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ÊSG completion of an ESG

z faulty event

α(ES) the initial vertex of a given event sequence

δ−(v) indegree of vertex v

δ+(v) outdegree of vertex v

l(ES) length of a given event sequence

ω(ES) the last vertex of a given event sequence

s⊕ t concatenation of two sequences s and t

s||t parallel execution of two sequences s and t

〈x1, x2, . . . , xn〉 finite sequence x1, x2, . . . , xn

∀ for all

Reliability Theory
AIC Akaike information criterion

BIC Bayesian information criterion

D Duane reliability model



vii

D-S delayed S-shaped reliability model

G-O Goel-Okumoto reliability model

GGO generalized Goel-Okumoto reliability model

GoF goodness of fit

HPP homogenous Poisson process

IE impact of each component

K-S one-sample Kolmogorov-Smirnov test

LLF log-likelihood function

LP log-power reliability model

M-O Musa-Okumoto reliability model

MLE maximum likelihood estimation

MSE mean square error

NHPP non-homogenous Poisson process

Rc combined reliability

RE reliability of each component

SRGM software reliability growth model

UR usage ratio of each component

Abbreviations
CES complete event sequence

CPP Chinese postman problem

CSP constraint satisfaction problem

DbC design by contract

DT decision table



viii

EFG event flow graph

EP event pair

ES event sequence

ESB enterprise service bus

ESG event sequence graph

ESG4WSC ESG for web service compositions

FCES faulty complete event sequence

FEP faulty event pair

FES faulty event sequence

FR full resolution (testing)

FSM finite state machine

GUI graphical user interface

LC layer-centric (testing)

LC4WSC layer-centric testing for web service compositions

MBT model-based testing

PES partial event sequence

PriFES private faulty event sequence

PubFES public faulty event sequence

SLC selective layer-centric testing

SLC4WSC SLC for web service compositions

SOA service-oriented architecture

SR software reliability

SUC system under consideration

TSD Test Suite Designer



ix

TSD4WSC TSD for web service compositions

TSP traveling salesman problem

WSC web service composition

Trademark Notice:

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
All products and company names are trademarks or registered trademarks of their
respective holders.





Part I

Preliminaries

1





Chapter 1

Introduction

Testing is one of the traditional analysis techniques of quality assurance in the soft-
ware industry [7, 3] in which the software product itself is executed and evaluated,
commonly in an environment closely resembling its target environment. The cost of
industrial testing may range from 30% up to 60% of the overall development costs
[117]; some software developers even spend as much as 80% of their development
budget on testing [87]. The aim of this thesis is to considerably reduce these costs
by introducing new techniques.

Testing is user-centric since it checks whether the software or system under
consideration (SUC) does what it is expected to do (positive testing) or does not
do what it is not expected to do (negative testing). However, since all possible
tests can potentially be infinite in number, there is no justification for any assess-
ment of the correctness of SUC based on the success or failure of a single test. To
overcome this principle shortcoming of testing, which concerns completeness of
validation, formal methods have been proposed that model the relevant, desirable
features of SUC, which has led to model-based testing (MBT). MBT does not re-
quire the availability of the SUC’s source code for test generation—a feature that
makes MBT very attractive to the industry since the majority of vendors prefer not
to make their products’ source codes available.

Once the model is established, one can generate and select test cases that are
ordered pairs of test inputs and expected test outputs for both positive and negative
testing. Such a collection of test cases is commonly referred to as a test suite. A
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4 Chapter 1. Introduction

coverage-oriented adequacy criterion [3, 71] is usually used to ascribe a measure
to a test suite’s effectiveness in revealing faults and to determine the point in time
when to terminate the test process. This criterion calculates the ratio of the portion
of the selected components of the model (or code) that is covered by the given test
suite to the uncovered portion; the higher the degree of test coverage, the lower the
risk of having critical software artifacts that have not been sifted through.

The approach proposed in this thesis is model-based and coverage-oriented. The
distinction between the correct and faulty functioning of SUC is referred to as the
oracle problem in literature [8, 71]. In this regard, this thesis represents the behavior
of SUC in interacting with the user’s actions by means of directed graphs—more
precisely, as event sequence graphs (ESG) [9, 14] with the vertices representing
events and the arcs representing sequences of events. The test is successful if and
only if a final event can be reached; otherwise the SUC fails the test. This view
suggests that the model is correct because, for example, it has been validated before
the test process is launched; that is, the rules of the game have been clearly stated
concerning what is right and what is wrong.

From a knowledge engineering point of view, testing is considered a planning
problem that can be solved using a goal-driven strategy [104] such that, given a set
of operators, an initial state, and a goal state, the planner is expected to produce a
sequence of events by means of which the SUC can run from the initial state to the
goal state, producing in the end the final event the user desires as a system responsi-
bility or service. Considering the testing problem described above, this means that
an appropriate test sequence needs to be constructed upon both the correct inputs to
reach a desirable final event (for positive testing), and the faulty inputs to reach an
undesirable final event (for negative testing).

Having rudimentarily defined the elementary notions, the test coverage problem
now becomes finding a test sequence with the shortest walk that visits each arc
at least once in a given graphic model. In this context, the underlying optimization
problem is a generalization of the Chinese postman problem (CPP) [12]. CPP entails
solving the assignment problem [30] that deals with the question of how to assign n
items (agents) to n other items (tasks), incurring some cost that may vary, depending
on the agent-task assignment. However, algorithms need to be constructed to satisfy
not only the constraint of a minimum total length of test sequences, but also to cover
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all n-tuples (or sequences of length n), that is, pairs, triples, quadruples, etc., of
events represented graphically. This brings about a substantial improvement in the
scalability and solves the test termination problem and thus constitutes one of the
benefits of the proposed approach.

Another challenge of testing stems from the fact that nowadays software prod-
ucts are becoming increasingly larger and more and more complex. Therefore, they
are not designed and implemented in one single step, but rather in a series of consec-
utive steps on the basis of the well-known “divide and conquer” principle, leading
to a hierarchy of models in several layers. Nevertheless, for generating test se-
quences, the components, which are refined in lower layers, have to be completely
resolved, that is, composed in the top-level layer, leading to a fully resolved (FR)
model. It is evident that the test generation effort mounts with the increasing size
of the model and number of hierarchy layers, which induce high test costs. From
our group’s previous work, we know that the run-time complexity of finding a min-
imal test suite for covering each arc is O(|V |3) [12], where |V | denotes the number
of vertices. The run-time complexity for covering sequences of higher length gets
even worse. Depending on the chosen sequence length n to be covered, graphs with
up to (|V |(n−1) ∗ (n− 1)) vertices in the worst case have to be covered [12]. As an
example, in Figure 1.1 the component represented by vertex menu is refined. Fig-
ure 1.2 represents the FR model that consists of 14 vertices and 65 arcs. However,
calculating a minimal coverage of all sequences of length 5 requires a graph with
1711 vertices and 8516 arcs [12]. This explosive increase of the calculations is the
first problem for which this thesis suggests a solution, which is constructed based on
a variation of the assignment problem for a layer-centric construction of test suites.

A widespread and popular belief in testing is “the longer, the better.” This im-
plies test suites covering longer event sequences have the power to detect subtle
faults that are hard to find since they only occur in specific contexts. The challenge
is then to cope with the commonly exponential increase in the size of the resulting
test suites. This is the second problem for which this thesis suggests a solution:
combining the layer-centric approach with techniques of software reliability engi-
neering [70].
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Figure 1.1: A compound vertex menu of the model is refined

Figure 1.2: Completed (fully resolved) version of the model given in Figure 1.1
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1.1 Major Contributions of the Thesis

To sum up, this thesis addresses the following questions:

1. How can the effort of test generation as well as the excessive number of test
cases, and thus test costs, be reduced if the modeling process produces a large
hierarchical set of models?

2. How can components (in terms of their models) be identified and selected
for intensive testing that are likely to provide a better chance of detecting
additional “attractive” faults than others?

3. What is the impact and trade-off of this selection process on the overall system
reliability?

To answer the first question, this thesis suggests a new strategy called layer-centric
testing (LC) for test generation and minimization of test suites based on hierarchical
models. To answer the second question, a reliability theoretical approach, called
selective layer-centric testing (SLC), identifies critical components of the SUC that
most endanger the overall reliability. Answering the third question requires the
comparison of the reliability level achieved by following the new LC/SLC strategy
with the one achieved by following the conventional strategy which is based on the
fully resolved model.

The cost saving effect of this approach has been evaluated and analyzed in two
case studies drawn from completely different domains. The experiments give rea-
sons to claim that the techniques introduced can contribute to an immense reduction
in test costs.

1.2 Outline

The present thesis is organized in four parts. Part I summarizes the relevant back-
ground and related work before Part II introduces and evaluates the new approach.
Part III applies the approach to a different domain to demonstrate its versatility, flex-
ibility, and extendibility. Perspectives for applicability of the approach and hints to
future research form the content of Part IV.
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In Part I, Chapter 2 summarizes related work on model-based testing techniques,
test adequacy, and optimization techniques. Related work on test sequence length,
model refinement, and software reliability completes this summary. Chapter 3 in-
troduces the terminology and notions used in the thesis, such as the ESG model
for representing system behavior and the corresponding test process. Also the opti-
mization of test generation based on ESG model is described in this chapter.

Beginning Part II, Chapter 4 describes the new LC approach in detail and re-
views existing reliability models from which those best suited for the comparison
of LC and FR strategies are to be selected. Chapter 5 describes the strategy for
selecting a fault-sensitive subset of models and generating tests for them. Chapter 6
concludes Part II by validating the approach and determining its characteristic fea-
tures in the first case study of the thesis focused on an application drawn from a
commercial web-based software system that was developed by our department.

Part III applies the approach to web service compositions. Chapter 7 introduces
relevant background and adapts the ESG model to this new domain. Chapter 8 val-
idates the adapted approach and determines its characteristic features in the second
case study based on different scenarios of a non-trivial application.

In Part IV, Chapter 9 sketches an approach for semi-automatic detection and
correction of boundary overflow faults. Also, this approach has been validated by
means of a (third) case study. Furthermore, Chapter 9 presents a technique that
combines the merits of positive and negative test techniques leading to a consider-
able cost reduction. Chapter 10 concludes the thesis by summarizing its significant
results and further research planned.



Chapter 2

Related Work

Numerous monographs are dedicated to software testing; e.g., Mathur systemati-
cally reviews and presents common existing knowledge [71] whereas Binder sum-
marizes relevant techniques for testing object-oriented systems [26]. The books of
Myers and Beizer are well-known as well [84, 85, 7]. A common problem that is
described in all the books is the derivation of meaningful test cases. Very often, the
usage of models is suggested to fill this gap [117].

A broad variety of formal and informal models exist for testing software as rec-
ommended in de-facto standards, such as UML [93] or TTCN-3 [49]. Depending
on user needs, those models describe SUC at different levels of granularity and pre-
ciseness. Graph-based models consist of nodes and arcs that connect the nodes. The
semantics associated with these nodes and arcs determine the level of granularity of
the SUC description and can roughly be divided into state-based and event-based.

2.1 State-based vs. Event-based Models

State-based models [3, 71] have been in use for a long time, e.g., for confor-
mance testing [28, 105] as well as for specification and testing of system behavior
[96, 108, 123]. One of the earliest models based on finite state machines (FSM) is
described by Chow [35]. A variation of FSMs is given by Petri nets [37]. In addition
to state-based models, event-based models have been introduced, e.g., using event-
flow graphs (EFG) [76] and, in a broader sense, event sequence graphs (ESG) [9].

9
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Although nodes are interpreted in both models as operations of an event set [11],
EFGs are primarily designed for modeling graphical user interfaces (GUI). There-
fore, the nodes are enriched by semantics specific to GUIs. However, every EFG
can be transformed to an equivalent ESG by taking away the additional semantics
used to differentiate the GUI events, and any ESG can be transferred to an equiv-
alent EFG by inclusion of the required semantics [9, 76, 11]. A further difference
is that ESGs enable a complementary view, which is necessary to model potential
user errors [44, 63].

2.2 Test Adequacy and Test Sequence Length

A common problem of model-based testing is that a very large number of test cases
can be derived from a model. This requires a stopping rule for testing, known as
test adequacy criterion, which can also be used to determine the “thoroughness” of
the testing process [71]. Apart from several model-specific test selection criteria
[43], well-known criteria for graph-based models are all-nodes and all-edges [132].
Also, the sequence “length” to be covered has to be taken into account [9, 76]. Ar-
curi investigated the role played by the length of test sequences for test adequacy,
particularly branch coverage, and has empirically shown for white-box testing that
longer test sequences can improve the results [5]. Memon and Xie evaluated the
fault-detection effectiveness of smoke regression test cases for GUI-based software
[77]. One of their observations is that longer sequences have been able to detect
more faults than shorter ones, but they did not differentiate and analyze this obser-
vation any further, e.g., if the number of faults decreases or increases. Additionally,
they stopped testing after executing a subset of their test suite covering length 3
due to the restrictions of their smoke test suite. Therefore, the role of test sequence
length due to its fault detection capability in black-box testing is still not answered
properly.
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2.3 Optimization

Many approaches generate test sets containing redundant and unnecessary tests and
thus neglect efficiency [129]. For instance, tests are generated for each state or tran-
sition where one test is contained or implicated by another test. Generating large
test suites is relatively easy. But, larger test sets do not necessarily result in a better
test coverage. Therefore, the test generation method for fulfilling the selected ade-
quacy criterion plays an important role in the test process. For instance, Zeng et al.
described an approach on specification-based test generation and optimization such
as branch coverage based on model checking [129]. Search-based software testing
uses techniques such as hill climbing, simulated annealing, or genetic algorithms
to derive test cases [72]. The problem with these techniques is that they are not
guaranteed to find the minimum set of test cases, but they do at least provide good
approximate solutions.

Algorithms to derive a minimal set of test sequences can often be related to
common graph problems, e.g., the Chinese postman problem for covering each edge
[1, 113] or the traveling salesman problem for covering each vertex [30]. Under cer-
tain circumstances, it is even possible to form the (sub-)problem as a linear program,
which can then be solved by the simplex method if a minimum is desired [112]. An
example is the assignment problem [30], which has to be solved within the Chinese
postman problem although solutions with a better run-time exist [12, 30].

2.4 Model Refinement

An interesting question is the role that model refinement, more precisely the “depth”
of the modeling or its granularity, plays in MBT. The principle of “divide-and-
conquer” is not new; Parnas was already considering hierarchical structures for
modularization of computer programs in 1972 [97]. His thesis that “the effective-
ness of modularization depends upon the criteria used in dividing the system into
modules” is valid also for test case generation from hierarchical graph-based models
as practiced by MBT. As an example, Memon et al. use an automatic planning sys-
tem to generate test cases from GUI events and their interactions called planning
assisted tester for graphical systems (PATH) [75]. Paiva et al. presented an ap-
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proach based on hierarchical FSMs where the hierarchical structure is given special
attention during the test case generation process [94]. The structure of hierarchical
FSMs is exploited to reduce the number of states in the “flat” finite state machines,
thus providing a way to deal with the state explosion problem. Andrews et al. pro-
pose a system-level testing technique that combines test generation based on FSMs
with constraints [4]. They use a hierarchical approach to model large web applica-
tions and use constraints to select a reduced set of inputs to decrease the state space
explosion. Reza et al. use hierarchical predicate transition Petri nets to model the
behavior of SUC and to generate adequate test cases [102].

All of the above mentioned approaches deploy hierarchical structures. However,
there is no approach comparable to the one the present thesis introduces for making
use of this hierarchy for producing optimized test suites.

2.5 Software Reliability

Software reliability (SR) is one of the attributes of software quality and is defined as
“the probability that software will not cause the failure of a system for a specified
time under specified conditions” [58]. Since the early seventies of the last century,
probabilistic models have been used to determine the SR based on observations ob-
tained from software testing. SR is usually used to decide when to stop testing. In
this context, non-homogenous Poisson process (NHPP) models are good candidates
because of their compatibility with real world situations and simplicity of computa-
tion. They belong to the class of “reliability growth models” since they assume that
faults are incrementally detected by tests and immediately (and perfectly) corrected,
thus continuously improving the reliability of the SUC [99].

Musa-Okumoto (M-O), Goel-Okumoto (G-O), and Delayed S-Shaped (D-S) [70]
are well-known NHPP models that are recommended by standards [2, 58, 36]. The
critical question when applying an NHPP model is that of determining the appro-
priate mean value function, which eases the derivation of software reliability. This
thesis considers NHPP models that follow the Musa-Okumoto classification scheme
to cover the different types of the models instead of considering all the numerous
existing models [70].
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2.6 Component-based Software Reliability

Reliability can be determined twofold: through (i) system-level reliability estima-
tion for SUC as a whole, and through (ii) component-based reliability estimation
using the reliability of the individual components of SUC and their interconnection
mechanisms. The following questions thereby arise: How to estimate the relia-
bility of individual components, and how to aggregate and analyze these reliabil-
ities. State-based frameworks for component-based software reliability prediction
are available [48]. A different approach identifies critical components and investi-
gates the sensitivity of the application reliability with respect to these components
[127]. Krishnamurthy et al. assess the reliability of component-based applications
based on test information and test cases [64].

Obviously, component-based reliability estimation techniques are promising can-
didates to be considered for the selective testing strategy presented in this thesis
because the layers of hierarchical models represent components of the SUC. Un-
fortunately, there is no approach to our knowledge that (i) calculates the reliability
on the basis of a hierarchical model used for testing a given SUC, and that (ii) uses
this kind of information to detect further faults to increase the overall reliability
as is common in reliability growth models. The approach presented in this thesis
introduces a solution to this problem.
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Chapter 3

Background

ESG notation is preferred for modeling, analyzing, and validating system behavior
and user interface requirements prior to implementation and testing of the code be-
cause it intensively uses formal notions and algorithms known from graph theory
and automata theory. These are relevant to the approach introduced in this thesis,
especially hierarchical decomposition [9]. Another reason for this preference stems
from the fact that events are externally perceptible and thus objectively observable
phenomena, contrary to “states” that are internal to the SUC. Thus, events enable
controllability of the test process. This preference causes no loss of generality be-
cause ESG, like EFG, is equivalent to FSM since all three can be represented by
regular (type-3) grammars and thus can be interchangeably used [11].

3.1 Modeling System Behavior

Vertices of the ESG represent events, that is, environmental or user stimuli or system
responses punctuating different stages of system activity. Directed edges connecting
two events define allowed sequences among these events. A brief summary of the
ESG notions follows; for details see [14].

Definition 3.1 (Event Sequence Graph). AnESG = (V,E,Ξ,Γ) is a directed graph
where V 6= ∅ is a finite set of vertices (nodes) uniquely labeled by some input
symbols of the alphabet Σ denoting events, E ⊆ V × V is a finite set of arcs

15
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(edges), Ξ,Γ ⊆ V are finite sets of distinguished vertices with ξ ∈ Ξ and γ ∈ Γ

called entry vertices and exit vertices, respectively, wherein ∀v ∈ V there is at
least one sequence of vertices 〈ξ, v0, . . . , vk〉 from each ξ ∈ Ξ to vk = v and one
sequence of vertices 〈v0, . . . , vk, γ〉 from v0 = v to each γ ∈ Γ with (vi, vi+1) ∈ E,
for i = 0, . . . , k − 1 and v 6= ξ, γ.

As a convention, a dedicated start vertex, for example, [, denotes the entry ver-
tices Ξ of the ESG, whereas a final vertex, e.g., ], represents the exit vertices Γ.
Note that [ and ] are not included in Σ. The semantics of an ESG is as follows.
Given two vertices a and b in V , a directed edge ab from a to b indicates that event
b follows event a, defining an event pair (EP) ab. Accordingly an event triple, event
quadruple, etc. can be defined.

Definition 3.2 (Event Sequence). Let V andE be defined as in Definition 3.1. Then
any sequence of vertices 〈v0, . . . , vk〉 is called an event sequence (ES) if (vi, vi+1) ∈
E, for i = 0, . . . , k−1. The length l of an ES 〈v0, . . . , vk〉 is defined as the number of
vertices | 〈v0, . . . , vk〉 |, that is, l(ES) = | 〈v0, . . . , vk〉 | = k + 1. An ES = 〈vi, vk〉
of length 2 is called an event pair (EP). Furthermore, an ES is complete (or it is
called a complete event sequence, CES), if v0 ∈ Ξ and vk ∈ Γ. An ES is partial (or,
it is called a partial event sequence, PES), if v0 ∈ Ξ.

The remaining pairs E that can be constructed by all combinations Ê = V × V
of the nodes given in the alphabet Σ but not in the ESG, that is, E = Ê \ E, form
the set of faulty event pairs (FEP). The set of FEPs constitutes the complement
of the given ESG, which is symbolized as ESG. Figure 3.1 shows a completed
ÊSG = (V, Ê,Ξ,Γ) with Ê = E ∪ E where solid edges represent E (or EPs) and
dashed edges represent E (or FEPs).

Definition 3.3 (Faulty Event Sequence). Let ES = 〈v0, . . . , vk〉 be an event se-
quence of length k + 1 of an ESG and FEP = 〈vk, vm〉 a faulty event pair of the
corresponding ESG. The concatenation of the ES and FEP then forms a faulty
event sequence FES = 〈v0, . . . , vk, vm〉. Accordingly, a faulty event sequence
(FES) of length n consists of n − 2 concluding, subsequent EPs and ends with an
FEP. An FES is complete (or, it is called a faulty complete event sequence, FCES)
if ES = 〈v0, . . . , vk〉 is a PES.
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Figure 3.1: A completed ÊSG

A vertex representing a single, self-contained event is called an atomic event/
vertex. Alternatively, a vertex can be refined by another ESG (see Figure 3.2), the
vertices of which can also be refined, resulting in a hierarchy of models [14, 13].
Events that can be refined are compound events/vertices consisting of atomic events
and/or even other compound events. Before test cases can be generated, compound
vertices are to be resolved according to Definition 3.4.

Definition 3.4 (Refinement). Given an ESG, sayESG1 = (V1, E1,Ξ1,Γ1), a vertex
v ∈ V1, and another ESG, sayESG2 = (V2, E2,Ξ2,Γ2). Then replacing v byESG2

produces a refinement of ESG1, say ESG3 = (V3, E3,Ξ3,Γ3) with V3 = V1 ∪
V2\ {v}, and E3 = E1∪E2∪Epre∪Epost\E1replaced (’\’: set difference operation),
wherein Epre = N−(v) × Ξ2 (connections of the predecessors of v with the entry
nodes of ESG2), Epost = Γ2×N+(v) (connections of exit nodes of ESG2 with the
successors of v), and E1replaced = {(vi, v), (v, vk)} with vi ∈ N−(v), vk ∈ N+(v)

and where (vi, v), (v, vk) ∈ E1 (replaced arcs of ESG1). Ξ3 = Ξ1 ∪ Ξ2 \ {v} iff
v ∈ Ξ1, otherwise Ξ3 = Ξ1. Γ3 = Γ1 ∪ Γ2 \ {v} iff v ∈ Γ1, otherwise Γ3 = Γ1.

Note that N−(v) denotes the predecessors of a vertex v and N+(v) denotes the
successors of v.

Example 3.5. In Figure 3.2, the refinement of vertex b of Model 1 is given as
Model 2. The model given in Figure 3.3 is the resolved version of Model 1. More
precisely, Model 1 is given as V1 = {a, b, c, d, e, f, x, y, z}, E1 = {(a, b), (b, c),
(c, d), (c, e), (c, f), (x, y), (y, z), (z, c)}, Ξ1 = {a, x} and Γ1 = {d, e, f}. In the
refinement, that is, Model 2 of the compound event b, the predecessors and succes-
sors are N−(b) = {a}, N+(b) = {c} and the refinement of Model 2 is given by
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Figure 3.2: A compound vertex b of the model is refined

Figure 3.3: Completed (fully resolved) version of the model given in Figure 3.2
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V2 = {b1, b2, b3, b4}, E2 = {(b1, b2), (b2, b3), (b2, b4), (b4, b3)}, Ξ2 = {b1} and
Γ2 = {b3}. The resulting (fully resolved) model shown in Figure 3.3 is represented
by

ESG3 = (V3, E3,Ξ3,Γ3) with
V3 = V1 ∪ V2 \ {b}

= {a, b, c, d, e, f, x, y, z} ∪ {b1, b2, b3, b4} \ {b}
= {a, b1, b2, b3, b4, c, d, e, f, x, y, z}

E3 = E1 ∪ E2 ∪ Epre ∪ Epost \ E1replaced

= {(a, b), (b, c), (c, d), (c, e), (c, f), (x, y), (y, z), (z, c)}
∪{(b1, b2), (b2, b3), (b2, b4), (b4, b3)}
∪{(a, b1)} ∪ {(b3, c)} \ {(a, b), (b, c)}

= {(c, d), (c, e), (c, f), (x, y), (y, z), (z, c), (b1, b2),

(b2, b3), (b2, b4), (b4, b3), (a, b1), (b3, c)}
Ξ3 = {a, x}
Γ3 = {d, e, f}

3.2 Testing System Behavior

The approach introduced in Section 3.1 uses event sequences, more precisely CESs
and FCESs, as test inputs. CESs, as positive tests, are supposed to lead to the exit
vertex. If this is not feasible, the corresponding CES is marked as failed (positive
testing). During a positive test of a web application, an event may not be reachable
in certain situations, e.g., if

• a page was not loadable although a previous event, e.g., clicking a hyperlink,
was executable,

• an error message has to be acknowledged that was not supposed to show up,
or

• an input delivers a different structure of the program than the expected one.

In contrast, an FCES is not supposed to lead to the final event since it ends with
an FEP, which should not be executable (negative testing) [14, 22]. If this is feasi-



20 Chapter 3. Background

ble, the corresponding FCES is marked as failed. During a negative test of a web
application, an event might be reachable in certain situations, e.g., if

• an input was not checked properly by the SUC,

• a hyperlink did not lead to the expected page, or

• elements of a web page have been loaded that should only be available to
some specific kind of users.

Hence, by analyzing ESG models, merely faults on events and their order can be
detected. Other types of faults, for example the ones likely in database interactions,
are usually not within the scope of this testing but they might be detected by chance.

The corresponding ESG-based test process is described by Algorithm 3.1 where
ω(ES) determines the last event of a given ES. The test process is based on sets
of CESs and FCESs that cover ESs and FESs of a given length. However, the
derivation of minimal sets of test cases to reduce the effort for test execution as
much as possible is a complex task. This will be shown in the next section.

Algorithm 3.1: Test process

1 cover all ESs of length k by means of CESs;
2 cover all FESs of length k by means of FCESs;
3 foreach ces ∈ CES do
4 apply ces to SUC;
5 if all events applicable in the specified order then
6 mark ces as passed;

7 else mark ces as failed;

8 foreach fces ∈ FCES do
9 apply fces to SUC;

10 if event ω(fces) applicable then
11 mark fces as failed;

12 else mark fces as passed;



3.3 Optimizing Test Generation 21

3.3 Optimizing Test Generation

CESs and FCESs form the test sequences (test cases). For a thorough positive test-
ing of ESGs, all EPs of a given ESG are to be covered by CESs of minimal total
length and/or minimal number. Covering EPs is related to the often cited criterion
of edge coverage, as in white-box testing [132], since edges represent EPs. This
problem is a derivation of the Chinese postman problem (CPP) that attempts to find
the shortest path or cycle in a graph by visiting each arc [12].

As already mentioned above, hierarchical models are supposed to be resolved
completely before CESs are generated. The run-time complexity of finding a mini-
mal solution isO(|V |3) where |V | denotes the number of vertices [12]. The number
of FCESs for negative testing increases with the increasing number of vertices since
|FCES| = |V |2 − |E|.

Example 3.6. The strategy explained in [14, 12] delivers the following CESs as test
sequences for the model given in Figure 3.3 (on page 18):

CES1=[ x y z c d ]

CES2=[ a b1 b2 b3 c e]

CES3=[ a b1 b2 b4 b3 c f ]

Below, some of the resulting FCESs are presented as negative test cases.
FCES1=[ x a

FCES2=[ x b1

Note: the complete set of negative tests has |FCES| = |V |2−|E| = 122−12 =

132 elements; adding the three positive test cases above results in a total of 135 test
cases for this example.

Solving the Chinese Postman Problem to Generate Test Cases

The set of CESs of Example 3.6 was generated by a solution to the CPP that will
be briefly explained in the following. To derive this solution, the given graph is to
be extended by additional edges until it forms an Eulerian graph, which has a cycle
that traverses each edge exactly once and returns to the start vertex. A directed
graph is Eulerian if it is strongly connected and each of its vertices v ∈ V has equal
indegree and outdegree defined as follows.
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Figure 3.4: Degrees of the vertices of the ESG given in Figure 3.3

Definition 3.7 (Indegree/Outdegree/Balanced). The number of edges going into a
vertex v is the indegree written δ−(v), and the number of edges pointing out of a
vertex v is the outdegree written δ+(v). Let δ be the difference between the in- and
outdegrees: δ(v) = δ−(v)− δ+(v). If δ(v) = 0, vertex v is called balanced.

Following Definition 3.7 leads to the conclusion that a directed graph is Eulerian
if every vertex is balanced, that is, δ(v) = 0 ∀v ∈ V , respectively. The resulting
Eulerian cycle, which can be obtained by a standard algorithm in O(|V | ∗ |E|) time
[122], is a minimal solution to the CPP if the set of added edges is minimal. For
determining the minimal set of edges, two sets, A and B, have to be set up with

A = {vi|i ∈ {1, . . . , δ(v)} ∧ δ(v) > 0}
B = {vi|i ∈ {1, . . . ,−δ(v)} ∧ δ(v) < 0}

Figure 3.4, based on Figure 3.3 (on page 18), shows the degrees for each vertex
of Figure 3.3 with set A = {], ], b3} and set B = {[, b2, c}. The closing bracket
occurs twice in set A since its degree is +2. Note that an edge is added from end
vertex ] to start vertex [ in Figure 3.4 to fulfill the requirement of strong connectivity.

Balancing the Graph by Solving the Assignment Problem

The challenge in deriving the minimal set of edges, that is, for balancing the graph,
is to assign each element of set A to exactly one element of set B so that there is
no unassigned element in either set and there is no other assignment with a lower
number of edges to be added (according to the assignment). This leads to assign-
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ment problems [30], which attempt to answer the question of how to assign n items
(agents) to n other items (tasks), incurring some cost that may vary, depending on
the agent-task assignment. It is required to perform all tasks by assigning exactly
one agent to each task in such a way that the total cost of the assignment is minimal.
Formally, an assignment problem minimizes the objective function 3.1 for a given
n × n cost matrix cij , which fulfills the given constraints 3.2, 3.3, and 3.4 at the
same time.

min

n∑
i=1

n∑
j=1

cijxij (3.1)

s.t.
n∑
j=1

xij = 1 (i = 1, . . . , n) (3.2)

n∑
i=1

xij = 1 (j = 1, . . . , n) (3.3)

xij ∈ {0, 1} (i, j = 1, . . . , n) (3.4)

Considering ESGs, cij defines the number of edges of the shortest path (as costs)
between vertex i ∈ A and vertex j ∈ B, and n the number of elements of set A or
B, respectively. After minimization, xij = 1 indicates that edges along the shortest
path from vertex i to vertex j have to be added. Note that set A and B should
have the same size since the sum of all degrees in a given graph is zero; that is,∑

v∈V δ(v) = 0 and, hence, n = |A| = |B|.

Example 3.8. Table 3.1 shows the resulting cost matrix to be solved for Figure 3.3.
The matrix elements grade the minimal number of edges (as costs) if a node rep-
resented by row i is assigned to (connected with) a node represented by column j.
The goal is to find an assignment of row i to column j so that each row i is assigned
exactly once to one column j, and each column j is assigned exactly once to one
row i. A minimal assignment is indicated by dark gray boxes in Table 3.1, that is,
xij = 1 for the dark gray boxes. Furthermore, there should be no other assignment
with a lower sum of costs. According to Table 3.1, the following shortest paths
must be added to the ESG given in Figure 3.3 to create a minimal Eulerian cycle:
]→ [, ]→ b2, b3→ c.
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Table 3.1: The resulting cost and xij matrix out of Figure 3.4

 

cij [ b2 c 

] 1 4 5 

] 1 4 5 

b3 4 7 1 
 

xij [ b2 c ∑ 

] 1 0 0 1 

] 0 1 0 1 

b3 0 0 1 1 

∑ 1 1 1  
 

 

Figure 3.5: The balanced ESG

The balanced ESG is given in Figure 3.5. On the basis of this graph, the resulting
Eulerian cycle appears as follows:

[ x y z c d ] [ a b1 b2 b3 c e ] [ a b1 b2 b4 b3 c f ][

Note that the last vertex [ of the resulting Eulerian cycle does not contribute to
the desired result and can be deleted. Furthermore, the edge between vertex ] and
vertex [ is traversed more than once in the resulting tour. Thus, the resulting tour
is to be split up between every occurrence of the two consecutive vertices ] and [ to
gain the desired set of CESs as given in Example 3.6.

Methods for Solving the Assignment Problem

It is known from graph theory [122] that the construction of a minimal set of edges
which creates an Eulerian graph leads to the assignment problem that can be solved
in alternative ways.
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1. Complete enumeration method: All combinations of assignments are pre-
pared and an assignment involving the minimum cost is selected. This method
might be suitable for assignment problems of small size, but it is not suitable
for real world applications since the number of possible combinations is n!;
e.g., an assignment matrix with 10 rows/columns would have approximately
three and a half million combinations to evaluate.

2. Simplex method: The simplex method is a well-known algorithm for solv-
ing linear programming problems. Assignment problems can be formulated
as a linear programming model, such as given by equations 3.1 to 3.4. Al-
though the simplex method has better run-time complexity than the complete
enumeration method, solving assignment problems using the simplex method
can also be very time consuming since it has exponential run-time complexity
[112].

3. Hungarian method: One of the fastest methods for solving assignment prob-
lems is the Hungarian method [30], which provides a solution in O(n3) time.
Apart from the Hungarian method, other O(n3) solutions are given by Dinic-
Kronrod [30] or Cycle Canceling [113].
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Layer-centric Testing and its
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Chapter 4

Approach

The ESG notions and graph-theoretic results summarized in Chapter 3 help to ad-
dress the first question raised in Section 1.1 (Introduction): How can the effort of
test generation as well as the excessive number of test cases be reduced? Further-
more, how the impact of this cost reduction on the overall system reliability can be
determined is described. Parts of this chapter have been published in [17, 18].

4.1 Basic Idea

The basic idea for solving the problem of increasing complexity endemic to resolv-
ing the hierarchical structure is to generate test cases for each ESG individually,
which is called layer-centric testing. This reduces the effort of finding a minimal
solution since O(|Vresolved|3) > O(|V1|3) + · · ·+O(|Vk|3) where k is the number of
single ESGs forming the hierarchy, that is, k = 2 for Figure 3.2. This strategy will
also reduce the number of negative test cases significantly since FEPs between dif-
ferent ESG layers are not considered. As a consequence, faults occurring between
different layers can not be detected. But generating test cases for each ESG on its
own also introduces several problems for test generation, which will be discussed
in the following.

29
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Problem 1: Effect of Compound Vertices on Test Generation

Compound vertices, which represent compound events, consist of atomic ones;
however, their influence on test generation is not clarified.

Example 4.1. Consider Model 1 and Model 2 of Figure 3.2 (on page 18). The
optimization algorithm given in [14, 12] generates the following CESs for Model 1
and Model 2.

Model1 Model2

T1=[ x y z c d ] T4=[ b1 b2 b3 ]

T2=[ a b c e ] T5=[ b1 b2 b4 b3 ]

T3=[ a b c f ]
For positive testing, 5 test cases are generated (instead of 3, Example 3.6). The

number of resulting FCESs (negative testing) for Model 1 is 72; for Model 2 this
number is 12. Compared to Example 3.6, the total number of test cases has been
reduced from 135 to 89.

Analysis of Example 4.1 reveals the following problem. Compound vertices,
e.g., b in Example 4.1, have more nodes than the atomic ones do. This implies, if
there are many test sequences that include compound vertices, test length will very
likely increase and, accordingly, test costs will increase. Therefore, there is a need
to determine the weight of the compound events based on the number of events they
include.

Definition 4.2 (Weight). The weight of a compound vertex is given by the length of
the shortest CES.

Example 4.3. The weight of Model 2 of Figure 3.2 is 3 because the shortest CES
possible is [ b1 b2 b3 ]. Note that the pseudo-events do not contribute to the
weight.

Example 4.4. If the weight of the compound event is taken into account, the test
set of Example 4.1 modifies as follows:

Model1 Model2

T1=[ x y z c d] T4=[ b1 b2 b3 ]

T2=[ x y z c e ] T5=[ b1 b2 b4 b3 ]

T3=[ a b c f ]
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Problem 2: Executing Compound Vertices

The next problem to be considered is how can test sequences be executed that con-
tain compound vertices. An example of this problem can be seen in test case T3 of
Example 4.4 where vertex b represents a compound vertex.

A straightforward strategy is to replace the compound vertices by test case(s)
generated from the lower-layer ESG. If this lower-layer ESG also contains com-
pound events, one has to move down to the next lower-layer ESG, etc., and propa-
gate test cases generated in these layers to upper layers.

Example 4.5. In Example 4.4, by replacing b in T3 by T4 the following test se-
quences can be constructed:

T1 =[ x y z c d]

T2 =[ x y z c e ]

T3’=[ a b1 b2 b3 c f ]

T4 =[ b1 b2 b4 b3 ]

Problem 3: Executing Lower Layer Test Cases

T1, T2, and T3’ can be executed using Model 1 at the top layer when considering
Example 4.5. T4 is to be executed using Model 2 at the next lower layer, which
is not desirable. In a potential solution, the compound vertex b has to occur in the
minimal coverage of Model 1 at least as many times as its atomic refinement has test
cases. Model 2 of Example 4.4 has two test cases, namely T4 and T5. Therefore,
the solution has to contain at least two occurrences of vertex b. This requirement
can be fulfilled through an extension of the assignment matrix of Model 1 by adding
columns and rows for the vertex that is needed multiple times. For Example 4.4,
this is vertex b. Table 4.1 shows the resulting assignment matrix.

Table 4.1: The extended assignment matrix for Model 1

cij [ c b 

] 1 5 5 

] 1 5 5 

b 3 1 8 
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Example 4.6. Taking Table 4.1 into account results in the following test sequences
for Model 1 and Model 2:

Model 1 Model 2

T1=[ x y z c d] T4=[ b1 b2 b3 ]

T2=[ a b c e ] T5=[ b1 b2 b4 b3 ]

T3=[ a b c f ]
By replacing vertex b in T2 and T3 by T4 and T5, respectively, the following

test sequences can be constructed for Model 1 and Model 2:
Combined test case set:

T1 =[ x y z c d ]

T2’=[ a b1 b2 b3 c e ]

T3’=[ a b1 b2 b4 b3 c f ]

Algorithm 4.1 describes the LC testing approach for positive testing. This algo-
rithm differs from the former one [12] in that it generates CESs for each ESG on
its own instead of resolving the set of hierarchical ESGs. The run-time complexity
depends mainly on balancing the corresponding ESG, which is O(n3), according
to the Hungarian method. However, since this algorithm generates CESs for each
ESG on its own, it has a better run-time complexity than solving the fully resolved
ESG since O(|Vresolved|3) > O(|V1|3) + · · · + O(|Vk|3) where k is the number of
ESGs forming the hierarchy.

In contrast to generating CESs, calculating FCESs for negative testing is con-
siderably easier. FCESs of ESGs of the lower layer are generated first and then
moved to the next higher layer where the shortest path [122] from start vertex [ to
the corresponding compound vertex v ∈ V is calculated and concatenated with the
given FCESs of the lower layer model. Algorithm 4.2 generates FCESs (see Algo-
rithm A.4 for a formal description). The run-time complexity depends mainly on
deriving the shortest path for every vertex. Dijkstra’s algorithm can find the short-
est path in O(|V |2). Since the shortest path has to be found for every vertex in the
graph, the overall run-time complexity is O(|V | ∗ |V |2) = O(|V |3). Algorithm 4.2
also contains the method for deriving FCESs covering FESs of higher length. This
will be part of the next section on CESs.
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Algorithm 4.1: Determination of CESs for an hierarchical ESG according to
LC (see Algorithm A.1 for a formal description)

input : an ESG
output : a set of CESs

1 foreach compound event of ESG do
2 set weight of compound event in ESG; // Definition 4.2
3 generate CESs for the corresponding ESG′ of the compound event;

4 balance current ESG, considering the generated CESs; // Section 4.1
5 determine CESs on the basis of the balanced ESG; // Euler Tour
6 replace compound events in the resulting CESs by the CESs of the compound

events;

Algorithm 4.2: Determination of FCESs for an hierarchical ESG according
to LC (see Algorithm A.4 for a formal description)

input : an ESG and the desired length of FESs to be covered
output : a set of FCESs covering faulty event sequences of length

1 foreach compound event of ESG do
2 generate FCESs for the corresponding ESG′ of the compound event;
3 foreach FCES do
4 prepend shortest path from start vertex [ to compound event;

5 set up all FESs of length;
6 foreach FES do
7 prepend shortest path from start vertex [ to first event of FES;
8 foreach compound event in FES do
9 if compound event is last vertex then

10 replace with one of the start vertices of ESG′ of the compound
event;

11 else
12 replace with shortest path through ESG′ of the compound event;
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4.2 Covering Event Sequences of Higher Length

A phenomenon in the testing of interactive systems is that failures can be fre-
quently observed but reproduced only in specific contexts. Coverage of event se-
quences of length >2 can help here. To achieve such coverage(s), the original graph
will be transformed by Algorithm 4.3 to again enable the re-use of algorithms for
length 2 coverage. For ease of understanding, Figure 4.1 shows the transformation
of Model 1 of Figure 3.2 (on page 18) in two consecutive steps to achieve a cover-
age of sequence length 3. In Step 1, all sequences of (length−1) are determined as
the vertices. Two vertices are connected if the last (length−2) events of one vertex
equal the first (length − 2) events of the other vertex. The result is a graph where
each edge represents the desired length to be covered. Step 2 turns the vertices back
into single events, which also is described by lines 3-10 in Algorithm 4.3.

Algorithm 4.3: Transformation of an ESG to cover all ESs of higher length
(see Algorithm A.10 for a formal description)

input : an ESG = (V,E,Ξ,Γ) and the desired length of ESs to be covered
output : a transformed ESG’ according to the length to be covered

1 ESG′ = (V ′, E ′,Ξ′,Γ′) with V ′ = ∅, E ′ = ∅, Ξ′ = ∅, Γ′ = ∅;
2 build all ESs of (length-1);
3 foreach ES do
4 if first event of ES belongs to Ξ then
5 add all events of ES as copy to ESG′;
6 add edges along the ES to ESG′;
7 add copy of first event to Ξ′;

8 else add last event of ES as copy to ESG′;
9 if last event of ES belongs to Γ then

10 add copy of last event to Γ′;

11 foreach pair of ESs (ES1,ES2) do
12 if the last (length-2) events of ES1 equal the first (length-2) events of

ES2 then
13 add edge between the last events of ES1 and ES2 in ESG′;
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Figure 4.1: Graph transformation for length 3 coverage
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Considering Duplicated Vertices

As can easily be seen in Figure 4.1, a vertex like (indexed) vertex c might be con-
tained more than once in the resulting graph. If the transformed graph includes a
vertex v ∈ V of the original graph more than once, and if a multiple occurrence
of that vertex v is needed, it is then not obvious which vertex v will minimize the
assignment. A solution is to extend the assignment matrix by all occurrences of v
and redefine the matching constraints.

Example 4.7. Assuming that vertex c is needed one more time in the solution, then
it is not obvious if vertex c1 or vertex c2 of Figure 4.1 will minimize the solution.
Adding vertex c1 to the assignment matrix results in costs of 29 (see Table 4.2,
left) whereas adding vertex c2 results in costs of 28 (see Table 4.2, right). That
is, vertex c2 would minimize the solution. Unfortunately, the number of matrices
increases very fast if further selections between duplicated vertices are required.
In this case, every combination of possible selections has to be built. Assuming
that another selection between two duplicated vertices d1 and d2 is required, then 4
combinations can be built ((c1, d1) (c1, d2) (c2, d1) (c2, d2)) and 4 matrices need to
be solved.

Table 4.2: The cost matrix for Figure 4.1 extended by c1 (left) and c2 (right)

cij [ c1 c1 c2 c2 c1  cij [ c1 c1 c2 c2 c2 

] 1 5 5 4 4 5  ] 1 5 5 4 4 4 

] 1 5 5 4 4 5  ] 1 5 5 4 4 4 

d 2 6 6 5 5 6  d 2 6 6 5 5 5 

e 2 6 6 5 5 6  e 2 6 6 5 5 5 

f 2 6 6 5 5 6  f 2 6 6 5 5 5 

c1 3 7 7 6 6 7  c2 3 7 7 6 6 6 

 

Unification of the problem

Considering Example 4.7 raises the need for a more straightforward approach that
would solve the given problem within one cost matrix, as can be seen in Table 4.3.
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Formally, the following set of equations described as a linear program has to be
solved in such a case.

min
n∑
i=1

n∑
j=1

cijxij (4.1)

s.t.
n∑
j=1

xij = 1 (i = 1, . . . , k) (4.2)

n∑
i=1

xij = 1 (j = 1, . . . , k) (4.3)

n∑
j=1

e(y)∑
i=s(y)

xij = 1 (y = 1, . . . , l) (4.4)

n∑
i=1

e(y)∑
j=s(y)

xij = 1 (y = 1, . . . , l) (4.5)

n∑
i=1

(xij − xji) = 0 (j = s(y), . . . , e(y), y = 1, . . . , l) (4.6)

xij ∈ {0, 1} (i, j = 1, . . . , n) (4.7)

Table 4.3: The combined cost matrix for Figure 4.1 containing c1 and c2 simultane-
ously

   j 

   1 2 3 4 5 6 7 

  cij [ c1 c1 c2 c2 c1 c2 

i 

1 ] 1 5 5 4 4 5 4 

2 ] 1 5 5 4 4 5 4 

3 d 2 6 6 5 5 6 5 

4 e 2 6 6 5 5 6 5 

5 f 2 6 6 5 5 6 5 

6 c1 3 7 7 6 6 7  

7 c2 3 7 7 6 6  6 
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Example 4.8. In Table 4.3, column/row 6 and 7 have been added and only one of
them should be included in the solution for minimization purposes. In this case,
column/row 7 minimizes the assignment and column/row 6 has to be skipped. Ac-
cording to Table 4.3, k = 5, l = 1, s(1) = 6, and e(1) = 7. Thus, l defines the
number of matrix intervals from which only one column/row should be selected
(here only one consisting of column/row 6 and 7), s(y) defines the first index of
interval y <= l, and e(y) defines the last index of interval y <= l. k defines the last
index of columns/rows, which do not belong to an interval. Equation 4.4 and 4.5
choose “exactly one” of the columns/rows of the “interval” given by column/row 6
and 7. Equation 4.6 guarantees that if a column is selected, the appropriate row will
be selected as well; that is, if column 6 in Table 4.3 is selected, row 6 needs to be
selected accordingly. Selecting row 7 along with column 6 will otherwise lead to
an unbalanced graph.

Algorithm 4.4 improves Algorithm 4.1 for balancing a graph to cover sequences
of higher length, according to the findings described above. Unfortunately, it is not
a simple matter to adapt the given equation system 4.1 to 4.7 to the Hungarian
method. An optimal solution (abbreviated as LCopt) can be calculated using linear
programming, but it has exponential run-time complexity.

In case a solution cannot be found in sufficient time, a heuristic approach is
given by solving the assignment problem first and then adding the shortest self-
cycle for the given vertex v as many times as needed; this strategy is abbreviated as
LCsimple. LCsimple is straightforward and feasible but not necessarily minimal. See
Algorithm A.9 for a formal description of LCsimple.

4.3 Reliability Analysis

As demonstrated in the previous sections, LC strategy can considerably reduce the
size of the test suite and thus the test costs. The critical question is, however, how
far this cost reduction will affect the reliability. If the trade-off negatively influences
the quality, the saving effect will not persuade to accept the new strategy. Thus, a
quantitative comparison of the reliability levels achieved by both strategies, LC and
FR, is required. This section briefly summarizes and discusses existing software
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Algorithm 4.4: Determination of CESs for an hierarchical ESG according to
LC (see Algorithm A.6 for a formal description)

input : an ESG
output : a set of CESs

1 foreach compound event of ESG do
2 set weight of compound event in ESG; // Definition 4.2
3 generate CESs for the corresponding ESG′ of the compound event;

4 transform ESG for covering the desired length; // Algorithm 4.3
5 balance current ESG considering the generated CESs; // Section 4.2
6 determine CESs on the basis of the balanced ESG; // Euler Tour
7 replace compound events in the resulting CESs by the CESs of the compound

events;

reliability models that have been used since the early seventies of the last century
for reliability determination based on fault data observed during testing of SUC
(see also existing standards and guidelines, e.g., [58, 36]). As there is no prior
knowledge about the characteristics of the fault data, several of these models have
to be checked to select the one that best fits the data obtained. This section also
discusses the criteria given for the selection.

Starting with the same hierarchical model, test suites are separately generated
and executed following LC and FR strategies (Figure 4.2). The test results build
up the fault data to be analyzed to select the best-fitting SR model. Finally, the
reliabilities of the both strategies, RLC and RFR, will be calculated and compared.

Since each of the faults shall be counted only once assuming they were cor-
rected upon detection without causing new faults, Software Reliability Growth Mod-
els (SRGM) will be used that assume the absolute number of faults remaining in the
software decreases and thus SR grows. The assumption made is that the detected
faults will be perfectly corrected; that is, they do not induce follow-on faults.

SRGMs can be classified along five different attributes introduced by Musa and
Okumoto [70]:

• Time domain. Calendar time versus execution time,

• Type. The distribution of the number of failures experienced by time t is
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Figure 4.2: Overview of the reliability analysis

Binomial or Poisson.

• Category. The total number of failures that can be experienced in infinite time
is considered either as finite or as infinite.

• Class (in finite failure category only). Functional form of the failure intensity
expressed in terms of time, e.g., exponential, Weibull, or gamma class.

• Family (in infinite failure category only). Functional form of the failure in-
tensity function expressed in terms of the expected number of failures expe-
rienced, e.g., geometric family, power family.

Reliability Determination Process

In order to select proper SRGMs for predicting reliability R of a system, the fol-
lowing steps will be performed.
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Step 1: Determine Testing Time and Type of Fault Data There are several
ways to measure test time during the testing process, such as calendar time, number
of test runs, and number of test cases or execution time. Moreover, there are two
types of fault data for SRGMs: time intervals between successive observed faults
and the number of faults detected in a specified time interval. The case study (Chap-
ter 6) takes the number of test cases generated by event sequences of length 2, 3,
and 4 into account as points in time. Furthermore, the cumulative number of faults
is used as fault data.

Step 2: Analyze the Statistical Properties Statistical properties of fault data are
analyzed subject to different aspects, for example, whether they follow a specified
probability distribution or whether they form a specific stochastic process. One-
sample Kolmogorov Smirnov test (K-S) [27] is one of statistical nonparametric tests
used to determine whether a sample (fault data collected) fits the specified distribu-
tion. In the follow-on case study, it will be observed that the cumulative number of
faults builds up a Poisson distribution according to K-S test (Table 6.3 on page 64).

Poisson type models can be divided into two groups: homogenous Poisson pro-
cess (HPP) and non-homogenous Poisson process (NHPP). HPP models assume that
the failure rate does not change during the testing process; in other words, SUC has
constant failure intensity. In the present case, failure intensity varies with the time
parameter since faults are only counted once and it is assumed that no new faults are
inserted. Therefore, NHPP models are favored. As the exact nature of fault data is
not known a priori (except that it can be described as NHPP), several NHPP models
must be selected to ensure each type (Table 4.4) is covered.

Step 3: Select Parameter Estimation Technique Maximum likelihood estima-
tion (MLE) technique [27] will be used for estimating parameters of SRGMs be-
cause MLE fulfills most of the favored properties, such as asymptotic normality,
robustness and consistency. In addition, MLE simultaneously estimates model pa-
rameters and provides for the easy derivation of confidence intervals.

In MLE, it is convenient to use the log-likelihood function (LLF) for parameter
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estimation

LLF = lnL(θ1, . . . , θk)

=

(
p∑
i=1

yi · ln (µ(ti)− µ(ti−1))− ln(yi!)

)
− µ(te) (4.8)

where p is the number of groups or time intervals, µ(t) is the mean value function
(Table 4.4), yi is the detected number of faults in interval i, and (θ1, . . . , θk) are
unknown parameters to be estimated according to the maximum likelihood princi-
ple. A set of likelihood equations is obtained by taking partial derivative of this
log-likelihood with respect to each parameter and setting each of the derivatives to
0. Solving the set of equations delivers the estimates of the model parameters.

The lower limit (LL) and upper limit (UL) for confidence on the expected num-
ber of faults can be solved by the equations 4.9 and 4.10.

µLL(ti) = µ(ti−1) + LL (4.9)

µUL(ti) = µ(ti−1) + UL (4.10)

LL and UL are obtained by solving equations 4.11 and 4.12 where 1− α is the
confidence level or confidence coefficient. α is mostly chosen as 0.05.

LL−1∑
i=0

(µ(ti)− µ(ti−1))i e−(µ(ti)−µ(ti−1))

i!
= 1− α

2
(4.11)

UL−1∑
i=0

(µ(ti)− µ(ti−1))i e−(µ(ti)−µ(ti−1))

i!
=

α

2
(4.12)

Step 4: Calculate Goodness of Fit (GoF) Measures GoF measures describe how
well SRGMs fit a set of observations. Therefore, GoF measures can also be used
to compare different SRGMs according to their correlation to fault data. In this
study, Akaike information criteria (AIC) and Bayesian information criteria (BIC)
are used since these criteria are based on the maximized value of likelihood. In
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addition, commonly used mean square error (MSE) is selected [109].

AIC = −2LLF + 2k (4.13)

BIC = −2LLF + k ln(n) (4.14)

MSE =
∑

(y − ŷ)2/(n− k) (4.15)

where k is number of the model parameters, n is the number of observation, LLF
is the log likelihood, y is the observed value, and ŷ is the predicted value.

Step 5: Select Best Model The SRGM with the smallest AIC, BIC, and MSE is
selected as best fitting model for calculating reliability R in the interval (t, t+x) as
follows:

R(x|t) = P{N(t+ x)−N(t) = 0} = e−(µ(t+x)−µ(t)) (4.16)

where N(t) is the cumulative number of faults detected by time t.



Chapter 5

Selective Layer-centric Testing

The conclusion that can be drawn from Chapter 3 and 4 is that the test exhaustive-
ness and test execution effort can be controlled by appropriate selection of

(i) the ES length to be covered, and

(ii) the strategy for handling model refinement.

The higher the chosen sequence length, the more exhaustive the testing of the un-
derlying SUC, but this also results in greater test execution effort. ESGs allow the
generation of a very large set of CESs for testing a given SUC by simply increasing
the considered event sequence length step by step, whereby the test effort increases
with every step, usually exponentially. As compensation, testing event sequences
of higher length facilitate the detection of critical faults that can only be detected in
specific contexts. However, there is a need to detect those critical faults with less
testing efforts.

Assuming that critical faults are to be detected by a subset of the models forming
the hierarchy, it should be possible to increase testing efforts based on this subset
of models only. But first it is necessary to identify this subset of models that are
expected to have a higher fault detection capability. Reliability estimation provides
a solution. The reason for using reliabilities (or impacts) for model selection is that
reliabilities describe the likelihood of a system running fault-free during a given
time from a statistical point of view. Since it is desirable to select the model with

45
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good chances of detecting the next fault, it is reasonable to select the corresponding
system component with a worse reliability/impact on the overall reliability.

5.1 Basic Idea

The basis for an ESG-based test process forms a set of test cases that covers at
least event sequence length 2 (or EPs/FEPs, respectively). This set of test cases
also forms the basis for analyzing which component is likely to conceal additional
faults. For further analysis, it is necessary to execute the underlying test case set
covering all EPs and collect the results of their execution. On the basis of the
results, detected faults are to be categorized according to the given components
(represented by ESGs). This is done by identifying the event which has not been
executable in a CES and assigning this fault to the corresponding component. The
same is done for an FCES that detected a fault. The event that has been executable
should be assigned to the appropriate component. The result of this categorization is
a number of faults detected by each component or ESG, respectively. This data will
be used to identify the layers that have a worse reliability. After that, the ongoing
testing will focus on these layers only. Figure 5.1 gives a summary of the resulting
steps to be performed for selective layer-centric (SLC) testing strategy. The details
on Step 2 and 3 are given in the following.

5.2 Layer Selection Process

To identify the subsystem(s) that most endanger(s) the system reliability, the reli-
ability of each component must be calculated separately. Furthermore, the impact
of the individual components on the overall system has to be determined, which
requires calculating the usage ratio of each component (UR) first [38].

Step 2.1: Determining Usage Ratio (UR) for each Component.

UR contributes to the fact that the single components are tested with a varying
amount of effort. Since a single test case may contain events of different compo-
nents (test cases are merged during LC testing), it is no longer sufficient to use the
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Figure 5.1: Summary of the SLC strategy

number of test cases for reliability calculations. That is why UR parameter repre-
sents the ratio of number of events of each component over the number of events of
the overall SUC.

URk =
Ek

TEOS
(5.1)

where Ek is number of events of k-th ESG/component and TEOS is the total num-
ber of events of the overall test case set.

Step 2.2: Calculating Reliability of each Component and Combined Reliability
(Rc).

Calculating the reliability of each component (RE) follows steps similar to those
needed for calculating the overall system reliability described in Section 4.3.

• Testing time and type of failure are determined. The cumulative number of
events generated for each ESG/component is used here as time parameter.
Failure data type is the cumulative number of faults detected in each compo-
nent.

• Some SRGMs are selected according to the statistical properties of this fault
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data. Here, the NHPP models proposed in Section 4.3 are selected again
(Table 4.4 on page 42).

• Parameter estimation technique is selected. Here again, MLE is used.

• In order to determine the model that best fits the given fault data, GoF mea-
surements AIC, BIC and MSE are calculated for each selected SRGM.

• The reliability model with the smallest AIC, BIC, and MSE is selected as the
best fitting model.

To construct fault data, components are first sorted in descending order in accor-
dance with their usage ratios. Then REs are determined according to the best-fitting
SRGM model as follows.

REk = e−µ(tk)+µ(tk−∆t) (5.2)

where REk represents the reliability of k-th component of sorted components, tk is
equal to the number of events generated for k-th component, and ∆t is a small time
interval defined by the user. However, it can be selected as the minimum number of
events from among the number of events generated for components. The combined
reliability Rc is then defined as follows.

Rc = 1−
m∑
k=1

(1−REk)URk (5.3)

where REk represents reliability of k-th component, and m is the number of com-
ponents.

Step 2.3: Calculating Impact of each Component on Overall System Reliability.

The impact of each component (IE) [38] on overall system reliability can then be
determined as follows.

IEk = 1− (1−REk)URk

1−Rc

(5.4)



5.2 Layer Selection Process 49

where IEk represents the impact of k-th component on overall system reliability.
Note that components with a low IE value have a higher (negative) influence on the
overall system reliability than those with a higher IE value. Thus, the overall system
reliability can be improved by increasing IEs of these components.

Consequently, components with a small IE value have a (statistically) higher
fault detection capability and should be considered for further testing. A common
method in statistics is to divide a given dataset into four equal groups (called quar-
tiles). Quartiles can be used to determine the components for further testing. Here,
the 1st quartile of IE values determines the set of components with the worst IE
values. That is, further testing can be performed for components that have an IE
value equal to or less than the borderline value for the 1st quartile. The 1st quartile
of IE values is determined as follows.

• IE values are put in order from smallest to largest.

• 1st quartile is the IE value of component at position p = (n + 1)/4. If p is
not an integer, e.g., p = 3.5, the IE value at position p is as follows: IEp =

IEp< + (IEp> − IEp<) ∗ (p− p<) where p< is the (integer) position before p
(that is, p is rounded down to the next integer leading to p< = 3) and p> is the
(integer) position after p (that is, p is rounded up to the next integer leading
to p> = 4).

Quartiles can be computed by using software packages such as Minitab [79]. In
order to demonstrate that the 1st quartile is a good choice in terms of reliability, all
components are first of all selected to calculateRc. Then data related to components
is removed step by step from calculating Rc. Rc is re-calculated at every turn and
compared with LC testing. After removing them, the changes become apparent.
Third and finally, the percentage of changes in the parameters with respect to LC
testing are compared, which are calculated as follows.

CP =
|pk − pLC |
|pLC |

∗ 100 (5.5)

where pk shows the values of model parameters obtained after removing the k-th
component and pLC shows the parameters of LC testing.
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5.3 Test Generation Process

On the basis of the analysis in Step 2, the test effort is to be increased only for the
components which have been identified as putting the overall system reliability most
at risk. The open question is how can test efforts be increased for these components.

LC testing generates test sequences for every individual model of a given model
hierarchy to reduce the test generation and execution effort compared to the FR ap-
proach. But the LC approach also enables another method of controlling the thor-
oughness of the test and test execution effort. Based on LC, it is possible to increase
event sequence length to be covered only for some selected individual models of the
hierarchy. Assuming that a given model hierarchy consists of 3 models, it is pos-
sible to generate longer test sequences for just a subset (one or two) of the models
whereas the other models are covered by shorter test sequences. The precondition
is that the given SUC is represented by a hierarchical set of models.

Arising Problems

Applying the strategy to real-life SUCs uncovers some problems. If tests are gener-
ated for the uncritical components as well, this leads to additional test effort since
a test case set covering sequence length 2 forms the basis for the identification of
critical components. Therefore, tests of the uncritical components are expected to
have no additional benefit; that is, they are not likely to detect any additional faults.
Hence, it would be worthwhile to generate tests only for the critical components.
This, however, leads to the following questions that can easily be answered.

1. How can test sequences containing compound vertices be executed if no tests
have been generated for the compound vertex? Answer: Since the goal is to
minimize the test execution effort, the compound vertices are to be replaced
by the shortest path through the corresponding ESG. Note that if some tests
have been generated for the compound vertex, they are to be considered dur-
ing sequence generation as described for LC testing in Chapter 4.

2. How can test sequences of lower layers be executed if no tests are to be gen-
erated for upper layers? Answer: Move them to the upper layer as well; that



5.3 Test Generation Process 51

is, generate test sequences for the upper layer so that lower layer tests can be
executed. Further details are given in the following.

Executing Lower Layer Test Cases

The second question above refers to the fact that CESs of lower layers are to be
executed somehow in the context of the upper layers, even if no tests are generated
for the upper layer. To keep the costs as low as possible in such cases, a set of
CESs is needed for the upper layer containing the number of compound vertices for
which as many tests as needed are generated. Furthermore, this set should not be
replaceable by another set of CESs with a lower number of total events.

Example 5.1. Consider Figure 5.2 where an ESG is given with refined vertices c,
e, and h that are symbolized as dashed circles. Temporarily ignore the dashed lined
arc from vertex ] to vertex [. The ESGs of the compound vertices c and e have been
selected for further testing so that test sequences (CESs) to cover ESs of higher
length have been generated for them. The numbers next to the vertices indicate
how many CESs have been generated for them, that is, 2 CESs for vertex c and 3
CESs for vertex e. Thus, the number indicates how often this compound vertex will
be needed in a solution. Here the goal is to derive a CES set that contains vertex
c at least twice and vertex e at least three times and the total number of events is
minimal.

Solving the Traveling Salesman Problem for Testing Lower Layers

Adding an edge from pseudo end vertex ] to pseudo start vertex [ (as shown in
Figure 5.2) produces a strongly connected ESG, which helps to derive the required
set of CESs. This edge enables the problem to be transferred to determine a minimal
tour that starts and ends at pseudo start [ and which visits the compound vertices
as often as needed. If every compound vertex needs to be visited only once, this
problem forms a derivation of the traveling salesman problem (TSP) [30]. The TSP
attempts to find the shortest tour that visits each entry (“city”) of a given list. The
underlying assumption is that the pairwise distances are known for the cities, e.g.,
given as a matrixC = (cij). Considering ESGs, the distances consist of the minimal
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Figure 5.2: Example of an ESG with compound vertices c, e and h

number of edges between two vertices. Solving the TSP can also be seen as solving
the assignment problem but where the resulting assignment needs to describe a
cyclic permutation. Let X = (xij) describe a cyclic permutation, e.g.,

X =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


Then the TSP can be stated as

min
X∈Sn

n∑
i=1

n∑
j=1

cijxij

where Sn is the set of all cyclic permutations.

Example 5.2. The right hand side of Figure 5.3 shows the underlying distance ma-
trix for solving the TSP. The numbers of the matrix represent the minimal number
of edges to be visited if a vertex represented by row i is assigned to a vertex repre-
sented by column j. The dark gray boxes indicate the minimal tour; that is, seven
edges have to be visited to follow the minimal tour. According to the table, the fol-
lowing shortest paths must be added to the ESG to denote the shortest tour: [→ c,
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cij [ c e 

[ - 2 4 

c 4 - 2 

e 3 4 - 

 

Figure 5.3: The resulting tour through compound vertices c and e (left side) deter-
mined by the solution of the TSP on the basis of the distance matrix (right side)

c→ e, e→ [. The left hand side of Figure 5.3 illustrates the minimal tour.

Extending the Tour by Solving the Assignment Problem

On the basis of this initial solution, the next goal is to extend this tour in a minimal
way so that the resulting tour contains the desired number of compound vertices
needed. This can be achieved by adding this tour into a graph with all edges of
the original graph having been deleted (as can be seen in Figure 5.3). After that,
this graph is to be extended by additional edges so that the resulting Eulerian cycle
contains the compound vertices as many times as needed. As already described in
Section 4.1, determining the set of additional edges can be achieved by setting up
and solving the assignment problem.

Example 5.3. As can be seen in Figure 5.3, vertex c is needed one more time in
the solution and vertex e is needed two more times in the solution. The right hand
side of Figure 5.4 shows the cost matrix of the corresponding assignment problem
to be solved. A minimal assignment is indicated by dark gray boxes. According
to this assignment, the following shortest paths must be added to the ESG given in
Figure 5.3: c→ e, e→ c, and e→ e. The resulting ESG can be seen in Figure 5.4.
On the basis of this graph, the resulting Eulerian cycle starting in pseudo vertex [,
looks as follows:

[ b c d e g d b c d e g d e f ] [
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cij c e e 

c 3 2 2 

e 4 3 3 

e 4 3 3 

 

 
Figure 5.4: The extended ESG (left side) along the assignment matrix (right side)

In contrast to generating CESs, calculating FCESs for negative testing in SLC
is considerably easier. In a way done similarly in LC, FCESs of selected ESGs of
lower layer are generated first and then moved to the next higher layer where the
shortest path [122] from start vertex [ to the corresponding compound vertex v ∈ V
is calculated and concatenated with the given FCESs of the lower layer model.



Chapter 6

Case Study I: Reliability Analysis
Concerning Test Length & Model
Refinement

A large web application borrowed from an industrial project is used to demonstrate
and validate the approach and to analyze its characteristic features, including a com-
parison of FR with LC and SLC. Parts of this chapter have been published in [17].

6.1 System Under Consideration, Test Setup, and
Goals of the Experiment

SUC is a large commercial web portal with 53,000 lines of code called ISELTA
(“Isik’s System for Enterprise-Level Web-Centric Tourist Applications”). This por-
tal enables travel and tourist enterprises, e.g., hotel owners, to create their own
individual search & service offering masks. These masks can be embedded in an
existing homepage as an interface between user and system. Customers can then
use those masks to select and book services, e.g., hotel rooms, rental cars, etc. See
Figure 6.1 for the entry screenshot of ISELTA.

The goal of the experiment is to determine the special characteristics of the FR,
LC, and SLC approach with respect to their particular strengths and limitations.

55
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Figure 6.1: Screenshot of ISELTA

Figure 6.2: ESG modeling the change of hotel data
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Special attention will be given to analyzing the impact of test sequence length on the
fault detection capability [21, 16]. In addition, the question of how the structure of
the model, specifically model refinement, is able to contribute to the fault detection
will be clarified. A general concern is the influence of each of the strategies on
the overall reliability. A comparison of the ESG approach with random testing is
refrained because of previous work [14] that has already demonstrated the overall
effectiveness of ESG approach. Instead, this thesis compares the full resolution
and the layer-centric approach with the novel selective layer-centric approach to
show the advantages and disadvantages of the both approaches. The goal is to find
out what kind of faults can be detected by our approach and how the detectability
changes with varying the test generation method (FR, LC, SLC).

According to these goals, the sub-system hotel administration of ISELTA with
the following structure has been selected for performing the case study.

• Hotel administration forms a hierarchy of components represented by 7 ESGs
with a total of 73 vertices and 207 edges.

• More than 60,000 tests have been generated and executed.

• 3 sets of tests each, varying the length of ES to be covered (2, 3, 4), have been
generated for both the FR and LC approaches.

The chosen sub-system is independent of the others so that it can be viewed as
a system on its own. Thus, SUC is an impartially-chosen system. One of the 7
ESGs is given in Figure 6.2 (the full set of ESGs of hotel administration is given in
Appendix B).

6.2 Test Execution and Tool Support

One of the primary goals of a model-based test process is to automate test gener-
ation and execution. Figure 6.3 shows the overview of the automated test process
performed in this study. On the basis of a given specification, the ESGs have been
set up using a newly developed test tool called Test Suite Designer (TSD). For test
execution, another tool comes into account, which is able to evaluate the generated
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test cases by executing them against the SUC automatically. The result is a list of
passed and failed test cases. Further details on the tools supporting the test process
are given in the following.

Figure 6.3: Automated test process for testing with ESGs

6.2.1 Modeling & Test Generation: Test Suite Designer

To support the case study, the algorithms created for the LC strategy (see Chapter 4)
as well as the SLC strategy (see Chapter 5) have been implemented and integrated
in the TSD, which is written in Java®. The TSD automates the following steps:

• the modeling of hierarchical components by ESGs via GUI,

• CES and FCES generation following FR, LC or SLC, and

• the test script generation for test execution.

The GUI for modeling ESGs can be seen on the right side of Figure 6.4. The
modeling is supported by the Java Graph Visualization Library offered by JGraph
Ltd [60]. An outline of the hierarchical structure of an ESG can be seen in Figure 6.4
on the left side. The outline of the structure can also be used to navigate through
the ESG given.
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Figure 6.4: Screenshot of Test Suite Designer

Vertex annotations of constructed ESGs refer to source code executing the un-
derlying event within a separate test execution environment (see Section 6.2.2). This
enables the automatic generation of test scripts along the calculated test sequences.
These test scripts can be loaded into a separate test execution environment. The
assumption is that the code snippet can identify the “right” object. Just the name
will of course not be enough. Here, object-IDs and more techniques are used to
identify objects reliably. In the end, there was no manual conversion necessary to
execute the tests which is also one of the strength of the approach. Furthermore, the
test oracle defined in Section 3.2 is easily adaptable to test tools like the one used
in this study which is described in the next section.

Figure 6.5a shows the dialog for adding the source code to a single event. Fig-
ure 6.5b shows the test generation dialog, where the approach for test generation
can be selected, and whether test scripts shall be created for test execution. Visit
Appendix A for a formal description of the algorithms and models used in the case
study.

The linear system of equations 4.1 to 4.7 is solved using the open source lp_solve
library [69]. An implementation on the basis of the GNU Linear Programming Kit
(GLPK) [45] also exists but it turned out that the library could not reliably provide
a valid solution. This is due to the fact that the solution contained floating point
values between 0 and 1 in some cases although the domain of the variables has been
set to binary (that is, 0 or 1). But when a valid solution was generated, GLPK was
much faster compared to lp_solve.
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(a) Entities dialog of an event (b) Test generation dialog

Figure 6.5: Screenshots of dialogs in TSD

Figure 6.6: Screenshot of Selenium IDE
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6.2.2 Test Execution

TSD allows the generation of test scripts along the generated CESs and FCESs. For
automated test execution, any tools can be used that support test scripts for running
tests against the given SUC.

The freely available web test tool Selenium [107] has been developed for testing
web applications. The user interface of Selenium can be seen in Figure 6.6. The
right side of Figure 6.6 shows an excerpt of the generated Selenium test script.
Thanks to the fact that test scripts can be stored in an HTML text file format, test
script files can also be opened and viewed in a web browser.

6.3 Results and Their Analysis for Identifying the
Critical Sub-Layers

6.3.1 Results

Based on TSD, CESs and FCESs for positive and negative testing have been gen-
erated and executed along LC and FR covering event sequences of length 2, 3, and
4. The results of the tests of this case study are summarized in Table 6.1. It can be
seen that the number of CESs in the LC approach is lower than the number of CESs
of the conventional FR approach.

Table 6.1: Positive and negative tests subject to ES length

FR LC
length CES FCES

∑
faults CES FCES

∑
faults

2 5 2663 2668 35 2 585 587 29
3 22 9474 9496 35+4 4 1735 1739 29+2
4 93 38768 38861 39+0 6 7005 7011 31+0∑

120 50904 51024 39 12 9325 9337 31

To enable a more detailed comparison of the test effort reduction, the number of
events to be executed according to each approach is shown in Table 6.2. In total, the
new approach, LC strategy, reduced the number of events by 78%. Surprising is the
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fact that this effort (~20% of the original test effort) was already able to detect 80 %
of the faults! 31 faults were detected using the LC approach and 39 faults using
the FR approach. Thus, LC detected 20 % less faults. However, the LC approach
reduced the test effort by about 80 %. Test execution effort reflected this saving
which was reduced from 4 days to round about one day. The data (in Table 6.2)
show that much of the 74/78 % saving is accounted for by reduction in the FCES
events. The reduction in CES events is much less: it ranges from 3 % to 10 %.
However, it was observed that this saving correlates to the detected faults. It is
worth noting that these faults are real faults of the system with respect to the model.
They are not hand-seeded, or result from mutation operators.

Table 6.2: Number of events to be executed

FR LC
length CES FCES

∑
CES FCES

∑
saving

2 353 17504 17857 341 4370 4711 74 %
3 1589 73053 74642 1430 15150 16580 78 %
4 9580 343969 353549 8710 70268 78978 78 %∑

11522 434526 446048 10481 89788 100269 78 %

Figure 6.7 shows the number of test cases for event sequences of increasing
length. Figure 6.8 shows this on a logarithmic scale. The fact that the curve forms
an almost straight line reflects the circumstance that the number of test cases grows
exponentially with increasing length. The same holds for the number of events (not
shown).

6.3.2 Comparing FR with LC

The reliability determination process of the experiment for comparing FR with LC
is carried out in five steps (see Section 4.3).

Step 1: Determine Testing Time and Type of Fault Data

As no time units are given, the cumulative number of test cases (instead of points
in time) and number of faults detected by event sequences of length 2, 3, and 4
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are used for the reliability determination of software (instead of number of faults
detected in a time interval). According to Table 6.1, the grouped data consisted
of cumulative number of test cases and has three groups, which are defined by:
[0, 587[, [587, 2326[, [2326, 9337[; that is, “times” t1 = 587, t2 = 2326, t3 = 9337

with y1 = 29, y2 = 2, and y3 = 0 as faults per interval. Note that t2 is calculated by
t2 = t1 + number of test cases covering length 3, that is, t2 = 587 + 1739 and so
on.

Step 2: Analyze the Statistical Properties

To decide whether or not Poisson type models can be used in this study, a K-S test
is performed with following hypotheses.

H0: Cumulative number of faults forms Poisson distribution.
H1: Cumulative number of faults does not form Poisson distribution.

The analysis of the results of the K-S test (Table 6.3) indicates that the cumula-
tive number of faults follows Poisson distribution with a mean parameter = 30.333
since p-value (0.709) is greater than 0.05.

Table 6.3: One-sample Kolmogorov-Smirnov test

Cumulative Number of Faults
Poisson Parameter Mean 30.333
Kolmogorov-Smirnov Z 0.707

p-value (2-tailed) 0.709

Step 3: Select Parameter Estimation Technique

Figure 6.9 shows predictions of mean-value and 95% confidence intervals for each
SRGM at time t3. G-O and D-S models gave an exact prediction for the cumulative
number of faults at time t3. In contrast, M-O model performed worse, estimating
approximately 4 additional faults until time t3 by executing 7082 test cases covering
length 4; perhaps because the failure intensity does not decrease exponentially with
the expected number of faults experienced for this data.
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Figure 6.9: Predictions of mean-value and 95 % confidence intervals at time t3
(thus, for length 4 testing)

Step 4: Calculate Goodness of Fit (GoF) Measures

GoF measures are summarized in Figure 6.10.

Step 5: Select Best Model

G-O gives the best estimation in all GoF measures since it has the smallest AIC,
BIC, and MSE values (“the smaller the better”). To compare the reliability of the
LC approach with the FR approach, the reliability of the FR approach has also been
calculated as RFR = 0, 99870 and summarized in Table 6.4 for each reliability
model, indicating that there is no significant difference between the reliability of
FR (RFR = 0.99876) and LC (RLC = 0, 99940) approach.

Table 6.4: Reliability measures

Models GO D-S D GGO LP MO
RLC 0.99940 0.99998 0.8884 0.6092 0.1761 0.00479
RFR 0.99876 0.99997 0.99997 0.63186 0.93659 0.03375
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Figure 6.10: GoF measures

Results in a Nutshell

In the case study, 31 faults were detected using the LC approach and 39 faults
using the FR approach. Thus, LC detected 20% less faults. However, the new
approach reduced the test effort by about 80%. The follow-up reliability analysis
found that the LC approach leads to an even slightly better reliability level than the
FR approach.

Regarding the test sequence length, the results of the analysis were surprising:
Test cases covering event sequences of length 2 detected most of the faults. Test
sequences of length 3 contributed very little, and execution of test sequences longer
than 4 makes no sense as they obviously have no or only very minor chances of
detecting any new faults with respect to the measured reliability level. In the end,
the fault detection of test suites covering sequence length 3 and 4 stayed far behind
expectation.

6.3.3 Comparing FR and LC with SLC - Identifying the Critical
Sub-Layers for Further Testing

In both strategies, LC and FR, testing with higher event sequence length leads to
a great deal of additional test effort while detecting fewer faults. The question
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that arises now is whether or not it would have been possible to achieve a similar
reliability level as in LC and FR with less testing effort. To answer this question,
the three steps to be performed for SLC strategy (Chapter 5) will be carried out.

Step 1: Perform Layer-centric Testing and Categorize Detected Faults.

Table 6.5 shows the results of LC testing for each component. The resulting test
case set has been analyzed and the events occurring in the resulting test case set
have been counted for each of the components. Furthermore, the faults have been
categorized according to the components. It is assumed now that only the CESs and
FCESs covering sequence length 2 based on LC testing have been generated and
executed.

Table 6.5: The number of faults and the number of events categorized according to
the components
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4 89 34 1 22 50 0 560 14184 1 290 14957 7 543 4241 9 911 11565 1 6295 25237 12 

 

 

Step 2: Select Layers for Further Testing

As mentioned in Section 5.2, the first step to identify a subset of components which
have a higher fault detection capability is to calculate usage ratio of each component
(UR). Then the reliability of each component (RE) and impact of components (IE)
on overall system reliability are determined.

Step 2.1: Calculating the Usage Ratio of Components Equation 5.1 is used
to calculate UR. According to Table 6.6, the component with the highest usage is
represented by ESG 4. The component represented by ESG 1 has the lowest usage.
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Table 6.6: Usage ratio of components/ESGs

ESG ESG 1 ESG 2 ESG 3 ESG 4 ESG 5 ESG 6 ESG 7
URE 0.00212 0.004 0.252 0.2768 0.09 0.154 0.2212

Step 2.2: Calculating Reliability of each Component To determine the fault
data used for calculating the reliability of each component, first the number of faults
detected during the test process and the corresponding number of events in case of
length 2 are sorted in descending order according to their URs (Figure 6.11).
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Figure 6.11: Fault data used to calculate the reliability of each component

To decide whether or not Poisson type models can be used in this study, a K-S
test is performed with following hypotheses.

H0: Cumulative number of faults forms Poisson distribution.
H1: Cumulative number of faults does not form Poisson distribution.

The analysis of the results of the K-S test (Table 6.7) indicates that the cumu-
lative number of faults follows Poisson distribution (mean parameter = 19.4286)
since p-value (0.239) is greater than 0.05.

The next step is to apply the NHPP models given in Table 4.4 (on page 42) to
the fault data given in Figure 6.11 and to compute GoF measures for each SRGM to
determine the best fitting model. Figure 6.12 shows the results of the GoF measures.
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Table 6.7: One-Sample Kolmogorov-Smirnov Test

Cumulative Number of Faults
Poisson Parameter Mean 19.4286
Kolmogorov-Smirnov Z 1.030

p-value (2-tailed) 0.239
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Figure 6.12: GoF measures

It can be seen from Figure 6.12 that D-S model provides the best performance
in all GoF measures since it has the smallest AIC, BIC, and MSE values. There-
fore, the D-S model has been used to calculate the reliability of each component
in this study. Table 6.8 shows reliability results of each component and combined
reliability (Rc).

Table 6.8: Reliability results of each component and Rc

ESG ESG 1 ESG 2 ESG 3 ESG 4 ESG 5 ESG 6 ESG 7 Rc

RE 0.9269 0.9268 0.9329 0.9526 0.9268 0.9261 0.9266 0.9354

As can be seen in Table 6.8, Rc (0.9354) is lower than RLC (0.99940) and RFR

(0.99876) that have been determined in Section 6.3.2. The goal now is to enhance
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Rc. This will be done by performing SLC testing with higher length for components
that have a small IE value compared to the overall system reliability.

Step 2.3: Calculating Impact of Components on Overall System Reliability
Table 6.9 shows the sorted IE values of components on the overall system reliability
derived in line with equation 5.4.

Table 6.9: Impact of each component on overall system reliability

ESG Sorted - IE
ESG 3 0.739
ESG 7 0.75 (Quartile)
ESG 4 0.8
ESG 6 0.82
ESG 5 0.9
ESG 2 0.995
ESG 1 0.997

Step 3: Re-execute Layer-centric Testing by Increasing the Sequence Length
for the Critical Layers Only

SLC testing with higher length is performed for ESG 3 and ESG 7 since IE values
of these components are equal to or less than the 1st quartile of IE values, which is
calculated as IEp = 0.75 with p = (n+ 1)/4 = (7 + 1)/4 = 2.

In order to demonstrate that this selection is adequate in terms of reliability, SLC
testing with length 3 was first performed for all ESGs and Rc was calculated. Next
data related to components was removed step by step from calculating Rc and then
Rc was re-calculated at every turn.

Table 6.10 shows the new combined reliabilities and changes in model parame-
ters CP, indicating that removing ESG 7 has caused a sudden decrease in Rc. When
looking at Table 6.10 from the bottom-up, it can be seen that Rc has increased from
0.9353 to 0.985 as a result of SLC testing with length 3 for ESG 3 and ESG 7.
Moreover, maximum changes in a (representing the expected number of faults to
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be detected) and b (representing the fault detection rate) parameters occur when
removing ESG 7 and ESG 3.

Table 6.10: The new combined reliabilities calculated by removing ESGs step by
step and changes in model parameters

 
 

ESG 

 
 

Rc 

D-S Model 
Parameters 

CP 

a b a b 

All ESGs (equals LC-Testing with length 2+3) 0.998 31 0.0006 0 %36.84 

Not ESG1 0.998 31 0.0006 0 %36.84 

Not ESG1+ESG2 0.998 31 0.0006 0 %36.84 

Not ESG1+ESG2+ESG5 0.996 31 0.0006 0 %36.84 

Not ESG1+ESG2+ESG5+ESG6 0.994 31 0.0006 0 %36.84 

Not ESG1+ESG2+ESG5+ESG6 +ESG4 0.985 31.2 0.0006 %0.65 %36.84 

Not ESG1+ESG2+ESG5+ESG6 +ESG4+ESG7 0.9390 75.07 0.00026 %142.16 %72.63 

No ESG (equals LC-Testing with length 2)  0.9353 84.65 0.00025 %173.0645 %73.68 

LC Testing (length 2+3+4) 0.9999 31.00 0.00095   

 

 

Results in a Nutshell

When performing SLC testing with length 3 for only ESG 3 and ESG 7, SLC
reached a reliability level close to the ones achieved by LC and FR with one dif-
ference: the test effort could be reduced even further by approximately 30% with
length 3 testing for SLC when directly compared to length 3 testing for LC (see
Table 6.11). Compared to FR testing, the test effort has even been reduced by 84%.

Table 6.11: Effort comparison of LC and SLC (length 3 testing)

length 3 LC (length 3) SLC (length 3; ESG 3+7) saving
# events (CES) 1430 1012 29 %
# events (FCES) 15150 10634 30 %
total 16580 11646 30 %



72 Chapter 6. Case Study I

6.4 Limitations and Threats to Validity

Layer-centric testing (LC) has been introduced to reduce the costs of test case gen-
eration and test execution for large hierarchical models. The novel SLC strategy
introduced in this thesis brings further valuable steering and cost reduction capabil-
ities for the test process. The results of the case study have been far above expec-
tations. However, there are also some limitations and threats to validity that should
be mentioned.

In general, while model-based testing a system, the tester assumes that the un-
derlying model is correct and complete with respect to the entities considered. The
same holds for the given case study. By analyzing ESG models, merely faults on
events and their order could be detected. Other types of faults, the ones likely in
database interactions, for example, are usually not within the scope of this testing,
but they might be detected by chance. Data dependencies are also not considered.
Usually, SUC which is modeled is more complex than the model and events may
have complex side-effects. The focus of the approach is on testing ESGs for detect-
ing faults in sequences of events. However, test data influence test sequences, and
thus events may have complex side-effects. In order to compare the true fault detec-
tion between the FR, LC and SLC approach, the influence of test data is needed to
be eliminated. Thus, the approach creates test data in a way that they have no influ-
ence on the detected faults. This can be seen as oversimplifying and thus restrictive;
however, the number and severity of the faults detected indicates the strength of the
approach (see [14, 10] for further examples of the fault detection effectiveness of
ESG approach).

Another concern is about the transferability of the results achieved here to other
systems or models since these results heavily depend on the given SUC, its develop-
ment process, and on many more factors. Furthermore, only one large component of
one system, namely ISELTA, is experimentally tested. In addition, reliability esti-
mations depend heavily on the given fault data. Thus, the reliability growth models
that are applicable to a given data set might not turn out to be applicable to another
data set.

Therefore, the next part of this thesis will address these issues by applying the
approach to web service compositions. However, the reliability estimations as per-
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formed in this chapter clearly demonstrate the applicability of these models to the
given case study. Hence, the reliability analysis should not be left out; it also pro-
vides a reasonable indicator for determining the point in time when to stop testing.
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Part III

Applying the Approach to Web
Service Compositions
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Chapter 7

Extending the Approach

Technical and enterprise applications have become more and more complex since
they have to cope with strict requirements, such as of business processes and their
dynamic evolution, and interaction among different systems. Accordingly, the ar-
chitecture for integrated enterprise applications has to provide interoperability, scal-
ability, and rapid development. The adoption of technologies that foster the inter-
operability between different applications has been a recurring solution. Service-
oriented architectures (SOA) and web services have been developed to enable
loosely-coupled, distributed applications by using independent and self-contained
services. These services can be combined in a workflow that characterizes a new,
composite service. The resulting composite service is also called as web service
composition (WSC). Apart from the adoption of SOA and web services, the use of
a service bus to ease the integration process has been advocated for service-oriented
applications [106, 61, 95]. The so-called enterprise service bus (ESB) controls,
routes, and translates messages exchanged by the services involved [95].

SOA testing has gained much attention as a method of ensuring the delivery of
high quality and robust service-oriented applications [31]. WSC testing plays an
important role in this context [73, 23, 90, 24, 124, 32, 59] because the behavior
of the composite services now depends not only on the WSC itself but also on the
integrated services, which complicates the testing process. The WSC can present
complex communications among the integrated services in which missing or unex-
pected messages can lead to a failure. Furthermore, the composition may fail due to

77
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undesirable behavior of partner services, such as corrupted messages, unavailable
servers, and long timeouts.

Based on [15], this chapter introduces a new approach called ESG for web ser-
vice compositions (ESG4WSC) to generate cost-effective test cases for WSCs. An
event-oriented approach is proposed for several reasons. First, message exchanges
in a WSC can be viewed as events that follow an order. Second, artifacts (e.g., stan-
dardized service descriptions) need not be available to create an ESG or any other
model for a service composition. This means that an ESG can easily be constructed
in an ad-hoc way by the tester wherever no model is available. It is assumed that
the tester can observe and modify the exchanged messages using an ESB (present
in several SOAs). The service composition is considered to be a black box, but the
tester has control over messages exchanged with the partner services.

To sum up, an event-based approach is proposed to support WSC testing by

• extending the basic notions of ESG (Chapter 3), referred to as ESG4WSC,
for testing the WSC behavior in desirable situations (positive testing) and
undesirable situations (negative testing) based on one model;

• introducing the concept of “sensitive” events as test oracle for negative test
cases;

• introducing new scalable algorithms to generate positive and negative test
cases from ESG4WSC;

• enabling the independent modeling of artifacts such as BPEL while allowing
simultaneous modeling and implementation;

• enabling to model independent of the type of composition, that is, orchestra-
tion or choreography.

To the author’s best knowledge, there is no comparable work that performs test-
ing of WSC by modeling and testing not only the interface, which is available to the
consumer, but also the internal communication with other services, which is usually
hidden from the consumer. Furthermore, the ESG4WSC approach is holistic, since
it considers positive and negative testing at the same time [9].
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The remainder of this chapter is organized as follows. Section 7.1 briefly pre-
sents concepts of SOA, web services, and ESBs. In addition, it presents related work
and introduces a running example for the explanation of the approach. Section 7.2
introduces the proposed holistic approach to model service compositions. Finally,
Section 7.3 presents the underlying testing process for testing service compositions.

7.1 Background, Related Work and
Running Example

7.1.1 Background

The information technology landscape of enterprises is mostly heterogeneous, com-
plicating the integration of systems implemented by different technologies. SOA
has been introduced to fill this gap and provides a de facto standard enabling com-
munication among those systems. SOA is an emerging approach that aims to fos-
ter loose coupling among applications. It provides a standardized, distributed,
and protocol-independent computing paradigm. Software resources are wrapped
as “services” that are well-defined and self-contained modules providing business
functionality and are independent from other service states or contexts [95]. Usu-
ally, implementation details of a service are hidden and only its interface is avail-
able; that is, a service can be viewed as a black box.

A SOA is based on three entities: provider, consumer, and registry. Using the
web services technology, a SOA is realized through three main XML standards:
WSDL [121], UDDI [91], and SOAP [120]. WSDL (Web Service Description Lan-
guage) is a W3C standard used to describe the service interface, including details
such as operations, data types, and adopted protocols. UDDI (Universal Descrip-
tion, Discovery and Integration) is an OASIS standard that defines a set of func-
tionalities to support description and discovery of services. SOAP (originally for
“Simple Object Access Protocol”, but no longer an acronym [120]) is also a W3C
protocol used to define the structure of messages exchanged among the services.
Using SOAP, it is possible to define error messages by using SOAP Faults. SOAP
Faults are expected by the consumer if they are specified in the WSDL interface
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and used to map exceptions that happen within the service. However, the web ser-
vice frameworks also tend to launch SOAP Faults when internal exceptions are not
handled correctly. In this case, it is said that the SOAP Fault is unexpected.

A group of services can be assembled to create a new value-added service via
composition. In a service composition, many services can be combined in a work-
flow to model and execute complex business processes. The services involved in
a service composition are usually called partner services. Service compositions
can be developed either as orchestration or as choreography. In service orchestra-
tion, there is a main entity that is responsible for coordinating the partner services.
Currently, the most widespread language used to implement a service orchestra-
tion is BPEL [92]. In service choreography, there is no control entity and all part-
ner services work cooperatively to achieve an agreed objective. There are several
languages used to describe service choreography, e.g., WS-CDL [119] and WSCI
[118]. The service composition is also a service (referred to as a composite service)
and can be reused by other services. A service that is not a composition is usually
called an atomic service. The terms service and web service are used as synonyms
in this thesis.

An ESB, which is an intermediate layer among the services, can also be included
in a SOA. The ESB works as a backbone that uses web services technology to sup-
port many communication patterns over different transport protocols and provides
interesting capabilities for service-oriented applications, such as routing, provision-
ing, service management, integrity, and security [95]. The adoption of ESBs has
been considered essential for companies to gain the full advantages provided by
SOAs [61]. An ESB enables high interoperability and eases the distribution of busi-
ness processes using different platforms and technologies [61]. Figure 7.1 presents
the transition from a traditional SOA to an ESB-based architecture. According to
Schmidt et al. [106], the ESB is an infrastructure that fully supports an integrated
and flexible SOA. These features are achieved by receiving, operating, or mediat-
ing on the service messages as they flow through the bus. There are many possible
uses for mediation, such as load balance, monitoring, and validation. Schmidt et al.
[106] describe a set of mediation patterns that are useful in an ESB. In the context
of this work, two patterns were used.

• Monitor pattern provides the feature for observing messages that pass through
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the ESB, not applying any type of change in the messages. This pattern can
be applied to logging, audition, monitoring of service levels, measurement of
client usages, and so on.

• Aggregator pattern provides the feature for monitoring messages from dif-
ferent services over a period of time and generating new messages or events.
This pattern can be useful for realizing complex scenarios so that, e.g., a set
of events can be mapped to a single event.

Figure 7.1: ESB representation in a SOA (adapted from [106])

The ESB can be provided by software that implements the concepts of those
functionalities. Several ESB applications, from proprietary vendors to open-source
solutions, are available [42]. In this work, the open-source version of Mule-ESB
[81] is adopted, which is a lightweight Java-based ESB that includes much func-
tionality to integrate existing systems.

7.1.2 Related Work

SOA testing has been studied intensively in recent years [31, 29, 103], with a par-
ticular effort on formal testing approaches (for a systematic review of the literature,
see [41]).

Benharref et al. [23] propose a multi-observer architecture to detect and lo-
cate faults in composite web services. The proposed architecture is composed by
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a global observer and local observers that cooperate to collect and manage faults
found in the composite service. Mei et al. [73] propose a model to describe a
service choreography that manipulates data flow by means of XPath queries. In a
choreography, XPath queries can handle different XML schema files. XPath ex-
pressions are represented using XPath rewriting graphs (XRGs). Based on labeled
transition systems (LTS), the LTS-based choreography model (C-LTS) is proposed
with XRGs attached in transitions that represent service invocations. New types
of definition-use associations are proposed and test adequacy criteria are presented.
The approach introduced in this thesis is focused on test case generation, which is
not the subject of the work of Mei et al. Thus, both approaches are complementary
since the coverage criteria can be used to give more information about the test suite
generated by the ESG4WSC approach.

Transforming composition specifications (such as BPEL and WS-CDL) into for-
mal models to support test case generation has also been researched. Bentakouk et
al. [24] propose a mapping from BPEL to symbolic transition systems. Test cases
are generated using symbolic execution and applied to the SUC using online test-
ing. Hou et al. [56] model a BPEL program using message sequence graphs and
generate message sequences. In an extended version [90], the authors formalize the
approach and make an experimental comparison with two other techniques. The
present thesis differs from [24, 56, 90] concerning the available artifacts. It is not
assumed that the composition was developed using BPEL and the tester has access
to this artifact. Although the ESG4WSC approach requires more effort to develop
the test model, the SUC is verified from a different black-box point of view.

Wieczorek et al. [124] present message choreography models (MCM) for model-
based integration testing of service choreographies where test cases are generated
using model checking. In [125], the authors present a case study about the appli-
cation of this MBT approach to test service choreographies in a real-world project.
MCM models were designed to support the tests. Wieczorek et al.’s work is close
to the ESG4WSC approach, with two main differences: (i) ESG4WSCs are more
abstract models compared to MCMs, which form a domain-specific language cre-
ated to design service choreography; (ii) the ESG4WSC approach also performs the
tests using a test execution environment based on ESBs, which can be adapted to
the MCM approach.
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The negative testing included in this thesis can be associated with fault injection
techniques for WSCs. Chan et al. [33] describe a fault taxonomy for WSCs. The
authors identified a set of fault classes that are classified into physical, development
and interaction faults. In a matrix, these faults are related to six elementary fault
classes to explain observed effects in the composition. This taxonomy has been
used in fault injection for WSCs. However, Chan et al. do not describe how to
systematically detect the faults related to the different fault classes.

Cavalli et al. [32] propose the framework WebMov, which is composed by a
methodology and tools for modeling, validation, and testing of WSCs. It is mainly
based on variations of timed extended finite state machines to model BPEL com-
positions. The methodology also includes fault injection to test the robustness of
the composition. Ilieva et al. [59] propose a similar framework, named TASSA, for
robustness testing of BPEL orchestrations using fault injection mechanisms. Both
papers approach the use of fault injection techniques for negative/robustness test-
ing of BPEL compositions. Nevertheless, they do not deal with faulty message
sequences as tested by the ESG4WSC approach.

To sum up, the ESG4WSC approach differs from existing approaches by com-
bining positive and negative testing at the same time. Furthermore, the presented
approach is independent of artifacts such as BPEL, which are regularly a result of
the implementation process. This enables to start the modeling and implementation
process at the same time. A further difference is the fact that the introduced model
is not restricted to one of the two existing types of composition, that is, orchestra-
tion or choreography. It is also worth noting that the presented approach introduces
the concept of “sensitive” events as the test oracle; a concept that has not been
introduced before to solve the oracle problem.

7.1.3 Running Example

The business process to grant loans called xLoan proposed in [24] is the running
example used to illustrate the approach over the following sections. Note that this
example is not the case study described in Chapter 8, which is a non-trivial, com-
mercial web application.

The example involves three services: LoanService (LS), BankService
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(BS), and BlackListInformationService (BLIS). LoanService repre-
sents the xLoan business process, whose workflow is implemented using BPEL.
It contains three operations: request, cancel, and select. BankServ-

ice represents the financial agency that approves (or not) loans, providing loan
offers to its clients. The operations used in the example are approve, offer,
confirm, and cancel. BlackListInformationService provides an op-
eration checkBL to check if a client has debits with some financial organization.

The example is extended to add parallel flow (a common entity of WSCs) in the
process by including a new service called CommercialAssociationService
(CAS). Similar to BLIS, CAS provides an operation inDebtorsList to check
whether a client has debits with some commercial organization. In the extension,
both services are supposed to be called in parallel. If the client has debit according
to one of them, the client requires bank approval.

7.2 Modeling Web Service Compositions

This section introduces an event-based model, named ESG4WSC, that represents
the request and response messages exchanged between services involved in a WSC.
Requests regularly require some kind of input data, which has in turn an influence
on the returned response. Furthermore, the execution of events can be bound to
specific constraints that need to be fulfilled.

Constraint Modeling

Decision tables (DT) are introduced to augment the graph representation with con-
straint modeling capabilities that enable a systematic evaluation of constraints. DTs
are widely employed in information processing and are also traditionally used for
testing, e.g., in cause and effect graphs [86]. A DT logically links constraints (“if”)
with events (“then”) that are to be triggered, depending on combinations of con-
straints (“rules”). Therefore, DTs are powerful mechanisms for

• handling sequences of events which depend on constraints; and

• refining data modeling of calls to invoked services [20].
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DTs are formally defined as follows.

Definition 7.1 (Decision Table). A (simple/binary) decision tableDT = {C,E,R}
represents events that depend on certain constraints where

• C is the nonempty finite set of constraints (conditions) that can be evaluated
as either true or false,

• E is the nonempty finite set of events, and

• R is the nonempty finite set of rules, each of which forms a Boolean expres-
sion connecting the truth/false configurations of constraints and determines
the executable or awaited event.

Definition 7.2 (Rule). Let R be a set of rules as in Definition 7.1 where in a rule
Ri ∈ R is defined as Ri = (CTrue, CFalse, Ex) with

• CTrue, CFalse ⊆ C being the disjoint sets of constraints that have to be evalu-
ated as true and as false, respectively; and

• Ex ⊆ E being the set of events that should be executable if all constraints
t ∈ CTrue are resolved to true and all constraints f ∈ CFalse are resolved to
false. In this work, |Ex| = 1 for all rules to avoid non-determinism.

Special care has to be taken in the formation of rules. For anyone interested in
a complete coverage of all constraint combinations, the DT should be complete.

Definition 7.3 (Complete). A decision table DT = (C,E,R) is complete, if
P(C) ⊆ S with S = {x|(x, y, z) ∈ R} and P(C) = {M |M ⊆ C}. P(C) is
also called as the power set of C.

To prevent contradictions, a DT should be redundance-free and consistent and
is defined as follows.

Definition 7.4 (Redundance-free). A decision tableDT = (C,E,R) is redundance-
free if S = ∅ with S = {x|(x, y, z) ∈ R ∧ (a, b, c) ∈ R\(x, y, z) ∧ x = a ∧ z = c}.
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Definition 7.5 (Consistent). A decision tableDT = (C,E,R) is consistent if S = ∅
with S = {x|(x, y, z) ∈ R ∧ (a, b, c) ∈ R ∧ x = a ∧ z 6= c}.

The conclusion that follows from Definition 7.3, 7.4, and 7.5 is that a decision
table DT = (C,E,R) is complete, redundance-free, and consistent at the same
time if P(C) = S with S = {x|(x, y, z) ∈ R}. Such a decision table has always
2|C| rules according to P(C) where |P(C)| = 2|C|.

Note that under regular circumstances CTrue and CFalse partition C, that is,
CTrue ∪ CFalse = C and CTrue ∩ CFalse = ∅ . In certain cases, it is inevitable
to have constraints with a don’t care (denoted as ’-’ in a DT). In this case, such a
constraint is not considered in a rule and is neither in CTrue nor in CFalse.

Table 7.1 presents a DT that models the invoking process of operation checkBL
of BLIS. It contains two constraints on input parameter uniqueID, three next
events (inBList, notInBList, SOAPFault), and three rules (R1, R2, R3).
Constraints in bold model possible domains of input parameters and constraints in
italics represent additional constraints to that input data. Rules are used to evaluate
which is the next event. For instance, R1 means that if uniqueID is valid and also
in the blacklist (that is, both constraints are true), then the next event (namely, event
inBList standing for uniqueID being in the blacklist) should be completed in
less than 200ms. In R3, if uniqueID is not valid and the other constraint does not
matter (namely, ’-’), then the next event is SOAPFault. As illustrated in Table 7.1,
the events can be extended by time constraints whenever a response is expected
within a certain time range.

Table 7.1: A decision table with 3 rules, 2 constraints, and 3 events

Rules
checkBL(uniqueID) R1 R2 R3

Constr.
uniqueID is valid T T F
uniqueID in Blacklist T F -
inBList < 200ms �

Events notinBList < 100ms �
SOAPFault - invalid identification �
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Interaction Modeling

DTs are useful to describe constraints, but they are not appropriate for describing
WSC interactions. Hence, the ESG notion is extended and combined with DTs
in order to consider additional aspects, such as communication, parallel flow, and
conditional activities.

Definition 7.6 (ESG4WSC). An event sequence graph for web service composi-
tions ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ) is a directed graph where

• V is a nonempty finite set of vertices (representing events),

• E ⊆ V × V is a finite set of arcs (edges),

• M is a finite set of refining ESG4WSC models,

• R ⊆ V ×M is a relation that specifies which ESG4WSCs are connected to a
refined vertex,

• DT is a set of DTs that refine events according to function f ,

• f : V → DT ∪ {ε} is a function that maps a decision table dt ∈ DT to a
vertex v ∈ V . If v ∈ V is not associated with a dt ∈ DT , then f(v) = ε, and

• Ξ,Γ ⊆ V are finite sets of distinguished vertices with ξ ∈ Ξ and γ ∈ Γ called
entry nodes and exit nodes, respectively, wherein for each v ∈ V there exists
at least one sequence of vertices 〈ξ, v0, . . . , vk〉 from ξ ∈ Ξ to vk = v and one
sequence of vertices 〈v0, . . . , vk, γ〉 from v0 = v to γ ∈ Γ with (vi, vi+1) ∈ E,
for i = 0, . . . , k − 1 and v 6= ξ, γ.

Definitions 7.7 and 7.8 elaborate Definition 7.6, formalizing the set of vertices
and the set of DTs, respectively.

Definition 7.7 (Set V). Let V be as in Definition 7.6. The set of vertices V is then
partitioned into Ve, Vrefined, Vreq and Vresp, that is, V = Ve ∪ Vrefined ∪ Vreq ∪ Vresp
and Ve, Vrefined, Vreq and Vresp are pairwise disjoint where

• Ve is a set of generic events;
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• Vrefined = {v ∈ V | ∃m ∈ M ∧ (v,m) ∈ R} is a set of vertices refined
by one or more ESG4WSCs. A refinement with more than one ESG4WSC
represents behavior running in parallel.

• Vreq is a set of vertices modeling a request to its own interface/operations
(public) or an invoked service (private); and

• Vresp is a set of responses to a public or private request. Therefore, it is also
marked as public or private.

Definition 7.8 (Set DT). LetDT be defined as in Definition 7.6. The set of decision
tables DT is then partitioned into DTseq and DTinput, where

• DTseq is the set of decision tables that model the execution restrictions for
successor events; and

• DTinput is the set of decision tables that model constraints for input parameter
of invoked operations.

Since WSCs always initiate with one or more request events, the set Ξ contains
only vertices v ∈ Vreq. Just like in ESGs, all ξ ∈ Ξ are preceded by a pseudo vertex
[/∈ V and all γ ∈ Γ are followed by another pseudo vertex ] /∈ V to mark the entry
and exit of an ESG4WSC. For two events v, v′ ∈ V , the event v′ can follow the
execution of v if and only if (v, v′) ∈ E. In this case v′ is also called successor of v
and v is called the predecessor of v′.

Semantics of the Model and an Example

The semantics of an ESG4WSC is as follows: Any v ∈ V represents an event,
e.g., a request or a response that occurs during the invocation of another service.
In general, requests and responses can be public or private. A public request is to
be activated by the tester; that is, it is an operation call to the WSC itself, which is
supposed to be sent by a consumer or the tester. A public response is expected to be
an answer by the WSC to a public request and therefore should be received by the
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consumer/tester. The opposite is true for private requests and responses that repre-
sent partner services of the WSC. They are usually not observable by the consumer;
however, it is assumed that they are observable by the tester. Private requests are to
be monitored by the tester and the tester should check and (if necessary) send back
the appropriate response.

Example 7.9. Figure 7.2 represents an ESG4WSC for xLoan (Section 7.1.3). Op-
erations checkBL and inDebtorsList are executed concurrently. Requests
are represented by light gray vertices, responses by dark gray vertices. Vertices
with a bold line represent public requests and responses. Vertices refined by DTs
are double-circled. The corresponding ESG4WSC looks like this:

ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ) with
Ve = {Timeout > 2h}

Vrefined = {check}
Vreq = {LS : requestLoan, BS : approveBank,

BS : offer, LS : cancel, LS : SelectOffer,
BS : cancelBank, BS : confirmBank}

Vresp = {BS : approved, BS : Notapproved,
LS : notAprovedMSG, BS : Offers,
LS : replyOffers, LS : wrongOffer,
LS : replySelect}

E = {(LS : requestLoan,
BS : approveBank),. . .}

M = {MBLIS,MCAS}
R = {(check,MBLIS), (check,MCAS)}

DT = DTseq ∪DTinput = {dtcheck}
∪{dtLS:requestLoan,dtBS:approveBank, . . .}

f(check) = dtcheck
f(LS : requestLoan) = dtcheck
f(BS : approveBank) = dtcheck

Ξ = {LS : requestLoan}
Γ = {LS : notAprovedMSG, BS : cancelBank,

LS : replySelect}
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The ESG4WSC model can be seen as a simplified representation of possible and
expected executions of a WSC. It aggregates sequences of events (Definition 3.2
on page 16) which describe walks of execution and message exchanges along the
execution. Furthermore, some parts of the execution can be performed in parallel.

Definition 7.10 (Parallel). Two events or ESs a and b that are to be executed in
parallel are denoted as a||b.

The operator || is commutative, that is, a||b = b||a, and associative, that is,
(a||b) ||c = a|| (b||c).

Example 7.11. For the xLoan example given in Figure 7.2, services CAS and
BLIS are to be executed in parallel, e.g., following sequence holds

〈BLIS:checkBL, BLIS:inBList〉 ||
〈CAS:inDebtorsList, CAS:debtorsTrue〉

7.3 Testing Web Service Compositions

Positive and negative testing can be performed on the basis of the ESG4WSC model
introduced in the previous section. Both, positive and negative testing, are described
in the following.

7.3.1 Testing the Desirable Behavior

This section introduces the underlying fault model and test process for positive test-
ing a WSC. Furthermore, it is explained how test cases are generated.

7.3.1.1 Fault Model and Test Process

A CES (see Definition 3.2 on page 16) describes a specific execution of a WSC that
has to be enforced during testing. Thus, it is expected that precisely those events
will be executed in the specified order. According to this, the following faults might
occur during the execution.

• There are calls to partner services that are not defined in the CES.
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• There are missing calls to partner services that are defined in the CES.

• The sequence of calls is different from the sequence given by the CES.

• The parameter of calls to partner services do not correspond to the expected
ones.

In order to test a specific CES of the WSC, it is often inevitable that control is
taken over the partner services since they communicate with the SUC and the flow
of the WSC might depend on a returned response. A simple example for sending
back the expected response would be a search operation by a partner service. If
the test sequence evaluates a path where an empty result is returned by the partner
service, it is required to send back a response to the WSC with no result, even if
the invoked service returns a result. However, testing the WSC where a result is
returned by the partner service will be part of another test sequence. Thus, taking
control of the partner service does not affect the fault uncovering capabilities of the
ESG4WSC approach. Considering the lack of controllability of the partner services,
Algorithm 7.1 shows the overall test process.

7.3.1.2 Test Case Generation

A test suite is generated that covers at least all EPs again to detect faults in the WSC
(due to the fault model described above). Moreover, the cost should be minimal;
that is, CESs generated to cover all EPs should have a minimal total length. Un-
fortunately, the algorithms described in Section 3.3 are not directly applicable. The
problem is that refined vertices v ∈ Vrefined might contain more than one refining
model expressing behavior executed in parallel. Therefore, resolving the hierarchy
according to the FR approach (as in Definition 3.4 on page 17) is not possible. A
further limitation is that refined vertices can have a DT that restricts the ongoing
execution. However, an adapted version of the LC approach called layer-centric
testing for web service composition (LC4WSC) can help here. The algorithm for
deriving CESs from an ESG4WSC is described in following steps.

1. Generate CESs for the refined vertices first (recursive call). If a refined vertex
has more than one refining model, then build all combinations of CESs of the
single models as parallel sequences.
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Algorithm 7.1: Test process for positive testing

1 cover all ESs of length k by means of CESs;
2 foreach ces ∈ CES do

// apply ces to SUC
3 foreach event ∈ ces do
4 if event is public request then
5 send request to the WSC;

6 if event is private request then
7 observe request to invoked service;
8 if call is missing or deviates from the expected one then
9 mark ces as failed and continue with next ces ∈ CES;

10 if event is public response then
11 observe response from WSC;
12 if response is missing or deviates from the expected one then
13 mark ces as failed and continue with next ces ∈ CES;

14 if event is private response then
15 observe response from invoked service;
16 send back expected response to WSC if necessary;

17 if all events applicable in the specified order then
18 mark ces as passed;

19 else mark ces as failed;
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2. Add multiple edges to the ESG4WSC.

(a) If a refined vertex has a DT restricting the ongoing execution,

i. identify the valid successor for each CES with respect to the DT,
and

ii. add an edge from the refined vertex to the allowed successor.

(b) If a refined vertex has not a DT, then add an edge from the refined vertex
to the successor (there should be only one) for each CES.

3. Generate CESs according to the CPP algorithm.

4. Replace refined vertices in the resulting CES set with respect to their allowed
successors.

Note that Step 2 adds multiple edges to the underlying ESG4WSC; that is, every
edge represents a CES of the refined vertex and its valid successor. The benefit
of this approach is that the resulting CES set derived in Step 3 contains a suffi-
cient amount of the refined vertex and its corresponding successor so that the CESs
of Step 1 can be combined completely with the CESs of Step 3 (recall that every
EP/edge is to be covered in Step 3) [65]. Algorithm A.12 along with Table A.2 (in
the Appendix), gives a detailed description of the CES generation process. Exam-
ple 7.12 shows the test generation process for the running example.

Example 7.12. According to Figure 7.2, the test generation process looks as fol-
lows.

Step 1: Generate CESs for the Refined Vertices First In this step, the CPP algo-
rithm is applied to the two refining ESG4WSCs in event check (Figure 7.2). The
event sequences of each ESG4WSC are combined with operator ||. The following
sequences for refined vertex check have been generated.

S1: 〈〈BLIS:checkBL, BLIS:inBList〉 ||
〈CAS:inDebtorsList, CAS:debtorsTrue〉〉

S2: 〈〈BLIS:checkBL, BLIS:inBList〉 ||
〈CAS:inDebtorsList, CAS:debtorsFalse〉〉
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S3: 〈〈BLIS:checkBL, BLIS:NotinBList〉 ||
〈CAS:inDebtorsList, CAS:debtorsTrue〉〉

S4: 〈〈BLIS:checkBL, BLIS:NotinBList〉 ||
〈CAS:inDebtorsList, CAS:debtorsFalse〉〉

Step 2: Add Multiple Edges to the ESG4WSC Event check has a DT that re-
stricts the execution of its successor events BS:offer and
BS:approveBank in Table 7.2. To cover all rules in this table, the event pair
(check, BS:approveBank) needs to be covered three times (R1, R2, R3)
and the event pair (check, BS:offer) once (R4). Thus, the algorithm adds
the following edges according to Table 7.2.

• 3 edges (check, BS:approveBank) for sequences S1 to S3

• 1 edge (check, BS:offer) for sequence S4

An intermediate ESG4WSC is produced (with extra edges added) as illustrated in
Figure 7.3.

Table 7.2: Decision table for vertex check of Figure 7.2

dtcheck R1 R2 R3 R4
event: BLIS:inBList happens T T F F
event: BLIS:NotInBList happens F F T T
event: CAS:DebtorsTrue happens T F T F
event: CAS:DebtorsFalse happens F T F T
BS:offer �
BS:approveBank � � �

Step 3: Generate CESs According to the CPP Algorithm The CPP algorithm is
applied on the intermediate ESG4WSC (produced in Step 2) to derive CESs. In this
step, the refined events (e.g., check) are considered as simple vertices (Figure 7.3).
The following CESs have been generated (refined vertices and their successor are
emphasized with a bold font).
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Figure 7.3: ESG4WSC for the xLoan example extended by additional edges

CES1: 〈LS:requestLoan, BS:approveBank, BS:Notapproved,

LS:notApprovedMSG〉
CES2: 〈LS:requestLoan, check, BS:approveBank,

BS:approved, BS:offer, BS:Offers, LS:replyOffers,

LS:cancel, BS:cancelBank〉
CES3: 〈LS:requestLoan, check, BS:approveBank,

BS:approved, BS:offer, BS:Offers, LS:replyOffers,

LS:SelectOffer, LS:wrongOffer, LS:cancel,

BS:cancelBank〉
CES4: 〈LS:requestLoan, check, BS:approveBank,

BS:approved, BS:offer, BS:Offers, LS:replyOffers,

LS:SelectOffer, LS:wrongOffer, LS:SelectOffer,

LS:wrongOffer, Timeout > 2h, BS:cancelBank〉
CES5: 〈LS:requestLoan, check, BS:offer, BS:Offers,

LS:replyOffers, LS:SelectOffer, BS:confirmBank,

LS:replySelect〉
CES6: 〈LS:requestLoan, check, BS:offer, BS:Offers,

LS:replyOffers, Timeout > 2h, BS:cancelBank〉

Step 4: Replace Refined Vertices in the Resulting CES Set with Respect to
Their Allowed Successors Refined events are searched in the CES set generated
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in Step 3 and are replaced by the corresponding CESs derived from the refining
ESG4WSCs in Step 1. In the final test suite, event pair (check, BS:approve-

Bank) is covered exactly three times in CES2, CES3, and CES4 using S1, S2, and
S3, respectively, to replace check. Event pair (check, BS:offer) is covered
twice in CES5 and CES6. S4 is used in both CESs to replace check.

CES1: 〈LS:requestLoan, BS:approveBank, BS:Notapproved,

LS:notApprovedMSG〉

CES2: 〈LS:requestLoan, 〈〈BLIS:checkBL, BLIS:inBList〉 ||
〈CAS:inDebtorsList,CAS:debtorsTrue〉〉,
BS:approveBank, BS:approved, BS:offer, BS:Offers,

LS:replyOffers, LS:cancel, BS:cancelBank〉

CES3: 〈LS:requestLoan, 〈〈BLIS:checkBL, BLIS:inBList〉 ||
〈CAS:inDebtorsList, CAS:debtorsFalse〉〉,
BS:approveBank, BS:approved, BS:offer, BS:Offers,

LS:replyOffers, LS:SelectOffer, LS:wrongOffer,

LS:cancel, BS:cancelBank〉

CES4: 〈LS:requestLoan, 〈〈BLIS:checkBL, BLIS:NotinBList〉
|| 〈CAS:inDebtorsList, CAS:debtorsTrue〉〉,
BS:approveBank, BS:approved, BS:offer, BS:Offers,

LS:replyOffers, LS:SelectOffer, LS:wrongOffer,

LS:SelectOffer, LS:wrongOffer, Timeout > 2h,

BS:cancelBank〉

CES5: 〈LS:requestLoan, 〈〈BLIS:checkBL, BLIS:NotinBList〉
|| 〈CAS:inDebtorsList, CAS:debtorsFalse〉〉,
BS:offer, BS:Offers, LS:replyOffers,

LS:SelectOffer, BS:confirmBank, LS:replySelect〉

CES6: 〈LS:requestLoan, 〈〈BLIS:checkBL, BLIS:NotinBList〉
|| 〈CAS:inDebtorsList, CAS:debtorsFalse〉〉,
BS:offer, BS:Offers, LS:replyOffers, Timeout > 2h,

BS:cancelBank〉
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Deriving Input Data

After generating CESs, a DT for the initial WSC call is to be evaluated. Algo-
rithm A.12 along with Table A.2 (in the Appendix) gives a detailed description of
the CES generation process. The generation of data based on a dt ∈ DTinput is
related to the constraint satisfaction problem (CSP). A CSP is defined by a set of
variables X1, X2,...,Xn and a set of constraints, C1,C2,...,Cm. Each variable Xi has
a nonempty domain Di of possible values. Each constraint Ci involves some subset
of the variables and specifies the allowable combinations of values for that subset
(see [104]). Each rule of the DT under consideration represents a CSP and will be
evaluated for test execution.

Covering Event Sequences of Higher Length

The described algorithm is used to generate a test suite that covers all edges, namely
EPs. In other words, the test suite covers all ESs with length 2. Similar processes
can be performed to cover ESs with higher length k. For this purpose, it is necessary
to transform the ESG4WSC model after Step 1 (see Section 4.2 and Algorithm 4.3
for further details on the transformation) so that the coverage of the transformed
graph will deliver the desired test suite. Unfortunately, it might happen that a spe-
cific event appears more than once in the resulting model (see also Section 4.2). In
this case, it might not be obvious where to add the multiple edges in Step 2 since
the corresponding edge could have doubled as well. However, the solution is to re-
move each doubled edge and add a pseudo vertex instead, which is connected to the
source and target of the removed edge. This enables to generate a coverage which
contains as many vertices (representing the edges) as needed and in a minimal way
as described in Section 4.2. However, note that after Step 3 the pseudo vertices are
to be removed from the solution.

7.3.2 Testing the Undesirable Behavior

The previous section described the testing process for expected/desirable situations.
However, it is also important to test undesirable situations where partner services
do not function as expected. Thus, a holistic approach is worthwhile that generates
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positive (desirable) and negative (undesirable) tests.
The negative testing checks separately unexpected behavior in public events and

private events. These two cases are represented by public faulty event sequences
(PubFESs) and private faulty event sequences (PriFESs). Subsections 7.3.2.1 and
7.3.2.2 present the definitions and algorithms to generate PubFESs and PriFESs
from an ESG4WSC model.

7.3.2.1 Negative Testing for Public Events

The negative testing for public events involves generating sequences that cover un-
specified event pairs for public events, that is, request and response messages of
the WSC interface. This part considers that a WSC can be viewed and tested as
an atomic service where the private communication with its partner services is hid-
den from the consumer’s perspective. Accordingly, the ESG4WSC is reduced to a
model representing only public events of the WSC interface for negative testing of
public events. Since the resulting model can be used to represent any (atomic) web
service, it is called ESG for web services (ESG4WS) [20, 40].

Definition 7.13 (ESG4WS). An ESG4WS = (V,E,Ξ,Γ) is an ESG where the set
of vertices is partitioned into two disjoint sets Vreq and Vresp; that is, V = Vreq ∪
Vresp, where

• Vreq is a set of vertices modeling a (public) request, and

• Vresp is a set of responses to a (public) request.

In a web service, a consumer can call any (public) operation at any time. How-
ever, this might not be appropriate, e.g., the xLoan requires a consumer to request
some offers before he can select one of them. Missing edges in the ESG4WS rep-
resent this undesirable behavior, which needs to be handled by the SUC. Hence,
missing edges between

• response events vi ∈ Vresp and request eventsvj ∈ Vreq,

• two request events vi, vj ∈ Vreq, and
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• pseudo start vertex [ and all request events v ∈ Vreq

define the undesirable situations where a request is critical. Given an ESG4WSC

= (V,E,M,R,DT, f,Ξ,Γ), let z be a special event used to represent any faulty
event, such that z /∈ V .

Definition 7.14 (Public FES). The ordered pair (pes;z) is a public faulty event se-
quence (PubFES), if pes is a PES 〈v0, . . . , vk, vk+1〉 (see Definition 3.2 on page 16)
that is expected to produce a faulty event z and where the last two events vk, vk+1

represent missing edges (vk, vk+1) /∈ E of the corresponding ESG4WS between

• response events vk ∈ Vresp and request events vk+1 ∈ Vreq,

• two request events vk, vk+1 ∈ Vreq, or

• pseudo start vertex vk = [ and request events vk+1 ∈ Vreq.

Example 7.15. For the xLoan example given in Figure 7.2, the following pair is a
PubFES:

(〈LS:requestLoan, BS:approveBank, BS:approved, BS:offer,

BS:offers, LS:replyOffers, LS:cancel, LS:SelectOffer〉; z)

Since there is no edge between the last two events LS:cancel and
LS:SelectOffer, they were selected as a faulty pair. For this undesirable case,
it is expected that the composition produces a faulty event z. If no faulty event is
produced, this test sequence fails; otherwise it passes.

The algorithm for deriving PubFESs from an ESG4WSC is as follows. The detailed
algorithms for the transformation and test generation can be found in the Appendix
(Algorithms A.13 and A.15).

1. Transformation from ESG4WSC to ESG4WS: An ESG4WS can be obtained
from an ESG4WSC by removing the private events and keeping edges be-
tween any public events vi and vj if there exists an ES from vi to vj .

2. Inclusion of faulty edges: In the produced ESG4WS, faulty edges are added
between events with no edges along Definition 7.14.
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3. Generation of test sequences: For each faulty edge (vi, vj) in the ESG4WS,
find a PES pes that leads to vi in the ESG4WSC. Next append vj to pes

referred to as pes⊕ vj . Finally, create the PubFES (pes⊕ vj;z).

Example 7.16. Using xLoan, the ESG4WS in Figure 7.4 is obtained after the
transformation. The faulty edges are represented by grey dashed lines. The dotted
lines connect the request events with the fault that must be produced afterwards.
The faulty edges are created by

• connecting all response events with request events,

• connecting request events with request events, and

• connecting the start vertex [ with all request events,

in case that there is no edge connecting them. The self-loop from LS:cancel to
LS:cancel was also considered since it represents a one-way operation without
response.

Figure 7.4: ESG4WS for the xLoan public interface
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After obtaining the ESG4WS, test cases have to be generated to cover the fol-
lowing faulty edges:

(LS:notApprovedMSG, LS:requestLoan); (LS:notApprovedMSG,

LS:cancel); (LS:notApprovedMSG, LS:SelectOffer);

(LS:replyOffers, LS:requestLoan); (LS:wrongOffer,

LS:requestLoan); (LS:replySelect, LS:requestLoan);

(LS:replySelect, LS:SelectOffer); (LS:replySelect,

LS:cancel); (LS:cancel, LS:requestLoan); (LS:cancel,

LS:SelectOffer); (LS:cancel, LS:cancel); (LS:requestLoan,

LS:cancel); (LS:requestLoan, LS:SelectOffer);

(LS:SelectOffer, LS:cancel); (LS:SelectOffer,

LS:requestLoan); ([, LS:cancel); ([, LS:SelectOffer).

Then a PES from the ESG4WSC (Figure 7.2) is derived for each faulty edge
(vi, vj) to reach the event vi. The event vj is included after vi and the faulty event
z is added to the tuple. The following PubFES is obtained for the faulty edge
(LS:replySelect, LS:cancel):

(〈LS:requestLoan, 〈〈BLIS:checkBL,BLIS:NotinBList〉 ||
〈CAS:inDebtorsList, CAS:debtorsFalse〉〉, BS:offer,

BS:Offers, LS:replyOffers, LS:SelectOffer, BS:confirmBank,

LS:replySelect, LS:cancel〉; z )

The same procedure is repeated for each faulty edge to generate the final test
suite of public negative tests.

7.3.2.2 Negative Testing for Private Events

The proper functioning of a WSC does not depend only on its correct implemen-
tation but also on the partner services. It is often not clearly defined what happens
when an invoked service is not working as expected.

In this work, seven fault classes are defined based on fault taxonomy and fault
injection literature [33, 32, 59]. The fault classes are:

No response: The invoked service does not send back a response for a request-
response operation, e.g., due to internal problems or modified behaviors.
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Long time response: The invoked service needs an inappropriately long time
to send back a response.

Missing service: The service is missing; e.g, the server hosting the service is
not available or the service address (URL) has changed.

Unexpected fault: An unexpected SOAP Fault is returned either by the in-
voked service or due to a fault in the environment, e.g., a fault caused by pre/post-
processing in the ESB.

Wrong XML schema: The invoked service sends back an unexpected XML
schema, e.g., due to some (untold) changes of the service by the provider.

Wrong XML syntax: The response of the invoked service contains a corrupted
XML file, e.g., due to some noise in the network.

Right schema, wrong data: The response is a well-formed message that con-
tains invalid data, e.g., an invalid date.

Testing these undesirable situations is important to the robustness of the given
WSC. Depending on the number of partner services, this results in some addi-
tional testing efforts. Fault classes “no response,” “missing service,” and “unex-
pected fault” can be tested for every private request vertex of the ESG4WSC model.
Fault classes “longtime response,” “wrong XML schema,” “wrong XML syntax,”
and “right schema, wrong data” can be tested for every private response of an
ESG4WSC. Table 7.3 summarizes this information and also includes the symbols
used to represent each class in PriFESs.

Table 7.3: Fault classes and their relation to events

event of an ESG4WSC
symbol request response

fa
ul

tc
la

ss

no response zNR �
longtime response zLR �

missing service zMS �
unexpected fault zUF �

wrong XML schema zWSc �
wrong XML syntax zWSy �

right schema, wrong data zWD �
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7.3.2.3 “Sensitive” Events as Test Oracle for Negative Testing of Private
Events

When one of the fault classes is provoked, an automated test oracle needs to be
established to determine the expected test outputs. A tester can, of course, decide
to evaluate and define the expected behavior for every single situation by hand.
However, this would mean tedious manual work and does not scale well. A more
straightforward approach is to mark events of the given ESG4WSC as sensitive;
that is, these events are not allowed to show up after provoking one of the faulty
situations. For instance, a loan must not be approved if some fault happens during
the verification process of a client’s reputation. Defining a set of sensitive events is
much easier and enables automation. To the best of the author’s knowledge, there is
no other approach that solves the oracle problem for negative testing of WSCs (or
any other application) in this way.

Definition 7.17 (Sensitive Events). Given an ESG4WSC = (V,E,M,R,DT, f,

Ξ,Γ), the nonempty set S ⊂ V represents the events marked as sensitive. The
sensitive events are not allowed to show up after provoking a faulty situation.

Definition 7.18 (Private FES). Given that pes is a PES 〈v0, . . . , vk〉, z is any faulty
event, and s ⊆ S is a set of sensitive events, the triple (pes;z; s) is a private faulty
event sequence (PriFES) if vk ∈ Vreq ∪ Vresp is a private event and s is not empty.

Example 7.19. For the xLoan example given in Figure 7.2, let LS:replyOffers
be a sensitive event; the following triple is a PriFES:

(〈LS:requestLoan, 〈〈BLIS:checkBL〉 || 〈CAS:inDebtorsList,
CAS:debtorsFalse〉〉; zMS; {LS:replyOffers})

In this example, zMS represents the fault class “missing service” that must be
provoked; that is, BLIS is not available. This sequence passes if no sensitive event
(LS:replyOffers) is produced by the composition after executing the PES and
provoking zMS; otherwise it fails.

The negative testing for private events generates sequences that cause some un-
expected behavior in the partner services, that is, in the private events, and check
the service composition in these cases.

The algorithm for deriving PriFESs from an ESG4WSC is as follows.



7.3 Testing Web Service Compositions 105

1. Let VRR be the set of all private request and response events in the ESG4WSC
model. Then find the shortest PES pes that reaches e for each e ∈ VRR.

2. If e is a private request event,

(a) copy pes and mark e with zNR to provoke the “no response” fault;

(b) copy pes and mark e with zMS to provoke the “missing service” fault;

(c) copy pes and mark e with zUF to provoke the “unexpected fault” fault.

3. If e is a private response event,

(a) copy pes and mark ewith zLR to provoke the “longtime response” fault;

(b) copy pes and mark e with zWSc to provoke the “wrong XML schema”
fault;

(c) copy pes and mark e with zWSy to provoke the “wrong XML syntax”
fault;

(d) copy pes and mark e with zWD to provoke the “right schema, wrong
data” fault.

4. For all sequences produced in previous steps, add the set of sensitive events s
that is not covered by pes in the PriFES, that is, (pes; z; s).

The detailed algorithms can be found in the Appendix (Algorithms A.17 and A.14).

Example 7.20. Consider private request event CAS:inDebtorsList of the
xLoan example. The first step is to find the shortest PES that reaches CAS:in-
DebtorsList.

pes=〈LS:requestLoan, 〈〈BLIS:checkBL, BLIS:NotinBList〉
|| 〈CAS:inDebtorsList〉〉〉.

Notice that CAS:inDebtorsList is part of the refined event check. In this
case, CESs must be generated for the other parallel ESG4WSCs so that there is no
influence on event CAS:inDebtorsList and the provoked fault.
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Next, pes is copied to pes1 and event CAS:inDebtorsList is marked with
zNR. This PriFES tests the scenario in which the WSC calls operation inDeb-

torsList and no answer/response is sent back. The same procedure is performed
for zMS and zUF with the copies pes2 and pes3, respectively.

Let s = {LS:replyOffers} be the set of sensitive events, the resulting
PriFESs look as follows: (pes1; zNR; s), (pes2; zMS; s), and (pes3; zUF; s). As
the client reputation must be good in both services, BLIS and CAS, any fault in
event CAS:inDebtorsList must not produce a successful approval represented
by LS:replyOffers marked as sensitive. The same steps are repeated for all
other private request and response events.

7.3.3 Selective Layer-Centric Testing

To show the extendability of the approach, the derivation of test cases as described
above follows the basic idea of LC testing. Apart from this exemplary derivation,
the SLC approach for test generation described in Section 5.3 can also be applied
for testing WSC, referred to as selective layer-centric testing for web service com-
positions (SLC4WSC). Similar as in SLC, test cases are generated for the critical
layers only.

For positive testing, test cases of lower layers are moved to the upper layer for
test execution. If no test cases are to be generated for the upper layer, a tour will
be derived that visits the corresponding refined vertex as often as needed. The tour
can be derived by following the descriptions given in Section 5.3, that is, solving
the traveling salesman problem and extending the tour by solving the assignment
problem.

For negative testing of private events, PriFESs of selected ESG4WSCs of lower
layer are first generated and then returned to the next higher layer where the shortest
path [122] from start vertex [ to the corresponding compound vertex v ∈ V is
calculated and concatenated with the given test case of the lower layer model. The
negative testing of public events is similar to that described in Section 7.3.2.1. The
difference is that only events of the selected layers are considered and put into the
ESG4WS.
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Case Study II: Reliability Analysis
Concerning Test Length & Model
Refinement

This chapter describes the evaluation of the ESG4WSC approach for positive and
negative testing of WSCs (Chapter 7). It presents the application used as the subject
in the case study, as well as configuration and results of the experiments. Limita-
tions and threats to validity conclude the chapter. The purpose of this chapter is
to compare LC with SLC for a different type of application and determine their
characteristics, especially the influence and contribution of test length and model
refinement to the test process. In addition, two tools are introduced to support au-
tomation. Test Suite Designer for Web Service Compositions (TSD4WSC) provides
a graphical user interface, which allows to model the SUC and to generate test cases.
Event Runner for Test Execution (ERunTE) automates test execution by composing
three modules: a web service, a test runner, and an ESB component.

107
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8.1 System Under Consideration, Test Setup, and
Goals of the Experiment

The case study was conducted using the xTripHandling application, which is
based on different scenarios proposed in technical and research literature [73, 126,
88]. The application was developed using SOA concepts and web services and pro-
vides a set of facilities to query and book a trip. It also includes facilities to buy train
tickets, rent a car, book sightseeings, and order maps. The application consists of
eight services: six atomic services and two composite services (see Section 7.1.1).
The atomic services are:

1. ISELTA-hotel Service is a web service provided by the commercial system
ISELTA that enables travel and touristic enterprises to create their individual
search and service offering masks. It provides operations to query hotels and
manage bookings.

2. Airlines Service provides a set of operations to manage flight tickets, which
are similar to ISELTA-hotel service.

3. Map Service provides operations to locate places close to a city (e.g., airports,
train stations) and to order maps for certain cities.

4. Car Rental Service provides operations to search and rent vehicles to be used
in a pre-defined city.

5. Train Service provides operations to check train lines between cities and to
buy train tickets.

6. Sightseeing Service provides operations to list available cities in which the
service operates and to buy tickets for sightseeing.

The composite services are:

1. Travel Agent Service provides a set of facilities to query and book a trip, in-
teracting with two services, ISELTA-hotel and Airlines services. It combines
these two services, providing operations to search and book a travel involving
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flight and hotel reservation. As the flight ticket and hotel reservation are es-
sential in any travel, a successful booking using this service guarantees hotel
and flight reservations.

2. Customer Service combines the services Travel Agent, Airlines, Map, Car
Rental, Sightseeing, and Train to provide a centralized resource for customers
to manage all their travel plans, including hotels, flights, maps, trains, cars,
and sightseeing.

Figure 8.1 illustrates the services, their interfaces, and the interactions of composite
services. The figure presents a summarized version of the information available in
the WSDL interfaces. The dashed edges represent the interaction between compos-
ite services and partner services. The specification of the composite services Travel
Agent Service and Customer Service can be found in the appendix. The Customer
Service will form the SUC in this case study.

Model Information

Table 8.1 summarizes the information about the ESG4WSC model. Lines 1-4 refer
to the number of each type of event. Lines 5 and 6 show the total number of events
and edges, respectively. Line 7 refers to the number of refining ESG4WSCs and
those that are to be executed in parallel in Line 8. Lines 9-11 show the number of
DTs, constraints, and rules, respectively. Line 12 refers to the elapsed time to study
the specification and interfaces and produce the first model version.

Refinements were used in Customer Service to simplify the modeling process.
For instance, after booking a basic trip (hotel + flight), different ESG4WSCs were
included for maps, cars, sightseeing, and trains. Thus, this model contains 34 events
that are refined by 68 ESG4WSCs, 44 of which are in parallel. Notice that 24 of the
68 ESG4WSCs are not in parallel and were used to modularize the model. Thus,
refinements were used not only to represent parallelism but also to ease modeling.
For instance, after booking a basic trip (hotel + flight), the client can search and book
a car. This workflow is abstracted as a refined event “rentCar” and its details are
expressed in an associated refining ESG4WSC. Similar refined events were defined
for maps, sightseeing, and trains using the hierarchy of refining ESG4WSCs to
organize the model.



110 Chapter 8. Case Study II

Figure 8.1: Service interfaces in xTripHandling

Table 8.1: Test model information

Customer Service
1: # request events 204
2: # response events 449
3: # generic events 13
4: # refined events 34
5: # events (total) 700
6: # edges (total) 947
7: # refining ESG4WSCs 68
8: # ESGs in parallel 44
9: # DTs 108
10: # constraints 197
11: # rules 300
12: initial modeling time ~20h
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In the model there are more response events than request events since a request
message can have several relevant response messages and instances of response
messages. For example, a search request can return one of the following responses:
(i) a message with zero items, (ii) a message with one or more items, or (iii) an ex-
pected fault. Generic events facilitate the description of time constraints or chang-
ing points. DTs mainly supplement public request events for which input data must
be generated. The constraints are defined over request parameters and rules test
different combinations of these constraints.

Goals of the Experiment

The purpose of the experiment is to apply LC and SLC to WSCs in order to gain the
special characteristics of both approaches with respect to their strengths and limi-
tations for a different type of application. Of primary interest is the impact of test
sequence length on its fault detection capability and overall reliability. In addition,
the question of how the structure of the model, specifically model refinement, is
able to contribute to the fault detection will be investigated. A secondary goal of
the experiments is to demonstrate the applicability of the ESG4WSC approach.

In the course of the experiment more than 57,000 tests following the LC4WSC
strategy were derived from the model covering sequences of length 2, 3, and 4 and
were applied to the given WSC. After that, the SLC4WSC strategy was performed
and the results were compared with the ones achieved by the LC4WSC strategy
using a reliability theoretical analysis.

8.2 Test Execution and Tool Support

In this case study, the specification has been set up first (see Appendix C). After that,
the implementation and test model creation was done in parallel by two different
persons. Thus, the tester did not need to wait for the implementation to set up a
model and derive tests since the new approach is not based on artifacts such as
BPEL or WS-CDL as in [73, 56, 24].

For large models like the one created for this case study, test generation and
execution can hardly be done by hand. Therefore, two tools have been developed
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and used to support test case generation and test execution in the conducted case
study. The tool for test case generation generates test files, which are loaded into
the tool for automated test execution. However, it takes some time before test cases
can be executed. Automated test execution requires some manual work by writing
two kinds of adaptors, one for invoking and checking the messages of the WSC in-
terface, that is, the public request and response events, and another one for checking
SOAP messages of the private events produced during the test case execution. This
step can hardly be automated due to the characteristics of web service technology.
For testing Customer Service, the adaptors consisted of approximately ~2,300 lines
of code. Compared to the number of events, this is negligible—especially because
most of the code for implementing single events is similar, which allows reuse of
code fragments. In the case study, the tester designed the entire models before im-
plementing the adaptors for test execution. This strategy fits cases in which the de-
velopment phase is ongoing and the implementation is not yet available. However,
if the implementation has a preliminary version, the test model and adaptors can be
built partially and iteratively to obtain some executable test cases sooner. Detailed
information on the tools supporting the case study are given in the following.

8.2.1 Modeling & Test Generation

TSD (see Section 6.2) is adapted to provide a graphical user interface for the tester to
model all features of an ESG4WSC that are necessary for test generation. Figure 8.2
shows a screenshot of the TSD for web service compositions (TSD4WSC) as well
as the model set up for the running example xLoan. TSD4WSC implements the
algorithms described in Section 7.3 for generating positive and negative test suites.
Furthermore, TSD4WSC allows to consider constraints on input data (for test data
generation) and the execution of events by DTs (see Figure 8.3). That is, the test
generation process is fully automated.

An XML format was defined to describe test cases generated by TSD4WSC.
The resulting XML files are used as input to the test execution environment. This
integrates the test generation and test execution and reduces the dependency be-
tween both environments. Thus, new tests can be generated and no extra effort is
necessary for concretization, except for the adaptors.
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Figure 8.2: ESG4WSC for xLoan in TSD4WSC

Figure 8.4 presents an example of a test case for Travel Agent Service in the
XML format. The file starts with an element <TestCase>, followed by an ele-
ment <CompleteEventSequence> that represents a CES. Events are repre-
sented by the element <Event> with attributes to label and classify (type and
public) the event. Events with associated DT (Line 3) have an attribute to define
which rule must be tested and may also include the child elements <Param> to
provide input data (Lines 4 and 5). A refined event is represented by the element
<RefinedEvent> (Line 7) and can include one or more CESs. In the example,
there are two CESs in parallel, the first in Lines 8-15 and the second in Lines 16-21.
When the response event is private and is supposed to answer a specific message,
the element <Message> can be used within the event, such as in Line 31. A pre-
defined SOAP message can be provided in TSD4WSC and will be available within a
CDATA section1. The negative test cases are also represented with special elements
and attributes for sensitive events, faulty edges, and fault classes.

1All text within a CDATA section is ignored by the XML parser.
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Figure 8.3: Decision tables in TSD4WSC
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01:<TestCase>
02: <CompleteEventSequence>
03:  <Event label="TA:queryTrip" type="request" public="true" rule="R1" >
04:   <Param name="departureDate">31.12.2011</Param>
05:   <Param name="toCity">Sao Carlos</Param>
        ...
06:  </Event>
07:  <RefinedEvent>
08:   <CompleteEventSequence>
09:    <Event label="IS:login" type="request" public="false"/>
10:    <Event label="IS:login_Response" type="response" public="false" />
11:    <Event label="IS:search" type="request" public="false"/>
12:    <Event label="IS:searchResults_greaterEqThanOne" type="response" public="false" >
13:     <Message><![CDATA[ ... ]]></Message>
14:    </Event>
15:   </CompleteEventSequence>
16:   <CompleteEventSequence>
17:    <Event label="FL:search" type="request" public="false"/>
18:    <Event label="FL:searchResults_greaterEqThanOne" type="response" public="false" >
19:     <Message><![CDATA[ ... ]]></Message>
20:    </Event>
21:   </CompleteEventSequence>
22:  </RefinedEvent>
23:  <Event label="TA:queryTrip_Response" type="response" public="true" />
24:  <Event label="TA:book" type="request" public="true" rule="R1" >
25:   <Param> ... </Param> 
26:  </Event> 
27:  <RefinedEvent> 
28:   <CompleteEventSequence>
29:    <Event label="FL:book" type="request" public="false"/>
30:    <Event label="FL:bookingSuccess" type="response" public="false" >
31:     <Message><![CDATA[ <soap:Envelope><soap:Body> ... </soap:Envelope> ]]></Message>
32:    </Event>
33:   </CompleteEventSequence>
34:   <CompleteEventSequence>
35:    <Event label="IS:login" type="request" public="false"/>
36:    <Event label="IS:login_Response" type="response" public="false" />
37:    <Event label="IS:search" type="request" public="false"/>
38:    <Event label="IS:searchResults_sameHotelPrice" type="response" public="false" >
39:     <Message><![CDATA[ ... ]]></Message>
40:    </Event>
41:    <Event label="IS:book" type="request" public="false"/>
42:    <Event label="IS:bookingSuccess" type="response" public="false" >
43:     <Message><![CDATA[ ... ]]></Message>
44:    </Event>
45:   </CompleteEventSequence>
46:  </RefinedEvent>
47:  <Event label="TA:bookingConfirmation" type="response" public="true" />
48:  <Event label="TA:getAllOptions" type="request" public="true" rule="R1" >
49:   <Param name="searchCode">[$validSearchCode$]</Param>
50:  </Event>
51:  <Event label="TA:TripInputException" type="response" public="true" />
52: </CompleteEventSequence> 
53:</TestCase>

Figure 8.4: XML file for a test case
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8.2.2 Test Execution

Mule-ESB [81] is used as the infrastructure software. Initially, all services involved
in the composition (including the composite service) are deployed in the bus; that is,
the entire communication (SOAP messages) passes through the ESB before reach-
ing the destination service. The test execution is supported by a tool named ERunTE
(Event Runner for Test Execution), which is composed of three modules: a web
service (ERunTE-service), an ESB component (ERunTE-esbcomp), and an event
runner (ERunTE-runner). Figure 8.5 summarizes the corresponding architecture
adopted to execute the tests in this case study.

Figure 8.5: Architecture to execute the tests

ERunTE-service can be used directly in the test code and provides operations
such as startObservation, modifyMessage, and getAllMessages.
The second module, ERunTE-esbcomp, is the ESB component that implements the
monitor and aggregator patterns. This component is integrated with mule-ESB and
is able to interact with ERunTE-service. The component records all messages that
pass through the ESB and also modifies exchanged messages according to opera-
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tion modifyMessage. For test execution, ERunTE-service has been integrated
in ERunTE-runner, which contains the aforementioned adaptors to execute the test
cases using Java/JUnit. ERunTE-runner works in three phases. First, it sets up all
private messages according to the test case using ERunTE-service. Next, a public
request is send to the WSC to initiate the process. As a last step, all messages are
checked according to the test case.

The negative testing requires special configurations of the test execution envi-
ronment. ERunTE-esbcomp implements a configurable delay for fault classes “no
response” and “longtime response.” ERunTE-service has an operation to shut down
service proxies, helping to reproduce fault class “missing service.” Likely unex-
pected fault messages have been identified and simulated for fault class “unexpected
fault.” An example is SOAP Faults thrown by web service frameworks when ex-
ceptions are not correctly handled in the application. ERunTE-runner makes small
modifications in the original messages to reproduce the fault classes “wrong XML
syntax” and “wrong XML schema.” To sum up, the test generation and execution is
fully supported by TSD4WSC and ERunTE tools.

8.3 Results and Their Analysis for Identifying the
Critical Sub-Layers

8.3.1 Results

Using the designed test models, the supporting tool (described in Section 8.2) gener-
ated test suites according to the holistic ESG4WSC approach. Table 8.2 summarizes
the information about the test suites, divided into positive and negative testing. The
number of executed events for each test suite is also provided. Furthermore, the test
suites are divided by the length of covered ESs (k = 2, k = 3, and k = 4). The
information about faults detected using positive and negative test suites is included
as well.

19 faults were detected for the Customer Service while 13 faults were revealed
by the positive test suite and 6 faults by the negative test suite. All positive test
suites were applied first and faults were corrected at once. The faults in the im-
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Table 8.2: Positive and negative test cases and their number of events subject to ES
length

test suite (as test cases) test suite (as events) faults
length CES FCES

∑
CES FCES

∑
CES FCES

∑
2 1054 7596 8650 89520 174805 264325 12 6 18
3 998 9977 10975 139388 235541 374929 12+1 6+0 18+1
4 20537 16953 37490 3406148 429139 3835287 13+0 6+0 19+0∑

22589 34526 57115 3635056 839485 4474541 13 6 19

plementation were mainly identified by testing different rules (from the DTs) and
checking expected events and their order. The correction of these faults was not
critical and was performed directly in the implementation.

8.3.2 Comparing LC4WSC and SLC4WSC - Identifying the
Critical Sub-Layers for Further Testing

The result of the present case study and its analysis confirms the result achieved in
the previous experiment with LC testing (Chapter 6). Testing with higher event se-
quence length also leads here to a great deal of additional test effort while detecting
fewer faults. Therefore, this section analyzes the test effort reduction capabilities of
the SLC4WSC approach from a reliability point of view.

Step 1: Perform Layer-centric Testing and Categorize Detected Faults

The resulting test case set has been analyzed and the events occurring in the result-
ing test case set have been counted for each of the components. Furthermore, the
faults have been categorized along the components. It is assumed now that only the
CESs and FCESs covering sequence length 2 have been generated and executed.
The Customer Service consists of 69 models in total. Therefore, Table 8.3 shows
only the results for each component/ESG4WSC that revealed at least one fault. The
complete table can be found in the appendix (Table C.1).



8.3 Results and Their Analysis for Identifying the Critical Sub-Layers 119

Table 8.3: The number of faults categorized according to the number of events
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4 41430 0 129136 0 129064 0 16024 0 28541 0 103997 0 75533 0 
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2 2338 1 6253 1 1112 1 877 1 989 1 4264 1   

3 3701 0 8834 0 1628 0 1367 0 1577 0 6035 0   

4 74068 0 203473 0 22228 0 20289 0 24987 0 71907 0   

 

  
Step 2: Select Layers for Further Testing

As mentioned in Section 5.2, the first step to identify a subset of models which have
a higher fault detection capability is to calculate their usage ratios UR. Next, the
reliability of each component RE and their impacts IE are determined.

Step 2.1: Calculating the Usage Ratio of Components Equation 5.1 is used
to calculate UR. According to Table 8.4, the component with the highest usage is
represented by ESG 2. The components represented by ESG 10, ESG 37, ESG 52,
and ESG 67 have the lowest usage (not contained in Table 8.4). The complete table
is given in the appendix (Table C.2 on page 211).

Table 8.4: Usage ratio of Components/ESG4WSCs

ESG4WSC ESG 1 ESG 2 ESG 3 ESG 4 ESG 8 ESG 12 ESG 14
UR 0.0392 0.1071 0.1069 0.0274 0.0128 0.0686 0.0088

ESG4WSC ESG 15 ESG 18 ESG 44 ESG 46 ESG 57 ESG 60
UR 0.0088 0.0237 0.0042 0.0033 0.0037 0.0161
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Step 2.2: Calculating Reliability of each Component To determine the fault
data used for calculating the reliability of each component, first, the number of
faults detected by each component and the corresponding number of events in case
of length 2 are sorted in descending order according to their URs (Figure 8.6).
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Figure 8.6: Fault data used to calculate the reliability of each component

A K-S test (Table 8.5) indicates that the cumulative number of faults follows
Poisson distribution (mean parameter = 13.9275) since p-value (0.085) is greater
than 0.05. Therefore, the NHPP models given in Table 4.4 (on page 42) are ap-
plied to the fault data given in Figure 8.6 and GoF measures are computed for each
SRGM to determine the best-fitting model. Figure 8.7 visualizes the results of the
GoF measures showing that G-O model provides the best performance in all GoF
measures since it has the smallest AIC, BIC, and MSE values. Therefore, the G-O
model has been used to calculate the RE (equation 5.2 on page 48) in this study.
Table 8.6 shows the corresponding subset of reliability results of each component
and combined reliability (Rc). The complete table can be found in the appendix
(Table C.3 on page 212). The next goal is to enhance Rc. This will be done by
performing SLC4WSC testing with higher length for components that have a small
IE value compared to the overall system reliability.
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Table 8.5: One-Sample Kolmogorov-Smirnov Test

Cumulative Number of Faults
Poisson Parameter Mean 13.9275
Kolmogorov-Smirnov Z 1.256

p-value (2-tailed) 0.085
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Figure 8.7: GoF measures

Table 8.6: Reliability results of each component and combined reliability Rc

ESG4WSC ESG 1 ESG 2 ESG 3 ESG 4 ESG 8 ESG 12 ESG 14
RE 0.99933 0.99926 0.99929 0.99937 0.99944 0.99933 0.99945

ESG4WSC ESG 15 ESG 18 ESG 44 ESG 46 ESG 57 ESG 60 Rc

RE 0.99945 0.99938 0.99946 0.99947 0.99946 0.99942 0.9993



122 Chapter 8. Case Study II

Step 2.3: Calculating Impact of Components on Overall System Reliability
Table 8.7 shows the sorted IE values of components on the overall system reliability
derived in line with equation 5.4 (on page 48). The IE-value for determining the
Quartile has been calculated as IEp = IEp< + (IEp>− IEp<)∗ (p−p<) = IE17 +

(IE18−IE17)∗(17.5−17) = 0.983708426 with p = (n+1)/4 = (69+1)/4 = 17.5

and p< = 17 and p> = 18. The complete table can be found in the appendix
(Table C.3).

Table 8.7: Impact of each component on overall system reliability

ESG4WSC Sorted - IE
ESG 2 0.875234468
ESG 3 0.880494158
ESG 38 0.914891862
ESG12 0.927427172
ESG 1 0.959049777
ESG 40 0.963706467
ESG 55 0.964189084
ESG 13 0.967811853
ESG 4 0.972824563
ESG 39 0.974068847
ESG 18 0.976973913
ESG 53 0.981719601
ESG 68 0.981850293
ESG 31 0.98204088
ESG 20 0.982925822
ESG 41 0.983042295
ESG 56 0.983157974 (Quartile)
ESG 35 0.984258879
... ...
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Step 3: Re-execute Layer-centric Testing by Increasing the Sequence Length
for the Critical Layers Only

SLC4WSC testing with length 3 is performed for the 17 components/ESG4WSCs
given in Table 8.7 since IE values of these components are equal or less than the
1st quartile of IE values. The testing with the SLC4WSC test suite detected one
more fault with respect to LC4WSC testing with length 2. The reliability after
executing SLC4WSC has been calculated as RSLC

c = 0.999654 and is close to the
one calculated for LC4WSC RLC

c = 0, 999999 on the basis of G-O.

Results in a Nutshell

When performing SLC4WSC testing with length 3 for the selected models,
SLC4WSC reached a reliability level close to the one achieved by LC4WSC testing.
The difference is that the test effort could be reduced by 1− (398132/ 4474541) =

91% (Table 8.8) while detecting the same number of faults. The results of Case
Study I could be confirmed regarding the test sequence length. Test cases covering
event sequences of length 2 detected most of the faults. Test cases covering length
3 contributed very little, and the execution of test sequences longer than 4 makes no
sense, especially with respect to the measured reliability level.

Table 8.8: SLC4WSC compared to LC4WSC

SLC4WSC as events LC4WSC as events

length CES FCES
∑

faults CES FCES
∑

faults

2 89520 174805 264325 18 89520 174805 264325 18

3 2308 131499 133807 +1 139388 235541 374929 +1

4 - - - - 3406148 429139 3835287 +0∑
91828 306304 398132 19 3635056 839485 4474541 19

8.4 Limitations and Threats to Validity

In the previous sections, it has been described how to apply the proposed approach.
The case study demonstrated that the approach is applicable to a non-trivial web
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service-oriented application. It is not necessary to distinguish between orchestra-
tion and choreography for modeling and testing since the approach can be applied
in both contexts. The only restriction is that the tester has control over messages
exchanged by the partner services. The tool which was used to support the test ex-
ecution (Section 8.2.2) requires that all messages pass through an ESB. Although
ESBs may not be part of the service-oriented application under test, deploying the
services in an ESB is a simple task.

The proposed approach assumes that ESG4WSCs in a refined event are indepen-
dent. This enables a simple way to model some parallelism, and this was sufficient
for the example and case study. It is possible that more complex scenarios occur in
WSCs and the tester might also want to test combinations of message interleaving.
Although the approach can be adapted to test these scenarios, it is recommended to
use specific models and testing techniques for concurrent programs [54, 67].

Experiments of this case study addressed seven fault classes for negative testing.
Additional classes can be defined and implemented using the current infrastructure.
Notice that covering all fault classes generates a high number of negative test cases.
If the cost of test execution is critical in the current project, a subset of the negative
test suite can be selected. Based on the case study experience, a strategy is to
concentrate on the fault classes “longtime response” and “unexpected fault.” They
are usually sufficient to test the WSC robustness since the fault correction for those
classes indirectly handles other fault classes.

The evaluation of negative test results should be performed carefully. The infor-
mation for undesirable situations is usually misleading, scarce, and even missing.
For instance, the “longtime response” class can expose unplanned issues that must
be handled by the composition, such as timeouts in the implementation, missing
specification, and incomplete workflows. This fact hinders an accurate and auto-
matic evaluation of test sequences. Therefore, a mechanism was presented to han-
dle this issue using sensitive events. This strategy avoids false positives, but faults
can be missed by the test cases. Thus, it is recommended that the tester inspects a
subset of each fault class to avoid false negatives.
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Chapter 9

Further Perspectives

LC and SLC reduce the test generation and execution effort. The underlying test
process executes positive test cases first and negative test cases afterwards. In some
very restrictive cases it is possible to reduce the test execution effort by combin-
ing positive and negative test cases and therefore reduce the test execution effort
significantly [19].

However, the correction of observed failures costs additional (routinely man-
ual) effort to detect and correct the corresponding faults. Thus, further costs can be
saved if the fault correction step is automated. This chapter presents preliminary
work to automate this step using design by contract (DbC) patterns [115, 116]. The
approach is evaluated by experiments on boundary overflows, which occur when
numerical input values violate the range of specified values. Furthermore, a tool is
presented that implements the presented approach, enabling a semi-automatic de-
tection of boundary overflow errors and suggesting correction steps based on DbC.

To sum up, this chapter presents further cost reduction capabilities by

1. presenting an approach for semi-automatic detection and correction of bound-
ary overflow errors to reduce the manual fault correction effort, and

2. introducing a method for combining positive and negative test cases to further
reduce the effort of test execution.

127
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9.1 Correcting Numerical Input Faults and a Case
Study

Input validation testing chooses test data that attempt to show the presence or ab-
sence of specific faults endemic to input tolerance [51]. Decision tables (see Sec-
tion 7.2) will be used to visualize the Boolean algebraic constraints on input data and
are supplemented with DbC patterns so that rules of the decision table are refined
to precondition rules for numerical input validation. Equivalence class partitioning
and boundary value approaches support the test data generation process [114, 68].

The approach combines input validation with static analysis for evaluating given
constraints. Input validation checks the syntax and, to a degree, the semantics of the
information provided by user via GUI [52]. Because input validation errors may
lead to malfunctions of the entire system as well as to vulnerabilities for attacks
[80], various specification-based and implementation-based test techniques exist to
validate user interfaces [51].

Static analysis techniques are used to handle buffer overflow problems, which
are one of the common security issues since they may lead to vulnerabilities such
as system crash, corruption of data, or undesirable system access. They occur when
a programmer implements incorrect bound checks on buffer size or even fails to
perform bounds checking when data is written into a fixed length buffer [74]. By
definition, buffer overflow is similar to boundary overflow, which is an input error
that occurs when values are entered which violate the range of values. Such entries
exceed the implicitly or explicitly specified but not implemented boundary values.

According to Chess and McGraw [34], static analysis tool BOON applies in-
teger range analysis to determine whether a C program can index an array outside
its bounds. UNO, another static analysis tool, accepts user-defined properties of
application specific requirements to overcome specific problems [55]. Kolmonen
[62] introduces taint propagation as a technique used by static analysis tools to find
software vulnerabilities caused by failed or missing input validation. In taint prop-
agation, the tool tracks the tainted data, including also the parts of the program on
which the tainted data has an effect. A taint analysis is performed to find the places
where data is read from an untrusted source [110], e.g., by using Patterson’s value
range propagation algorithm for calculating the range of possible values for each
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variable [98].
There exist some approaches that adopt the DbC-idea for testing. Zheng et al.

[131] introduced an UML-based software component testing technique called test
by contract. There are also some contract-based testing techniques focused on web
service testing [53]. Languages such as Phyton, C++, Java are extended to comply
with DbC for catching bugs [50]. In [100], the DbC concept is integrated into the
programming language Python and adopted by adding mechanisms for dynamic
type checking of method parameters and instance variables. Guerreiro used DbC in
C++ by using and inheriting the Assertions class [50].

However, all of these techniques lack clearly arranged representations that en-
able a systematic evaluation. Therefore, this work attempts to provide a simple,
nonetheless powerful, representation of contracts for checking an SUC on numeri-
cal input vulnerabilities.

9.1.1 Fault Correction Using Design by Contract Patterns

The numerical input validation approach proposed here is composed of three phases:
(i) modeling DbC patterns by DTs, (ii) testing the SUC with the test cases generated
by DbC supplemented DTs, and (iii) detecting/correcting deficient input validation
code if errors are found during the test phase.

9.1.1.1 Modeling Design by Contract Patterns by Decision Tables

DbC is an object-oriented design technique that was first introduced by Meyer in
1992 [78]. DbC focuses on the extension of the source code, in this case a function,
by pre-conditions, post-conditions, and invariants that can be evaluated during run-
time (similar to a legal contract). Pre-conditions have to be fulfilled before the
function is executed; post-conditions have to be ensured after the function has been
executed. Invariants are conditions that must hold anytime the function is invoked
[53]. Software components are extended by those pre-conditions, post-conditions,
and invariants so that compliance with them can be verified during run-time.

Although DTs (see Section 7.2) can contain a wide variety of constraints, they
are classified here into three groups—namely pre-conditions, post-conditions, and
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invariants—by utilizing DbC patterns for automation purposes. Now, the defini-
tion of rules given by Definition 7.2 (on page 85) is redefined for considering DbC
concepts and, moreover, exception messages to be thrown.

Definition 9.1 (Rule). LetCTrue andCFalse be defined as in Definition 7.2 andE be
defined as E = Excpt ∪Eui with Excpt containing exception messages and Eui con-
taining possible user interactions. Then a rule is defined as Ri = (t, CTrue, CFalse,

Ex) where

• t ∈ {t<, t>, t<>} is a time marker with

– t< indicating a pre-condition,

– t> indicating a post-condition,

– t<> indicating an invariant,

• Ex ⊆ Eui × {Excpt ∪ ε} with ε defining an empty exception.

Example 9.2. The following sets and rules are given for the DT presented in Ta-
ble 9.1:

Eui = {accept, abort, btn3}
Excpt = {Exception1, Exception2, Exception3}
R1 = ({t<}, {Condition 1, Condition 2}, {}, {(accept, ε), (abort, ε),

(btn_3, ε)}
R2 = ({t<}, {Condition 1}, {Condition 2}, {(accept, Exception 1),

(abort, ε), (btn3, Exception 3)})
R3 = ({t<}, {Condition 2}, {Condition 1}, {(accept, Exception 2),

(abort, ε), (btn3, ε)})
R4 = ({t<}, {}, {Condition 1, Condition 2}, {(accept, Exception 1),

(accept, Exception 2), (abort, ε), (btn3, Exception 3)})

As an example, rule R3 of Table 9.1 reads as follows: If Condition 1 is re-
solved to false and Condition 2 is resolved to true, a press of accept button results
in Exception 2, a press of abort or btn_3 will throw no exception and therefore
the input is accepted. Pre-conditions, post-conditions, and invariants are used to
supplement DTs with specific classes of rules.
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Table 9.1: Example of a refined DT with exceptions

t< R1 R2 R3 R4
Condition 1 T T F F
Condition 2 T F T F
accept X

Exception 1 X X
Exception 2 X X

abort X X X X
btn_3 X X

Exception 3 X X

9.1.1.2 Testing Design by Contract Patterns by Decision Tables

In general, input validation requires to consider three validation types: isolated val-
idation, interdependency validation, and service-specific validation [111], as de-
picted in Figure 9.1. Isolated validation checks boundary conditions (restrictions)
and interdependency validation checks relations between the variables (dependen-
cies). Service-specific validation considers conditions related to business or service.

Figure 9.1: Input validation types

As an example, consider port values. For isolated validation, the considered
variables should be between the port ranges (0-65535). The restriction that the min-
imum port value should be lower than the maximum port value is associated with
interdependency validation. The dynamic and/or private ports are from 49152 to
65535 [57]. No ports can be registered in the dynamic range because they are com-
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monly used by operating system kernels. The port allocations are only valid for
the duration of the session of the connection. The port values between the dynamic
ranges are not valid for service-specific validation when the session is closed, al-
though the values are inside the port ranges and the dependency requirement holds
for the port values. DTs enable to express all three of the validation types, leading
to a complex system of constraints to be solved.

In general, there exist two different approaches to solve a system of constraints:
constraint solving and constraint satisfaction. Whereas constraint solving tries to
find a solution mathematically, constraint satisfaction is based on search-based al-
gorithms. As already mentioned in Section 7.3, the automatic generation of data
out of DTs can be done by a solution of the constraint satisfaction problem (CSP).
CSPs are distinguished by the type of variables and constraints [104, 6]. Variables
can be (1) discrete with finite or infinite domains or (2) continuous. Note that vari-
ables with infinite domains can be transformed into variables with finite domains
whenever it is possible to set an upper and lower bound to the infinite domain.

Each rule of the DT represents a CSP. Note that constraints have to be set to
true or false according to the sets CTrue and CFalse before submitting them to the
CSP. But how is this data to be generated? A simple solution is to enumerate all
possible combinations and check for valid solutions. But this is a very inefficient
solution and not even possible for variables with infinite or continuous domains.
Another solution is to build a constraint graph G = {V,E} where nodes v ∈ V

symbolize the variables and edges e ∈ E = {(vi, vj)|vi, vj ∈ V } are annotated
with the constraints [104]. An example can be seen in Figure 9.2. The underlying
constraint set is as follows:

C = {A ≥ 2B;B < C − 2;B ≤ D − 1;C = D + 5;E ≥ 3D}

On the basis of this graph, different search algorithms based on depth-first search
or breadth-first search can be run. The advantage of depth-first search algorithms
is that they are able to return a single solution faster than breadth-first search algo-
rithms. The basic idea of both variants is to start with a single variable by assigning
a value and extending the solution by assigning values step by step to the other vari-
ables. If the assignment of a value is not possible due to previously selected values,
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Figure 9.2: Constraint graph

the algorithms go one step back and assign another value to the previous variable.

Further details and techniques to improve this process are also given in [6]. It
should be noted that a CSP can be transformed into a Boolean satisfiability problem
[25] (also known as SAT-Problem) as described by Le Berre [66]. But this will not
be part of this thesis.

Equivalence class testing partitions the input space into equivalence classes ac-
cording to the input conditions. Each rule of the DT characterizes an equivalence
class by means of the underlying constraint set. The whole set of possible solutions
to a given constraint set (or rule) forms the corresponding equivalence class for this
constraint set. It is assumed that the SUC has the same behavior on all elements
[71] within an equivalence class. This assumption allows to select exactly one so-
lution from each equivalence class to represent this class. The selection can be
strengthened according to boundary value analysis [114, 68], which complements
the equivalence partitioning by selecting a value at the edges of a class [68].

DTs also provide the oracle for the selected input values because they are de-
fined along the cause-effect testing approach where the input conditions represent
the causes and events represent the effects [71]. Algorithm 9.1 shows the test case
generation algorithm where a test case consists of input values and the expected
behavior (namely the expected events) of the system. Test cases are generated for
all the rules in the DT; that is, the input values of a single test case are selected
according to a rule’s conditions and the expected output is defined by the allowed
successor event of the same rule.
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Algorithm 9.1: Test case generation algorithm
input : decision table
output: test cases

1 foreach rule = (t, CTrue, CFalse, Ex) ∈ decision table do
2 set each constraint c ∈ CTrue to true;
3 set each constraint c ∈ CFalse to false;
4 build a constraint graph;
5 derive a solution by solving the CSP;
6 combine the solution with Ex;

9.1.1.3 Detection and Correction

A detection algorithm is proposed to check the error handling mechanism of the
SUC related to validation of numerical inputs. The algorithm scans the source code
statically, detects the points that may cause problems (possible violation of bound-
aries), and checks the error handling mechanism of the SUC against validation er-
rors. The deficient parts of the error handling mechanism related to numerical input
validation are identified first. Once detected, a mechanism is required to correct the
deficiencies. The correction mechanism relies upon the DbC technique discussed
in Section 9.1.1.1. The correction algorithm provides an error handling mechanism
through extension of the source code by pre-condition contract methods where con-
trol for the numerical input validation vulnerability does not exist. The suggested
algorithm inserts an error handling mechanism with following features:

• insertion of necessary control conditions into the source code,

• generation of related error messages when inputs are given that lead to bound-
ary values, and

• termination of the currently executed function.

The boundary overflow vulnerability detection algorithm given by Algorithm 9.2
consists of five steps. In Step 1, the variable definitions with the specified types are
obtained and the variables (as type, name, defined file, defined line, defined func-
tion) are entered into the hash table. In Step 2, the variables in the hash table are
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Algorithm 9.2: Detection and correction algorithm
input : a decision table
output : corrected code

1 n := number of lines;
2 hashtable := ∅ ; // a hash table

// Step 1. Obtain the variable definitions with their types
and add them to the variable list

3 for line i := 1 to n do
4 if line i contains a variable definition of specified types then
5 add the variable to hashtable with (type,name,definedfile,definedline);

// Step 2. Match the conditions to variables
6 Match the variables with the conditions defined in decision table;

// Step 3. Detect GUI input lines
7 for line i := 1 to n do
8 if line i contains a GUI input then
9 if assigned variable is of string type then

10 trace the string variable and find the string to integer or double conversion line;
11 var := lookup the assigned variable from hashtable;
12 if var.boundarycondition = true then
13 var.usedfile := currentfile;
14 var.traceline := currentline;

// Step 4. Trace the variables
15 for variable.traceline i := 1 to n do
16 find the first line where the variable is used;
17 if line i contains a control statement (if, while, for) then
18 parse the expression(s);
19 var := lookup the variable(s) used in the expression from hashtable;
20 if var.boundarycondition = true AND

expression = complement(var.condition) then
21 var.condition.check := true;

22 else if line i contains a GUI input then
23 go back to Step 3;

// Step 5. Apply correction mechanism
24 for i = 1 to number of all the variables in hashtable do
25 if variable.boundarycondition = true AND variable.condition.check = false

then insert the related error handling code after the conversion line;
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matched with the conditions defined in the DT. Matched variable’s boundary condi-
tion is set to true. Step 3 of the algorithm detects the points that may cause problems
(input assignments from the user interface input) and sets the trace line of the vari-
able as the current line. Step 4 traces the variables from their trace lines and detects
the lines where the variables are used first. If a variable is used in a control state-
ment (such as if, while, or for), the expression(s) in the statement are parsed. After
that, the conditions are compared with the defined conditions of the variable. If
the parsed expression complies with the defined condition of the variable, condition
check of the variable is set to true (that is, if the defined condition is a > 0, the
expression should be a <= 0 to catch the undesired input). Step 5 of the algorithm
applies the correction mechanism. The error handling code is inserted after the trace
line of the variable if the condition check of the variable is missing.

9.1.2 Case Study III: Fault Correction of Three Port Scanners

A case study evaluates the characteristics of the approach with respect to its strength
and limitations. Furthermore, it analyzes its applicability to real-world applications.

9.1.2.1 System Under Consideration, Test Setup, and Goals of the Experi-
ment

The approach has been evaluated by means of three port scanners. A port scan
function analyzes a single port or a range of ports, that is, ports between a given
minimum and maximum, to check whether they are open or not. The case study is
exemplified on the basis of the port scanner part of the open source firewall software
Netdefender (version 1.5) [89]. Its GUI is shown in Figure 9.3. The boundary
restrictions of the port scan function are modeled by Table 9.2.

The second and third evaluations were performed on port scanners named Mul-
tiscan (version 0.8.5) [82] and Pscan [101]. They are open source port scanners
coded in C++, which allow you to scan a range of IP addresses and ports.

The goals of the experiment are, on the one hand, to demonstrate the applicabil-
ity of the approach introduced in Section 9.1.1 and, on the other hand, to measure its
effectiveness in detecting and correcting numerical input faults. Hence, test values
in the experiment are derived from Table 9.2. These test values are evaluated on
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Figure 9.3: Netdefender Port Scanner

Table 9.2: Decision table for entering ports

 Conditions R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 

C1 min >= 0 F F F F F F T T T T T T T T T T T T T T T T T T 

C2 min <= 65535 T T T T T T F F F F F F T T T T T T T T T T T T 

C3 max >= 0 F F F T T T F T T T T T F F T T T T T T T T T T 

C4 max <= 65535 T T T F T T T F F F T T T T F F T T T T T T T T 

C5 min < max F F T T T T T F F T F F F F T T F F F F F T T T 

C6 min = max F T F F F F F F T F F F F F F F F F F T T F F F 

C7 min > max T F F F F F F T F F T T T T F F T T T F F F F F 

C8 min < 49152 T T T T T T F F F F F F F T F T F F T F T F T T 

C9 max < 49152 T T T F F T T F F F F T T T F F F T T F T F F T 

Events 

E1 button „Start“                         

E2  Exception 1                         

E3  Exception 2                         

E4  Exception 3                         
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the port scanners before and after applying Algorithm 9.2, and the number of faults
detected are compared with each other.

9.1.2.2 Test Execution and Tool Support

The test process for each of the port scanners is summarized in Figure 9.4. As a
first step, the approach generates test cases by using DTs. Equivalence class testing
supplemented with boundary value analysis is used to generate test cases, which
are selected from the values that are at the edges of each equivalence class. As a
second step, the SUC is tested in a real environment by entering these values in its
user interface. The faults are obtained and recorded. After applying the proposed
detection and correction method, the new corrected version of the SUC is tested
in the real environment again. The faults detected before and after applying the
correction method are compared.

Figure 9.4: Summary of the approach

A numerical input validation analysis tool that is able to analyze software devel-
oped in C++ was developed in Java for the implementation of the approach. Func-
tioning as a static analysis tool, it analyzes the source code of SUC, finds the de-
ficient parts that may cause numerical input validation vulnerabilities, and extends
the source code by inserting pre-condition functions to ensure that the specified
conditions hold before the inputs are processed. The class Assertions [50] that
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provides the functions required for emulating pre-conditions and post-conditions is
used for exception handling where, in the current case, only the pre-conditions are
considered. The tool inserts its Require function for numerical input validation
wherever a control mechanism is absent. The numerical input validation analysis
tool accepts two inputs: (1) the directory of the software to be analyzed and (2)
DbC supplemented DTs for the GUI. The given implementation requires a manual
matching of the listed variables with the pre-conditions of the DT. The tool iden-
tifies the variables that have the boundary condition and displays the conditions of
the variables as well as whether or not condition checks exist in the source code
relative to the numerical input validation. The correction mechanism is applied by
informing the user about the insertion of the exception handling code where the
pre-condition checks do not exist. Figure 9.5 shows the corresponding GUI of the
tool that enables to input the source directory of the software to be checked, shows
the detection steps, suggests corrections, and displays the outputs.

Figure 9.5: Numerical input validation analysis tool - graphical user interface screen
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9.1.2.3 Results and Their Interpretation

Test cases are generated for the minimum and maximum port from Table 9.2 using
Algorithm 9.1. The generated test values can be seen in Table 9.3.

The port scanner is evaluated in a local area network (LAN) and the generated
test values are applied as inputs to the GUI of the port scanner. The user inter-
face outputs are obtained and the network packet outputs are captured. Table 9.4
summarizes the results by showing the test values as input pair, GUI, and network
packet outputs, state of the case (erroneous or not), and the error message.

To sum up, the cases with “out of boundary” input pairs give rise to problems
in the network environment. In certain cases (2, 3, 7, 9, 10, 13, 14, 15, 16), there
are faulty input pairs that are out of boundary values, but the program behaves
as if they were not faulty. This is critical because the program does not abandon
processing the related task; hence the resulting situation forces the program to work
erroneously. In some cases (2, 3, 7, 13, 14), the client does not stop sending the
TCP packets to the target computer, but rather continues sending the packets in an
infinite loop, generating a flood in the LAN.

After the insertion of control statements related to the boundary constraints in
the port scanner of Netdefender firewall, the software is evaluated in the LAN again
and the generated test cases are applied as inputs to the GUI of the port scanner. The
outputs considerably differ from the ones in Table 9.4. In erroneous cases (1-19),
the software outputs the right error message and aborts sending the packets.

As in the first evaluation, it has been observed that also the second and third
SUC have no exception handling mechanisms. The control mechanisms against out
of boundary values are deficient for the three port scanners. Hence, in all three
cases, the tool inserted control statements to fulfill the deficiencies of the software.

Results in a Nutshell

An overview of the three test runs comparing the number of faults detected be-
fore and after the detection algorithm can be seen in Table 9.5. It is evident that
the tool has successfully carried out detection and correction operations. Analysis
of the results encourages the generalization that boundary overflow vulnerabilities
were not considered and thus countermeasure actions were neglected during soft-
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Table 9.3: Test cases generated from rules of the DT given in Table 9.2

rule test values rule test values
R1 (-1,-2) R13 (49152,-1)
R2 (-1,-1) R14 (0,-1)
R3 (-2,-1) R15 (49152,65536)
R4 (-1,65536) R16 (0,65536)
R5 (-1,49152) R17 (49153,49152)
R6 (-1,0) R18 (49152,0)
R7 (65536,-1) R19 (1,0)
R8 (65537,65536) R20 (49152,49152)
R9 (65536,65536) R21 (0,0)

R10 (65536,65537) R22 (49152,49153)
R11 (65536,49152) R23 (0,49152)
R12 (65536,0) R24 (0,1)

Table 9.4: Outputs of the test cases for Netdefender firewall

# input pair GUI output network packet erroneous? error message? 

1 (-1,-2) no output no packet yes message 1 

2 (-1,-1) (-1,0,1,2,3,...∞) 65535,1,2,...65535… yes no 

3 (-2,-1) (-2,-1,0,1,2,3,...∞) 65534,65535,1,2,...65535… yes no 

4 (-1,65536) no output no packet yes message 1 

5 (-1,49152) no output no packet yes message 1 

6 (-1,0) no output no packet yes message 1 

7 (65536,-1) (65536...∞) 1,2,...65535,1,2,....65535… yes no 

8 (65537,65536) no output no packet yes message 1 

9 (65536,65536) (65536) no packet yes no 

10 (65536,65537) (65536,65537) 1 yes no 

11 (65536,49152) no output no packet yes message 1 

12 (65536,0) no output no packet yes message 1 

13 (49152,-1) (49152...∞) 49152,49153,...65535,1,2,...65535… yes no 

14 (0,-1) (0...∞) 1,2,...65535,1,2,...65535… yes no 

15 (49152,65536) (49152...65536) 49152,49153,…65535 yes no 

16 (0,65536) (0...65536) 1,2,…65535 yes no 

17 (49153,49152) no output no packet yes message 1 

18 (49152,0) no output no packet yes message 1 

19 (1,0) no output no packet yes message 1 

20 (49152,49152) (49152) 49152 no  

21 (0,0) (0) no packet no  

22 (49152,49153) (49152,49153) 49152,49153 no  

23 (0,49152) (0,49152) 1,2,…49152 no  

24 (0,1) (0,1) 1 no  
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Table 9.5: Comparison of the three test runs

# faults detected benefit of the approach
software # test cases before after (% of faults corrected)
Netdefender 24 19 0 100 %
Multiscan 24 10 0 100 %
Pscan 24 4 0 100 %

ware development. Therefore, tools as introduced in this work might be useful in
preventing likely failures or undesirable situations that may occur as a consequence
of deficiency control mechanisms in the software.

9.1.3 Conclusions

This section proposed a solution for the numerical input validation problem and re-
ported the experience gained through experiments as described in the case study.
DTs supplemented with DbC patterns were used for modeling input data restric-
tions and generating test cases for input validation. An algorithm was introduced to
validate the exception handling mechanism of SUC related to invalid numerical in-
puts and provide the necessary exception handling mechanism where none existed.
A tool supported the deployment of the algorithm introduced. Three port scanners
were tested to evaluate this tool. Results of those tests show that the approach is
very effective for finding deficiencies in the exception handling mechanism of SUC
concerning boundary overflow problems. Moreover, the approach includes appro-
priate checks to compensate for those deficiencies of SUC.

However, the approach reveals a limitation when considering numerical inputs.
Modern systems collect different types of data, such as strings, dates, and so on,
which need to be considered as well. Furthermore, the matching of variables to their
appropriate constraints has to be done manually and needs further improvements
for a complete automation of the approach. The case study showed that the fault
detection and correction works well for input data. Thus, it is desirable to extend
the approach to other types of faults, e.g., to the automatic detection and correction
of faults in sequences of events as given by ESGs.
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9.2 Positive and Negative Testing Revisited: Cost Re-
duction Through Combination

The test process introduced in Section 3.2 requires that each FEP forms its own
FCES because the execution of an FEP as a test case leads the SUC into an unde-
fined state. Very often, events correspond to elements on the GUI that are executed,
e.g., clicking a hyperlink, button, etc. Nowadays, test tools for automatic test exe-
cution support validation of the element-properties of a GUI. An example of such a
tool is Selenium [107], which can check whether an element, e.g., a button or link,
is present or not in a web application. Instead of activating an element, this tool can
check whether an element is available and/or (if necessary) enabled. Thus, it is not
necessary to execute the faulty event itself; instead, preconditions for its execution
can be defined and checked. This helps to reduce test costs. If the faulty (second)
event of an FEP is executable, the test is judged as failed, otherwise as passed.

Figure 9.6: Improved negative test execution

A simple ESG is shown in Figure 9.6. There exists exactly one CES that covers
all EPs. The six dashed edges represent FEPs. As in the previous approach, six
FCESs must be generated. The resulting test case set would be as follows:
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CES1 =[ a b b c ]

FCES1=[ a a

FCES2=[ a c

FCES3=[ a b a

FCES4=[ a b c a

FCES5=[ a b c b

FCES6=[ a b c c
Now, instead of applying the negative test cases FCES1 to FCES6 one by one to

the SUC, their corresponding FEPs are checked during the execution of the positive
test case CES1:
1. execute event a
2. check, if event a would be executable
3. check, if event c would be executable
4. execute event b
5. check, if event a would be executable
6. execute event b
7. execute event c
8. check, if event a would be executable
9. check, if event b would be executable
10. check, if event c would be executable.
For this example, instead of executing seven test sequences in total, execution of
one test sequence is sufficient. Furthermore, the number of events could be reduced
from 23 to 10.

Algorithm 9.3 sketches the corresponding test process. Note that this algorithm
considers only FEPs, that is, FESs of length 2. Furthermore, this test process is
based on the assumption that events can be checked without executing them. This
assumption strongly depends on the SUC and the test execution environment used;
e.g., an adaptation of this approach to the ESG4WSC approach is not possible. The
reason is that the fault classes given in negative testing can not be checked without
execution.
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Algorithm 9.3: Test process

1 cover all ESs of length k by means of CESs;
2 FEP := E with E = Ê \ E and Ê = V × V ;
3 foreach ces ∈ CES do
4 m := length of the ces;
5 for i := 1 to m do
6 if event i executable then
7 execute event i;
8 foreach (i, j) ∈ FEP do
9 check, if event j would be executable;

10 if event j would be executable then
11 mark faulty event pair (i, j) as failed;

12 else mark faulty event pair (i, j) as passed;
13 FEP = FEP \ (i, j);

14 else mark ces as failed and continue with next ces ∈ CES;

15 mark ces as passed;
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Chapter 10

Conclusions

Model-based testing is an attractive approach to testing since, depending on the un-
derlying model features and the test criteria considered, test cases can be derived
systematically, even automatically. Additionally, no source or binary code is neces-
sary to generate tests for the system under consideration (SUC).

Most existing test approaches generate test cases as sequences of events of dif-
ferent length. The cost of the test process mainly depends on the number and total
length of those test sequences. One of the interesting questions currently discussed
in software testing, both in practice and academia, is the role of test sequences and
their length on software testing, especially on fault detection. The prevailing belief
is “the longer, the better”; that is, the longer the test sequences, the more faults will
be detected. However, there is no evidence of this “length” hypothesis; that is, that
an increase in the test sequence length really affects the fault detection.

A second problem accompanies model refinement. Most of the modeling tech-
niques require creating a hierarchy of models since the state space of large, complex
systems can be impracticable to be modeled in one, single step. Nevertheless, this
hierarchy has to be resolved before test cases are generated, which is called full
resolution (FR). This can, however, lead to a large model and an unfeasibly great
number of test cases and substantial test generation effort. Thus, the deeper the
model hierarchy is, the more time and labor consuming are the test case generation
and test execution. Nevertheless, the belief is still “the deeper the better,” meaning
the more layers fully resolved, the more faults will be detected. However, like the
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“length” hypothesis, there is no evidence of this “depth” hypothesis; that is, that
an increase in the considered hierarchy depth, e.g., a thorough testing of all layers,
actually affects the fault detection.

This thesis analytically and empirically investigated the “length” and “depth”
hypotheses; that is, the impact of the test length and model refinement given through
the hierarchy depth on effectiveness and efficiency of test generation and test pro-
cess. The layer-centric testing (LC) approach was introduced to solve these prob-
lems. Based on event sequence graphs (ESG), the LC strategy makes use of specific
features of the hierarchical structure of the model and contributes to considerably
reducing costs for test generation and execution. In order to select critical compo-
nents that are likely to hide more faults than others, the LC approach was extended,
leading to selective layer-centric testing (SLC). To the author’s best knowledge,
there is no approach available in literature that simultaneously solves the “length”
and “depth” problem.

SLC is flexible and can be applied to many domains. This was demonstrated by
extending ESG for modeling and testing web service compositions. The strength of
the extension stems from its potential to fit cases well for which no technical specifi-
cations, e.g., via BPEL or WS-CDL, are available. Other testing approaches strictly
require the availability of these artifacts. Thus, the approach introduced is indepen-
dent of the type of composition which can be either orchestration or choreography
and, therefore, allows to simultaneously perform the steps for implementation and
testing of the SUC. To the author’s best knowledge to date, the present work is the
only one that describes how an enterprise service bus can support the test execution
in performing the necessary observations and modifications of exchanged messages
as well as provoking unexpected situations.

Apart from the above described analytic research, the thesis conducted two large
case studies to determine the trade-off of the LC and SLC strategies, subject to the
overall reliability of the SUC. Significant results of these empiric studies are as
follows.

1. “Length” hypothesis: In both case studies, I and II, the fault detection capa-
bility of test suites of higher length lagged far behind expectation. Test suites
covering event sequences of length 2 detected most of the faults. Test se-
quences for covering event sequences of length 3 contributed very little, and
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the execution of test sequences for covering event sequences longer than 4
made no sense as they obviously have no or only very minor chances of de-
tecting new faults. This result was independent of the chosen strategy, that is,
FR, LC, and SLC.

2. “Depth” hypothesis:

(a) Case study I showed that LC testing, which avoids a full resolution by
making use of the hierarchical structure, leads to a cost reduction of
about 80% at a reliability level that is comparable with the one achieved
by FR testing.

(b) Additionally, case study I showed that SLC strategy, which selects crit-
ical components instead of considering them all, further reduced costs
by approximately 30% compared to LC testing, and 85% compared to
FR testing at a reliability level close to the ones achieved by LC and FR
testing.

(c) In case study II, SLC even reduced the test effort by 90% and achieved
a similar reliability level.

3. The approach introduced in this thesis and the reliability models applied,
along with the case studies, allow the decision of when to stop testing, that
is, without having to perform all potentially feasible number of tests while
achieving the same reliability level.

The results of both case studies show that SLC testing can especially be recom-
mended for cases with limited test budgets that can only afford a small number of
test cases, e.g., in smoke testing. The optimization problem for generating a min-
imal test suite along LC and SLC leads to the assignment problem. It turns out,
however, that the specific constellation of “length” and “depth” problems requires
a derivation of the assignment problem to consider cases in which only one as-
signment of an item (agent) to another item (task) is required within a given set of
several items (instead of finding an assignment for all items in the set). Here, this
specific assignment problem was solved by linear programming—more precisely,
by the simplex method.
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In sketching out the further perspectives of the proposed approach, a concept
of combining positive and negative testing was introduced to reduce the test costs.
Finally, a rudimentary concept for automating the correction of faults in the source
code was presented, which was evaluated by the third case study.

It is this author’s observation that the assignment problem, along with Chinese
postman problem, has received relatively little attention in software testing litera-
ture. It is the hope of the author that this thesis might have demonstrated that this
class of optimization problems contains further valuable potential for cost mini-
mization and thus deserves the attention of researchers in software testing.
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Appendix A

Algorithms

A.1 Layer-centric Testing

Algorithm A.1: Determination of CESs for an hierarchical ESG covering EPs
function : generateCES_LC(ESG)
input : an ESG = (V,E,Ξ,Γ)

output : a set of CESs covering event pairs

1 sets CES[], weight[], curCESs, resCES := ∅;

// generate CESs for the compound vertices first

2 foreach v ∈ Ψ(ESG) do
3 CES[v] := generateCES_LC(v); // recursive call

4 weight[v] := length(ShortestPath(v));

5 ESG := balanceESG_LC_opt(ESG, CES, weight) ; // Algorithm A.2

6 curCESs := determineCESs(ESG) ; // Algorithm A.3

// replace compound vertices

7 foreach ces∈curCESs do
8 foreach v ∈ Ψ(ces) do
9 if |CES[v]| > 0 then

10 replace v by x ∈ CES[v];
11 CES[v] := CES[v] \ {x};

12 else replace v by ShortestPath(v);

13 resCES := resCES ∪ {ces};

14 return resCES;

177



178 Chapter A. Algorithms

Table A.1: Legend

Ψ(s), Ψ(g) a function determining the set of
compound vertices for a given
sequence s or ESG g

Φ(v, ESG) a function determining the set of all
occurrences of a given vertex v in
an ESG

ShortestPath(ESG) determines the shortest path from
ε = [ to γ =] for a given ESG (note
that compound vertices are also
ESGs)

computeEulerTour(ESG) determines the Eulerian cycle of
the given ESG

computeShortestPaths(v,B,D,weight) determines all shortest paths from
vertex v to all b ∈ B with
Breadth-First-Search algorithm and
stores these shortest distances in
the distance matrix D taking
weights into account

computeShortestPath(v, w) determines the shortest path from
vertex v to vertex w

length() determines the length of a path or
list

solveAssignmentProblem(D) solves the assignment problem
according to the Hungarian
algorithm

solveAssignmentProblemLC_opt(D) solves the assignment problem
described in Section 4.2 according
to equations 4.1 to 4.7

getElement(list,i) returns the i-th element of the
given list or sequence

getPartList(list,start,i) returns the sublist from start to i of
the given list or sequence
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Algorithm A.2: Balancing an ESG according to LCopt
function : balanceESG_LC_opt(ESG, CES[], weight[])
input : an ESG = (V,E,Ξ,Γ) with ε = [, γ =]
input : an array CES[] containing the CESs for each compound vertex of ESG
input : an array weight[] containing the weights for each compound vertex of ESG
output : a balanced ESG

1 E := E ∪ {(γ, ε)} ; // insert arc from ] to [
2 sets A,B,M := ∅ ; // empty sets
// determine set A and B

3 foreach v ∈ V do
4 if δ(v) > 0 then
5 for s := 1 to δ(v) do
6 A := A ∪ {v};

7 if δ(v) < 0 then
8 for s := 1 to −δ(v) do
9 B := B ∪ {v};

10 foreach v ∈ Ψ(ESG) do
11 n := |CES[v]| −Max(δ−(v), δ+(v));
12 for s := 1 to n do
13 A := A ∪ {v};
14 B := B ∪ {v};

15 m := |A| := |B| ; // cardinality
16 D[1..m][1..m] ; // distance matrix D

// compute all shortest paths from v to all b ∈ B
17 foreach v ∈ A do
18 computeShortestPaths(v,B,D,weight) ; // shortest distances are

saved in D

19 M := solveAssignmentProblem(D) ; // Hungarian Algorithm
// M = {(i, j)| one-to-one mapping: i ∈ {1, .., |A|} → j ∈ {1, .., |B|}}

20 foreach (i, j) ∈M do
21 Path := computeShortestPath(i, j);
22 foreach e ∈ Path do // e = (i, j) with i, j ∈ V
23 E := E ∪ {e};

24 return ESG;
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Algorithm A.3: Algorithm to determine the CES set for a balanced ESG
function : determineCESs(ESG)
input : a balanced ESG = (V,E,Ξ,Γ) with ε = [, γ =]
output : a set of CESs

1 EulerTourList := computeEulerTour(ESG); ; // tour starts in ε
// EulerTourList=(ε, . . . , γ, ε, . . . , γ, ε, . . . , γ, ε)

2 CES := ∅;
3 start := 1;
4 for i := 2 to (length(EulerTourList)-1) do
5 if getElement(EulerTourList,i) = γ then
6 CES := CES∪ getPartList(EulerTourList, start, i);
7 start := i+ 1 ; // CES={(ε, . . . , γ),(ε, . . . , γ),(ε, . . . , γ), . . .}

8 return CES;

Algorithm A.4: Generate FCES for an ESG and its compound vertices
function : generateFCES_LC(ESG, length)
input : an ESG = (V,E,Ξ,Γ) with ε = [, γ =]
input : the desired event sequence length to be covered
output : a set of FCESs covering the given length of FESs

1 sets FES, resFCES := ∅ ; // empty sets

// generate FCESs for the compound vertices first
2 foreach v ∈ Ψ(ESG) do
3 FES := generateFCES_LC(v, length);
4 foreach fes ∈ FES do
5 fes := computeShortestPath(ε,v)⊕fes ; // set start sequence
6 resFCES := resFCES ∪ {fes};

7 resFCES := resFCES∪ determineFCES(ESG, length) ; // Algorithm A.5

// replace compound vertices in resFCES
8 foreach fes ∈ resFCES do
9 foreach v ∈ Ψ(fes) do

10 if ω(fes) = v then
11 replace v by v′ ∈ Ξ(v);

12 else
13 replace v by ShortestPath(v);

14 resFCES := resFCES ∪ {fes};
15 return resFCES;
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Algorithm A.5: Generate FCES for a single ESG
function : determineFCES(ESG, length)
input : an ESG = (V,E,Ξ,Γ) with ε = [, γ =]
input : the desired event sequence length to be covered
output : a set of FCESs covering the given length of FESs

1 FCES := V ;
// set up event sequences of (length-1)

2 while length > 2 do
3 FCES′ := ∅;
4 foreach fes ∈ FCES do
5 foreach (ω(fes), v) ∈ E with v ∈ V do
6 FCES′ := FCES′ ∪ {fes⊕ v};

7 FCES := FCES′;
8 length := length− 1;

// add invalid transitions
9 FCES′ := ∅;

10 foreach fes ∈ FCES do
11 foreach (ω(fes), v) /∈ E with v ∈ V do
12 FCES′ := FCES′ ∪ {fes⊕ v};

13 FCES := FCES′;
// set start sequence

14 FCES′ := ∅;
15 foreach fes ∈ FCES do
16 fes:=computeShortestPath(ε,α(fes))⊕fes;
17 FCES′ := FCES′ ∪ {fes};
18 FCES := FCES′;
19 return FCES;
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Algorithm A.6: Improved version of Algorithm A.1 for determining the set
of CESs for an hierarchical ESG covering event sequences of any length

function : generateCES_LC(ESG, length)
input : an ESG = (V,E,Ξ,Γ)
input : the desired event sequence length to be covered
output : a set of CES covering event sequences of length

1 sets CES[], curCESs, resCES := ∅;
// generate CESs for the compound vertices first

2 foreach v ∈ Ψ(ESG) do
3 CES[v] := generateCES_LC(v, length); // recursive call
4 weight[v] := length(ShortestPath(v));

// generate CESs for the given ESG
5 ESG := transformESG(ESG, length) ; // see Algorithm A.10
6 ESG := balanceESG_LC_opt(ESG, CES, weight) ; // Algorithm A.7
7 curCES := determineCESs(ESG) ; // Algorithm A.3

// replace compound vertices
8 foreach ces∈curCES do
9 foreach v ∈ Ψ(ces) do

10 if |CES[v]| > 0 then
11 replace v by x ∈ CES[v];
12 CES[v] := CES[v] \ {x};
13 else replace v by ShortestPath(v);

14 resCES := resCES ∪ {ces};
15 return resCES;
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Algorithm A.7: Improved version of Algorithm A.2 for balancing an ESG
according to LCopt and length>2

function : balanceESG_LC_opt(ESG, CES[], weight[])
input : an ESG = (V,E,Ξ,Γ) with ε = [, γ =]
input : an array CES[] containing the CESs for each compound vertex of ESG
input : an array weight[] containing the weights for each compound vertex of ESG
output : a balanced ESG

1 E := E ∪ {(γ, ε)};
2 sets A,B,M := ∅;
3 hasArea := determineSetAandB_LC_opt(ESG, CES, A, B) ; // Algorithm A.8

4 m := |A| := |B| ; // cardinality
5 D[1..m][1..m] ; // distance matrix

// compute all shortest paths from v to all b ∈ B
6 foreach v ∈ A do
7 computeShortestPaths(v,B,D,weight) ; // shortest distances are saved

in D

8 if !hasArea then
9 M := solveAssignmentProblem(D) ; // Hungarian Alhgorithm

10 else M := solveAssignmentProblemLC_opt(D) ; // Equations 4.1 to 4.7
// M = {(i, j)| one-to-one mapping: i ∈ {1, .., |A|} → j ∈ {1, .., |B|}}

11 foreach (i, j) ∈M do
12 Path := getShortestPath(i,j);
13 foreach e ∈ Path do // e = (i, j) with i, j ∈ V
14 E := E ∪ {e};

15 return ESG;
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Algorithm A.8: Determine set A and B for LCopt
function : determineSetAandB_LC_opt(ESG, CES[], A, B)
input : an ESG = (V,E,Ξ,Γ)
input : CES[] := an array containing the CES set for each compound vertex
input : empty sets A and B to be populated
output : populates set A and B and returns true if problem has an area, otherwise false

1 foreach v ∈ V do
2 if δ(v) > 0 then
3 for s := 1 to δ(v) do
4 A := A ∪ {v};

5 if δ(v) < 0 then
6 for s := 1 to −δ(v) do
7 B := B ∪ {v};

8 hasArea := false;
9 foreach v ∈ Ψ(ESG) do

10 n := 0;
11 if |Φ(v,ESG)| = 1 then
12 n := |CES[v]| −Max(δ−(v), δ+(v));

13 else
14 foreach v ∈ Φ(v,ESG) do
15 n := n+Max(δ−(v), δ+(v));

16 n := |CES[v]| − n;
17 if n > 0 then
18 hasArea := true;

19 for s := 1 to n do
20 A := A ∪ Φ(v,ESG);
21 B := B ∪ Φ(v,ESG);

22 return hasArea;
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Algorithm A.9: Balancing an ESG according to LCSimple
function : balanceESG_LC_simple(ESG, CES[], weight[])
input : an ESG = (V,E,Ξ,Γ)
input : an array CES[] containing the CESs for each compound vertex of ESG
input : an array weight[] containing the weights for each compound vertex of ESG
output : a balanced ESG

1 V ′ := ∅;
2 foreach v ∈ Ψ(ESG) do
3 if |Φ(v,ESG)| > 1 then
4 CES2[v] := CES[v];
5 CES[v] := ∅;
6 V ′ := V ′ ∪ {v};

7 ESG := balanceESG_LC_opt(ESG, CES, weight) ; // Algorithm A.2
8 foreach v′ ∈ V ′ do
9 n := 0;

10 foreach v ∈ Φ(v′, ESG) do
11 n := n+ δ−(v);

12 n := |CES2[v′]| − n;
13 if n > 0 then
14 l :=∞;
15 foreach v ∈ Φ(v′, ESG) do
16 Path_tmp := computeShortestPath(v,v);
17 if length(Path) < l then
18 l := length(Path);
19 Path := Path_tmp;

20 foreach e ∈ Path do // e = (i, j) with i, j ∈ V
21 E := E ∪ {e};

22 return ESG;
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A.2 Model Transformation
Algorithm A.10: Algorithm to transform an ESG for higher length coverage
(improved version in one step)

function : transformESG(ESG, length)
input : an ESG=(V,E,Ξ,Γ)
input : the desired event sequence length to be covered
output : a transformed ESG according to the length to be covered

1 if length>2 then
2 ESG′ := (V ′, E′,Ξ′,Γ′) with V ′ = ∅, E′ = ∅,Ξ′ = ∅,Γ′ = ∅;

// add vertices

3 foreach es ∈ getSequencesOfLength(ESG, length-1) do // Algorithm A.11

4 V ′ := V ′ ∪ {ω(es)};

// add edges

5 foreach es1 ∈ getSequencesOfLength(ESG, length-1) do
6 foreach es2 ∈ getSequencesOfLength(ESG, length-1) do
7 if es1 ⊕ ω(es2) = α(es1)⊕ es2 then
8 E′ := E′ ∪ {(ω(es1), ω(es2))};

// set Ξ’ and Γ’

9 foreach es ∈ getSequencesOfLength(ESG, length-1) do
10 if α(es) ∈ Ξ then

// add all vertices of es to new ESG

11 V ′ := V ′ ∪ {α(es)};
12 last := α(es);
13 foreach event e ∈ es do
14 if e 6= α(es) AND e 6= ω(es) then
15 V ′ := V ′ ∪ {e};

16 if e 6= α(es) then
17 E′ := E′ ∪ {(last, e)};
18 last := e;

19 Ξ′ := Ξ′ ∪ {α(es)};

20 if ω(es) ∈ Γ then Γ′ := Γ′ ∪ {ω(es)};

21 return ESG’;

22 return ESG;
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Algorithm A.11: Algorithm to retrieve all ESs of a given length
function : getSequencesOfLength(ESG, length)
input : an ESG = (V,E,Ξ,Γ)
input : the desired length of event sequences
output : a set of all ESs of the given length

1 ES := V ;
2 while length > 1 do
3 ES′ := ∅;
4 foreach es ∈ ES do
5 foreach (ω(es), v) ∈ E with v ∈ V do
6 ES′ := ES′ ∪ {es⊕ v};

7 ES := ES′;
8 length := length− 1;

9 return ES;
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A.3 WSC Testing

Table A.2: Legend

Ψ(s) a function determining the set of
compound vertices for a given
sequence s

s[i] the i-th event of sequence s
s[i..j] the sequence from i to j
ShortestPath(ESG4WSC) determines the shortest path from

ε = [ to γ =] for a given
ESG4WSC

computeEulerTour(ESG) determines the Eulerian cycle of
the given ESG

computeShortestPath(v, w) determines the shortest path from
vertex v to vertex w

length() determines the length of a path or
list

getAllowedSuccessor(ces, DTseq) determines the allowed successor
event for a given sequence ces
according to DTseq

solveCPP(ESG4WSC) solves the Chinese postman
problem for the given ESG4WSC
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Algorithm A.12: Algorithm to generate CESs for a given ESG4WSC
function : generateCESs(ESG4WSC)
input : an ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ, )
output : a set of CESs covering event pairs

1 resCES := ∅; // Step 1
2 foreach re ∈ Vrefined do
3 foreach esg ∈ re do
4 CES := generateCESs(esg); // recursive call
5 if resCES = ∅ then resCES := resCES ∪ {(re× CES)};
6 else
7 foreach ces1 ∈ {ces|(re, ces) ∈ resCES} do
8 foreach ces2 ∈ CES do resCES := resCES ∪ {(re, (ces1||ces2))};
9 resCES := resCES \ {(re, ces1)};

10 foreach re ∈ Vrefined AND f(re) 6= ε do // Step 2
11 DTseq := f(re);
12 foreach ces ∈ {ces|(re, ces) ∈ resCES} do
13 v := getAllowedSuccessor(ces,DTseq);
14 E := E ∪ {(re, v)};

// store a Mapping, i.e., Map ⊆ E × ces
15 Map := Map ∪ {((re, v), ces)};
16 resCES := resCES \ {(re, ces)};

// add multiple edges for each dataset to be tested
17 foreach DTinput,public ∈ V do
18 foreach e ∈ EDT do E := E \ {(DTinput, e)};
19 foreach (Ctrue, Cfalse, Ex) ∈ R do E := E ∪ {(DTinput, Ex)};
20 CES := solveCPP(ESG4WSC); // Step 3
21 foreach ces ∈ CES do // Step 4
22 for i = 1 to length(ces) do
23 if ces[i] ∈ Vrefined then
24 if |{ces|((ces[i], ces[i+ 1]), ces) ∈Map]}| > 0 then
25 new := es with es ∈ {ces|((ces[i], ces[i+ 1]), ces) ∈Map]};
26 Map := Map \ {((ces[i], ces[i+ 1]), ces)};
27 ces := ces[1..(i− 1)]⊕ new ⊕ ces[(i+ 1)..length(ces)];

28 else if |{ces|(ces[i], ces) ∈ resCES}| > 0 then
29 new := es with es ∈ {ces|(ces[i], ces) ∈ resCES]};
30 resCES := resCES \ {(ces[i], ces)};
31 ces := ces[1..(i− 1)]⊕ new ⊕ ces[(i+ 1)..length(ces)];

32 return CES;
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Algorithm A.13: Algorithm to generate PubFESs
function : generatePubFESs(ESG4WSC)
input : an ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ)
output : the test suite PubFES

1 PubFES := ∅;
2 ESG4WS := transformToESG4WS(ESG4WSC); // Algorithm A.15
3 foreach (ei, ej) ∈ obtainFEP(ESG4WS) do // Algorithm A.16
4 pesi := generatePES(ESG4WSC, ei) ; // Algorithm A.17
5 pesi := pesi ⊕ ej ;
6 PubFES := PubFES ∪ {(pesi;z)};
7 return PubFES;

Algorithm A.14: Algorithm to generate PriFESs
function : generatePriFESs()
input : an ESG4WSC, set of sensitive events s
output : the test suite PriFES

1 PriFES := ∅;
2 Let VREQ be the union of sets Vreq for the ESG4WSC and their refining ESG4WSCs;
3 Let VRESP be the union of sets Vresp for the ESG4WSC and their refining ESG4WSCs;
4 foreach ei ∈ VREQ do
5 pesi := generatePES(ESG4WSC, ei) ; // Algorithm A.17
6 fes1 := (pesi;zNR; s);
7 fes2 := (pesi;zMS; s);
8 fes3 := (pesi;zUF; s);
9 PriFES := PriFES ∪ {fes1, fes2, fes3};

10 foreach ej ∈ VRESP do
11 pesj := generatePES(ESG4WSC, ej) ; // Algorithm A.17
12 fes1 := (pesj ;zLR; s);
13 fes2 := (pesj ;zWSc; s);
14 fes3 := (pesj ;zWSy; s);
15 fes4 := (pesj ;zWD; s);
16 PriFES := PriFES ∪ {fes1, fes2, fes3, fes4};
17 return PriFES;
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Algorithm A.15: Algorithm to transform an ESG4WSC to an ESG4WS
function : transformToESG4WS(ESG4WSC)
input : an ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ)
output : an ESG4WS = (V ′, E′,Ξ′,Γ′)

1 ESG4WS = (V ′, E′,Ξ′,Γ′);
2 foreach v ∈ V do
3 if (v /∈ Vreq AND v /∈ Vresp) OR v is private then
4 foreach pre ∈ N−(v) do // predecessors of v
5 foreach post ∈ N+(v) do // successors of v
6 if (pre, post) /∈ E then
7 E := E ∪ {(pre, post)};
8 E := E \ {(v, post)};
9 E := E \ {(pre, v)};

10 V := V \ v;
11 if v ∈ Ξ then Ξ := Ξ ∪N+(v) \ {v};
12 if v ∈ Γ then Γ := Γ ∪N−(v) \ {v};

13 V ′ := V ; E′ := E; Ξ′ := Ξ; Γ′ := Γ;
14 return ESG4WS;

Algorithm A.16: Algorithm to obtain the faulty event pairs of an ESG4WS
function : obtainFEP(ESG4WS)
input : an ESG4WS = (V,E,Ξ,Γ) with V = Vreq ∪ Vresp
output : a set of FEPs for the given ESG4WS according to Definition 7.14

1 FEP := ∅;
2 foreach vreq ∈ Vreq do
3 foreach vresp ∈ Vresp do
4 if (vresp, vreq) /∈ E then
5 FEP := FEP ∪ {(vresp, vreq)};

6 foreach vreq2 ∈ Vreq do
7 if vreq2 6= vreq AND (vreq2, vreq) /∈ E then
8 FEP := FEP ∪ {(vreq2, vreq)};

9 if vreq /∈ Ξ then
10 FEP := FEP ∪ {([, vreq)};

11 return FEP;
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Algorithm A.17: Algorithm to generate a partial event sequence that covers
an event ei

function : generatePES(ESG4WSC, ei)
input : an ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ, ) with ε = [, γ =]
input : a non-refining event ei
output : a PES to event ei

1 re := ε;
2 if ei ∈ V then
3 ek := ei;

4 else
5 select re ∈ Vrefined such that ei is within re;
6 ek := re;

7 pes := computeShortestPath(ε, ek);
// replace the refined events in pes

8 foreach v ∈ Ψ(pes) do
9 replace v by ShortestPath(v);

// replace last event of pes if ei is in a lower layer
10 if re 6= ε then
11 par := ε;
12 foreach esg4wsc ∈ re do
13 if ei ∈ esg4wsc then
14 pesi := generatePES(esg4wsc,ei) ; // recursive call

15 else
16 pesi := ShortestPath(esg4wsc);

17 par := par||pesi;
18 replace ω(pes) by par;

19 return pes;
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Figure B.1: Hierarchical structure of the ESG used in the case study

Figure B.2: Main
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Figure B.3: Refinement of vertex "Login as Provider - quick" and the corresponding
screenshot (not expected to show every event)
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Figure B.4: Refinement of vertex "Login as Provider - normal" and the correspond-
ing screenshot (not expected to show every event)
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Figure B.5: Refinement of vertex "Provider Account" and the corresponding screen-
shot (not expected to show every event)
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Figure B.6: Refinement of vertex "edit-Hotel" and the corresponding screenshot
(not expected to show every event)
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Figure B.7: Refinement of vertex "change data" and the corresponding screenshot
(not expected to show every event)
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Figure B.8: Refinement of vertex "edit Profile" and the corresponding screenshot
(not expected to show every event)
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Figure B.9: The full resolution model
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Appendix C

Supplementary Material
Case Study II

C.1 xTripHandling Description

This appendix describes the application xTripHandling that provides a set of facili-
ties to query and book a trip. xTripHandling is developed using SOA concepts and
web services and was based on available examples of service compositions, such
as WS-CDL, Netbeans BPEL, and so on. The application is composed of different
services. First, the atomic (single) services are presented as follows.

• Airlines service

• ISELTA hotel service

• Car Rental service

• Map service

• Sightseeing service

• Train service

Further information about each service can be found in the interface description
(Java code and associated documents). The composite services are described in the
following.

203
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C.1.1 Travel Agent Service

It is composed by three operations: queryTrip, getAllOptions, and book.
Workflow description (functional):

1. queryTrip is invoked with searchData.

(a) If there is some invalid data, TripInputException is launched and the
process finishes (see 7.).

2. The searchData is mapped to search operations for hotel and flight.

3. Both search operations are called concurrently.

(a) HotelService requires login before the search.

(b) If one of the services (hotel, flight) launches an exception, TripInputEx-
ception is launched and the process finishes (see 7.).

4. Check if at least one hotel and flight was returned. Otherwise it launches a
TripBookingException with a message showing that there is no hotel or flight
or both. The process finishes (see 7).

5. Generate a search code and return the operation queryTrip with the five cheap-
est prices for flights and hotels.

6. At this point, the process will wait for 3 events, getAllOptions or book calls
or a timeout (5 min).

(a) After 5 min without a new request, the process finishes (see 7.).

(b) getAllOptions request will reply all options for hotel and flight. If the
searchCode is invalid (process finishes or does not exist), TripInputEx-
ception is launched. Timeout is restarted.

(c) book request.

i. TripInputException if some input data is invalid or the process fin-
ished.
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ii. All input data is ok, the bookings for hotel and flight are called
concurrently and (successfully) a booking message is returned. The
process finishes (see 7.).

A. for booking a hotel, a login and a search is required first, since
there is a timeout of 30 sec. If the search does not contain
the same combination of hotel and price to be booked, a Trip-
BookingException is launched.

iii. If some fault happens in hotel and flight, TripBookingException is
launched with the problem description. The client can try again
back to step 6.

A. Successful hotel or flight booking should be canceled. To can-
cel a hotel, you need to login again first. If the cancellation
fails, a TripBookingException is launched with a message “Con-
tact administrator ($e-mail), code: $searchCode, $bookingIn-
formation!”. The process finishes (see 7.).

7. If the process finishes:

(a) getAllOptions leads to a TripInputException (always, that is, indepen-
dent of input values)

(b) book leads to a TripInputException (always, that is, independent of input
values)

C.1.1.1 Non-Functional Requirements

This section presents some non-functional requirements for the Travel Agent Ser-
vice.

1. The timeout for invoking external services is 60 seconds.

C.1.2 Customer Service

This service maps the workflow followed by a traveler. It interacts with airline ser-
vice, map service, car rental, sightseeing, train, and travel agent services. It is com-



206 Chapter C. Supplementary Material Case Study II

posed by ten operations: consultTravel, moreOptions, bookTravel, consultTravel-
Data, orderMap, bookTrain, searchSightseeing, bookSightseeing, searchCars, and
bookCar.

Workflow description (functional):

1. The client starts a trip search, invoking the operation consultTravel.

(a) Input data is validated.

(b) Launch an CSInvalidInputDataException if there is some invalid input
data. The process finishes.

2. The origin and destiny cities are checked in the airline service.

(a) The Airline service has the operation listAvailableCities that returns one
or more items if there is any airport in the city passed by parameter.
First, check the origin city. If there is no item returned, call mapser-
vice operation getNearestCityWith with the city and item “AIRPORT”
as parameter.

i. If map service cannot find the city, an CSSearchException is
launched, the process finishes.

(b) The same procedure (previous step) is done concurrently for the destiny
city. The origin and destiny airport cities are updated if necessary.

3. The operation queryTrip of travel agent service is called.

(a) If some exception is launched, launch an CSSearchException with some
message.

4. Return to the client the five cheapest flights and the five cheapest hotels re-
turned by Travel Agent Service and the travelSearchCode.

5. At this point, the process will wait for 3 events, moreOptions, bookTravel, or
a timeout (3 min).

(a) After 3 min without a new request, the process finishes.
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(b) moreOptions request. GetAllOptions of travel agent service is called and
new results are returned to the client. The timeout is restarted. Back to
step 5.

i. If the travelSearchCode is invalid (process finishes or does not ex-
ist), CSInvalidInputDataException is launched.

(c) The client chooses a hotel and flight and requests a booking using book-
Travel operation.

i. If some input data is invalid, CSInvalidInputDataException is
launched. Back to step 5. The book operation of Travel Agent
service is called.

A. If some exception is launched, CSBookingException is
launched. Back to step 5.

ii. If the airport and origin city are in different cities, the operation has-
Trains of Train service is called. If it is true, the operation search-
Trains is called to list the lines. Then, the same is done for the
destiny city. The returned train lines, if they exist, are refered to
as originLines (origin city) and destinyLines (destiny city). The
originLines and destinyLines are empty if the city and airport city
are the same.

A. List just the successfully returned train lines.

6. Booking is successful returning a bookingID + (hotel and flight data). If the
destiny or/and origin city are different from the airport, some train lines are
returned (if it there exist).

7. Using the bookingID, the client can make the following operations. There are
some period restrictions: (a) until the return date and (b,c,d,e) until one day
before the departure day.

(a) Query the Trip data using consultTravelData operation

i. If the bookingID is invalid (process finishes or does not exist),
CSInvalidInputDataException is launched.
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(b) bookTrain request. Book some train (if some lines were returned).

i. If the bookingID is invalid (process finishes or does not exist),
CSInvalidInputDataException is launched.

ii. If the confirmation message returned from train service is not “Your
train booking code is $Code”, CSBookingException is launched.

iii. The trains can only be successfully booked once for origin train and
destiny train (if there were listed after bookTravel).

(c) Search and book some sightseeing in the destiny city using searchSigh-
teeing and bookSightseeing operations.

i. If some input data is invalid, CSInvalidInputDataException is
launched.

ii. In the searchSighteeing operation, the operation listCities from the
sightseeing service is called first. Then, the code for the destiny city
is used to call the listSightSeeingByCity operation from the sight-
seeing service.

iii. If there is some exception with the sightseeing service, the sight-
seeing is already booked or the destiny city is not listed by the op-
eration listCities, CSBookingException is launched.

iv. The client can book zero, one, or more sightseeings. The same
sightseeing cannot be booked twice.

(d) search and rent some car in the destiny city using searchCars and book-
Car operations.

i. If some input data is invalid, CSInvalidInputDataException is
launched.

ii. If there is some exception with the carrental service, CSBookingEx-
ception is launched.

iii. A car can only be booked once. A new try to book must launch
CSBookingException if the bookingID is correct. If the bookingID
is not correct CSInvalidInputDataException is launched. A search
using searchCars is still possible.
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(e) orderMap request. Order a map of the destiny city (send by email to the
client) to the map service.

i. If the bookingID is invalid (process finishes or does not exist),
CSInvalidInputDataException is launched.

ii. If the confirmation message returned from Map service is not “OK”,
CSBookingException is launched.

iii. The client can just order successfully once. A new try to book
must launch CSBookingException if the bookingID is correct. If the
bookingID is not correct CSInvalidInputDataException is launched.

8. The process finishes after the returnDate.

C.1.2.1 Non-Functional Requirements

This section presents some non-functional requirements for Customer Service.

1. The timeout for invoking external services is 60 seconds.

C.1.3 Implementation Details

An ESB is included to intermediate the services in the application. Thus, the ap-
plication can employ a set of functionalities provided by the ESB, such as routing,
security, service discovery, and integration with other technologies.
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C.2 Data

Table C.1: The number of failures categorized according to the number of events

 
Events (pos+neg) Failures 

 
length 2 length 3 length 4  length 2 length 3 length 4 

ESG 1 10386 13161 41430 64977 1 0 0 1 

ESG 2 28314 35870 129136 193320 3 0 0 3 

ESG 3 28242 35798 129064 193104 1 0 0 1 

ESG 4 7241 6980 16024 30245 3 1 0 4 

ESG 5 2972 5596 73397 81965 0 0 0 0 

ESG 6 279 538 5272 6089 0 0 0 0 

ESG 7 820 1144 8527 10491 0 0 0 0 

ESG 8 3395 4820 28541 36756 1 0 0 1 

ESG 9 588 882 7270 8740 0 0 0 0 

ESG 10 168 172 188 528 0 0 0 0 

ESG 11 1781 2305 5423 9509 0 0 0 0 

ESG 12 18134 24746 103997 146877 2 0 0 2 

ESG 13 8488 16391 622613 647492 0 0 0 0 

ESG 14 2338 2862 75533 80733 1 0 0 1 

ESG 15 2338 3701 74068 80107 1 0 0 1 

ESG 16 829 1762 44476 47067 0 0 0 0 

ESG 17 1756 2672 64170 68598 0 0 0 0 

ESG 18 6253 8834 203473 218560 1 0 0 1 

ESG 19 1486 2380 59516 63382 0 0 0 0 

ESG 20 4770 9081 210413 224264 0 0 0 0 

ESG 21 989 2416 24987 28392 0 0 0 0 

ESG 22 458 940 15046 16444 0 0 0 0 

ESG 23 1112 1733 22228 25073 0 0 0 0 

ESG 24 4264 6309 71907 82480 0 0 0 0 

ESG 25 877 1367 20289 22533 0 0 0 0 

ESG 26 2972 5596 73397 81965 0 0 0 0 

ESG 27 279 538 5272 6089 0 0 0 0 

ESG 28 820 1144 8366 10330 0 0 0 0 

ESG 29 3395 4820 28541 36756 0 0 0 0 

ESG 30 588 882 7431 8901 0 0 0 0 

ESG 31 4983 9086 210579 224648 0 0 0 0 

ESG 32 989 1577 26452 29018 0 0 0 0 

ESG 33 513 1027 15048 16588 0 0 0 0 

ESG 34 1112 1628 22228 24968 0 0 0 0 

ESG 35 4487 6143 71910 82540 0 0 0 0 

ESG 36 877 1367 20289 22533 0 0 0 0 

ESG 37 168 176 192 536 0 0 0 0 

ESG 38 20720 25492 129228 175440 0 0 0 0 

ESG 39 6979 8665 39225 54869 0 0 0 0 

ESG 40 9329 12162 37601 59092 0 0 0 0 

ESG 41 4770 9081 210413 224264 0 0 0 0 

ESG 42 989 1577 24987 27553 0 0 0 0 

ESG 43 458 940 15046 16444 0 0 0 0 

ESG 44 1112 1628 22228 24968 1 0 0 1 

ESG 45 4264 6035 71907 82206 0 0 0 0 

ESG 46 877 1367 20289 22533 1 0 0 1 

ESG 47 2972 5848 73777 82597 0 0 0 0 

ESG 48 279 538 5413 6230 0 0 0 0 

ESG 49 820 1144 8366 10330 0 0 0 0 

ESG 50 3470 4822 28951 37243 0 0 0 0 

ESG 51 588 882 7270 8740 0 0 0 0 

ESG 52 168 172 188 528 0 0 0 0 

ESG 53 5000 6298 21288 32586 0 0 0 0 

ESG 54 3449 4385 13505 21339 0 0 0 0 

ESG 55 9329 12982 36211 58522 0 0 0 0 

ESG 56 4770 9081 210413 224264 0 0 0 0 

ESG 57 989 1577 24987 27553 1 0 0 1 

ESG 58 458 940 15046 16444 0 0 0 0 

ESG 59 1187 1630 22230 25047 0 0 0 0 

ESG 60 4264 6035 71907 82206 1 0 0 1 

ESG 61 877 1367 20289 22533 0 0 0 0 

ESG 62 3047 5598 73399 82044 0 0 0 0 

ESG 63 279 538 5272 6089 0 0 0 0 

ESG 64 820 1144 8366 10330 0 0 0 0 

ESG 65 3395 4820 28541 36756 0 0 0 0 

ESG 66 588 882 7270 8740 0 0 0 0 

ESG 67 168 172 188 528 0 0 0 0 

ESG 68 5000 6298 21288 32586 0 0 0 0 

ESG 69 3449 4385 13505 21339 0 0 0 0 

  264325 374929 3835287 4474541 18 1 0 19 
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Table C.2: Usage ratio of ESGs

 URE   URE 

ESG 1 0.03929254  ESG 36 0.00331789 

ESG 2 0.10711813  ESG 37 0.00063558 

ESG 3 0.10684574  ESG 38 0.07838835 

ESG 4 0.02739431  ESG 39 0.0264031 

ESG 5 0.01124373  ESG 40 0.03529367 

ESG 6 0.00105552  ESG 41 0.01804597 

ESG 7 0.00310224  ESG 42 0.00374161 

ESG 8 0.01284404  ESG 43 0.00173272 

ESG 9 0.00222453  ESG 44 0.00420694 

ESG 10 0.00063558  ESG 45 0.01613166 

ESG 11 0.00673792  ESG 46 0.00331789 

ESG 12 0.06860494  ESG 47 0.01124373 

ESG 13 0.03211198  ESG 48 0.00105552 

ESG 14 0.00884517  ESG 49 0.00310224 

ESG 15 0.00884517  ESG 50 0.01312778 

ESG 16 0.00313629  ESG 51 0.00222453 

ESG 17 0.00664334  ESG 52 0.00063558 

ESG 18 0.02365648  ESG 53 0.01891611 

ESG 19 0.00562187  ESG 54 0.01304833 

ESG 20 0.01804597  ESG 55 0.03529367 

ESG 21 0.00374161  ESG 56 0.01804597 

ESG 22 0.00173272  ESG 57 0.00374161 

ESG 23 0.00420694  ESG 58 0.00173272 

ESG 24 0.01613166  ESG 59 0.00449068 

ESG 25 0.00331789  ESG 60 0.01613166 

ESG 26 0.01124373  ESG 61 0.00331789 

ESG 27 0.00105552  ESG 62 0.01152748 

ESG 28 0.00310224  ESG 63 0.00105552 

ESG 29 0.01284404  ESG 64 0.00310224 

ESG 30 0.00222453  ESG 65 0.01284404 

ESG 31 0.01885179  ESG 66 0.00222453 

ESG 32 0.00374161  ESG 67 0.00063558 

ESG 33 0.00194079  ESG 68 0.01891611 

ESG 34 0.00420694  ESG 69 0.01304833 

ESG 35 0.01697531    

 



212 Chapter C. Supplementary Material Case Study II

Table C.3: Reliability results of each ESG, their impacts and Rc

Pos. ESG 
# cum.  
events 

cum. no.  
of failures RE Impact  

  
0 0 

  1 ESG 2 28314 3 0.99926311 0.875234468 

2 ESG 3 56556 4 0.99929238 0.880494158 

3 ESG 38 77276 4 0.99931311 0.914891862 

4 ESG 12 95410 6 0.99933075 0.927427172 

5 ESG 1 105796 7 0.99934065 0.959049777 

6 ESG 40 115125 7 0.99934942 0.963706467 

7 ESG 55 124454 7 0.99935807 0.964189084 

8 ESG 13 132942 7 0.99936584 0.967811853 

9 ESG 4 140183 10 0.99937239 0.972824563 

10 ESG 39 147162 10 0.99937865 0.974068847 

11 ESG 18 153415 11 0.9993842 0.976973913 

12 ESG 53 158415 11 0.9993886 0.981719601 

13 ESG 68 163415 11 0.99939297 0.981850293 

14 ESG 31 168398 11 0.9993973 0.98204088 

15 ESG 20 173168 11 0.99940141 0.982925822 

16 ESG 41 177938 11 0.99940549 0.983042295 

17 ESG 56 182708 11 0.99940955 0.983157974 

18 ESG 35 187195 11 0.99941334 0.984258879 

19 ESG 24 191459 11 0.99941692 0.985132451 

20 ESG 45 195723 11 0.99942047 0.985223146 

21 ESG 60 199987 12 0.99942401 0.985313288 

22 ESG 50 203457 12 0.99942687 0.98810747 

23 ESG 54 206906 12 0.9994297 0.988237802 

24 ESG 69 210355 12 0.99943251 0.988295874 

25 ESG 8 213750 13 0.99943527 0.988535114 

26 ESG 29 217145 13 0.99943802 0.988590834 

27 ESG 65 220540 13 0.99944075 0.988646284 

28 ESG 62 223587 13 0.99944319 0.98985454 

29 ESG 5 226559 13 0.99944556 0.990146379 

30 ESG 26 229531 13 0.99944792 0.990188314 

31 ESG 47 232503 13 0.99945027 0.990230071 

32 ESG 14 234841 14 0.99945211 0.992339978 

33 ESG 15 237179 15 0.99945394 0.992365636 

34 ESG 11 238960 15 0.99945534 0.994199274 

35 ESG 17 240716 15 0.99945671 0.994295094 

36 ESG 19 242202 15 0.99945787 0.995182556 

37 ESG 59 243389 15 0.99945879 0.996158429 

38 ESG 23 244501 15 0.99945965 0.996406895 

39 ESG 34 245613 15 0.99946051 0.996412625 

40 ESG 44 246725 16 0.99946137 0.996418345 

41 ESG 21 247714 16 0.99946214 0.996819035 

42 ESG 32 248703 16 0.9994629 0.996823546 

43 ESG 42 249692 16 0.99946366 0.996828051 

44 ESG 57 250681 17 0.99946442 0.99683255 

45 ESG 25 251558 17 0.9994651 0.997194783 

46 ESG 36 252435 17 0.99946577 0.997198311 

47 ESG 46 253312 18 0.99946644 0.997201835 

48 ESG 61 254189 18 0.99946711 0.997205354 

49 ESG 16 255018 18 0.99946775 0.997361452 

50 ESG 7 255838 18 0.99946837 0.997393166 

51 ESG 28 256658 18 0.999469 0.997396232 

52 ESG 49 257478 18 0.99946962 0.997399294 

53 ESG 64 258298 18 0.99947024 0.997402353 

54 ESG 9 258886 18 0.99947069 0.998138868 

55 ESG 30 259474 18 0.99947114 0.998140438 

56 ESG 51 260062 18 0.99947158 0.998142006 

57 ESG 66 260650 18 0.99947203 0.998143573 

58 ESG 33 261163 18 0.99947242 0.998381554 

59 ESG 22 261621 18 0.99947277 0.998556021 

60 ESG 43 262079 18 0.99947311 0.99855697 

61 ESG 58 262537 18 0.99947346 0.998557918 

62 ESG 6 262816 18 0.99947367 0.999121878 

63 ESG 27 263095 18 0.99947388 0.99912223 

64 ESG 48 263374 18 0.99947409 0.999122581 

65 ESG 63 263653 18 0.9994743 0.999122932 

66 ESG 10 263821 18 0.99947443 0.999472001 

67 ESG 37 263989 18 0.99947455 0.999472128 

68 ESG 52 264157 18 0.99947468 0.999472255 

69 ESG 67 264325 18 0.99947481 0.999472382 

   
RC= 0.99936734 
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