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Abstract

Automotive manufacturers in Europe use area forwarding based inbound logistic net-

works to obtain cost advantages in the inbound logistics section. Thereby, e�ective

control of the ongoing logistics operations is necessary to gain the edge over compet-

ition. Delivery schedules that are frequently generated by the automotive manufac-

turers are used to control the material �ow in the area forwarding networks. In doing

so, di�erent delivery schedule generation approaches can be used to balance between

the di�erent objectives of cost reduction and delivery schedule stability. A promising

approach discussed in literature and successfully applied in retailer business are deliv-

ery pro�les. When chosen wisely, this control rule is said to reduce both logistic cost

and schedule instability. In this thesis, a method to select cost minimal delivery pro-

�les under the consideration of area forwarding networks in the automotive industry

is presented and its impact on both cost and delivery schedule stability in a rolling

horizon environment is assessed in a case study. To identify the aspects of the problem

setting that have to be considered, a description of the planning processes in the auto-

motive industry and the operational order lot sizing in particular is given. In doing

so, two types of delivery schedule generation mechanisms, algorithmic approaches and

rule-based approaches are pointed out. An appropriate solution algorithm which uses

a decomposition technique to overcome runtime issues is developed. A mixed integer

formulation and heuristic algorithms, a sequential algorithm and a genetic algorithm

that can be used in the solution algorithm are presented. The model and the solution

algorithms are then extended to a two-stage stochastic program in order to consider

demand uncertainties in the solution process. A large scale industry case study is then

used to assess the impact on both cost and delivery schedules. A comparison with

state-of-the-art algorithmic delivery schedule generation approaches is conducted to

enlighten the pros and cons of both approaches. The method to select cost minimal

delivery pro�les is novel, and the case study provides useful insights for possible ap-

plications in practice.

Keywords: Automotive, Supply Chain, Material Flow, Logistics, Area Forwarding

Inbound Logistic Networks
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1 Introduction

The automotive industry plays an important role in the German economy. �About 20

% of annual German gross domestic product in the last decade was earned with the

product �automobile� � (Becker [2006], p. 218), and it may be stated that �there are

about 5.3 million people in Germany today who make a living, directly or indirectly,

from cars�(Becker [2006], p. 218). Driven by the challenges of globalization and the

necessity to o�er more and more models and options to meet the customers demand,

automotive manufacturers have created global supply networks with thousands of sup-

pliers. Maintaining a smooth and cost-e�cient �ow of goods from supplier facilities to

the automotive manufacturers plant is therefore one of the capabilities vital to survival

in active competition. Area forwarding networks are a concept widely used among

automotive manufacturers to run the necessary logistic operations. Due to a focus on

the core competences operations of those area forwarding networks are carried out by

logistics service providers, whereas control of the material �ow remains in the hands

of automotive manufacturers. The automotive manufacturers' ability to control the

material �ows has not been used to its full extent in practice. It has been addressed

in a vast number of publications and programming solutions that may in general be

divided into two categories. On the one hand, there are algorithmic approaches that

propose to dynamically and frequently adapt a plan to imminent changes. On the

other hand, rule based approaches try to determine a �xed rule that can be applied to

derive a plan if necessary. Whereas the former have been more intensively studied in

literature, the latter are more often demanded in practice. Three reasons can be cited

for this. First, most algorithmic planning approaches demand rather complex software

implementations to be integrated into company-wide applications, a step which in most

cases is expensive and time-consuming. Second, algorithmic planning approaches are

hard to understand for practitioners that barely have time to read up on the details

behind these algorithms and models. Last but not the least, algorithms presented in

the literature focus on cost reductions, whereas other goals, especially the desire for

a stable and reliable plan remain undiscussed. In addition, an unproved bias among

1



1 Introduction

practitioners tends to view algorithmic approaches as further enhancing the instabil-

ity given in the supply chain. A control rule that has recently been studied by both

researchers and practitioners is the so-called delivery pro�le or replenishment epoch.

Delivery pro�les provide a set of days on which deliveries are allowed and neglect de-

liveries on other days, thereby controlling the material �ow. Despite their ease of use

and their applicability to the underlying problem setting, no planning approach exists

to determine optimal delivery pro�les for suppliers in area forwarding inbound logistic

networks. Furthermore, no insights are available on whether or not delivery pro�les

help to increase the stability of delivery schedules in an automotive manufacturer's

day-to-day operations. This gap will be closed in this thesis.

1.1 Goals of the thesis

The thesis has three major goals. First, to develop a planning method capable of

determining cost-minimal delivery pro�les for area forwarding based inbound logistic

networks under special consideration of an automotive environment. Market demand

uncertainty should thereby be incorporated in the decision making process. Second, a

method of analysis of both control rules and algorithmic planning methods for deliv-

ery schedule generation in a rolling horizon planning environment in respect to costs,

robustness of the solutions and the impact on delivery schedule stability will be de-

veloped. The third goal is to investigate the outcome of the planning method for

delivery pro�les in a rolling horizon production planning environment and compare

the results with state-of-the-art algorithmic planning approaches.

1.2 Structure of the thesis

In Chapter 2 the planning problem and its relevant aspects will be described. Chapter 3

contains an outline of previous research on similar topics. After summing up the

most important �ndings from literature, the gap between existing literature and re-

quirements of this thesis are analyzed and the missing steps are shortly depicted in

Chapter 4. In the following, Chapter 5 presents the solution approach to determining

cost-minimal delivery pro�les and Chapter 6 gives details on the evaluation method.

To prove the validity of the solution approach a case study with industry applications

is given in Chapter 7.

2



2 Problem statement

This Chapter will �rst give a short overview of logistics in general and area forwarding

based inbound logistic networks in particular. Automotive supply chains in particu-

lar will then be explained, and a description o�ered of how supply chain operations

are planned, along with an indication of how the operational order lot-sizing planning

problem integrates into the big picture. Thereafter, the operational order lot-sizing

planning problem for area forwarding networks will be depicted and the di�erent com-

ponents of the problem, including the decisions to be made, the boundaries to those

decisions and the resulting di�culties will be explained. Algorithmic and rule-based

delivery schedule generation for the operational order lot-sizing problem will then be

distinguished. The Chapter will close with a summary of the planning problem that

arises when delivery pro�les are used as delivery schedule generation rule.

2.1 Logistics

Logistics may be de�ned as �the management of all activities which facilitate movement

and the co-ordination of supply and demand in the creation of time and place utility�

(see Heskett et al. [1973]). These activities include transformations in time (transport)

and space (storing) as well as changes in composition of objects (handling) (see Button

et al. [2011], p. 250).

According to the Supply Chain Operation Reference (SCOR) model (see Stewart

[1997]), a company's business process may be divided into the �ve major sub-processes:

plan, source, make, deliver and return. Logistics is a necessary support process for the

business processes source, make, deliver and return, because it ensures �the positioning

of resource at the right time, in the right place, at the right cost, at the right quality�

(Chartered Institute of Logistics and Transport (UK), 2005, cited in Rushton et al.

[2006], p. 6) which are necessary to maintaining the core business processes. Rushton

et al. [2006] de�nes logistics as �the e�cient transfer of goods from the source of supply

through the place of manufacture to the point of consumption in a cost-e�ective way

3



2 Problem statement

while providing an acceptable service to the customer� and thus lays emphasis not only

on the content of logistic operations but also on its goals.

According to Gudehus and Kotzab [2009], logistics may be divided into four �elds

of operation:

� Inbound logistics (or procurement logistics)

� Production logistics (or internal logistics)

� Outbound logistics (or distribution logistics)

� Reverse logistics (or disposal logistics)

While the �rst three �elds (inbound logistics, production logistics and outbound lo-

gistics) are existential parts of a production supply chain, reverse logistics deals with

recirculation of produced goods. This issue is not relevant to this work and will thus

not be considered. Figure 2.1 depicts the di�erent �elds of operation and the relations

between them. At the beginning of a company's logistics operations stands the sup-

plier's goods-issuing department. This is the point at which the raw goods leave the

supplier's system and are transferred to the company's control. Inbound logistics is re-

sponsible for transport of goods to the incoming goods department warehouse (process

source). At this point production logistics takes over responsibility for the material

�ow in the company's production system (process make), until the �nished goods are

placed in the outgoing goods warehouse. From here �nished goods are delivered to

the customer (process deliver). This task is ful�lled by distribution logistics. The red-

dotted rectangle in Figure 2.1 delimits the scope of this thesis, in which only inbound

logistics and the incoming goods department warehouse will be considered.

2.1.1 Area forwarding based inbound logistic networks

One approach widely adopted in the automotive industry is the use of area forwarding

based inbound logistics networks. The main idea behind area forwarding logistics

networks is that of bundling inbound transports from multiple suppliers in accordance

with their spatial arrangement in order to increase vehicle use in less-than-truckload

(LTL) transport. According to the spatial distribution, suppliers are segregated into

several consolidation areas. For each consolidation area a consolidation center for pure

cross-docking operations exists in a central location. Figure 2.2 depicts a typical area
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Figure 2.1: Overview of logistic processes and subprocesses.

forwarding based inbound logistics network. When the goods are picked up from a

supplier within the area there are two possible follow-up steps. If the goods from

a single supplier �ll a vehicle completely, a full truckload (FTL, the green line in

Figure 2.2) transport from the supplier directly to the unloader (in this case the OEM)

takes place. This step is called the full load run. Otherwise, the goods are brought to

the consolidation center. This step is called the pre leg run and is represented by the

blue line in Figure 2.2. In the consolidation center goods from di�erent pre leg runs

from di�erent suppliers within the same area will be cross-docked and then transported

to the target location. This transport step, depicted by the yellow line, is called the

main leg run. Due to cross-docking operations there can be only a single LTL transport

from the consolidation center to the unloader, but several additional FTL transports.

This helps to increase the average vehicle use on the main leg run, which in most cases

is the longest distance within the supply network.

Logistic service providers A logistic service provider (LSP) is a company that provides

logistic services to other companies. These services may include both operative and

administrative services from the �eld of transport, handling, storing and special ser-

5



2 Problem statement

Consolidation-

Center
Unloader

Supplier A
Full load run

Pre leg run

Supplier A

Main leg run

Figure 2.2: A typical area forwarding based inbound logistic network.

vices (e.g. �lling and bottling or waste removal) or compounded logistic services which

combine multiple services into a value-creating chain (see Gudehus and Kotzab [2009],

p. 805 �). Recently, �more and more companies assign their logistic demand to service

providers� (Gudehus and Kotzab [2009], p. 803) to focus on their core competencies.

Cost reduction in general and a change in cost structure are the most important reas-

ons for a company's decision to outsource logistic services to a LSP (see Blecker et al.

[2007], p. 42). As the logistics services are the LSP's core competency, the LSP can

achieve economies of scale and realize synergies by utilizing its resources better and

may pass these cost reductions to the customer (see Gudehus and Kotzab [2009], p.

809). Chou et al. [2009] points out that �auto-makers and parts suppliers maintain

their own warehouses� while the LSPs �are contracted by the manufacturers to help

manage all aspects of intermediary logistic tasks� (Chou et al. [2009], p. 583). For each

consolidation area one LSP is selected to operate the consolidation center and execute

all transport. In comparison with an open competitive bidding for each single transport

relation this approach reduces management overheads on the OEM's side and brings

more opportunities for synergy e�ects on the LSP's side. Further informations about
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the LSPs options to run the logistic network can be found in Crainic [2000].

Tari� systems The services o�ered by the LSP have to be paid for by the company

that uses the services on negotiated conditions. While some services can clearly be

accounted for (e.g. packing parts into a load carrier may be accounted per part), other

operations can include synergy e�ects which could result in rebates for the customer.

Due to its cost structures consisting of a large �xed block for vehicle usage and driver

payment and a variable part of fuel cost, this holds true especially for truck transport

services. A common way to pass incentives to the customer is to use a tari� system for a

transport relation. �The tari� system is negotiated on a mid-term base (usually between

one and two years) and de�nes the price for the services of the logistics service provider�

(Schöneberg et al. [2011], p. 217). To re�ect the di�erent conditions in consolidation

areas (e.g. more urban districts require more city tra�c and a region within a mountain

range involves more up- and downwards driving), a separate tari� discounting scheme

can be put up for each consolidation area. For a single route or distance the structure

of the tari� system is usually based on load measures, e.g. weight, load metres or the

number of freight pieces. For each value of the load measure, a speci�c price is given

by the discounting-scheme. Usually, the discounting-scheme provides an incentive for

a higher vehicle use, which re�ects the internal cost structure of the LSP, as use-

independent costs like the driver's payment, tolls, etc. occur independently of vehicle

use level. Considering the discounting scheme, we can distinguish between an all-units

discount and incremental discounts. In the �rst case (green line in Figure 2.3) the price

of all-units is adapted according to the discount if a certain value of the underlying

measure is exceeded. In the latter case (red line in Figure 2.3) only the price of

additional units of the underlying measure are discounted. Incremental discounting

schemes can additionally include a base price for each rebate level. A piecewise constant

discounting scheme is a special case of the incremental discounting scheme with a base

price and without variable cost per unit of measurement. A �at-rate discounting scheme

is in turn a special case of a piecewise constant discounting scheme with only one rebate

level.

Synergy e�ects As stressed in the paragraphs above, there are synergy e�ects for

both the LSP and the unloader in an area forwarding based inbound logistics network

because the LSP's synergy e�ects are partly passed on to the unloader. In detail, these
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Figure 2.3: Exemplary discounting schemes for a single route.

synergy e�ects can be achieved by two leverages, the consolidation of goods from one

supplier to make use of the more e�cient full-load runs and increase vehicle use in pre

leg runs on the one hand and consolidation of goods from multiple suppliers in the

main leg run. These two leverages can be pulled by time-based consolidation on top

of the spatial consolidation lying in the structure of area forwarding based networks.

Load carriers Load carriers are boxes, cases or palettes used to bundle several parts.

Load carriers are used to ease the handling of goods and to protect them during

transport. As load carriers are the objects that determine the space usage within

a vehicle and can also be responsible for a considerable share of load weight, it is

necessary to consider load carriers. Load carriers can be diversi�ed into so-called set

load carriers and non-mixed load carriers. While set load carriers carry di�erent parts

at the same time, non-mixed load carriers carry only parts of the same type at once.

These attributes need not to be �xed for the load carrier's lifetime, e.g. a load carrier

may have the physical ability to carry di�erent parts, but could still be used in non-

mixed mode. Set load carriers are often used in Just-In-Time or Just-In-Sequence

environments to carry all parts required for a single manufacturing step at once or to

8



2.1 Logistics

provide the material for a prede�ned sequence of jobs. As Just-In-Time and Just-In-

Sequence deliveries are not within the focus of this thesis, only non-mixed load carriers

will be considered. Another possible way to classify load carriers is to segregate them

into reusables and non-reusables. Reusable load carriers are typically made of hardened

materials (e.g. steel or wood), while non-reusable ones are paperboard containers. In

most industrial applications reusable load carriers are preferred for ecologic reasons.

Only in case of high prices for returning reusable load carriers (e.g. shipping relations

with a high price on return path) or high correlation between weight and price (e.g.

air freight) are non-reusable load carriers used.

2.1.2 Inventory

Between each pair of �elds of operation, inventory in warehouses is used as a bu�er

which provides the possibility of decoupling two �elds of operation (see Bose [2006],

p. 4). In addition to the function of decoupling, inventory serves as a protection

against �uctuation in demand and unreliability in supply (see Müller [2003], p. 3).

In some cases inventory may also be used to protect against rising prices (see Müller

[2003], p. 4). Inventory can also be used to decrease setup or purchasing cost by

using economies of scale (see Axsäter [2006], p. 2). The bu�ering function of inventory

can also have positive in�uence on freight cost, which will be discussed in detail in

section 2.3. In summary it may be said that inventory serves two major goals, namely

protection against uncertainty and creation of opportunities for lot-sizing in both input

and output of inventory.

Types of inventory According to Shah [2009] inventory may be divided into di�erent

parts depending on its intended purpose:

� Cycle inventory is used to leverage economies of scale in production or pro-

curement.

� Safety stock as protection against uncertainties in demand and supply.

� Decoupling stock used to enable decoupling between two �elds of operation.

� Anticipation inventory used for speculative reasons, e.g. if rising prices are

expected.
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� Pipeline inventory may be divided into work-in-progress and transit invent-

ories. It comprises materials that are currently worked on or that are currently

being transported from one location to another.

� Dead stock is inventory which is not used at all, e.g. because it is obsolete or

there is no demand.

Inventory cost Inventory also has an e�ect on the cost side. First, materials and parts

in the inventory have to be bought. The capital invested in goods cannot be used to

support other business operations. Thus it may be said that opportunity cost occur. If

goods in the inventory are bought on credit, interest has to be payed. Both cases lead

to inventory cost dependent on the value of goods in the inventory (see Kapoor and

Kansal [2004], p. 133). This value can be measured in di�erent ways, either by pegging

the rate to the prime rate or by using so-called hurdle rates, which re�ect expected

return values on investment for capital deployed (see Bowersox et al. [2007], p. 136).

Second, warehouses have to be built and operated, which leads to investments and

cost for energy and personell. �These can be paid either in the form of rates charged

by an outside �rm o�ering such services or through internal costs generated from the

particular operational activity system adopted in the company controlled warehouse�

(Kapoor and Kansal [2004], p. 172f). There are di�erent techniques of allocating this

cost to di�erent products, e.g. the space occupied measured in square or cubic meters

or the amount of storage slots used in an automated storage system (see Kapoor and

Kansal [2004], p. 134). Third, obsolescence cost can occur if goods are stored too long

and cannot be used afterwards. Even though goods in the automotive industry do not

decay in the short or medium terms, they can in fact decay. Additionally, frequent

improvements in construction patterns can cause changes to parts and materials. If

these are still in inventory when the improvement occurs, it could be that they cannot

be used afterwards due to incompatibility or security reasons. Fourth, inventory has

to be insured �as protection against inventory losses such as �re and theft� (Kapoor

and Kansal [2004], p. 133).

Service quality The success of protection against uncertainty in demand and supply

through inventory can be measured by service levels. There are three measures which

are summed up under the term service level.
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� The α-service level, which is orientated on the event of a stock-out. It is de�ned

as �the probability that an incoming order can be ful�lled completely from stock�

(Stadtler and Kilger [2008], p. 53).

� The β-service level, which is quantity-orientated and �is de�ned as the propor-

tion of incoming order quantities that can be ful�lled from inventory on-hand�

(Stadtler and Kilger [2008], p. 53).

� The γ-service level, which is time- and quantity orientated. In addition to the

β-service level, it considers the time it takes to balance the backlog again. It can

be de�ned as:

γ-service level = 1− mean backlog at end of period

mean demand per period

(see Stadtler and Kilger [2008], p. 53).

Each of these values can be used to measure the level of service which an inventory

provides for the following �eld of operation. Depending on emphasis, an appropriate

value can be selected.

Inventory management Inventory management can be seen as a necessary coordin-

ation mechanism between two systems which are decoupled by an inventory. This

applies as well to coordination between suppliers and recipient as well as coordination

between inbound and production logistics. The role of inventory management is �to

maintain a desired stock level of speci�c products or items� (Toomey [2000], p. 1).

Desired in this case means that stock is high enough to ful�ll the goals of inventory

described above while at the same time remaining as low as possible in order to min-

imize inventory holding cost. To control the level of safety inventory two parameters

are widely used, the safety lead time (SLT) and the safety stock quantity (SSQ). Safety

lead time is a time-based safety parameter and represents the number of periods (usu-

ally measured in working days) a part will be ordered before the demand due date. A

safety lead time value of two means that all parts are ordered two days earlier than

they are required (see Swamidass [2000], p. 655). Safety stock quantity is a quantity-

based safety parameter and represents the number of parts which should always be

in the inventory, independent of whether or not a demand was predicted. In perfect

circumstances safety stock quantities will always remain in inventory and will not be
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Quantity is higher
than expected

Quantity is met Quantity is lower
than expected

Due date is earlier
than expected

∆t < SLT ∧∃Dt2 :
t2 ≤ t1 + SLT ∧
FDt2 ≥ Dt1

∆t < SLT ∆t < SLT

Due date is met ∃Dt2 : t2 ≤ t +
SLT ∧Dt2 ≥ Dt1

uncritical uncritical

Due date is later
than expected

∃Dt2 : t2 ≤ t +
SLT ∧Dt2 ≥ Dt1

uncritical uncritical

Table 2.1: Conditions under which safety lead time helps to protect against demand
uncertainty.

planned for consumption (see Toomey [2000], p. 47). Both methods have advantages

and disadvantages, as pointed out in van Kampen et al. [2010]. �A safety lead time

is the more e�ective strategy for coping with supply variability� (van Kampen et al.

[2010], p. 7478) while �holding a safety stock is to be preferred in coping with un-

certainties in demand information� (van Kampen et al. [2010], p. 7478)). In contrast

to safety stocks a safety lead time builds up a dynamic bu�er which exists only if a

demand is forecasted. This in turn means that safety lead time can only help to sat-

isfy an unpredicted demand if one of the conditions listed in Table 2.1 holds true. At

the same time this feature o�ers the opportunity to reduce safety inventory for parts

that are seldom used. Conversely, a safety stock will also protect against unforecasted

demand, but it requires more total safety inventory if all parts are secured by safety

stocks.

2.2 Automotive supply chains

Automotive supply chains consist of one or more car retailers, one Original Equipment

Manufacturer (OEM) and its plants (including �nal assembly plants and component

plants) and multiple suppliers. Each supplier can have its own suppliers, which leads

to a so-called supply network or supply chain. Suppliers in the supply chain can

be divided into tiers according to their position within the value creation process as

depicted in Figure 2.4. A tier-one supplier delivers his goods directly to the OEM, while

an tier-two supplier delivers his goods to a tier-one supplier and so on. Within a supply

chain, material �ow from the source (tier n) to the sink (customer), described as the
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Figure 2.4: An exemplary automotive supply chain.

downstream direction. At each stage of the supply chain materials are transformed into

more complex materials by production processes. At the same time control information

�ows from the customer to tier n supplier, in an upstream direction. Organizational

boundaries might not re�ect the role of a plant within the supply chain. A plant which

organizationally belongs to the OEM but in fact produces components, e.g. engines or

gearboxes, can also be seen as a supplier for the �nal assembly plant.

2.2.1 Material �ow control

The material �ow can be controlled either by a pull- or push-system. �In a pull (or

make-to-order (MTO)) system, �nished products are manufactured only when cus-

tomer require them� (Ghiani et al. [2004] p.4). Production jobs are used to determine

the demand at a production stage and the demand is then communicated to the next

production stage. By contrast, push (or make-to-stock (MTS)) systems have the in-
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ventory located at the end of each production stage. If material is required, the next

higher production stage ful�lls the demand from the supplier's inventory, and the lower

production stage is responsible for �lling up the inventory again. While pull-based sys-

tems can be harder to implement and require a higher level of control, they provide

the advantage of a reduced supply chain inventory, shorter lead times and less total

system cost (see Simchi-Levi et al. [2003] p. 122 �). This advantage is especially

important in the automotive industry, where a high variability of parts exists which

would necessitate a huge inventory of expensive �nished goods at the supplier's outgo-

ing goods warehouse. A common approach with push-systems is the vendor managed

inventory (VMI). In VMI environments the automotive company has no opportunity

to control the material �ow and thus no operational order lot-sizing is necessary. In

this work only pull-systems will be discussed as most automobile production networks

are pull-based systems in which OEMs control the material �ow.

Delivery schedules To share information about required materials with the suppliers

the OEM sends out Delivery Schedules at a regular interval. These contain an array

of orders for each required part. An order consists of a part code to identify the part,

a quantity and a date. According to Klug [2012] there are three established stand-

ards for the electronic transmission of delivery schedules. The most popular in Europe

is the standard given by the German Automotive Manufacturers Association (Verb-

and der Automobilindustrie, VDA). Another important standard has been de�ned by

the Odette (Organization for Data Exchange by Tele Transmission in Europe) organ-

ization. The Odette standard is an extension of the existing VDA standard and is

used mainly by European automotive manufacturers and suppliers. Over the years the

Odette standard has been continuously developed towards an Edifact subset. Edifact

is the third important standard. It was de�ned by a working group of the United

Nations and the European Union during the 80s and accredited by the International

Organization for Standardization (ISO) in 1987 (see Klug [2012], p. 248) in the ISO

Norm 9735. Edifact was originally designed for electronic data interchange among

trade partners independently of an speci�c industrial sector and covers more than 220

types of message, whereof only a small subset is relevant to the automotive industry

(see Klug [2012], p. 249). As depicted in Figure 2.5 the delivery schedule is divided

into three separate parts. The �rst is de�ned in VDA norm 4905 or Odette DELINS

respectively and provides the supplier with a weekly forecast for the next six to eight-
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6 to 18 months 

before production

15 days            

before production
4 to 6 days         

before production
Date of production

Forecast
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§ Cycle: Weekly

Standards
§ VDA: 4905

§ Odette: DELINS

§ Edifact: DELFOR

Call-off
§ Detail: Daily

§ Cycle: Weekly to daily

Standards
§ VDA: 4915

§ Odette: CALOFF

§ Edifact: DELFOR

Production-

synchronised Call-off 
§ Detail: Takt

§ Cycle: Daily

Standards
§ VDA: 4916

§ Odette: SYNCRO

§ Edifact: DELJIT

Figure 2.5: Components of a delivery schedule and the according standards according
to Klug [2012].

een months. Delivery schedules are updated and sent out at regular short term interval

and updated according to the current MPS at least every week. The second part, called

call-o�, is de�ned in VDA norm 4915 or Odette CALOFF and contains a daily delivery

schedule for the next 15 days which is updated in planning cycles between one day and

one week. Both forecast and call-o� are integrated in Edifact DELFOR if the Edifact

standard is applied. The third part is the so-called production-synchronized call-o�

de�ned in VDA norm 4916, Odette SYNCRO and Edifact DELJIT, which contains

detailed scheduling information about the production sequence of the next days. The

detail level of this production-synchronized call-o� is one takt level. In addition to

this information, a delivery schedule also contains the cumulative quantity of materials

that has passed the incoming goods department since a �xed date, e.g. the �rst day

in the calendar year. The cumulative quantity can be compared with the cumulative

quantity of goods which left the suppliers outgoing goods department. The di�erence

between the two cumulative quantities indicates the quantity of goods which is still in

transport. In order to reduce �uctuation in delivery schedules and maintain the sup-

plier's ability to create his own production schedule according to the delivery schedule

an allowed level of �uctuation is negotiated between the individual supplier and the

OEM. Klug [2012] states that these �uctuations typically cover a bandwidth of ±20%

for the forecast part and ±5% for the call-o� part. In addition, the �rst few days are

considered as a frozen zone (see Graf [2006], p. 432). Orders within the frozen zone

may not be changed in the next iteration. The duration of the frozen zone is to be

negotiated between the supplier and the OEM.
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Replenishment lead times The term lead time describes �the interval between when

an order is placed and when it is received� (Basinger [2006], p. 45). Lead times

are de�ned for each part in negotiations between supplier and buyer. Orders in the

delivery schedule which are within the lead time may not be changed in a future delivery

schedule. The lead time is equivalent to the frozen zone in VDA 4905.

Escalation processes If a demand is forecast to be within the lead time, an escalation

process is started. The material controller responsible for the speci�c parts inventory

contacts the supplier and asks whether it is possible to deliver the parts in time even

though the lead time is not met. If the request is declined, the production job is

blocked and an internal rescheduling is required. This two-stage process is de�ned as

an standardized process and carried out each time a part bottleneck occurs (see Graf

[2006], p. 447). Internal rescheduling may lead to non-optimal master production

schedules - which were optimal before rescheduling. Thus an escalation process may

impose high costs. In addition to costs due to required rescheduling, other parts for the

same production job cannot be used and therefore increased inventory results, which

leads to additional cost for warehousing and tied capital.

2.2.2 Planning process in automotive supply chains

The complex production process requires a systematic planning approach. In this

section the existing planning process will be discussed. Figure 2.6 gives an overview

of the planning process. In a �rst step the sales planning de�nes the gross primary

demand forecast. Production planning then de�nes a master production schedule.

Based on the master production schedule, materials requirement planning determines

the net dependent demands. The net dependent demands are used as input for the

operational order lot-sizing to create the delivery schedule.

Sales planning To sell cars to customers most automotive manufacturers o�er two

sales channels based on two shop-like concepts. On the one hand there are company-

owned sales subsidiaries and, on the other retailers which are independent of the auto-

motive company itself, but have contracts with the automotive company to sell only

cars of brands of a single automotive company. A customer can choose to either buy

a precon�gured car which is immediately available from the retailer or to con�gure
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Figure 2.6: Overview of planning processes in automotive supply chain.

his car individually upon on di�erent options. There are two types of customization.

On the one hand it can be chosen between from core components, e.g. the size of

the engine can be de�ned or the customer can choose between automated or manual

transmission. On the other hand, additional equipment which is not necessary, but in-

creases comfort, like an automated climate control or a panorama roof can be included.

Retailers and sales subsidiaries negotiate a so-called quota with the car manufacturer.

A quota quanti�es the number of cars of each model to be sold within the next twelve

months. The production order queue of the automotive company is then �lled with

blank production orders in respect of the sum of all quotas over all retailers. As time

passes production orders will be de�ned in depth by con�guring the options for each

production order, based either on customer requests or on the retailers forecasts.
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Production planning It may be said that �the production system in a car assembly

plant usually comprises the four stages pressing of metal or aluminium sheets, welding

the body-in-white from the moulded sheets in the body shop, painting it in the paint

shop and �nal assembly, where painted body, engine, transmission and the further

equipment are brought together or built in� (Günther and Meyr [2009], p. 347). Body

shop and paint shop consist of large machinery and robotic production lines and are

operated in a typical lot production mode. In �the �nal assembly in vehicle and vehicle

component plants where variant �ow production with low automation and high labor

intensity exists� (März et al. [2010]) there is a high cost sensitivity depending on the

right production sequence. In the Master Production Scheduling (MPS) a production

schedule for the next several weeks is created. The schedule determines on which days

which production orders should be processed. The MPS schedule is recreated regularly,

e.g. every day for the short-term horizon of the next two weeks and every week for

the medium-term horizon of the next several weeks. Due to its labor-intensive design

the �nal assembly line is the most expensive part of the production process. Master

production scheduling accordingly lays an emphasis on the e�cient use of the �nal

assembly line.

Sequencing and Resequencing Based on the MPS schedule a production sequence

for the production orders of one day is created. The production sequence de�nes the

order in which the production orders should pass the �nal assembly line. If a production

order cannot be ful�lled for various reasons ranging from missing parts to problems

with the paint of the vehicle body, a re-sequencing takes place. The production order is

taken from the current spot in the production sequence and is exchanged with another

production order or moved to another day.

Materials requirement planning Procurement plays an important role in the auto-

motive industry, as nearly 80 percent of a car's value corresponds to parts provided

by suppliers. Parts from various suppliers are required in �nal assembly. Due to the

highly customizable product there is a considerable variance in the required parts.

Meyr [2004] states that BMW o�ers up to 1032 variants of a single car. Due to the

high product variance the demand for speci�c parts is highly dynamic even if the num-

ber of produced vehicles may be almost constant. These circumstances demand vital

cooperation between suppliers and OEMs. At the beginning of the materials require-
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ment planning, only primary demands in form of production jobs are known and the

question is which materials will be required to satisfy the primary demands. This

planning step can be supported by so-called Materials Requirement Planning (MRP)

systems. Depending on the position within the supply chain, the production jobs ori-

ginate either from the next higher production stages delivery schedule or from sales

forecasts. To evaluate which parts are required for which production orders, a produc-

tion order-speci�c Bill-of-Materials (BoM) is used. This step is called bill explosion.

The resulting information on material quantities has to be combined with a due date

which results from the due date of the �nal product given by the MPS schedule and

the production lead time. If multiple production steps are necessary, e.g. if a material

will be processed �rst into a semi-manufactured product, this step will be repeated at

the next lower production stage until quantities and due dates for purchased materials

are available. These quantities and due dates for purchased materials are called gross

dependent demands. In a second step gross demands are charged up against current

inventory and �xed orders and then modi�ed according to preset safety parameters.

As this part of the process in the MRP system is of importance for the understanding

of the problem itself, the basic mechanisms will be described shortly. In a �rst step the

expected demand at the end of the last period within the replenishment lead time is de-

rived. In so doing, the following steps are repeated for each period in the replenishment

lead time. As depicted in Figure 2.7 the units in stock at the beginning of the period

are charged up against the expected gross demand for that period and the �xed orders

expected to arrive in that period are then added. The result is the expected units in

stock at the end of the period, which is then used as a starting point for the following

period. For periods after the replenishment lead time the desired inventory level is

determined by adding up the safety stock quantity and all gross dependent demands

within the safety lead time. The idea is that, in every planning period, the inventory

should always be capable of ful�lling the gross dependent demands of the number of

days given by the safety lead time parameter. In addition, the safety stock quantity

should protect against unexpected �uctuation in demand. In the third step the desired

stock level is compared with expected units in stock at the end of the period. If the

desired stock level is lower than the sum of the initial stock level less gross dependent

demands, a net dependent demand is created. These are then used as input for the

operational order lot-sizing. For the remainder of the computation process the units
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Period T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = … 

T ≤ Replenishment lead time T > Replenishment lead time 

(Expected) units in stock at the 
beginning of the period 

20 25 20  57 42 52 … … 

Gross dependent demand 10 20 10 30 15 15 25 … 

Consider Fixed orders with a 
replenishment lead time of 2 
periods 

15 15 - - - - - - 

Net dependent demands 47 15 25 … … … 

(Expected) units in stock at the     
end of period 25 20 10 27 27 37 

(Desired) units in stock at the end of 
period according to safety 
parameters given 
- Safety stock of 12 units 
- Safety lead time of 2 periods 
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Figure 2.7: Transformation from gross dependent demand to net dependent demand.

in stock at the beginning of the following period are considered to equal the desired

stock level in the previous period, as it is assumed that the net dependent demands

will be ordered as desired.

Operational order lot-sizing planning In a last planning step, operational order lot-

sizing, a delivery schedule for the net dependent demands is created. The delivery

schedule prescribes on which day which amount of goods should be ordered. More

details on operative order lot-sizing will be given in section 2.3.

2.2.3 Iterative planning in a rolling horizon

The planning steps described above are repeated regularly. Each time new information

is available the complete planning process is repeated. One repetition of the planning
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2.3 The operational order lot-sizing planning problem

process will hereafter be referred to as planning cycle, whereas the time between two

planning cycles is called planning cycle time. Only a short fragment of the plan created

in one planning cycle is executed, and the remainder of the plan is discarded as a new

plan is generated in the next planning cycle. Thus only the part of the plan that covers

the planning cycle time is relevant to execution. If, for example, a plan is created every

day, only the part of the plan that covers the next day will be executed: thereafter the

remainder of the plan will be replaced by the newly generated plan. If the planning

cycle time were longer, e.g. one week, the part of the plan to be executed would also

cover one week. This method is one of the chief reasons for �uctuations in the plan.

Small changes in the upper stages can result in huge di�erences at the end of the supply

chain. This issue is known as the bullwhip e�ect initially discovered by Simon [1952]

and explored by Forrester [1958]. Recent research by Lee et al. [1997] has identi�ed

demand forecast updating as one of the primary reasons for the bullwhip e�ect along

with order batching, price �uctuation and rationing.

2.3 The operational order lot-sizing planning problem

The major question to answer in operational order lot-sizing is �Which parts should be

ordered on which days and in what quantity such that all capacities are su�cient, all

demands can be ful�lled and total costs are minimal ?�. The question already discloses

the decisions to be made, the constraints and a part of the objective.

2.3.1 Objectives and decisions

The objectives of operational order lot-sizing are twofold. On the one hand there is the

target to minimize total cost ; on the other hand there are two soft targets which focus

on the robustness of the overall process, namely increasing delivery schedules stability

and increasing the service level towards production.

Minimize total cost The cost parts which can be directly in�uenced by the planning

problem are inventory and freight costs. These are mutually contradictory of each

other. If orders are accumulated over time, freight cost will be reduced due to higher

vehicle use, but inventory cost will increase because stocks will be built up. If an order

is placed every day, inventory cost will decrease as there is no inventory except that

for safety inventory, but freight cost will increase because vehicle use may be low. The
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goal is to �nd a balance between the di�erent cost parts such that the total cost is

minimized.

Stability of delivery schedules As the delivery schedule (and thus the output of the

operational order lot-sizing) is used as input for the supplier's production planning, it

is important to provide stability from one repetition to another. Otherwise an unstable

series of delivery schedules induces higher production cost and lower service levels due

to unful�lled obligations. Lower service levels require higher safety inventory and a

greater number of reschedules on the unloader's side. This leads to higher cost for

production and inventory. Aside from the resulting bullwhip e�ect (see section 2.2.3),

the �uctuation in delivery schedules makes it hard for the supplier to maintain his

production planning adapted to constantly changing requests, and keep it cost-e�ective

at the same time.

Maintaining a high service level towards production As described in section 2.1

inventory between two �elds of operation is used as decoupling point. Inbound lo-

gistics stands at the beginning of the value chain and ends at the incoming goods

department warehouse where production logistics takes over control. If the task of

providing raw materials and parts in the incoming goods department warehouse is not

ful�lled, production logistics cannot provide production with necessary materials and

thus a production stop or rescheduling is necessary. A rescheduling or even a pro-

duction stop causes high cost. From the inbound logistics perspective the incoming

goods department warehouse can be seen as the customer and production logistics

stock withdrawal orders can be seen as customer demands. The degree of satisfaction

of customer demands is typically measured in service levels (see 2.1.2 for details).

Con�icting goals The goals described above are in partially mutual con�ict with each

other. A delivery schedule that is highly optimized for low cost may di�er strongly

from the last delivery schedule and thus reduce delivery schedule stability. Thus it is

necessary to �nd a balance between cost and stability similar to the case of the lot-sizing

problem itself, where a balance between inventory and setup cost has to be found. In

contrast to the original lot-sizing problem, not all targets can be quanti�ed in monetary

values. In addition, stability of delivery schedules and service level towards production
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2.3 The operational order lot-sizing planning problem

cannot be measured within a single iteration of operational lot-sizing planning as they

depend on a series of delivery schedules.

Decisions To achieve these goals multiple decisions have to be made. One part of

these decisions are made explicitly, whereas others are made implicitly and can be

inferred from the former.

A decision to be made explicitly is to determine which part should be ordered on which

days and in what quantity. The result of the operational order lot-sizing is a delivery

schedule which contains this information.

Depending on the delivery schedule several implicit decisions can be inferred. First,

due to the tari� conditions described in 2.1.1, transport modes are also decided on

when the decision on amount and date of delivery is made. Second, the number of load

carriers is implicitly decided when setting up the delivery schedule as it can be derived

from the parts order quantity. Third, it can be inferred from the delivery schedule and

the net demands which parts will be stored in inventory for what duration.

2.3.2 Constraints

These decisions cannot be made without considering certain constraints imposed by

the nature of the problem structure and its environment. These constraints are of

two kinds. On the one hand capacity restrictions on the vehicular capacity, available

storage area and incoming goods personnel have to be considered. On the other hand,

all demands have to be satis�ed.

Vehicular capacity has two limits: On the one hand, a vehicle has limited space in-

side its cargo hold, so there is a volume constraint which can be measured in either

volume (e.g. cubic meters) or �at area (e.g. load meters). On the other hand, there

is a boundary on the maximum load a vehicle may carry. The weight constraint can

be expressed in a weight measure (e.g. kilogram). A vehicle can be seen as full if

an additional load carrier would increase weight or volume such that one of the two

constraints is exceeded. The inventory is usually limited for constructional reasons

and can be measured in either the available storage area (in square meters), available

storage space (in cubic meters) or the number of storage slots available for load carri-

ers. As the existing warehouse is a long-term investment and increasing its capacity is

expensive, the capacity can be seen as �xed and thus has to be considered a constraint.
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Each time a truck arrives incoming goods personnel have to complete administrative

tasks (e.g. checking invoice) and operational tasks (e.g. unloading the goods and trans-

ferring them into the warehouse). For each of these tasks a speci�c time is required. In

order to balance this workload, the maximum amount of available working time in the

incoming goods department can be limited, which introduces a constraint on human

resources.

Due to the necessity to satisfy all production demands, orders must not be placed in

an earlier period than that at which the net dependent demand was initially placed.

This means in turn that a time-based consolidation of goods can only be achieved by

ordering parts earlier than they are required and storing them in inventory until the

day of consumption.

2.3.3 Algorithmic and rule-based delivery schedule generation

Two leading planning concepts can be applied to this problem. On the one hand, each

time a delivery schedule has to be created an algorithm which uses the forecasted de-

mands to obtain an optimal delivery schedule can be run. This method is hereafter

referred to as algorithmic delivery schedule generation. Alternatively, a rule can be set

up in advance and can then be used to create a delivery schedule each time a new sched-

ule is required. In the remainder the following de�nitions will be used to distinguish

between algorithmic and rule-based delivery schedule generation approaches.

De�nition 1. Algorithmic delivery schedule generation refers to approaches

which use a mathematical model or an algorithm to compute a delivery schedule whenever

a new forecast is given. The planning problem is to create a delivery schedule. The

schedule or parts of it are then transferred to the MRP system.

De�nition 2. Rule-based delivery schedule generation refers to approaches which

set up a control rule in advance. The control rule speci�es how to create a delivery

schedule when a new forecast is given. The planning problem in this case is to �nd the

control rule. The control rule will be transferred to the MRP system and the application

of the rule to the forecast is executed by the MRP system.

The proposed advantage of an algorithmic delivery schedule generation approach is

that it can react more e�ectively to changing conditions. In theory this approach prom-

ises better results in the sense of cost reduction. This advantage is believed to come at
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2.3 The operational order lot-sizing planning problem

the price of a higher �uctuation in the plans because with each new set of information

a completely di�erent delivery schedule may be cost-optimal. Figure 2.8 shows an is-

sue concerning algorithmic delivery schedule generation for operational order lot-sizing

problems in a rolling horizon. To achieve a cost reduction an investment in form of

inventory has to be made to achieve a higher rebate level. As goods are ordered earlier,

depicted by the slashed lines in Figure 2.8, additional capital commitment has to be

accounted. If the investment is made according to a calculation depending on a forecast

which changes afterwards, it may be useless and thus not reduce cost, but conversely

increase total cost and waste storage space which is no longer available for further im-

provements. In the example given in Figure 2.8 two demands forecast on Monday and

Tuesday of the third week are crossed out in red, meaning they are removed from the

forecast. As the parts would already have been bought following the delivery schedule,

the investment would be useless and increase total cost. Apart from this issue, the more

important drawback is the nervousness of the created delivery schedules reported by

practitioners. Common models and algorithms for delivery schedule generation do not

consider previous plans. In a rolling horizon planning environment only the �rst part

of the generated schedule is actually carried out and the rest of the delivery schedule

is discarded when new information becomes available. This leads to less reliable deliv-

ery schedules and is a major source of the issues described in Section 2.3.1. Another

issue addressed by practitioners is ease of understanding. While a rule-based delivery

schedule generation approach is based on a rule that can easily be understood, an

algorithmic delivery schedule generation approache's behavior cannot be foreseen and

is hard to reconstruct except for simple examples. This may lead to logistic planners'

refusing the use of the algorithmic delivery schedule generation approach due to a lack

of trust (see Arnott and Dodson [2008], p. 764 f). In the following di�erent control

rules for delivery schedule creation will be discussed.

Fixed lot size One possible control rule is to determine a �xed lot size which will

be used for all orders of a speci�c product. This method is also known as the (s,Q)

(see Ghiani et al. [2004], p. 132) ordering policy. The determined lot sizes are often

orientated on the maximum quantity of parts which �ts into a single load carrier. The

basic principle of this method is to �nd a lot size for which the order overhead cost,

consisting of freight cost and handling cost, can be balanced with inventory cost. It

has been widely explored in numerous publications. It requires frequent review to
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Figure 2.8: Example of the lot-sizing investment issue.

maintain e�ciency in dynamic environment and, due to its focus on a single part, this

approach cannot provide bene�ts from synergy e�ects among multiple parts from one

supplier or even among multiple suppliers. However, the control rule may be used in

combination with other control rules to deny orders of less quantity than one �lled

load carrier which can increase handling overheads in warehouses and incoming goods

processing.

Fixed replenishment cycle time This control rule, also known as (t,S) (see Ghiani

et al. [2004], p. 132) ordering policy, assigns a replenishment cycle to each part and sets

up an order each time the cycle has passed. The quantity of the order will be determined
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Delivery pro�le Mon Tue Wed Thu Fri Frequency

11111 ! ! ! ! ! Weekly

10000 ! - - - - Weekly

10100 ! - ! - - Weekly

10101 ! - ! - ! Weekly

010002 - ! - - - Bi-weekly

10000M ! - - - - Monthly

Table 2.2: Exemplary delivery pro�le transformation rules.

dynamically depending on the demands forecast until the next replenishment day.

Gudehus and Kotzab [2009] di�erentiates between single-article cycle time strategy,

where an order is placed for a single part if it is necessary to do so, and consolidated

cycle time strategy where a cost-optimal share of all parts from the same source will be

ordered if a single part from a given source requires an order (see Gudehus and Kotzab

[2009], p. 316). It may be stated that in comparison with quantity-based approaches,

�with cyclic scheduling optimally �lled load units and transport means are easier to

achieve� (Gudehus and Kotzab [2009], p. 316).

Delivery Pro�les The delivery pro�le control rule, also called common replenishment

epochs, see Viswanathan [2001], is an improved variation of the replenishment cycle

control rule. The idea behind delivery pro�les is to manage the transport frequency

or replenishment cycle in such a way that it adapts to the week-oriented production

rhythm within a plant. The major advantages over the replenishment cycle are the

adaption to the week-oriented production rhythm in a plant on the one hand and

the possibility of providing a more detailed schedule accounting for fractional cycle

lengths on the other hand. A delivery pro�le is a control rule that de�nes a set of

days on which a delivery is allowed, and a frequency of repetition (see Table 2.2 for an

example). On each day that is not de�ned as a delivery day a suppliers' delivery is not

foreseen in the delivery schedule. This control rule can be applied to the net dependent

demands to receive a delivery schedule which �ts the delivery pro�les' pattern. When

the rule is applied all net demands with due dates equal or greater than the delivery

day and smaller than the next delivery day will be cumulated on the �rst delivery

day. An example of this behavior is depicted in Figure 2.9. Delivery pro�le '10100'

from Table 2.2 was selected as transformation rule. The delivery pro�le '10100' allows
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Figure 2.9: Translation from net dependent demands into delivery schedule based on
a delivery pro�le rule. In this example 'W003' from Table 2.2 is used.
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deliveries on Monday and Wednesday only. All net demands from Monday and Tuesday

of the �rst week are cumulated to one order on Monday of the �rst week. Demands

from Wednesday, Thursday and Friday of the �rst week are then cumulated to one

order on Wednesday and so on. The goods will then be stored in inventory from their

delivery day until they are �nally requested by the production department. Common

MRP systems provide the possibility to set up delivery pro�le control rules for each

supplier via parameters and automatically apply the delivery pro�les when creating

delivery schedules.

2.4 Assessing the impact of cost minimal delivery pro�les

Recently both researchers and practitioners have stressed the positive aspects of de-

livery pro�les. Viswanathan [2001] considers an environment with a single vendor and

multiple buyers, in which the vendor can assign a delivery pro�le (or common replen-

ishment epochs in his terms) to each buyer. His results show that delivery pro�les

are a �coordination mechanism wherein it is able to consolidate several replenishment

orders and economize on order processing and delivery costs� (Viswanathan [2001], p.

278). Another work on the same topic was that of Hwang [2008], who analyzed a VMI

environment with a single supplier and multiple buyers. Hwang [2008] states that using

delivery pro�les strategy in combination with VMI results in �further savings for most

cases with higher joint order cost� (Hwang [2008], p. 205).

In this thesis delivery pro�les were chosen for a deeper analysis due to the positive dis-

cussions in both practice and the literature. Whereas Hwang [2008] and Viswanathan

[2001] consider distribution logistics, this work considers the application to an area

forwarding inbound logistic network. Both authors present a situation in which a

single supplier delivers his goods to multiple buyers. In the application presented in

this thesis the situation is the other way round in the sense that there is only one

buyer but multiple suppliers. Applications to both inbound logistics and distribution

logistics have in common that a set of supply chain partners has to be coordinated in

order to reduce freight cost and that the underlying logistic network o�ers a structure

with the possibility of consolidated runs that can be used to achieve synergy e�ects.

Given these similarities and di�erences between the considered problem settings, three

research questions arise.

� How can cost minimal delivery pro�les be selected for an area forwarding based
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inbound logistic network with complex tari� structures? Selecting cost minimal

delivery pro�les means making an optimal trade-o� between the most important

cost factors in the inbound logistic, freight cost, on the one hand and inventory

holding cost on the other. Due to the complexity of the tari� systems, the num-

ber of di�erent parts and suppliers and the availability of various valid delivery

pro�les, this task can not be ful�lled manually. An optimization system could be

employed that uses a mathematical model to answer the question. In so doing

the relevant aspects from the problem setting have to be integrated in such a

model.

� Does the proposed cost advantage hold true in a rolling horizon planning environ-

ment? As a delivery pro�le is a control rule whose real outcome can be observed

only in a rolling horizon planning environment, the developed model can only

provide an estimate of the realized cost. Whether or not the proposed cost ad-

vantage can be realized in a real-world application can only be determined if a fair

comparison with traditional or MRP planning techniques can be drawn. An ap-

plication in the real world cannot answer this question completely, as it does not

allow comparison of two di�erent approaches under the same conditions, because

the conditions change during the application and two methods cannot be applied

at the same time. Thus an arti�cial benchmarking environment is required that

allows application of di�erent delivery schedule generation approaches in a rolling

horizon under exactly the same conditions.

� Can the stability of the generated delivery schedules be improved? Likewise, the

stability of the generated delivery schedules can only be observed in a rolling hori-

zon planning environment. Thus the measurement should take place in the same

arti�cial environment. Whereas the realized cost is a well-de�ned performance

indicator, it is not clearly de�ned how the stability of generated delivery pro�les

can be measured. Thus it is necessary to evaluate di�erent approaches in respect

of their explanatory power and to develop a set of performance indicators that

allow us comparison of the stability of delivery schedules generated by di�erent

approaches.

The remainder of this thesis will be organized as follows. First, the state-of-the-art

literature will be reviewed and discussed in respect of its applicability to the given
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research questions in Chapter 3. In Chapter 4 it will be pointed out which aspects are

not covered by existing approaches and which extensions and development have to be

made to bridge this gap. Chapter 5 then presents the chosen solution approach for

the selection of cost-minimal delivery pro�les. In Chapter 6 the work on the arti�cial

rolling horizon planning environment will be described. Finally, a case study with

industrial applications is conducted in Chapter 7. Chapter 8 presents a summary of

the thesis. In the conclusion proposals are made for further research.
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In this Chapter, a summary of the most promising approaches from the literature will

be given. Due to the nature of the problem this Chapter is divided into three parts. In

the �rst, models and algorithms that cover important aspects of the determination of

cost-minimal delivery pro�les will be depicted and their applicability to the underlying

problem setting and their capacity to deal with the special conditions of area forwarding

logistic networks will be discussed. The second part of the Chapter is dedicated to

approaches which can be used to assess the outcome of planning methods in a rolling

horizon environment. The Chapter closes with a section focusing on performance

indicators to assess the stability of the generated delivery schedules.

3.1 Models and algorithms covering important aspects related to the

selection of cost-minimal delivery pro�les

To derive a model that selects cost-minimal delivery pro�les, multiple cost-relevant

aspects of the problem setting have to be considered. First, when choosing delivery

pro�les order lot sizes will be determined and a trade-o� between �xed cost related

to an order of a part on the one hand and inventory holding cost on the other has

to be found. This part of the problem is dealt with in classic lot-sizing literature

(see Section 3.1.1). In addition to �xed cost related to an order of a single part,

�xed cost of joint replenishments occur in area forwarding networks. Such a problem

structure can be found in the Joint Replenishment literature (see Section 3.1.2) and

will therefore be discussed in this Chapter. Moreover, joint order costs are bound to

the given discounting scheme: therefore the model has to incorporate these discounting

schemes to derive a valid objective function. Modeling of complex discounting schemes

has been discussed in the literature on purchasing models, which will be discussed in

Section 3.1.3. In area forwarding inbound logistic networks the material �ow of the

various parts cannot be handled without a consideration of the underlying network.

Section 3.1.4 examines how these network structures are modeled in network design
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and network �ow models, and how these modeling techniques may be applied to the

given problem setting. Section 3.1.5 closes with a discussion of approaches dealing

with the uncertainty that derives from delivery pro�les having to be selected according

to a demand forecast, which is unreliable and will be revised in later iterations of the

planning cycle.

3.1.1 Models for lot-sizing problems

The traditional lot-sizing problem originates from production planning where �a trade-

o� between low setup costs (favoring large production lots) and low holding costs

(favoring a lot-for-lot-like production where sequence decisions have to be made due

to sharing common resources)� (Drexl and Kimms [1997], p.222) has to be found.

Due to their partly similar problem structure, production lot-sizing models also �nd

applications in the �eld of order lot-sizing. In regard to order lot-sizing applications

it may be stated that both problem statements have a similar structure. In both

cases it has to be decided which quantity should be processed (produced or ordered

respectively) in which period. In both cases a larger lot size can reduce the processing

cost (setup or freight cost respectively) whereas a smaller lot size may reduce the

inventory holding cost.

The �rst methodological research on the question how lots should be sized was

conducted by Harris [1913] and Andler [1929]. They considered an environment with

stationary demands and a single item being produced on a single production stage.

In their studies they developed the Economic order quantity (EOQ) formula, which

determines the optimal lot size for the single item case with a single production stage.

The EOQ formula to compute the optimal lot size Q? as de�ned by Andler [1929] reads

as follows:

Q? =

√
2 ·D · CFix
CInventory

where D is the demand per period, CFix the �xed cost per order and CInventory the

the inventory holding cost per period.

Wagner and Within [1958] were the �rst to consider a more realistic environment

with non-stationary demands. Dynamic lot-sizing models are an extension of the pre-

viously described static lot-sizing model. In this model class demand is considered to

be non-stationary. Therefore a constant lot size would not yield optimal results in
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such an environment. Thus instead of determining a constant lot size for the whole

planning horizon, dynamic lot-sizing models allow determination of a speci�c lot size

for each period. Dynamic lot-sizing models have been extensively studied over the

recent decades and have often been applied to order lot-sizing problems. Several heur-

istic algorithmic approaches to the problem have been developed. The most notable

are found in DeMatteis [1968] (Part-Period-Balancing, PPB) and Silver [1979] (Silver-

Meal-Heuristic, SM). Over time more and more extensions to the basic problem have

been made which lead to various di�erent models and approaches. The basic model

set up by Wagner and Within [1958], the single item uncapacitated dynamic lot-sizing

model, can be noted as follows:

Min
T∑
t=1

xt c
p
t + yt c

s
t + st c

h
t (3.1.1)

s.t.st−1 + xt = dt + st ∀ t = 1..T (3.1.2)

xt ≤
T∑
t′=t

dt′ yt′ ∀ t = 1..T (3.1.3)

xt, st ≥ 0 ∀ t = 1..T (3.1.4)

yt ∈ {0, 1} ∀ t = 1..T (3.1.5)

The model consists of three variables for each period in the planning horizon (t =

1..T ) representing production quantity (xt), setup decision (yt) and quantity in in-

ventory (st). Production quantity and inventory quantity are required to be positive

and setup decision is a binary variable. Cost parameters are introduced for each of

the variables. cpt stands for production cost per produced unit, cst is the parameter

for setup cost and cht gives back inventory holding for one product unit in one period.

The inventory balance equation 3.1.2 ensures that produced product units are either

consumed by demand or put to inventory. It also allows satisfaction of a demand in

one period with quantity from inventory accumulated in previous periods rather than

from production in the current period. Production may not exceed the sum of demands

from the current period until the last period, which is assured by equation 3.1.3.

To categorize the enormous amount of extensions to the basic lot-sizing model their
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properties and underlying assumptions can be used. The major assumptions and prop-

erties available for classi�cation (see Karimi et al. [2003]) are listed in the following:

� Demand handling. Models may either consider a stationary demand which has

the same quantity in each planning period or consider a non-stationary demand

with variations in quantity over time.

� Fixed lot size or varying lot size. In response to variations in demand over

time, a varying (dynamic) lot size may provide better results. There are models

which determine a varying lot size for each period while other models determine

one lot size to be used for all periods.

� Single item or multiple items. Some models consider only a single item at

once while other models consider multiple items at the same time.

� Single stage or multiple stages. Production environments often consist of

multiple production stages. While some models are restricted to a single stage,

some model are capable of dealing with multiple stages.

� Capacity or resource constraints. There are di�erent ways of dealing with ex-

isting capacity or resources. They can either be ignored, in which case the model

is said to be uncapacitated or they can be considered and explicitly constrained,

in which case the model is called capacitated. Capacity may be considered either

to be discrete or continuous.

� Scheduling. Scheduling becomes especially important in combination with dy-

namic lot sizes. If models also deal with scheduling aspects, they are considered

to be lot-sizing and scheduling models. This is usually the case if varying lot

sizes and multiple products are considered.

� Planning horizon. The model can either consider an �nite or in�nite planning

horizon. In most cases, �a �nite planning horizon is usually accompanied by

dynamic demand and an in�nite planning horizon by stationary demand� (Karimi

et al. [2003], p. 366). In addition to the length of the planning horizon, its

granularity can be used as a measure for classi�cation. It may be di�erentiated

between small bucket and big bucket problems (see Karimi et al. [2003], p. 366).

Small bucket problems consider very short periods within which only one item
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may produced at once. In big bucket problems several items can be produced in

a single period.

� Inventory modeling. Inventory may be constrained by both upper and lower

bounds or regarded as unbounded (see Jans and Degraeve [2008], p. 1627). In

regard to inventory pricing di�erent approaches can be used. Price-dependent

capital commitment, storage slot use cost and �xed charges have to be listed

at this point. Additionally, models can be classi�ed according to their handling

of inventory shortages. If shortages are allowed, they can either be satis�ed by

future demand, thus a backlogging takes place, or shortages can be punished by

lost sales. In all other cases shortages are not allowed to occur in the model.

� Setup. There is also diversity in the modeling of setup procedures. First of

all setup time and setup cost handling can be distinguished. Using setup time

as intermediate step allows for more complex cost structures, e.g. modeling the

number of necessary setup teams. Setup cost on the other hand involves direct

accounting of each setup which takes place. Another di�erentiation can be made

between simple and complex setup structures (see Karimi et al. [2003], p. 367).

Simple setup in this case means that setup time and cost do not depend upon

previously produced items or states of other machines, whereas complex setup

means that either setup cost or time depends upon the previous state of the

machine or on the state of other machines (e.g. joint setups).

For extensive surveys of lot-sizing models and extensions we may be refer to Jans and

Degraeve [2008], Karimi et al. [2003], Buschkühl et al. [2008], Robinson et al. [2009]

and Drexl and Kimms [1997].

3.1.2 Models for joint replenishment problems

Joint replenishment problems are special lot-sizing problems with a complex setup

structure which put their focus on cost savings that can be achieved �by coordinating

the replenishment of some items� (see Boctor et al. [2004], p. 2667) in multi-item in-

ventory environments. Three types of cost are considered, namely individual ordering

cost for one product type, common ordering cost for all orders within one period and

inventory holding cost per product unit. We distinguish static demand joint replen-

ishment problems (SJRP) and dynamic demand joint replenishment problems (DJRP).
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Static in this case means that demands are considered stationary: thus the same de-

mand occurs in each period, whereas dynamic denotes non-stationary demands, where

demand may di�er from one period to another. Another di�erentiation between di�er-

ent models is based on the consideration of uncertainty. Whereas most models focus

on a single deterministic demand scenario, some models explicitly consider uncertainty,

either in form of demand distributions or demand scenarios. These problems are re-

ferred to as stochastic joint replenishment problems. In stochastic JRP replenishment

lead times are introduced. These can be either zero, constant for all items, variable for

each item or stochastic.

Models for static joint replenishment problems

Models for static joint replenishment problems aim to �nd a cost-minimal order fre-

quency or replenishment cycle for each part in an in�nite planning horizon. They

identify the optimal cycle time for the (t,S) inventory management policy. According

to de�nition 2, static JRP models can be considered a rule-based planning approach.

Static JRP models can be further divided into deterministic and stochastic models.

Deterministic models consider a constant demand and do not allow shortages to occur.

Stochastic models by contrast consider a stochastically distributed demand. Due to

unknown future demand behavior, other decisions are involved. Instead of �xing a

parts replenishment cycle, parameters for ordering policies are determined. Goyal and

Satir [1989] models the deterministic case with a frequency of replenishment N . All

parts can be replenished in accordance with a multiple kp > 0 of the replenishment

frequency N . For kp = 1, part p is replenished in every cycle, for kp = 3 in every third

cycle and so on (see Goyal and Satir [1989], p. 3). All parts P replenishment factors

kp ∀p ∈ P form the vector K. Given these assumptions the model can be formulated

(following Goyal and Satir [1989] with slight modi�cations in notation) as:

Min

N ·
cc +

∑
p∈P

cip
kp

+
∑
p∈P

Dp · chp · kp
2N


where cc is the common replenishment cost factor, cip the parts individual replenishment

cost factor and chp represents the individual holding cost respectively. The demand of

part p is denoted as Dp. Multiple approaches have been suggested to solve the equation
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either optimally of heuristically. For a detailed discussion of these approaches the

reader may refer to Goyal and Satir [1989].

As mentioned before stochastic static JRP models determine parameters for ordering

policies under stochastic demand. Most work focuses on the (S, c, s) policy or coordin-

ated control policy. In this case, if a part p's inventory reaches the must-order point

sp, a review of all parts takes place and the part p is replenished in such a quantity

that the order-up-to level Sp is reached. During the review all parts below a threshold

(the can-order-point) cp will also be replenished so as to raise their inventory to their

Sp. Some researchers (e.g. Chern [1974], Simmons [1972]) consider ordering a �xed

quantity Qp for all items in a review process instead of �lling up to Sp. The basic

model for the stochastic static JRP model ordering policy as given by Goyal and Satir

[1989] can be noted as

Min
∑
p∈P

(
Tp · cc +Np · cip + Ip · chp +Bp · cbp

)
where Np is the expected replenishment frequency and Tp the expected number of

replenishments triggered by the part per period. Ip and Bp denote to the expected

inventory respectively backorder level of part p. cbp is introduced as a cost factor for

backorder levels. Goyal and Satir [1989] provide a detailed discussion of extensions and

solution approaches to this problem.

For a detailed review of inventory models for joint replenishment the interested

reader may be directed to Aksoy and Erenguc [1988] for the single supplier case and

to Minner [2003] for the case of multiple suppliers.

Models for dynamic joint replenishment problems

Models for dynamic joint replenishment problems determine the ordering quantities

and periods for a set of product types. In addition to ordering cost per product type,

a common ordering cost is introduced which has to be paid if an order for any product

type is placed in a period. Following Boctor et al. [2004] the deterministic DJRP can

be noted as follows:
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Min
T∑
t=1

zt c
c
t +

∑
p∈P

yt,p c
i
t,p + st,p c

h
t,p (3.1.6)

s.t.st−1,p + xt,p = dt,p + st,p ∀ t = 1..T, p ∈ P (3.1.7)

xt,p ≤
T∑
t′=t

dt′ ,p yt′ ,p ∀ t = 1..T, p ∈ P (3.1.8)

zt ≥
∑
p∈P

yt,p ∀ t = 1..T (3.1.9)

xt,p, st,p ≥ 0 ∀ t = 1..T, p ∈ P (3.1.10)

yt,p ∈ {0, 1} ∀ t = 1..T, p ∈ P (3.1.11)

zt ∈ {0, 1} ∀ t = 1..T (3.1.12)

The close relation between lot-sizing and dynamic joint replenishment models can be

seen in the model. Equations 3.1.7 and 3.1.8 are extended versions of the constraints

3.1.2 and 3.1.3 from the classical lot-sizing model. The main di�erences between a

multi-item lot-sizing model and the DJRP lie in constraint 3.1.9 and the objective

function. Constraint 3.1.9 activates the binary variable zt associated with common

ordering cost (cct) where any order has been placed in period t. In addition to common

ordering cost, individual ordering cost (cit,p) for each product type and inventory hold-

ing cost (cht,p) are considered. In some cases, variable costs per ordered product unit

are also included. These are only of interest in the dynamic case and if cost can vary

over time, as they do not otherwise a�ect the optimal solution. Boctor et al. [2004]

give an extensive summary and benchmark of solution approaches to the deterministic

dynamic JRP. There are also two alternative model formulations presented which have

been shown to be faster than the classic formulation.

3.1.3 Models for purchasing quantity discount problems

Models for purchasing quantity discount problems consider an environment in which

products can be bought from di�erent suppliers which provide discounting schemes for

product prices. The discounting schemes accounted for are similar to tari� systems

described in 2.1.1, except that discounts are given based on product unit quantity
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rather than a measurement unit. It is therefore necessary to study these purchasing

quantity discount models to obtain useful information on how to model discounting

schemes.

Benton and Park [1996] categorize the models and approaches to this issue according

to three properties. With an analogy to lot-sizing models from which the purchasing

quantity discount models originate, demand consideration can be used as the distin-

guishing property. Demand can be seen as either stationary or non-stationary. The

second di�erentiation can be made based on the underlying point of view. Several re-

searchers consider not only the buyer's point of view but also the supplier's perspective.

These models will not be considered in the following because they are not applicable

to the given problem setting. Third, the di�erent kinds of discounting scheme can be

used. There are models designed explicitly for all-unit quantity discounts or for in-

cremental quantity discounts and also some models that cover both types of quantity

discounts1. Another aspect that was not considered in Benton and Park [1996] is the

application in environments with multiple parts or multiple suppliers, as Benton and

Park [1996] only consider the single part, single supplier case.

The simplest form of quantity discount model is an extension of the EOQ formula.

In case of an all-unit quantity discount the purchasing price for all parts depends on

the ordered quantity. It can be said that for an order quantity q the price is CUnitr

when QMax
r−1 ≤ q ≤ QMax

r − 1. �The total cost curve is discontinuous at the price break

quantities, so that the EOQs minimizing the total cost for each unit price could not be

valid if they are out of the boundaries of the quantity discount interval for the discount

price� (Benton and Park [1996], p. 221). Hence, � the optimal lot size is determined at

either a valid EOQ or one of the price break quantities in terms of the minimum total

costs� (Benton and Park [1996], p. 221). For detailed discussion of solution approaches

on this model, see Benton and Park [1996].

When an incremental quantity discount is considered the cost function is both convex

and continuous. Hence a derivative of the total cost function can be used to determine

the optimal quantity. The total cost function can be put up as

TC =

(
Ur

∆Qr
+ CUnitr

)
·D + CFix · D

QMax
r

+
i ·
(
Ur + ∆Qr · CUnitr

)
2

1Benton and Park [1996] do not include models that cover both discounting schemes at once because
those models were developed after their review was �nished.
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where Ur is the marginal purchasing cost for the fraction ∆Qr = Q − QMax
r−1 of the

order quantity which is

Ur =
R∑
r=2

(
QMax
r − 1

)
·
(
CUnitr−1 − CUnitr−1

)
The optimal lot size can then be determined as

Q?r =

√
2 · i · (CFix + Ur)

i · CUnitr

Chakravarty [1984] has extended the models to consider multiple parts, where a com-

mon rebate on all parts is given based on complete invoice value. Both all-units dis-

counting and incremental discounting are considered. A shortest-path model is in-

troduced for the all-units discounting case. In a further extension Benton [1991] has

included multiple parts, multiple suppliers and a resource constraint in the case of sta-

tionary demands with all-units discount. A heuristic procedure based on that presented

by Rubin et al. [1983] and a Lagrangian relaxation were used to solve the problem.

Chaudhry et al. [1993] consider a situation where a buyer has multiple opportun-

ities to source a part from several vendors each o�ering discounting schemes and has

to decide strategically on how many parts to order from which vendor under consid-

eration of qualitative aspects. Two models for the single-period, single-item case are

put up, one for all-units quantity discounts and one for incremental quantity discounts.

For non-stationary demands more complex models have to be developed. This is a

more recent development as in previous decades computational e�ort was too high as

complex MIP models are required. Even though several single-item lot-sizing heuristics

have been developed or adapted for the quantity discount case (see Benton and Park

[1996], p. 231 � for further details), no mixed integer programming model formulation

was included in the review. Federgruen and Lee [1990] were the �rst to extend the

dynamic lot-sizing model from Wagner and Within [1958]. A dynamic programming

procedure to determine the optimal lot sizes for a single part environment with non-

stationary demand rates was developed for both all-units discounting schemes and

incremental discounting schemes. Bregman and Silver [1993] have extended the Silver-

Meal-Heuristic to consider all-units quantity discounts.
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A special case has been analyzed by Xu et al. [2000], who considered an environment

with multiple parts in which discounts are based on total invoice value rather than part

quantity. This kind of discount is referred to as Joint Business Volume Discount (see

Xu et al. [2000], 317). A mixed integer linear programming model for this case is

introduced. Additionally, a solution method consisting of an heuristic procedure based

on lower bounds for distinct item sets is presented.

Tempelmeier [2002] generalizes the problem setting and considers all-units and incre-

mental discounts that may vary over time. This is an interesting approach as it also

allows inclusion of special price o�ers that hold only for a short period. A supplier-

speci�c �xed ordering cost and a restriction to certain delivery periods for each supplier

as well as upper and lower bounds on order lot sizes can be integrated. Holding cost is

computed upon on the product units real purchase price. Two models accounting for

di�erent types of quantity discounts are presented, the Uncapacitated Multi-Supplier

Order Quantity Problem with Time-Varying All-units Discounts and the Uncapacitated

Multi-Supplier Order Quantity Problem with Time-Varying Incremental Discounts. As

the holding cost in the objective function is based on purchasing cost, the objective

function becomes nonlinear in the all-units discount case. To cope with this issue and

provide the ability to solve larger real-world problem instances, a two-phased heuristic

solution procedure consisting of a construction phase and an improvement phase is

presented.

In Reith-Ahlemeier [2002] an extended model for order quantity decisions and sup-

plier selection was presented which includes lower and upper bounds for order quantities

at part and supplier level, incremental quantity discounts as well as all-unit quantity

discounts, and a resource-based capacity concept. The capacity concept includes sup-

pliers' capacities, buyers' handling capacities and storage capacities. There is also a

possibility provided to disable deliveries from suppliers in certain periods. Di�erent

model formulations including or excluding certain aspects of the problem are given.

This includes a reformulation as a facility location problem (see Reith-Ahlemeier [2002],

p. 52). The model becomes quite complex and can hardly be solved with linear

programming solvers for real-world problem sizes. Hence three heuristic solution ap-

proaches are presented. These include a primal heuristic to create a starting value, a

Lagrange-based heuristic and a modi�cation of the Branch and Bound algorithm that

uses certain problem-speci�c properties to reduce runtime.
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Indices and sets
t, τ = 1..T Period t or τ in the planning horizon which ends in period T
s ∈ S Supplier s from the set of all suppliers S
p ∈ P Part p from the set of all parts P
r = 1..R Discount level r. It may depend on part p, supplier s and period t
Parameters
dtp Demand for part p in period t
CUnittpsr Unit price of part p in period t from supplier s using discount level r

CLeveltpsr Fixed cost of an order for part p in period t from supplier s using
discount level r

CProducttps Fixed cost of an order for part p in period t from supplier s

CSupplierts Fixed cost of an order in period t from supplier s
QMax
tpsr Maximum quantity of the interval for discount level r from supplier

s in period t for part p
Variables
xtpsr Quantity of part p ordered from supplier s in period t at discount

level r
˜xtps Quantity of part p ordered from supplier s in period t
uts Indicator variable for an order from supplier s in period t, 1 if an

order is placed, 0 otherwise
vtps Indicator variable for an order of part p from supplier s in period t,

1 if an order is placed, 0 otherwise
ytpsr Indicator variable for an order of part p from supplier s in period t

with discount level r, 1 if an order is placed, 0 otherwise
qτtp Percentage of demand of part p in period t ordered for period τ

Stadtler [2006] considers an environment with multiple items and multiple suppliers

in which multiple suppliers may o�er the same product and non-stationary, determin-

istic demands. In addition to both incremental and all-units discounting schemes �xed

ordering cost which are shared among items from the same supplier are considered

in the objective function. Orders may be constrained by handling and storage capa-

cities on the buyer's side and lower and upper bounds for product lot sizes on the

supplier's side. The most important contribution was to establish a model formulation

that considers both all-units and incremental quantity discounts within a single model.

The basic model presented in Stadtler [2006] with slight modi�cations in notation is

presented as follows:
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Min
T∑
t=1

∑
s∈S

∑
p∈P

R+1∑
r=2

θt · CUnittpsr ·QMax
tpsr−1 · ytpsr

+

T∑
t=1

∑
s∈S

∑
p∈P

R∑
r=1

θt · CUnittpsr · xtpsr

+
T∑
t=1

∑
s∈S

∑
p∈P

R+1∑
r=2

θt · CLeveltpsr · ytpsr

+
T∑
t=1

∑
s∈S

∑
p∈P

θt · CProducttps · vtps

+
T∑
t=1

∑
s∈S

θt · CSupplierts · uts

(3.1.13)

subject to

t∑
τ=1

qτtp =

1 ifdtp > 0

0 otherwise
∀t = 1..T, p ∈ P

(3.1.14)∑
s∈S

˜xtps =
T∑
τ=t

dτp · qtτp ∀t = 1..T, p ∈ P

(3.1.15)

˜xtps =
R+1∑
r=2

QMax
tpsr−1 · ytpsr +

R∑
r=1

xtpsr ∀t = 1..T, s ∈ S, p ∈ P

(3.1.16)

xtps,1 ≤ QMax
tps,1 · ytps,1 ∀t = 1..T, s ∈ S, p ∈ P

(3.1.17)

xtpsr ≤
(
QMax
tpsr −QMax

tpsr−1
)
· ytpsr ∀t = 1..T, s ∈ S, p ∈ P, r = 2..R

(3.1.18)

vtps =
R+1∑
r=1

ytpsr ∀t = 1..T, s ∈ S, p ∈ P

(3.1.19)
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vtps ≤ uts ∀t = 1..T, s ∈ S, p ∈ P
(3.1.20)

xtpsr ≥ 0 ∀t = 1..T, s ∈ S, p ∈ P, r = 1..R (3.1.21)

˜xtps ≥ 0 ∀t = 1..T, s ∈ S, p ∈ P (3.1.22)

qτtp ≥ 0 ∀τ = 1..T, t = τ..T, p ∈ P (3.1.23)

vtps ∈ {0, 1} ∀t = 1..T, s ∈ S, p ∈ P (3.1.24)

uts ≥ 0 ∀t = 1..T, s ∈ S (3.1.25)

The objective function 3.1.13 contains �ve parts, of which the �rst two �represent

purchase costs at the limits of the purchase intervals plus purchase amounts within

the intervals� (Stadtler [2006], p. 728) and the following three parts represent �xed

cost associated with a discount level, a part and a supplier respectively. Note the use

of θt as multiplier for all cost parts in the objective function, which is the interest

rate accounting factor. Unlike Tempelmeier [2002] the model also considers capital

commitment for �xed cost charges. If this is not intended, θt can be removed from the

corresponding terms in the objective function. θt can be used instead of the traditional

lot-sizing inventory pricing and can be computed with di�erent equations depending on

the desired meaning, representing either the net present value or capital commitment

cost. For the capital commitment cost case the value can be computed for each period

as

θt = (1 + i)T−t+1

where i is the interest rate per period. According to Fleischmann [2001] (see Fleischmann

[2001], pp 152), �only the distribution of the in�ow over time is to be planned� if �the

total in�ow [...] is also �xed� (Fleischmann [2001], p. 152). This means that optimal

purchasing decisions are independent of the sequence of out�ows. The exact capital

commitment cost can be calculated after the optimal solution has been derived. There-

fore a First-In-First-Out rule can be applied to determine the real unit prices CUnittp

for which a demand dtp in period t has been bought. A capital commitment correction
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value can then be computed as

∆C =
∑
p∈P

T∑
t=1

(T − t) · dtp · CUnittp

and subtracted from the objective value to obtain the correct total cost value. The

constraints 3.1.14 and 3.1.15 cover demand ful�llment. Constraint 3.1.16 secures that

the ordered amount ˜xtps �is composed of the lower limit of a speci�c discount level

r plus a continous amount within that discount level� (Stadtler [2006], p. 730). The

link between the indicator variable ytpsr and upper bounds on quantities is created in

constraints 3.1.17 and 3.1.18, whereas constraint 3.1.19 ensures that a part may be

ordered only in one distinct discount level. In constraint 3.1.20 the indicator variable

vtps for an order from a supplier in a certain period is set to 1 if any part is ordered

from that certain supplier.

3.1.4 Models for minimum cost network design and �ow problems

Network �ow and design problems deal with the cost-minimal transport of commodities

within a network. Modeling techniques from models for these problems may be helpful

to model the area forwarding inbound logistic network which is used for transport in

the given problem setting. Multi-commodity minimum cost network design problems

consider a network with nodes N and directed arcs A. Within this network a set of

commodities K has to be moved from sources to sinks while holding arc capacities.

Each commodity k has exactly one source Sk ∈ N and one sink Tk ∈ N and a demand

dk. The basic multi-commodity minimum cost network �ow problem formulation was

developed by Tomlin [1966]. It is stated as (with slight formulation changes from

Tomlin [1966])

Min
∑

(i,j)∈A

∑
k∈K

xi,j,k · ci,j,k (3.1.26)

(3.1.27)

subject to ∑
k∈K

xi,j,k ≤ bi,j ∀(i, j) ∈ A (3.1.28)
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∑
j:(n,j)∈A

xn,j,k −
∑

j:(j,n)∈A

xj,n,k =


dk ifn = Sk

−dk ifn = Tk

0 otherwise

∀k ∈ K,∀n ∈ N (3.1.29)

xi,j,k ≥ 0 ∀(i, j) ∈ A (3.1.30)

(3.1.31)

with xi,j,k representing the �ow of commodity k on arc (i, j) ∈ A. The objective 3.1.26
is then to minimize the cost for arc use, given by the cost parameter for arc use ci,j,k.

Constraint 3.1.28 assures a correct �ow balance in the network. For a commodities

source the term on the left side becomes positive at the height of demand as there is

no ingoing arc available. In case of a sink the term on the left side becomes negative

for n as there are only incoming �ows. On all other nodes the incoming �ow is equal

to the outgoing �ow. These properties are secured by constraint 3.1.29.

Di�erent types of extension are available for the basic model. One direction pursued

in research is to include more complex cost functions, e.g. combining �xed cost value if

an arc is used with variable cost for �ows on the arcs or including alternative transport

modes among the arcs. Another direction is to extend the model formulation by

including a time-based aspect and aims at a coordination of �ows over multiple periods.

Crainic and Rousseau [1986] modi�ed the model according to a logistic service pro-

vider's needs. In addition to considering multiple commodities multiple transport

modes were included in the model. Even though it was pointed out that time is an

important aspect of logistics service networks, it was not explicitly considered in the

model formulation. Rather, a frequency was introduced which indicates how often an

arc will be used when the network is operated. This speci�c use of frequency of op-

eration in�uences the objective function, but somewhat implies a stationary demand

scenario.

Haghani [1996] introduced the technique of using a time-space network to model

�ows over time. This technique is quite important for the follow-up research as it

interconnects the time-based aspect of lot-sizing problems with the network-orientated

modeling in network design problems and is therefore depicted in Figure 3.1. For

each period in the planning horizon, a separate copy of the underlying network is set

up. These networks are then interconnected via arcs that represent a transformation

in time. This transformation in time can be achieved either by explicit storage arcs
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t = 2

t = 1

Source

Source

Sink

Sink

Storage 
arc

Arc with duration

Figure 3.1: A typical time-space network representation.

(green line in Figure 3.1) leading to a transformation in time, but not in space, or by

attaching a timespan to an arc from the original network (blue line in Figure 3.1), lead-

ing to a transformation in time and space, thus representing transport with a duration.

The network presented by Haghani [1996] considers multiple commodities, alternative

transport modes on the arcs, each holding separate vehicles and warehousing opportun-

ities. The objective is to minimize �the sum of the vehicular �ow costs, the commodity

�ow costs, the supply or demand carry-over costs, and the transfer costs over all time

periods� (Haghani [1996], p. 238), where the term transfer costs refers to a change

between di�erent transport modes. This operation is only allowed on certain nodes.

For a detailed review of multi-commodity service network design problems, see

Crainic [2000]. There, service network design problems in general and di�erent de-

cisions that have to be made by the carriers at a tactical planning level are discussed.

A review of research in the area of service network design is conducted and a proposal

on how to categorize the di�erent approaches is o�ered. The network models are di-

vided into three groups. The �rst group considers service frequencies explicitly as a

decision variable in the model. Models within the second group do not explicitly con-
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sider service frequencies but allow derivation of the frequency from the given solution.

This approach reduces model complexity because �explicit capacities and a number of

complicating constraints� (Crainic [2000], p. 285) are removed from the model. The

third group consists of models which explicitly consider time-space networks to cope

with a non-stationary demand scenario. At the time of review only a few approaches

from the third group were available.

Chen [2005] developed a model that includes multiple commodities, alternative

modes and so-called time windows. Time windows describe a relaxed demand con-

straint. A commodity is seen to be in time if it reaches the sink within a window of

opportunity called a time window. Unlike in replenishment environments, the com-

modity is not accepted if it arrives before the time window opens. If the commodity

arrives after the time window, a penalty cost is introduced. For each arc �xed and

variable cost are considered. Fixed cost is only applied if a vehicle is used on the arc.

If it is necessary to use multiple vehicles on the same arc, additional �xed cost will be

added to the objective value. In addition to the model formulation using a time-space

network, a heuristic solution approach based on Lagrangian relaxations for the speci�c

problem is presented. Chen [2005] reports that the developed solution algorithm �is

more computational e�ciency than solving original problems directly� (Chen [2005],

p. 51).

Resource based network �ow models

Recently, Kempkes and Koberstein [2010], Kempkes [2009] presented a model that com-

bines aspects from time-space multi-commodity network design models with quantity

discounting models to re�ect a logistics supply chain environment with tari� systems.

The model can be used for both internal and external logistics networks at the same

time. A resource-based concept is used to model cost factors such as handling cost,

freight cost and inventory holding cost. The model also considers multiple vehicles or

transport modes to be used. Parts are not seen to be streamed directly through the

network but are rather packed into load carriers. Even a repacking between di�erent

load carrier types applicable to the same part type is considered. In the following a

short form of the model depicting the most important aspects taken from Kempkes

and Koberstein [2010] given the notation presented in Table 3.1.4 will be sketched.
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Indices and sets
t = 1..T Period t or τ in the planning horizon which ends in period T
n ∈ N Nodes in the network
NS ⊂ N Supplier nodes
(i, j, t, t′) ∈ A Arcs in the network with (i, j, t, t′) representing an arc from node i

to node j and from period t to period t′

p ∈ P Parts
c ∈ C Load carriers
r ∈ R Resources
rg ∈ RG Discounting scheme rg
rs ∈ RSRGrg Discounting scheme levels rs in discounting scheme rg

r ∈ RRGrg ⊆ R Resources relevant for discounting scheme rg

Parameters
di,p,t Demand for part p in period t at node i, zero for all nodes without

demands
si,p,t Supply of part p in period t from supplier node i ∈ NS

ui,j,p,r Use of resource r per part unit when using connection from node i to
node j for part p

˜ui,j,c,r Use of resource r per load carrier unit when using connection from
node i to node j for load carrier p

LBR
r , UB

R
r Lower and upper bounds on resource use of resource r

LBRG
rg,rs,r,

UBRG
rg,rs,r

Lower and upper bounds on use of resource r ∈ RRGrg for discount
level rs in discounting scheme rg

fRSrg,rs Fixed cost charge when using discount level rs in discounting scheme
rg

cRSr,rg,rs Variable unit cost factor of resource r ∈ RRGrg using discount level rs
in discounting scheme rg

Variables
xj,i,p,c,t′,t Quantity of part p moving in load carrier c along arc (i, j, t, t′) ∈ A
yj,i,p,c,t,t′ Quantity of carriers c ordered from supplier s in period t

51



3 Literature Review

Min
∑
t∈T

∑
r R

gr · kr,t

+
∑
t∈T

∑
rg RG

∑
rs RSRG

∑
r RRG

rg

(
cRSr,rg,rs ·

(
kRGr,t,rg,rs − LBRG

rg,rs,r · ωRGrg,rs,t
))

+
∑
t∈T

∑
rg RG

∑
rs RSRG

fRSrg,rs · ωRGrg,rs,t

(3.1.32)

subject to

di,p,t =
∑

j,t′:(j,i,t,t′)∈A,c∈C

xj,i,p,c,t,t′ −
∑

j,t′:(i,j,t,t′)∈A,c∈C

xj,i,p,c,t,t′∀t ∈ T, i ∈ N \NS , p ∈ P

(3.1.33)

si,p,t =
∑

j,t′:(j,i,t′,t)∈A,c∈C

xj,i,p,c,t′,t −
∑

j,t′:(i,j,t′,t)∈A,c∈C

xj,i,p,c,t′,t∀t ∈ T, i ∈ NS , p ∈ P

(3.1.34)

kr,t =
∑

i,j,t′:(i,j,t,t′)∈A,p∈P,c∈C

(
ui,j,p,r · xi,j,p,c,t,t′ + ˜ui,j,c,r · yi,j,p,c,t,t′

)
∀r ∈ R

(3.1.35)

(3.1.36)

kr,t =
∑

rs∈RSRG
rg

kRGr,t,rg,rs∀rg ∈ RG, r ∈ RRGrg (3.1.37)

yi,j,p,c,t,t′ ≥
xi,j,p,c,t,t′

qp,c
∀(i, j, t, t′) ∈ A, p ∈ P, c ∈ C (3.1.38)∑

rs∈RSRG
rg

ωRGrg,rs,t ≤ 1 ∀rg ∈ RG

(3.1.39)

kRGr,t,rg,rs ≤ UBRG
rg,rs,r · ωRGrg,rs,t∀t ∈ T, rg ∈ RG, rs ∈ RSRGrg , r ∈ RRGrg (3.1.40)

kRGr,t,rg,rs ≥ LBRG
rg,rs,r · ωRGrg,rs,t∀t ∈ T, rg ∈ RG, rs ∈ RSRGrg , r ∈ RRGrg (3.1.41)

LBR
r ≤ kr,t ≤ UBR

r ∀t ∈ T, r ∈ R (3.1.42)

xj,i,p,c,t,t′ , yj,i,p,c,t,t′ ≥ 0∀(i, j, t, t′) ∈ A, p ∈ P, c ∈ C (3.1.43)

ωRGrg,rs,t ∈ {0, 1}∀t ∈ T, rg ∈ RG, rs ∈ RSRGrg (3.1.44)
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The most important contribution of Kempkes [2009] was to establish a resource-based

formulation for discounting schemes. Whereas previous models focused on quantity dis-

counts or business volume discounts, this model formulation allows discounting schemes

to be based on multiple resources at the same time. These resources can but do not

necessarily have to re�ect the parts price. This is especially helpful to modeling tar-

i� systems as described in Section 2.1.1, which are based on measurement units, e.g.

weight or volume. The concept works as follows. Rebate groups rg ∈ RG are intro-

duced, which represent the di�erent discounting schemes. Each rebate group consists

of several discount levels rs ∈ RSRGrg . For each discount level, lower (LBRG
rg,rs,r) and

upper bounds (UBRG
rg,rs,r) are given for each resource r ∈ RRGrg that is part of the cor-

responding rebate group. �A resource can only be part of at most one resource group,

which means that the sets RRGrg must be pairwise disjunctive� (Kempkes and Kober-

stein [2010], p. 286). If resource use of all resources within r ∈ RRGrg lies within the

bounds of one discount level (Constraints 3.1.40 and 3.1.41), the discount level is said

to be active. If a discount level is active (ωRGrg,rs,t is set to 1), two cost factors are con-

sidered, a �xed cost for the discount level itself (fRSrg,rs) and a variable cost (cRSr,rg,rs) for

resource use within the rebate level. Note that only the utilisation within the bounds

of the discounting level is accounted for by the variable cost factor.

The model presented by Kempkes [2009] can to some extent be used to determine

delivery pro�les, even though it was originally not intended for this task. The ma-

jor drawback of the model is that it does not consider design decisions. Accordingly,

model instances have to be created in a sophisticated manner to incorporate decisions

that last over the entire planning horizon. The model instance generation is similar

to the approach for modeling transport mode selection (see Kempkes [2009], pp. 66)

and will be depicted in the following. Consider an exemplary network that consists of

one supplier, a consolidation point and one plant with an incoming goods node and a

warehouse. Imagine a decision between two delivery pro�les. The network can then

be modeled as sketched in Figure 3.2. For every supplier multiple warehouse nodes are

included in the network, each representing the choice of a delivery pro�le. The arcs

between the supplier node and the related delivery pro�le choice nodes have special

resource uses associated to restrict multiple choices and to force a choice in the �rst

period. For each of these delivery pro�le choice nodes a separate copy of the network

is created whose endings are then connected to the same demand node. This leads to
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Figure 3.2: Example network model instance for delivery pro�le selection.

a set of disjunct networks for each delivery pro�le choice that has only two nodes in

common, the supplier's starting node and the demand node. The disjunct treatment

of the di�erent networks is necessary to disallow the material �ow to change from one

delivery pro�le choice network part to another after the choice has initially been made

by routing the material �ow to one of these nodes. Each warehouse node within a

delivery pro�le choices subnetwork has resource uses associated with it that disallow

a transformation in time for the delivery periods of the corresponding delivery pro�le.

All general resource uses (e.g. warehouse personnel, vehicle weight load) and resource

groups (e.g. freight tari�s) have to be common to all subnetworks. This procedure

leads to a multiplication of the complete network structure, which in turn results in

rapidly increasing solution times. The examples given in Kempkes and Koberstein

[2010] cover only �ve to six periods, and even though it is a very short timing window

in comparison with the desired planning horizon of three months, not all instances

could be solved to optimality (see Kempkes and Koberstein [2010], p. 293).

3.1.5 Considering uncertainty of demand

In the recent textbook Wallace and Ziemba [2005] it is stated that �Stochastic pro-

gramming is decision making under risk� (Wallace and Ziemba [2005], p. 3). Even

though it is not the only approach to making decisions under risk, reasonable e�ort
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has been made by researchers to explore it and use its techniques to cope with risks in

practical decision-making situations. This holds true also for the �eld of lot-sizing. Sox

et al. [1999] gives a review of work on lot-sizing under stochastic demand. In analogy

to the deterministic versions of these problems covered in section 3.1.1, two groups

of problem are identi�ed, the Stochastic Economic Lot Scheduling Problem (SELSP),

and the Stochastic Capacitated Lot Sizing Problem (SCLSP) (see Sox et al. [1999],

p. 182). Whereas the SELSP derived from the Economic Lot Scheduling Problem

considers time to be continuous and covers an in�nite planning horizon with station-

ary stochastic demand, the SCLSP on the other hand, which is an extension of the

Capacitated Lot Sizing Model, uses a discrete time model with �nite planning hori-

zon and non-stationary stochastic demand. In both cases it is assumed that demand

for di�erent products is uncorrelated. Sox et al. [1999] points out that the SELSP is

appropriate for �real time operational control [...] such as the production control of

work-in-process inventory� (Sox et al. [1999], p. 182). By contrast, it is argued that

the SCLSP problem class is best suited for �MRP-controlled systems in which demand

is processed on a periodic basis� (Sox et al. [1999], p. 182). As this work deals with

the latter case SELSP models will not be considered in the following. For a summary

of work in this area see Sox et al. [1999]. The �rst approach to solving the uncapacit-

ated, single-item stochastic lot-sizing problem was made by Silver [1978]. An rolling

horizon environment is considered in which a product has to be ordered in accordance

with frequently released forecasts under consideration of a �xed lead time. Forecast

errors are assumed to follow a normal distribution with an average value of zero. A

three-stage-heuristic procedure was developed which at �rst determines when to order,

then selects a time period which must be covered by an order, and �nally determines

the order lot size. Bookbinder and Tan [1988] extended the single-item uncapacit-

ated stochastic lot-sizing model by including a service-level constraint to deal with the

probability of stock-outs. The constraint assures that demand can be satis�ed in at

least α (a parameter given by management) percent of all periods. Three strategies

to deal with the uncertainty were de�ned, namely Static Uncertainty, Dynamic Un-

certainty and Static-Dynamic-Uncertainty. The Static Uncertainty strategy refers to

�xing all decisions at the beginning of the planning horizon. This results in both �xed

replenishment periods and lot sizes. The Dynamic Uncertainty strategy describes the

Wait-And-See approach known from stochastic programming in which the next period
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is planned for after the current period's demand has been realized. The newly de-

veloped concept of the Static-Dynamic-Uncertainty determines replenishment periods

at the beginning, but determines lot sizes only when the demand uncertainty has been

revealed.

The concept of the Static-Dynamic-Uncertainty may be regarded as a rule-based plan-

ning approach in accordance with de�nition 2. It was later adapted by Tarim and

Kingsman [2004], and a mixed integer model was formulated that allows determina-

tion of an optimal solution for the Static-Dynamic-Uncertainty strategy. The optimal

solution was then compared with the heuristic given by Bookbinder and Tan [1988]

in di�erent scenarios. It is shown that Bookbinder and Tan [1988]'s heuristic is of-

ten close to the optimal solution, but the gap increases with more erratic demands.

An extended overview of di�erent model formulations for the single-item case can be

found in Tempelmeier [2007]. Several techniques for considering backorders are dis-

cussed in the paper. Backorders may be treated either by accounting for backorder

costs (see Sox [1997]) or by constraining the α or β service level. The α service level

constraint can either be formulated for a single planning cycle (see e.g. Lasserre et al.

[1985], Bookbinder and Tan [1988], Tarim and Kingsman [2004]) or for the complete

planning horizon (see Tempelmeier [2007]). In Martel et al. [1995] a multi-item capa-

citated stochastic lot-sizing problem is set up. A solution approach based on a modi�ed

branch-and-bound strategy using a piecewise concave approximation is presented. The

approach is then tested in a rolling horizon environment. The results show that the

piecewise concave approximation provides fast results, making it possible to use it for

realistic problem sizes, but still leaves a gap open between the optimal solution and

its approximation. The gap depends strongly on the relation between inventory and

order costs, as most of the gap originates in a wrong inventory cost approximation. For

the case of multiple products, Brandimarte [2006] developed a multi-stage stochastic

model. A plant location formulation is used to reduce the integrality gap between the

LP formulation and the MIP equivalent. Based on this notation, a special relax-and-�x

heuristic is provided. The idea is to �x the binary setup variables sequentially for each

period. Thus in each period the setup decisions for previous periods are �xed and

the setup decisions for following periods are considered to be relaxed variables. This

step is repeated until all setups have been �xed. In addition to the presentation of

the solution procedure, di�erent scenario generation methods are discussed. Both the

56



3.2 Assessing the impact on realized logistics cost

solution procedure and the di�erent scenario generation techniques are then compared

in a rolling horizon simulation with arti�cial data.

3.2 Assessing the impact on realized logistics cost

To assess the impact of the deployment of cost-minimal delivery pro�les on the real-

ized logistics cost a fair comparison of the developed approach and other approaches

has to take place. As discussed in Section 2.4 it is therefore necessary to employ an

arti�cial benchmarking environment to conduct the assessment. The term benchmark-

ing has been given di�erent de�nitions that evolved over time. A widespread use of

the term benchmarking �refers to positioning versus best practice where this practice

exists in reality� (Valckenaers et al. [2006], p. 668). The idea behind this interpret-

ation of benchmarking is that by comparing a company's key performance indicators

with the best values achieved in practice, weaknesses in processes can be detected

and the situation improved (see Hanman [1997] for detailed description of this type of

benchmarking process). This kind of benchmarking will be described as best practice

benchmarking in the remainder of this thesis.

A second interpretation often used in operations research literature addresses a com-

parison of di�erent solution techniques applied to the same problem or model. When it

comes to comparison of di�erent solution techniques their outcome is often considered

to be the objective value. To make a comparison di�erent objective values of di�erent

solution techniques are then compared. When di�erent solution techniques for the

same model should be analyzed in respect of the solution quality they provide, this

method is de�nitely applicable and fair. Even di�erent model formulations can be

compared if they consider the same aspects in the objective function. These bench-

marks often include computational e�ort and help to �nd a trade-o� between solution

quality and runtime. In the remainder these benchmarks will be called solution quality

benchmarking.

If a planning method's behavior in a rolling horizon planning environment under con-

sideration of uncertainty is to be benchmarked, solution quality benchmarking is no

longer su�cient. In a rolling horizon environment, where the MRP system or the plan-

ning method can react to changes, more sophisticated approaches have to be used to

analyze how the methods adapt to the changes in the environment. When di�erent

planning techniques are to be compared, it is important to provide a benchmarking
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method which provides a fair environment with clear rules that do not favor a single

technique. To provide a fair comparison of di�erent planning methods several require-

ments have to be ful�lled.

As making a plan and executing a part of it a�ects future planning situations, it

is necessary to assure repeatability in the sense that each planning method can start

with the same input parameters and form its own version of the future without af-

fecting other planning methods' planning situations. Experiments have to be repeated

�to study di�erent systems in identical environments or the same system in di�erent

environments� (Fowler and Rose [2004], p. 470). This also leads to the request for

the ability precisely to control the environment's behavior and all parameters. This

is an essential requirement if behavior in special environmental circumstances is to be

analyzed in detail. Detailed analysis only makes sense if the required details are rep-

resented in the environment. Thus an integration of relevant aspects is necessary. It is

also important adequately to model reality and �nd the correct level of detail, without

adding too much noise due to unnecessary aspects, while at the same time not leaving

important aspects behind.

At the same time it is crucial to avoid risks, thus requiring an environment in which

the planning methods can be tested in a 'sandbox' without a�ecting the real situation.

Another aspect is compression of time, as it is desired to conclude a comparison within

a reasonable time, even if long period ranges are considered. According to Fowler and

Rose [2004], simulation provides all these strengths, which makes it a good choice as

underlying technique for the benchmarking environment required for this thesis (see

Fowler and Rose [2004], p. 469 f.). Thus the next section will depict di�erent ap-

proaches that have been applied to benchmark planning methods within simulation

environments. The literature on performance indicators for the benchmark will then

be summarized.

3.2.1 Simulating a rolling horizon environment to benchmark planning methods

Banks [1998] de�nes simulation as �the imitation of the operation of a real-world process

or system over time. Simulation involves the generation of an arti�cial history of the

systems and the observation of that arti�cial history to draw inferences concerning the

operating characters of the real system that is represented� (Banks [1998], p. 3).
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We distinguish between static and dynamic simulation. Static simulation does not

consider time whereas dynamic simulation does. A classical example of static sim-

ulation is Monte-Carlo-Simulation in which an experiment is repeated many times.

Dynamic simulation can be further divided into continuous and discrete simulation.

While continuous simulation segregates time into very small steps so that a 'natural

�ow' of time is generated, discrete simulation regards time as a sequence of discrete

intervals in which actions may occur within the system. A special form of discrete sim-

ulation is discrete event-based simulation. In event-based environments not all discrete

time-steps have to be simulated. To increase e�ciency, �state variables change only at

those discrete points in time at which events occur� (Banks [1998], p. 8). Hence the

time-steps without events may be skipped and the overall simulation runtime will be

reduced.

While it is clear that a static simulation cannot help to discover the behavior within

a rolling horizon because it lacks a consideration of time, both continuous and dis-

crete simulation could be applicable. Scholz-Reiter et al. [2005] analyzed advantages

and disadvantages of both continuous and discrete simulations for modeling logistic

systems with autonomous control. It was stated that �modelling by a discrete-event

simulation tool allows a good description of real-world [...] processes� (Scholz-Reiter

et al. [2005], p. 416) whereas continuous modeling �describes logistic processes on a

higher aggregation level� (Scholz-Reiter et al. [2005], p. 416).

In analysis of challenges arising when developing simulation environments Fowler and

Rose [2004] state that �while incorporation of detail may increase the credibility of the

model, excessive levels of detail may render a model hard to build, debug, understand,

deploy, and maintain� (Fowler and Rose [2004], p. 470). In the �eld of manufacturing

systems research simulation is widely discussed in the literature as a proper solution

for benchmarking e�orts. To the author's knowledge such approaches in application

to operational order lot-sizing do not exist. Even though there are several parallels

between them, it will mainly be referred to manufacturing and replenishment simula-

tion approaches in the following.

The �rst work focusing explicitly on lot-sizing decisions was presented in Dzielinski

et al. [1963]. A single-stage make-to-stock production environment was considered. To

account for setup cost the number of work forces required to maintain service opera-

tions given a speci�c lot-production sequence was computed. A demand forecast for

59



3 Literature Review

the next periods was made based on historical net demand data iteratively and used as

input for both a linear programming model and an Economic Order Quantity formula.

In the next iteration the �rst period was seen as executed, inventory was adjusted and

the procedure was repeated. Several settings were then evaluated for both the linear

programming model and the EOQ formula. Four test cases covering two time aggreg-

ation levels (one or two months considered to be a period) with and without safety

stocks were used. It could be shown that the linear programming model was superior

in each of the operating cost parts including labor, inventory and backlog costs leading

to an improvement in total operating cost. Even though the simulation approach was

not very sophisticated, this work can be seen as the �rst simulation of a rolling horizon

planning situation.

Another study benchmarking lot-sizing rules was conducted by Callarman and Ham-

rin [1983]. Three approaches were evaluated, namely the EOQ formula, the Wagner-

Within algorithm (see Wagner and Within [1958], WW) and the Part-Period-Balancing

heuristic (see DeMatteis [1968], PPB). Instead of deriving forecasts from net demand

history, forecasts were explicitly given such that the forecast error could be controlled

as desired. Safety stocks were adjusted based on a self-developed method. Four factors

where then varied to study the performance of the di�erent algorithms under these

conditions. The varied factors were the coe�cient of variation in demand, the average

time between orders, the desired service level and the forecast error. Even though

di�erences in total cost results were not signi�cant, a slight advantage of the PPB

method could be shown. Only when dealing with a rather high forecast error or very

short distances between orders was the EOQ method superior to the PPB method. It

was also shown that the coe�cient of variation in demand and the forecast error had

the highest impact on total cost under all four considered factors.

A recent survey of di�erent lot-sizing and scheduling approaches in a rolling hori-

zon environment was made by Simpson [2001]. Nine approaches are included in the

study, Wagner-Within, Part-Period-Balancing heuristic, economic order interval (EOI),

Silver-Meal-Heuristic (see Silver [1979], SM), least total cost, least unit cost, Gro�'s

algorithm, McLauren's order moment and the maximum part period gain algorithm

(see Roll and Karni [2011], MPG). The simulation setting covered 300 periods worked

o� in a rolling horizon simulation. Three factors were varied to get a glance at the be-

havior of the di�erent algorithms under di�erent circumstances. These factors included
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the length of the planning horizon, the length of the expected order cycle and the de-

mand pattern. For benchmarking purposes an adapted version of the Wagner-Within

algorithm that does not allow holding of items in inventory longer than the targeted

planning horizon was applied to all 300 periods at once and the optimal solution value

was used to establish a lower bound. 3060 simulation runs were made for each method,

resulting in a total number of 27450 simulation runs for the study. The results showed

a clear advantage of the Wagner-Within algorithm, with MPG, Gro�, least total cost

and Silver-Meal following shortly after. The longer the planning horizon chosen, the

closer the algorithms came to the lower bound. In general it was found that a longer

planning horizon improves solution quality up to a certain level. When a certain hori-

zon length is reached the methods stabilize and provide no further improvement. The

number of rescheduling messages is used as an indicator for nervousness of the planning

approaches. It is pointed out that the very cost-sensitive algorithms at the same time

create measurable higher nervousness than do the other approaches.

3.2.2 Architectural approaches to benchmark simulation environments

Simulation has for a long time been used as benchmark method to compare job-

dispatching rules. One of the �rst publications mentioning simulation as benchmark

method was Blackstone et al. [1982]. In their work Blackstone et al. [1982] review

research on dispatching rules and gives a short section on how simulation may be used

to benchmark dispatching rules and which issues are raised by this technique. One of

the issues mentioned is the di�culty of avoiding production of censored data. Censored

data refers to the e�ect that at the end of the simulation some jobs may remain un-

completed. These jobs are chosen di�erently by di�erent dispatching rules, and thus

the e�ect may favor one method over another if it is not taken care of.

In Valckenaers et al. [2006] a service for benchmarking manufacturing control ap-

proaches was proposed. They point out that it is di�cult to compare approaches

without having a benchmark simulation environment available. To resolve this issue

and provide a sound benchmarking platform for di�erent approaches for all researchers

a web-based benchmarking service was developed. The service provides access to a

previously developed simulation environment that can be con�gured by a graphical

user interface. The simulation environment then builds a computational model of the
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production system and emulates the behavior of a factory based on di�erent scenarios

from industrial test cases. Researchers can then implement an interface in their man-

ufacturing control implementation and benchmark it via remote control with other

approaches.

Mönch [2007] considers di�erent production control approaches in a simulation based

benchmark for manufacturing systems. In a requirement analysis modeling and archi-

tectural issues are addressed. A generalized control setting is provided that can be

applied accordingly to other simulation environments. The underlying environment

with its properties is de�ned as base system B. The base process within this environ-

ment given the input XB and state set ZB is de�ned as PB and is described by the

mapping:

PB : XB × ZB −→ ZB × YB

where YB is the output of the process. The base system is controlled by a control

system C which uses a control process PC to control the base process. The control

process PC, its state set ZC and output YC can again be denoted as a transformation

based on the input XC :

PC : XC × ZC −→ ZC × YC

Based on this formalised understanding, the simulation approach is divided into two

sections as depicted in Figure 3.3. On the one hand there is the simulation model itself

that represents the base system. It completely represents the base system B and the

base process PB, but has no knowledge of the control system. In his work Mönch

[2007] uses a discrete event simulation model based on a test-bed from his speci�c

industrial domain (in this case semiconductor manufacturing) to cover this aspect. On

the other hand there is the control system that interacts with the base system and

has to be aware of the base systems properties. To allow for these manipulations, an

interface between the base system and the control system has to be developed. This

interface can either be a direct manipulation of data on the data level of the simulation

tool, or it can be a more advanced data layer in between. The latter option was seen

as strongly favorable as it does not produce proprietary source code and allows for

di�erent control approaches to be plugged in.

A similar approach was presented by Herrmann [2007]. The basic idea was to provide

a possibility to simulate a plant and its control before production was actually started.

This should allow a benchmark of di�erent planning approaches as well as plant layouts
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Figure 3.3: Basic architecture of simulation-based benchmarking environments (based
on Mönch [2007], p. 1383).

in advance. Instead of coupling a self-developed production control system, the well-

known MRP-System SAP was connected to the simulation software eM-Plant via a

self-developed middleware. The production process could then be modeled in both

SAP and eM-Plant. A stochastic distribution for randomly incoming demands was

used to evaluate the outcome of the overall production process and its control settings.

Performance indicators are gathered from the simulation model and presented to the

user and allow for a comparison with the values targeted within the MRP system. Using

the middleware as an interface between control and base process also allows to exchange

the MRP system or develop customised planning approaches for benchmarking.

3.3 Assessing stability of the generated delivery schedules

To assess the stability of the generated delivery schedules, it is necessary to de�ne a

set of performance indicators that can be compared among the di�erent approaches. A

performance indicator should project the stability of the generated delivery schedules

to a scalar value on a common scale with a de�ned order, such that a higher value

represents a higher stability and a lower value represents a lower stability. These
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t Period t in the delivery schedule
k Planning cycle k = 1..K
Mk Start of planning cycle k
Qkt Quantity scheduled for period t in planning cycle k
T The length of the planning horizon

indicators have to be chosen wisely in order correctly to re�ect the performance of the

approach. To measure the degree of achievement of the di�erent objectives described

in section 2.3.1 di�erent performance indicators have to be used. It is hardly possible

to bring all objectives together within one indicator without loss of detail. It would

be possible to use a single objective function in which each of the objectives would

be included with a weight factor, but this leaves unanswered the question of how to

chose the weight factors. In order especially to get a glance on the advantages and

disadvantages of each approach it is necessary to measure each objective on its own.

Whereas there are pretty clear guidelines on how to measure the realized cost, there

is a variety of measures for the stability of the generated delivery schedules. In the

following, measures proposed in the literature will be sketched. Most of them come

from the area of MRP-system or inventory control research. To improve readability

the measures will be given in a consistent notation given in table 3.3.

Blackburn et al. [1986] analyse di�erent strategies in respect of their e�ect on delivery

schedule stability in a rolling horizon multi-stage production environment. Strategies

included are freezing the schedule within the planning horizon, safety stocks at the

top stage, a lot-for-lot policy after the �rst stage, a forecast beyond the planning ho-

rizon and a planning procedure which includes change cost. Instability is measured as

�the number of times an unplanned order was made in period 1� (see Blackburn et al.

[1986], p. 418) or an existing order in the �rst period was �altered either by an increase,

decrease or deletion� (see Blackburn et al. [1986], p. 418). This measure is completely

focused on the �rst period in the planning horizon, which is a huge drawback given

that that lower production stages use the whole delivery schedule for their production

planning. In addition, the �rst planning period is stable in most environments due to

replenishment lead time agreements between suppliers and buyer. This issue could be

avoided by extending the measure to the �rst period after replenishment lead time.

Aside from this point, a focus on the �rst period does not account for changes in the

entire relevant short-term planning horizon of the supplier; thus this measure does not
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seem applicable to the given problem.

Barrett and Laforge [1991] have made a study to evaluate the e�ect of the duration

of one planning iteration or in other words the re-planning frequency on the stability

of delivery schedules. The study evaluates the results in respect of achieved service

levels, inventory values and schedule nervousness. The absolute amount of open-order

changes is used as a measure of schedule nervousness. Open-order changes include

changes in time or quantity as well as adding or removing orders. This measure has

two drawbacks. First, it is an absolute value which means that it penalizes systems

with many orders and favors systems with only few total orders. Another aspect is that

no di�erentiation takes place between di�erent types of open-order changes, so that a

worse-case situation facing high demand underestimation in combination with a shift

forward in due dates is valued equally with a small overestimation or shift backward

at the end of the planning horizon.

Meixell [2005] presents a study on the e�ect of setup costs, component commonality,

and capacity on delivery schedule stability in supply chains. The study uses the coe�-

cient of variation across schedule quantities for multiple schedule releases and a single

production period to measure schedule instability. The coe�cient of variation as a

measure of delivery schedule instability has the advantage that it is independent of

the absolute values because it only covers the relation between standard deviation and

mean value. The coe�cient of variation can be computed as follows:

CVt =
σt
|µt|

(3.3.1)

where σt is the standard deviation and µt the mean value of order quantity for period

t among di�erent planning cycles, which can be computed as follows:

µt =
1

K

K∑
k=1

Qkt (3.3.2)

and

σt =

√√√√ 1

K − 1

K∑
k=1

(
Qkt − µt

)2
(3.3.3)
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Apparently this measure does not cover order time shifting explicitly nor does it dis-

tinguish between underestimation of demand (quantity increases or order shifting for-

wards) on the one hand and overestimation of demand (quantity decreases or order

shifting backwards) on the other hand. A di�erentiation between these two cases

should be considered, given their di�erent outcomes. An underestimation of demand

may cause the supplier to be unable to deliver, whereas an overestimation may lead to

an undesired overproduction on the supplier's side.

Pujawan [2004] has developed a model to measure the instability of delivery schedules.

For each planning cycle k and each planning period t, an instability value I(k, t) is

computed. The model di�erentiates between di�erent types of change (denoted i in

the model) and combines them based on a weight factor wi. Three types of changes

are identi�ed, namely a change in production start time, change in speci�cations and

change in order quantity. An analytical hierarchical process (AHP) is then used to

determine the weight factors for the di�erent types of change. If two changes occur at

once, only the type with the higher weight factor is considered. The model is denoted

as follows (adopted from Pujawan [2004], p. 520):

I(k) =

t+T∑
t=k

I(k, t) (3.3.4)

with

I(k, t) =
∑
i

∑
k

wi Q
k(i, j, t) (3.3.5)

I(k) gives back the total instability in planning cycle k. Qk(i, j, t) is the quantity of

an order j which in planning cycle k − 1 was scheduled to be produced in period t

and then underwent a change of type i in planning cycle k. Even though this model

di�erentiates between time- and quantity changes, it does not cover the di�erentiation

between underestimations and overestimations. Another issue is that the weighting

factors have to be derived from a subjective point of view, so that results are biased

by the preferences. This need not necessarily be a disadvantage because it can re�ect

a company's point of view, but may lead to a weight setting that favors a speci�c

approach over another.

An approach which also focuses on the number of open-order changes was developed by
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Ho and Ireland [1998]. To account for the tempestuousness of the impacts of an open-

order change, a weighted rescheduling measure is introduced. The approach does not

consider changes in order quantity, only rescheduling from one period to another. Nor

is there any indication of how added or removed orders will be treated. The measure

is given as

WR =
∑
p∈P

T∑
t=1

Qtp · |NDDtp −ODDtp| (3.3.6)

with NDDtp as the new due date of product p in period t and ODDtp the old due date

respectively. This measure has multiple drawbacks. Aside from not covering changes

in quantity or changes in the number of orders, it does not distinguish between orders

that were shifted forward or backward. It also treats orders closer to the planning

period in the same way as orders further away from the current planning period. In

addition, parts with low quantities are favored over parts with high quantities, because

their impact is lower as the shift in due dates is weighted with the order quantity. This

may lead to a situation where a single high-volume part (e.g. a screw) can increase

the measure with few incidents far more than several low volume parts with multiple

incidents.

Jensen [1993] uses two stability measures in his study on planning stability of reorder

point lot-sizing policies. On the one hand, a setup orientated stability measure is

introduced. Setup orientated in this case means that pure changes in quantity are not

considered. Only if the quantity changes from zero or to zero, is instability measured.

The measure is expressed as

1

K
·

∑
∀k>1

Mk−1+T−1∑
t=Mk

|δ(Qkt )− δ(Qk−1t )|

 (3.3.7)

with

δ(Qkt ) =

0if Qkt = 0

1if Qkt > 0
(3.3.8)

This measure allows evaluation of the number of added or removed orders, but does

not di�erentiate between them. Nor does it consider that additional orders arriving
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shortly after the end of the frozen zone will be more di�cult to handle than those

added in periods close to the end of the planning horizon. On the other hand, a

quantity-orientated measure is introduced. It is given as

1

K
·

∑
∀k>1

Mk−1+T−1∑
t=Mk

|Qkt −Qk−1t |

 (3.3.9)

Again this measure does not include a di�erentiation between overestimations and

underestimations. Nor does it account for the distance from the planning period to

the period with a quantity change and treats changes which are closer to the planning

period in the same way it treats orders that are further away.

Zhao et al. [1995] provide a study on lot-sizing rules and master production schedule

freezing and their outcome on total cost, service levels and schedule stability. The

quantity-related measure from Jensen [1993] is extended for the multi-product case. It

then reads as

1

K
·

∑
p∈P

∑
∀k>1

Mk−1+T−1∑
t=Mk

|Qkt −Qk−1t |

 (3.3.10)

with p ∈ P being product p out of the set of all products P .

Sridharan and Laforge [1989] try to account for the importance of changes by extending

the quantity orientated measure with weight parameters. It was suggested shortly

before the study by one of the authors in Sridharan et al. [1988]. The measure is

introduced as

I =
1

K

∑
∀k>1

Mk−1+T−1∑
t=Mk

|Qkt −Qk−1t | · (1− α) · αt−Mk

 (3.3.11)

with α being a weight parameter (0 < α < 1). As I gives back an absolute value, it can

be divided by the average order quantity to gain a relative value. The weight factor

α may be adjusted to lay emphasis on more distant changes or to ignore their e�ect.

The smaller α is chosen, the lower is the impact of changes in more distant periods.

By including the weight factor the only issue with this measurement approach is the

inability to distinguish between underestimations and overestimations. In addition,

the study uses eight other measures to give detailed feedback on the kind of schedule
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nervousness. These include the order quantity and frequency count of added and can-

celed orders as well as orders that were increased or decreased in quantity respectively.

These eight measures account for all possible changes to a delivery schedule and thus

give detailed insight into the structure of change, but do not consider their position in

respect of the planning period. In Kadipasaoglu and Sridharan [1997] the measure I

was further extended for multi-stage production environments; another weight factor

is there introduced for di�erent stages. As this extension is not necessary for the given

problem setting, interested readers are redirected to the original source for detailed

explanation.

Inman and Gonsalvez [1997] developed a measure based on the percentage deviation

between the initial forecast (k = 1) and the minimum and maximum scheduled quant-

ity over all planning cycles. It can be formalised as

Dev = max
{
max

{
Q̃k ∀k = 1..K

}
− Q̃1; Q̃1 −min

{
Q̃k ∀k = 1..K

}}
· 1

Q̃1

(3.3.12)

with

Q̃k =

Mk+1∑
t=Mk

Qkt (3.3.13)

Q̃k sums the quantities scheduled in between planning cycle k and cycle k+1. Aggreg-

ating the periods between two planning cycles compromises precision of the measure,

but allows for better comparison of quantity �uctuation in medium terms. The Dev

measure is then used to distinguish between stable and unstable parts. Parts are said

to be stable if the Dev value falls below a given threshold. Parts with low volumes are

excluded from the analysis. Based on this segregation, a stability measure is introduced

as the percentage of stable parts in relation to both stable and unstable parts.

Stability =
Stable parts

Stable parts + Unstable parts
(3.3.14)

This ratio is useful when dealing with multiple parts. Unfortunately, the stability ratio

does not represent the distribution of instability among parts. If the parts within

the unstable group are extraordinarily unstable, the stability ratio will give the same
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result as if the unstable parts were just marginal above the threshold. To improve its

expressiveness the stability ratio may be extended by a division into certain groups

based on the parts deviation.
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In this chapter the gap between approaches from the literature summarized in Chapter 3

and requirements according to the problem setting given in Chapter 2 is outlined. It

will discuss which aspects of the problem setting are covered by existing approaches

and which are not. The remainder of this chapter is twofold. First, existing planning

approaches and their shortcomings when applied to the problem setting of this thesis

are discussed. Second, the steps necessary to asses the impact of the selection of cost-

minimal delivery pro�les on both realized cost and the stability of generated delivery

schedules will be described.

4.1 Selecting cost-minimal delivery pro�les for area forwarding inbound

logistic networks

The literature on planning approaches for the operational order lot-sizing problem is

twofold. On the one hand, a reasonable amount of research has been conducted in the

area of rule-based planning approaches, mainly focusing on replenishment frequencies

or �xed lot sizes. Even though there are models considering quantity discounting

schemes (e.g. Chakravarty [1984], Benton [1991]), these models are not su�cient to

cope with the given logistic network and its tari� structures. On the other hand,

quite sophisticated approaches exist to model logistics networks and their components.

Both the network structure as well as discounting schemes have been discussed in

several studies. Kempkes [2009] and Kempkes and Koberstein [2010] present a model

that provides enough aspects to model the underlying area forwarding networks and

their most relevant properties. But when it comes down to modeling delivery pro�le

selection, which the model was originally not intended for, quite sophisticated model

instance formulations have to be used (see Section 3.1.4 for details).
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4.1.1 Performance issues

With the given modeling approaches it is hardly possible to solve problem instances

from practice within reasonable time and e�ort. The desired planning horizon is about

three months, whereas the examples given in Kempkes and Koberstein [2010] cover

only �ve to six periods, which equals a planning horizon of one week. Even with

this limitation to a very short planning horizon, not all instances could be solved to

optimality (see Kempkes and Koberstein [2010], p. 293). This leads to the request for

a more e�cient model formulation and solution algorithm. It has also to be mentioned

that if possible, no reduction of the problem itself should take place: thus all cost-

relevant aspects should be covered.

4.1.2 Considering uncertainty

Uncertainty in demand forecasts plays an important role in operational order lot-sizing

and lot-sizing in general. Several researchers have dealt with this aspect by extending

existing models to consider uncertainty. Especially when a rule-based delivery schedule

generation approach is to be considered, where a decision on a rule has to be made

in advance when information is still unreliable, the necessity for a robust choice seems

to be obvious. In the �eld of algorithmic delivery schedule generation, methods that

consider uncertainty have been developed too. Most research in this area focuses on

stochastic programming approaches, for which good results have been shown in the

past. Stochastic programming models �provide deeper insights because they optimize

decisions over multiple scenarios linked together in a single model, each with an as-

sociated probability of occurrence� (see Shapiro [2007], p. 443). It should therefore

be analyzed if and to what degree stochastic programming can be helpful to deriving

delivery pro�les with a higher robustness towards the realized cost.

4.2 Assessing the impact of cost-minimal delivery pro�les in a rolling

horizon environment

Many researchers have pointed out the di�erence between a priori solutions and object-

ive values, and the actual outcome in a rolling horizon planning environment. Several

studies have been carried out in this �eld, mainly considering production planning

problems and production environments. The main aspects that have been considered
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environment

in these studies are the impact on realized cost and the stability of the generated de-

livery schedules and service levels. An environment with tari� discounting schemes

and network structures as can be found in the given problem setting has not been

considered so far in a comparative study. Even though models for algorithmic de-

livery schedule generation are very sophisticated, no work has actually been done to

test them in realistic circumstances. Nothing is known about their sensitivity to ever-

changing forecasts in rolling horizon environments, both in terms of the stability of

the generated schedule and realized cost. This gap will be closed by a comparative

study of both cost-minimal delivery pro�les and promising algorithmic approaches to

delivery schedule generation. The impact of cost-minimal delivery pro�les can thereby

be assessed.

4.2.1 A simulation framework for operational order lot-sizing planning methods

In order to provide a sound analysis of the impact of cost-minimal delivery pro�les

when employed in a rolling horizon environment in realistic circumstances, a simula-

tion framework has to be set up. Existing simulation frameworks for rolling horizon

environments focus on production planning and control rather than order lot-sizing.

This leads to the requirement for a benchmarking framework for operational order

lot-sizing. Simulation has proven to be the path of choice when coping with a rolling

horizon environment. There are architectural approaches (see Mönch [2007]) that go

beyond the speci�c application of production planning and control. This approach will

be transferred to the actual problem setting. A simulation framework for the opera-

tional order lot-sizing problem in a rolling horizon has accordingly to be developed.

This framework should provide the possibility of exchanging planning algorithms in

order to pave the way for a conclusive comparison between rule-based delivery sched-

ule generation approaches like the deployment of cost-minimal delivery pro�les on the

one hand and algorithmic delivery schedule generation approaches on the other hand.

As the practical relevance of the problem setting is obvious, the simulation framework

should be capable of operating on data from practice. In addition, relevant aspects of

the problem setting, including the network structure, tari� systems, inventory control

and forecasts should be covered in appropriate depth.
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4.2.2 Measuring delivery schedule stability

Di�erent techniques have been developed in the literature to assess delivery schedule

stability, ranging from simple setup orientated measures focusing on single periods to

complex algorithms to derive a performance indicator. The diversity of the generated

approaches shows that multiple aspects have to be considered to assess the impact

of change, including a di�erentiation between changes in time and in quantity, the

distance between the planning period and the source of instability and a di�erentiation

between underestimations and overestimations. None of the existing measures covers

all of these aspects simultaneously. A comprehensive set of measures for delivery

schedule stability will be developed to overcome these shortcomings.

4.3 Targeted contributions

In summary, it may be said that there will be �ve major contributions in this thesis,

covering aspects from multiple disciplines and �elds of research.

1. A deterministic model formulation and e�cient solution algorithms for the selec-

tion of cost-minimal delivery pro�les will be presented.

2. To cope with demand uncertainty a stochastic programming formulation for the

selection of cost-minimal delivery pro�les will be developed. Di�erent approaches

to scenario generation will be evaluated. In addition, a modi�ed solution al-

gorithm for the stochastic model formulation will be presented.

3. A simulation framework for planning methods for the operational order lot-sizing

problem in area forwarding based inbound logistic networks with complex tari�

structures will be developed.

4. A new measure for delivery schedule stability will be introduced that accounts

both for time shifts and quantity changes and additionally accounts for the impact

of a change.

5. An assessment based on a case study of the planning techniques under realistic

conditions based on data from practice will be conducted, and the impact of

the deployment of cost-minimal delivery pro�les on both realized cost and the

stability of the generated delivery schedules will be analyzed.
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The remainder of this thesis will cover the developed solution approaches and is struc-

tured as follows. First, a model formulation and solution algorithm for the selection

of delivery pro�les will be depicted in chapter 5. Model extensions for the considera-

tion of uncertainty and the necessary adoptions of the solution algorithm will then be

described. In addition, di�erent approaches to scenario generation will be presented.

After the solution procedures have been described, chapter 6 introduces the developed

simulation framework, describes its architecture and the performance measures used in

the case study. The case study itself will be depicted in chapter 7 and consists of three

parts, focusing on runtime, monetary aspects and stability of the generated delivery

schedules respectively.
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This chapter starts with a summary of the decision problem that has to be solved

in order to determine cost-minimal delivery pro�les. It will then be shown how the

problem structure can be exploited to reduce computational e�orts by using a decom-

position approach. Model formulations based on these insights will then be presented.

Thereafter a primal heuristic and a meta-heuristic will be described that can provide

fast solutions which can then be used as starting values for MIP-Solvers. In the next

step the required model extensions for a consideration of demand uncertainty will be

discussed. In addition, a model that demands less computational e�ort but comes at

the price of less generous applicability will be presented. Thereafter, a revised solution

algorithm for the stochastic case will be depicted. As stochastic programming relies

heavily on the scenarios used as input, multiple approaches to generate scenarios will

be described.

5.1 Summary of the given decision problem

If a company has decided to use delivery pro�les as a control rule for their operational

order lot sizing, a tactical decision process has to be set up. In a periodic review

process the delivery pro�les to be used for the next three months have to be selected.

For each supplier one delivery pro�le out of a set of prede�ned delivery pro�les has to be

assigned. The objective is to assign the delivery pro�les in such way that the expected

total cost of the inbound logistics operations will be minimized. More formally it can

be stated that for each supplier from a set of suppliers s ∈ S a delivery pro�le from

a set of delivery pro�les dp ∈ DP has to be assigned. Let pc be the vector of pro�le

choices pcs1,dp . . . pcs|S|,dp that holds the delivery pro�le for each supplier, and let c(pc)

be a cost function that estimates the expected cost for a delivery pro�le choice vector

pc. The task can then be formalized to �nd a delivery pro�le choice vector pc? with

a minimal value for c(pc), thus ∀pc ∈ S × DP \ {pc?} : c(pc) ≥ pc?, with S × DP
being the set of all possible delivery pro�le assignment vectors, holds true. The cost

function c(pc) can be further divided according to the di�erent cost factors. The main

77



5 Selecting cost-minimal and robust delivery pro�les

cost components are freight cost cFreight(pc) and inventory holding cost cInventory(pc).

Thus the cost function c(pc) may be formalized as

c(pc) = cFreight(pc) + cInventory(pc) (5.1.1)

These cost components can be further split, as the freight cost cFreight(pc) can be

described as the sum of pre leg run cost cPreleg(pc), full load run cost cFullload(pc)

and main leg run cost cMainleg(pc), whereas the inventory holding cost cInventory(pc)

consist of the cost for warehouse slot usage cSlot(pc) and cost of interest on capital

commitment cInterest(pc). Therefore the cost function reads as

c(pc) = cPreleg(pc) + cFullload(pc) + cMainleg(pc) + cSlot(pc) + cInterest(pc)

(5.1.2)

Whereas the inventory cost part may be estimated based on the parts values and the

expected holding time, the freight cost part of the cost function depends strongly on

the tari� system that has been negotiated with the LSPs. As these systems provide

synergy e�ects for consolidated main leg runs of the di�erent suppliers within one area,

it is necessary to consider all suppliers within one area at once to �nd the optimal

delivery pro�le assignment vector pc?. However, the delivery pro�le assignments can

be determined independently for each consolidation area, as no interlink between the

di�erent areas exists.

5.2 Exploiting the problem structure

A delivery pro�le restricts the supplier's delivery to certain delivery periods. As de-

scribed in detail in section 2.3.3, the MRP system will gather all net demands with

due dates equal or greater than the delivery period and smaller than the next delivery

period will be cumulated to an aggregated order on the �rst delivery period. Consid-

ering an environment with deterministic demand this in turn leads to Observation 1.

Observation 1. If demand is known and a delivery pro�le has been selected for a

supplier, it is prede�ned which parts will be delivered in which delivery period.

If a delivery pro�le will be applied to a given net dependent demand forecast, the

demands scheduled between two delivery periods will be ordered jointly on the �rst of
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the two. Therefore parts have to be held on stock from the delivery period until the

consumption period. Following this argumentation in combination with Observation 1,

we can set up Observation 2

Observation 2. If demand is known and a delivery pro�le has been selected for a

supplier, it is prede�ned which parts will be in stock in which period.

Considering the speci�c structure of the decision problems for the selection of de-

livery pro�les in area forwarding based logistic networks, as explained in section 5.1,

Observation 1 allows us to compute the part of cost function c(pc) of a delivery pro�les

choice that does not provide synergy e�ects between di�erent suppliers. As depicted

in �gure 5.1 pre leg runs and full load runs do not carry a combination of parts from

di�erent suppliers. Unlike the main leg run cost, the cost for pre leg runs and full

load runs depends only on the choice of a delivery pro�le of a single supplier. There-

fore, the cost of pre leg transport cPreleg(pcs,dp) resulting from the assignment pcs,dp

of delivery pro�le dp to supplier s and the respective counterpart cFullload(pcs,dp) may

be computed separately for each supplier. Another cost part is the inventory holding

cost, which depends on the quantity of parts stored in inventory in each period and

speci�c cost parameters, e.g. parts price or interest rate on bound capital. Accord-

ing to Observation 2 the quantity of parts stored in inventory per period is �xed if a

delivery pro�le is assigned to the supplier that delivers these parts. This allows us to

compute inventory holding cost cInventory(pcs,dp) incurred by a delivery pro�le assign-

ment pcs,dp of delivery pro�le dp to supplier s. Drawing together these di�erent cost

aspects it may be stated that except for the main leg run cost, all cost factors relevant

to the problem can be derived for a delivery pro�le assignment without consideration

of other suppliers possible assignments. This property can be exploited to decompose

the problem into multiple subproblems and is the foundation of the solution procedure

depicted in Figure 5.2. At �rst, a preprocessing routine, which will be described in

detail in Section 5.3, evaluates all possible delivery pro�les assignments for each sup-

plier. This includes computation of the cost factors for pre leg runs, full load runs and

inventory holding as well as a derivation of parts that will be remaining for main leg

runs. The results of this step consist of evaluated delivery pro�le assignments. In a

second step a combination of previously evaluated assignments is selected such that

total cost including both main leg run cost and previously evaluated cost factors of

selected assignments is minimized. The heuristic procedures proposed in Section 5.5
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Figure 5.1: Segregation of goods in an area forwarding inbound logistics network allow-
ing decomposition of pre leg runs and full load runs from di�erent suppliers.

and 5.5.2 can be applied to retrieve a primal solution, which can then be used as input

for the the model formulation presented in Section 5.4, which can then be solved by

standard Mixed-Integer-Solvers.
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Figure 5.2: Overview of the proposed solution algorithm.

5.3 Preprocessing

In the preprocessing all possible delivery pro�le assignments (s, dp) ∈ S ×DP have to

be evaluated. Evaluated in this case means that all e�ects that are directly related to

the assignment of a delivery pro�le to a supplier have to be computed. An overview

of the algorithm is given in Algorithm 1. For each combination (s, dp) ∈ S × DP of

suppliers and delivery pro�les, the steps depicted in the following will be executed in

order to evaluate the assignment of delivery pro�le dp ∈ DP to supplier s ∈ S.

Algorithm 1: The preprocessing algorithm.

foreach s ∈ Suppliers do
foreach dp ∈ Delivery Pro�les do

Determine orders resulting from assignment of dp to s;
/* See Section 5.3.1 */

Compute inventory related cost factors;
/* See Section 5.3.2 */

foreach t in Periods do
Compute freights;
/* See Section 5.3.3 */

end

end

end
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5 Selecting cost-minimal and robust delivery pro�les

5.3.1 Determination of resulting orders

At �rst the given net dependent demands have to be mapped to the delivery schedule

that would result from the delivery pro�le assignment. Therefore the set of demand

entries D is transformed into the set of resulting orders O according to the delivery

pro�le.

D −→ O

As described in Section 2.3.3 the application of a delivery pro�le results in a schedule

where orders are placed only on delivery days, and where the order quantity in a

delivery period is the sum of net demands with due dates equal or greater than the

delivery period and smaller than the succeeding delivery period. Given the set of

considered periods T and the set of delivery periods T̂ ⊆ T , then let dp,t be the

demand of part p in period t, and let t̂k ∈ T̂ be the delivery period of the k−th cycle

of the current delivery pro�le. The ordered amount Op,t of part p in delivery period t

can then be denoted as

Op,t =

0 if t 6∈ T̂∑t̂k+1−1
t′=t dp,t′ otherwise

(5.3.1)

This computation can be repeated for every part and every period to gain the set of

resulting orders.

Handling of �xed material �ows sharing the same routes

In certain applications it may be that orders for some parts will not be altered according

to the delivery pro�les but are included in the area forwarding network �ow of goods

and must therefore be considered when determining delivery pro�les. This may be

for several reasons. It may, for example, be that Just-In-Time or Just-In-Sequence

delivered parts use the area forwarding network due to their relatively low volumes, or

that vendor-managed inventory contracts consider the OEM to pay the freight cost for

the delivery to a consignment warehouse and therefore allow use of the area forwarding

network as well. Given the case that orders should be considered but not altered by

the delivery pro�les, the resulting orders for these parts are determined as

Op,t = dp,t (5.3.2)
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In the case where only certain orders of a part are considered to be �xed and should

not be altered, these orders will be left untouched, whereas the remaining orders will

be treated as described above. The remainder of the procedure does not have to

distinguish between parts with �xed orders and parts that may be altered, as after

the determination of resulting orders only the resulting orders themselves, but not the

delivery pro�les are used as underlying information.

5.3.2 Computation of inventory related cost factors

As described in Section 2.1.2 inventory-related costs include interest on bound capital

and warehousing cost. Independently of the detailed cost function implemented in

practice, computation of inventory cost follows the same procedure in most cases. For

each period parts in the inventory are accounted for with di�erent cost factors. These

factors may either be multiplied with the parts inventory value or the number of load

carriers in the warehouse. The number of parts of type p hold in inventory in period t

can be computed as

hp,t =

t∑
t′=1

Op,t′ − dp,t′ (5.3.3)

The main price-related factor is the interest rate on bound capital. It can be computed

for period t and part p as

CInterestp,t = hp,t · pp ·
Interest rate

Periods per year
(5.3.4)

where pp is the price of part p. The load carrier-related cost can, like warehousing cost,

be computed similarly. A cost factor CSlotlc that covers all cost related to one unit of

load carrier lc can be used to set up the following equation:

CSlotp,t =

⌈
hp,t
Qp,lc

⌉
· CSlotlc (5.3.5)

where Qp,lc is the quantity of parts of type p that �ts into one load carrier of type lc.

By setting up a sum over all parts and periods a total value of inventory cost CInventorys,dp
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5 Selecting cost-minimal and robust delivery pro�les

can be computed for later use.

CInventorys,dp =
∑
t∈T

∑
p∈P

CInterestp,t + CSlotp,t (5.3.6)

If limited resources, e.g. boundaries on invested working capital or the number of

available storage slots, constrain inventory levels, resource use can be computed in

analogy to cost factors. A vector of resource usages for each period can then be

obtained by

U Inventorys,dp,t,r = hp,t · UIPartp,r +

⌈
hp,t
Qp,lc

⌉
· UICarrierlc,r ∀r ∈ R, p ∈ P (5.3.7)

where UIPartp,r describes the use of resource r by one unit of part p stored in inventory

and UICarrierlc,r represents the use of resource r by one unit of load carrier lc placed in

the warehouse.

5.3.3 Freight computation

Whereas the previous steps were quite easy to compute, it is harder to compute pre leg

and full load costs and to derive the remaining orders for the main leg run. These points

interact and cannot be computed separately. Two main cases have to be distinguished.

In the �rst case, all parts that have to be ordered in one period �t into a single vehicle.

If they do, it can be decided whether the vehicle will be �lled, and then a choice made

between accounting a single full load run price or a pre leg run price. Otherwise a

decision has to be made on which parts to load onto a full load vehicle and which

parts to leave in the pre leg vehicle. To obtain an approximation for this decision a

MIP-Model can be set up that decides this issue for each period. In the following

it will be assumed that logistics service providers try to achieve the best use of the

vehicles. Thus the total cost in�icted by pre leg and full load transports is minimized.

If another assumption is to be followed, other objective functions could be used. For

a worst case scenario wherein the logistics service providers would try to bring the

highest possible value to account the objective function may just be inverted from

minimize to maximize. Another possibility would be to imply a random distribution

of part onto the di�erent vehicles. In this case, instead of solving the optimization

model, a randomized solution could be created.
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Resource-based modeling approach The optimization model follows a resource-

based modeling approach inspired by Kempkes and Koberstein [2010]. The meas-

urement units used to compute the �ll level of the vehicle (e.g. weight and volume)

are modeled as abstract resources. Given the goods loaded onto the vehicles and the

vehicles' rebate levels, resource uses are computed. The use of resources is then linked

to cost factors and the tari� system. Two types of cost factor can be assigned to a

resource: linear cost functions (e.g. for fuel, which can be bought in any unit) and

piecewise-constant cost functions (e.g. for incoming goods personnel, where each ad-

ditional employee in a shift has to be payed a �xed wage for the shift). This modeling

technique allows the model notation to be used for di�erent applications based on the

planners preferences. The measurement units can be exchanged without altering the

model itself, so volume could be exchanged with load meters etc. Furthermore, ad-

ditional resources (e.g. carbon-dioxide emissions, fuel consumption, incoming goods

personnel, ...) can be integrated easily by adding a new resource. In setting up the

model instance, two types of resources have to be distinguished, vehicle-speci�c re-

sources and shared resources. Vehicle-speci�c resources that are directly linked to the

vehicles' tari� systems (e.g. weight and volume) have to be modeled separately for each

vehicle and are thus gathered in subsets Rv for each vehicle v, but must not be used

by other vehicles. Shared resources like carbon-dioxide emissions or incoming goods

personnel should be modeled as common resources shared by all vehicles.

Using the denotation from Table 5.3.3 the model can be denoted as follows:

Model formulation

Min
∑
v∈V

CV ehiclev ∗ vActivev +
∑

v∈V,rl∈RL
CLevelv,rl ∗ vLevelrl,v

+
∑
r∈RL

CUnitr ∗ ur +
∑

r∈RNL

CUnitr ∗
⌈

ur
SUnitr

⌉ (5.3.8)

subject to

Op =
∑
v∈V

op,v ∀p ∈ P

(5.3.9)
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alc,v =
∑
p∈Plc

⌈
op,v
Qp,lc

⌉
∀lc ∈ LC, v ∈ V

(5.3.10)

ur =
∑
p∈P

∑
v∈V

Upartp,r ∗ op,v +
∑

∑
v∈V lc∈LCUCarrier

lc,r,v ∗alc,v

∀
⋃
v∈V

Rv

(5.3.11)

ur =
∑
v∈V

UV ehiclev,r ∗ vActivev +
∑
v∈V

∑
rl∈RLv

ULevelv,rl,r ∗ vLevelrl,v

+
∑
v∈V

∑
p∈P

Upartp,r ∗ op,v +
∑
v∈V

∑
lc∈LC

UCarrierlc,r,v ∗ alc,v ∀r ∈ R \
⋃
v∈V

Rv

(5.3.12)∑
rl∈RLv

vLevelrl,v = vActivev ∀v ∈ V

(5.3.13)

UBrl,v,r ∗ vLevelrl,v − ε ≥ ur −BigM ∗
(

1− vLevelrl,v

)
∀v ∈ V, r ∈ Rvv, rl ∈ RLv

(5.3.14)

LBrl,v,r ∗ vLevelrl,v ≤ ur ∀v ∈ V

r ∈ Rv, rl ∈ RLv

(5.3.15)

BigM ∗ vActivev ≥
∑
p∈P

op,v ∀v ∈ V

(5.3.16)

vActivev ≤
∑
p∈P

op,v ∀v ∈ V

(5.3.17)

The purpose of the model is threefold. First, freight cost can be determined for both

pre leg and full load runs. Second, it can be determined which parts will be transported

via the pre leg run and will thus have to be transported in the main leg run too. Third,

resource usage of vehicle independent resources can be derived. To achieve these goals

di�erent components of the model have to be evaluated. The objective function 5.3.8

is to minimize the sum of four cost terms. The �rst term corresponds to �xed cost

associated with a vehicle's use. The second term re�ects the cost of the discounting
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Indices and sets
p ∈ P Set of part types
lc ∈ LC Set of load carriers
p ∈ Plc ⊆ P Set of parts which will be delivered in load carrier lc
v ∈ V Set of vehicles
rl ∈ RLv Set of rebate levels when using a vehicle
r ∈ R Set of resources
r ∈ RL ⊆ R Set of resources with a linear cost function
r ∈ RNL ⊆ R Set of resources with a piecewise-constant cost function
RL ∪RNL = R The set of resources consists of resources with linear cost

function and resources with piecewise-constant cost function
RL ∩RNL = � Each resource has either a linear cost function or a piecewise-

constant cost function.
Rv ⊆ R Set of resources which are used only by vehicle v and are

related to this vehicle's tari� system

Parameters
Op Number of part units of part type p which have to be ordered
Qp,lc Maximum quantity of parts of part type p which �t in load

carrier lc
UPartp,r,v Usage of resource r by part of type p when using vehicle v

UCarrierlc,r,v Usage of resource r by load carrier of type lc when using
vehicle v

UV ehiclev,r Usage of resource r resulting from usage of vehicle v

ULevelv,rl,r Usage of resource r resulting from a load equal to rebate level
rl when using vehicle v

CLevelv,rl Costs of rebate level rl when using vehicle v

CV ehiclev Base costs of vehicle v
CUnitr Costs of one step of resource r
SUnitr Step size for costs computation of resource r ∈ RNL
UBrl,v,r Upper bound on resource r for rebate level rl if vehicle v is

used
LBrl,v,r Lower bound on resource r for rebate level rl if vehicle v is

used
ε A su�ciently small number
BigM A su�ciently large number

Variables
op,v ∈ N+

0 Number of ordered part units of part type p delivered in
vehicle v

ur ∈ R+
0 Usage of resource r

vActivev ∈ {0, 1} Decision, if vehicle v is used
vLevelrl,v ∈ {0, 1} Decision, if rebate level rl is active for vehicle v

alc,v ∈ N+
0 Number of load carriers of type lc delivered in vehicle v
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level the vehicle falls into according to the underlying tari� scheme. The third and

fourth terms sum up resource cost for resources with linear and piecewise constant

cost functions respectively. Constraint 5.3.9 ensures that all orders have to be picked

up by a vehicle. Constraint 5.3.10 computes the amount of load carriers situated in

a vehicle depending on the quantity of parts in it. For resources related directly to

the vehicles discounting scheme Constraint 5.3.11 computes the resource use based

on the number of parts and load carriers within the vehicle. All other resources are

treated in Constraint 5.3.12. In contrast to resources related to the discounting scheme

these resources may also depend on whether the vehicle is used and on the vehicle's

discounting level. This allows us to model vehicle-independent resources, e.g. incoming

goods personnel or common resources that are shared among all vehicles, e.g. carbon-

dioxide emissions. Constraint group 5.3.13 ensures that each vehicle has exactly one

discounting level if the vehicle is used, and no discounting level is active if the vehicle is

not used at all. The Constraints 5.3.14 and 5.3.15 assure that the correct discounting

level is selected according to the resource usages for the speci�c vehicle and that lower

and upper bounds are hold. Constraints 5.3.16 and 5.3.17 prevent an inactive vehicle

from carrying orders and a vehicle from being activated even though there are no

orders placed in it. Even though the ceiling function given in constraints 5.3.10 is non-

linear, it can be reformulated as described by Williams [1999]. Therefore a variable

afraclc,v,p ∈ R
+
0 for the fractional number of load carriers of type a required to transport all

units of product p within vehicle v has to be introduced for each combination of load

carrier, product and vehicle. In addition, a variable aprodlc,v,p ∈ N
+
0 has to be introduced

to compute the next integer value for each of the fractional amounts of the individual

products. Finally, the product speci�c integer quantities can be summed to retrieve the

value of aprodlc,v ∈ N
+
0 . This intermediary step is necessary to prevent di�erent types of

parts from being mixed in the same load carrier. The following constraints are required

to replace the ceiling function in constraint set 5.3.10:

alc,v,p ≥ afraclc,v,p ∀l ∈ LC, p ∈ Plc, v ∈ V (5.3.18)

alc,v,p ≤ afraclc,v,p + 1− ε ∀lc ∈ LC, p ∈ Plc, v ∈ V (5.3.19)

alc,v =
∑
p∈PLC

alc,v,p ∀lc ∈ LC, v ∈ V (5.3.20)
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sym ∈ SYM Set of all symmetry groups
r ∈ RSYMsym Resources in the symmetry group sym

item(RSYMsym , n) Resource at position n in symmetry group sym

(5.3.21)

Constraint group 5.3.18 assures that the integer value alc,v,p is always larger than the

fractional value, while constraints 5.3.19 limit alc,v,p to the next higher integer value.

In combination these two constraint sets model the ceiling function. Constraints 5.3.20

then sum up the product-speci�c ceiled values.

Symmetry breaking

To increase performance when solving the model with a branch and bound algorithm,

so-called symmetry breaking constraints can be added to the model. The idea is that

several vehicles may have the same underlying discounting scheme and are therefore

equally preferable. This will be called a symmetry group in the following. In such case

it does not matter which of these equal vehicles will be used exactly, as each vehicle

has the same associated capacities and cost factors. This property can be used to

reduce the solution space that has to be explored by the branch and bound algorithm

by introducing cutting planes. If all vehicles within one symmetry group are equally

preferable, it does not make sense to try another vehicle from the group before the �rst

one has been �lled. Therefore use of the following vehicles before �lling the �rst can

be disallowed by adding the following constraints to the model:

uitem(RSY M
sym ,n) ≥ uItem(RSY M

sym ,n+1)

∀sym ∈ SYM,∀n = 1..|RSYMsym |
(5.3.22)

The underlying theory was developed by Fahle et al. [2001]. The idea is that sym-

metric parts of the solution space can be cut o� without removing the optimal solution

if it is known that one of those parts does not contain the optimal solution. Cutting

planes can therefore be added to reduce the solution space when using the branch and

bound algorithm.
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Leaving out periods with Less-Than-Truckload

In the preprocessing a model instance has to be set up for each combination of delivery

pro�le, supplier and period, thus S × DP × T models have to be solved. However,

it may be the case that the assignment of a delivery pro�le dp to a supplier s would

result in a load that would �ll less than one vehicle in certain periods. In this case it

would not be necessary to set up a model instance. To check whether it is necessary

to set up a model instance all resources limiting a vehicle's load have to be checked.

This can be done in advance by computing the overall resource use for all orders with

the following formula:

UBmu
r =

∑
p∈P

UPartp,r ·Op +
∑
lc∈LC

∑
p∈Plc

UCarrierlc,r ·
⌈
Op
Qp,lc

⌉
∀r ∈ Rmu (5.3.23)

where Rmu represents the set of measurement units used to determine the �ll level

of a vehicle. Note that r ∈ Rmu will be represented by multiple r ∈ Rv for di�erent

vehicles in the model later on. To estimate the required number of vehicles the upper

bounds of the di�erent measurement units have to be divided by the upper bound for a

vehicle's load for that measurement unit. This results in multiple upper bounds on the

vehicle count depending on the di�erent measurement units. The maximum of these

upper bounds can then be used as an absolute upper bound on the number of required

vehicles:

UBV ehicles = Max

{⌈
UBmu

r

Capacityr

⌉
∀r ∈ Rmu

}
(5.3.24)

where Capacityr represents the upper bound of a measurement unit r ∈ Rmu for a

vehicle. If UBV ehicles = 1, there will be only a pre leg run and no full load run. Thus

pre leg cost can be derived directly from a lookup in the discounting-scheme table. All

orders Op will then be considered to be delivered in the main leg run in this period for

this delivery pro�le assignments.

If UBV ehicles > 1, an instance of the model has to be set up to identify which part of the

goods will be transported in which vehicle. In this case one pre leg vehicle vPreleg ∈ V
will be inserted. In addition, UBV ehicles will be used to determine the number of full

load run vehicles VFullload ⊂ V to be added to the model instance. For both pre leg

run and full load run vehicles, the discounting schemes will be modeled via resources.
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In addition, incoming goods department's personnel resources can be modeled to the

full load run vehicles. It does not make sense to attach these resources to vPreleg, as

the pre leg run never causes resource use in the incoming goods department. After

the model has been solved the pre leg run freight cost can be derived from a subset of

the objective function that only covers vPreleg and resources from RvvP releg and leaves

behind all other cost parts. The full load cost can be computed by subsuming the

remaining freight cost for v ∈ VFullload and the remaining resources. To determine

which parts have to be transported in the main leg run, values for op,vPreleg
have to be

considered. Resource usages can be derived from ur values for r ∈ \Rv.

5.3.4 A primal packing heuristic

To reduce solving time primal heuristics can be used to provide a quick solution which

o�ers a lower bound on the objective value and thus reduces the number of nodes that

have to be analyzed in the branch and bound algorithm. To cope with the given model

a primal packing heuristic has been developed to give a good starting solution for the

distribution of goods onto the di�erent vehicles. The heuristic approach is based on

the concepts of load items, e�ciency and density. A load item is considered to be a

combination of a load carrier and a set of parts of such quantity that the parts �t into

the load carrier, thus qItem ≤ Qp,lc. Each order is then segregated into multiple load

items, trying to �ll each load carrier to its capacity, thus qItem = Qp,lc. In this way a

maximum of one load item can carry less than the quantity of parts, whereas all other

load items are completely �lled. The load items are then seen as a single object that

cannot be changed. This eases the handling of the load as it is no longer necessary to

deal with both load carriers and parts.

For most discounting schemes it can be said that one of the measurement units used

to determine the discount level is the price-driving measurement unit. In quantity

based discounting schemes the price-driver is quantity. In discounting schemes for

freight tari�s, weight or load meters are usually used for this purpose. The other

measurement units to be considered are used to constrain the load of a cargo to its

physical boundaries.

De�nition 3. The price-driving measurement unit of a vehicle is the measurement

unit that is used to determine the discount level within the tari� discounting scheme

related to that vehicle.
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Using the idea of a price-driving measurement unit the e�ciency of a vehicle can be

de�ned as follows.

De�nition 4. The e�ciency of a vehicle describes the ratio between its capacity of

the price-driving measurement unit and the price of the highest discount level.

If de�ned this way, e�ciency describes the magnitude of the price-driving measure-

ment unit that can be loaded onto the vehicle per monetary unit if the vehicle were

completely �lled. It seems obvious that vehicles with a high e�ciency should be loaded

�rst, as they o�er the most load opportunities per monetary unit. Using the notation

from the model described above, the e�ciency of a vehicle can be computed as

E�ciencyv =

CV ehiclev + CLevel
v,rlMax +

∑
r∈RL CUnitr · UBrlMax,v,r +

∑
r∈RNL CUnitr ∗

⌈
UB

rlMax,v,r

SUnit
r

⌉
UBrlMax,v,rPrice

(5.3.25)

To achieve a high degree of �lling it is important to equally balance the �ll level of

the di�erent resources in a vehicle. If for example one vehicle is completely �lled in

respect of one resource r1 (e.g. weight) and another is completely �lled in respect of

another resource r2 (e.g. volume), it may be that with an intelligent mixture of their

parts, it would have been possible to load one vehicle to capacity and leave the other

only partially loaded. This holds true especially for parts with very diverse properties,

as they can be found in the automotive industry. A vehicle can take the maximal load

when parts with a high density and those with a low density are combined in such way

that the overall load density is close to the vehicle's capacity density. As depicted in

Figure 5.3 higher or lower values for the density lead to one measurement unit's capacity

being met whereas the other measurement unit's capacity is not yet reached. By

contrast, the optimal loading strategy orientates to the vehicle's density, and leads to an

equally distributed use of both measurement units' capacities. Where there are exactly

two capacity boundaries the concept of density can be used. It is adopted from physics,

but not limited to its original intention. For the application to a speci�c problem

setting, where logistics service providers use other load measurement units than weight
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Figure 5.3: Impact of load density on vehicle capacity use.

and volume, it can be adapted to the given measurement units. Unfortunately the

density concept is limited to an environment in which there are exactly two bounding

measurement units, as density for a multidimensional environment is hard to de�ne.

If there is only one important measurement unit, where e.g. weight only is considered,

the concept of density is apparently not necessary at all.

De�nition 5. The density of an object describes the ratio between the price-driving

measurement unit and the other measurement unit.

The density of a load item can be computed as

ρLI =
UPartp,r1 · qItem + UCarrierlc,r1

UPartp,r2 · qItem + UCarrierlc,r2

(5.3.26)

where r1 ∈ Rmu is one measurement unit's resource and r2 ∈ Rmu the other measure-
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ment unit's resource. By analogy to the load items' density the vehicle's density can

be computed as

ρV =
Capacityr1
Capacityr2

(5.3.27)

An overview of the heuristic packing procedure can be found in Algorithm 2. The

load items' densities and the vehicles' e�ciencies are �rst computed. Vehicles are then

ordered by their e�ciency. Thereafter, the most e�cient vehicle is selected to be �lled

with load items. To achieve an optimal �lling it would be best to sort the load elements

by the di�erence between their density and the vehicle's density, and then always select

the one with the lowest di�erence. Unfortunately the remaining density in the vehicle

changes with each load item added: thus the list would have to be sorted again each

time a load element is added to the vehicle. To improve the loading procedure the load

items are separated into two lists, LI− for load items with ρLI ≤ ρV and LI+ for load

items with ρLI > ρV . Load items are then taken from LI− and added to the vehicle.

After a load item has been added the vehicle's remaining density ρ̂V is computed.

While load items from LI− are added, ρ̂V increases. When ρ̂V > Min(ρL
+

), thus the

remaining density has reached the density of the �rst load item in LI+, load items

from LI+ are loaded loaded onto the vehicle. Now the remaining density in the vehicle

reduces. When the density of load items from LI− is reached and thus ρ̂V < Max(ρL
−

)

holds true, load items are again taken from LI−. These steps are repeated until the

vehicle's capacity is met or all load items are on the vehicle. If the vehicle is loaded to

capacity, thus no further load item can be added, the next vehicle is selected.

When the vehicles have been loaded initially there will be at most one vehicle which

could not be loaded to capacity. Further to improve the packing, it can now be checked

whether a swap of load items could decrease the partially loaded vehicle's discounting

level. To check every possible swap would result in rather high computational e�ort,

thus only promising swaps will be analyzed. A swap is seen to be promising if it can

reduce the vehicle's discounting level without worsening another vehicle's discounting

level or exceeding the other vehicle's capacity. This can only be the case if the sum of

remaining capacities in �lled vehicles is larger or equal to the magnitude of excess on

the current discounting level of the partially loaded vehicle. If the remaining capacities

ful�ll the conditions described beforehand, the load items in the partially �lled vehicle

are compared pairwise with the load items in other vehicles. The swap which leaves
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5.4 Main leg model formulation

Algorithm 2: The packing heuristic algorithm.

Compute load items densities;
Compute vehicles e�ciencies;
Order vehicles by their e�ciency;
while LI 6= � do

V Fill ← Top(V );

LI− ← le ∈ LI : ρLI ≤ ρ̂V Fill
;

LI+ ← LI \ LI− ;

while ∃LI : LI �ts in V Fill do

if ρ̂V
Fill ≤Max(ρL

−
) then

li← Top(LI−) ;
LI− ← LI− \ li;

end
else

li← Top(LI+) ;
LI+ ← LI+ \ li;

end

Add li to V Fill;

Compute ρ̂V
Fill

;

end

end

the minimal remaining capacity in the �lled vehicle will then be carried out. This

procedure is repeated until no swap is any longer possible or a lower discounting level

has been reached. In the case where only a small number of load items is necessary to

reach another discounting level, it may be advantageous to continue swapping after an

improvement has been achieved.

5.4 Main leg model formulation

The results from preprocessing are used as input for the delivery pro�le selection and

main leg run model formulation, called main leg model in the following. The main

leg model decides the supplier's delivery pro�le assignments that have been evaluated

during preprocessing. An estimation of the main leg run cost is thus used to identify

the synergy e�ects between di�erent delivery pro�le assignments. The inputs for the

main leg model are, on the one hand, the evaluated delivery pro�le assignments, in-
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5 Selecting cost-minimal and robust delivery pro�les

cluding the associated cost factors, resulting resource uses and the order remaining

for the main leg run. On the other hand, main leg run tari� data and resource uses

are required as input. The main leg model is an extended version of the model used

during preprocessing. These extensions include the assignment of delivery pro�les to

suppliers, consideration of multiple periods at once and bounds on limited resources.

Following the notation given below, the model denotes as follows:

Sets

t ∈ T Set of time periods.

s ∈ S Set of suppliers connected to the consolidation center.

dp ∈ DP Set of available delivery pro�les.

p ∈ P Set of part types.

lc ∈ LC Set of load carriers.

p ∈ Plc ⊆ P Set of parts which will be delivered in load carrier lc.

v ∈ V Set of vehicles

rl ∈ RLv Set of rebate levels when using a vehicle.

r ∈ R Set of resources.

r ∈ RL ⊆ R Set of resources with a linear cost function.

r ∈ RNL ⊆ R Set of resources with a piecewise-constant cost function.

RL ∪RNL = R Set of resources consists of resources with linear cost function

and resources with piecewise-constant cost function.

RL ∩RNL = � Each resource has either a linear cost function or a piecewise-

constant cost function, but not both.

Rv ⊆ R Set of resources which are used only by vehicle v and are related

to this vehicle's tari� system.

Parameters
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5.4 Main leg model formulation

CInventorys,dp Inventory related cost factors for assignment of delivery pro�le

dp to supplier s.

CPrelegs,dp Costs for pre leg transport resulting from the choice of delivery

pro�le dp for supplier s.

CFullloads,dp Costs for full load transport resulting from the choice of delivery

pro�le dp for supplier s.

UProfiles,dp,r,t Resource usage resulting from the choice of the delivery pro�le

dp for supplier s in period t.

Op,dp,s,t Quantity of part units of part type p which have to be ordered

in period t if delivery pro�le dp is chosen for supplier s.

Qp,lc Maximum number of part units of part type p which can be

delivered in load carrier lc.

UPartp,r,v Usage of resource r by part of type p when using vehicle v.

UCarrierlc,r,v Usage of resource r by load carrier of type lc when using vehicle

v.

UV ehiclev,r Usage of resource r resulting from usage of vehicle v.

ULevelv,rl,r Usage of resource r resulting from a load equal to discount level

rl when using vehicle v.

CLevelv,rl Cost of rebate level rl when using vehicle v.

CV ehiclev Base cost of vehicle v.

CUnitr Cost of one step of resource r.

SUnitr Step size for cost computation of resource r ∈ RNL.

UBr Upper bound on resource r.

UBrl,v,r Upper bound on resource r for rebate level rl if vehicle v is used.

LBrl,v,r Lower bound on resource r for rebate level rl if vehicle v is used.

ε A su�ciently small number.

BigM A su�ciently large number.
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5 Selecting cost-minimal and robust delivery pro�les

Decision Variables

pcs,dp ∈ {0, 1} Decision whether delivery pro�le dp is selected for supplier s.

op,t,v ∈ N+
0 Quantity of ordered part units of part type p in period t delivered

in vehicle v.

ur,t ∈ R+
0 Usage of resource r in period t.

vActivet,v ∈ {0, 1} Decision whether vehicle v is used in period t.

vLevelt,rl,v ∈ {0, 1} Decision whether rebate level rl is active in period t for vehicle

v.

at,lc,v ∈ N+
0 Number of load carriers of type lc in period t delivered in vehicle

v.

Model formulation

Min
∑

dp∈DP,s∈S

(
CInventorys,dp + CPrelegs,dp + CFullloads,dp

)
· pcs,dp

+
∑

t∈T,v∈V
CV ehiclev · vActivet,v +

∑
t∈T,v∈V,rl∈RL

CLevelv,rl · vLevelt,rl,v

+
∑
r∈RL

CUnitr ·

 ∑
dp∈DP,s∈S

UProfiles,dp,r · pcs,dp +
∑
t∈T

ur,t


+
∑

r∈RNL

CUnitr ·

⌈∑
dp∈DP,s∈S U

Profile
s,dp,r · pcs,dp +

∑
t∈T ur,t

SUnitr

⌉
(5.4.1)

subject to

∑
dp∈DP

pcs,dp = 1 ∀s ∈ S

(5.4.2)
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5.4 Main leg model formulation

∑
s∈S

Op,dp,s,t · pcs,dp =
∑
v∈V

op,t,v ∀t ∈ T, dp ∈ DP, p ∈ P

(5.4.3)

at,lc,v =
∑
p∈Plc

⌈
op,t,v
Qp,lc

⌉
∀lc ∈ LC, v ∈ V, t ∈ T

(5.4.4)

ur,t =
∑
v∈V

∑
p∈P

Upartp,r · op,t,v

+
∑
v∈V

∑
lc∈LC

UCarrierlc,r,v · at,lc,v ∀t ∈ T, r ∈
⋃
v∈V

Rv

(5.4.5)

ur,t =
∑
v∈V

UV ehiclev,r · vActivet,v

+
∑
v∈V

∑
rl∈RLv

ULevelv,rl,r · vLevelt,rl,v

+
∑
v∈V

∑
p∈P

Upartp,r · op,t,v

+
∑
v∈V

∑
lc∈LC

UCarrierlc,r,v · at,lc,v

+
∑

dp∈DP,s∈S
UProfiles,dp,r,t · pcs,dp

∀t ∈ T, r ∈ R \
⋃
v∈V

Rv (5.4.6)∑
rl∈RLv

vLevelt,rl,v = vActivet,v ∀v ∈ V, t ∈ T

(5.4.7)

UBrl,v,r · vLevelt,rl,v − ε ≥ ur,t −BigM ·
(

1− vLevelt,rl,v

)
∀v ∈ V, t ∈ T, r ∈ Rv,

rl ∈ RLv

(5.4.8)

LBrl,v,r · vLevelt,rl,v ≤ ur,t ∀v ∈ V, t ∈ T,

r ∈ Rv, rl ∈ RLv

(5.4.9)
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5 Selecting cost-minimal and robust delivery pro�les

BigM · vActivet,v ≥
∑
p∈P

op,t,v ∀v ∈ V, t ∈ T

(5.4.10)

vActivet,v ≤
∑
p∈P

op,t,v ∀v ∈ V, t ∈ T

(5.4.11)

The objective function 5.4.1 consists of two main parts. The �rst part re�ects cost

incurred by the assignment of a delivery pro�le to a supplier, which have been identi�ed

during preprocessing. The second part is similar to the objective function from the

preprocessing model. It consists of main leg run freight cost and resource use cost for

each period. In contrast to the preprocessing model all periods have to be considered

at once, therefore a summation over t ∈ T takes place. Even though this part of the

objective function has the same structure as that from the preprocessing model, other

data underly the discounting schemes. Whereas a choice between pre leg run vehicles

and full load run vehicles and their corresponding tari� discounting schemes had to

be made in preprocessing, di�erent main leg vehicles have to be loaded with the parts

ordered on this model. Hence the main leg tari� structure underly the discounting

levels in this model. Constraint 5.4.2 forces the selection of exactly one delivery pro�le

assignment per supplier. This is the core decision to be taken on this model. Con-

straint 5.4.3 connects the delivery pro�le assignment to the remaining main leg orders

computed in the preprocessing. It ensures that the same quantity of parts will be trans-

ported in the main leg run in each period as were delivered to the consolidation center

in accordance with the selected delivery pro�le assignment. To compute the number

of load carriers per vehicle Constraint 5.4.4 is employed. In analogy to the prepro-

cessing mode Constraint 5.4.5 is used to compute resource use for resources related

to the vehicles tari�s. Based on these, Constraints 5.4.7, 5.4.8 and 5.4.9 determine

the correct discounting level for each vehicle, whereas Constraints 5.4.10 and 5.4.11

ensure correct vehicles activation. Note that Constraint 5.4.6 is extended not only

to consider the multiple periods, but also covers resource usage arising from delivery

pro�le assignments through the term
∑

dp∈DP,s∈S U
Profile
s,dp,r,t · pcs,dp. This is necessary to

cope with resources shared between both full load and main leg runs, e.g. incoming

goods personnel resources. If they were neglected at this stage, the model could no

longer guarantee optimality or even provide invalid solutions under consideration of
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5.5 Primal heuristics

the shared resources.

By analogy to the preprocessing model, symmetry-breaking constraints can once

again be inserted to speed up the branch and bound algorithm. Due to the considera-

tion of multiple periods within the model, they have to be extended by a period index

as follows:

uitem(RSY M
sym ,n),t ≥ uItem(RSY M

sym ,n+1),t

∀sym ∈ SYM,∀n = 1..|RSYMsym |, t ∈ T
(5.4.12)

5.5 Primal heuristics

In this section two primal heuristics are presented which can be used to solve the

main leg model. The �rst one is a local search algorithm that tries to improve a given

solution in a step by step procedure. In so doing a problem-speci�c selection strategy

is used to determine the search direction. The second one is a genetic algorithm

that uses biologic analogies to �nd good solutions but does not use problem-speci�c

considerations to derive the search direction. Both algorithms rely heavily on the

packing heuristic described in Section 5.3.4. The main decision to be made in the

main leg model is to assign a delivery pro�le to each supplier. When a speci�c delivery

pro�le assignment has been selected for each supplier, it has to be decided which parts

to load onto which vehicles. The �rst decision on the delivery pro�le assignments

provides the general conditions for the second decision, the load distribution of parts

to vehicles. Hence an optimal part distribution can be seen as a function depending

on a given pro�le assignment solution. Given that the part distribution problem is

independent in each period, it can be stated that for each delivery pro�le assignment

solution, a vector of independent optimal solutions for the part-distribution problem

can be found. The two subproblems, delivery pro�le assignment and part distribution,

cannot be treated independently, but the latter can be solved quite e�ciently with

the solution procedure presented for preprocessing (see Section 5.3.4). Therefore the

part-distribution problem based on the general conditions given by the delivery pro�le

assignment can be seen as a more complex objective function computation step. This

allows us to reduce the whole problem to the selection of an optimal delivery pro�le

assignment vector.
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5 Selecting cost-minimal and robust delivery pro�les

5.5.1 A local search heuristic

Figure 5.4 gives an overview of the heuristic solution procedure. At the beginning

a start strategy is used to create a �rst delivery pro�le assignment. This delivery

pro�le assignment is then evaluated by solving the part distribution subproblems for

each period which result from the selected delivery pro�le assignment. From both

the part distribution and the delivery pro�le assignments a value for the objective

function is derived. A selection strategy is used to analyze the outcome and to decide

upon the next delivery pro�le assignment. After the assignment has been created the

subproblems are solved again. This procedure is repeated until a termination condition

provided by the delivery pro�le selection strategy, e.g. a given number of iterations

without improvements or a time limit becomes true. A good starting solution may

speed up the follow-up process and may also lead to better solution quality. Di�erent

starting strategies can be deployed to provide a starting solution. In the current version

of the heuristic the following strategies have been implemented and tested:

� Random selection strategy is a very simple strategy that picks a random

delivery pro�le for each supplier.

� Lowest pre leg price strategy selects the delivery pro�le with the lowest pre

leg run price for each supplier. The idea is that a low pre leg run price is an

indicator for fewer parts to be transported in follow-up main leg run, which may

thus become cheap as well.

� Lowest total cost strategy selects the delivery pro�le with the lowest sum of

pre leg run, full load run and inventory related cost factors for each supplier.

� Lowest inventory cost strategy choses the delivery pro�le with lowest in-

ventory related cost for each supplier. This leads to a solution with little or no

inventory usage at all.

� Most e�cient pre leg strategy uses the price per unit ratio for pre leg runs.

The delivery pro�le with the cheapest ratio is selected for each supplier.

As selection strategy a local search algorithm with a taboo list was implemented.

The neighborhood was de�ned using the hamming distance. The hamming distance
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Figure 5.4: Overview of heuristic solution procedure for main leg problem.

∆Hamming( ~X, ~Y ), which was developed in Hamming [1950] and was originally desig-

nated to describe the distance between two binary signals, gives back the number of

changed elements between two vectors ~X and ~Y of equal length N . It is de�ned as

∆Hamming( ~X, ~Y ) =

N∑
n=1

∑
xn 6=yn

1
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Figure 5.5: Hamming neighborhood for a hamming distance of one and two suppliers.

So for each mismatch of two elements' (xn, yn) being in the same position within

the vectors but having a di�erent value, the hamming distance is increased by one.

Applied to the given problem setting the solution of the assignment problem may be

written as a vector ~A of size |S| consisting of one element per supplier s ∈ S. The

value of the element at position s represents the delivery pro�le assigned to supplier

s. Using this notation the hamming distance ∆Hamming( ~A, ~B) between two delivery

pro�le assignment vectors ~A and ~B represents the number of suppliers with a di�erent

delivery pro�le assigned in ~A and ~B. If the hamming distance for the local search is

now constrained to ∆Hamming( ~A, ~B) = 1, then only one suppliers delivery pro�le may

be changed from one solution to another. For the implemented local search a hamming

distance of 1 was selected. Figure 5.5 shows the neighborhood for a hamming distance

of 1 for the two suppliers case. The seize of the neighborhood can be computed as∏
s∈S
|DPs|

with DPs ⊆ DP being the delivery pro�les available for supplier s ∈ S. The local
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5.5 Primal heuristics

search procedure starts with the delivery pro�le assignment given by the starting

strategy. An improvement cycle is then started. An improvement cycle tries to �nd a

solution in the neighborhood which leads to an improvement. To pick the best solution

from the neighborhood each supplier is tested once in a test step. In a test step each

available delivery pro�le is once assigned to the supplier and thereafter evaluated by

the packing heuristic, whereas all other suppliers delivery pro�le assignments remain

�xed. Executing a test step for each supplier leads to an evaluation of the complete

neighborhood. So in each improvement cycle the whole neighborhood is evaluated. If

there is an assignment within the neighborhood that has a lower objective function

value than the assignment selected at the beginning of the improvement cycle, it will

be used as a starting solution for the next improvement cycle. After a successful im-

provement cycle has taken place the supplier whose delivery pro�le was reassigned will

be �xed for the next iteration, thus no test step will regularly be executed for that sup-

plier. Given this �xation technique the number of required test steps reduces from one

improvement cycle to another. If no improvement was possible, the algorithm relaxes

the �xation constraint, so that all suppliers can be targeted in a test step, because oth-

erwise it could get stuck in a local optima. If the improvement cycle does not provide

a better solution either, it may be said that a local optima was found because

6 ∃ ~B : ∆Hamming( ~A, ~B) = 1 ∧Objective( ~A) > Objective( ~B)

holds true and is the condition for a local optimum being found. In this case the

algorithm can either be started again with another starting strategy or the solution

can be accepted.

5.5.2 A genetic algorithm

Genetic algorithms are primal heuristic algorithms inspired by biologic principles. The

basic idea behind a genetic algorithm is to imitate the natural process of evolution

that consists of reproduction, mutation and natural selection. In genetic algorithms

each solution is therefore seen as an individual that participates in the evolutionary

process. Each individual is represented by its genome. If two individuals are used for

reproduction, the genome of the o�spring will be composed of genome fragments from

both parents. Mutations can be applied by randomly changing a part of the genome.

The process of natural selection is imitated by discarding the solutions of lower quality
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Figure 5.6: Overview of the genetic algorithm.

in the selection process. An overview of the solution procedure can seen in Figure 5.6.

At the beginning an initial starting population will be generated. Thereafter the evol-

utionary process of reproduction, mutation and selection is repeated iteratively. In the

reproduction step parents are chosen and used to reproduce o�spring, which will then

be added to the population. All individuals in the population are then exposed to ran-

dom mutations. Finally, the best individuals are selected and all other individuals are

removed from the population. To evaluate which individuals are the best ones a �tness

function f is used that projects an individual i to a scalar value f(i). For the given

problem setting the vector of delivery pro�le assignments may be used as a genome.

An individual is accordingly represented by a delivery pro�le assignment vector pc.

Each entry in the vector represents the assignment of one speci�c delivery pro�le dp to

a supplier s. In the mathematical model formulations the variable pcs,dp would be set

to one accordingly. Figure 5.7 depicts the representation of two individuals, a possible

o�spring and a possible mutation of the o�spring. To generate the initial population
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Figure 5.7: Problem speci�c example for crossover and mutation operators.

each supplier will have a random delivery pro�le assigned. Alternatively, the starting

strategies described in Section 5.5 can be used to create the initial population, or a

combination of both randomly generated individuals and individuals that result from

the starting strategies can be used.

In the reproduction phase two parent individuals are picked randomly from the pop-

ulation. As the position of a supplier in the vector pc does not correspond to any

semantic property in the underlying problem setting, each supplier can be treated sep-

arately from all other suppliers. Therefore, it can be decided on the parent whose

assignment will be used individually for each supplier. Thus for each supplier it is

decided randomly whether the assignment from the �rst or second parent individual

will be inherited by the o�spring. The chances are thus equal for both parents to pass

over their assignment. This behavior can be seen in Figure 5.7, where for suppliers two,

three and four the delivery pro�les from individual A are passed to the the o�spring,

whereas for suppliers one and �ve the delivery pro�les from individual B are passed to

the o�spring. To increase the diversity of the individuals in the population randomly

generated solutions may be inserted with a certain probability. In this case, instead

of recombining two existing individuals, an individual with random assignments for

each supplier will be added to the population. This strategy has proven capable of in-

creasing the diversity of the population and therefore avoiding getting stuck in a local

optimum. After the reproduction phase the individuals will su�er a random mutation
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with a certain probability. Mutation in this case means that for each supplier a prob-

ability holds that the assignment will be changed to another random assignment. Thus

each position in the vector pc is �ipped to a random pro�le with a certain probability.

In the example given in Figure 5.7 the o�spring is mutated by changing the delivery

pro�le from supplier two to the random delivery pro�le 'W01010' instead of the ori-

ginal 'W00100'. When it comes down to the selection process the packing heuristic

described in Section 5.3.4 is deployed to evaluate the economic impact of a delivery

pro�le assignment vector and is thus used as a �tness function. After the solutions have

been evaluated by the packing heuristic the best solutions remain in the population

and all other solutions are discarded.

5.6 Consideration of demand uncertainty

In the preceding section, the deterministic demand case was discussed. As described

in Section 2.2.3, this might not re�ect the situation in practice. In fact there are

multiple sources of demand uncertainty, ranging from changes in sales forecasting to

continuous re-planning of production sequences. This leads in time to the establish-

ment of a distribution di�erent from that previously planned for. When assigning a

delivery pro�le to a supplier a tactical decision is made that usually covers a period

of about three months in time. Even though the MRP system adapts the orders de-

pending according to the actual demand situation, a delivery pro�le assignment may

produce a completely di�erent outcome from that which was expected to do during

the planning phase. A delivery pro�le assignment that was planned to be optimal for

the whole planning horizon may turn out to be a poor solution given the demands

�nally established. In multiple applications stochastic programming has shown to be a

good method of incorporating uncertainties into the planning process (see Wallace and

Ziemba [2005] for an overview of successful applications). The solution of a stochastic

programming model is not necessarily optimal for the one possible scenario of the fu-

ture, but instead provides a high solution quality for a set of alternative scenarios of

the future. This ability to provide a high solution quality for multiple scenarios will be

called robustness in the following. The basic idea behind stochastic programming is to

assume that a certain set of parameters is not deterministic, but rather follows a prob-

ability function, and to incorporate this knowledge when making a decision. Instead

of choosing optimal decision variable values according to a deterministic expectation
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of this parameter set, the goal is to choose decision values such that the the expected

value of the objective function under consideration of the probability function is optim-

ized. For the given problem setting a two-stage stochastic program is an appropriate

choice. In the �rst stage a delivery pro�le assignment is made. This is a decision that

has to be made in advance and cannot be changed afterwards. In the second stage

the demands are realized with the passage of time. It could be argued that due to the

nature of a rolling horizon there should be multiple stages deployed as uncertainty does

not reveal itself at once but over time and leaves the possibility to respond. But as

the focus of this part of the work is on the selection of delivery pro�les, this does not

hold true. A delivery pro�le has to be selected in advance and in following planning

cycles only the delivery schedules will be adjusted following that rule. This does not

leave any room for optimization purposes, as it will be executed by the MRP systems

prede�ned rules. Thus there would not be any additional information or improvement

to the solution quality if a multi-stage stochastic program were deployed. Thus this

work will provide a two-stage formulation of a stochastic program for the selection of

cost-minimal and robust delivery pro�les. A two-stage stochastic program basically

has two sets of variables. One set represents the decisions to be made at the �rst stage

and thus are not dependent of the realized scenario. The other set considers decisions

to be made at the second stage and thus depends on the realized scenario. In the

given problem setting the assignment of a delivery pro�le to a supplier is a �rst-stage

decision, whereas all decisions on the transport of parts including vehicles packing and

tari� selection are second-stage decisions as they depend on actual demand which will

be realized over time. Due to this clear separation between the delivery pro�le assign-

ment problem on the one hand and the part distribution problem on the other hand,

the previously described decomposition approach can also be used for the two stage

stochastic program. Some modi�cations have to be made to deal with the presence of

multiple demand scenarios. First, preprocessing has to be adopted, as the parameters

depending on the suppliers' delivery pro�le assignment also depend upon the demand

scenario. Whereas for the deterministic case each delivery pro�le assignment has to be

evaluated once, multiple scenarios have to be evaluated for each delivery pro�le assign-

ment in the stochastic case. In addition, the main leg model has to be adapted such

that it covers a packing solution for multiple scenarios. In the following, the necessary

adoptions and the resulting solution approach will be given.
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Former parameter Current parameter Explanation

CInventorys,dp CInventorys,dp,z Depending on the realized demand scen-
ario, di�erent parts inventory uses can res-
ult.

CPrelegs,dp CPrelegs,dp,z A di�erent demand situation also in�u-
ences the freight cost of pre leg runs.

CFullloads,dp CFullloads,dp,z A di�erent demand situation also in�u-
ences the freight cost of full load runs.

Op,dp,s,t Op,dp,s,t,z A realized demand scenario may lead to
another part distribution and thus results
in di�erent parts and quantities remaining
for the main leg run.

Table 5.1: Preprocessing output parameters requiring an additional subscript for the
stochastic case.

5.6.1 Preprocessing

Whereas preprocessing for the deterministic case covered exactly one demand scenario,

multiple demand scenarios have to be handled in the stochastic case. This leads to an

additional subscript for the parameters that result from the preprocessing algorithm

as well as an additional loop over all scenarios for the computational steps. Basically,

the existing preprocessing algorithm can be reused, but it has to be started once for

each scenario z ∈ Z. Table 5.6.1 gives an overview of the parameters that have to be

extended by an additional scenario subscript.

5.6.2 Adapted model formulation

In the following the adapted model formulation for the two stage stochastic program

will be given. As a reasonable part of the sets and parameters remains the same as in

the deterministic case, only additional sets and revised parameters will be presented.

For details on the other parameters and sets see Section 5.4.

Additional Sets

z ∈ Z Set of demand scenarios

Revised parameters
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5.6 Consideration of demand uncertainty

pz Probability that scenario z realizes,
∑

z pz = 1.

CInventorys,dp,z Inventory-related cost factors in scenario z for assignment of

delivery pro�le dp to supplier s.

CPrelegs,dp,z Cost of pre leg transport in scenario z resulting from the choice

of delivery pro�le dp for supplier s.

CFullloads,dp,z Cost of full load transport in scenario z resulting from the choice

of delivery pro�le dp for supplier s.

UProfiles,dp,r,t,z Resource usage in scenario z resulting from the choice of the

delivery pro�le dp for supplier s in period t.

Op,dp,s,t,z Quantity of part units of part type p which have to be ordered in

period t if delivery pro�le dp is chosen for supplier s and scenario

z is realized.

Decision Variables

pcs,dp ∈ {0, 1} Decision, if delivery pro�le dp is selected for supplier s.

op,t,v,z ∈ N+
0 Quantity of ordered part units of part type p in period t delivered

in vehicle v when scenario z is realized.

ur,t,z ∈ R+
0 Usage of resource r in period t if scenario z is realized.

vActivet,v,z ∈ {0, 1} Decision if vehicle v is used in period t and scenario z.

vLevelt,rl,v ∈ {0, 1} Decision if rebate level rl is active in period t for vehicle v in

scenario z.

at,lc,v,z ∈ N+
0 Number of load carriers of type lc in period t delivered in vehicle

v in scenario z.

Model formulation
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Min
∑

dp∈DP,s∈S,z∈Z

(
CInventorys,dp,z + CPrelegs,dp,z + CFullloads,dp,z

)
· pcs,dp · pz

+
∑

t∈T,v∈V,z∈Z
CV ehiclev · vActivet,v · pz +

∑
t∈T,v∈V,rl∈RL

CLevelv,rl · vLevelt,rl,v · pz

+
∑

r∈RL,z∈Z

CUnitr · pz ·

 ∑
dp∈DP,s∈S

UProfiles,dp,r · pcs,dp,z +
∑
t∈T

ur,t,z


+

∑
r∈RNL,z∈Z

CUnitr · pz ·

⌈∑
dp∈DP,s∈S U

Profile
s,dp,r · pcs,dp +

∑
t∈T ur,t

SUnitr

⌉
(5.6.1)

subject to

∑
dp∈DP

pcs,dp = 1 ∀s ∈ S

(5.6.2)∑
s∈S

Op,dp,s,t,z · pcs,dp =
∑
v∈V

op,t,v,z ∀t ∈ T, dp ∈ DP, p ∈ P, z ∈ Z

(5.6.3)

at,lc,v,z =
∑
p∈Plc

⌈
op,t,v,z
Qp,lc

⌉
∀lc ∈ LC, v ∈ V, t ∈ T, z ∈ Z

(5.6.4)

ur,t,z =
∑
v∈V

∑
p∈P

Upartp,r · op,t,v,z

+
∑
v∈V

∑
lc∈LC

UCarrierlc,r,v · at,lc,v,z ∀t ∈ T, r ∈
⋃
v∈V

Rv, z ∈ Z

(5.6.5)

ur,t,z =
∑
v∈V

UV ehiclev,r · vActivet,v,z

+
∑
v∈V

∑
rl∈RLv

ULevelv,rl,r · vLevelt,rl,v,z
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+
∑
v∈V

∑
p∈P

Upartp,r · op,t,v,z

+
∑
v∈V

∑
lc∈LC

UCarrierlc,r,v · at,lc,v,z

+
∑

dp∈DP,s∈S
UProfiles,dp,r,t,z · pcs,dp

∀t ∈ T, r ∈ R \
⋃
v∈V

Rv, z ∈ Z (5.6.6)∑
rl∈RLv

vLevelt,rl,v,z = vActivet,v,z ∀v ∈ V, t ∈ T, z ∈ Z

(5.6.7)

UBrl,v,r · vLevelt,rl,v,z − ε ≥ ur,t,z −BigM ·
(

1− vLevelt,rl,v,z

)
∀v ∈ V, t ∈ T, r ∈ Rv, rl ∈ RLv, z ∈ Z

(5.6.8)

LBrl,v,r · vLevelt,rl,v,z ≤ ur,t,z ∀v ∈ V, t ∈ T, r ∈ Rv, rl ∈ RLv, z ∈ Z
(5.6.9)

BigM · vActivet,v,z ≥
∑
p∈P

op,t,v,z ∀v ∈ V, t ∈ T, z ∈ Z

(5.6.10)

vActivet,v,z ≤
∑
p∈P

op,t,v,z ∀v ∈ V, t ∈ T, z ∈ Z

(5.6.11)

A set Z is introduced with one entry z ∈ Z for each scenario to be considered. Each

scenario has a probability to be realized, which is given in parameter pz. When summed

up, these probabilities reach 100%, thus
∑

z pz = 1. As described in the previous sec-

tion, parameters determined in preprocessing also depend on the realized scenario, thus

an additional subscript z is added to each of these. The decision variables are divided

into �rst-stage variables and second-stage variables. At the �rst stage pcs,dp determ-

ines the assignment of a delivery pro�le to a supplier. All other decision variables are

second-stage variables as they depend on the realized scenario. Note that in object-

ive function 5.6.1 all terms now consist of weighted sums over all scenarios, where pz

is the weight factor of the cost terms related to the realized scenario. This re�ects

the expected value of the objective function under consideration of all scenarios and

their probability of being realized. As the assignment of delivery pro�les is independ-
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ent of the realized scenario, Constraint 5.6.2 can be taken over without changes from

the deterministic model. Constraint 5.6.3 has to be modi�ed so that the quantity of

ordered parts is equal to the quantity of parts remaining for main leg run according to

the assigned delivery pro�le for each realized scenario. This constraint group creates a

connection between the decisions at the �rst and second stage, as the second-stage part

distribution variable op,t,v,z is linked to the �rst-stage delivery pro�le variable pcs,dp via

the related scenario-dependent parameter Op,dp,s,t,z. In Constraint 5.6.4 the number

of load carriers located in a vehicle is computed for each scenario. Constraint 5.6.5

and 5.6.6 compute the resource uses for vehicle-related and non vehicle-related re-

sources for each scenario. Constraints 5.6.7, 5.6.8 and 5.6.9 determine the discount

levels according to the vehicle's load in a certain scenario. In Constraints 5.6.10 and

5.6.11, the activation of vehicles is handled in respect to the realized scenario.

5.6.3 Modi�ed solution algorithm for the stochastic case

There are only a few solution algorithms that are applicable under general conditions

for two-stage stochastic programs and capable of dealing with integer variables at the

second stage. In the model presented above the second-stage variables op,t,v,z and

at,lc,v,z are integer variables. In addition, vActivet,v,z and vLevelt,rl,v are binary variables at

the second stage. Hence a speci�c algorithm should be developed to reduce runtime.

As can be seen from the model, all vehicle-related decisions are taken at the second

stage. This once again allows for a similar approach to be employed to that in the

deterministic case. After selecting a certain delivery pro�le assignment each period

can be evaluated using the packing heuristic described previously for each scenario.

This increases the overall solution time by the factor |Z|, but as this is a linear growth
it may be acceptable. The adapted local search algorithm then reads as summarized

in Algorithm 3. The genetic algorithm given in Section 5.5.2 can also be used for

the stochastic case, if some minor extensions are made. To adapt to the new objective

function the �tness function has to be exchanged. In the deterministic case an evalu-

ation of each separate period is conducted by the packing algorithm in order to retrieve

a �tness function value. In the stochastic case the evaluation has to be extended over

all scenarios and the expected value has to be computed. Therefore the runtime is in-

creased linearly by the number of scenarios that are considered, but no other changes

to the algorithm are required.
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Algorithm 3: Modi�ed solution procedure for the stochastic case.

foreach s ∈ S do
foreach dp ∈ DP do

foreach z ∈ Z do
Apply Preprocessing;

end

end

end
while !StopCondition do

NextSolution ← Strategy.FindBestNeighbor(CurrentSolution);
NextSolution.ObjectiveValue = 0;
foreach t ∈ T do

foreach z ∈ Z do
NextSolution.ObjectiveValue + = pz· SolveSubProblem(t, z);

end

end
if NextSolution.ObjectiveValue < CurrentSolution.ObjectiveValue then

CurrentSolution ← NextSolution;
Fix supplier whose delivery pro�le was changed;

end
else

Relax all suppliers;
end

end

5.6.4 A simpli�ed model formulation

As the consideration of multiple scenarios at once increases the computational e�orts

necessary to solve the model, larger instances from practice cannot be solved e�ciently

in the stochastic case. Therefore a simpli�ed model formulation that is less generic and

has a lower complexity has been developed for the stochastic case. Multiple aspects

have been removed from the model formulation in order to trim the formulation. Re-

moving these aspects results in less precise results for the expected cost and limits the

applicability to a speci�c kind of tari� system. This may be acceptable though, as a

trade-o� between solution quality and level of detail in the model has to be made. The

removed aspects include the generic treatment of resources that allowed e.g. the con-

sideration of carbon-dioxide emissions and incoming goods department personnel, and
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the explicit modeling of load carriers that allowed the ordering of parts in quantities

that do not completely �ll a load carrier or to use alternative load carriers. In addition

the rebate levels have been approximated by a more moderate approach further to

reduce the complexity. Given these reductions, the model reads as follows:

Sets

z ∈ Z Set of scenarios.

t ∈ T Set of time periods.

s ∈ S Set of suppliers connected to the consolidation center.

dp ∈ DP Set of available delivery pro�les.

l ∈ L Set of load unit types. A load unit describes a load carrier

completely �lled with parts. Each part has a �xed load carrier

assigned to it, and parts will always be ordered in multiples of

the load carriers �ll level.

v ∈ V Set of vehicles.

v ∈ V F Set of �lled vehicles.

Parameters
CChoices,dp,z Expected total cost in pre leg run, full load run and inventory

holding cost of scenario z if delivery pro�le dp is assigned to

supplier s.

CV ehiclev Cost of the usage of vehicle v.

CStepv Cost of one weight step in vehicle v.

Ol,dp,s,t,z Quantity of load units of type l which have to be ordered in

period t if delivery pro�le dp is chosen for supplier s and scenario

z realizes.

UVl Volume used by one load unit of type l.

UWl Weight used by one load unit of type l.

UBV
v Upper bound on volume for vehicle v.

UBW
v Upper bound on weight for vehicle v.
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LBV
v Lower bound on volume for vehicle v to be seen as �lled.

LBW
v Lower bound on weight for vehicle v to be seen as �lled.

WStep Step size for the partially �lled vehicle.

Pz Probability that scenario z realizes.

Decision Variables
pcs,dp ∈ {0, 1} Decision if delivery pro�le dp is selected for supplier s. This is a

�rst-stage decision.

ol,t,v,z ∈ N+
0 Quantity of ordered load units of type l in period t delivered in

vehicle v if scenario z is realized.

uVt,v,z ∈ R+
0 Volume usage in vehicle v in period t if scenario z is realized.

uWt,v,z ∈ R+
0 Weight usage in vehicle v in period t if scenario z is realized.

vActivet,v,z ∈ {0, 1} Decision if vehicle v is used in period t if scenario z is realized.

vFullWeight
t,v,z ∈
{0, 1}

Decision if vehicle v is �lled by weight in period t if scenario z is

realized.

vStept,v,z ∈ N
+
0 Rebate steps of vehicle v.

Model formulation

Min
∑
z∈Z

Pz

 ∑
dp∈DP,s∈S

CChoices,dp,z · pcs,dp +
∑

t∈T,v∈V
CV ehiclev · vActivet,v,z + CStepv · vStept,v,z


(5.6.12)

subject to

∑
dp∈DP

pcs,dp = 1 ∀s ∈ S

(5.6.13)
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∑
s∈S

Ol,dp,s,t,z · pcs,dp =
∑
v∈V

ol,t,v,z ∀t ∈ T, dp ∈ DP, l ∈ L, z ∈ Z

(5.6.14)

uVt,v,z =
∑
l∈L

UVl · ol,t,sc,v ∀t ∈ T, v ∈ V, z ∈ Z

(5.6.15)

uWt,v,z =
∑
l∈L

UWl · ol,t,sc,v ∀t ∈ T, v ∈ V, z ∈ Z

(5.6.16)

uVt,v,z ≤ vActivet,sc,v · UBV ∀t ∈ T, v ∈ V, z ∈ Z
(5.6.17)

uWt,v,z ≤ vActivet,sc,v · UBW ∀t ∈ T, v ∈ V, z ∈ Z
(5.6.18)

uVt,v,z ≥ LBV · vActivet,v,z − vFullWeight
t,v,z · UBV ∀t ∈ T, v ∈ V, z ∈ Z

(5.6.19)

uWt,v,z ≥ LBW · vActivet,v,z − (1− vFullWeight
t,v,z ) · UBW ∀t ∈ T, v ∈ V, z ∈ Z

(5.6.20)

vStept,v,z ≥ uWt,v,z ·
1

WStep
∀t ∈ T, v ∈ V, z ∈ Z

(5.6.21)

In the objective function 5.6.12 the sum of delivery pro�le choice cost, �xed cost

charges for the use of vehicles and cost for weight steps in the partially �lled vehicle

are summed up for each scenario. This value is summed up and multiplied with the

respective scenarios' probability to obtain the expected total cost. Equation 5.6.13

ensures that each supplier has exactly one delivery pro�le assigned. In constraint

set 5.6.14 it is ensured that each part ordered in accordance to the active delivery

pro�le selection will be delivered in a main leg run vehicle. Vehicles use is computed

according to the vehicle's load in constraint set 5.6.15 for the volume and constraint

set 5.6.16 for the weight respectively. Constraint sets 5.6.17 and 5.6.18 limit the volume

and weight in one vehicle according to the upper bounds for volume and weight. As

a vehicle has to be completely �lled before another vehicle can be started, constraint

sets 5.6.19 and 5.6.20 ensure that each used vehicle is either �lled by volume or by

weight. If a vehicle is �lled by weight, constraint set 5.6.19 will be deactivated because
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the the variable vFullWeight
t,v,z will be set to 1 and the right hand side becomes negative,

as LBV is always smaller than UBV . Lastly, constraint set 5.6.21 can be used to

compute weight steps of linear size for the partially �lled vehicle.

5.7 Scenario generation

The input scenarios used for the stochastic program are essential to the outcome of

the model. They should represent the possible future as well as possible. As the future

is hardly predictable �nding good scenarios becomes a task which may be even more

di�cult than solving the model itself. A special di�culty is raised by the possibility

of net dependent demands' occurring only in certain periods due to lot sizing e�ects.

Traditional time-series based forecasting approaches therefore have poor results when

applied to generate demand scenarios. In this work, two approaches will be presented

that use di�erent techniques to overcome this problem. One approach uses observed

occurrence probabilities to modify the current demand forecast time-slice wise accord-

ing to change probabilities. The other approach relies on an observed frequency of

demand to model future outcomes.

In both cases structured data are required to derive the required probability distri-

butions. As the collected data will be referred to in the following, its structure may be

explained shortly. For each part an individual set of forecasts and realized demands

has to be collected. A forecast has a period assigned in which it was created and con-

sists of multiple part forecasts which contain forecast data for a single part. Each part

forecast consists of multiple forecast entries. A forecast entry represents an expected

demand for a certain period with a given quantity. If no demand is forecast for a

speci�c period, so the demand quantity is zero, no forecast entry will be created for

that period. In the following two approaches to creating scenarios based on historical

data will be presented.

5.7.1 A forecast deviation oriented scenario generation approach

The underlying idea of the procedure presented in this section is that every possible

outcome of the future is a deviation from the forecast that is available at the day

of planning. thus it may be a valid approach to measuring occurrence probability

of changes and using them to build deviation scenarios based on the forecast that is

available at the day of planning. Following this assumption every change to a forecast
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may be projected onto �ve basic events depicted in Figure 5.8 which a�ect demand

entries within the forecast:

1. No change. A demand entry does not change.

2. Increase / Decrease. A demand entry's quantity increases or decreases. A

demand entry has been made in the previous forecast, but its quantity is now

increased or decreased by a certain amount. The demand entry's quantity does

not fall to zero.

3. Remove. A demand entry is removed. A demand entry has been made before-

hand, but is now removed, so its quantity falls to zero.

4. Add. A demand entry is added. No demand entry has been made for a certain

period in advance, but it is now added.

5. Shifting. A demand entry is shifted forwards or backwards from one period

to another. This may be seen as a removing one demand entry and adding

the same entry in another period. It can be very hard if not impossible to

distinguish between shifted demand entries and demand entries which are added

and removed. Therefore this point will not be considered in the following as it

can be modeled by the operations add and remove.

The occurrence probabilities of these events can now be estimated by comparing a set

of forecasts to the realized demands or by comparing the forecasts with each other.

These two comparisons would result in di�erent statements. If forecasts are com-

pared with the realized demands, the total changes occurring may be measured, but

no change history will be available. If forecasts are compared with each other, it is

possible to create a change history that allows not only the creation of scenarios for

the demands that will �nally be realized but also how the forecasts may change as time

passes. Whereas this is not necessary to �nd demand scenarios for the given two-stage

stochastic program, it can be useful for other purposes which consider the planning

process in a rolling horizon environment.

An important aspect when using this concept is to consider that changes to the fore-

cast may have other probability distributions depending on the distance between the

period in which the forecast was created and the period in which a demand entry is

situated. To account for this issue change probability distributions can be measured
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Figure 5.8: Possible changes to a demand forecast.

for di�erent time-slices of the potential planning horizon each with a speci�c distance

from the period in which the forecast was created. This information can then be used

to create deviations for each time-slice individually based on the distance of the time-

slice to the creation date of the forecast.

It is not su�cient to measure only the occurrence probability of a change event. This

may hold true for a removed forecast entry, but when it comes down to an increase

or decrease in quantity the amplitude of the change has also to be measured. After

the change event distribution information has been gathered forecast scenarios may be

created. A summary of the procedure is given in Figure 5.9. In a �rst step the current

forecast is cloned. The planning horizon is then disjoint into multiple time-slices, e.g.

into weeks. For each time-slice, multiple random time-slice scenarios will be created

based on the given change event probability information. This step is called time-slice

scenario generation. During this time-slice scenario generation each period is walked

through individually. If there is a demand for the period, one out of four di�erent

deviation events may take place. The demand quantity may either be increased or

decreased or set to zero, thus the demand will be removed, or no change may take

place. Note that no change is also seen as an event. If there is no demand in the

period, it may be that a demand is added or that no change takes place. To determ-

ine which event will be triggered a random number between zero and one is used and

then mapped to the probabilities of the di�erent events. After all periods within the
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Figure 5.9: Overview of the forecast deviation oriented scenario generation procedure.

time-slice have been walked through it is added to a time-slice scenario pool. The

time-slice scenario pool is then evaluated in terms of diversity. Diversity in this case

means that the generated time-slice scenarios spread widely throughout the available

scenario space. For this purpose di�erent distance measures can be used. Therefore

an interface allows plugging in its own distance measures if required. If the distance

between the di�erent time-slice scenarios in the pool is too low, additional time-slice

scenarios may be created. To avoid a situation where no valid time-slice scenario pool

is available due to too high expectations of the diversity of the pool a method inspired

by the simulated annealing meta-heuristic is used. In simulated annealing the probab-

ility of getting stuck within a local optimum is reduced by introducing a probability
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Figure 5.10: Di�erent scenario trees resulting from multiple time-slice scenario pool
sizes on each level.

to accept a worse solution. This probability is an analogue of the temperature in a

metallurgic cooling process (see Glover and Kochenberger [2003], p. 288 for details).

Whereas the probability is reduced over time in simulated annealing, which is referred

to as cooling, it is necessary to increase the probability that a time-slice scenario pool

will be accepted in this case. Therefore a threshold on the distance measure will be

lowered if the pool is invalid until a valid pool is found. During this process the time-

slice scenario with the lowest distance to the other time-slice scenarios in the pool will

be selected to be thrown out of the pool.

After a valid time-slice scenario pool has been created the next time-slice will be con-

sidered and the procedure will be repeated until there is a time-slice scenario pool for

all time-slices within the forecast. The size of the pool can be adapted individually for

each time-slice. This allows the creation of scenario trees which �t the actual purpose,

as depicted in Figure 5.10. When all time-slice scenario pools are �lled scenarios have

to be constructed out of them through combination. A full combination of all time-slice

scenarios from each scenario pool n ∈ N would lead to a number of

|S| =
∏
n∈N

Poolsizen

scenarios. Therefore a scenario is constructed by picking a random candidate out of

each time-slice scenario pool until the desired number of scenarios is reached.
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Figure 5.11: Demand entry quantity and distance between two demand entries as de-
rived properties of the demand situation.

5.7.2 A demand distribution oriented scenario generation approach

Unlike the previously described approach the approach presented in the following does

not consider a demand scenario to be a deviation from the forecast available on the

day of planning, but rather considers it to be an independent demand realization that

occurs by chance. Therefore not the changes between forecasts and realized demands

but the demands properties will be used as underlying information. Properties of the

demand pattern can be measured by two aspects that have been shown to be important

for delivery pro�le selection: the demand entry's quantity and the distance between

two demand entries. Figure 5.11 depicts these two measures and their distributions

which are collected for scenario generation. In combination the two measures represent

the demand pattern of a part and allow us to model demand scenarios for di�erent

parts. A part that is used regularly with a low �uctuation in quantity, e.g. tires or

screws, will have a low distance between demands and a quantity distribution that

deviates closely around an average value. On the other hand, a part that will �ow

through a lot-production environment before it �nally ends up in an assembly line may

have a higher distance between demand entries and may underly a high �uctuation in

quantity. A summary of the scenario generation procedure is given in Algorithm 4. In

a �rst step an empty scenario is created. A period is then selected randomly in between

the �rst period and a period within the half of the average distance for the current
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part. This will re�ect the probability that an entry has already been placed before

the planning horizon. Alternatively, the last order placed in the MRP system could be

used as a starting point for the following steps. When the period has been selected, a

demand with a random quantity according to the given quantity distribution will be

placed in that period. Afterwards a next period is selected by shifting forward for a

random number of period according to the distribution of distances between demands.

The procedure is then repeated until the end of the planning horizon has been met.

Algorithm 4: Algorithm to generate scenarios based on demand patterns.

tCurrent ← t0 + Random(0, µDistance

2 );
while tCurrent < tMax do

dt ← NormalDistribution(µQuantity, σQuantity);
tCurrent ← tCurrent + NormalDistribution(µDistance, σDistance) ;

end

5.7.3 Scenario reduction

Either method may lead to a tremendous number of scenarios which cannot be handled

at once due to computational problems. Therefore scenario-reduction techniques have

been deployed. These allow selection of a subset from a set of scenarios such that the

scenarios in the subset form a distribution which is as close as possible to the original

scenario distribution. Given a distribution P represented by scenario set S, whereof

each scenario s ∈ S has the probability ps, the task is to �nd a new distribution Q

with scenario set Z = S \ J with probabilities qz for each scenario z ∈ Z, such that

the distance D(P,Q) is as low as possible. Therefore a set of scenarios J ⊂ S should

be removed from S such that D(P,Q) =
∑

j∈J pjminz∈Zd(j, z) with d(j, z) being the

distance between scenario j and scenario zis minimized. Identifying scenario set J?

to be removed from the original scenario set and de�ning new probabilities qz for

all remaining scenarios is the task of scenario reduction algorithms. Two promising

heuristic algorithms for this purpose, the simultaneous backward reduction algorithm

and the fast forward reduction algorithm, have been developed in Dupacová et al. [2003]

and Heitsch and Römisch [2003]. The basic idea behind those approaches is that the

125



5 Selecting cost-minimal and robust delivery pro�les

optimal distribution Q? is given by

q?z = pz +
∑
j∈Jz

pj ∀z ∈ Z

where Jz describes the scenarios j ∈ J which are closer to z than to any other remaining

scenario according to the distance function d(j, z). Both of the scenario reduction

techniques presented in the following have been integrated into the scenario generation

process. First, a large set of possible scenarios is generated by one of the methods

presented in section 5.7.1 and section 5.7.2. The scenarios are then reduced using one

of the given scenario-reduction techniques to limit the number of scenarios such that

it can be handled by the optimization algorithm.

Fast forward reduction starts with no scenarios selected, thus J0 = S and Z = �.
It can be formalized as in algorithm 5. Before going into iterations the scenario u? ∈ J
with the lowest sum of weighted distances to all other scenarios k ∈ J is moved to

Z. Afterwards, in each iteration a scenario j is moved from J to Z until the desired

number of scenarios has been selected. The scenario j to be moved to the set of

remaining scenarios is the one which represents the set of scenarios to delete at best.

A representation factor rfk,u is computed for all scenarios u ∈ J to determine how

well the scenario u ∈ J would represent k ∈ J if it were moved from J to the set

of remaining scenarios Z. The cumulative representation factor rfu being the sum of

rfu,k over all k ∈ J is then computed and used as selection criterion. The lower rfu,

the better the scenario u represents the remaining scenarios to delete J if it is switched

over to Z. Therefore, the scenario u? with the minimum value of rfu is selected and

moved from J to Z. These steps are repeated until the desired number of scenarios

has been selected. Thereafter, for each removed scenario j ∈ J , it is identi�ed which

remaining scenario k? ∈ Z has the lowest distance to scenario j ∈ J . The probability
of the remaining scenario k? ∈ Z is then increased by the probability of the scenario

to be removed.

Simultaneous backward reduction goes the opposite way. It starts with all scenarios

selected, thus J0 = � and adds the scenario with the lowest distance to all other

scenarios to J in each iteration. The idea behind this is to remove the scenario that

can be represented best by the remaining scenarios. In analogy to the fast forward
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5.7 Scenario generation

Algorithm 5: Fast forward reduction algorithm. Notation is adopted from Heitsch
and Römisch [2003].

J ← S ;
Z ← � ;
u? ← minu∈J

(
sumk∈J\{u}pk · d(k, u)

)
;

J ← J \ u?;
Z ← Z ∪ u?;
while |J | > |J?| do

foreach u ∈ J do
foreach k ∈ J \ {u} do

rfk,u ← pk ·minz∈Z∪{u} (d(k, z));

end
rfu ←

∑
k∈J\{u} rfk,u;

end
u? ← argminu∈J (rfu);
J ← J \ u?;
Z ← Z ∪ u?;

end
foreach j ∈ J do

k? ← argmink∈J (rfk,j);
pk? ← pk? + pj ;

end

algorithm the representation factor rfu is used to select the scenario to be removed. The

obvious di�erence in its use is that in the backward reduction algorithm the scenario

u? which is represented best by the remaining scenarios Z is to be removed, therefore

being added to J . After the selection algorithm the same probability distribution rule

is applied again to redistribute the probabilities of the removed scenarios onto the

remaining scenarios.
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Algorithm 6: Simultaneous backward reduction algorithm. Notation is adopted
from Heitsch and Römisch [2003].

J ← � ;
Z ← S ;
u? ← minu∈Zpu ·mink∈Z\u (d(k, u));

J ← J ∪ u?;
Z ← Z \ u?;
while |J | < |J?| do

foreach u ∈ Z do
foreach k ∈ J ∪ {u} do

rfk,u ← pk ·minz∈Z∪{u} (d(k, z));

end
rfu ←

∑
k∈J∪{u} rfk,u;

end
u? ← argminu∈J (rfu);
J ← J ∪ u?;
Z ← Z \ u?;

end
foreach j ∈ J do

k? ← argmink∈J (rfk,j);
pk? ← pk? + pj ;

end
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6 An Evaluation Framework for Delivery Schedule

Generation Approaches

One goal of this thesis is to assess the impact of delivery pro�les that have been selected

by the planning approach presented in Section 5 in respect of their outcome in a rolling

horizon application scenario under special consideration of the given demand forecast

uncertainty. The delivery pro�les as a delivery schedule generation approach should

not only be analyzed in respect of their individual outcome, but also be compared

with the MRP system's behavior and a state-of-the-art algorithmic delivery schedule

generation approach under fair conditions. As was be seen in the literature review (see

section 3.2 for details), a simulation approach seems to be the most promising tech-

nique to be employed in order to analyze the delivery schedule generation approaches'

behavior in a rolling horizon environment. Hence a simulation-based evaluation frame-

work was developed in order to examine the outcome of the di�erent delivery schedule

generation approaches in a rolling horizon environment under consideration of demand

forecast uncertainty. To evaluate the outcome of the simulated behavior it is necessary

to provide a set of key �gures that re�ect the objectives of the problem setting. These

performance indicators can then be used to compare the di�erent delivery schedule gen-

eration approaches. In addition to the simulation approach itself, a set of performance

indicators to quantify the realized cost and the stability of the delivery schedules was

developed and included into the evaluation framework. The remainder of this chapter

will at �rst depict the simulation approach itself and in so doing describe the simula-

tion process and the underlying architecture. The selected performance indicators and

their computation will then be sketched subsequently.

6.1 Simulation Approach

The primary goal of the simulation approach is to examine the outcome of di�erent

delivery schedule generation approaches for the operational order lot sizing problem

in a rolling horizon application. As noted in Section 2.2.2 the operational order lot-
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sizing problem is integrated into a higher level planning process. Being only a part

of a whole process decisions made at this decision stage are in�uenced by inputs from

previous stages and act as outputs for following stages at the same time. This means

in turn that a subset of the planning process described in Section 2.2.2 is of relevance

for the considered problem setting. This leads to the necessity to divide the planning

steps into those which should be simulated and those whose results should be seen

as input for the simulation. In this work the line is drawn after the computation of

gross dependent demands has �nished, which means that the gross dependent demands

act as input for the simulation process. This choice allows us to cut o� the master

production scheduling planning problem as well as the bill of materials explosion. The

former can especially be heavily in�uenced by manual intervention or other planning

algorithms, leading to an additional source of freedom. To account for these aspects

multiple assumptions would have to be made on the behavior of both the planning

system and the planners. By laying the cut after these steps we do not have to dif-

ferentiate between self-made planning uncertainty created by manual intervention or a

nervous master production scheduling on the one hand and demand uncertainty on the

other. Therefore uncertainty is considered to reveal itself purely in form of deviation

in gross dependent demand predictions varying from one planning cycle to another.

Whereas it makes sense to cut o� these planning steps, it is important to take the net

dependent demand computation based on the safety inventory parameters into consid-

eration. Delivery schedule generation can have a signi�cant impact on inventory levels.

Especially if investments in cycle stock are made in order to secure bene�ts in respect

of freight cost, stock levels can underly heavy �uctuations. This in turn can lead to

completely di�erent behavior when determining the net dependent demands which are

thereafter being used to create delivery schedules. Not to consider this bidirectional

in�uence would leave strengths and weaknesses of the di�erent approaches in respect

to inventory management undiscovered. Another factor of uncertainty that might have

been considered is the unreliability of supply. It may be that suppliers cannot deliver

goods even though orders have been placed in time, e.g. due to machine breakdown

or tra�c jam. But, as this work is especially focused on demand forecast uncertainty,

supply unreliability has been completely disregarded. This decision has been made to

neglect interferences between the two sources of uncertainty so that it can be identi-

�ed more precisely how the di�erent planning approaches tackle the demand forecast
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uncertainty. Hence the gross dependent demand prediction seems to be the most valid

interface between the simulation environment and the reality, as it does not require

the simulation to be based mainly on assumed data, and at the same time it allows us

to step deep enough into the planning process to reveal the impact of a certain plan-

ning method on the system's overall behavior. According to Mönch [2007] simulation

environments for benchmarking of planning methods consist of two main parts, a base

system and a control system. The base system models the considered environment

and the natural �ow within the environment. The control system gathers information

from the base system and incorporates this information to make decisions. These de-

cisions then in�uence the happenings in the base system. When this concept is adapted

to the given problem setting, the base system covers the transportation network, the

considered plants inventory and the demand forecasts. The control system covers the

MRP system's components necessary to control the �ow of goods. The control system

can be seen as bipartite,with one part consisting of components which re�ect MRP sys-

tem logic for inventory balancing and net dependent demand calculation, whereas the

generation of delivery schedules in particular is carried out by the examined delivery

schedule generation approach. The MRP system logic part behaves predictably and

is necessary to trigger the delivery schedule generation approach and process informa-

tion from the base system, but is not directly an object of investigation in this thesis.

Section 6.1.2 describes the base system and its components. A detailed description

of the MRP system logic is given in Section 6.1.3. The delivery schedule generation

approaches employed to create delivery schedules may consider various aspects from

the problem setting. Therefore it was identi�ed which parts of both the base system

and the MRP system logic state must be submitted to the planning approaches due

to their possible in�uence on the decision-making. To provide the possibility to adapt

multiple delivery schedule generation approaches for an examination an interface was

developed that covers all properties of the problem setting which may be relevant to

the di�erent delivery schedule generation approaches. The interface description can be

found in Section 6.1.4.

6.1.1 Representation of time

Due to the course-grained nature of the planning process time is modeled as discrete

time steps with a size of one day each. As production facilities do not necessarily oper-
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ate twenty-four-seven, there can be days on which facilities are closed and no operations

are possible. To account for this fact most facilities employ a factory calendar. This

calendar can be used to determine the set of days to consider. In the following a time

step will be described as a period. In industry applications delivery schedules may be

updated less frequently than in each period. It may be, for example, that the delivery

schedule is computed and sent out only once or twice a week. To account for this

aspect planning periods as a subset of all periods have been introduced. Whereas the

state of the base system can change from period to period, response to these changes

can only take place in planning periods. In the remainder the timespan between two

planning periods will be described as a planning cycle.

6.1.2 Representation of the underlying base system

The base system consists of its entities and their properties on the one hand and the

state of these entities on the other hand. The former part remains unchanged over

the whole time horizon whereas the latter changes as time passes. To give a brief

understanding of the aspects that were considered in the base system, its entities will

�rst be described. It will then be pointed out what information about the state of the

base system can be derived.

Entities in the base system

The partition of the supply network considered in the base system begins at the sup-

pliers outgoing goods department and ends at the warehouse in the incoming goods

department of the unloader. Within this partition parts which are packed in load car-

riers are transported by vehicles along the prede�ned routes for pre leg, main leg and

full load runs are �nally stored in the warehouses from where they are taken to satisfy

production demands. Given this short summary, the entities within the base system

can be divided into those describing the network structure and those that are trans-

ported within the network. Both types of entity are to be persisted, e.g. in a relational

database or a �le based format, so that they can be recalled whenever necessary. The

entities in the base system are modeled according to the structure depicted in Fig-

ure 6.1 and will shortly be described in the following. An area forwarding network is

modeled to consist of a consolidation center to which multiple suppliers are connected.

Each supplier is identi�ed by its supplier code and has a set of o�ered parts and a pre
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leg run and a full load run relation assigned. Warehouses with a capacity limit and

the capability to store certain items are included to model the inventory within the

unloader's plant. The consolidation center has a main leg run relation assigned to it.

Pre leg, full load and main leg runs relations each have a tari� structure assigned to

it. The tari� structure de�nes the used vehicle and one or multiple discount levels as

well as a variable price per weight or volume unit. Each discount level has lower and

upper bounds on weight and volume as well as a �xed price. The vehicles available

for use have a capacity given by weight and volume. To account for the fact that

parts are packed into load carriers the item entity was introduced. An item represents

the combination of a part with a load carrier and a supplier and has a maximum �ll

level associated with it. Items from di�erent suppliers have to be distinguished as each

supplier may have its own packing regulations. A part has a weight and a price asso-

ciated with it and can be identi�ed via its part code. The load carrier has both weight

and volume associated and is identi�ed by its load carrier code. In addition to the

entities described above safety parameter con�gurations have been included into the

master data. These parameters strongly in�uence the MRP system's behavior during

the simulations phase. It was therefore decided to allow a con�guration of these para-

meters from the outside. Multiple parameter scenario sets can be persisted and can

later be selected for the simulation runs. This allows for what-if-analysis considering

di�erent parameter settings and their in�uence on the di�erent planning approaches

or the overall system.

States of the base system

The state of the base system in a certain period is de�ned by the past demand situ-

ation, requested and ful�lled orders and the resulting stock level on the one hand and

the demand forecast information available in the period on the other. The past de-

mand situation and the ful�lled orders determine the current state of inventory. This

information on the state of the base system is collected during the simulation run as

it allows drawing of conclusions on the outcome of the planning approaches. From the

stock level multiple performance indicators may be computed, e.g. the service level

towards production or inventory cost. From the ful�lled orders in a certain period it

can be determined what load has been delivered and therefore the freight cost in that

period can be computed. Whereas the stock level and the ful�lled orders represent the
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Figure 6.1: Entities of the base system, the plant master reference data.

past situation, demand forecast information and requested orders provide information

about the future expectations. The forecasts to be used during a simulation run are

modeled using the structure given in Figure 6.2. For each forecasting period there is a

forecast. The forecast itself may contain forecast updates for various items, called item

forecasts. Each item's forecast then consists of multiple item forecast entries. An item

forecast entry indicates that a demand is forecasted in the forecast for the period given

as demand date. As the expectation for the future may change from period to period

the current expectation is a part of the base system's state. When combining these

expectations with the information on the past the information necessary to generate

a delivery schedule can be derived. This step is performed by the MRP system logic

and will be explained in the following.
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Figure 6.2: Entities of the forecast data, the plant transaction data.

6.1.3 MRP system logic

The MRP system logic derives necessary information from the base system and prepares

them for use in the delivery schedule generation approach. Thereafter the results

are transformed and send out virtually to the suppliers. The MRP system logic is

activated in each period and executes two basic functions. As in a real MRP system

a balance of incoming and outgoing materials is created to compute the stock level in

the inventory management system. Thereafter a net demand computation takes place.

In this process the stock level, requested orders and the expected future demands are

combined to identify which quantities are missing in which period to ful�ll the expected

future demands. The result of the net demand computation is then handed over to the

delivery schedule generation approach. The approach is then used to create a delivery

schedule. Afterwards the created delivery schedule is again interpreted by the MRP

logic. Especially when deriving the net demands from the state of the base system,

multiple parameters have to be considered. These parameters can also be found in
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typical MRP systems and can have a signi�cant in�uence on the results of the net

demand computation. These parameters will be brie�y explained in the following.

� Lot Ceiling allows forcing net demand quantities to be ceiled to a certain value.

When a ceiling takes place the di�erence between the initially required amount

and the ceiled value is charged o� against following demand entries. It allows a

sort of small-scale lot-sizing for each item individually. This parameter is often

used to assure that only �lled load carriers are ordered.

� Safety lead time is a parameter to determine safety inventory. The parameter

safety lead time gives back the number of periods a part should be ordered earlier

than it was originally demanded for. If e.g. the safety lead time has a value of

two, each gross demand will be shifted two days towards the planning period in

the net demand calculation. In doing so a safety bu�er is built up dynamically,

as the stock level follows the demand level. On the other hand, orders are �xed

earlier than they would have to be and thus are created based on an earlier gross

demand forecast.

� Safety stock quantity is another parameter to determine safety inventory. The

parameter safety stock quantity determines the level of the classical safety stock.

The net demand computation will try to assure that the stock level never falls

below this threshold value. If it does or is predicted to do so, a replenishment

order will be triggered immediately.

6.1.4 Interface between MRP system logic and delivery schedule generation

approaches

The delivery schedule generation approaches base their decision-making upon the state

of the base system and its general properties. Whereas the state of the base system

changes as time passes, the general properties remain unaltered. Therefore it was

decided to include three bundles of information as depicted in Figure 6.3. The �rst

bundle consists of the general properties of the base system, including information on

the freight network, its tari� structures, part and load carrier data as well as informa-

tion on warehousing possibilities and related cost. It is passed over from the simulation

approach to the delivery schedule generation approach in a �rst step, the initialization.

The second bundle contains the state of the base system which is de�ned by the actual
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Figure 6.3: Interface between the simulation approach and the delivery schedule gen-
eration approaches.

net demand situation and previously placed orders that have already been �xed and

hence must be considered but not modi�ed when creating a delivery schedule. As men-

tioned above, the general properties of the base system remain unaltered and thus need

be transmitted only once to the delivery schedule generation approach. By contrast,

the state of the base system has to be transfered each time a delivery schedule has to be

created. Therefore it is repeatedly passed to the delivery schedule generation approach

in each planning cycle. Lastly, the third bundle contains the delivery schedule that has

been generated. It is passed back from the delivery schedule generation approach to

the simulation approach after each repetition of a planning cycle.

6.1.5 Simulation procedure

The simulation procedure consists of three phases, namely initialization phase, core

simulation phase and abandonment phase. In the initialization phase the base system

is brought into an initial state. During the core simulation phase planning cycles

are iteratively walked through in interaction between the base system and the control
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system. The information used to evaluate the di�erent delivery schedule generation

approaches is collected during this phase. In the abandonment phase the base system

fades out without getting additional input from the control system.

Initialization phase

The initialization phase initiates the state variables for inventory levels, forecasted

demand and requested orders. It is thereby assumed that the demands within the

replenishment lead time on the period of the �rst planning cycle have been forecast

perfectly during the previous cycles. Even though this is unrealistic, it provides a de-

terministic startup behavior that does not favor one method over another. Depending

on the safety parameter settings and the given initial demands, an inventory level is

computed that re�ects the desired inventory in the �rst period. All demands that are

forecast within the �rst forecast and should already be in inventory according to the

given safety parameters are summed up and form the initial inventory value. The de-

mands that should have triggered an order that would arrive during the replenishment

lead time cause �xed orders to be added with an arrival time within the replenishment

lead time.

The core simulation phase

In the following a single planning cycle within the core simulation phase will be dis-

cussed in detail. An overview of the core simulation procedure is given in Figure 6.4.

The planning cycle starts with the release of a gross dependent demand forecast in

the base system. The forecast will then be interpreted by the inventory management

system, which belongs to the MRP system logic part of the control system. At �rst,

an update of the current stock level in the base system is computed. This is done

by charging up inventory from the last planning period sRp,k and �xed orders oRp,t in

between both planning periods k and k
′
against the realized demands dRp,t during this

period range. For each period the stock level sRp,t for a part p in period t is computed

as follows:

sRp,t = sp,t−1 + oRp,t − dRp,t ∀p ∈ P, t = k...k
′

Net dependent demands are then derived by o�setting the gross dependent demands

against current stock level and �xed orders from the last planning cycle. Fixed orders
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Figure 6.4: Overview of the simulation procedure.

are the set of orders which have their requested arrival period after or equal to the

current planning period but before the end of the replenishment lead time. Other

orders do not have to be considered as they can still be altered or deleted. When

o�setting gross dependent demands against future stock and �xed orders, each period

is treated sequentially as shown in Algorithm 7. At �rst, an expected stock level sEp,t is

computed by charging up planned orders oPp,t against forecasted demands dFp,t. Then,

by applying the safety stock quantity SSQp and safety lead time SLTp parameters to

the forecasted demands, the desired stock level sDp,t calculated. The di�erence between

the expected stock level and the desired stock level is the net dependent demand dNp,t.

If the lot ceiling option is activated, the net dependent demands dFp,t are ceiled so that

a multiple of the given lot L is acquired. In doing so the occurring excess ep,t in one

period will be subtracted from the following net demand before it is ceiled. Multiple net

demands may thus be drawn together. If there is an excess at the end of the delivery

schedule and no further demands are forecast, the excess will be ceiled and ordered on

the end of the planning horizon. The resulting net dependent demands are thereafter

transmitted to the employed delivery schedule generation approach using the prede�ned

interface. The delivery schedule generation approach then provides a delivery schedule
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Algorithm 7: Calculation of net dependent demands including lot ceiling, safety
stock quantity and safety lead time.

foreach p ∈ P do

foreach t ∈ k′ ...k do
sRp,t ← sp,t−1 + oRp,t − dRp,t;

end
foreach t ∈ k +RLTp...T do

sEp,t ← sEp,t−1 + op,t−1 − dp,t−1;
sDp,t ← SSQp +

∑t+SLTp

t′=t
dp,t′ ;

dNp,t ← sDp,t − sEp,t;
if Lotceiling then

ep,t ←
⌈
dNp,t−ep,t−1

L

⌉
· L− dNp,t;

dNp,t ←
⌈
dNp,t−ep,t−1

L

⌉
· L;

end

end

end

which will be interpreted in the next planning cycle. This delivery schedule is evaluated

and the orders which should be executed are derived from it. Thereafter the control

system gives back control to the base system and awaits the next planning cycle to be

initiated by the release of a gross dependent demand forecast.

Treatment of escalation processes

It may be that during the net dependent demand computation described above, an or-

der is placed within the supplier's replenishment lead time. In practice such a situation

may be resolved using various alternatives, usually de�ned in an escalation process to

be launched in case of an apprehended future stock-out. Unfortunately the outcome

of this escalation process is not as clearly de�ned as the process itself. It depends

strongly on external factors, e.g. the production scheduling at the supplier's facility,

the importance of the buyer as a customer to the supplier and thus the supplier's will to

deliver, despite the desired delivery time's con�icting with his replenishment lead time,

among other factors. As those escalation processes are likely to appear in everyday

business, these had to be considered somehow. But as it is not possible to predict their
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outcome in advance, it was avoided to assume a possible outcome. In this simulation

procedure, escalation processes will always lead to a delivery on the �rst period after

the replenishment lead time. In so doing, the worst case scenario is re�ected. Using

this behavior does not prefer one delivery schedule generation approach to another, but

rather added another evaluation criteria, as it can be measured which delivery schedule

generation approach tends to produce how many escalation processes.

The abandonment phase

The abandonment phase is included to avoid censored data. The term censored data

refers to the e�ect that the state at end of the simulation horizon results from the

perspective of ongoing operations, whereas these operations will not be considered in

the simulation itself. Therefore it may be that a delivery schedule generation approach

makes investments within the simulation period that aim to reduce cost in periods

after the end of the simulation. Due to this issue it may be that one approach seems

preferable to another even if this would not be the case in a real rolling horizon applic-

ation (see Blackstone et al. [1982]). Awareness of this issue demands the abandonment

phase, in which the base system slowly fades out without further interaction with the

delivery schedule generation approaches. During this phase cycle inventory is slowly

released but not built up any more. It may be that even with an abandonment phase,

some parts have been ordered due to a misleading forecast and have not been taken out

of the warehouse until the end of the simulation horizon. There is a high probability

that these parts will cause additional inventory cost in the time after the simulation

horizon or even have to be scrapped. Therefore it was decided to account scrap risk

cost for the excess inventory at the end of the abandonment phase. A parts stock is

considered to be excess inventory if at the end of the abandonment phase the forecast

demand is not su�cient to consume the available stock of the part.

6.2 Performance indicators

The research questions to answer, given the selected performance criteria, are twofold,

as described in section 2.4. First, it has to be answered whether the proposed cost

advantage holds true in a rolling horizon planning environment. Second, it is of interest

if the stability of the generated delivery schedules can be improved when deploying

delivery pro�les. To answer the �rst question the costs that are realized during the
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simulation have to be assessed. How this is done will be described in the �rst part of

this section. In the second part it will be described how the stability of the generated

delivery schedules can be assessed and a new measure to do so will be introduced.

6.2.1 Assessing the realized cost

A planning approach uses a cost function c(x) to determine the cost associated with

a solution x. This cost function is used to decide whether a solution is better than

another. The value of the cost function is the objective value of the initial planning

solution. These costs will be referred to as expected cost. When applied in a rolling

horizon environment uncertainty comes into play and it may be that the realized cost

di�ers from the expected cost. Therefore we distinguish between expected costs and

realized costs. The realized costs are the ones that really matter in an industrial ap-

plication. They can be determined after the simulation process by computing freight

cost for each realized order and inventory holding cost for the materials in inventory

based on the base system state information gathered during the simulation procedure.

Assessing the realized cost means assessing the economic outcome of the employed de-

livery schedule generation approach in a rolling horizon application. The realized cost

C consists of two main components, freight cost CFreight and inventory holding cost

CInventory.

C = CFreight + CInventory

The freight cost part can be further divided into pre leg run cost CPreleg, full load

run cost CFullload and main leg run cost CMainleg. To compute these cost factors it is

necessary to make an ex post analysis of the orders that have been realized during the

simulation run. For each period t considered during the simulation a determination of

the freight cost associated with the realized orders takes place. Unfortunately these

freight values cannot be inferred directly from the order situation in all cases. If the

order's weight or volume exceeds one vehicle's capacity it is necessary to determine

which share of the goods will be transported in which vehicle. Otherwise the correct

discount level cannot be identi�ed. The assignment of load to vehicles is not determ-

inistic as it depends on the LSP's behavior and preferences. Therefore an assumption

has to be made on how the goods will be distributed on the di�erent vehicles. One

viable approach is to imply that the cheapest possible distribution is always chosen.

In this case the mathematical model described in section 5.3.3 can be used to obtain
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the freight cost values. The inventory holding cost CInventory consists of two parts,

the cost for warehouse slot usage CSlot and cost for interest on capital commitment

CInterest. The latter can be computed for each period by multiplying the stock level

sp,t of part p in period t with its price pp and the interest rate divided by the number

of periods per year.

CInterest =
∑

p∈P,t∈T
sp,t · pp ·

Interest rate

Periods per year

The cost for warehouse slot usage can be computed for each period by multiplying the

number of load carriers lc in stock by the slot cost per year CSlotlc for the speci�c load

carrier lc divided by the amount of periods per year, so the formula reads as

CSlot =
∑

p∈P,t∈T

⌈
sp,t
Qp,lc

⌉
· CSlotlc

where Qp,lc is the number of parts of type p that �t into a load carrier of type lc.

Comparison of the realized cost with the planned costs can be used to generate two

insights. First, it can be seen how much the cost could be reduced if everything goes as

expected in the beginning. Second, the di�erence between the planned cost determined

in advance and the realized cost can be analyzed. In addition to planned and realized

cost, it can be determined how a perfect solution would look under post ex conditions.

This value will be described as post-ex-solution value in the following. The di�erence

between the post ex solution value and the realized cost will be called the Value of

Perfect Information (VPI). It is the maximum value a planner would pay to get perfect

information about the future. The term is inspired by the Expected Value of Perfect

Information (EVPI) from the stochastic programming literature (see e.g. Avriel and

Williams [1970]), where it describes the di�erence between a wait-and-see solution and

a recourse program solution.

6.2.2 Assessing the stability of the generated delivery schedules

To examine the stability of the delivery schedules produced by the di�erent planning

approaches a sequence of delivery schedules generated during the simulation phase

has to be analyzed. It has thus to be checked how strongly two consecutive delivery

schedules di�er, and to which degree these di�erences may have a negative e�ects on
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the supplier's delivery performance and production planning e�ciency. To measure the

di�erent variations between the delivery schedules each generated delivery schedule is

compared with the previously generated one and the measures are computed. After all

delivery schedules have been compared with their predecessor, averages and standard

deviations of the measures are calculated. In addition to the quantity increases and

decreases, time shifting and additional as well as removed orders have to be considered.

As it is hardly possible to determine whether an order has been added or shifted in time,

it is almost impossible to compute a measure which re�ects changes in time. A sequence

of delivery schedules can su�er from di�erent sources of instability. First, the quantity

of an order can be increased or decreased from one schedule to another. This will be

referred to as variation in quantity. In this case the �rst delivery schedule contains

an order of q1 product units and the next delivery schedule contains an order on the

same day with another quantity q2 6= q1. Second, there may be a variation in time.

An order can be placed on day t1 in the �rst schedule and then be moved to another

day t2 6= t1. Both cases can have a negative impact on the production plan of the

supplier. In addition, orders can be added to the delivery schedule or removed from the

delivery schedule. Not all variations have the same in�uence on the suppliers planning

capabilities. Changes following shortly after the day the delivery schedule has been sent

out will probably require the supplier to start a major short-term rescheduling, while a

change in four to twelve weeks from the day the delivery schedule has been sent out will

probably not have greatly a�ect the supplier. Therefore the focus of the new developed

measures lies on the short-term variance within the delivery schedules. A period of

three weeks or �fteen working days beginning after the replenishment lead time (frozen

zone) is used to analyze the stability of the delivery schedules. As can be seen from

the summary in Section 3.3 and the discussion in Section 4.2.2, there are a number

of �gures to measure the stability or instability of a sequence of delivery schedules,

but none of them is capable of covering all important aspects at once. These aspects

include di�erentiation between changes in time and quantity of orders, distinguishing

between underestimations and overestimations and considering the temporal distance

between the date of the release of the delivery schedule and the date of the change

within the schedule. As most existing �gures are limited either to observe a change

in quantity for a certain period or a change in time for a certain order in the delivery

schedule, some changes may be considered more critical than they are, whereas other
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Figure 6.5: The area between two cumulative quantities used as a �gure to describe
the changes between two delivery schedules.

changes may be seen as less critical than they are. Consider for example a schedule in

which an order of n product units is scheduled for period t whereas all other periods

have an order amount of zero product units. Then, in the next schedule, the order of n

units is moved from period t to period t+1. In quantity based �gures this would result

in the conclusion that a change of 100 per cent took place in period t and another

change of 100 per cent took place in t + 1. This may seem rather critical, whereas

this change would only cause inventory holding cost for one period and could not be

a reason for an escalation process. To account for this issue a new �gure has been

developed. The cumulative quantities of two consecutive schedules are compared and

the areas between the two cumulative quantities are calculated as shown in 6.5. The

light gray area A− between the two cumulative quantities occurs if an overestimation

of demand took place in the previous schedule and therefore too many parts have been

ordered, or the parts have been ordered too early. In both cases additional inventory
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holding costs may occur but no escalation process will be triggered. The dark gray area

A+ on the other hand indicates that demand has been underestimated in the previous

schedule and thus orders had to be shifted forwards, be increased in quantity or added

to the schedule. These actions may in turn lead to an escalation process, but will not

cause additional inventory holding cost. To allow for a comparison between multiple

parts with di�erent total quantities both A+ and A− areas are set in relation to the

total area under the cumulative quantity of the �rst delivery schedule to gain a relative

value that re�ects both time and quantity variances. As re�ected before, only the �rst

three weeks after the frozen zone are of special importance for the comparison, thus

the areas will be computed for this timespan only.

146



7 A case study from an automotive company

In this chapter a case study from the automotive industry will be presented. The case

study followed multiple aims to accomplish a detailed analysis of the presented delivery

schedule generation approaches and their behavior when applied to a problem setting

from practice. The remainder of this chapter is organized in analogy to the subjects

of analysis, which can be summarized as follows:

� Experimental design is explained to provide an overview of the case study and

how it was conducted.

� Analysis of selected delivery pro�les for each delivery pro�le based con�gur-

ation is made to compare the selection strategies of the di�erent delivery pro�le

based approaches.

� Algorithmic performance of the presented planning techniques for delivery

pro�le selection is analyzed in respect to runtime and solution quality. The

heuristic approaches are benchmarked against exact solution techniques, and it

will be determined whether better results can be expected if both techniques are

combined.

� Realized costs are computed to provide understanding of the behavior of the

di�erent planning techniques applied in a rolling horizon environment. The focus

is on the comparison of the planning techniques' expected outcome based on

upfront forecasts on the one hand and the realized outcome when applied in a

rolling horizon on the other hand.

� Expected costs are measured for each planning technique. They provide details

on how much the situation could be improved if the forecast holds true. In

combination with the realized cost it can be stated how well the planning method

was capable of predicting the realized outcome, giving a hint on the reliability of

a planning methods plan.
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� The value of perfect information is derived from the problem setting by

comparing a post-ex determination of the optimal solution to the planning result

derived based on the initial forecast.

� Delivery schedule stability is measured for the di�erent planning techniques

to test the hypothesis that delivery pro�les help to increase the stability of the

delivery schedules.

� Inventory behavior is analyzed in respect of safety levels and excess inventory

at the end of the planning period to determine the pros and cons of the additional

inventory built up depending on the delivery schedule generation method that

was deployed.

Before providing details of the di�erent result subjects the experimental design of the

case study will be brie�y explained.

7.1 Experimental Design

Over a period of six months data from over 3600 parts delivered by more than 330 sup-

pliers distributed to 25 areas all over Europe were collected. Aside from the necessary

master data such as part data, load carrier data and tari� structures, movement data,

in the form of gross demand forecasts released twice a week, were collected. The data

origins from a component plant integrated into an international automotive supply

chain. The collected data were separated into two disjunct sets, a training set and a

test set, both of three month length. As shown in Figure 7.1 the data from the train-

ing set were used to train the delivery pro�le selection approaches as far as this was

necessary. As the stochastic planning methods require historical data to create scen-

arios based on underlying distributions, the training set was used to derive information

on the parts demand behavior and forecast quality. Scenarios were generated for the

test set according to the gathered distributions and occurrence probabilities. Delivery

pro�les were then determined based both on the information gathered from the train-

ing set and the �rst forecast from the test set. This corresponds to the information

which is available on the �rst planning cycle within the test set and therefore re�ects

a real-world planning application. In a second step the delivery pro�les selected by

the approaches developed in this thesis are passed over to the simulation approach.
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Figure 7.1: Data separation into training set and test set.

Thereafter the simulation approach is employed to simulate a rolling horizon planning

situation based on the data from the test set. For each delivery pro�le assignment

vector that has been generated by one of the delivery pro�le selection approaches one

simulation run is conducted. In addition, one simulation run for the default MRP

behavior and one simulation run for the state-of-the-art method from Kempkes and

Koberstein [2010] are conducted to allow a comparison not only between the di�erent

delivery pro�le selection approaches, but also a comparison with alternative delivery

schedule generation approaches.

7.1.1 Description of the examined areas

To give a general impression of the di�erent areas that have been considered in the

case study Table 7.1.1 lists the most relevant properties of the di�erent areas. The area

instances are divided into four groups, very easy, easy, medium and hard, depending

on their size and complexity. The �rst column is the instance number, which will be

used to identify a certain area in each di�erent test result table. The next columns

re�ect the size of each area. In the second column the number of suppliers that are

assigned to the area is given. In the parts column the number of parts in that are

delivered through that area is given. The load carriers column gives back the number

of disjunct load carriers used in that area. As multiple parts may be delivered in equal
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load carriers, the number can be signi�cantly smaller than the number of parts in a

certain area. In addition to the areas size �gures on the number of demands per period,

the average item density and the share of items with a density above vehicle density

are included. The number of demands per period indicates the density of operations

within the area. It is computed by counting number of orders within the considered

period range and dividing this value by the number of periods within the period range.

The average item density can be computed by dividing a �lled load carrier's weight

by its volume and indicates how well the goods may �t into a vehicle. In the above

vehicle density column the share of items in the area that have a density higher than

an vehicles empty cargo space is given. One notable aspect is that in all areas the

average item density is higher than a vehicle's average load density, which is around

0.28. As can be seen from the above vehicle density column, most instances also have

a signi�cantly higher share of items with a density above a vehicle's average density.

This in turn means that the transported goods are mostly high density goods, and

that vehicles will more often be �lled by weight rather than by volume. Therefore an

intelligent packing algorithm may exploit this density distribution to its advance and

place the low-density items in the same vehicle as the high-density items.

7.1.2 Considered delivery pro�les

The set of delivery pro�les that is to be considered during optimization is an import-

ant input given by the human planner. On the one hand the set of delivery pro�les

determines the complexity of the overall solution process. The more delivery pro�les

are used, the higher becomes the computational e�ort that is necessary to evaluate

them and make the optimal assignments to the di�erent suppliers. If a lesser number

of delivery pro�les is used, the freedom of choice is reduced, and therefore the solution

space is decreased. Thus a trade-o� has to be found such that the provided delivery

pro�les o�er substantial solution space while at the same time the complexity remains

at a reasonable level. In practice, the considered delivery pro�les are often prede�ned

by the options supported by the employed MRP system. The set of delivery pro�les

that has been used in this case study is shown in Table 7.1.2. In addition to week-based

delivery pro�les, using a calendar with �ve working days per week, frequency-based

delivery pro�les are introduced in order to allow a comparison between frequency-based

pro�les and week-based delivery pro�les. This delivery pro�le set provides enough free-
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Problem size Properties

Load Demands Average Above
Instance Suppliers Parts Carriers per item vehicle

period density density

1 4 81 6 22.44 0.40 97%
2 5 44 7 10.59 0.81 100%
3 5 84 7 26.17 0.51 91%
4 6 42 10 8.79 0.71 78%
5 6 68 10 13.68 0.49 73%
6 6 85 8 15.14 0.96 91%
7 6 114 17 36.45 0.49 87%
8 7 93 7 15.21 0.70 94%
9 8 33 7 4.01 0.71 75%
10 8 94 11 13.17 0.52 79%
11 9 43 9 16.58 0.50 88%
12 10 53 11 6.77 0.70 70%
13 11 69 13 21.72 0.64 56%
14 11 72 13 12.51 1.00 60%
15 11 129 8 29.10 0.56 72%
16 13 188 13 52.30 0.99 94%
17 14 174 17 40.29 1.14 82%
18 15 83 7 15.98 1.02 83%
19 19 258 17 66.66 1.14 76%
20 21 257 12 71.26 0.75 78%
21 25 352 15 89.10 1.28 91%
22 26 373 18 67.85 1.12 87%
23 28 156 15 48.81 0.54 74%
24 30 430 13 82.68 0.86 91%
25 34 254 16 74.36 0.90 77%

Table 7.1: Overview of the general properties of the examined areas.

dom of choice for the algorithms without overextending performance requirements and

has proven viable in practice.

7.1.3 Testing environment

All tests have been conducted on a computer with an Intel Core 2 Duo central pro-

cessing unit with 3.33 Gigahertz and 8 Gigabyte random access memory running under

a 64 Bit-Edition of the Windows 7 operating system with service pack 1 installed. In

addition to the operating system the following software has been used during the test

runs:

� Gurobi 5.00 from Gurobi Optimization Inc., a professional implementation of
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Week based delivery pro�les

Delivery pro�le Mon Tue Wed Thu Fri Frequency

W11111 X X X X X Weekly
W10101 X - X - X Weekly
W01010 - X - X - Weekly
W10000 X - - - - Weekly
W00001 - - - - X Weekly
W00100 - - X - - Weekly

Frequency based delivery pro�les

Delivery pro�le Frequency

R2 Every second day
R3 Every third day

Table 7.2: Overview of the delivery pro�les considered in the case study.

the Branch & Bound algorithm which was used to solve the given model instances.

� Microsoft .net Framework 4.0 from Microsoft corporation, a software de-

velopment framework that was used for the implementation of the heuristic al-

gorithms, the model generation and the simulation approach.

� Microsoft SQL Server 2008 Express RC 2 from Microsoft corporation, a

relational database system deployed to collect and persist the necessary data.

� Optimization.Framework, a framework for modeling mathematical programs

in .net, developed by the Decision Support & Operations Research Lab at the

University of Paderborn.

7.1.4 Considered alternatives

For a company that intends to introduce a new operational order lot-sizing control

mechanism di�erent alternatives are available. These will be compared in the case

study in order to provide an indication of which alternative may be appropriate.

Throughout the case study the following alternatives will be considered:

� The alternative no delivery pro�les refers to the situation before the introduction

of a deterministic planning approach. All orders are just passed on by the MRP
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system without any bundling taking place except for a ceiling of the lot sizes to

integer multiples of the quantity that �ts into a load carrier.

� The deterministic planning approach is represented by the initial forecast altern-

ative. Delivery pro�les are derived from the forecast given on the last day of the

training set.

� The demand-based scenarios alternative uses the stochastic programming ap-

proach with scenarios that are generated from the demand distribution observed

in the training set.

� In the forecast deviation scenarios alternative scenarios are generated from the

forecast deviations observed in the training set.

� A mixture of both scenario generation methods is used in the mixed scenarios

alternative. In this case scenarios are generated from former demand distribu-

tion and forecast deviations in equal share and are thereafter merged during the

scenario reduction process.

� To give a comparison with the current state-of-the-art algorithmic delivery sched-

ule generation approaches an implementation of the model presented in Kempkes

[2009] was used to generate delivery schedules. This alternative will be called the

Kempkes alternative in the following.

7.2 Analysis of the selected delivery pro�les

Figure 7.2 displays the distribution of the selected delivery pro�les for each delivery

pro�le-based con�guration. As can be seen at the �rst sight slightly more than half

of all suppliers have the delivery pro�le W11111 assigned among all con�gurations.

This means that those suppliers may deliver every day and that the savings are mostly

generated through the other half of the suppliers involved. We can distinguish between

delivery pro�les that allow three deliveries (purple color), two deliveries (light red) or

one delivery per week (red). The fewer deliveries per week are allowed, the tighter are

the boundaries for the supplier's deliveries and the higher are the expected synergy

e�ects. In most cases these are suppliers with only a little material to be delivered.

The initial forecast con�guration prefers the tightest boundaries on deliveries, whereas
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Figure 7.2: Distribution of selected delivery pro�les per con�guration.

the forecast deviation scenarios con�guration relies on more frequent deliveries. In par-

ticular the initial forecast con�guration uses single-delivery delivery pro�les in 28.6%

of all cases, whereas the forecast deviation scenarios uses them for only 21.1% of all

suppliers. The demand-based scenarios con�guration with 27.6% and the mixed scen-

arios con�guration with 26.5% are settled between these two extreme points. The

changes between the di�erent con�gurations seem small at �rst sight, but a closer look

reveals that various shifts take place. As Figure 7.2 only depicts the total percentage

distribution, but not the assignment to a speci�c supplier, shifts between the di�erent

con�gurations may remain hidden. In fact between 32.0 % and 39.8 % of all delivery

pro�les are shifted from one con�guration to another. The di�erent delivery pro�les

are shifted with di�erent probabilities. On average only 16.3 % of all suppliers with

delivery pro�le W11111 assigned are shifted from one con�guration to another. At

the same time 69.5 % of the suppliers with other delivery pro�les are shifted. The

numbers vary slightly depending on which con�gurations are compared, but basically

it can be said that suppliers with high volumes remain relatively stable in the set of

suppliers with delivery pro�le W11111 assigned, and that the di�erences between the

con�gurations become apparent on the selection of delivery pro�les for the suppliers

with less-than-truckload on every day.
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7.3 Algorithmic performance

In this section algorithmic performance in terms of required runtime and resulting

solution quality of the presented algorithms will be evaluated. The complexity of the

planning problem varies from area to area, as some areas are pretty small and cover only

four to six suppliers with their respective parts whereas other areas consist of 25 to 34

suppliers. Aside from the pure size in form of suppliers and parts count respectively,

the number of orders and their distribution plays an important role. The physical

properties of the delivered goods, especially their weight and size may also in�uence

algorithmic performance. To account for these various factors a�ecting algorithmic

performance, each area was tested separately to provide an overall picture. Even

though a count of 25 test instances does not allow us to derive a statistical correlation,

it may be a su�cient number of experiments to measure the algorithmic performance.

The following Section 7.3.1 will �rst be discuss how the preprocessing algorithm behaves

in respect of di�erent problem classes and sizes. Section 7.3.2 then will describe the

algorithmic performance of the generic model formulation. In Section 7.3.3 the results

for the condensed model formulation can be found. The runtime evaluation concludes

with a discussion of the heuristic procedures in Section 7.3.4.

7.3.1 Evaluation of the decomposition approach

Whenever one of the models presented in this work is used to derive delivery pro�les

it has to be considered that the decomposition approach requires the preprocessing

routines as described in Section 5.3 for the deterministic case or Section 5.6.1 for

the stochastic case respectively to be executed beforehand. Therefore the algorithmic

runtime of these preprocessing routines has to be added to the total runtime of the

algorithms and models. As the preprocessing routines consider each combination of

supplier, period, delivery pro�le and scenario separately, their runtime should grow

almost linearly in respect of each of these components. Table 7.3 gives an overview of

the time required by the preprocessing algorithm to process a certain area instance. In

the �rst column a reference to the area instance is given. The next four columns give

back the runtime (in seconds) of the di�erent delivery pro�le-related alternatives. The

column initial forecast refers to the runtime for the deterministic case where delivery

pro�les are determined on the forecast given at the beginning of the planning horizon.

The columns demand-based scenarios, forecast deviation scenarios and mixed scenarios
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refer to the runtime required for the corresponding stochastic alternatives. In the av-

erage column the average runtime for the stochastic case is given. The penultimate

column shows how many sub-model calls were necessary during the preprocessing pro-

cedure. To give a relation to the total amount of processed periods the last column

gives the percentage of processed periods in which a sub-model call is necessary. In the

last two rows summarizing information on the runtime is given. The penultimate row

gives back total runtime required to preprocess all area instances. The last row gives

back the ratio between the stochastic and deterministic cases for the three scenario

generation approaches.

Initial Demand Forecast # of %
Instance Forecast based based Mixed Average sub models of sub

scenarios scenarios scenarios (stochastic) to solve model calls

Very Easy 17 75 260 151 162 774 12.0%
1 17 108 305 211 208 2,068 44.0%
2 10 32 227 41 100 1,502 24.1%
3 12 19 174 61 85 564 7.3%
4 1 2 14 4 7 625 9.7%
5 0 0 0 0 0 0 0.0%
6 5 22 95 34 50 431 9.7%
7 114 551 1,688 1,147 1,129 1,632 19.8%
8 6 11 93 9 38 743 9.0%
9 0 0 0 0 0 0 0.0%
10 0 1 4 1 2 178 1.8%

Easy 1 7 46 16 23 494 3.7%
11 4 22 201 66 96 1,587 14.6%
12 0 3 7 3 4 224 3.4%
13 0 4 8 3 5 220 1.9%
14 0 3 7 3 4 342 5.2%
15 0 2 7 3 4 97 0.6%

Medium 17 87 330 142 187 1149 5.1%
16 37 204 938 405 516 3,350 21.1%
17 46 207 652 252 370 1,570 10.3%
18 0 4 5 14 8 79 0.7%
19 1 13 22 29 21 529 2.4%
20 1 9 32 12 18 218 0.8%

Hard 34 290 736 384 470 3942 12.7%
21 52 229 1,370 483 694 5,965 20.8%
22 80 628 1,205 717 850 5,501 18.3%
23 14 213 515 316 348 2,562 7.9%
24 18 318 465 300 361 3,319 12.2%
25 8 63 126 104 98 2,363 6.4%

Total 426 2,668 8,160 4,218 5,015 6,360 8.36%
Ratio 6.3 19.2 9.9 11.8

Table 7.3: Time required to preprocess the given area instance with the algorithms
described in Section 5.3 for the deterministic case or Section 5.6.1 for the
stochastic case with 10 scenarios respectively.
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Greater understanding can be gained from the data given in Table 7.3. First of

all it has to be mentioned that the runtime required for preprocessing is quite small,

but grows rapidly if multiple scenarios are considered. For the deterministic case the

total time required to preprocess all 25 area instances is about seven minutes (426

seconds). For the stochastic case this value ranges from 45 minutes (2,668 seconds) for

the demand based scenario alternative to two hours and 16 minutes (8,160 seconds)

for the forecast deviation scenario alternative. Furthermore, it can be observed that

the time required to preprocess an area instance depends not only on the number of

suppliers and delivery pro�les. Even though it can be seen that instances with a higher

number of suppliers take longer to be processed in general, there are some instances

that di�er exceptionally from this rule, especially areas 7, 16, 17, 18 , 19 and 25.

Whereas areas 7, 16 and 17 take longer to be preprocessed than could be expected

given the number of combinations, areas 17, 18 and 25 can be processed much faster

than would be expected, even though area 25 provides the highest number of suppliers.

This �nding can be explained by the fact that the runtime of the sub-model that is

solved for the pre leg cost evaluation accounts for the highest share of runtime in

the preprocessing algorithm. As described in Section 5.3.3 runtime can be saved by

leaving out the sub-model for periods in which freight does not exceed the capacity

of a single vehicle. When an area instance tends to provoke more sub-models to be

solved, the linear relation between number of suppliers and runtime is broken. This

can be seen when the number of sub models that have been solved in an area instance

preprocessing routine with its runtime is considered. It can be stated clearly that the

high share of pre leg sub-models to be solved explains the higher runtimes. In addition

to the number of sub-model calls the complexity of the sub-models is an important

factor in the preprocessing runtime. The more freight is involved in a single period,

the higher becomes the complexity of the sub-model as more vehicles and rebate levels

have to be included. More complex sub-models take longer to solve. Therefore the

preprocessing seems to be more sensitive to the freight volume transported in a certain

area than to the number of suppliers involved, as a high freight volume demands more

sub-models be solved.
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7.3.2 Evaluation of the generic model formulation

The generic formulation of the main model provided in Section 5.4 allows us to model

various tari� systems independently of the number of resources involved, the complexity

of the rebate level structure and so on. In addition it gives the opportunity to include

additional factors like carbon-dioxide, incoming goods personnel or penalties for certain

delivery days. This �exibility comes at the cost of runtime. Table 7.4 gives an overview

of the runtime and the remaining gap for the deterministic case. All area instances

were tested with a time limit of three ours or 10,800 seconds. Before the model solving

was started a starting value from the heuristic algorithms was passed over. In the

�rst column the area instance is referenced. The second column shows the runtime of

the solver in seconds. The next column gives back the gap between the starting value

passed over and the best bound that was found by the solver. The last column gives

back the gap between the best integer solution found by the solver and the best bound

found by the solver. Even for the deterministic case only the smaller area instances

could be solved to optimality. As the starting value is nearly optimal in most cases

only small improvements to the primal solution can be made. For the instances from

the hard set and instances 16 and 19 from the medium set, no optimal solution values

could be obtained within three hours. Thus no improving integer solutions could be

found. This may be a hint that the models formulation is not tight enough, as it takes

a lot of time to improve the bounds.

7.3.3 Evaluation of the simpli�ed model formulation for the stochastic case

The results from the algorithmic performance tests for the simpli�ed model for the

stochastic case are summarized in Table 7.5. In the �rst column a reference to the

area instance is created. The runtime of the solver in seconds is then given in the next

column. Thereafter the gap between the best LP relaxation bound and the starting

value is given in the starting value column. The gap between the best linear program-

ming relaxation bound and the best integer solution is presented in the last column.

As can be seen most instances can be solved to optimality easily. In most cases the

heuristic algorithms already �nd the optimal solution, and the solver only needs to

prove the optimality. Only for the instances 16 from the medium set and instances

from the hard set, could no optimal solution values be derived within the given time

limit of three hours. In these cases the solution of the heuristic algorithms could not
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Runtime Gap Gap

MIP starting MIP

Instance Gurobi value Gurobi

Very Easy 923 0.19% 0.01%

1 6970 0.73% 0.00%
2 23 0.26% 0.01%
3 1090 0.01% 0.01%
4 19 0.01% 0.01%
5 41 0.63% 0.00%
6 942 0.18% 0.01%
7 36 0.09% 0.01%
8 53 0.01% 0.01%
9 42 0.00% 0.00%
10 11 0.03% 0.01%

Easy 462 0.24% 0.01%

11 138 0.54% 0.01%
12 725 0.52% 0.01%
13 424 0.01% 0.01%
14 481 0.11% 0.01%
15 544 0.01% 0.01%

Medium 5,039 7.28% 7.21%

16 10,808 9.23% 9.23%
17 847 0.27% 0.01%
18 1,936 0.01% 0.01%
19 10,812 26.80% 26.80%
20 790 0.09% 0.01%

Hard 10,818 13.90% 13.90%

21 10,820 35.99% 35.99%
22 10,820 5.28% 5.28%
23 10,806 7.87% 7.87%
24 10,827 5.13% 5.13%
25 10,816 15.23% 15.23%

Table 7.4: Overview of the runtime for the generic model formulation for the determ-
inistic case.

be improved by the solver, but the optimality could not be proven either.

7.3.4 Evaluation of the heuristic algorithms

In the previous sections a heuristic starting value has been referred to. This heur-

istic starting value was generated by the algorithms presented in Section 5.5. The

detailed data on runtime and solution quality of the heuristic solution approaches is

given in Table 7.6. After the �rst column gives a reference to the area instance, the

second column shows the size of the search space available in form of possible combin-
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Runtime Gap Gap

Instance MIP starting MIP

Gurobi value Gurobi

Very Easy 332 0.19% 0.00%

1 417 0.73% 0.00%
2 99 0.26% 0.01%
3 92 0.00% 0.00%
4 42 0.00% 0.00%
5 5 0.63% 0.00%
6 71 0.18% 0.00%
7 2,549 0.09% 0.01%
8 21 0.01% 0.01%
9 1 0.00% 0.00%
10 26 0.03% 0.01%

Easy 111 0.13% 0.00%

11 487 0.54% 0.01%
12 8 0.01% 0.00%
13 21 0.01% 0.01%
14 4 0.11% 0.00%
15 33 0.01% 0.01%

Medium 5,221 1.07% 1.01%

16 10,849 4.58% 4.58%
17 402 0.27% 0.01%
18 30 0.00% 0.00%
19 10,845 0.42% 0.42%
20 3,979 0.09% 0.01%

Hard 10,956 3.52% 3.52%

21 10,941 3.54% 3.54%
22 10,989 1.87% 1.87%
23 10,842 2.70% 2.70%
24 10,924 3.51% 3.51%
25 11,086 5.97% 5.97%

Table 7.5: Overview of the runtime for the stochastic case with mixed scenarios for the
simpli�ed model formulation.

ations for these algorithms. The Local search column refers to the local search method

presented in Section 5.5.1. The genetic algorithm column gives back the results of the

implementation of the genetic algorithm as described in Section 5.5.2. In the Gurobi

column the results from the simpli�ed stochastic programming formulation presented

in Section 5.6.4 are given to allow an evaluation of the solution quality of the heuristic

algorithms. The heuristic solution values were close to the optimum or even optimal in

most cases. Note that the genetic algorithm performs much better than the local search

algorithm. This can be explained by the fact that synergy e�ects between di�erent de-
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Runtime in Seconds Gap Best

Instance Possible Local Genetic Local Genetic MIP

Combinations search Algorithm search Algorithm Gap

Very Easy 4,688,448 377 332 0.46% 0.19% 0.00%

1 65,536 310 306 0.73% 0.73% 0.00%
2 390,625 416 320 0.26% 0.26% 0.01%
3 390,625 340 334 0.00% 0.00% 0.00%
4 1,679,616 356 449 0.00% 0.00% 0.00%
5 1,679,616 329 313 0.00% 0.63% 0.00%
6 1,679,616 305 303 0.18% 0.18% 0.00%
7 1,679,616 481 340 1.04% 0.09% 0.01%
8 5,764,801 449 321 1.15% 0.01% 0.01%
9 16,777,216 316 305 0.00% 0.00% 0.00%
10 16,777,216 467 331 1.28% 0.03% 0.01%

Easy 157,224,673 672 342 1.80% 0.13% 0.00%

11 43,046,721 513 346 0.90% 0.54% 0.01%
12 100,000,000 606 321 0.02% 0.01% 0.00%
13 214,358,881 1164 349 2.14% 0.01% 0.01%
14 214,358,881 671 305 0.11% 0.11% 0.00%
15 214,358,881 407 388 5.82% 0.01% 0.01%

Medium 11,932,166,561 712 731 13.91% 1.07% 1.01%

16 815,730,721 978 998 36.40% 4.58% 4.58%
17 1,475,789,056 669 419 1.50% 0.27% 0.01%
18 2,562,890,625 605 355 2.62% 0.00% 0.00%
19 16,983,563,041 572 836 12.64% 0.42% 0.42%
20 37,822,859,361 735 1048 16.41% 0.09% 0.01%

Hard 636,222,171,687 858 1211 34.81% 3.52% 3.52%

21 152,587,890,625 631 1105 51.30% 3.54% 3.54%
22 208,827,064,576 443 895 37.74% 1.87% 1.87%
23 377,801,998,336 963 1115 21.62% 2.70% 2.70%
24 656,100,000,000 454 1450 20.21% 3.51% 3.51%
25 1,785,793,904,896 1800 1489 43.16% 5.97% 5.97%

Table 7.6: Overview on the heuristic runtimes and solution quality for the given area
instances.

livery pro�le assignments have to be achieved in order to improve the solution. If a

promising combination was found within a solution, it can be transferred to other solu-

tions during the recombination phase. Thus the principle of genetic evolution �ts the

problem setting very well. This can also be seen when the solution progress over time

is shown in detail. Figure 7.3 shows the solution progress over time for selected area

instances. Whereas the genetic algorithm provides a steady improvement with medium

sized steps, the local search algorithm swiftly rushes towards a local optimum and gets

stuck. To avoid this behavior a backup method has been introduced that restarts the
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Figure 7.3: Solution progress over time in comparison between local search and genetic
algorithm for two area instances.

local search on a random position if no further improvement can be achieved within a

reasonable number of tries. But as the probability of �nding a better assignment by

chance is quite low, only limited success has been achieved. In general it can be stated

that the genetic algorithm is clearly preferable to the local search method and that

the results yielded by the genetic algorithm are optimal in most cases for the smaller

instances. When it comes down to the implementation details of the genetic algorithm

it has to be noted that the possibility of adding a random solution, in case no improve-

ment could be made, during the last iterations is of high practical use. In Table 7.3.4

the number of improving solutions that have been found during the solution process of

the stochastic area instances for the forecast deviation based scenarios and their source

is depicted. In the �rst column a reference to the considered area instance is given.

The o�spring column gives back how many improving solutions have been found by

combining two parents. In the mutation column the respective number for the muta-

tion step is given. Finally, the random column displays the number of solutions that

have been found by the function which adds a random solution after no improvement

has been made in the previous iterations. It can be seen that on average the largest

share (45.8 %) of the improving solutions is found in the recombination step, followed

closely by the mutation step which is responsible for 41.8% of all improvements. Only

12.3 % of all improving solutions have been found by the 'fresh blood' function. When

interpreting these numbers it has to be kept in mind that the random solutions will

only be added in case that the algorithm could not �nd an improvement. Thus it can
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be shown that it can be prevented from getting stuck in a local optima by providing

the possibility to move through the solution space.

Source of improvement

Instance O�spring Mutation Random

Very Easy 176 185 145

1 7 8 12
2 11 21 15
3 26 16 18
4 9 28 12
5 18 13 13
6 11 11 11
7 24 19 14
8 24 27 20
9 19 9 16
10 27 33 14

Easy 197 155 60

11 44 29 18
12 38 21 8
13 34 35 12
14 19 20 12
15 62 50 10

Medium 340 285 73

16 57 59 11
17 62 45 21
18 61 37 12
19 84 62 13
20 76 82 16

Hard 573 549 68

21 90 82 10
22 94 118 12
23 125 129 18
24 116 112 16
25 148 108 12

Total 1286 1174 346

Share 45.8% 41.8% 12.3%

Table 7.7: Improving solutions found during the genetic algorithm procedure grouped
by their source.

7.4 Evaluation of monetary e�ects

In this section the monetary e�ects incurred by the di�erent delivery schedule gener-

ation approaches will be discussed. The di�erent outcomes expected by the di�erent
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planning approaches will �rst be described, followed by a discussion of the costs that

have �nally been realized during the simulated application in a rolling horizon. The ex-

pectations and the realized outcome will then be set in relation to each other to identify

to what degree the expected cost situation re�ects the �nal outcome. An examination

of the optimal post-ex solution is then o�ered to identify a lower bound on the realized

cost and to give an impression of how close the di�erent delivery schedule generation

approaches get to this lower bound. As the case study was performed on data from

practice the results are anonymized such that no conclusions on the company's freight

budget can be made. In order to make the results anonymous, so that no detail on

the company's business-critical data is given, the results are normalized, which means

that each area's realized cost was divided by a common variable. In so doing the cost

values are divided by the average total realized cost among all areas for the no-delivery

pro�les con�guration. A value of 100 equals the average areas realized total cost for

the no delivery pro�les con�guration. Thus the relevance of the depicted areas can still

be derived from the data without publishing the real cost value. At the same time it

is possible to draw comparisons between one con�guration and other con�gurations.

7.4.1 Expected costs

When it comes down to measuring monetary results case studies in the �eld of oper-

ations research often provide a comparison of an existing and an optimal solution for

the same problem instance. Two issues, however, remain unsolved. On the one hand

it is not clear whether these theoretic improvements can be achieved. On the other

hand a comparison of di�erent models can hardly be achieved, especially if objective

functions di�er or approximations allow di�erent solutions for both models. Aside

from these issues, providing the gap between the optimal solution and the achieved

solution can be used to measure the e�ciency of heuristic algorithms as these do not

necessarily provide an optimal solution. In the given case a comparison of di�erent

models is also possible as they provide the same objective function and level of detail

for cost modeling. In addition, the objective function value of the optimal solution

reveals the di�erent costs expected by the various solution approaches. Considering

the application of these approaches in a rolling horizon environment, it is of interest

what gap emerges between the expected and the realized costs.

Table 7.8 shows the expected savings of the di�erent con�gurations. The Area
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No Demand Forecast
Area Delivery Initial based deviation Mixed Kempkes

Pro�les Forecast scenarios scenarios scenarios

1 57.34 39.86 (30.5%) 39.86 (1.5%) 58.65 (1.4%) 48.84 (9.6%) 26.61 (53.6%)
2 43.28 41.45 (4.2%) 46.20 (4.4%) 45.90 (2.8%) 45.66 (11.1%) 32.22 (25.6%)
3 29.44 20.57 (30.1%) 20.57 (1.2%) 30.48 (7.0%) 25.65 (9.6%) 7.51 (74.5%)
4 27.85 17.90 (35.7%) 17.90 (1.2%) 28.53 (1.4%) 22.78 (10.4%) 4.30 (84.6%)
5 4.83 3.09 (35.9%) 3.09 (0.7%) 4.05 (2.7%) 3.71 (10.9%) 3.44 (28.8%)
6 44.49 37.51 (15.7%) 37.51 (0.3%) 47.16 (16.3%) 35.62 (11.9%) 18.77 (57.8%)
7 158.12 103.26 (34.7%) 103.26 (2.3%) 247.89 (1.9%) 182.42 (9.9%) 121.76 (23.0%)
8 29.72 18.84 (36.6%) 18.84 (0.2%) 28.87 (0.4%) 20.01 (8.4%) 10.96 (63.1%)
9 8.31 5.65 (32.0%) 5.65 (0.0%) 7.73 (1.0%) 6.36 (8.3%) 3.52 (57.7%)
10 19.96 14.16 (29.0%) 14.16 (0.0%) 21.47 (0.0%) 15.20 (8.3%) 3.96 (80.2%)
11 37.49 31.33 (16.4%) 31.33 (2.4%) 37.64 (3.1%) 34.96 (10.0%) 17.20 (54.1%)
12 40.71 29.89 (26.6%) 29.89 (2.2%) 43.01 (3.8%) 29.74 (12.0%) 4.74 (88.4%)
13 18.51 12.97 (29.9%) 12.97 (1.4%) 22.37 (2.3%) 18.42 (9.9%) 7.10 (61.6%)
14 22.70 19.75 (13.0%) 19.75 (19.9%) 22.65 (14.9%) 21.67 (23.0%) 10.74 (52.7%)
15 19.26 13.97 (27.5%) 13.97 (1.7%) 22.33 (0.9%) 18.82 (9.3%) 8.12 (57.8%)
16 42.28 31.69 (25.0%) 31.69 (1.7%) 40.62 (1.0%) 35.25 (10.0%) 36.90 (12.7%)
17 52.41 49.41 (5.7%) 49.41 (2.9%) 56.08 (0.8%) 52.71 (10.8%) 48.34 (7.8%)
18 25.84 25.63 (0.8%) 25.63 (3.5%) 30.12 (1.3%) 27.42 (10.5%) 6.94 (73.1%)
19 51.22 43.27 (15.5%) 43.27 (0.5%) 58.24 (3.8%) 50.21 (10.9%) 11.79 (77.0%)
20 31.58 25.59 (19.0%) 25.59 (0.0%) 38.88 (0.0%) 32.37 (8.3%) 27.03 (14.4%)
21 88.57 68.41 (22.8%) 68.41 (1.7%) 103.88 (1.7%) 85.33 (9.7%) 78.83 (11.0%)
22 234.66 183.66 (21.7%) 183.66 (2.8%) 255.55 (1.9%) 222.99 (11.0%) 100.47 (57.2%)
23 38.93 37.02 (4.9%) 37.02 (2.2%) 47.92 (3.1%) 37.83 (10.5%) 36.04 (7.4%)
24 98.99 92.12 (6.9%) 92.12 (0.4%) 108.65 (2.6%) 89.15 (10.1%) 83.74 (15.4%)
25 57.96 48.01 (17.2%) 48.01 (1.0%) 61.70 (2.0%) 56.38 (9.4%) 50.62 (12.7%)

No delivery pro�les 1284.5 1034.9 1512.3 1358.9 1284.5
Optimal solution 1015.0 1019.8 1470.4 1219.5 761.6
Expected savings 21.0% 1.5% 2.8% 10.3% 40.7%

Minimum 0.8% 0.0% 0.0% 8.3% 7.4%
Maximum 36.6% 19.9% 16.3% 23.0% 88.4%
Average 21.5% 2.2% 3.1% 10.6% 46.1%
Standard deviation 11.1% 3.9% 4.0% 2.8% 27.2%

Table 7.8: Expected costs and expected savings for all con�gurations.

column refers to the area instance that is considered in the row. The following columns

no delivery pro�les, initial forecast, demand-based scenarios, forecast deviation scen-

arios, mixed scenarios and Kempkes each refer to the cost resulting from a certain

alternative as described in Section 7.1.4. In each cell two values are given. The �rst

value is that of the normalized expected cost value, whereas the latter value (given in

brackets) re�ects the expected savings towards the no delivery pro�les con�guration.

The last rows gives a summary of the expected savings of all areas. The no delivery

pro�les row gives back what total cost is expected as the no delivery pro�les con�g-

uration is applied to the given demand set that is used by each con�guration. The
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optimal solution row gives back the total cost expected following the optimal solu-

tion for each con�guration. The savings row indicates the percentage saving that can

be expected. These are computed by subtracting the best objective value available

from the objective value for the no delivery pro�les con�guration. For the stochastic

models it has to be considered that these work with scenarios that have been gener-

ated on the given information rather than with the actual forecast, their underlying

demand expectations may di�er from the demand forecast which is used in the other

two con�gurations. Therefore their absolute expected value may be higher than the

absolute expected value for the no delivery pro�les con�guration in the deterministic

case. However, their expected absolute value is still lower than the value for the no

delivery pro�les con�guration in the stochastic case. The di�erence between these two

is given in the brackets in each cell. It is to be noted that the expected savings vary

between the di�erent areas. Accordingly, the last four rows contain the minimum ex-

pected saving, the maximum expected saving, the average expected saving and the

standard deviation of the savings among all areas. Apparently, the highest savings are

expected in the Kempkes con�guration, which proposes a total saving of 40.7 % over

all areas. The proposed saving varies from 7.4% to 88.4% with an average of 46.1% and

a standard deviation of 27.2%. Only two out of 25 areas have proposed savings of less

than 10 %. On the other hand, savings of more than 50 % are proposed for 15 areas.

The suberb expected results of the Kempkes con�guration can easily be explained.

Whereas the delivery pro�le based con�gurations are limited to ordering points and

lot sizes that comply with the given set of delivery pro�les, the algorithm behind the

Kempkes con�guration has a much higher degree of freedom. It can place any order in

any period as long as it reduces the objective value and is settled before the demand

date. The delivery pro�le based con�gurations, however, show diverse behavior. The

initial forecast con�guration promises an expected saving of 21.0% in total, with num-

bers ranging from 0.8% up to 36.5% per area. The average saving is given with 21.5%,

the other values are settled around the average with a standard deviation of 11.1%.

For the scenario-based con�gurations the values are not as high. In fact each scenario-

based con�guration has at least 14 values below 2.0 %. All three con�gurations provide

a small positive total expected saving. However, the savings range from 0% up to only

19.9 % for the demand-based scenarios con�gurations and from 0% to 16.3% for the

forecast deviation scenarios con�guration. The highest expected savings among the
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stochastic con�gurations can be observed in the mixed scenarios con�guration. The

expected savings range goes from 8.3% up to 23.0%, with an average of 10.6% and a

standard deviation of only 2.8 %. If the absolute numbers are considered, it can be seen

that there are di�erences between the expectations on future demand volume. The no

delivery pro�les con�guration is expected to provide a total cost value of 1284.5. Both

deterministic approaches that have made their computations based on the available

forecast data, the initial forecast con�guration and the Kempkes con�guration, o�er

signi�cantly lower values with values of 1015.0 and 761.6 respectively. The stochastic

approaches, however, with an exception for the demand-based scenarios con�guration

with a value of 1034.9, expect higher values than in the deterministic forecast-based

con�gurations. The forecast deviation scenarios estimates the total cost in the no de-

livery pro�les con�guration to be 1512.3, whereas the mixed scenarios con�guration

expects a value of 1358.9. For the forecast deviation scenarios con�guration, even the

optimal solution values are larger than the expected total cost in the deterministic no

delivery pro�les con�guration. This is a �rst indicator that the forecast tends to under-

estimate demand in general, as the scenarios are based on the observations on forecast

errors from the past. This indication is undermined by Figure 7.4, which shows the

expected procurement volumes and the real consumption. The �gure is normalized so

that the average consumption re�ects a value of 100 %. It can be seen that the forecast

procurement volume is lower than the real consumption. The demand-based scenarios

have the second lowest average value. As these are generated on historic consumption

data it could be argued that demand has risen during the training set and this change

has not yet been re�ected in the forecast that is used to forecast the test set. In addi-

tion, it can be seen that the forecast deviation-based scenarios follow patterns similar

similar to those of the forecast, but is higher on average. This shows that the problem

of too low forecasts also existed in the test set and leads to the expectation that future

forecasts will also be lower than the actual consumption. The mixed scenarios move

somewhere between the demand-based and the forecast-based scenarios, as they are

combined between the two.

7.4.2 Realized costs

In this section the costs that would �nally have been realized when the planning meth-

ods are used in a rolling horizon are evaluated. In so doing it can be evaluated how
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Figure 7.4: Expected procurement volume for the di�erent sources of demand inform-
ation and real consumption.

the delivery schedule generation approaches perform when uncertainty comes into play

and how performance di�ers from that predicted upfront using the optimal solution

objective values. In Table 7.9 an overview of the results from the simulation study is

given. The Area column refers to the area instance that is considered the row. The

following columns no delivery pro�les, initial forecast, demand-based scenarios, fore-

cast deviation scenarios, mixed scenarios and Kempkes each refer to the cost resulting

from a certain alternative as described in Section 7.1.4. In addition to the absolute

normalized value as described above, the initial forecast, demand-based scenarios, fore-

cast deviation scenarios and mixed scenarios columns contain a percentage savings

value. For the initial forecast con�guration the percentage value re�ects the savings

in comparison with the no delivery pro�les con�guration. For the three con�gurations

that have been created based on the stochastic programming approach the percentage

value gives back the savings in comparison with the initial forecast con�guration. The

additional savings due to the employment of a stochastic programming approach are
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thereby stressed. For the Kempkes con�guration column percentage savings value is

also based on the initial forecast con�guration. It can therefore be shown how much

additional savings may be achieved by employing a sophisticated order lot-sizing al-

gorithm for the delivery schedule generation. The last three rows of the table include a

summary of the results. In the total row the absolute normalized value over all areas is

summed up for each con�guration. The savings row gives back the percentage savings

towards the situation without delivery pro�les employed. In the additional row, the

total additional savings that can be achieved towards the initial forecast con�guration

are given. Three main �ndings can be derived from these results. First, it can be

No Demand Forecast
Area Delivery Initial based deviation Mixed Kempkes

Pro�les Forecast scenarios scenarios scenarios

1 43.0 20.38 (52.6%) 20.38 (0.0%) 20.38 (0.0%) 20.38 (0.0%) 16.97 (7.9%)
2 72.8 46.02 (36.8%) 46.02 (0.0%) 46.02 (0.0%) 46.02 (0.0%) 44.34 (2.3%)
3 31.2 18.09 (42.1%) 18.03 (0.2%) 18.09 (0.0%) 18.09 (0.0%) 16.73 (4.3%)
4 35.0 19.61 (44.0%) 18.50 (3.2%) 18.51 (3.1%) 18.51 (3.1%) 18.60 (2.9%)
5 13.0 9.31 (28.1%) 8.76 (4.2%) 8.43 (6.8%) 8.76 (4.2%) 8.97 (2.6%)
6 57.3 25.92 (54.8%) 25.92 (0.0%) 25.92 (0.0%) 25.92 (0.0%) 22.50 (6.0%)
7 273.5 237.65 (13.1%) 237.65 (0.0%) 237.65 (0.0%) 237.02 (0.2%) 227.52 (3.7%)
8 32.9 18.49 (43.7%) 18.49 (0.0%) 18.49 (0.0%) 18.49 (0.0%) 15.99 (7.6%)
9 12.5 7.20 (42.3%) 7.20 (0.0%) 7.20 (0.0%) 7.20 (0.0%) 5.89 (10.5%)
10 22.7 14.88 (34.5%) 14.83 (0.2%) 14.88 (0.0%) 14.83 (0.2%) 13.22 (7.3%)
11 43.5 30.25 (30.5%) 30.28 (-0.1%) 30.25 (0.0%) 30.25 (0.0%) 28.62 (3.8%)
12 68.0 33.44 (50.8%) 32.68 (1.1%) 33.54 (-0.1%) 33.44 (0.0%) 27.54 (8.7%)
13 29.6 19.56 (33.9%) 19.58 (-0.1%) 19.56 (0.0%) 19.56 (0.0%) 17.30 (7.6%)
14 63.2 45.78 (27.6%) 45.78 (0.0%) 45.78 (0.0%) 44.56 (1.9%) 44.31 (2.3%)
15 37.0 27.54 (25.5%) 27.57 (-0.1%) 27.55 (0.0%) 27.55 (0.0%) 26.19 (3.7%)
16 44.8 28.15 (37.2%) 28.15 (0.0%) 28.15 (0.0%) 28.15 (0.0%) 26.42 (3.9%)
17 87.2 54.28 (37.8%) 53.06 (1.4%) 53.09 (1.4%) 53.03 (1.4%) 53.53 (0.9%)
18 40.4 20.44 (49.5%) 20.44 (0.0%) 19.81 (1.5%) 20.44 (0.0%) 18.85 (3.9%)
19 106.5 73.27 (31.2%) 73.26 (0.0%) 73.28 (0.0%) 73.28 (0.0%) 70.25 (2.8%)
20 102.1 79.84 (21.8%) 79.85 (0.0%) 79.80 (0.0%) 79.85 (0.0%) 77.21 (2.6%)
21 212.3 200.36 (5.6%) 200.39 (0.0%) 200.36 (0.0%) 200.36 (0.0%) 188.40 (5.6%)
22 472.6 391.81 (17.1%) 391.76 (0.0%) 391.76 (0.0%) 391.76 (0.0%) 379.08 (2.7%)
23 59.5 38.61 (35.1%) 38.61 (0.0%) 38.74 (-0.2%) 38.58 (0.0%) 35.12 (5.9%)
24 401.0 371.82 (7.3%) 359.31 (3.1%) 359.31 (3.1%) 359.31 (3.1%) 345.34 (6.6%)
25 138.5 95.13 (31.3%) 95.97 (-0.6%) 95.27 (-0.1%) 95.45 (-0.2%) 85.33 (7.1%)

Total 2500.00 1927.84 1912.46 1911.84 1910.81 1814.23
Savings 22.89% 23.50% 23.53% 23.57% 27.43%

Additional 15.39 16.00 17.03 113.61
% 0.62% 0.64% 0.68% 4.54%

Table 7.9: Overview of the realized total cost of each area as derived from the simulation
study.

seen that intelligently chosen delivery pro�les not only provide a theoretical savings

potential but also perform well in a rolling horizon application. An overall saving of
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22.89 % of freight and inventory-related cost could be achieved for the deterministic

case. This value di�ers largely depending on the considered instance. Whereas some

smaller areas can obtain savings of up to 54.8 %, the largest four instances can be

improved by only 7.3 % to 17.1 %. A chief reason for this observation is that a large

share of goods from these areas is transported via full load runs, because a reasonable

share of goods in high volumes is ordered from few suppliers. This leads to multiple full

load run vehicles per day even without an assigned delivery pro�le and therefore does

not provoke a need for consolidation. Most suppliers of such size have been removed

from the area forwarding network and their goods are delivered via separated freight

contracts. Owing to multiple products' life cycles interfering with each other, the set

of those high-volume suppliers changes over time. As the identi�cation of those suppli-

ers is made infrequently, some may still be connected to the area forwarding network,

as is the case for some areas in the case study. Second, a robust planning approach

based on the consideration of multiple scenarios in a stochastic programming approach

can further increase the savings. When it comes down to a comparison between the

deterministic solution based on the initial forecast and the stochastic programming ap-

proaches it can be seen that for most area instances no signi�cant improvement towards

the deterministic solution can be achieved. The overall savings can be increased from

22.89 % for the deterministic case up to 23.57 % for the mixed scenarios con�guration.

For 7 out of 25 area instances the savings have even been reduced for the stochastic

approach independently of the scenario generation approach. However, these savings

reductions are rather small with an average of -0.12 % for the demand-based scenarios

con�guration, -0.07 % for the forecast deviation scenarios con�guration and -0.04 %

for the mixed scenarios con�guration. On the other hand the area instances with an

improvement bene�t with an average of 1.23 %, 1.78 % and 1.31 % respectively. If

these values are weighted with the area instances relevance, a further improvement

of 0.62 % for the demand-based scenarios con�guration, 0.64 % for the forecast de-

viation scenarios con�guration and 0.68 % for the mixed scenarios con�guration can

be observed. Even though these numbers may seem ridiculously small, the absolute

savings per year are still quite presentable and account for 15 % to 17 % of an av-

erage areas total cost in the no delivery pro�les con�guration. Third, even though

the results based on the rule-based delivery schedule generation through delivery pro-

�les provide valuable savings in comparison with the default con�guration with no
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order lot-sizing optimization methods in place, a state-of-the-art algorithmic approach

may still provide higher savings than a rule-based approach. On average the Kempkes

con�guration provides additional savings of about 4.54 % towards the initial forecast

con�guration, which accounts for 113 % of an average areas total cost in the no delivery

pro�les con�guration. The overall savings can be raised from 22.89 % for the initial

forecast con�guration or 23.57 % for the mixed scenarios con�guration up to 27.43 %

for the Kempkes con�guration.

To understand the details of these cost reductions it is necessary to take a closer look

at the cost components involved in the case study. Figure 7.5 shows the distribution

of the total realized cost on the di�erent cost components. The cost components

considered in the case study include cost for full load runs, pre leg runs, main leg runs

and inventory holding cost. In the no delivery pro�les con�guration the full load run

accounts for 33.65 % of all cost, the pre leg run 15.94 % and the main-leg runs 33.6

% respectively. At the same time inventory holding costs of about 16.8 % occur based

on the given safety stock parameters. When delivery pro�les are applied based on the

initial forecast con�guration, pre leg run cost are cut by almost 50 % to about 7.41 %

of the total cost in the no delivery pro�les con�guration. Main-leg run costs are also

reduced by about 50 % down to 15.92 % of the total cost in the no delivery pro�les

con�guration. This improvement is achieved by increasing vehicle use by cumulating

orders on delivery days. This leads to an increase in both full load run cost and

inventory holding cost. The full load run costs are increased as some additional full

load runs can be used. Inventory holding costs increase as materials have to be ordered

in advance and are then stored in inventory until they are �nally used for production. In

the stochastic cases for the demand-based scenarios con�guration, the forecast deviation

scenarios con�guration and the mixed scenarios con�guration show only little changes.

There is a slight tendency to use fewer full load runs and inventory, while at the same

time pre leg runs and main leg runs are used more e�ciently. This may be caused by

a more cautious use of delivery pro�les. In the Kempkes con�guration the inventory

holding costs are further increased to lower pre leg run costs and main leg run costs.

Thereby the degree of freedom in order making reveals its strength. In comparison

with the no delivery pro�les con�guration both pre leg run and main leg run costs are

reduced to about one third of the original value. At the same time share of inventory

holding cost is further increased to 21.94 % of the total cost in the no delivery pro�les
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Figure 7.5: Cost components for the realized cost.

con�guration.

7.4.3 Value of perfect information

In this Section a comparison is drawn between the theoretically expected costs, the real-

ized outcome when the delivery schedule generation approaches are used in a rolling

horizon, and the best possible solution that can be derived post-ex. The result of

this examination is twofold. On the one hand the predictability of the outcome of the

di�erent con�gurations can be determined. On the other hand the disruptions caused

by forecast errors and their e�ect on the di�erent con�gurations can be numbered.

To evaluate the predictability of the di�erent con�gurations the expected savings are

compared with the realized savings. It would not make sense to compare the absolute

values as both are created upon di�erent demand information. However, the percentage

saving may still be comparable, especially if multiple values are taken into considera-
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tion. If a correlation between expected and realized savings can be observed, it eases

the development of a business case analysis for a possible application to practice, as

the savings can be expected to be similar in both theory and practice.

No Demand Forecast

Delivery Initial based deviation Mixed Kempkes

Pro�les Forecast scenarios scenarios scenarios

Expected No delivery pro�les
1284.5 1284.5 1034.8554 1512.2505 1358.94081 1284.5

Expected
- Optimal solution - 1015.0 1019.8 1470.4 1219.5 761.6
- Savings - 21.0% 1.5% 2.8% 10.3% 40.7%

Realized
- Total cost 2500.0 1927.8 1912.5 1911.8 1910.8 1814.2
- Savings - 22.9% 23.5% 23.5% 23.6% 27.4%

Savings Prediction error
Total savings -1.9% -22.0% -20.8% -13.3% 13.3%
Average savings -11.9% -31.6% -30.9% -23.4% 7.8%

Table 7.10: Savings prediction error of the di�erent con�gurations.

Table 7.10 shows the predictability of the di�erent con�gurations outcome. At �rst

sight it can be seen that the expected total values di�er signi�cantly from those that

have �nally been realized. The expected total values vary from about 40% of the value

that has �nally realized for the demand-based scenarios con�guration to about 60 %

for the forecast deviation scenarios con�guration. This huge gap can be explained

by three factors. First, the underlying expectations of future demand vary from the

demand situation �nally realized. Second, in the realized total cost, inventory safety

parameters are considered, which force a higher overall inventory holding cost value.

Third, the expected costs do not consider the rolling horizon e�ects which may force

ine�ciencies in form of orders that were not necessary and emergency orders that

have to be placed. Aside from the gap in respect of the total values, di�erences in

respect of designated savings can be observed. This gap varies between the di�erent

con�gurations. In the initial forecast con�guration the total savings prediction error

is about -1.9%, which means that savings are estimated to be slightly lower than the

realized savings. However, the average savings prediction error is higher with a value

of -11.9%. For the stochastic con�gurations these values are much higher, ranging from
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-13.3% total savings prediction error for the mixed scenarios con�guration to -22.0%

for the demand-based scenarios con�guration. It can be noted that all delivery pro�le-

based con�gurations underestimate the possible savings. The expected savings from

the stochastic approaches are so low that they cannot be considered to be valid for an

approximation of the expected savings. This may be the case because the stochastic

approaches have to satisfy multiple scenarios at once, thus it is harder to obtain a

serious savings value as the distribution of demand among the week days - an important

factor for the synergy e�ects in the main leg run - is di�erent in the di�erent scenarios

and thus delivery pro�les become less advantageous in comparison with a solution

without delivery pro�les. The Kempkes con�guration is the only con�guration that

actually overestimates the savings. The expected total savings of about 40.7% cannot

be held in the rolling horizon. Rather, the total savings are reduced by 13.3% to 27.4%

in total. The larger areas are more strongly a�ected than are the smaller ones, as the

average savings prediction error per area with a value of 7.8% is lower than the total

savings prediction error.

To measure the disruptions caused by forecast errors and the rolling horizon e�ects

the value of perfect information (VOPI) can be used. The value of perfect information

gives back how much the realized costs could have been improved if the uncertainty on

demand forecasts had not existed and the real consumption of goods had been known

in advance. At the same time the value indicates how much a company would be

willing to pay to eradicate the errors from the forecast. This is derived by computing

an optimal post-ex solution as a lower bound on the realized cost value. This post-ex

solution is then subtracted from the realized cost and the remainder is called value

of perfect information. If the value is signi�cantly high, it is a hint that investments

in better forecasting systems or more stable production schedules may be pro�table.

Aside from the perspective on information quality, it can be used to evaluate the quality

of the solution derived in the rolling horizon. The optimal post-ex solution is the lower

bound for all planning approaches. Therefore the gap between the realized costs and

the lower bound gives back how well the planning approach has performed in the rolling

horizon, as the VOPI indicates to what degree the planning approach has been a�ected

by the di�culties that occur in a rolling horizon planning scenario.

Table 7.11 compares the optimal savings that could have been achieved with the

savings that have been realized to derive the value of perfect information. The table is
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Instance

A priori Post-ex

Best Optimal Optimal

delivery Kempkes delivery Kempkes

MRP pro�les solution pro�les Solution

1 43.0 20.38 (47.4%) 16.97 (39.5%) 14.66 (34.1%) 13.53 (31.4%)
2 72.8 46.02 (71.1%) 44.34 (112.4%) 51.72 (71.1%) 50.28 (69.1%)
3 31.2 18.03 (55.4%) 16.73 (95.9%) 17.29 (55.4%) 14.16 (45.3%)
4 35.0 18.50 (51.1%) 18.60 (96.9%) 17.92 (51.1%) 16.01 (45.7%)
5 13.0 8.43 (80.0%) 8.97 (122.9%) 10.36 (80.0%) 10.25 (79.1%)
6 57.3 25.92 (44.1%) 22.50 (97.6%) 25.29 (44.1%) 20.49 (35.7%)
7 273.5 237.02 (52.6%) 227.52 (60.7%) 143.87 (52.6%) 132.39 (48.4%)
8 32.9 18.49 (49.6%) 15.99 (88.2%) 16.31 (49.6%) 15.33 (46.6%)
9 12.5 7.20 (64.1%) 5.89 (110.9%) 7.99 (64.1%) 7.72 (61.9%)
10 22.7 14.83 (60.2%) 13.22 (92.3%) 13.69 (60.2%) 11.38 (50.1%)
11 43.5 30.25 (93.8%) 28.62 (134.9%) 40.83 (93.8%) 39.22 (90.1%)
12 68.0 32.68 (38.9%) 27.54 (80.8%) 26.41 (38.9%) 24.01 (35.3%)
13 29.6 19.56 (75.6%) 17.30 (114.3%) 22.36 (75.6%) 21.89 (74.0%)
14 63.2 44.56 (76.1%) 44.31 (108.0%) 48.13 (76.1%) 45.88 (72.6%)
15 37.0 27.54 (68.9%) 26.19 (92.5%) 25.47 (68.9%) 22.65 (61.3%)
16 44.8 28.15 (48.0%) 26.42 (76.4%) 21.50 (48.0%) 19.56 (43.7%)
17 87.2 53.03 (80.3%) 53.53 (132.1%) 70.07 (80.3%) 58.12 (66.6%)
18 40.4 19.81 (51.2%) 18.85 (104.5%) 20.70 (51.2%) 19.98 (49.4%)
19 106.5 73.26 (67.5%) 70.25 (98.0%) 71.82 (67.5%) 62.54 (58.8%)
20 102.1 79.80 (80.0%) 77.21 (102.3%) 81.64 (80.0%) 76.54 (75.0%)
21 212.3 200.36 (69.5%) 188.40 (73.6%) 147.48 (69.5%) 136.50 (64.3%)
22 472.6 391.76 (46.9%) 379.08 (56.6%) 221.69 (46.9%) 217.99 (46.1%)
23 59.5 38.58 (58.4%) 35.12 (90.1%) 34.75 (58.4%) 31.24 (52.5%)
24 401.0 359.31 (78.4%) 345.34 (87.5%) 314.27 (78.4%) 250.98 (62.6%)
25 138.5 95.13 (58.8%) 85.33 (85.6%) 81.40 (58.8%) 76.86 (55.5%)

Total 2500.00 1908.61 1814.23 1547.61 1395.52

Savings 23.66% 27.43% 38.10% 44.18%

VOPI absolute 94.38 361.01 418.71

% VOPI 3.78% 14.44% 16.75%

Table 7.11: Realized savings in comparison with the optimal savings that could have
been achieved if all information had been available at planning time.

divided into two parts. The �rst part displays the best realized value in the rolling ho-

rizon for both the delivery pro�le based con�gurations and the Kempkes con�guration.

This part is called a priori as the delivery schedule generation approaches have worked

with the information that was available at planning time. The second part of the table

shows the optimal solutions of a model that has been solved based on the demand

that has �nally realized. This part is called post-ex as the optimal solution has been

computed on information that was available after the considered period range. The
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savings that could have been realized if all information had been available in advance

and are signi�cantly higher than the realized savings. For the delivery pro�le based

con�gurations a total saving of about 38.10% could have been realized, which means

that the savings could have been increased by 14.44% of the realized total costs in the

no delivery pro�les con�guration. Under availability of all information the Kempkes

con�guration could have lowered the total costs by 44.18% in total, thereby increas-

ing the savings towards the realized savings by 16.75% of the total realized costs in

the no delivery pro�les con�guration. Here the limitation of the delivery pro�le based

approaches to using delivery pro�les rather than exploring the whole solution space

is obvious. However, the distance between the optimal and achieved values is smaller

for the delivery pro�le based approaches than for the Kempkes con�guration. This

is consistent with the observations on the predictability of the savings that has been

discussed above. In addition it shows that delivery pro�le based approaches are less

a�ected by rolling horizon di�culties than is the Kempkes con�guration.

7.5 Stability of the generated delivery schedules

As shown in section 2.3.1 the stability of the delivery schedule plays an important

role in practice as it determines how e�ciently suppliers can react to the changing

requirements. It will accordingly be determined if and how well delivery pro�les can

improve the stability of the delivery schedules in comparison with the standard MRP

planning and the algorithmic delivery schedule generation. To measure the stability of

the generated delivery schedules all delivery schedules have been collected during each

simulation run. These schedules have then been compared and the following measures

have been computed separately for each simulation run:

� MAD The mean absolute deviation of the observed quantities per period, meas-

ured as percentage of average demand.

� MPE The mean percentage error of the observed quantities per period, measured

as percentage of average demand.

� Q− The average percentage overestimation of demand. An underestimation of

demand will be measured as a zero value.
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� A+ Time and quantity based measure for underestimation of demand, as de-

scribed in Section 6.2.2.

� Q+ The average percentage underestimation of demand. An overestimation of

demand will be measured as a zero value.

� A− Time and quantity based measure for overestimation of demand, as described

in Section 6.2.2.

The general results of these stability assessments can be seen in the Table 7.12.

Each row represents one delivery schedule generation con�guration, whereas the

columns cover the indicators. It can be seen that the �uctuations are signi�c-

ant. For the no delivery pro�les con�guration the mean absolute deviation is

about 74.1 %, which means that on average the quantity-�uctuations follow a

bandwidth from +75% to −75% around the targeted value. It has hereby to be

considered that a shift in time will always be regarded as two changes with 100

% each, as discussed in Section 3.3. The mean percentage error indicates that

the �uctuations are mainly driven by underestimations of demand, thus lower

values are submitted at the beginning and are scaled up in later delivery sched-

ules. On average the quantity is 23.8 % below the value in the next forecast.

The overestimations in quantity (Q−) are given with an average of 25.1 %, which

re�ect themselves in an area of overestimation (A−) of 24.4 %. Much higher are

the values for the underestimation, with 49.0 % for the quantities and 40.5% for

the area of underestimation. This high �uctuation can be dampened strongly

by employing delivery pro�le based delivery schedule generation approaches. For

the corresponding con�gurations initial forecast, demand-based scenarios, fore-

cast deviation scenarios and Mixed scenarios, the average mean percentage error

is lowered to only 5.1 % up to 6.2 %. The overestimation of demand is slightly

increased, from 25.1% to around 28 % for Q− and from 24.4 % to 24.7 % for

the area of overestimation. However, the much more critical underestimations

are drastically reduced. The average quantity underestimation is lowered from

49 % to around 34 %, and the area of underestimation can be decreased from

40 % to 16 %. Thus it can be said that employing delivery pro�les reduces the

overall �uctuation in demand especially by lowering the undesired underestim-

ations of demand. Comparison of the di�erent techniques which are based on
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delivery pro�les shows that the initial forecast con�guration provides stronger

stability improvements than do the three stochastic cases. This holds true for

all considered indicators indicators. The numbers for the Kempkes con�guration

also show an improvement towards the no delivery pro�les con�guration. How-

ever, in comparison with the delivery pro�le based con�guration the Kempkes

con�guration generates less stable delivery schedules. Interestingly, the Kempkes

con�guration tends more often to underestimate than to overestimate demand.

This leads to an increased mean percentage error (17.1 % for the Kempkes con-

�guration vs. 5.1% for the initial forecast con�guration) and increased values

for Q+ and A+ (41.2 % vs 33.3 % and 26.9 % vs 16.0 % respectively). Though

the key �gures for the underestimation of demand are worse than in the delivery

pro�le based con�gurations, the �gures for overestimations of demand are even

better than in the no delivery pro�les con�guration.

MAD MPE Q− A− Q+ A+

No delivery pro�les 74.1% 23.8% 25.1% 24.4% 49.0% 40.5%
Initial forecast 61.5% 5.1% 28.2% 24.6% 33.3% 16.0%

Demand based scenarios 61.6% 5.5% 28.1% 24.5% 33.6% 16.6%
Forecast deviation scenarios 62.1% 6.2% 28.0% 24.2% 34.2% 17.1%

Mixed scenarios 62.4% 5.5% 28.5% 24.7% 34.0% 16.8%
Kempkes 65.3% 17.1% 24.1% 20.9% 41.2% 26.9%

Average 64.5% 10.5% 27.0% 23.9% 37.5% 22.3%

Table 7.12: Overview of key stability indicators for the di�erent con�gurations.

Not all parts are a�ected in the same intensity by the positive e�ects on the stability

of the generated delivery pro�les. Especially for the delivery pro�le based approaches

it has to be considered that some suppliers have the delivery pro�le W11111 assigned,

which will lead to a delivery schedule that equals the delivery schedule from the no

delivery pro�les con�guration. In Table 7.13 only the parts which do not have deliv-

ery pro�le W11111 assigned in the initial forecast con�guration are considered. For

these parts it can be shown that the improvements are much stronger than they are on

average. These parts are mainly those with infrequent demands that pose additional

trouble for both the suppliers and the OEMs due to their irregular demands. The mean

absolute deviation is almost halved from 68.6% in the no delivery pro�les con�guration

to 35.1 % in the initial forecast con�guration. The mean percentage error is reduced

to 1.1 % from 30.5 %. This is achieved by a slight reduction of overestimations and a

178



7.5 Stability of the generated delivery schedules

signi�cant reduction in underestimations. The quantity-based measure Q− is reduced

from 19.1 % down to 17.0 % and the time and quantity based measure A− is reduced

from 19.3 % to 13.9 %. In the case of underestimations the improvement is even more

signi�cant, reducing the value for Q+ from 49.6% to 18.1% and the value for A+ from

41.6% to 8.9%. It has to be mentioned that the distance between the initial forecast

con�guration and the three stochastic delivery pro�le selection approaches becomes

larger in this analysis. As the base for the given analysis is the set of parts that have

not assigned the delivery pro�le W11111 in the initial forecast con�guration, it may

be that other delivery pro�les are assigned to the corresponding suppliers in the other

con�gurations. Therefore these values cannot be seen as representative. However, it

is possible to draw a comparison with the Kempkes con�guration. Again, the pattern

of lower overestimations but higher underestimations can be observed for this subset

of parts. The Q− and A− values are close to zero with 7.5% and 7.0% respectively,

whereas the underestimation values Q+ and A+ are quite high with 36.8% and 32.4%.

The underestimation of part demands in subsequent delivery schedules is the most

MAD MPE Q− A− Q+ A+

No delivery pro�les 68.6% 30.5% 19.1% 19.3% 49.6% 41.6%
Initial forecast 35.1% 1.1% 17.0% 13.9% 18.1% 8.9%

Demand based scenarios 49.2% 4.5% 22.3% 19.0% 26.9% 15.4%
Forecast deviation scenarios 53.3% 5.6% 23.9% 18.9% 29.5% 16.7%

Mixed scenarios 51.4% 4.2% 23.6% 19.2% 27.8% 15.3%
Kempkes 44.4% 29.3% 7.5% 7.0% 36.8% 32.4%

Average 50.3% 12.5% 18.9% 16.2% 31.4% 21.7%

Table 7.13: Overview of key stability indicators for parts that do not have delivery
pro�le W11111 assigned in the initial forecast con�guration.

important indicator of instability in delivery schedules. Demands that have been in-

creased or shifted forward may pose problems for the supplier's production planning.

To provide a more detailed analysis of this key �gure the parts have been grouped into

categories based on their average underestimation. Figure 7.6 shows the distribution

of the parts into the di�erent risk groups. Parts without any underestimations are

grouped in the dark green section; parts with an average between 0 % and 10 % un-

derestimation are grouped into the second section marked in a slightly lighter shade

of green; parts with an average between 10 % and 20 % in the third section marked

with a very light green, and so on. The dark red section covers parts with an average
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underestimation of more than 50 %. On the x-axis the di�erent con�gurations are lis-

ted. Each con�guration has a bar assigned that gives back the percentage distribution

of parts within each risk group. In the no delivery pro�les con�guration the share of

parts with an acceptable level of underestimations with values below 20 % is 35.3 %.

Another 33.5 % of parts are within 20 % and 50 % underestimation, while 31.2 % of

all parts have such instable delivery schedules that underestimations are higher than

50 %. In the initial forecast con�guration 77.8 % of all parts are in the acceptable

region. Only 15.4 % are in the middle groups between 20 % and 50 %, and the group

of very instable parts with more than 50 % underestimation is reduced to 6.7 %. The

share of parts with huge underestimations from one schedule to another are reduced

drastically, more than three out of four parts are acceptable. The limitation of worst

parts down to 6.7 % is an especially worthy improvement. The only drawback is that

the number of parts with no underestimation at all is slightly reduced from 26.2 % to

20.9 %. However, 54.7 % of all parts are below 10 % average underestimation, which is

an improvement of 26.4 %. For all four delivery pro�le based methods the �gures are

similar. It can be observed that the con�gurations that chose delivery pro�les based

on stochastic models provide slightly smaller enhancements. The Kempkes con�gura-

tion provides better results than the no delivery pro�les con�guration. However, the

underestimations from one delivery schedule to another is signi�cantly higher than in

the delivery pro�le based con�gurations. The share of parts in the acceptable range

below 20 % is reduced by 21.4 % to 56.4 %, even though the share of parts with no

underestimations is increased from 20.9 % to 25.7 %. More critical than the reduction

of acceptable parts is the increased share of parts with more than 50 % uncertainty,

which is 17.4 % in the Kempkes con�guration. The share of these irregular parts is

thereby doubled towards the delivery pro�le based con�gurations.

In summary it can be stated that all other con�gurations provide an improvement in

stability towards the no delivery pro�les con�guration. The delivery pro�le based con-

�gurations yield the highest improvement in stability, with slight di�erences between

the con�gurations. The deterministically chosen delivery pro�les in the initial forecast

con�guration provide the strongest enhancement but the distance to the stochastic

con�gurations is small. The Kempkes con�guration provides an improvement towards

the no delivery pro�les con�guration, but is considerably less successful in terms of

delivery schedule stability than the delivery pro�le based con�gurations. In addition it
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Figure 7.6: Distribution of parts based on the percent degree of underestimation.

can be stated that the Kempkes con�guration tends greatly to underestimate demands,

whereas the delivery pro�le based con�gurations have overestimations and underestim-

ations on a similar level.

7.6 Inventory behavior

The level of inventory should be determined by the given safety parameter settings.

As the safety lead-time component provides a dynamic inventory level, the desired

level cannot exactly be determined beforehand, but is rather a result of the simulation

process. Every delivery schedule generation approach discussed in this thesis uses a

time-based consolidation approach which requires additional inventory in comparison

with the basic MRP scheduling. It was therefore analyzed what e�ects this additional

inventory has had on the inventory performance in total. Two indicators are of special
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importance. On the one hand the additional inventory deployed may have a positive

e�ect on the number of necessary escalation processes. Escalation processes should be

avoided if possible. Thus the in�uence of the delivery schedule generation approach

on the number of necessary escalation processes is measured and analyzed. On the

other hand it may be that due to the uncertain future demand inventory is built up

according to a forecast and never used afterwards, leading to the necessity to scrap

material in the worst case. Accordingly, the e�ect of the underlying delivery schedule

generation approach on the quantity of excess inventory is discussed in the following.

Figure 7.7 shows the number of escalation processes in relation to the inventory

holding costs for each con�guration that has been measured in the simulation study.

In so doing both the number of escalation processes and the inventory holding costs

are normalized so that the number of escalation processes in the no delivery pro�les

con�guration equals a value of 100 %. It can be seen that employing delivery pro�les

independently from the planning con�guration signi�cantly improves the total number

of escalation processes. The total number of escalation processes is reduced by more

than 52.5 % for all four con�gurations. At the same time the inventory holding costs are

increased by about 16 %. It can therefore be said that the additional inventory holding

costs are justi�able both in terms of freight cost reduction and increased supply safety.

This holds true for all con�gurations with delivery pro�les involved. Slight di�erences

appear between the exact values but the trend is the same. The algorithmic delivery

schedule generation approach from the Kempkes con�guration also deploys additional

inventory. Thus the number of escalation processes is also reduced. But, as can be

seen, the e�ect is not as strong as it is for the delivery pro�le related con�gurations,

even though the additional inventory holding costs are higher. Here a 30.5 % increase

in inventory holding costs results in a reduction of only 33.5 % in escalation processes.

Thus, it can be argued that the additional inventory is used less e�ciently by the

algorithmic approach. For the con�gurations using the delivery pro�le control rule to

generate delivery schedules a one-percent increase in inventory holding costs yields 3.25

% reduction in escalation processes, whereas the Kempkes con�guration only yields 1.1

%. Of course these numbers cannot be transferred to other contexts, but for the given

case study it can be argued that the additional inventory created by the delivery pro�le

based approaches is almost three times as e�ective as the inventory built up by the

algorithmic approach in terms of increasing supply safety.
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Figure 7.7: Number of escalation processes, percentage of orders without escalation
processes and inventory holding costs for each con�guration.

Figure 7.8 illustrates the inventory level over time for the no delivery pro�les, initial

forecast and the Kempkes con�gurations. The values are normalized on the average in-

ventory in the no delivery pro�les con�guration. The normalized consumption volume

is also given. The inventory rises over the whole simulation horizon in all three con-

�gurations. A �rst assumption may be that the consumption volume also rises and

causes additional inventory due to the given safety parameters. But as can be seen in

the diagram this is not the case. Rather, the consumption volume slowly decreases over

time. The increased inventory levels can be explained by two facts. On the one hand,

the initial inventory value is an idealized value, as is explained in Section 6.1.5. On the

other hand the forecasts contain overestimations of demand in various periods. Over

time these overestimations pile up as goods are ordered but not consumed directly or

even at all during the whole simulation horizon. These parts provide a certain risk of
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Figure 7.8: Inventory level over time for three selected con�gurations.

being scrapped in the end, as it is unsure whether or not they will be used in future.

For the no delivery pro�les con�guration the e�ect is the weakest. At the beginning

the inventory is about the idealized 95.1 % of the average inventory. At the end of

the simulation horizon inventory value rose to 107.8 %. For the initial forecast con�g-

uration, however, the inventory value rises to 151.7 %. In the Kempkes con�guration

the value is doubled to 190.7 % at the end. It can also be seen that the Kempkes

con�guration and the initial forecast con�guration produce irregular inventory peaks.

These peaks can be explained by the deployment of inventory to achieve freight cost

reductions. They are higher in the Kempkes con�guration than in the initial forecast

con�guration. The extend of the peaks is re�ected by the standard deviation of the

inventory value per period. The standard deviation for the no delivery pro�les con�g-

uration is the lowest with 8.2 %, thereafter following the initial forecast con�guration

with 13.4 % and the Kempkes con�guration with a standard deviation of 21.5 %.

184



7.6 Inventory behavior

No Demand Forecast
Delivery Initial based deviation Mixed Kempkes
Pro�les Forecast scenarios scenarios scenarios

Average days on stock 4.19 5.98 6.02 6.06 6.01 7.13
% of parts with
· inventory > safety inventory 25.25% 33.92% 34.12% 33.69% 33.84% 39.72%
· days on stock > 1 month 16.80% 19.51% 19.70% 19.31% 19.25% 20.19%
Value of above parts 36.26 39.64 40.09 39.93 39.83 43.23
Di�erence vs. no delivery pro�les 3.38 3.84 3.68 3.57 6.98
Increase in % 9.34% 10.58% 10.14% 9.86% 19.25%

Table 7.14: Figures on end-of-simulation inventory for the di�erent con�gurations.

Table 7.14 shows the most important �gures on end-of-simulation inventory for the

di�erent con�gurations. Each column gives back the numbers for a speci�c con�g-

uration. To collect the �gures the inventory at the end of the simulation has been

gathered and compared with the forecast given in the last simulation period. The days

on stock have then been computed for each part by walking over the days after the

simulation range in the forecast and marking the day on which the inventory is going to

be exhausted if no additional orders are placed. The number of working days between

the last simulation day and the day of inventory exhaustion is the number of days on

stock. The desired safety inventory has then been calculated for each part as described

in Section 6.1.5 and the maximum quantity of one load carrier has been added. Based

on these numbers, the share of parts with more than the desired safety inventory and

one load carrier has been computed. If parts inventory could not be exhausted during

the �rst month after the last day of simulation, they have been added to the share of

parts with days on stock larger than one month. For these parts the value of inventory

has been computed and normalized by the average areas total cost. This value is that

of parts that have a risk of being scrapped if they are replaced by a newer version

of the part within the next month. The last rows show the di�erence in these values

towards the no delivery pro�les con�guration in absolute normalized values as well as

in percentage values. The percentage of parts with more than safety inventory and

one load carrier in inventory is about one quarter for the no delivery pro�les con�g-

uration and rises to about one third for the delivery pro�le based con�gurations. For

the Kempkes con�guration the value is about 40%, meaning that two out of �ve parts

have more inventory than desired. The number of parts with days on stock above one

month varies from 16.8 % in the no delivery pro�les con�guration to about 20 % for all

other con�gurations. Here no signi�cant di�erence between the delivery pro�le based
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and the Kempkes con�gurations can be found, even though the value is slightly higher.

The value of these parts and their inventory, however, is higher than in the delivery

pro�le based con�gurations. Here the di�erence towards the no delivery pro�les con-

�guration is about 3.38 to 3.84 average areas, whereas the Kempkes con�guration has

a doubled additional value at risk of 6.98. In percentage of the value of the inventory

at risk, this means an increase from between 9.34% and 10.58% for the delivery pro�le

based con�gurations up to 19.25% for the Kempkes con�guration. Thus the value at

risk of being scrapped has increased by about 10 % for the delivery pro�les and twice

as much by about 20 % for the Kempkes con�guration. Still, these numbers are small

in relation to the overall savings achieved by the di�erent con�gurations.

7.7 Summary of the case study results

The merits gained from the case study are threefold. First, the models and algorithms

presented in this work are evaluated in terms of runtime and applicability to problems

from practice. Second, information on the predictability of the delivery schedule-

generation approaches outcome and their relation to the best possible solutions was

gathered. Third, implications for possible implementations in practice can be drawn

based on the di�erent con�gurations' behavior in the given circumstances. The follow-

ing will �rst discuss how the algorithmic results could be interpreted. It will then be

determined to what degree the delivery schedule generation algorithms are predictable

if deployed in practice. Finally, the pros and cons of the di�erent con�gurations are

discussed to provide an overview of the implications for practical applications.

7.7.1 Algorithmic results

The solution algorithms presented in this thesis provided good results. It could be

shown that given the decomposition approach it was possible to solve most instances

to optimality with only few exceptions. The increase in runtime for the stochastic

case could be limited to a linear progression. The two heuristic algorithms performed

well; the genetic algorithm especially provides solutions that are close to the optimum

in most cases. The density-based packing concept showed its strength, as it is fast

and reliable. The heuristic approaches did not exceed the maximum runtime of 30

minutes except in one single case on the largest stochastic model. In the case of the

few exceptions in which optimality could not be proven within the limited time the
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genetic algorithm still provided the best solution. For this reason the formulation of

the mathematical model can be seen as the weak-point in terms of algorithmic quality.

The standard mixed-integer solver implementations takes a long time to prove the

optimality of optimal solutions, which suggests that the linear programming relaxation

of the model could still be improved.

7.7.2 Predictability and quality of applications in a rolling horizon

As far as the predictability of the di�erent approaches outcome is concerned, it can be

stated that the initial forecast con�guration provides the best results. The stochastic

delivery pro�le based con�gurations, however, provide the worst predictability. Among

the stochastic approaches the mixed scenarios con�guration provides the best predic-

tion quality. Whereas all delivery pro�le based con�gurations underestimate the sav-

ings, the Kempkes con�guration overestimates the savings that can be realized. In

addition, its predictability is higher on small than on larger areas - which may be a

hindrance if applications in practice are considered. The quality of the the application

in a rolling horizon can be evaluated from two sides. On the one hand it can be seen

that the Kempkes con�guration would be able to achieve higher savings than the de-

livery pro�le based con�gurations if all information were available at planning time.

At the same time the delivery pro�le based con�gurations get closer to the optimal

value and thus provide a lower value of perfect information. This leads to the gap

between the Kempkes con�guration and the delivery pro�le based con�gurations being

narrowed in a rolling horizon application.

7.7.3 Implications for applications in practice

As could be seen in the case study each con�guration has its strengths and weaknesses.

When implementing a delivery schedule generation approach in practice, multiple tar-

gets have to be considered and balanced according to companies' preferences and de-

mands. The case study presented in this chapter provides hints on the applicability

of the di�erent approaches depending on these preferences and demands. Multiple

insights can be drawn from the given case study and are brie�y summarized in the

following.
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Realized cost It has to be noted that from a purely freight cost orientated perspective

the Kempkes con�guration provides the best results. On average the sum of freight

cost and inventory holding cost can be reduced by 27.43 % towards the no delivery

pro�les con�guration. The distance to the best delivery pro�le based approach, the

mixed scenarios con�guration, which reduces freight cost by about 23.57 %, is 4.54

% of the initial freight and inventory holding cost. It has to be noted, however, that

these values may have to be reevaluated for other relations between freight cost and

inventory holding cost. Especially for more expensive parts or higher capital interest

rates, it may be that the potential savings are reduced.

Applicability of stochastic approaches Slight cost reductions could be achieved by

employing stochastic programming methods to identify more robust delivery pro�les.

On average 0.65 % additional savings could be generated. It has to be considered,

though, that these improvements can only be used in practice if an infrastructure for

data collection and preparation is set up, and that the complexity of the involved

algorithms is increased.

Stability of delivery schedules The stability of delivery schedules could to an ex-

tent be improved both by the delivery pro�le based con�gurations and the Kempkes

con�guration. However, the delivery pro�le based con�gurations do provide a much

higher level of stability than the Kempkes con�guration. Especially considering the

more dangerous underestimations of demand, the stability of the generated delivery

schedules of the delivery pro�le based approaches with an average of 16.6 % for A+ is

far better than in the Kempkes con�guration with 26.9 %. The share of stable parts is

also much higher, reaching 77.1 % on average for the delivery pro�le based con�gura-

tions in comparison to only 57.7 % for the Kempkes con�guration. At the same time

the number of absolutely irregular parts is signi�cantly lower with 6.8 % on average

towards 17.0 % in the Kempkes con�guration.

Escalation processes The number of required escalation processes can be reduced

by employing a delivery schedule generation approach. For the delivery pro�le based

approaches an average improvement of 52.61 % towards the no delivery pro�les con�g-

uration can be achieved, whereas the Kempkes con�guration still provides an advantage

of 33.46 %. Given that the delivery pro�le based con�gurations use less inventory to
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achieve these results, it can be said that the additional inventory is used more e�-

ciently. The delivery pro�le based approaches use a one-percent increase in inventory

holding cost to yield 3.25 % reduction in escalation processes, whereas the Kempkes

con�guration only yields 1.1 % per cent of additional inventory piled up.

Inventory behavior The inventory level su�ers greater �uctuations if a delivery sched-

ule generation approach is used. The highest �uctuation can be observed for the Kemp-

kes con�guration, with a standard deviation of 21.5 %, in contrast to 13.4 % for the

initial forecast con�guration and only 8.2 % for the no delivery pro�les con�guration.

Aside from the increased �uctuation the tendency of collecting unnecessary parts in

inventory also increases. The value of inventory at risk of being scrapped is increased

by about 10 % for the delivery pro�le based con�gurations, whereas it is increased by

about 20% for the Kempkes con�guration.
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In the following the results of this thesis will brie�y be summarized to give a retro-

spective on the contributions in this thesis. An outlook on possible further research

will then be given to provide a starting point for researchers that want to extend the

work in this area.

8.1 Summary of the achieved contributions

In this thesis methods of selecting cost-minimal delivery pro�les for application in area

forwarding inbound logistics networks have been developed, and an assessment of their

impact on both cost and delivery schedule stability has been conducted. In Chapter 2

the problem setting was identi�ed in its broader context and thereafter depicted in

detail. It was pointed out that two major options are available for delivery schedule

generation in general, namely algorithmic schedule generation and rule-based schedule

generation. While algorithmic approaches repeatedly built new delivery schedules from

scratch in each planning iteration, rule-based approaches make a tactical decision to

identify a control rule and then apply the control rule to create the delivery schedules. A

promising control rule that has been discussed both in the literature and practice is that

of so-called delivery pro�les, which de�ne a subset of days on which deliveries should

take place. Both types of schedule-generation approach propose di�erent advantages

in respect of the given goals: cost reduction, delivery schedule stability and avoidance

of escalation processes. As could be derived from the literature review in Chapter 3,

where the most important literature on the topic has been presented and discussed in

respect of its applicability to the given problem setting, no scienti�c validation of these

propositions has yet taken place. To close the gap between the demand de�ned in the

problem setting and the existing literature, multiple contributions have been targeted

and will be named in the following.

A deterministic model formulation and e�cient solution algorithms A determ-

inistic model formulation and e�cient solution algorithms for the selection of cost-
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minimal delivery pro�les were presented in Chapter 5. A decomposition-based solution

algorithm was developed to determine cost-minimal delivery pro�les. A mixed-integer

model formulation was set up that allows treatment of various forms of tari� system

and can be applied to all area forwarding networks following the common industrial

practice. To solve the model two heuristic algorithms were implemented, namely a

sequential heuristic based on the concept of the hamming-neighborhood and a genetic

algorithm that uses the delivery pro�le assignments as genotypes. These heuristic

algorithms share a sophisticated packing heuristic that uses the concept of load and

vehicle density to obtain good packing results with high computational e�ciency.

Consideration of demand uncertainty The decomposition-based solution algorithm

and the model formulation were extended to a stochastic programming formulation in

order to cope with the uncertainty involved in the tactical delivery pro�le selection

decisions. The heuristic algorithms were extended so that they can deal with both the

stochastic and the deterministic model formulations. In addition, a simpli�ed model

formulation was developed for the stochastic case. The simpli�ed model formulation

does not provide the same universality in terms of modeling tari� systems, but it is

much more e�cient and can be applied in cases where computational e�ciency is valued

more highly than the �exibility of the modeling approach. To support the stochastic

methods with plausible scenarios, two scenario-generation approaches were developed,

one using historical consumption data to create scenarios, the other using historical

data on forecast errors to derive scenarios based on an actual forecast. Both scenario

generation approaches can be combined with scenario-reduction techniques to obtain

a subset of scenarios that re�ect the desired probability distributions.

Development of an evaluation framework To assess the impact of the delivery pro-

�le based delivery schedule generation, a simulation environment for planning methods

for the operational order lot-sizing problem in area forwarding based inbound logistic

networks with complex tari� structures was developed and is described in Chapter 6.

A simulation environment was set up that covers the whole process of delivery schedule

generation based on gross demand forecasts and current inventory levels. The simu-

lation environment can be equipped with data from practice, and can then simulate

a rolling horizon planning environment under realistic conditions. Di�erent delivery

schedule generation approaches can be connected over a common interface, allowing
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them to be examined under the same conditions and their results to be compared.

During the examination data on logistics cost and schedule stability can be gathered.

To obtain the latter a new indicator for delivery schedule stability has been developed.

Unlike approaches discussed in literature, both time shifts and quantity changes are

considered and consolidated in a single value.

Assessment through case study The simulation approach was then used to evaluate

the methods developed and compare them with state-of-the-art algorithmic approaches

from the literature in a large scale case study in Chapter 7. In the case study, multiple

insights into the impact on both cost and delivery schedule stability in respect of an

application in a rolling horizon planning environment was derived. It was shown that

signi�cant savings can be achieved by deploying the methods to select optimal delivery

pro�les described in this thesis. These savings are not as high as the savings that

can be observed when state-of-the-art algorithmic approaches from literature are used.

However, it could be shown that delivery pro�le based approaches provide advantages

in respect of delivery schedule stability, inventory behavior and the number of necessary

escalation processes. The pros and cons of the various approaches were widely discussed

in the case study. Aside from the economic perspective, the case study provided a proof

of concept for the presented solution algorithms. The heuristic approaches worked well

and provided close-to-optimal solutions in all cases. The runtime of the heuristic

algorithms was very short, which indicates that these are highly e�cient. The model

formulation, however, still leaves room for improvement, as standard mixed-integer

solvers take very long to prove the optimality of a given solution.

8.2 Outlook on further research

To provide an outlook on future research, two major directions have to be looked at.

On the one hand, improvements to the models and methods depicted in this thesis

could be made, for example, to the model formulations. A formulation that would

tighten the linear programming relaxation could, in particular, help to prove optim-

ality in multiple cases. On the other hand, the problem setting could be extended

to include more alternative delivery schedule generation approaches. Recently, some

automotive manufacturers have relaxed the boundaries on the delivery schedule gen-

eration approaches. In the past only approaches that do not shift orders forward but
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rather order demands earlier to obtain synergy e�ects have been accepted. Lot-sizing

models for operational order lot-sizing and production applications therefore do not

allow dissatisfaction of demand. The main argument is that demand ful�llment is the

highest goal. Though this is true, the implications for model development may have

been mistaken. In fact safety parameters are used to protect against stock-outs. As

the demand that is passed to the delivery schedule generation approaches is the net

dependent demand after safety parameter consideration, the safety stock cannot be

used to provide �exibility. The idea is that if this barrier were weakened, more stable

delivery schedules could be generated. One promising approach in this direction was

developed at the Technical University Braunschweig in cooperation with a German

automotive manufacturer (see Grunewald [2011] and Grunewald [2012]). Thus it could

make sense to extend the comparison to approaches from that direction. Another in-

teresting possibility would be to develop a hybrid approach that combines the highly

�exible and e�ective dynamic lot-sizing approach from Kempkes and Koberstein [2010]

with the regularity of delivery pro�les that provokes a high schedule stability. Such

an approach could, for example, use regularity as an objective, as do approaches from

public transport.
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