UR according to Defini-
tions 5.6.3 to 5.6.5 and 5.6.7 to 5.6.9.

Note that if there is no compatible satisfying rule that can be applied within
the urgency rule’s deadline after the demanding rule’s application (and there is
no timed rule making a satisfying rule applicable without passing more time than
allowed), a time-stopping deadlock occurs. During operation of the system, this is
not a problem per se, because the system does not have to take a path of the state
space that leads into a time-stopping deadlock. After all, it is the task of the system’s
planning component to find a path leading to a certain goal specification, and if
such a path exists, it it obviously free of deadlocks.

5.7 Related Work

Gyapay et al. [GHV02] proposed an approach to graph transformation with time that
annotates codes with timestamps, called chronos values. Such chronos values can
be read and written upon application of a graph transformation rule. When this is
done, all written chronos values are set to the same time, i.e., the firing time of the
graph transformation, which has to be higher than all chronos values read. Whether
or not a node has a chronos value is defined via the type graph, i.e., either all nodes
of a certain type have a chronos value or none of them. By assigning chronos values
(via the RHS) relatively to their values read (via the LHS), a graph transformation
rule can be seen as having some sort of firing duration, although its application is
atomic.

There are vital differences between graph transformations with time and durative
graph transformations. If there are types without chronos values or chronos values
of some nodes in the RHS are not updated by a rule application, then there can
be nonsensical sequences of graph transformations, where firing times are not
monotonically increasing. If not, then no concurrent application of two rules is
possible if the matches of both rules overlap. The reason for this is that each rule
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application increases the chronos values of nodes in its match by its firing duration.
This is clearly more restrictive than the DGTS formalism. Since graph transformation
with time also do not have any concepts analogous to time guard and invariant
rules, they would not have been a suitable alternative to TGTS for implementing the
various concepts of the DGTS formalism.

Syriani and Vangheluwe [SV11; SV08] developed a modular language for timed
graph transformation, called MoTif. Its semantics is based on Discrete EVent system
Specification (DEVS) [Zei84], where graph are embedded in events being transmitted
between scheduling units, called atomic DEVS models, which run in parallel. In
MoTif, atomic DEVS models are transformation entities, which can have different
execution semantics, e.g., applying a rule once, at all matches, or as many times as
possible. These transformation entities have a so-called time advance specifying a
delay after which the rule application occurs, i.e., graph transformation rules are
applied instantaneously.

As with most related approaches, MoTif is more similar to timed graph trans-
formation systems than to durative graph transformation systems. However, a
downside compared to the TGTS formalism is that it is not possible to maintain a
single consistent representation of the host graph when rules are being applied con-
currently, because each transformation entity works on its own copies transmitted
via events. As a consequence, concurrency issues are difficult to handle.

In the approach of de Lara et al. [Lar+14; Lar+10], graph transformation rules can
schedule the application of other graph transformation rules at a later point in time.
The approach is based on discrete event simulation, i.e., the application of a graph
transformation rule is considered an event, and the scheduling of events is defined
in a structure similar to an event graph. This structure contains so-called invocation
edges and canceling edges. An invocation edge schedules future rule applications
of its target rule when its source rule has been applied. Canceling edges discard
scheduled rule applications of their target rules. A scheduled rule application is also
discarded when its match is invalidated by another rule application. As a result of
this, there is no guarantee that a scheduled rule application will be executed.

On the plus side, scheduled rule applications may also include matching con-
straints. Formally, these matching constraints are defined similar to constraint
morphisms in the DGTS formalism. However, there is no connecting graph with
individual interface subgraphs. As a consequence, matching constraints can only be
formalized via elements existing in both rules.

Boronat and Ölveczky [BÖ10] presented MOMENT2, a model transformation
framework supporting timed behavior. It is based on Maude [Cla+07], which is a
specification language and tool based on rewriting logic and capable of verifying
invariants and LTL properties. MOMENT2 introduces several timed constructs: a
clock, which increases its value according to the elapsed time, a timed value, which is
a clock with a (positive or negative) weighting factor, and a timer, which is a clock
running backwards. Timers can be deactivated or reset by graph transformation
rules. If a timer reaches zero, time is not allowed to pass anymore, i.e., a graph
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transformation rule has to be applied before the passing of time may continue. The
purpose of timers is thus similar to that of invariant rules in the TGTS formalism.

The approach of Rivera et al. [RDV10] is similar to MOMENT2 in that it ex-
tends in-place model transformations with timed behavior. In their tool e-Motions,
durations of graph transformation rules are specified as intervals representing the
minimum and maximum amount of time needed to execute the graph transfor-
mation. Its semantics is given by a mapping to Real-Time Maude [ÖM07]. Similar
to a durative graph transformation rule in DGTS, a rule in e-Motions is compiled
into two rewrite rules, the so-called triggering and realization rule. The use of timers
ensures that the amount of time consumed between executing these two rewrite
rules satisfies the duration interval. As opposed to MOMENT2, this approach is
more high-level because timers do not have to be managed manually.

Checking the rule’s applicability is implemented both in the triggering and
realization rule. Additional invariant checks are optional, cf. [RVV09]. The rule’s
execution is implemented in the realization rule. If the LHS match does not exist
anymore when the realization rule is scheduled to be applied, its execution is being
canceled. This might lead to erroneous behavior if the execution of a concurrent
graph transformation relied on this rule. In the DGTS formalism, such a cancellation
of durative rules is prevented by the use of a locking mechanism.

A distinguishing feature of e-Motions is the possibility to refer to past and
concurrent rule applications, called action executions, in graph transformation rules.
As there is no equivalent to a locking mechanism, this feature has to be used
by a designer to prevent conflicting graph transformations from being executed
concurrently. Using this feature to require a concurrent rule application shares
similarities with concurrency rules in the DGTS formalism. However, it is less
expressive for three reasons:

1. While the match of a required concurrent rule application can be restricted to
contain certain nodes, it is not possible to specify the position of these nodes in
the concurrent rule’s LHS. As a result, the concurrency rule allowChangePub-

lication cannot be specified correctly in e-Motions, because its satisfying
rule formConvoy has multiple nodes of the RailCab type but only one of them
satisfies the demand in concurrent execution.

2. Matching constraints can only be formalized for nodes appearing in both
rules. In the DGTS formalism, matching constraints are expressed via the
structure of the connecting graph, which enables to relate Base nodes in
changePublication to Track nodes in moveRailCab although moveRailCab has
no Base nodes and changePublication has no Track nodes.

3. Unlike concurrency rules in the DGTS formalism, it is not possible to specify a
disjunction of satisfying concurrent rule applications in e-Motions.

Baldan et al. [Bal+08] provide a theoretical framework for the definition of
transactional graph transformation systems. A transactional graph transformation
systems differentiates between graph elements that are stable and unstable. The stable
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part of a graph or state is that portion that is visible to an external observer, the
unstable part is hidden. A transaction is then a sequence of graph transformations
starting and ending in completely stable states but traversing through states with
unstable elements. If two transactions are parallel independent, then the graph
transformations they contain can be interleaved arbitrarily. Unfortunately, this
approach requires the non-existence of NACs. If NACs exist, there is no guarantee
that these graph transformations can be interleaved arbitrarily.

Comparing this to the DGTS formalism, locking edges and application indicators
can be seen as unstable elements and durative graph transformations as transactions.
An important difference is that transactional graph transformation systems do not
provide a notion of time, which is essential for durative graph transformation
systems. Due to the non-existence of NACs in transactional graph transformation
systems, they are also not suitable as semantic basis for the locking mechanism of
the DGTS formalism. In essence, transactional graph transformation systems are
more similar to refinement or module concepts of graph transformation systems,
see [Hec+99] for an overview of such approaches, than to durative or timed graph
transformation systems.

Corradini et al. [CFR09] employed transactional graph transformation systems to
implement graph transformations with dependencies. In a graph transformation system
with dependencies, graph transformation rules are supplemented with so-called
dependency relations, which express additional relationships between the deleted and
created elements of a graph transformation. The specification of these dependen-
cies itself underlies certain conditions, which guarantee that a suitable sequence of
graph transformations implementing the graph transformation with dependencies
exists (and can be constructed automatically). An application area for graph trans-
formations with dependencies are reactive systems: graph transformations with
dependencies provide a means to abstractly specify interaction patterns between the
reactive system and its environment. While dependency relations specify restrictions
affecting the refinement of a single graph transformation, a durative graph trans-
formation brings along restrictions regarding the execution of multiple concurrent
graph transformations, i.e., it implies forbidden as well as mandatory interactions.

5.8 Discussion

The design of durative graph transformation rules has mostly been motivated by
the wish for a graph transformation approach with time that feels natural and
intuitive to a modeler. Therefore, the application of a durative graph transformation
rule was defined such that it mostly corresponds to that of an untimed rule, with
the only difference that it consumes time and allows the concurrent application of
other durative rules. For the same reason, no interleaving of start and end times
of durative graph transformations stops an ongoing durative graph transformation
from terminating, and every interleaving results in the same graph when each
involved rule has terminated. These properties of durative rules have already been
addressed and proven in Sections 5.3.1 and 5.3.2.
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In this section, we want to discuss design decisions regarding the syntax and
semantics of concurrency and urgency rules. This section mainly addresses three
things:

1. syntactic sugar added into the syntax of concurrency and urgency rules,

2. why the semantics of concurrency and urgency rules does not restrict the
application of durative rules any more than necessary, and

3. why the semantics of concurrency and urgency rules has been designed
differently although their syntax is almost identical.

Concurrency and urgency rules both have a non-empty set of demander tuples
as well as a non-empty set of satisfier tuples. In the case of demander tuples, having
only a single tuple would have been sufficient. The option of defining more than
one tuple in the set of demander tuples can be seen as syntactic sugar. For the set of
satisfier tuples, the option of having more than one tuple in the set is necessary for
the expressiveness of the rules.

The necessity for having more than one tuple in the set of satisfier tuples can
be seen easily. The application of a demanding rule creates a demand that can be
satisfied by an application of a satisfying rule. In cases where we have multiple
options to satisfy this demand, e.g., multiple durative rules moving a RailCab and
thus satisfying the demand of the concurrency rule allowChangePublication, we
need the possibility of having multiple tuples in the set of satisfier tuples.

To see that the option of defining more than one tuple in the set of demander
tuples is only syntactic sugar, consider the urgency rule immediatelyMoveRailCab.
Each durative rule that moves a RailCab and does not come to a halt is referenced
by immediatelyMoveRailCab as a demanding rule. Besides moveRailCab, this can be
accelerateRailCab or durative rules related to convoy membership change, e.g.,
leaveConvoy. However, instead of referencing every demanding rule from the same
urgency rule, we can flatten each reference to a demanding rule into its own urgency
rule. These flattened urgency rules each have the same connecting graph and the
same set of satisfier tuples. The difference in semantics between such a set of
flattened rules and an integrated rule is only a technical one. Each urgency rule in
the set of flattened rules gives rise to its own demand and satisfaction indicator type.
As a consequence, each demanding rule works with a different demand indicator
and each satisfying rule delivers multiple satisfaction indicators, i.e., one for each
flattened rule. However, as far as the application of durative rules is concerned, this
makes no difference. Whether each demanding rule creates the same or a distinct
demand does not matter, because the demand can be satisfied by the same satisfying
rules in both cases. For all practical matters, the meaning of a set of flattened urgency
rules is the same as that of the integrated urgency rule.

Next, we give reasons as to why the semantics of concurrency and urgency rules
does not restrict the application of durative rules any more than necessary. A certain
restriction of a demanding rule’s applicability is of course intended: a demanding
rule whose demand is not satisfied is not applicable. However, if a demand can
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be satisfied, i.e., a satisfying rule can be applied with a compatible match, the
concurrent or urgent execution of both rules is possible unless it is prevented by
locking conflicts. For satisfying rules, there is no such restriction: if a durative rule
is applicable at a match, it is also applicable at the same match if referenced as a
satisfying rule by a concurrency or urgency rule.

No unnecessary restrictions from concurrency rules In the case of concurrency
rules, the induced start and end rule of a demanding rule are extended via
a pushout construction. The elements added by this pushout cause matches
of the demanding rule’s induced rules to be less likely. However, this is not
unjustified and does not restrict the applicability of demanding rules any more
than necessary: the elements added to the induced rules have to exist in the
host graph anyway because every compatible satisfying rule requires them.

The applicability of a satisfying rule’s induced end rule is only restricted by
read locks on its satisfaction indicator, which are acquired and released by
demanding rules. Therefore, it is not restricted by any concurrency rule if no
application of a demanding rule is involved.

Note that it is technically possible to specify a concurrency rule involving
incompatible rules, i.e., the demand can never be satisfied due to locking
conflicts. While such a specification is syntactically correct, it is of course not
sensible. Fortunately, such unreasonable specifications can easily be found via
a critical pair analysis, i.e., by generating all overlapping graphs of the LHSs
of a demanding and a satisfying rule and checking whether there is a conflict
if both rules are applied, cf. [Plu93; LE08; LEO06]. If there is a conflict for each
overlapping graph, the specification of the concurrency rule is at fault.

No unnecessary restrictions from urgency rules The case of urgency rules is more
simple. Here, induced rules are extended only in that they create demand
and satisfaction indicators, which are consumed again by satisfier-firing and
satisfier-cleaning timed rules. The demand for a satisfying rule to be applied
is caused indirectly via a satisfier-firing timed rule. In doing so, the applica-
bility of the demanding rule itself is technically not restricted by the urgency
rule. Furthermore, the satisfier-firing timed rule can always be applied if a
compatible satisfying rule has been applied.

The different approaches used in the semantics of concurrency and urgency rules
leads to the question as to why they have been realized so differently. Recall that the
semantics of concurrency rules uses a satisfaction indicator and a pushout to allow
for a proper placement of the satisfaction indicator in induced rules of demanding
rules, while the semantics of urgency rules simply uses a demand indicator in
addition to the satisfaction indicator. Implementing the semantics of concurrency
rules with a demand indicator instead of the pushout construction or the semantics
of urgency rules via a pushout construction instead of one of the indicators would
have had disadvantages compared to the semantics realized.



5.8. DISCUSSION 137

Argument against demand indicators in concurrency rules The main idea of us-
ing a pushout construction in the semantics of concurrency rules is that we
can require a satisfaction indicator at the correct place in the demanding rules’
induced rules. Without the pushout, we would not have all elements needed
to attach the satisfaction indicator properly. This is why we need to have a
second indicator, in this case for the demanding rule, when no pushout is
used.

Now, if we used a demand indicator for concurrency rules, we would need
another timed rule to check whether the demanding and satisfying rule’s trans-
formations are compatible. This is what the satisfier-firing timed rule does in
the case of urgency rules. However, introducing such a rule into the semantics
of concurrency rules and ensuring its application via an invariant rule leads to
more states in the state space, i.e., in each path where a concurrency rule has
been effective, there is a state before applying the concurrency-rule equivalent
of a satisfier-firing timed rule and a state afterwards. This is obviously a
drawback compared to the semantics realized.

Argument against a pushout construction in urgency rules In the case of concur-
rency rules, the pushout construction is used to allow a proper attachment of
a satisfaction indicator to elements of the induced rules of a demanding rule.
This avoids the need for a demand indicator and thus the need for another
timed rule whose application ensures that the demanding and satisfying rule’s
transformations are compatible. Their compatibility is given directly by the
placement of the satisfaction indicators.

There are two options to try when adapting such a use of a pushout to the
semantics of urgency rules: either we use a pushout in the semantics of
demanding rules to enable the attachment of satisfaction indicators, or we
use a pushout in the semantics of satisfying rules to enable the attachment of
demand indicators.

Using a pushout in the semantics of demanding rules, i.e., for extending the
induced end rule of a demanding rule, would mean trying to avoid the need
for a demand indicator by directly attaching the satisfaction indicator at a
place ensuring compatibility of the demanding and satisfying rule’s transfor-
mations. However, if the satisfying rule creates the satisfaction indicator, and
the demanding rule checks whether its demand is satisfied by requiring the
existence of a satisfaction indicator, this would mean that the satisfying rule
has to start before the demanding rule ends. This would impose multiple
problems. First, such a semantics would not support deadlines and thus no
applications of other durative rules during the interval between the application
of the demanding rule ends and that of the satisfying rule starts. Second, and
this is the more important problem, such a semantics would not support trans-
formations where the application of the satisfying rule sequentially depends
on the demanding rule’s application.
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The troublesome ordering of the demanding rule’s induced end rule and
satisfying rule’s induced start rule could potentially be fixed by letting the
demanding rule create the satisfaction indicator and the satisfying rule con-
sume it. In doing so, this “satisfaction” indicator would essentially indicate a
demand, like a demand indicator, but be placed like a satisfaction indicator,
i.e., the pushout is still used in the demanding rule’s semantics. However, this
would fix the problems mentioned above only in parts. Due to the pushout, the
satisfier interface subgraph would still have to be available in the configuration
when the application of the demanding rule ends. This would be bad because
it would still restrict the applicability of the demanding rule’s induced end
rule more than necessary. With the realized semantics, the satisfier interface
subgraph does not have to be available when the application of the demanding
rule ends but can be established afterwards, i.e., after the application of the
demanding rule ended but before that of the satisfying rule starts, or by an
independent parallel transformation.

The second option, i.e., using a pushout in the semantics of satisfying rules,
would mean trying to avoid the need for a satisfaction indicator by directly
attaching the demand indicator in the induced start rule of a satisfying rule
at a place ensuring compatibility of the demanding and satisfying rule’s
transformations. In doing so, the elements added by the pushout to the
satisfying rule’s induces start rule obviously cause matches of this rule to
be less likely. While unproblematic for concurrency demanding rules, such
a restriction is not appropriate for urgency satisfying rules: each satisfying
rule should still be applicable independently of any demanding rule, and its
application should not be restricted by additional elements in the LHS of its
induced start rule.

Finally, we conclude with an observation on the interface subgraphs of a con-
necting graph. Interface subgraphs can also be seen as interfaces in the sense of
abstract durative rules, i.e., durative rules that cannot be applied but define common
parts of concrete durative rules. Therefore, specifying the demanding and satisfying
rules of a concurrency or urgency rule is similar to rule inheritance approaches,
which have already been established for model-to-model transformation languages,
cf. [Wim+11]. In this sense, demander and satisfier constraint morphisms can be
seen as declarations of interface implementations. As an alternative to the interface-
centric view for these declarations, i.e., the compact representations for demander
and satisfier constraint morphisms of Figures 5.16 and 5.25, they can also be shown
from the perspective of a durative rule. Referencing the nodes of the connecting
graph in such a view can be done by employing object names in connecting graphs,
analogously to the compact representation of concurrency and urgency rules.



6
Temporal PDDL-Based Planning
for Durative Graph
Transformation Systems

This chapter presents an approach for planning software architecture reconfiguration
with time and concurrency. A key component of this approach is a translation scheme
that builds a propositional planning domain representation in PDDL from a durative
graph transformation system. This PDDL representation allows for making use of
off-the-shelf temporal planning systems, which yield plans that exactly state when
and how long reconfigurations are going to be executed. By employing durative
graph transformations and the translation scheme presented in this chapter, temporal
planning techniques can be integrated with component-based software development
approaches to architectural reconfiguration.

Most current planning approaches to architectural reconfiguration do not sup-
port time, and consequently only generate non-temporal plans. To the best of our
knowledge, the only planning approach that does support time (besides ours) was
developed by Tichy and Klöpper [TK11] as part of the CRC 614. Like our approach,
their approach builds on graph transformation rules for modeling reconfiguration be-
havior. They assign each rule a duration and temporal annotations, like «at_start»

and «at_end», as stereotypes to the elements of rules to specify when conditions
have to hold and when effects are carried out. However, this is cumbersome from a
modeling perspective for two reasons:

1. The domain modeler has to exercise caution not to enable potentially danger-
ous conflicts, e.g., the deinstantiation and use of a software component at the
same time. In safety-critical environments, like real-time mechatronic systems,
such conflicts might result in system crashes or the loss of lives.

2. Requirements regarding the concurrent or urgent execution of reconfigurations
cannot easily be expressed. Instead of explicitly expressing such requirements
in language constructs dedicated for this purpose, such requirements indirectly
result from the interplay of multiple graph transformation rules.

Our approach to generate temporal reconfiguration plans can be seen as an exten-
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sion of [TK11]. We solve planning tasks by translating durative graph transformation
systems into PDDL – more precisely PDDL 2.1 level 3 [FL03], which supports discrete
durative actions – and feeding them into an off-the-shelf planning system, like SG-
Plan [CWH06] or POPF [Col+10]. However, our solution renounces from assigning
start and end annotations. Instead, we adapt the locking mechanism implemented
into the semantics of durative graph transformation rules, cf. [ZW15; ZW13], and the
concepts of concurrency and urgency rules to PDDL’s propositional representation.
A planning domain model originating from a durative graph transformation system
thus ensures that plans do not contain any conflicting transformations, but comply
with the requirements formalized as concurrency and urgency rules.

Together with the language provided in the last chapter, i.e., the DGTS formalism,
the translation scheme constitutes a convenient method for specifying temporal plan-
ning domains, for which planning tasks can be solved by state-of-the-art planning
systems. Apart from the software engineering perspective, this translation scheme
can also be seen as a knowledge engineering contribution to the AI planning research
community. While knowledge engineering approaches usually cover multiple phases
of the design cycle of a planning application, e.g., domain specification, analysis, and
plan visualization, this approach concerns only the initial phase, i.e., the construction
of a planning domain model. Its strength lies in its high level of abstraction, which
relieves a designer of explicitly addressing undesired concurrency, and its explicit
representation of required concurrency and urgency.

The translation scheme provides different options for the translation of certain
features of a durative graph transformation system. Since the choice of translation
variant has a huge impact on the computation time needed by the employed planning
system, we also provide an evaluation comparing their performance.

The deletion of nodes can follow the

• DPO approach, where a graph transformation cannot be applied if it results in
a dangling edge, or

• SPO approach, where dangling edges are deleted.

Both approaches have been discussed in Chapter 2. The choice between these two
options depends on the application domain and its intended semantics.

Furthermore, there are two different variants for the translation of negative
application conditions. We can

• translate each NAC into a negative existential quantification or

• employ functions counting the number of adjacent edges for each node, which
enables to translate each NAC into a simple numeric fact.

Unfortunately, the technique employing counting functions, which proved to be
more efficient, is restricted to specific kinds of NACs, i.e., forbidden edges and
forbidden pairs.

The next section introduces notions of temporal planning problems and temporal
plans that are appropriate for durative graph transformation systems. Section 6.2
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presents a variant of the RailCab system as application example, which is simpler
than that in the last chapter. The application example differs in that it does not
model base stations or acceleration and braking of RailCabs and does not employ
concurrency of urgency rules, but makes an extensive use of NACs as compensation.
Using this variant of the RailCab system as running example, we explain most
parts of our translation scheme in Section 6.3. A prototype implementing this
translation scheme is shortly introduced in Section 6.4. Sections 6.5 and 6.6 provide
an evaluation of planner performance on the generated PDDL domains. Section 6.5
covers the alternative translation variants mentioned above, and Section 6.6 checks
for the feasibility of employing concurrency and urgency rules by evaluating their
impact on planner performance. The sections on concurrency and urgency rules and
their evaluation are based on the application example of the last chapter.

Related work in the area of graph transformation planning has already been
discussed in Section 4.5. In Section 6.7, we cover related work that is specifically
concerned with translations into PDDL, whether from graph transformation systems
or other model-based or object-oriented representations. Eventually, we conclude
this chapter with a discussion and suggestions for optimizing planner performance
on our models in Section 6.8.

6.1 Problem Statement

The planning problem on a durative graph transformation system is similar to that
on an untimed graph transformation system. Like the graph transformation planning
problem, the temporal graph transformation planning problem uses a target graph
pattern as a goal specification. The task is to find a subgraph isomorphism from this
target graph pattern to a state that can be found from the initial state by applying
durative graph transformation rules. In doing this, the application of durative graph
transformation rules also has to respect concurrency and urgency rules.

Definition 6.1.1 (Temporal graph transformation planning problem). A temporal
graph transformation planning problem T P = (T G, GT

0 ,DR, CR,UR, Ptgt) consists of

• a type graph T G,

• an initial timed graph GT
0 ,

• a set of durative graph transformation rules DR,

• a set of concurrency rules CR,

• a set of urgency rules UR, and

• a target graph pattern Ptgt = (Ltgt,Ntgt).

In the non-temporal case, a plan is simply a sequence of graph transformations.
However, since we are facing durative graph transformations, the application inter-
vals of multiple graph transformations might overlap. A temporal plan is thus a
set of tuples of points in time and durative graph transformations, i.e., a schedule of
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durative graph transformations. This schedule of durative graph transformations
respects the sets of concurrency and urgency rules given in the temporal graph
transformation planning problem.

Definition 6.1.2 (Temporal graph transformation plan). Given a temporal graph
transformation planning problem T P = (T G, GT

0 ,DR, CR,UR, Ptgt) with a target
graph pattern Ptgt = (Ltgt,Ntgt), a temporal graph transformation plan for T P is a

finite set of tuples (t, D,m
==⇒) ∈ SKED, where t ∈N is a point in time on a global clock

and D,m
==⇒ is a durative graph transformation, such that

• for each tuple (t, D,m
==⇒) ∈ SKED, the match m of durative rule D exists at its

respective point in time t and satisfies the NACs ND of D,

• for each tuple (t, D,m
==⇒) ∈ SKED where D is referenced by concurrency rule

C via demander constraint morphism d : DT → LD , there is another tuple

(t′, D
′ ,m′

==⇒) ∈ SKED where

– D′ is referenced by C via satisfier constraint morphism s : ST → LD′ ,

– there exists a match g : GT → G from the connecting graph of C to the
host graph at time t such that m ◦ d(DT) = g(DT) and m′ ◦ s(ST) = g(ST),

– and for t′ hold t′ ≤ t and t′ + dD′ ≥ t + dD .

• for each tuple (t, D,m
==⇒) ∈ SKED where D is referenced by urgency rule U

via demander constraint morphism d : DT → RD , there is another tuple

(t′, D
′ ,m′

==⇒) ∈ SKED where

– D′ is referenced by U via satisfier constraint morphism s : ST → LD′ ,

– there exists a match g : GT → G from the connecting graph of C to the host
graph at time t′ such that m∗ ◦ d(DT) = g(DT) and m′ ◦ s(ST) = g(ST),

– and for t′ hold t′ ≥ t + dD and t′ ≤ t + dD + dlU .

• the application of all durative graph transformations from SKED at their
respective points in time results in a graph GT

k such that Ltgt has an injective
match m in GT

k and m satisfies Ntgt.

This definition explains what a temporal plan is from the perspective of a
durative graph transformation system. From the perspective of its induced timed
graph transformation system, a temporal plan is simply a sequence of transitions
with certain properties. Recall that the semantics of durative graph transformation
systems is given by action transitions and delay transitions. An action transition
results from the application of a timed graph transformation rule. Even when
there is no delay transition between two action transitions, the action transitions
are applied in sequence and thus have an ordering. However, this ordering is not
indicated by a temporal graph transformation plan as defined above.

The reason for this is that the ordering of transformations on the level of its
induced timed graph transformation systems is not relevant from the perspective of
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a durative graph transformation system. When multiple durative graph transforma-
tions start at the same time, the actual ordering of their induced start transformations
does not matter, because they are parallel independent. The same holds for multiple
end transformations. As a consequence, there is no need to indicate this ordering in
a temporal graph transformation plan. The ordering of transformations occurring at
the same point in time matters only in cases with a sequential dependency, which
can only appear between end and start transformations. In all such cases, the end
transformation is applied first.

A transition sequence of an induced timed graph transformations system that
ends in a state satisfying the target graph pattern is not necessarily a valid plan.
This is because there might be a durative graph transformation that did not finish its
execution. In order to constitute a plan, the transition sequence also needs to finish
each durative graph transformation with an end transformation. The definition
given above meets this requirement because it considers each durative rule in its
entirety.

Given a temporal graph transformation plan, the duration of the complete graph
transformation process from the initial state to that satisfying the target graph
pattern is given by the plan’s makespan, i.e., the interval from the beginning of the
first durative graph transformation to the end of the last one.

6.2 Application Example: RailCab System (Emphasis on NACs)

To explain most parts of our translation scheme, we again use the RailCab system
as a running example. Unlike the RailCab domain used in the last chapter, the
variant used here makes extensive use of NACs. While this is more expensive for
the employed planning system, it avoids modeling many of the self edges needed
in the last chapter. Furthermore, this domain does not include base stations or the
acceleration and braking of RailCabs. Both would not contribute in understanding
the translation scheme but simply increase the size of the resulting PDDL listings.
As a result of this, the domain is rather simple. Figure 6.1 shows its type graph.

RailCab

Track

Convoy

on

member

next

Figure 6.1: Type graph of the RailCab-NACs domain

Figure 6.2 provides all graph transformation rules for this domain. The rule
joinConvoy, see Figure 6.2(a), shows a RailCab joining a convoy of RailCabs. It
specifies the creation of a member edge representing the RailCab’s participation in
the convoy operation simultaneously with its movement to the next track segment.
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d := 4

:RailCab

:Track:Track:Track

:RailCab:RailCab

:Convoy:Convoy

«++»
on

«++»
membermember

on

next

on

member

next

«- -»
on

(a) joinConvoy

d := 4

:Convoy:Convoy «++»
:Convoy

:RailCab :RailCab

:Track :Track :Track

:RailCab

«++»
on

«++»
membermember

on

«++»
member

next

member

on

next

«- -»
on

(b) createConvoy

d := 4

:RailCab

:Track:Track:Track

:RailCab:RailCab

:Convoy

:RailCab

member

onon

«- -»
member

«- -»
on

«++»
on

next

member

next

(c) leaveConvoy

d := 4

:RailCab

:Track:Track:Track

:RailCab:RailCab

«- -»
:Convoy

:RailCab

on

«- -»
member

on

«- -»
member

«- -»
on

«++»
on

next

member

next

(d) dissolveConvoy

d := 5

:RailCab

:Track :Track

:Convoy

:RailCab

member

«++»
on on

next

«- -»
on

(e) move

d := 3

:RailCab

:RailCab

:Track:Track:Track

:RailCab:RailCab

:Convoy

member

«++»
on on«- -»

on
«++»

on

next

member

member

«- -»
on

next

(f) moveConvoy2

Figure 6.2: Durative graph transformation rules of the RailCab-NACs domain
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The rule createConvoy, see Figure 6.2(b), is similar. In addition to the RailCab’s
movement and creation of a member edge, it specifies the creation of a Convoy node.
Thus, it can be applied to configurations where the Convoy node is not yet available.

The rules leaveConvoy and dissolveConvoy, see Figures 6.2(c) and 6.2(d), specify
reconfigurations inverse to that of joinConvoy and createConvoy. In leaveConvoy,
only a single member edge from a RailCab to the Convoy node is deleted, whereas in
dissolveConvoy the Convoy node itself is deleted.

The rule move, see Figure 6.2(e), simply specifies the movement of a RailCab to
the next track segment. It can only be applied if the RailCab does not participate in
a convoy operation. For the movement of RailCabs that do, there are separate rules.
The rules moveConvoy2, see Figure 6.2(f), moves a convoy of two RailCabs, the rule
moveConvoy3, which is not shown, a convoy of 3 RailCabs.

Since RailCabs drive slower if they are on their own, move has a duration of 5
time units, while moveConvoy2 and moveConvoy3 each have a duration of 3 time units.
All the other rules have a duration of 4 time units.

The initial configuration of a planning task defines the complete railway network
as well as initial positions for the RailCabs available in the system. The goal
specification is given by the RailCabs’ desired target positions. During operation
of the RailCab system, initial configurations for the planning subsystem can be
generated from actual runtime states of the system. Goal specifications are either
constructed from user input or predefined by the system designer.

The different problem instances used for evaluation are illustrated in Sections 6.5
and 6.6 along with the results of the experiments. For these problem instances, the
employed planning systems computed temporal reconfiguration plans. In accor-
dance with the domains that have been generated from the graph transformation
rules shown above, these plans take advantage of parallel execution of actions when
possible while guaranteeing that concurrently executed actions do not interfere with
each other. With regard to the application scenario, this means that multiple Rail-
Cabs are driving at the same time if they are both members of the same convoy or
operating sufficiently apart from each other, but wait for other RailCabs if necessary,
e.g., to clear a common track segment.

Listing 6.1 shows an excerpt of a plan computed by SGPlan6 [CWH06; HW08]
for a problem instance involving 4 RailCabs. As stated in Section 6.1, the plan
corresponds to a set of tuples of points in time and durative graph transformations,
which are represented as ground actions. During the interval from 39 to 42, railcab4
and railcab2 operate in a convoy. From 42 to 46, they break up the convoy oper-
ation because the underlying domain specifies a Y junction between maintrack_6,
endtrack_1_1, and endtrack_2_1, and they need to move along different routes to
arrive at their target locations. In order to do so, railcab4 has to fall back, i.e., it
still occupies maintrack_5 at 46. From 46 to 50, railcab4 instantiates a new convoy
with railcab3, which needs to move along the same route as railcab4 and waited
on endtrack_2_1 since 39 for railcab4.
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Listing 6.1: Excerpt of a plan for 4 RailCabs

1: 30.016: (MOVECONVOY2 convoy1 railcab4 railcab2 maintrack_3 maintrack_4 ⤦

↪ maintrack_5) [3.0000]

2: 30.017: (BREAKCONVOY convoy2 railcab3 railcab1 maintrack_6 endtrack_1_1 ⤦

↪ endtrack_1_2) [4.0000]

3: 34.018: (MOVE railcab3 maintrack_6 endtrack_2_1) [5.0000]

4: 39.019: (MOVECONVOY2 convoy1 railcab4 railcab2 maintrack_4 maintrack_5 ⤦

↪ maintrack_6) [3.0000]

5: 42.020: (BREAKCONVOY convoy1 railcab4 railcab2 maintrack_5 maintrack_6 ⤦

↪ endtrack_1_1) [4.0000]

6: 46.021: (CREATECONVOY convoy2 railcab4 railcab3 maintrack_5 maintrack_6 ⤦

↪ endtrack_2_1) [4.0000]

7: 46.022: (MOVE railcab1 endtrack_1_2 endtrack_1_3) [5.0000]

8: 50.023: (MOVECONVOY2 convoy2 railcab4 railcab3 maintrack_6 endtrack_2_1 ⤦

↪ endtrack_2_2) [3.0000]

9: 51.024: (CREATECONVOY convoy1 railcab2 railcab1 endtrack_1_1 ⤦

↪ endtrack_1_2 endtrack_1_3) [4.0000]

6.3 Translation Scheme

This section explains the construction of a PDDL domain file out of a given durative
graph transformation system DS = (T G, GT

0 ,DR, CR,UR) or temporal graph
transformation planning problem T P = (T G, GT

0 ,DR, CR,UR, Ptgt). Roughly
speaking, the type graph T G yields the declarations (of types and predicates) in
the domain file and each durative rule in DR yields an action schema. In doing so,
the LHS of a durative rule makes up the largest part of the action’s precondition.
The difference between the RHS and LHS yields the effect of the action. Each
concurrency rule in CR and each urgency rule in UR causes further literals within
those preconditions and effects. Each urgency rule in UR also yields a separate
action schema, called clip, which causes actions between which no time is allowed
to pass to be scheduled closely to one another. Like envelopes, clips are a concept
known in PDDL domain modeling, see [HLF03].

A quick overview of the complete translation scheme is given in Table 6.1. Serving
as a reference, this overview includes all different variants developed for the support
of forbidden pairs and the treatment of dangling edges. Details of this translation
scheme and its variants are given in the following subsections.

Note that our running example does not make use of attribute conditions or
manipulations. Attribute expressions for boolean and numerical attributes are
conceptually simple to support in PDDL and have already been presented in [TK11].
Boolean attribute expressions can be supported by treating them exactly like self
edges, and numerical attribute expressions can be supported by translating them
into numeric facts and numeric assignments.

Remember that a planning task consists of a domain and a problem file. While
domain files are generated according to the translation scheme, problem files are
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Table 6.1: Overview of the translation scheme. Table rows with an abbreviation to
the right of the table indicate entries relevant for certain translation variants only.
The abbreviations are introduced in Section 6.5 and not needed before.

Type level
type declaration of object
type / edge type declaration of predicate
edge type declaration of two counting functions *-C

Rule level
node parameter (with inequality checks in

case of injective matching of LHSs)
preserved node/edge positive literal
deletion node/edge positive literal→ negative literal
forbidden edge negative literal
creation node/edge negative literal→ positive literal
forbidden pair negative existential quantification

(with inequality checks in case of
injective matching of NACs)

*-Q

forbidden pair numeric fact on counting function *-C
deletion/creation edge numeric assignments on counting func-

tions
*-C

deletion node absence of dangling edges ensured
analogously to forbidden pairs

DPO-*

deletion node dangling edge deletion realized via uni-
versal quantification

SPO-Q

deletion node dangling edge deletion realized via
new action

SPO-C

creation node non-existence of leftover dangling
edges ensured via numeric fact

SPO-C

Locking on type level
type / edge type declaration of read lock as predicate

and write lock as function
edge type declaration of adjacency read and write

locks as functions

Locking on rule level
any node/edge check for write lock, acquire and re-

lease of read lock
deletion/creation node/edge check for read lock, acquire and release

of write lock
forbidden pair check for adjacency write lock, acquire

and release of adjacency read lock
creation edge check for adjacency read lock, acquire

and release of adjacency write lock
(each for source and target node)
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Table 6.1 Continued: Overview of the translation scheme

Concurrency and urgency rules on type level
concurrency rule declaration of envelope predicate and

envelope locking function
urgency rule declaration of clip predicates

Concurrency rules on rule level
concurrency demanding rule check for concurrency satisfaction, ac-

quire and release of envelope lock
concurrency satisfying rule check for envelope lock, indication of

concurrency satisfaction during appli-
cation interval

Urgency rules on rule level
urgency rule clip action
urgency demanding rule indication of urgency demand via clip

literal in at_end condition
urgency satisfying rule indication of urgency satisfaction via

clip literal in at_start effect

constructed from runtime data. Each problem file contains a set of objects in the
world, an init section, and a goal section. For each problem file associated with the
generated domain, the set of objects in the world and the init section constitute the
counterpart to the initial timed graph GT

0 . The goal section results from the target
graph pattern Ptgt.

6.3.1 Type Graph

The translation process begins with the declaration of types, predicates, and func-
tions. All these declarations can be derived from the type graph of the durative
graph transformation system. For the type graph of the RailCab-NACs domain, see
Figure 6.1, the generated declarations are shown in Listing 6.2. For now, we omit
the declaration of locking literals and functions.

The declarations are spread into three sections of the generated PDDL domain file:
the type declaration section :types, the predicate declaration section :predicates,
and the function declaration section :functions. Each type in the type graph gives
rise to a type in the type declaration section of the file. Every such type is a subtype
of Object, the root of the type hierarchy in PDDL. Since PDDL does not allow for
object creation or deletion, we use a predicate active for the supertype Object

stating whether a given object exists. Each edge type in the type graph is translated
into a predicate that is parameterized by its source and target type. Since there are
only three edge types in the type graph, we yield exactly three predicate declarations.
Their names each are a concatenation of the edge type’s label and its source and
target type’s label; the different labels are separated from each other via underscores.
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Listing 6.2: Generated declaration of types, predicates, and functions

1: (:types Convoy - Object RailCab - Object Track - Object)

2: (:predicates

3: (active ?object - Object)

4: (member_Convoy_RailCab ?convoy - Convoy ?railcab - RailCab)

5: (on_RailCab_Track ?railcab - RailCab ?track - Track)

6: (next_Track_Track ?track1 - Track ?track2 - Track)

7: ... % declarations for locking functionality

8: )

9: (:functions

10: ... % declarations for locking functionality

11: )

6.3.2 Durative Graph Transformation Rules

We first cover the translation of durative graph transformation rules without address-
ing forbidden pairs or the locking functionality. For the durative rule joinConvoy,
see Figure 6.2(a), Listing 6.3 shows its generated durative action. Since an LHS
match has to exist at the beginning of a durative rule’s application interval, we
require all conditions in the action to hold at_start (lines 5 to 25). The changes
made by the rule’s application, i.e., the creation and deletion of nodes and edges,
take effect at_end (lines 30 to 35).

Every node in the rule – regardless of whether it is preserved or going to be
created or deleted – is mapped to a parameter of the action (line 2). These parameters
are checked for inequality in lines 6 to 9 because we assume injective matchings in
the running example, i.e., each node in the LHS has to be mapped to a different
node in the host graph.

As alternatives to injective matching, the translation scheme also supports im-
plementing inequality checks according to the DPO or SPO identification condition.
The DPO implementation only employs an inequality check when at least one of two
nodes of the same type is being deleted. The SPO implementation never employs
any inequality checks. Since a preserved node does not generate any effect whereas
a deletion node does, this favors the deletion of literals.

In PDDL, all objects have to be defined in the initial configuration of the problem
file. Since it is not possible to instantiate objects dynamically, the existence of
objects is worked into PDDL’s propositional state representation by means of the
predicate active. An object for which this predicate maps to true is considered to be
instantiated; if it maps to false, the object is considered to be non-existing. In doing
so, all those objects for which active maps to true correspond to available nodes in
the LHS of the rule.

In order to specify all potential instances in the problem file, a maximum number
of potential instances has to be known for each type. In some domains, this number
can easily be calculated, e.g., if nodes of instantiable types are always connected to
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Listing 6.3: Generated durative action for the durative rule joinConvoy

1: (:durative-action joinConvoy

2: :parameters (?c1 - Convoy ?r1 - RailCab ?r2 - RailCab ?t1 - Track ⤦

↪ ?t2 - Track ?t3 - Track)

3: :duration (= ?duration 4)

4: :condition

5: (at start (and

6: (not (= ?r1 ?r2))

7: (not (= ?t1 ?t2))

8: (not (= ?t1 ?t3))

9: (not (= ?t2 ?t3))

10: (active ?c1)

11: (active ?r1)

12: (active ?r2)

13: (active ?t1)

14: (active ?t2)

15: (active ?t3)

16: (member_Convoy_RailCab ?c1 ?r2)

17: (on_RailCab_Track ?r1 ?t1)

18: (on_RailCab_Track ?r2 ?t3)

19: (next_Track_Track ?t1 ?t2)

20: (next_Track_Track ?t2 ?t3)

21: (not (member_Convoy_RailCab ?c1 ?r1))

22: (not (on_RailCab_Track ?r1 ?t2))

23: ... % conditions caused by forbidden pairs

24: ... % checking for locks

25: ))

26: :effect (and

27: (at start (and

28: ... % locking

29: ))

30: (at end (and

31: (not (on_RailCab_Track ?r1 ?t1))

32: (member_Convoy_RailCab ?c1 ?r1)

33: (on_RailCab_Track ?r1 ?t2)

34: ... % unlocking

35: ))

36: )

37: )

nodes of non-instantiable types, and it is not possible to have more than one instance
connected to the same non-instantiable node. This is the case in the RailCab-NACs
domain: Convoy nodes are always connected to non-instantiable RailCab nodes,
and no RailCab node may be connected to more than one Convoy node. In other
domains, the domain designer’s expert knowledge has to be used to choose a
number sufficiently large to yield a valid plan for the given domain.



6.3. TRANSLATION SCHEME 151

To specify that each of the rule’s LHS’ nodes has to exist, the literals in lines 10
to 15 of Listing 6.3 are generated. Instantiation and deinstantiation of nodes can
be realized by changing such literals from false to true and vice versa, respectively.
In this case, there is no such literal in the effect of the action, because no node is
deleted by joinConvoy.

Required edges, i.e., preserved edges and deletion edges, cause the remaining
literals in the condition of Listing 6.3. If there were forbidden edges in joinConvoy,
they would have been translated into negative literals. Although there are none,
our translation produces a few negative literals. This is because we assume that no
parallel edges, i.e., edges with identical source, target, and label, are allowed. To
prevent the creation of parallel edges, every edge that is going to be created implies
a forbidden edge. These implicit forbidden edges produce the negative literals in
lines 21 and 22.

A modeling approach based on a semantics that allows parallel edges could
easily be supported by changing the predicates that state the existence of edges into
functions that return the number of their instances. We decided to disallow parallel
edges in order to be able to implement the existence of edges via predicates, which
are a more basic construct of PDDL than functions. Another alternative to support
parallel edges has already been given in Section 5.2.4: since graphs employing
parallel edges can be simulated by graphs without parallel edges, cf. [Bon+07], we
can transform a durative graph transformation system with parallel edges into an
equivalent durative graph transformation system without parallel edges.

The negative literal in the effect (line 31) is caused by the on edge being deleted
and the two positive literals (lines 32 and 33) by the member and on edge being
created.

6.3.3 Forbidden Pairs

While a forbidden edge can simply be mapped into a negative literal, a forbidden
pair, e.g., one of the NACs in the durative graph transformation rule dissolveConvoy,
see Figure 6.2(d) on page 144, cannot be realized as easily. One solution is to map a
forbidden pair into a negative existential quantification over the conjunction of node
type and adjacent edge that connects the node to the LHS. This is shown in Listing 6.4
for one of the forbidden pairs in dissolveConvoy. The forbidden RailCab node is
declared in line 4 as part of the existential quantification. The literals in lines 7 and 8
specify that the RailCab node is not allowed to exist if it is connected via a member

edge to the Convoy node. An isolated forbidden node, i.e., when no connecting edge
exists, can simply be mapped into a negative existential quantification involving
only the active predicate. In both cases, inequality conditions can be added (lines 5
and 6) if the node type has already been matched as a parameter, to be in accordance
with employing injective matchings for NACs. Note that the choice whether or not
to employ injective matchings for NACs can be made independent of the choice
made for LHSs.

Unfortunately, preconditions containing quantifications are not supported by



152 CHAPTER 6. TEMPORAL PDDL-BASED PLANNING

Listing 6.4: Generated negative existential quantification for a forbidden pair

1: :condition

2: (at start (and

3: ... % more literals/facts

4: (not (exists (?r - RailCab) (and

5: (not (= ?r ?r1))

6: (not (= ?r ?r2))

7: (active ?r)

8: (member_Convoy_RailCab ?c1 ?r)

9: ))))

10: ... % further negative existantial quantifications caused by ⤦

↪ forbidden pairs

11: ... % checking for locks

12: ))

every PDDL-based planning system. State-of-the-art temporal planners that support
required concurrency, like POPF [Col+10] or YAHSP2-MT [Vid11], usually do not
support them. Fortunately, forbidden pairs can also be realized in PDDL as numeric
facts. We can define two counting functions fet,src : V → N and fet,tgt : V → N

for each edge type et, one for its source type and one for its target type. Then, we
count for each node its number of incoming and outgoing edges of each edge type
in the initial configuration and update these counters each time an edge is created
or deleted. For a Convoy node v with two outgoing member edges, the counting
function for the source type returns fmember,src(v) = 2. For each target RailCab node
ui, the counting function for the target type returns fmember,tgt(ui) = 1 because each
RailCab is member of only one convoy. Knowing these numbers, when there is a
node connected to a forbidden pair, e.g., the Convoy node in dissolveConvoy, we can
implement the forbidden pair via a numeric fact on one of the counting functions:
we simply require that the node is adjacent to exactly that many edges of the edge
type involved in the forbidden pair as specified in the LHS of the rule. In case of the
Convoy node in dissolveConvoy, we thus require that it is adjacent to two member

edges. By employing these counting functions, checking for a forbidden pair comes
down to checking for one numeric fact.

Listing 6.5 shows the function declarations of the counting functions that result
from the rule dissolveConvoy. There are two counting functions for each edge
type: one for counting the outgoing edges of source nodes and one for counting the
incoming edges of target nodes. The numeric facts and update assignments that
result from dissolveConvoy are shown in Listing 6.6. The numeric fact in line 4 is
generated for the forbidden pair adjacent to the Convoy node. Since the Convoy node
has two outgoing member edges that each connect to a RailCab node, the value of
the numeric fact is 2. The numeric fact in line 5 is generated for the forbidden pair
adjacent to the rightmost Track node. It has no incoming on edge that connects to a
RailCab node. Thus, the numeric fact has a value of 0. The update assignments in
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Listing 6.5: Generated declarations for the counting functionality

1: (:functions

2: ... % more declarations

3: (counterAdjacentToSource_member_Convoy_RailCab ?convoy - Convoy)

4: (counterAdjacentToTarget_member_Convoy_RailCab ?railcab - RailCab)

5: (counterAdjacentToSource_on_RailCab_Track ?railcab - RailCab)

6: (counterAdjacentToTarget_on_RailCab_Track ?track - Track)

7: (counterAdjacentToSource_next_Track_Track ?track - Track)

8: (counterAdjacentToTarget_next_Track_Track ?track - Track)

9: ... % declarations for locking functionality

10: )

Listing 6.6: Generated numeric facts and assignments for forbidden pairs

1: :condition

2: (at start (and

3: ... % more literals/facts

4: (= (counterAdjacentToSource_member_Convoy_RailCab ?c1) 2)

5: (= (counterAdjacentToTarget_on_RailCab_Track ?t3) 0)

6: ... % checking for locks

7: ))

8: :effect (and

9: (at start (and

10: ... % locking

11: ))

12: (at end (and

13: ... % more literals/assignments

14: (decrease (counterAdjacentToSource_member_Convoy_RailCab ?c1) 2)

15: (decrease (counterAdjacentToTarget_member_Convoy_RailCab ?r1) 1)

16: (decrease (counterAdjacentToTarget_member_Convoy_RailCab ?r2) 1)

17: (decrease (counterAdjacentToTarget_on_RailCab_Track ?t2) 1)

18: (increase (counterAdjacentToTarget_on_RailCab_Track ?t3) 1)

19: ... % unlocking

20: ))

lines 14 to 18 are generated for the creation and deletion edges. For the rightmost
RailCab node, an outgoing on edge is deleted while another outgoing on edge is
created. Since they balance out, there is no update assignment for the number of on
edges of this RailCab node.

We expected the first variant, i.e., negative existential quantifications, to be more
costly than the second, i.e., counting functions, which is why we specifically compare
these two variants during the experiments in Section 6.5.
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6.3.4 Dangling Edges

When a rule with one or more deletion nodes is applied, the problem of dangling
edges can occur. This problem is handled differently by DPO and SPO. In DPO,
the application of a rule is not allowed at a match if it raises one or more dangling
edges. In SPO, dangling edges are simply deleted; there is no further restriction on
the rule’s applicability. Both variants can be transferred into PDDL.

The DPO variant results either in negative existential quantifications or in numeric
facts on counting functions. This is no choice; it depends on how forbidden pairs are
translated. For each edge type whose edges can be adjacent to a ode being deleted,
a condition analogous to that of forbidden pairs is generated. If there already is a
forbidden pair connected to the deletion node, this condition is redundant.

How the SPO variant is realized also depends on whether negative existential
quantifications or counting functions have been chosen for supporting forbidden
pairs. In the case of negative existential quantifications, the deletion of dangling
edges is realized via universal quantifications in the at_end effect of the generated
action. Each quantification contains a negative literal representing the potential
deletion of an edge that is adjacent to the node being deleted and the quantified
node. Listing 6.7 shows the generated universal quantification for the deletion of
dangling edges in the rule dissolveConvoy. Note that in PDDL, a literal does not
have to be true when being asserted as false. Therefore, the action can still be applied
when there are no dangling edges. The non-existence of dangling edges is simply
reasserted by the action’s effect.

Listing 6.7: Generated universal quantification for deleting dangling edges (in the
SPO variant with quantifications)

1: :effect (and

2: ... % at start effect

3: (at end (and

4: ... % more literals/assignments

5: (forall (?r - RailCab)

6: (not (member_Convoy_RailCab ?c1 ?r)) % ?c1 is a parameter

7: )

8: ... % unlocking

9: ))

In the case of counting functions, we also have to update the values of the
counters for the dangling edges being deleted. Simply decreasing the counter value
for every potential deletion of an edge would result in incorrect values where no
dangling edge existed in the first place. The solution is to delete dangling edges via
a new action, which ensures that the danging edge exists. Listing 6.8 shows such an
action for the dangling edges of dissolveConvoy. Since the application of such an
action is optional, this can result in dangling edges remaining in the configuration.
Leftover dangling edges could pose a problem if a deleted node was recreated later,
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Listing 6.8: Generated durative action for deleting dangling edges (in the SPO
variant with counting functions)

1: (:durative-action deleteDanglingEdges_member_Convoy_RailCab

2: :parameters (?c1 - Convoy ?r1 - RailCab)

3: :duration (= ?duration 0.01)

4: :condition (at start (and

5: (not (active ?c1))

6: (member_Convoy_RailCab ?c1 ?r1)

7: ))

8: :effect (at end (and

9: (not (member_Convoy_RailCab ?c1 ?r1))

10: (decrease (counterAdjacentToSource_member_Convoy_RailCab ?c1) 1)

11: (decrease (counterAdjacentToTarget_member_Convoy_RailCab ?r1) 1)

12: ))

13: )

reconnecting to a dangling edge. To prevent this from happening, we simply require
no dangling edge to exist each time a node is created. This is done via a numeric
fact checking that the counting function’s value for the creation node is zero.

6.3.5 Locking Functionality

Now, we extend the translation scheme to integrate a locking mechanism analogously
to that in the semantics of durative graph transformation rules. First, the declaration
of predicates and functions has to be extended to include the declaration of locks.
For the RailCabs-NACs domain, the generated predicate and function declarations
for the locks are shown in Listing 6.9. For the sake of clarity, locking declarations
are only shown for one of the edge types. There is one pair of locks (read and write
lock) for each node (lines 3 and 9) and one pair of locks for each edge in the type
graph (lines 4 and 10). Write locks on nodes and edges are realized as predicates
(exclusive lock, true means locked) because a node or edge may not be accessed in
any way if it is being deleted at the moment (or created in case of a forbidden edge).
Concurrent access to a node or an edge is allowed if the rule does not manipulate it.
Therefore, read locks are realized as functions (shared lock, greater than zero means
locked).

The idea of the remaining locking predicates (lines 11 to 14) is more subtle. Nodes
within NACs cannot be locked via any of the aforementioned locking predicates,
because such node do not exist in a configuration, i.e., there is no explicit object
in PDDL’s propositional state representation that constitutes the node in the NAC.
Instead, locking information is added to connecting nodes, i.e., those nodes of the
LHS that the NAC is connected to. This, of course, restricts our approach to specific
kinds of NACs, namely forbidden edges and forbidden pairs.

Locking of forbidden edges is already supported via the locking predicates for
edges. Locking of forbidden pairs is supported by the functions in lines 11 and 12,
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Listing 6.9: Generated declarations for the locking functionality

1: (:predicates

2: ... % basis declarations

3: (writeNode_active ?object - Object)

4: (writeEdge_member_Convoy_RailCab ?convoy - Convoy ?railcab - RailCab)

5: ... % further declarations for the locking functionality

6: )

7: (:functions

8: ... % basis declarations

9: (readNode_active ?object - Object)

10: (readEdge_member_Convoy_RailCab ?convoy - Convoy ?railcab - RailCab)

11: (readAdjacentToSource_member_Convoy_RailCab ?convoy - Convoy)

12: (readAdjacentToTarget_member_Convoy_RailCab ?railcab - RailCab)

13: (writeAdjacentToSource_member_Convoy_RailCab ?convoy - Convoy)

14: (writeAdjacentToTarget_member_Convoy_RailCab ?railcab - RailCab)

15: ... % further declarations for the locking functionality

16: )

which – pictorially speaking – add locking information to the connecting node. For
each edge predicate, there is a pair of locking predicates: the first locking predicate
is used to prevent the creation of forbidden pairs with outgoing edges, the second
one prevents forbidden pairs with incoming edges.

Nodes that are being added along with edges connecting it to already existing
nodes in the LHS are locked in a similar fashion via the functions in lines 13 and
14. However, for nodes that are being added, locking information is attached to all
existing nodes that the new nodes are going to be connected to. Consider a node
that is created along with two edges that are both adjacent to a different node in the
LHS. In this case, both nodes in the LHS are connecting nodes and both acquire a
write lock disallowing a certain forbidden pair. If there is no connecting node for a
newly created node, then there is no need to lock anything since isolated nodes do
not interfere with any forbidden pair.

Note that it is possible that multiple new nodes get connected to the same existing
node simultaneously – possibly due to the concurrent application of multiple rules.
For this reason, write locks are realized as functions instead of predicates. Also note
that while this approach supports only two specific kinds of NACs, i.e., forbidden
edges and forbidden pairs, it supports any kind of RHS.

6.3.6 Locks in Durative Rules

We will now treat the generation of locking literals for the conditions and effects of
action schemata and turn to the example of joinConvoy again. Listing 6.10 shows
the locking literals generated to support the locking of required nodes. For every
positive literal that represents the existence of a node, a negative locking literal is
added to the condition of the durative action (lines 4 to 9). These literals ensure
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Listing 6.10: Generated locks to support (required) nodes

1: :condition

2: (at start (and

3: ... % basis literals/facts

4: (not (writeNode_active ?c1)) % preserved node

5: (not (writeNode_active ?r1)) % preserved node

6: (not (writeNode_active ?r2)) % preserved node

7: (not (writeNode_active ?t1)) % preserved node

8: (not (writeNode_active ?t2)) % preserved node

9: (not (writeNode_active ?t3)) % preserved node

10: ... % further literals/facts for checking for locks

11: ))

12: :effect (and

13: (at start (and

14: (increase (readNode_active ?c1) 1) % preserved node

15: (increase (readNode_active ?r1) 1) % preserved node

16: (increase (readNode_active ?r2) 1) % preserved node

17: (increase (readNode_active ?t1) 1) % preserved node

18: (increase (readNode_active ?t2) 1) % preserved node

19: (increase (readNode_active ?t3) 1) % preserved node

20: ... % further literals/assignments for locking

21: ))

22: (at end (and

23: ... % basis literals/assignments

24: (decrease (readNode_active ?c1) 1) % preserved node

25: (decrease (readNode_active ?r1) 1) % preserved node

26: (decrease (readNode_active ?r2) 1) % preserved node

27: (decrease (readNode_active ?t1) 1) % preserved node

28: (decrease (readNode_active ?t2) 1) % preserved node

29: (decrease (readNode_active ?t3) 1) % preserved node

30: ... % further literals/assignments for unlocking

31: ))

that none of the required nodes, i.e., preserved nodes and deletion nodes, has been
locked for writing. If applied, the action locks the required nodes for reading, i.e.,
it acquires a shared read lock when it is scheduled to begin (lines 14 to 19) and
releases it when it ends (lines 24 to 29). In general, deletion nodes also have to be
locked for writing. However, there is no deletion node in joinConvoy, so there is no
checking of read locks in the condition or acquiring and releasing of write locks in
the effect.

The locking literals of required edges, i.e., preserved edges and deletion edges,
are realized similarly. For joinConvoy, they are shown in Listing 6.11. As with
deletion nodes, deletion edges also have to be locked for writing. An example is the
on edge from the left RailCab to the leftmost track segment. Since it is being deleted,
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Listing 6.11: Generated locks to support required and forbidden edges

1: :condition

2: (at start (and

3: ... % basis literals/facts

4: ... % more literals/facts for checking for locks

5: (not (writeEdge_member_Convoy_RailCab ?c ?r2)) % preserved edge

6: (not (writeEdge_on_RailCab_Track ?r2 ?t3)) % preserved edge

7: (not (writeEdge_next_Track_Track ?t1 ?t2)) % preserved edge

8: (not (writeEdge_next_Track_Track ?t2 ?t3)) % preserved edge

9: (not (writeEdge_on_RailCab_Track ?r1 ?t1)) % deletion edge

10: (= (readEdge_on_RailCab_Track ?r1 ?t1) 0) % deletion edge

11: ... % further literals/facts for checking for locks

12: ))

13: :effect (and

14: (at start (and

15: ... % more literals/assignments for locking

16: (increase (readEdge_member_Convoy_RailCab ?c ?r2) 1) % preserved edge

17: (increase (readEdge_on_RailCab_Track ?r2 ?t3) 1) % preserved edge

18: (increase (readEdge_next_Track_Track ?t1 ?t2) 1) % preserved edge

19: (increase (readEdge_next_Track_Track ?t2 ?t3) 1) % preserved edge

20: (increase (readEdge_on_RailCab_Track ?r1 ?t1) 1) % deletion edge

21: (writeEdge_on_RailCab_Track ?r1 ?t1) % deletion edge

22: ... % further literals/assignments for locking

23: ))

24: (at end (and

25: ... % basis literals/assignments

26: ... % literal/assignments for unlocking, analogous to ’at start’

27: ))

it is locked for writing in line 10. It is also locked for reading in line 9 because each
edge that is being deleted is also required in the LHS.

Note that the implementation of the locking mechanism does not depend on the
choice of semantics to handle the problem of dangling edges. Even though dangling
edges have not been locked by the start effect when they are deleted, this cannot
lead to conflicts with actions requiring those edges. This is already prevented by the
locking of nodes: each action accessing the dangling edge would also have to access
both its adjacent nodes; however, at least one of these nodes is write locked because
it is going to be deleted by the action, thus causing the dangling edge.

Since object instantiation is realized via a workaround involving literals that
state whether or not a node exists, creation nodes need some special treatment in
PDDL. Consider the situation when two nodes of the same type are instantiated
simultaneously by two different actions. In the DGTS formalism, both nodes do not
yet exist at the beginning of executing the actions and thus cannot be the reason
for any conflicts. However, since we are working on existing objects in PDDL, there
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can be a conflict when both actions “instantiate” the same node, i.e., both set the
same node’s active literal to true. Therefore, creation nodes lock their active literal
analogously to deletion nodes.

Although forbidden edges result in negative literals in an action’s condition,
their locking functionality works analogously to that of preserved edges. Forbidden
edges even use the same locking predicates as preserved edges. Note that as stated
in Section 6.3.2, every creation edge also implies a forbidden edge.

Similar to conflicts between a required node or edge of one rule application
and the deletion of this node or edge by another, concurrent rule application, there
can be conflicts between forbidden pairs and the creation of nodes and edges. A
forbidden pair might even interfere with creating only an edge, because the edge
could be adjacent to an already available node of the same type as the node in the
forbidden pair. To avoid such conflicts between forbidden pairs and the creation of
edges, we need further locking functionality.

Listing 6.12 shows the numeric facts and assignments that implement this locking
functionality. The numeric facts in lines 5 and 6 are generated for the two forbidden
pairs of joinConvoy. Each numeric fact guarantees that no action has already been
started that creates an edge that is of the same type and direction as the edge
contained in the forbidden pair of joinConvoy and adjacent to the connecting node.
The locking literals in lines 7 to 10 are generated for the creation edges of joinConvoy.
They state that no forbidden pair lock may be acquired for any of the nodes that are
adjacent to the creation edges. If such a lock is acquired by a concurrently applied
action, that action contains a forbidden pair connected to the same node. The locking
literals in the effect itself acquire read locks for forbidden pairs to ensure that no
creation edge conflicts with them (lines 15 and 16) and write locks to ensure that no
concurrent action with a conflicting forbidden pair will be applied (lines 17 to 20).
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Listing 6.12: Generated adjacency locks to support forbidden pairs

1: :condition

2: (at start (and

3: ... % basis literals/facts

4: ... % more literals/facts for checking for locks

5: (= (writeAdjacentToTarget_member_Convoy_RailCab ?r1) 0) % ⤦

↪ forbidden pair

6: (= (writeAdjacentToTarget_on_RailCab_Track ?t2) 0) % forbidden pair

7: (= (readAdjacentToSource_member_Convoy_RailCab ?c1) 0) % creation edge

8: (= (readAdjacentToTarget_member_Convoy_RailCab ?r1) 0) % creation edge

9: (= (readAdjacentToSource_on_RailCab_Track ?r1) 0) % creation edge

10: (= (readAdjacentToTarget_on_RailCab_Track ?t2) 0) % creation edge

11: ))

12: :effect (and

13: (at start (and

14: ... % more literals/assignments for locking

15: (increase (readAdjacentToTarget_member_Convoy_RailCab ?r1) 1) % ⤦

↪ forbidden pair

16: (increase (readAdjacentToTarget_on_RailCab_Track ?t2) 1) % ⤦

↪ forbidden pair

17: (increase (writeAdjacentToSource_member_Convoy_RailCab ?c1) 1) % ⤦

↪ creation edge

18: (increase (writeAdjacentToTarget_member_Convoy_RailCab ?r1) 1) % ⤦

↪ creation edge

19: (increase (writeAdjacentToSource_on_RailCab_Track ?r1) 1) % ⤦

↪ creation edge

20: (increase (writeAdjacentToTarget_on_RailCab_Track ?t2) 1) % ⤦

↪ creation edge

21: ))

22: (at end (and

23: ... % basis literals/assignments

24: ... % literal/assignments for unlocking, analogous to ’at start’

25: ))
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6.3.7 Concurrency Rules

The implementation of concurrency rules in PDDL works similarly to that in the
semantics. In both cases, the satisfying rule signals the satisfaction of the other rule’s
demand. In the DGTS formalism, this is done using a satisfaction indicator, which is
locked during the application of a demanding rule to prevent that the satisfying rule
finishes before the demanding rule finishes. In PDDL, we use designated literals to
achieve a similar effect.

The semantics of concurrency rules requires that each application of a demanding
rule is enclosed by that of a satisfying rule. In PDDL, an action that is required to
enclose the application of another action is called envelope. Figure 6.3 illustrates the
interplay between an envelope and its enclosed action.

x
y !y

x
!y
!x

(envelope)

Figure 6.3: Interplay between an envelope action and its enclosed action. The left
end of an action’s line represents the moment when the action’s execution starts; the
right end represents the end of its execution. Literals written above the action’s line
denote conditions; literals below the line denote effects.

The literal x in Figure 6.3 plays the role of the satisfaction indicator. It is set and
unset by the envelope at the beginning and ending of its execution, respectively, and
required by the enclosed action. The literal is further parameterized via the nodes
in the satisfier interface subgraph. Note that the satisfier interface subgraph has to
be available in the enclosed action for this to work. For this reason, we translate
the demanding rule extended by the connecting graph of the concurrency rule, see
Definitions 5.5.2 and 5.5.3, instead of the original demanding rule.

To guarantee that the envelope finishes its execution after the enclosed action
finished its execution, we need a means to check whether or not the enclosed action
is still being executed. In the semantics, this is done by applying a lock to the
satisfaction indicator. Here, we simply use a numeric fact y, which is parameterized
via the same nodes as x. It is increased and decreased by the enclosed rule and
required not to be existing when the envelope finishes its execution.

There are two concurrency rules in the RailCab domain. The concurrency
rule allowChangePublication requires the application of a durative rule moving a
RailCab from one track segment to the next, e.g., moveRailCab or formConvoy, to
happen concurrently to that of the durative rule changePublication. The second
concurrency rule is allowChangePublicationWhileInConvoy. Here, the demanding
rule is changePublicationWhileInConvoy, which differs from changePublication



162 CHAPTER 6. TEMPORAL PDDL-BASED PLANNING

in that it requires the RailCab to drive in a convoy, and satisfying rules are all those
rules that move a convoy from one track segment to the next.

The generated declarations for both concurrency rules are shown in Listing 6.13.
Locks are realized as functions because there can be different demanding rules
relying on the same satisfying rule at the same time.

Listing 6.13: Generated declarations to support concurrency rules

1: (:predicates

2: ... % basis declarations

3: ... % declarations for the locking functionality

4: (envelope_allowChangePub ?railcab - RailCab ?track1 - Track ⤦

↪ ?track2 - Track)

5: (envelope_allowChangePubWhileInConvoy ?convoy - Convoy ?track1 - ⤦

↪ Track ?track2 - Track)

6: )

7: (:functions

8: ... % basis declarations

9: ... % declarations for the locking functionality

10: (lock_envelope_allowChangePub ?railcab - RailCab ?track1 - Track ⤦

↪ ?track2 - Track)

11: (lock_envelope_allowChangePubWhileInConvoy ?convoy - Convoy ⤦

↪ ?track1 - Track ?track2 - Track)

12: )

For demanding action changePublication and satisfying action moveRailCab,
Listing 6.14 and Listing 6.15 show those literals, numeric facts, and numeric
assignments that are added to implement the functionality of concurrency rule
allowChangePublication. The literals starting with envelope_ correspond to the x
in Figure 6.3, the numeric assignments and facts starting with lock_envelope_ to
the y.
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Listing 6.14: Generated concurrency demand in the rule changePublication

1: :condition

2: (at start (and

3: ... % basis literals/facts

4: ... % literals/facts for checking for locks

5: (envelope_allowChangePub ?r1 ?t1 ?t2)

6: ))

7: :effect (and

8: (at start (and

9: ... % literals/assignments for locking

10: (increase (lock_envelope_allowChangePub ?r1 ?t1 ?t2) 1)

11: ))

12: (at end (and

13: ... % basis literals/assignments

14: ... % literals/assignments for unlocking

15: (decrease (lock_envelope_allowChangePub ?r1 ?t1 ?t2) 1)

16: ))

17: )

Listing 6.15: Generated concurrency satisfaction in the rule moveRailCab

1: :condition (and

2: (at start (and

3: ... % basis literals/facts

4: ... % literals/facts for checking for locks

5: ))

6: (at end (= (lock_envelope_allowChangePub ?r1 ?t1 ?t2) 0))

7: )

8: :effect (and

9: (at start (and

10: ... % literals/assignments for locking

11: (envelope_allowChangePub ?r1 ?t1 ?t2))

12: ))

13: (at end (and

14: ... % basis literals/assignments

15: ... % literals/assignments for unlocking

16: (not (envelope_allowChangePub ?r1 ?t1 ?t2)))

17: ))

18: )
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6.3.8 Urgency Rules

The implementation of urgency rules in PDDL differs more from that in the se-
mantics than it was the case for concurrency rules. In the DGTS formalism, both
the demanding and satisfying rule add a demand and a satisfaction indicator, re-
spectively, into the configuration. To ensure the application of the satisfying rule,
the semantics employs a satisfier-firing timed and a satisfier-firing invariant rule.
The satisfier-firing invariant rule matches as soon as the demanding rule finishes
and enforces an application of the satisfier-firing timed rule via a clock instance
constraint. The satisfier-firing timed rule, in turn, requires an application of the
satisfying rule to be able to find a match.

In PDDL – at least in PDDL 2.1 level 3 – there is no such thing as an invariant
rule. Instead, we use a very short action that encloses the end of the demanding
action and the begin of the satisfying action. Such an action is called clip. Figure 6.4
illustrates the interplay between a clip and two consecutive actions that have been
clipped together.

x!y
y
!x

(clip)

x
y

Figure 6.4: Interplay between two consecutive actions and a clip action clipping them
together. The left end of an action’s line represents the moment when the action’s
execution starts; the right end represents the end of its execution. Literals written
above the action’s line denote conditions; literals below the line denote effects.

The literal x plays the role of the demand indicator, y that of the satisfaction
indicator. Since x is required when the demanding action ends and set only when
the clip starts, the clip has to start before the demanding action ends. The situation
with y is similar: this time the clip requires the literal, which forces the satisfying
action to start before the clip ends. Both literals are parameterized via the nodes in
the satisfier and demander subgraph, respectively.

Note that while the semantics also produces satisfier-cleaning timed and invariant
rules to remove needless satisfaction indicators, this is not necessary in PDDL. The
reason these satisfaction indicators are removed is that we do not want them to
be available later, because they could satisfy an unrelated demand arising from an
urgency rule with the same satisfaction subgraph. There is an easier way to prevent
this in PDDL. By asserting the literal y as false at the beginning of the clip’s execution,
we ensure that the satisfying action is executed after the clip started to satisfy the
clip’s demand for the literal. This is possible in PDDL because a literal does not
have to be true when being asserted as false.

Since the clip is an ordinary durative action, it is possible to execute this clip at
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any time in the plan. Imagine the clip being executed long before a demanding action
is executed. Its execution provides a literal x, which is necessary for the demanding
action to end. If this literal was not deleted again by the clip, it would stay available
in the configuration and allow an unrelated application of a demanding action,
which occurs later in the plan, to end without another application of the clip action.
For this reason, the clip asserts the literal x as false when it ends.

The RailCab domain includes two urgency rules: immediatelyMoveRailCab and
immediatelyMoveConvoy. Autonomously operating RailCabs and convoys of Rail-
Cabs both are not allowed to stop abruptly, i.e., no pause is allowed between the
application of a durative rule that ends with a RailCab or a convoy in driving
motion and another successive rule application that continues this movement. De-
manding rules are those rules that end with RailCabs or convoys in driving motion,
e.g., accelerateRailCab or moveRailCab, and satisfying rules are those rules that
continue the movement, e.g., moveRailCab or brakeRailCab.

The generated declarations for both urgency rules are shown in Listing 6.16.
Here, all functionality can be realized as predicates.

Listing 6.16: Generated declarations to support urgency rules

1: (:predicates

2: ... % basis declarations

3: ... % declarations for the locking functionality

4: ... % declarations for concurrency rules

5: (clipX_immediatelyMoveRailCab ?railcab - RailCab)

6: (clipY_immediatelyMoveRailCab ?railcab - RailCab)

7: (clipX_immediatelyMoveConvoy ?convoy - Convoy)

8: (clipY_immediatelyMoveConvoy ?convoy - Convoy)

9: )

The clip action generated by urgency rule immediatelyMoveRailCab is shown in
Listing 6.17. Due to the no moving targets rule of PDDL, the end of the demanding
action and the start of the satisfying action may not be executed at the exact same
point in time. There has to be at least ε units of time between these two time points.
The same holds for the start and end of the clip and the end of the demanding action
and start of the satisfying action, respectively. For this reason, the duration of a clip
action is 3ε higher than the deadline specified by the urgency rule inducing the clip
action. Since the deadline specified by immediatelyMoveRailCab is 0, the duration
of the clip action in Listing 6.17 is 3ε.

For demanding action accelerateRailCab and satisfying action brakeRailCab,
Listing 6.18 and Listing 6.19 show those literals that are added to implement the
functionality of urgency rule immediatelyMoveRailCab.
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Listing 6.17: Clip action to support urgency rule immediatelyMoveRailCab

1: (:durative-action CLIP_immediatelyMoveRailCab

2: :parameters (?r1 - RailCab)

3: :duration (= ?duration 0.003)

4: :condition (and

5: (at end (clipY_immediatelyMoveRailCab ?r1))

6: ) ;end condition

7: :effect (and

8: (at start (clipX_immediatelyMoveRailCab ?r1))

9: (at start (not (clipY_immediatelyMoveRailCab ?r1)))

10: (at end (not (clipX_immediatelyMoveRailCab ?r1)))

11: ) ;end effect

12: )

Listing 6.18: Generated urgency demand in the rule accelerateRailCab

1: :condition (and

2: (at start (and

3: ... % basis literals/facts

4: ... % literals/facts for checking for locks

5: ))

6: (at end (clipX_immediatelyMoveRailCab ?r1))

7: )

Listing 6.19: Generated urgency satisfaction in the rule brakeRailCab

1: :effect (and

2: (at start (and

3: ... % literals/assignments for locking

4: (clipY_immediatelyMoveRailCab ?r1)

5: ))

6: (at end (and

7: ... % basis literals/assignments

8: ... % literals/assignments for unlocking

9: ))

10: )
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6.4 Prototype and Translation Workflow

The current prototype of the translation scheme is written in Java. It uses meta-
models of durative graph transformation systems and PDDL planning domains,
which were both developed using the Eclipse Modeling Framework (EMF)1. An earlier
prototype based on these meta-models was implemented in QVT Relations [OMG11]
using medini QVT2. This prototype was used in an earlier evaluation, see [ZW15], but
dropped in favor of the Java-based implementation, which supports more features
and variations.

Conceptually, the Java-based prototype executes a translation workflow with
multiple passes, some of which are optional. The first mandatory pass creates all
basis functionality in the PDDL domain, i.e., predicates resulting from the type graph
and (not yet complete) durative actions resulting from durative graph transformation
rules. The next two passes depend on the chosen translation variant. They add
functionality for forbidden pairs and dangling edges, respectively, into the action
schemata generated by the basis pass.

The generation of all locking functionality is encapsulated into a forth pass. The
same goes for the functionality of concurrency and urgency rules. Each of these
three passes relies on bidirectional mappings generated by the basis pass to generate
correct predicates, functions, literals, numeric assignments and facts, as well as their
parameters.

Then, there are two post-processing passes, which clean up some redundancies.
The first of these two passes removes all functionality related to the locking of read-
only elements. The second pass settles additive assignment effects when necessary,
i.e., it merges multiple numeric assignments over the same numeric function and
parameters into one numeric assignment (or none if their incremental values balance
out).

Finally, there are some optional passes to improve the compatibility with planners.
Both are motivated by POPF2’s missing support for negative preconditions. The
first of these two passes transforms all locks that have been realized as predicates
and literals into functions and numeric facts and assignments. The second pass
exchanges each remaining literal in a precondition into a positive literal over an
inverse predicate and extends the actions’ effects such that inverse literals are
updated in accordance with their originals. While activating the latter is mandatory
to support POPF2, activating the former brings two additional benefits. First, it
simplifies the specification of problem files because less inverse literals have to be
specified for the initial state of the problem. Second, it produces better planning
results when employing POPF2.

1http://www.eclipse.org/modeling/emf/
2http://projects.ikv.de/qvt/wiki

http://www.eclipse.org/modeling/emf/
http://projects.ikv.de/qvt/wiki
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6.5 Evaluation of Translation Variants

This section evaluates the performance of a planning system on PDDL domains that
have been generated from the application example introduced in Section 6.2. In
particular,

• we compare the two options to support forbidden pairs, i.e., translating them
into negative existential quantifications or employing counting functions for
the incoming and outgoing edges of each node, see Section 6.3.3, and

• we check whether or not the different graph transformation approaches to
handle dangling edges, see Section 6.3.4, result in any performance differences.

To gain meaningful performance results from our experiments, we employed
the same planning system on each generated domain, regardless of whether it
contained quantifications or counting functions. Unfortunately, planning systems
that are specifically targeted at temporal planning domains, like POPF2 [Col+10;
Col+11] or YAHSP2-MT [Vid11], do not allow negations3 or quantifications to appear
in the precondition of actions4. Therefore, we chose to employ the slightly older
SGPlan6 [CWH06; HW08] because it supports both durative actions as well as
quantifications in their preconditions.

Experiment Setup For the planning problems associated with the generated do-
mains, we used 10 different problem sizes (5 different railway network sizes with
either 3 or 4 RailCabs) and 10 different problem instances per problem size. They
consist of 18, 24, 30, 36, or 42 track sections (depending on the railway network
size), 2 Y junctions, and specify initial and target track sections for the RailCabs.
The initial and target track sections have been generated randomly for each instance
(in such a way that the problem is solvable). We used the same random number
generator seed to produce both the instances for the domain resulting from the
translation variant employing quantifications in the actions’ preconditions and the
variant employing counting functions. This allows for a fair comparison of these
two translation variants.

The railway topology is defined such that the problems are hard to solve by
planning systems, i.e., they need to backtrack a lot. This is because the target track
sections lie behind a bottleneck. If RailCabs drive into the bottleneck in a wrong
order, the goal cannot be achieved anymore. However, the domain provides no
predicate that represents the order of RailCabs on the tracks. This complicates
the reasoning of planning systems: without recognizing the order of RailCabs, the
planner is prone to search along wrong paths in the state space.5

3POPF2 does allow the negation of static facts, e.g., equality, though.
4See http://www.plg.inf.uc3m.es/ipc2011-deterministic/ParticipatingPlanners for informa-

tion on temporal planners that participated in the 7th International Planning Competition, 2011.
5We verified this assumption by a comparison with a modified domain. The modified domain

included a predicate for the order of RailCabs, additional goal literals typed over this predicate, and
action schemata that allow to create such literals.

http://www.plg.inf.uc3m.es/ipc2011-deterministic/ParticipatingPlanners
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The experiments were conducted on an Intel Core i7-2600 compute server with 8
(virtual) cores running at 3.40GHz. Each experiment was given 2 cores and 4GB of
RAM. If no plan could be computed within 5 minutes, the job was terminated.

Results Table 6.2 shows the means and standard deviations (σ) of the planning
times as well as the number of solved problems for the generated problem instances
with the smallest and largest railway network size for 3 and 4 RailCabs. There was
no significant difference in average plan lengths between the different translation
variants.

Table 6.2: Planning times of SGPlan6 on domains of different translation variants

Variant
3 RCs, 18 tr. 3 RCs, 42 tr. 4 RCs, 18 tr. 4 RCs, 42 tr.
mean σ mean σ mean σ mean σ

DPO-Q 24.54 0.39 — — 71.79 1.04 — —
SPO-Q 24.78 0.27 — — 67.99 0.22 — —
DPO-C 0.17 0.06 2.02 0.36 1.60 0.83 7.95 0.65
SPO-C 0.18 0.06 1.96 0.19 1.65 0.94 7.82 0.61

DPO-Q and SPO-Q denote those translation variants that realize forbidden pairs
as negative existential quantifications. DPO-C and SPO-C denote those variants
that employ counting functions and realize forbidden pairs as simple checks on the
functions’ values for the connecting nodes. Comparing the counter variants with
the quantification variants (in either DPO or SPO), it can be seen that the counter
variants result in much shorter planning times than the quantification variants.
When using the domain with the quantification variant, no instance of the 42-track
problem size could be solved within the given time.

Figure 6.5 shows the planning times of the four translation variants in a histogram
with a logarithmic scale. The values seen in Table 6.2 correspond to the first, fifth,
sixth, and tenth cluster of the histogram. The error bars represent the standard
deviation of the measurements. A different view on the results is given in Figure 6.6.
It shows a line chart illustrating how many problem instances (of any size) could be
solved by each variant over time.

Looking at the line chart, we can see that the variants employing counting
functions manage to solved more problem instances than the variant containing
negative existential quantifications. In sum, they also managed to solve them in less
time. From the histogram, it can be seen that this also holds for each individual
problem size.

Interestingly, the two translation variants to handle dangling edges performed
equally well. To understand why there is no significant difference in their perfor-
mance, we first look at the DPO variants in isolation and then discuss the differences
to the SPO variants.

In the DPO variants, the dangling condition is realized in the same manner as
forbidden pairs: either as negative existential quantifications (in DPO-Q) or via
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counting functions (in DPO-C). Dangling edges can only occur when a rule deletes a
node. However, the only rule that does, dissolveConvoy, also specifies a forbidden
pair with the same edge type as the dangling edge. Therefore, the negative existential
quantifications or numeric facts on the countering functions realizing the dangling
condition are redundant in the generated domain and do not have an impact on the
total planning time.

In the SPO variants, however, dangling edges have to be deleted. In the variant
employing quantifications (SPO-Q), this is realized via a quantification in the effect.
The quantification is done over nodes of the same type as the node on the second end
of the dangling edge and specifies the deletion of all available edges between these
nodes. Although this is not redundant to any functionality in the generated action
schema, it does perform equally well to the DPO-Q domain. The reason behind this
is probably that the SPO-Q domain already contains quantifications over the same
nodes. For every quantification in the effect of a rule, there is – due to a forbidden
pair with the same edge type as the dangling edge – already a quantification in the
condition over the same nodes.

In the SPO variant employing counting functions (SPO-C), an additional action
schema is used to optionally delete dangling edges when necessary. The reason why
this did not result in any performance losses compared to the DPO-C domain is
simple: the additional action was never applied. There was no need to apply the
action, because dangling edges do not occur in the RailCab-NACs domain.

6.6 Evaluation of Concurrency and Urgency Rules

The purpose of this section is to validate whether or not the existence of concurrency
and urgency rules in a domain causes problems in this domain to be too complex
for planning systems to solve. It provides a performance evaluation of a planning
system running on PDDL domains that have been generated from a DGTS model of
the RailCab domain, which was introduced in Section 5.1. Specifically, it compares
the performance of four generated PDDL domains that differ only in whether or not
concurrency and urgency rules exist.

Since the translation of concurrency and urgency rules results in required con-
currency in the generated PDDL domain, we need to employ a complete temporal
planner. For this reason, we chose to employ POPF2 [Col+10; Col+11] on each of
the four domains. To convey an idea for how much faster an incomplete temporal
planner is compared to a complete one, we also employ SGPlan6 [CWH06; HW08]
on the domain where neither concurrency nor urgency rules exist.

Note that domains without concurrency or urgency rules were not modified in
any other way from the original RailCab domain. As a consequence, on domains
that come without concurrency rules, the rule changePublication can be applied
any time, i.e., without the need for the RailCab to move from the track section
monitored by the old base station to the track section monitored by the new base
station. On domains that come without urgency rules, we still have those variants
of moveRailCab and moveConvoy that accelerate or brake the RailCab and convoy,
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respectively. Removed is only the requirement that no time is allowed to pass be-
tween the application of a rule accelerating or moving a RailCab and the subsequent
application of a rule moving or braking the same RailCab.

All four domains have been generated using the DPO-C translation variant.
Since POPF2 does not support negative literals in the precondition of actions, the
translation has also been configured to generate inverse predicates for each available
predicate in the domain. In doing so, negative literals in a precondition of an action
could be substituted by positive literals of their inverse predicates, which allowed
POPF2 to support the domain. Note that the domain used by SGPlan6 differs from
that of POPF2 in that it does not generate inverse predicates.

Experiment Setup In this evaluation, we used 18 different problem sizes (2 or 3
RailCabs with 2, 4, or 6 consecutive railway line sections per RailCab and 0, 2, or 4
intermediate track sections per line section) and 10 different problem instances per
problem size. The problem instances with 2 RailCabs contain 1, 2, and 3 crossroads;
those with 3 RailCabs contain 3, 5, and 7 crossroads. As with the last evaluation, the
initial and target track sections have been generated randomly for each instance.

The railway topology is defined as a grid. On this topology, the generated
planning problems are conceptually easy to solve by planning systems. Bottleneck
problems do not occur, because initial and target track sections of all RailCabs lie on
different line sections.

The experiments were conducted on the same machine as the experiments in the
last section. Here, each experiment was given 2 cores and 4GB or RAM. As with
the other evaluation, the job was terminated if no plan could be computed within 5
minutes.

Results Table 6.3 shows the means and standard deviations (σ) of the planning
times as well as the number of solved problems for the generated problem instances
with the smallest, medium-sized, and largest railway network size for 2 RailCabs
and the smallest network size for 3 RailCabs. While some problem instances with the
medium-sized network for 3 RailCabs could be solved on domains with concurrency
rules, none could be solved if urgency rules were involved. Problem instances with
the largest network size for 3 RailCabs could not be solved within the given time
and memory limits on any of the four domains. As with the experiments in the last
section, there was no significant difference in the average plan lengths.

CR0-UR0 denotes the results of POPF2 on domains where no concurrency or
urgency rule exist, CR1-UR0 and CR0-UR1 on domains where only concurrency rules
and only urgency rules exist, respectively, and CR1-UR1 on the domain where both
kinds of rules exist. Finally, SGPLAN denotes the results of SGPlan6 on domains
where neither concurrency nor urgency rules exist. Comparing the different problem
sizes and domains, it can be seen that the planning time on domains without
urgency rules increases exponentially with the size of the railway network. On
domains with urgency rules where solutions were found, the performance is similar
to that on domains without urgency rules. However, for the medium-sized and
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Table 6.3: Planning times of POPF2 and SGPlan6 on domains with and without
concurrency and urgency rules

Domain
2 RCs, 4 sect. 2 RCs, 8 sect. 2 RCs, 12 sect. 3 RCs, 6 sect.
mean σ mean σ mean σ mean σ

CR0-UR0 0.10 0.01 1.83 0.16 36.01 13.31 10.13 5.75
CR1-UR0 0.10 0.00 3.47 0.13 34.90 0.29 4.01 2.34
CR0-UR1 0.12 0.03 — — — — 23.63 14.77
CR1-UR1 0.10 0.00 — — — — 3.43 0.63
SGPLAN 0.20 0.00 0.16 0.01 — — 0.53 0.47

largest networks with urgency rules, no solutions were found within the given time.
Interestingly, in case of the problem size with 3 RailCabs, it seems as if problems
were easier to solve on domains where concurrency rules exist than on domains
without concurrency rules. However, this observation does not persist when looking
at all problem sizes.

Figure 6.7 shows the planning times in a histogram with a logarithmic scale. The
values seen in Table 6.3 correspond to the first, fifth, ninth, and tenth cluster of the
histogram. A line chart illustrating how many problem instances of each domain
could be solved over time is given in Figure 6.8.

From the line chart, it can be seen that domains containing urgency rules solved
significantly less problem instances than other domains. However, the problem
instances that could be solved were solved in very short time. The reason for this
can be seen by looking at the histogram: on domains containing urgency rules, only
problem instances with a very small railway network could be solved.

Whether or not concurrency rules exist in the domain does not make much of a
difference in performance. One of the reasons for this might be that both the demand-
ing and satisfying rules of concurrency rule allowChangePublication have to be
applied anyway to reach the goal, and scheduling applications of changePublication
to a specific point in time does rarely conflict with any other rule application.

In the case of urgency rules, the situation is different. The urgency rule
immediateMoveRailCab affects the application times of rules that change the po-
sitions of RailCabs or convoys. However, scheduling applications of such rules to a
specific point in time is likely to conflict with other rule applications. The reason for
this is that other rule applications might rely on certain positions of RailCabs, e.g.,
to initiate a convoy operation or simply to prevent conflicts in concurrent execution.

SGPlan6 could solve most of the problem instances on the domain without any
concurrency or urgency rules and – thanks to being an incomplete temporal planner –
could solve them very fast. However, it could not solve as much problems as POPF2.
On all problem instances that SGPlan6 could not solve, it suddenly terminated
without giving a reason as to why.

In Section 3.4 we mentioned that POPF2 is based on CRIKEY3, which is able
to recognize durative actions as compression-safe, i.e., it detects where end points
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Figure 6.7: Histogram of planning times on domains with and without concurrency
and urgency rules
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of durative actions do not have to be considered a choice point for state space
exploration. Since there is no required concurrency in the CR0-UR0 domain, all
actions in this domain are compression-safe; however, they are not recognized as
such by POPF2. Unfortunately, the technique employed by POPF2 recognizing
actions as compression-safe is sound but not complete, cf. [HLF04].

To reach as much compression-safety in POPF2 as possible, we changed certain
characteristics of the generated domain. Implementing these changes into the CR0-
UR0 domain led to POPF2 recognizing 100% of all ground actions as compression-
safe. On the other three domains, the percentage of recognized compression-safety
depended on the problem instance used for evaluation.

Numeric facts The generated domain contains numeric facts for checking the num-
ber of read locks and, in case of domains employing counting functions, for
checking the number of adjacent edges of a node. In each of these numeric
facts, its generated rvalue is the minimal possible value. For this reason, we
replaced each numeric fact implemented via an equality check with a numeric
fact using a non-strict inequality, i.e., the lvalue is required to be less than or
equal to the rvalue. While not changing the domain’s behavior, this allowed
POPF2 to realize that lower values are preferable to higher values and thus
that an increment operation at the beginning of an action cannot enable the
application of other actions.

Deletion and increment operations According to the translation scheme, changes
specified in a durative graph transformation rule are realized in the at_end

effect of an action. Since all relevant nodes and edges are locked at the
beginning and unlocked at the end of an action’s application, certain changes,
e.g., the deletion of elements and increment operations on counters, can be
realized in the at_start effect instead. Implementing this made POPF2 realize
that there is no benefit in postponing the application of an action’s at_end

effect, because all “bad” effects have already been executed with the at_start

effect.

Figures 6.9 and 6.10 show the histogram and line chart on the domains with
increased compression-safety, respectively. Whereas taking concurrency rules into
account made almost no difference on domains with less compression-safety, there is
a significant difference now. More frequently than before, disregarding concurrency
rules is now faster than considering them. This can be seen clearly on compression-
safe domains without urgency rules (CR0-UR0 vs. CR1-UR0). When comparing the
results on compression-safe domains with urgency rules (CR0-UR1 vs. CR1-UR1) to
the previous results of Figures 6.7 and 6.8, we can see that POPF2 now found more
solutions on the domain disregarding concurrency rules than before and thus also
more than on the compression-safe domain that considers concurrency rules. Unlike
the previous results, these results conform to what we expected: both kinds of rules
make planning harder, but urgency rules more so than concurrency rules.
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Figure 6.9: Histogram of planning times on domains with and without concurrency
and urgency rules, with as much compression-safety as possible
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6.7 Related Work

While planning and scheduling is a discipline in artificial intelligence research that
has made many advances in the last decades, only few moves have been made to tie
planning techniques with the software engineering domain. The benefit in pursuing
this direction lies in the ability to reuse models which have been built by software
engineers for planning applications. For example, a recent approach by Hoffmann et
al. [HWK12] reuses an existing Status and Action Management (SAM) model, which
describes status changes of SAP Business Objects, for the creation of new processes
in Business Process Management. The processes are created by translating the SAM
model into PDDL and employing an adapted version of the planning system FF.

Other promising approaches that combine software engineering models with
planning techniques rely on graph transformation systems as an underlying formal-
ism due to its suitability for implementing software architecture reconfiguration.
An early attempt in this direction came from Edelkamp and Rensink [ER07]. They
showed manual translations from planning tasks specified with graph transforma-
tion rules into PDDL and identified some advantages of planning directly on graph
transformation systems: the possibility to reduce the state space by representing
isomorphic graphs only once and the support for the instantiation and deinstan-
tiation of nodes. These advantages gave reason for techniques that directly use
graph transformation systems for planning, notably the ones already discussed in
Section 4.5.

Tichy and Klöpper [TK11] were first to present an automatic translation of graph
transformation rules into PDDL actions. As noted at the beginning of this chapter,
their translation scheme supports time-consuming reconfigurations by means of
temporal annotations, but they did not treat potential conflicts in the concurrent
application of rules or explicit concurrency and urgency. Meijer [Mei12] also provides
a translation between graph transformations and PDDL, but does not cover time or
durative actions. The developed translator works in both directions, i.e., planning
tasks formulated in PDDL can also be translated back into a graph transformation
system. As opposed to our technique, the main focus of this work lies on the
backward direction. The employed graph transformation tool, however, needs to
support existential quantification on edges to match the semantics of PDDL6.

Although not reusing an existing software engineering model, there are ap-
proaches to knowledge engineering for planning domains that make use of UML
or have an object-centric perspective, e.g., the itSIMPLE project by Vaquero et
al. [Vaq+09] or the GIPO environment by Simpson et al. [SKM07]. The itSIMPLE
project’s goal is to develop a knowledge engineering environment that supports its
users during the design of planning applications. The tool allows to define UML
domains with OCL constraints, which can be translated into Petri net representations
for analyses and mapped into PDDL for planning. It also supports durative actions

6In PDDL, a literal that is going to be deleted by an action does not have to be present if it is not
required in the precondition. In such a case, the action is still applicable, but does not change the literal.
In fact, we used this property for the deletion of dangling edges in the SPO-Q translation variant.
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via a timing diagram that specifies the timing of a predicate change. Since version
4.0 [Vaq+12], it also allows to express the timing of conditions. The GIPO environ-
ment has a similar goal as itSIMPLE. However, its static validation techniques are
rather simple, e.g., it checks that declared predicates are actually used in action
schemata or finds predicates that are only used in preconditions but never in effects
or vice versa. On the plus side, it provides a manual plan stepper, which helps in
discovering bugs within a domain definition, and supports hierarchical task network
planning [Sac75].

6.8 Discussion

Several approaches to improve the planning performance on the domains used
in this thesis are conceivable. Leaving improvements to the internal workings
of temporal planning systems aside, we can augment the planning domain with
additional information or simplify it by employing abstraction techniques. The
remainder of this section presents three ideas in this direction.

The first idea is motivated by the fact that many domains involve multiple agents
that have to cooperate to reach their goals. For example, RailCabs each have an
own target track section but cooperate when driving there by building convoys or
by deciding who may drive first before a bottleneck. The idea is to decompose the
planning problem into several parts that differ in whether agents can solve these
partial problems individually or have to coordinate with one another in solving
them. Based on this premise, Hauck [Hau13] developed a prototype of such a
decompositional planning system as part of his master’s thesis. This system uses so-
called domain patterns to identify those points in individual plans where coordination
starts or ends to be necessary or beneficial. These domain patterns are provided as a
third input file, i.e., along with the domain and problem file, to the planning system.
An adaptation of these domains patterns to graph transformation systems is easily
feasible.

The second idea is motivated by the fact that planning systems employing action
compression, like SGPlan6, are much faster than complete planning systems, like
POPF2. The idea is a smart combination of two such different planning systems. A
prototype realizing this combination was developed by Heil [Hei14] as part of his
bachelor thesis. In a first step, the need for required concurrency is abstracted away
by manipulating the planning domain. Then, the planning problem is solved on this
abstract domain by an action-compressing planner. Although the resulting plan is
not valid on the original domain, it provides valuable information for solving the
original problem. Based on this information, the original domain is manipulated
again such that the complete planner benefits from this additional information when
solving the problem in a second pass. This is done in such a way that the domain
modification ensures the validity of the plan on the original domain.

The third idea is an approach to real-time planning7, where the generation and
execution of plans is performed concurrently. In the operational phase of a system

7Real-time planning is also known as online planning.
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continuously sensing its environment and adapting to changes therein, one cannot
afford a lengthy planning process. For this reason, real-time planning approaches
commit to certain state changes before a complete plan has been found, e.g., by
restricting their search to states in the neighborhood of their current state. Real-time
planning has its roots in real-time heuristic search. While the well-known real-time
search algorithm Learning Real-Time A* (LRTA*) [Kor90], which is essentially a variant
of A* [HNR68] with early commitment and limited lookahead, has been adapted
by Bonet et al. [BLG97] to solve STRIPS planning tasks, we are not aware of any
adaptations of real-time search techniques to temporal planning.

The idea proposed in the following is inspired by Windowed Hierarchical Coopera-
tive A* (WHCA*) [Sil05]. WHCA* is a real-time search algorithm for the cooperative
pathfinding problem, i.e., multiple agents have to move in a labyrinth of discrete
cells to different target cells without two agents crashing or occupying the same
cell at the same time. Each movement to a neighboring cell takes exactly on time
unit. The word “cooperative” in WHCA* refers to employing a centralized planning
process for all agents; “hierarchical” refers to using two levels of abstraction, i.e.,
one concrete level, which denotes the search in the planning problem’s state space,
and one abstract level, which denotes the search performed by the heuristic function
employed in the concrete level; and “windowed” refers to a k-step window used
as planning horizon. Planning in the abstract level is fast because it uses a much
simpler heuristic function than the concrete level, ignores positions of (and thus
conflicts with) other agents, and allows to reuse calculations in later invocations.
The suitability for real-time planning is given by the k-step window. It is realized
by a concrete-level state space for k steps and an abstract-level state space for the
remainder of the search.

In its abstract-level state space, WHCA* abstracts away all other agents lying on
the path to an agent’s goal location. A straightforward adaptation of this approach
to generic temporal planning would require that it is always clear what has to be
abstracted away and how. Since this is not the case in general, a better idea is a
generic relaxation of all action applications in the abstract-level state space, i.e., all
actions after a certain point in time k. In the RailCab domains, a simple delete
relaxation causes – from the perspective of one RailCab – all other RailCabs to
be abstracted away as soon as they perform one move operation. While different
in concept from WHCA*, such a relaxation amounts to a similar behavior on
appropriate domains.

The use of a concrete and abstract level and the delete relaxation can easily be
implemented directly into the planning domain. For each original action schema, we
can create a relaxed action schema where delete effects are ignored and numerical
facts and assignments are executed on bound variables, i.e., increment operations on
upper bounds and decrement operations on lower bounds, instead of their original
variables. With the beginning of executing abstract actions, bound variables have the
same value as their original counterparts. This can be achieved by adding increment
and decrement operations for bound variables to original action schemata for each
numeric assignment they contain. The transition from executing concrete actions to
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executing abstract actions can be implemented with a special one-shot action whose
execution takes k time units and enables the use of abstract actions in its at_end

effect. In case of the RailCab domain, a side benefit of using a k-time-units-sized
window is the option to decompose the planning problem into subproblems based
on the RailCabs’ locations in each planning iteration.



7
Conclusion and Future Work

This thesis investigated planning techniques working with graph transformation
systems as system models. Motivated by different requirements arising from two fun-
damentally different application examples, two approaches for graph transformation
planning have been developed.

The first approach preserves the expressiveness of graph transformation systems
by directly working on a graph transformation system’s state space. As a result,
it can handle system models with an infinite state space. It employs a domain-
independent heuristic function that uses the solution length of a relaxed planning
problem as heuristic estimate. Taking both the structure of graphs and applicable
graph transformations into account, this is a considerable improvement over related
work.

The second approach puts its focus on timing aspects and concurrency. It comes
with a new formalism for the specification of durative graph transformations, which

• guarantees that multiple durative graph transformations with conflicting be-
havior cannot be executed concurrently,

• enables the explicit, rule-based specification of required concurrency and
urgency, and

• enables making use of available verification procedures by being based on
timed graph transformation systems.

System models that have been designed in this formalism can be translated into
planning domains, for which problem instances can be solved by employing off-
the-shelf PDDL-based planning systems. Evaluation results gave insight on how to
decide between different translation variants and showed how certain aspects of
planning domains with required concurrency influenced planning performance.

Future work can be divided into future work extending the performance and
capabilities of the two approaches presented in this thesis as well as future work
related to their integration with other methods or languages. Obvious perspectives

181
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for improving the performance concern the development of planning systems.
Section 4.6 already discussed the idea of adapting techniques for the recognition of
landmarks, i.e., literals occurring in every possible plan, from PDDL-based planning
systems to graph transformation planning. Ideas for improving the performance of
temporal planning systems have already been presented in Section 6.8. The support
for forbidden patterns has been integrated into planning methods working directly
on the state space of a graph transformation system, cf. Section 4.5, but not into
approaches translating them into plan constraints of PDDL 3.0.

In the following, we first consider the integration of the planning methods
proposed in this thesis with the MDSD approach MechatronicUML. Then, we cover
options for extending the DGTS formalism with new concepts and automation.

Integration into MDSD The thesis introduction mentioned the OCM as an archi-
tectural model for the development of self-organizing systems and classified the
generation of temporal plans into its top layer, the cognitive operator. Executing
plan actions was classified into the middle layer, the reflective operator. The question
is how the execution of temporal plans computed by the cognitive operator can be
integrated into the reflective operator.

For the RailCab system introduced in Section 1.4, whose software is developed in
MechatronicUML, executing actions of a plan means triggering specific transitions
of RTSCs via asynchronous messages. Technically, this can be done by translating
the plan into a RTSC that schedules when to send which message. To make this
possible, the system model has to include information about which plan actions
trigger which transitions in which RTSCs.

Instead of assigning exactly one transition to each action, it might be reasonable
to trigger more than one transition (from different RTSCs) at the same time for
certain actions. An example is the action joinConvoy, whose execution involves the
instantiation of multiple RTCPs: the RTCP ConvoyCoordination for communicating
with the coordinator of the convoy and the RTCP DistanceControl for communicating
with a neighboring member. Similarly, it might be reasonable for certain actions
to trigger no transition at all or to make this conditional on the action executed
beforehand. For example, when an application of the action moveRailCab follows
another application of the same action, no change in behavior is necessary.

If a centralized planning process is used for multiple agents, the task of assigning
transitions to actions is yet a little more complicated. Since some actions might
involve multiple agents but other actions involve only certain agents, the plan
has to be assigned to different agents on a per-action basis. However, we do not
know the acting agents at design time. To be able to perform this assignment task
automatically at runtime, the acting agents need to be identifiable either from the
plan or from additional information included in the system model.

Semi-Automatic Definition of Constraint Morphisms Concurrency and urgency
rules enable the explicit specification of requirements regarding the concurrent or
urgent execution of durative graph transformations, respectively. Specifying these
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rules involves defining several constraint morphisms for the purpose of connecting
demanding and satisfying rules at compatible matches. Instead of specifying each
constraint morphism manually, it is also viable to search for them automatically.
Since an automatic search for constraint morphisms is performed on the level of
rules, i.e., in design time, this does not increase any planning time.

Unfortunately, a fully automatic specification of constraints in concurrency and
urgency rules is less expressive than a manual one. Essentially, it causes all techni-
cally possible constraint morphisms to be included in the concurrency or urgency
rule. This is the reason why we did not propose this idea as a general solution in
Sections 5.5 and 5.6.

A better idea is to search for potential matches automatically and choose which of
them to include as constraint morphism in the concurrency or urgency rule manually.
Consider the concurrency rule allowChangePublication as an example. Its satisfier
interface consists of a RailCab node and two Track nodes. Searching for satisfier
constraint morphisms from this interface to LHSs of durative graph transformation
rules leads to a lot of matches, some of them legitimate and some of them not, e.g.,
where images of Track nodes are interchanged compared to the legitimate matches.
The latter kind of matches can simply be discarded by a developer when choosing
which of the matches found to include into allowChangePublication as a satisfier
constraint morphism. This approach retains the expressiveness of concurrency and
urgency rules but still offers a more convenient means of specification.

To prevent certain illegitimate matches from being found in the first place, the
search for matches could also consider both LHS and RHS of each durative rule
instead of its LHS or RHS only. This comes down to a morphism based on graph
transformation rules instead of graphs. Such inter-rule morphisms can be defined
component-wise, i.e., mapping LHSs to LHSs and RHSs to RHSs, such that they
preserve relations between LHSs and RHSs. In the example of concurrency rule
allowChangePublication, we could thus specify that there has to be an on edge
being deleted adjacent to the left Track node. In doing so, a significant amount
of illegitimate matches can be avoided. Note that there are two ways NACs can
be employed in this approach: first, as a component whose relation to an LHS
is to be preserved by inter-rule morphisms; and second, as a NAC for inter-rule
morphisms, i.e., forbidding the existence of elements in those rules acting as hosts
for the inter-rule morphisms.

Mutex Rules There are situations where durative graph transformation rules are
forbidden to be executed concurrently. In many cases, such a mutual exclusion
of durative graph transformation rules is ensured by the locking mechanism im-
plemented into their semantics. However, in some application examples, such an
implicit prevention of forbidden concurrent execution might not be enough.

Consider for example a job shop scheduling problem [Gra66], i.e., n jobs have to
be scheduled on m machines, where executing a job on a machine is implemented as
a durative rule consuming the job and producing some output. Since the application
of such a rule does not change the machine in any way, this machine gets a read
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lock but no write lock. As a result, multiple jobs can be scheduled to be executed on
the same machine at the same time. To prevent this from happening, we need some
kind of mutex rule, i.e., a means to explicitly specify mutual exclusion. The idea of
mutex rules is thus inverse to that of concurrency rules.

Both the DGTS formalism and the translation scheme compiling DGTS models
into PDDL could be extended to support such mutex rules. Unlike concurrency
and urgency rules, mutex rules are symmetric, i.e., there is no distinction between
demanding and satisfying rules. Nevertheless, they can be specified similarly, i.e.,
by defining constraint morphisms for each participating durative rule, and realized
via indicators similar to demand and satisfaction indicators.
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