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1 Introduction 

The planning process in scheduled passenger traffic is a difficult task. Due to its 

complexity, airlines and public transport companies decompose their schedule plan-

ning into several planning phases. The resulting smaller problems of the strategic and 

operational planning phases can nowadays be solved with optimization tools for rea-

listic instances.  

Nonetheless many of the decisions during the schedule planning process have to be 

made under uncertainty. For example, airlines have to plan their routes and frequen-

cies although they cannot foresee the fuel costs, which have become the largest part 

of their costs. Not only the costs but also their income is uncertain: The demand for a 

flight is not known until the last booking is completed. Therefore the aircraft type 

that is planned for a flight also has to be fixed under uncertainty. Furthermore, dis-

ruptions due to bad weather conditions or traffic density are a problem. An aircraft or 

a bus will be late and cannot start a consecutive flight or trip on time. Buffer times 

can be added, but as disruptions are unforeseeable, when, where and how long 

should they be? Furthermore the illness absences of personnel are an uncertainty in 

crew planning. Too much reserves cause high personnel costs but on the other hand 

the company must be able to replace every ill person on every day to maintain their 

service. 

Against this background, this thesis aims to show that the strategic and operational 

planning process in scheduled passenger traffic can be improved by implementing an 

integrated risk management strategy with operational and contractual risk manage-

ment into the mathematical optimization models of the planning phases.  

Thereby applied stochastic optimization models for airline scheduling and scheduling 

in public transport are re-developed or developed from scratch. The goal is to show 

the practical advantages for robust planning with realistic case studies. 

Chapter 2 begins with an introduction into the field of scheduled passenger traffic. It 

shows the scheduling process at airlines and in public transport as well as the uncer-

tainties during the schedule planning process before an overview on the state-of-the-

art in literature is given. 
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In Chapter 3 the techniques that are used in this thesis are introduced. Risk manage-

ment and measurement are described and deterministic optimization models are de-

fined briefly. Then stochastic optimization is explained in detail: It begins with an 

example, then stochastic optimization models are classified, solution methods are 

explained, and it ends with a discussion of methods for optimization under uncertain-

ty.  

Chapter 4, 5, 6 and 7 describe the new models and solution approaches developed in 

this thesis, which treat the open research questions discussed in Chapter 2. Further-

more they show the results and evaluate the models with realistic case studies. Chap-

ter 4 describes an approach for robust airline schedule design under fuel price and 

demand uncertainty, Chapter 5 shows a model for robust re-fleeting under demand 

and fuel price uncertainty at airlines. Chapter 6 comes up with a new model and solu-

tion approach for robust vehicle scheduling in public bus transport. Furthermore, a 

model-extension that considers and counteracts weather uncertainty is proposed. In 

Chapter 7 a model for rota scheduling in public transport under uncertain illness ab-

sence rates is presented. 

Finally, in Chapter 8 a conclusion is drawn and an outlook for further research is 

given.   
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2 Problem description 

This chapter provides an introduction to scheduled passenger traffic. It first introduc-

es the planning phases during the scheduling process, then explains the uncertainties 

during this process and ends with a literature review where the state-of-the-art and 

open research questions are discussed. Parts of this chapter have already been pub-

lished.
1
 

2.1 The planning process in scheduled passenger traffic 

First, the schedule planning process of airlines is introduced. Figure 1 shows the 

process with its planning phases.  

Schedule Design

Fleet Assignment

Aircraft Routing

Crew Scheduling

 

Figure 1 Airline schedule planning 

The first planning phase is called schedule design. The airline decides which flights 

are flown with which frequency and flights are scheduled. This step is usually done 

manually and based on traffic forecasts, seasonal demand variations as well as tactic-

al and strategic initiatives.  

                                                 

1
 See [NSK11], [NaSu12], [XNS12] and [NSF12] 
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The second step is the fleet assignment. In this step the aircraft type for each flight is 

determined. It is important that the capacity of the aircraft type matches the demand 

of the flight. Choosing a too large type wastes fuel and causes higher cost while a too 

small type can only serve a part of the demand so that the revenue decreases. 

Next, the aircraft routing is planned. In this step, the set of flights which are flown 

with each airplane in a line is determined. Thereby the satisfaction of maintenance 

requirements is considered. 

Finally, the crew scheduling is planned. It assigns the crews to the flights, so that the 

crew costs are minimized. 

All these planning phases have numerous constraints and interdependent decisions. 

For example, the crew costs for a flight depend on the other flights that are assigned 

to the crew and on the ground-time between the flights. Because of the huge com-

plexity and the interdependencies between the planning phases, even experienced 

planners are hardly able to find good solutions. Therefore airlines use optimization 

techniques. But even with optimization techniques, it is not possible to solve real-

world problems considering all planning phases. Because of this fact, the whole 

process in decomposed and optimization models for schedule design, fleet assign-

ment, aircraft routing and crew scheduling are solved sequentially, which nonethe-

less is still a challenging task.
2
 

The planning process in public bus transport is very similar. Figure 2 shows the 

planning phases in public bus transport. 

                                                 

2
 See [BaCo04] and [GoTa98] 
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Line Planning & 

Timetabling

Vehicle 

Scheduling

Crew Scheduling

 

Figure 2 Schedule planning in public bus transport 

At first the line planning and the timetabling is planned. Thereby the served lines are 

chosen and their frequencies and departure times are determined. Especially the es-

timated demand is used as planning-data. These planning phases are usually planned 

by a local authority (city or county) and followed by a tendering, in which a compa-

ny can gain a license for one line or a set of lines. 

The vehicle types, which transport the passengers on the given lines, and the routes 

of the vehicles are determined in the vehicle scheduling. Objectives can be cost mi-

nimization, minimization of used vehicles and/or the adherence to standards like a 

maximum number of line changes per circulation. 

During the crew scheduling, first anonymous day duties are created and then as-

signed to the specific drivers. This second step is also called crew rostering. Collec-

tive agreements such as minimum times for breaks or maximum working time per 

week are important constraints in this planning phase.
3
 

Like in Barnhart and Cohn
4
 the term crew scheduling is used for all subproblems 

including the crew rostering in this thesis. The crew rostering itself can be divided 

into the rota scheduling and the duty sequencing. Shift types are assigned during the 

                                                 

3
 See [Kli05] p. 8ff and [HFW04]  

4
 [BaCo04] 
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rota scheduling, in the duty sequencing the duties are assigned matching the shift 

type.
5
 

For a global optimal solution all planning phases would have to be solved in one in-

tegrated model. But, like in airline schedule planning, this leads to too high complex-

ity, so that the planning process is decomposed into smaller subproblems which can 

then be solved for each planning phase sequentially. 

The scheduling processes for airlines and for public bus transport companies are very 

similar. For example, most constraints like flow conservation and covering, are 

equal. A small difference between vehicle scheduling in public bus transport and 

aircraft routing is the possibility of deadheads: A bus is allowed to drive without pas-

sengers while an aircraft is not, because this would be too expensive. As the 

processes are very similar, they are both considered in this thesis. From a methodo-

logical point of view, it makes sense to consider both planning processes together. 

There are greater differences that separate airline scheduling and scheduling in public 

bus transport from rail-based traffic. For example the occupation of tracks has to be 

considered during planning in rail-based traffic, whereas busses and aircraft do not 

occupy their road or flight route exclusively.  

Furthermore, the fleet assignment and aircraft routing respectively vehicle schedul-

ing cannot be easily adapted to rail-based traffic, because railroad companies do not 

have a fixed fleet with a specific number of different types: Trains consist of a differ-

ent number of cars which necessitates additional planning for balancing them. 

Another strategic question that also differentiates planning in rail-based traffic from 

planning at airlines and in public bus transport is infrastructure planning. In contrast 

to the airspace between airports and the streets between bus stations, the connection 

between railway-stations – the network of railroads – often has to be constructed. 

Because of these greater differences, rail-based traffic is not considered in this thesis. 

                                                 

5
 See [EKS00] 
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2.2 Uncertainties in long-term planning phases 

During their planning process the companies have to make many decisions under 

uncertainty. This chapter begins with the relevant uncertainties during the long-term 

planning phases (schedule design and fleet assignment or respectively line planning 

and timetabling) in scheduled passenger traffic. 

2.2.1 Fuel price uncertainty 

Fuel prices have become the largest part of the expenditures of airlines.  

 

Figure 3 Cost structure in the airline industry 

Figure 3
6
 shows the cost structure of North American airlines in the third quarter of 

2010. It can be seen that fuel costs are larger than labor costs, which have been the 

dominating part so far.  

                                                 

6
 Source: [ATA11] 
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Figure 4 Share of jet fuel costs 1986-2010 

Figure 4
7
 shows the share of jet fuel costs of the total operational costs of airlines. In 

the 1990s this value always was about 10-15%, but it has grown to about 25% in the 

last years. In 2008 it even grew above 30%. 

 

                                                 

7
 Created with data from [ATA11b] 
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Figure 5 Fuel price development 

Figure 5
8
 shows the fuel price development from 1986 to 2009. The fuel price has 

quite high variations. It can double or halve within a few months, especially high 

variations in the last years can be seen. Therefore, airlines have to cope with high 

fluctuations for the major and further growing part of their expenditures. 

This uncertainty especially influences the early planning phases of airlines, such as 

schedule design and fleet assignment which are planned several months or even 

years in advance. 

For public transport companies the fuel price uncertainty has less impact than for the 

airline industry. There are several reasons why: 

- The line planning and timetabling is done by the local authority. Therefore 

the company can only execute the plan and cannot change it because of varia-

tions in the fuel price. 

- There is no separate planning phase for fleet assignment. Instead it is inte-

grated into the vehicle scheduling. Furthermore, as the lines are given, the 

                                                 

8
 created with data from [EIA] 
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flexibility of changing compatible vehicle types on a line is more limited, be-

cause lines often require special vehicle types (low-floor busses for lines that 

stop at hospitals, etc.). 

- The third reason is the economic impact of fuel price changes. Leuthardt
9
 

shows that the fuel costs for a standard bus in a city in 1997 are only 4.7% of 

the total operational costs for busses. The price for diesel in Germany in 2012 

is 2.3 times higher than in 1997
10

. Therefore the fuel price share is not higher-

than the relative small share of fuel costs at airlines in the 1990s. 

Figure 6
11

 shows the yearly operating costs for a city bus in 1997. 

 

Figure 6 Bus operating costs 

Figure 7
12

 shows the diesel price development in Germany from 1990 to 2012. 

                                                 

9
 [Leu98] 

10
 See [Sta12] 

11
 Created with data from [Leu98] 

12
 Created with data from [Sta12] 
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Figure 7 Diesel prices in Germany 

2.2.2 Demand uncertainty 

The demand uncertainty is also an important issue for airlines. Again, the planning 

phases schedule design and fleet assignment are affected, because they have to be 

planned before all passengers have booked their flights.  

Figure 8 shows the yearly growth of global passenger traffic from 1951 to 2007
13

. 

Cento
14

 argues that because the product of airlines is one of the most perishable, they 

have implemented techniques to counteract demand uncertainty: For short-term de-

mand fluctuations the yield management is an efficient method, but to counteract 

long-term demand shifts the strategic network planning has to be adjusted. 

                                                 

13
 Data from [ATA10] 

14
 [Cen09] 
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Figure 8 Growth of global passenger traffic 

Compared to the data in Figure 8, the variations in the particular regions are even 

higher: The International Air Transport Association reports that the growth in pas-

senger demand in March 2009 varies between 4.7% for the Middle Eastern carriers 

and -15.6% for the African carriers. Furthermore, the average load factor decreased 

because capacity was not adjusted as much as demand fell.
15

  

As the schedule design determines the offered flights and their frequencies, which 

are often decisions for years, considering demand forecasts is very important. Fur-

thermore, because offered airline seats are one of the most perishable services, the 

fleet assignment has to determine the right aircraft type under uncertainty to meet the 

final demand.  

For public transport companies, the demand uncertainty is also not as important as 

for airlines. The reasons are again the line planning and timetabling by the local au-

thority as well as the integration of fleet assignment into the vehicle scheduling. 

Therefore, lines, frequencies and many type assignments are already determined. 

                                                 

15
 Data see [IATAb] 
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Furthermore, public transport companies can better react on demand changes than 

airlines because there is standing room in busses. 

2.2.3 Related work 

Transportation is a sector where operations research is widely used; especially in the 

airline industry. In this chapter, an overview on the literature that treats the uncertain-

ties shown before is given.  

Yu
16

 presents a wide variety of operations research applications in the airline indus-

try. Gopalan and Talluri
17

 give an overview on problems and mathematical models in 

airline schedule planning.  

For the schedule design as the first planning phase in airline schedule planning, 

Etschmeier and Mathaisel
18

 present an overview on early literature dealing with 

schedule construction and schedule evaluation. Cadarso and Marín
19

 show a passen-

ger oriented approach for robust airline schedule design. Lederer and Nambimadom
20

 

show that different network configurations such as hub and spoke or direct networks 

can be optimal in different situations. In Chapter 2 of their paper, Wen and Hsu
21

 

review the literature on airline flight frequency programming models. These models 

can also include several fleet types.  

Demand uncertainty has also been considered in strategic airline planning. For ex-

ample Barla and Constantatos
22

 provide reasons why hub and spoke networks pro-

vide more flexibility to counteract uncertain demand. Barla
23

 examines the effects of 

strategic interactions on an airline network under demand uncertainty with a duopoly 
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game. Hsu and Wen
24

 apply Gray Theory to the airline network design problem and 

consider demand uncertainty. The same authors
25

 present a paper that evaluates the 

airline network design in response to demand fluctuations. Thereby they review the 

literature that considers demand uncertainty. Yan et al.
26

 present an airline schedul-

ing model that considers stochastic demands.  

Sherali et al.
27

 present a survey of models, concepts and algorithms for the fleet as-

signment problem. They also consider fleet assignment models that integrate sche-

dule design decisions. An integrated model for fleet assignment and schedule design 

that considers flight leg selection is presented by Lohatepanont and Barnhart
28

. They 

also give a short overview on integrated models for schedule design and fleet as-

signment. Soumis et al.
29

 present an integrated model that considers passenger satis-

faction and the interaction between passenger and aircraft routing. Sherali et al.
30

 

present an integrated model for schedule design and fleet assignment considering 

itinerary-based demands for multiple fare classes.  

Cobbs and Wolf
31

 describe hedging strategies for airlines and perform an industry 

survey. They find out that the airline industry is not very much hedged at the time of 

their survey, although this would be a competitive advantage. Also Carter et al.
32

 find 

out that hedging is positively related to the firm value of airlines. Triantis
33

 presents 

general reasons for an integrated risk management strategy. He concludes that an 

integrated risk management strategy that considers contractual and operational risk 

management is superior to non-integrated risk management. To the best knowledge 
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of the author, up to now financial hedging has not been integrated with operational 

decisions of airline schedule planning: Usually these decisions are made by different 

departments of the company and one department depends on the decision of the other 

department. Financial hedging instruments are well described by Hull.
34

 

List et al.
35

 present a stochastic model for fleet planning under uncertainty and con-

sider partial moments as a measure for robustness. Fabian
36

 shows how the Condi-

tional Value at Risk can be integrated into linear optimization models. 

To the knowledge of the author, a robust strategic planning model for the airline in-

dustry that considers schedule design and financial hedging under jet fuel price and 

demand uncertainty has not been developed yet. 

The fleet assignment is one of the planning phases where operations research has 

more often been applied to than to schedule design. An overview on fleet assignment 

models is presented by Sherali et al.
37

. They also review the literature on re-fleeting 

approaches. 

The idea of re-fleeting under demand uncertainty was introduced by Berge and Hop-

perstad
38

. They proposed significant cost improvements, if aircraft assignment is 

done closer to departure using more precise demand forecasts.  

Further approaches for re-fleeting are presented by Jarrah et al.
39

 and Talluri
40

, who 

presents an approach for swapping aircraft. Newer re-fleeting publications are the 

papers from Sherali et al.
41

 and Warburg et al.
42

, including a case study of a Euro-

pean airline, for example.  
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A two-stage stochastic re-fleeting model is presented by Zhu
43

 and Sherali and Zhu
44

. 

It considers demand uncertainty, but does not integrate fuel price uncertainty and 

financial hedging instruments. Their models are a basis for the development of the 

optimization model for re-fleeting in this thesis that considers fuel price uncertainty, 

demand uncertainty and risk management with financial hedging. To the best know-

ledge of the author, such a model has not been developed yet. 

As shown before, the long-term planning phases in public bus transport - the time-

tabling and line planning - are planned by the local authority. Therefore they are 

from the companies‟ point of view not as interesting as the long-term planning phas-

es at airlines. Public transport companies have not the degrees of freedom in plan-

ning the lines and timetables and are also not hit by such a significant demand and 

fuel price uncertainty like airlines. 

2.3 Uncertainties in short-term planning phases 

During the short term planning phases, aircraft routing / vehicle scheduling and crew 

scheduling, unforeseeable events like disruptions and illness absences cause uncer-

tainty. These uncertainties are discussed in this section. 

2.3.1 Disruptions because of weather and traffic 

For the vehicle and crew scheduling in public bus transport, disruptions are a serious 

problem. The schedules are planned several weeks before the day of operations. De-

lays and disruptions cannot be avoided and not be well predicted, but are often not 

considered in the schedule planning. As schedules have become more cost-efficient 

because of the increased use of optimization techniques in the last years, they contain 

less buffer times that can absorb delays. Therefore disruptions lead to increased op-

erational costs and contractual penalty costs, which have to be paid to the local au-

thority.
45

 Huisman et al.
46

 present a function for calculating the penalty costs depend-
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ing on the delay length. It is a quadratic function to penalize large delays overpropor-

tionally and a delay length of about 1/2 hour costs as much as the fixed costs for a 

bus for one day. Therefore disruptions because of traffic delays (rush hour, road clo-

sures, etc.) and due to bad weather conditions (icy roads, road closures due to storm 

consequences) are important for the vehicle and crew scheduling problem in public 

bus transport. 

Also for the aircraft routing and crew scheduling problem at airlines unavoidable 

disruptions during the execution of the plan are a problem. In contrast to most public 

transport companies, airlines usually have an operations control to dynamically coun-

teract disruptions, but nevertheless disruption-tolerant planning of schedules is im-

portant as operations control can only counteract already existing disruptions and 

decrease their impacts. Eurocontrol
47

 lists the reasons for delayed flights with a delay 

of 5 minutes or more. The main reasons for delays are traffic and weather: The air 

traffic control capacity and the airport capacity caused 37.54% and 7.45% of the de-

lays in 2010, weather caused 20.86%.  

2.3.2 Uncertainty because of illness 

The crew scheduling has to be planned under the uncertainty that persons are absent 

due to illness. Crew schedules are planned several weeks before the execution of the 

schedule, so the number of ill persons cannot be anticipated.  

During the rota scheduling in public bus transport, a set of given shift types is allo-

cated to the drivers. The drivers can be classified into several groups depending on 

qualifications and work preferences. The rota scheduling problem considers specific 

work regulations as well as legal restrictions. 

As the costs for personnel are 74% of the total bus operating costs and therefore the 

dominating part (see Figure 6), the allocation of reserve and attendance personnel has 

to be planned intelligently so that enough personnel is always available at reasonable 

costs. 
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2.3.3 Related work 

The aircraft routing problem is often also called aircraft assignment, maintenance 

routing or aircraft rotation problem. 

Clarke et al.
48

 show their mathematical formulation of the aircraft rotation problem 

and discuss the similarities of the asymmetric traveling salesman problem and the 

aircraft rotation problem. They solve their formulation with real data with lagrangian 

relaxation and subgradient optimization. Desaulniers et al.
49

 present a set-partitioning 

type model and a multi-commodity network flow model for the daily aircraft routing 

and scheduling problem.  

A recent overview on the aircraft routing problem is given by Dück
50

. He also re-

views the literature on robust scheduling for aircraft routing and crew scheduling. 

Because of the large enterprise size of airlines and the therefore high economical 

impacts of disruptions due to weather or traffic, airlines, in contrast to most public 

transport companies, continuously monitor their flights to dynamically react on dis-

ruptions with aircraft changes, for example. Therefore schedule recovery is usual. 

Clausen et al.
51

 present a recent overview on disruption management in the airline 

industry. 

The vehicle scheduling problem in public bus transport is closely related to the air-

craft routing problem. As differences, the aircraft routing does not integrate the as-

signment of the typeclass and does not consider the possibility of deadheads but 

usually plans for a longer horizon. In this field many optimization models have been 

developed, so that some models, like the model of Lan et al.
52

, could be adjusted to 

the vehicle scheduling problem in public bus transport. 
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To the knowledge of the author, there is no literature on stochastic optimization 

models for robust vehicle scheduling in public bus transport. Bunte and Kliewer
53

 

give an overview on general vehicle scheduling models in public transport. Huisman 

et al.
54

 solve the dynamic vehicle scheduling problem and use scenarios for travel 

times to consider disruptions and robustness. Dessouky et al.
55

 present a summary of 

distribution functions for delays in public transport used in former studies.  

An overview on airline crew scheduling is given by Gopalakrishnan and Johnson
56

, 

they also review the solution approaches and discuss the robustness.  

Schaefer et al.
57

 consider disruptions during the planning of crew schedules and show 

that their approach is superior to deterministic optimization. Therefore they use ap-

proximate expected costs instead of planned costs to derive the schedule. 

Dück
58

 presents a recent overview on airline crew scheduling and also reviews the 

literature on robust crew scheduling for airlines. Furthermore see Clausen et al.
59

 for 

an overview on crew recovery in the airline industry. 

A general review on staff scheduling and rostering is given by Ernst et al.
60

. They 

review the existing models and solution techniques for personnel scheduling. This 

process is usually decomposed into several separate planning phases and applied to a 

wide area of applications such as scheduling in transportation systems, health care 

systems or emergency systems.  

Emden-Weinert et al.
61

 introduce the usual decomposition scheme in public bus 

transport. To consider the uncertainty because of illness absences, the rota scheduling 
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is the important planning phase. It assigns the shifts and free days to the drivers that 

are grouped by their qualification and/or their preferences (preferred shift types and 

free days). 

Emden-Weinert et al.
62 

modeled the rota scheduling problem as an integer linear pro-

gram and compared this with a metaheuristic approach for small input data. Sodhi 

and Norris
63

 developed a network-based model for the rota scheduling problem at 

London Underground and were able to solve data instances limited to 150 drivers 

and 1000 shifts in a reasonable time. Lau
64

 showed that the rota scheduling problem 

is NP-hard.  

Reserve shifts are used to cover the absences of drivers. The number of reserve shifts 

is planned as a fixed number
65

 or a certain percentage of the total shifts. More de-

tailed information such as historical or weekday-depended sickness absence rates 

have not been considered.  

Moreover, to the best of the author‟s knowledge, optional reserve shifts in addition to 

the present reserve shifts that can, but must not be exercised by the company, have 

not been considered in an optimization model for public transport, yet. 

The literature on the used optimization techniques and on risk management will be 

shown in the detailed introductions in Chapter 3. 

2.4 Open research questions and goals of the thesis  

After introducing the schedule planning process with its uncertainties and discussing 

the existing literature, this section summarizes the open research questions that were 

discovered. The goal is to find new approaches for them: They are treated in later 

chapters of this thesis. Table 1 shows a summary of the open research questions and 

the work that has to be done as well as the corresponding chapters where the open 

questions will be treated. 
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Planning phase Goal 

 Airline industry Public transport 

Schedule design / linep-

lanning and timetabling 

Develop a strategic model 

for robust schedule de-

sign that considers sto-

chastic fuel prices and 

fuel hedging (Chapter 4) 

 

Fleet assignment 

Develop a re-fleeting 

model for robust two-

stage fleet assignment 

considering fuel price 

uncertainty and fuel 

hedging (See Chapter 5) 

 

Aircraft routing / vehicle 

scheduling 
 

Develop a stochastic pro-

gramming approach for 

robust vehicle scheduling 

(See Chapter 6) 

Crew scheduling  

Develop a stochastic 

model for rota scheduling 

that considers optional 

reserve shifts (See Chap-

ter 7) 

Table 1 Open research questions 

After an introduction of the methods that will be used in this thesis in Chapter 3, 

Chapter 4 presents a new model for robust airline schedule design under fuel price 

and demand uncertainty. In Chapter 5, a new model for airline re-fleeting under fuel 

price and demand uncertainty will be shown. Both models also consider financial 

instruments to enable hedging against jet fuel price variations. These two models 

extend the existing literature by considering fuel price uncertainty and integrating 
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financial hedging instruments and operational decisions simultaneously in one opti-

mization model. 

Chapter 6 presents a new stochastic optimization model for robust vehicle scheduling 

in public bus transport. Furthermore, a model extension with weather derivatives is 

proposed and different solution methods are evaluated. The last application is intro-

duced in Chapter 7: It is a stochastic model for robust rota scheduling in public bus 

transport. As stochastic optimization models have not been applied to this field of 

application, these two chapters provide a significant extension to the existing litera-

ture. 
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3 Principles of risk management and optimization under 

uncertainty 

The central difficulty in a planning process is the uncertainty of relevant planning 

data. The system that has to be planned is usually dynamic and therefore changes in 

the surrounding environment as well as endogenous changes happen. The environ-

mental changes can usually not be well predicted and also the impacts of endogenous 

changes are not always completely known.
66

 

In this chapter, the methods used in this thesis are introduced. These are techniques 

for risk management and optimization under uncertainty. The chapter starts with an 

introduction in risk management and risk measures, before deterministic optimiza-

tion models, which are a basis for stochastic optimization, are briefly defined. Then 

stochastic optimization is described in detail. The chapter ends with a discussion of 

methods for optimization under uncertainty and explains why stochastic program-

ming is the most suitable method for this thesis. 

3.1 Risk management 

This chapter introduces risk management. The general risks that companies have to 

face are listed, it is explained why risk management is beneficial, and the operational 

and contractual methods to manage risks are shown. At last, the measurement of risk 

and the term robustness are introduced and defined.  

For several years risk management has been widely used in companies: A survey 

published in the year 2000 shows that 90% of all companies in the German stock 

index DAX-100 use financial hedging instruments for risk management. Moreover, 

German companies have been obliged by law to install a risk management system in 

addition to the internal revision in 1998: A law (called KonTraG) obliges companies 

to manage risks that can lead to insolvency or illiquidity.
67
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3.1.1 Types of business risks 

Companies face a wide variety of different risks. These business risks can be catego-

rized into five dimensions: technological risks, economic risks, financial risks, per-

formance risks and legal/regulatory risks. 

Technological risks usually come up in research and development as well as the op-

erational stages of a company. Especially companies in the high-tech-sector or phar-

maceutical industry have to cope with technological risks to maintain their competi-

tiveness.  

Economic risks mainly arise due to changes in macroeconomic conditions. For ex-

ample the production costs can vary because the costs for material and labor vary and 

the revenues can vary because the demand varies. Furthermore the economic risks 

are determined by the competitive environment of the company.  

Most companies also have to cope with financial risks although their business is not 

focused in the financial industry. For example, nearly every company faces currency 

risks: Even if the company does not face translation or transaction risks, it loses 

competitiveness compared to other companies in depreciating currency areas. 

Furthermore, companies more often face performance risks because they more and 

more enter into long-term contracts. The risk is that the contractual partner does not 

perform all contractual obligations satisfactory. For example a loss in quality from a 

supplier could have impacts on the companies‟ performance. Complete contracts that 

include all possible events are nearly impossible to create and taking legal action 

often has uncertain results. 

At last, companies face legal and regulatory uncertainty: The companies have to 

stick to laws and regulations that can change over time. These can be changes in tax-

ation for example and also expropriation as result of an extreme political change in a 

foreign country where a project is done, for example. 

Table 2 shows the different risks and their categories.
68
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Risk category Risk 

Technological 

Research and development outcome risk 

Production breakdown 

Implementing new technology 

Defective products 

Force majeure risks 

Economic 

Material and labor costs 

Output price risk 

Product demand uncertainty 

Market share risk 

Financial 

Interest rate risk 

Currency rate risk 

Commodity price risk 

Security holdings risk 

Performance 

Subcontractor performance 

Judicial risk 

Credit risk of contract counterparties 

Legal and regulatory 

Tax law changes 

Environmental regulation changes 

Political regime switches or insurrection 

Expropriation 

Table 2 Business risk categorization 

3.1.2 Reasons for risk management 

Obviously, companies face a lot of different risks. And financial theory states that 

taking risks will be compensated. Therefore taking more risks should lead to higher 

success. The question is now: Why should companies then manage risk?  

Some of the reasons are: 

- The probability of a bankruptcy as well as reorganization costs can both be 

decreased. 
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- Difficulties of attracting customers can be avoided and contracts with better 

terms can be entered into. 

- When a firm approaches insolvency, often value-decreasing projects whose 

upside is covered by shareholders and whose downside is borne by bondhold-

ers are made. This could be avoided. 

- With lower risk exposure, leverage effects and debt tax shields can be more 

utilized. 

- Expensive external financing or underinvesting due to financial constraints 

can be avoided. 

- The costs of performance-based compensation can be minimized for risk-

averse employees.
69

 

3.1.3 Methods for risk management 

One method to manage risks are contractual mechanisms. When a contract is de-

signed to share risks, it is designed with the following two goals. The first goal is that 

the company that takes the risk can better bear the risk because of diversification or a 

higher risk bearing capacity. For example insurance companies diversify their risks 

over a wide set of costumers. The second goal is that the company can better manage 

or control it, especially if the contract contains a risk premium. For example, the con-

struction company of a large infrastructure project could best mitigate the risks of the 

project like technical risks or cost overrun risks. 

There are many types of possible contracts to use for risk management: Financial 

derivatives, other forward- or option-like contracts related to delivery of real goods 

and insurance contracts can be used to exploit differences in risk-bearing capacity. 

Subcontractor performance contracts and employee compensation contracts are use-

ful to transfer the risk to the party that is best able to control it. Finally the maturity 

structure of debt, convertible bonds, joint ventures and warranties can be used when 

controlling risk and risk-bearing should be considered in the contract simultaneous-

ly.
70
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In this thesis, only a brief introduction of financial hedging instruments is given, for 

a detailed introduction, see Hull
71

. He argues that derivatives have become more and 

more important in the last years. Today, futures, forward-contracts, options and 

swaps are regularly traded. Their value depends on other underlying variables, for 

example traded assets or currencies.  

The easiest hedging instruments are forward-contracts and futures. These are con-

tracts to buy or sell a certain asset to a certain price at a certain time. Forward-

contracts are usually traded in the over-the-counter market whereas futures are stan-

dardized and usually traded on an exchange. For example the future price of a certain 

amount of gold for December could be quoted as $300 in September. This is the 

price for which traders could buy or sell gold for delivery in December. The contract 

specifies the amount, the price and - in case of a commodity - also the product quali-

ty and delivery location. Contracts are usually available for several delivery periods 

in the future. 

Options are a different type of derivatives. They give the owner the right to do some-

thing but, in contrast to forward-contracts and futures, they need not to be exercised. 

They also have a price, whereas it costs nothing to enter into a forward-contract or 

future.
72

 

Another method for risk management besides using contracts is the usage of real 

options. A real option that minimizes risk exposure could be using the same currency 

area for production and sales, for example. A company could also try to expose itself 

to different risks such that they altogether decrease the companies‟ risk exposure 

reversely. There are many more real options for risk management shown by Trian-

tis
73

. 

Triantis
74

 comes to the conclusion that companies have to integrate a broad risk man-

agement strategy which integrates financial hedging and real options to conquer risk 

and maximize firm value. But as shown in Chapter 2.4, there are still open research 
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questions in integrating real options and contractual risk management in the field of 

scheduled passenger traffic. 

3.1.4 Robustness and risk measures  

The word robustness is a broadly defined term. Therefore, this section is used to de-

fine this word for this thesis. 

Scholl
75

 generally defines the robustness of a plan as the property that the realization 

of the plan for (nearly) every situation that can occur in future leads to good or ac-

ceptable results regarding to the planned goals. Moreover he defines the term robust-

ness in detail with its related terms and the criteria for robustness. 

In this thesis, the term robustness is used as achievement of security or prevention of 

risk under uncertainty. Therefore, risk measures are used to measure robustness: A 

plan or a solution is more robust, when the risk measure used has a better value.  

Risk measures can be the following. 

The worst scenario: It is a very simple intuitive risk measure that can easily be im-

plemented and measured. 

The variance: The variance and the volatility, which is derived from the variance, are 

the risk measures that are used most often. But as risk is perceived as a negative dev-

iation from a certain value and the variance also increases with positive variations, 

which are perceived as chances and not as risk, the variance can only be used for 

symmetric distributions as a suitable risk measure.
76

 

The Value at Risk (VaR) is an established risk measure, especially since the “Basel 

II”-agreement. It measures the value that is not undercut by a certain probability 𝛼, 

for example 1%, 5% or 10%. It only considers downside variations and thus matches 

the perception of risk better than the variance. A drawback of the VaR is that it is 
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only a threshold value. It denotes the threshold that is not undercut by a certain prob-

ability, but does not consider the values that fall below this threshold.
77

 

The Conditional Value at Risk (CVaR) considers the values that fall below this thre-

shold. It denotes the expected value of the scenarios that fall below the Value at Risk. 

The CVaR is also known as mean excess loss, mean shortfall or tail VaR.
78

  

Probability

Value, Profit, etc.

95%

5%

CVaR

VaR

Figure 9 Value at Risk and Conditional Value at Risk 

Figure 9 illustrates the Value at Risk and the Conditional Value at Risk. In some de-

finitions, the robustness is often not measured by a general risk measure like those 

described above - for example the Conditional Value at Risk with an 𝛼 of 5% for the 

profit of the next year - but by a more problem-specific measure. For example the 

sum of the expected delays of all service trips of a bus company for one day or the 

expected costs that the delays cause. For measuring robustness in this thesis, problem 

specific measures are translated into monetary values which can then be considered 

to calculate a general risk measure that is used to measure the robustness. To sum-

marize: A solution is defined as more robust, if it has a better risk measure. 
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3.2 Deterministic Optimization Models 

This chapter briefly introduces and defines linear programming and (mixed) integer 

programming. For readers who are not familiar with these techniques, there are de-

tailed introductions in literature: Chvátal
79

 describes linear programming in detail, 

while Wolsey
80

 gives a wide introduction into (mixed) integer programming.  

3.2.1 Linear Programming 

The real numbers 𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑛  are used to define the function 𝑓 of the real va-

riables 𝑥1, 𝑥2, 𝑥3 ,… , 𝑥𝑛 : 

𝑓 𝑥1,𝑥2 , 𝑥3,… , 𝑥𝑛 = 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛 =  𝑐𝑗𝑥𝑗

𝑛

𝑗=1

          (1.1) 

This function is called a linear function. If 𝑏 is a real number then the equation 

𝑓 𝑥1, 𝑥2 , 𝑥3,… , 𝑥𝑛 = 𝑏          (1.2) 

is a linear equation and 

𝑓 𝑥1, 𝑥2, 𝑥3 ,… , 𝑥𝑛 ≥ 𝑏 and 𝑓 𝑥1, 𝑥2, 𝑥3 ,… , 𝑥𝑛 ≤ 𝑏          (1.3) 

are called linear inequalities. From now on, linear equations and linear inequalities 

are also called linear constraints. A linear programming problem or linear program 

(LP) consists of one objective function which is a linear function and is maximized or 

minimized subject to a number of linear constraints. If there are 𝑚 constraints and 𝑛 

variables the linear program writes: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑐𝑗𝑥𝑗

𝑛

𝑗=1

          (2.1) 

𝑠. 𝑡. 𝑎𝑖𝑗 𝑥𝑗

𝑛

𝑗=1

≤ 𝑏𝑖      ∀𝑖 = 1,2,… ,𝑚          (2.2) 

𝑥𝑗 ≥ 0     ∀𝑗 = 1,2,… ,𝑛           (2.3) 

                                                 

79
 [Chv83] 

80
 [Wol98] 



Principles of risk management and optimization under uncertainty Page 31 

The numbers 𝑥1, 𝑥2 , 𝑥3,… , 𝑥𝑛  that do not violate any constraint of the LP are called 

feasible solution. A feasible solution that maximizes (or minimizes) the objective 

function is an optimal solution. The corresponding value of the objective function is 

then the optimal value of the problem.  

There are LPs with an optimal value, but an LP can also be infeasible or unbounded. 

A LP is infeasible, when it has no feasible solution and if for every feasible solution 

of an LP there is another feasible solution of the same LP that is better in terms of the 

objective function, the LP is unbounded.
81

 

3.2.2  (Mixed) Integer Programming 

If 𝐴 is a 𝑚 × 𝑛-matrix, 𝑐 a n-dimensional row-vector, 𝑏 a m-dimensional column-

vector and 𝑥 a n-dimensional column-vector of variables, 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑥          (3.1) 

𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏          (3.2) 

𝑥 ≥ 0          (3.3) 

is a linear optimization model. If some but not all variables must have integer values, 

the problem 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑥 + 𝑦          (4.1) 

𝑠. 𝑡.  𝐴𝑥 + 𝐺𝑦 ≤ 𝑏          (4.2) 

𝑥 ≥ 0,𝑦 ≥ 0 and integer         (4.3) 

is a mixed integer program (MIP). (𝐺 is a m×p-matrix,  is a p-dimensional row-

vector and 𝑦 is a p-dimensional column-vector of integer variables). 
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If all variables of the linear optimization model are integer variables, the problem 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑥          (5.1)  

𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏          (5.2) 

𝑥 ≥ 0 and integer          (5.3) 

is an integer program (IP). If all integer variables of this problem can only have 0-1 

values, the program  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑥          (6.1)  

𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏          (6.2) 

𝑥 ∈ {0,1}          (6.3) 

is called binary integer program.
82

 

3.3 Stochastic Optimization Models 

This section will introduce stochastic programming, which is the used technique for 

the models developed in thesis. It begins with a practical and easy understandable 

example before further terms and classifications of stochastic programming are pre-

sented. 

3.3.1 An illustrative example 

To show how stochastic programming can be used for optimization under uncertain-

ty, consider the following problem of a transport agency.
83

 

A transport agency offers a transport service, where customers can order transporta-

tion services with different types of vehicles. These orders have to be made at least 

one day before, so that the transport agency accepts, confirms and therefore knows 

its demand one day before and can then order the vehicles with their drivers. Due to 
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contractual regulations, the transport agency has to order them for the whole day. For 

service quality, the agency guarantees transportation for confirmed orders. 

There are three types of vehicles: Taxis have a transport capacity of 3, are offered for 

$30 per order and cost the agency $100 per day. A van has a capacity of 10, is of-

fered for $75 per order and costs $200 per day. The largest vehicle is a bus with a 

capacity of 30: It is offered for $200 per order and it costs the agency $400 per day. 

All vehicles serve 10 orders per day on an average.  

The transport agency can also hire taxis at short notice for the same day, but then the 

taxis have to be hired to a higher price. Larger vehicles cannot be hired on the day of 

operation, but taxis can be used to replace them. A bus can be replaced by 10 taxis 

and a van can be replaced by 4 taxis, if not enough vans or busses are available to 

transport the confirmed orders. However, the customers only pay the price for their 

ordered vehicle. Peak demand times are no problem for the agency as the vehicles 

are used to transport passengers and goods: The agency knows from former orders 

that it is possible to adjust the transport times for goods to have an equal workload 

during the day.  

 

Costs ($) 

per day 

used 

Costs per 

day ($) if 

hired at short 

notice 

Revenue ($) 

per order 

Average 

orders per 

day 

Number of 

taxis to re-

place 

Taxi 100 250 30 10 1 

Van 200 - 75 10 4 

Bus 400 - 200 10 10 

Table 3 Parameters for the transport agency problem 

Let us now consider the following orders for the next day: 125 taxi transport orders, 

57 van transport orders and 34 bus transport orders. 

It is now possible to set up an optimization model for this problem. The decision 

variables are: 

𝑥1  Provided taxis the for next day 



Page 34 Chapter 3 

𝑥2  Provided vans the for next day 

𝑥3  Provided busses the for next day  

𝑦1  Taxis hired at short notice due to shortage and used for taxi orders 

𝑦2 Vans replaced by taxis hired at short notice 

𝑦3 Buses replaced by taxis hired at short notice 

The deterministic optimization problem is: 

max 125 ∙ 30 + 57 ∙ 75 + 34 ∙ 200 − 100𝑥1 − 200𝑥2 − 400𝑥3 − 250𝑦1 − 4

∙ 250𝑦2 − 10 ∙ 250𝑦3          (7.1) 

𝑠. 𝑡. 10𝑥1 + 10𝑦1 ≥ 125          (7.2) 

10𝑥2 + 10𝑦2 ≥ 57          (7.3) 

10𝑥3 + 10𝑦3 ≥ 34          (7.4) 

𝑥1, 𝑥2 , 𝑥3,𝑦1,𝑦2, 𝑦3 ≥ 0 and integer          (7.5) 

The optimal solution of the model is: 
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 Taxis Vans Buses 

Vehicles ordered 13 6 4 

Replaced by taxis 

hired at short no-

tice 

0 0 0 

Costs ($) for or-

dered vehicles 
1300 1200 1600 

Costs ($) for hir-

ing at short notice 
0 0 0 

Demand 125 57 34 

Revenue ($) 3750 4275 6800 

Profit ($) 10725 

Table 4 Optimal deterministic solution for the transport agency problem 

In this solution, all demand is satisfied by provided vehicles. As the replacement by 

taxis hired at short notice is more expensive and therefore dominated, this option is 

not used in the optimal solution. Finding this solution is trivial and could be done 

without the help of mathematical optimization. 

The transport agency is not satisfied with this solution, as it has a major drawback: It 

only considers the average number of orders per day that can be carried out by the 

vehicles. But due to the traffic situation on the day, the vehicles can carry out more 

or less orders per day: On bad days with heavy traffic, a bus can only carry out 6 

orders, taxis and vans can handle 8 orders, as they can drive on smaller streets. On a 

good day, all vehicles can handle up to 12 orders. As a very basic representation of 

this uncertainty, three scenarios that consider the worst, average and best values for 

all vehicles are created. Table 5 shows the three possible scenarios.  



Page 36 Chapter 3 

Customer 

orders per 

day 

Bad scenario 
Average sce-

nario 

Good scena-

rio 

Taxi 8 10 12 

Van 8 10 12 

Bus 6 10 12 

Table 5 Scenarios for the transport agency problem 

The optimal solution for the average day was already calculated. Let us now set up 

an optimization model for the bad and for the good scenario and calculate the optim-

al solutions. The model for the bad scenario is: 

max 125 ∙ 30 + 57 ∙ 75 + 34 ∙ 200 − 100𝑥1 − 200𝑥2 − 400𝑥3 − 250𝑦1 − 4

∙ 250𝑦2 − 10 ∙ 250𝑦3          (8.1) 

𝑠. 𝑡. 8𝑥1 + 8𝑦1 ≥ 125          (8.2) 

8𝑥2 + 8𝑦2 ≥ 57          (8.3) 

6𝑥3 + 8𝑦3 ≥ 34          (8.4) 

𝑥1, 𝑥2 , 𝑥3,𝑦1,𝑦2, 𝑦3 ≥ 0 and integer          (8.5) 

For the good scenario, it is: 

max 125 ∙ 30 + 57 ∙ 75 + 34 ∙ 200 − 100𝑥1 − 200𝑥2 − 400𝑥3 − 250𝑦1 − 4

∙ 250𝑦2 − 10 ∙ 250𝑦3          (9.1) 

𝑠. 𝑡. 12𝑥1 + 12𝑦1 ≥ 125          (9.2) 

12𝑥2 + 12𝑦2 ≥ 57          (9.3) 

12𝑥3 + 12𝑦3 ≥ 34          (9.4) 

𝑥1, 𝑥2 , 𝑥3,𝑦1,𝑦2, 𝑦3 ≥ 0 and integer          (9.5) 

The optimal solutions are added to Table 4 so that Table 6 summarizes the different 

optimal solutions for the three scenarios: 
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Bad/average/good Taxis Vans Buses 

Vehicles ordered 16/13/11 8/6/5 6/4/3 

Replaced by taxis 

hired at short 

notice 

0/0/0 0/0/0 0/0/0 

Costs ($) for or-

dered vehicles 
1600/1300/1100 1600/1200/1000 2400/1600/1200 

Costs ($) for hir-

ing at short notice 
0/0/0 0/0/0 0/0/0 

Demand 125 57 34 

Revenue ($) 3750 4275 6800 

Profit ($) 9225/10725/11525 

Table 6 Optimal deterministic solutions for different scenarios 

It can be seen that the optimal number of provided vehicles significantly differs de-

pending on the scenario. The optimal number of buses is between 3 and 6, for vans 

between 5 and 8 and the optimal number of taxis is between 11 and 16. 

As traffic forecasts for the next day are not available and the transport agency has to 

decide how much vehicles should be ordered today, it realizes that it has to make a 

decision under uncertainty which will not be perfect in every scenario. The agency 

could now maximize its expected profit under uncertainty and therefore implement 

the three scenarios in one optimization model.  

The decisions that have to be made before the uncertainty is revealed are called 

stage-1 decisions. Their corresponding variables, in this example the variables 𝑥1, 𝑥2 

and  𝑥3, that denote the number of vehicles ordered the day before, are called stage-1 

variables or first-stage variables.  

The other variables are called stage-2 variables or second-stage variables. Their val-

ues are chosen depending on the scenario, when the values of the uncertain parame-

ters are known. In this example, the taxis hired at short notice can be chosen when 
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the agency knows if the day is a good, an average or a bad day. Because these va-

riables can have different optimal values in the three scenarios, they are indexed by a 

scenario index. The 𝑦𝑖  variables are replaced by 𝑦𝑖𝑠  (𝑖 = 1,2,3  𝑠 = 1,2,3). 𝑦32  then 

indicates the number of busses replaced by taxis hired at short notice because of bus 

shortage in scenario 2. If every scenario has the probability of 1/3, the correspond-

ing stochastic optimization model is: 

max 125 ∙ 30 + 57 ∙ 75 + 34 ∙ 200 − 100𝑥1 − 200𝑥2 − 400𝑥3 

−
1

3
 250𝑦11 + 4 ∙ 250𝑦21 + 10 ∙ 250𝑦31 

−
1

3
 250𝑦12 + 4 ∙ 250𝑦22 + 10 ∙ 250𝑦32 

−
1

3
 250𝑦13 + 4 ∙ 250𝑦23 + 10 ∙ 250𝑦33 

          (10.1) 

𝑠. 𝑡. 8𝑥1 + 8𝑦11 ≥ 125          (10.2) 

8𝑥2 + 8𝑦21 ≥ 57          (10.3) 

6𝑥3 + 8𝑦31 ≥ 34          (10.4) 

10𝑥1 + 10𝑦12 ≥ 125          (10.5) 

10𝑥2 + 10𝑦22 ≥ 57          (10.6) 

10𝑥3 + 10𝑦32 ≥ 34          (10.7) 

12𝑥1 + 12𝑦13 ≥ 125          (10.8) 

12𝑥2 + 12𝑦23 ≥ 57          (10.9) 

12𝑥3 + 12𝑦33 ≥ 34          (10.10) 

𝑥1, 𝑥2, 𝑥3,𝑦11 ,𝑦21 ,𝑦31 , 𝑦12 ,𝑦22 ,𝑦32 ,𝑦13 ,𝑦23 ,𝑦33 ≥ 0 and integer          (10.11) 

This stochastic model is presented in the extensive form because the stage-2 variables 

for every scenario are described explicitly.
84

 

It can be seen that the stochastic optimization model is larger than the deterministic 

optimization model: It contains three blocks of restrictions, one for each scenario, 

compared to one in the deterministic model. When there is more than one stochasti-
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cally independent parameter, stochastic optimization models can become very large. 

Assume that there is a model with two random parameters with 15 and 18 realiza-

tions, which in real problems might not be much. Then the model would have 

15 ∙ 18 = 270 blocks of constraints. But the block structure of stochastic programs 

can be utilized by special solution algorithms, which will be described later in Chap-

ter 3.3.4.1.
85

 

Let us now go back to the example and look at the optimal solution of the stochastic 

model. It is shown in Table 7. 

Bad/average/good Taxis Vans Buses 

Vehicles ordered 13 8 6 

Replaced by taxis 

hired at short no-

tice 

3/0/0 0/0/0 0/0/0 

Costs ($) for or-

dered vehicles 
1300 1600 2400 

Costs ($) for hir-

ing at short notice 
750/0/0 0/0/0 0/0/0 

Demand 125 57 34 

Revenue ($) 3750 4275 6800 

Expected profit 

($) 
9275 

Table 7 Stochastic solution for the transport agency problem 

The interpretation of the optimal solution is that the amount of vans and buses should 

be as high as necessary to cover the bad scenario without replacing them by taxis 

hired at short notice. In contrast to that, taxis should be hired at short notice in the 

worst scenarios to carry out all taxi orders.  
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It is obvious, that this solution is never optimal for every scenario: In the average and 

good scenario more busses and vans than necessary are ordered; in the bad scenario, 

taxis are hired at short notice, although hiring at short notice is very expensive. But 

as the stochastic model balances and/or hedges against the various scenarios, this 

solution is the best solution under uncertainty. As the agency must decide under un-

certainty here and now, the solution of this stochastic model is also called the here-

and-now solution. 

If the agency knew that the next day will be a bad day, the one after the next an aver-

age day and the following a good day, it could use the optimal deterministic solutions 

for these days. This would lead to a profit of $9225, $10725 and $11525 with a mean 

profit of $10492. This solution is called the wait-and-see solution. But the agency 

would only realize a mean profit of $9275 using the here-and-now solution. The dif-

ference of $1217 cannot be gained because the agency does not have perfect infor-

mation about the future. This loss of profit because of uncertainty is called the ex-

pected value of perfect information (EVPI). 

If the agency does not want to use a stochastic model to optimize under uncertainty, 

it could use expected orders per day and use the optimal deterministic solution for 

the expected orders for every day. This solution is called the expected value solution 

and would lead to a mean profit of $8141 in the three scenarios. This solution is 

worse than the solution of the stochastic model ($9275) because the knowledge about 

the distribution of the future outcomes is not used. The difference between the ex-

pected value solution and the solution of the here-and-now model, which denotes the 

gain from solving the stochastic model, is called the value of the stochastic solution 

(VSS).
86

 

3.3.2 Types of stochastic models 

This chapter shows the various types of stochastic models and explains them. It first 

starts with recourse models. 

In recourse models, the possible violation of constraints in the second stage, after the 

actual scenario is known, can be corrected by compensating measures. The compen-
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sation is calculated separately for each scenario and included in the objective func-

tion.  

In the example above, the transport agency can order taxis at short notice to react on 

the scenario. Depending on the stochastic parameter “customer orders per day”, the 

agency can order additional taxis and use them as replacement for ordered buses, 

vans and taxis. These second-stage variables that compensate the violation of con-

straints are also called recourse variables. 

- We talk about fixed recourse, when the necessary compensating activities and 

their extend is known and fixed. In other cases, the compensation is uncer-

tain: Even if the violation of the constraint is known at the planning date, the 

compensating measures are uncertain and cannot be determined then.  

- Complete recourse means that there is a compensating measure for every 

conceivable plan, so that the solution in the second stage will always be valid.  

- Relatively complete recourse, in contrast, means if not always but for any so-

lution that is valid in the first stage, a compensating measure can be imple-

mented, so that a valid solution in the second stage always exists. To do this, 

however, the solution sets of the first and second stage have to be known, 

what is often a problem in practice.  

- A special case of complete recourse is simple recourse. This means that every 

violation of a constraint is compensated by exactly one compensating meas-

ure, and not by a combination of several measures.  

- In all other cases, it is not possible to compensate every possible constraint 

violation. This is called incomplete recourse. 

Another approach are chance-constrained models. These models do not strictly re-

quire that every constrained is not violated, but they do this with a certain probabili-

ty. 

- Simultaneous chance-constrained models require that all constraints are not 

violated simultaneously with a certain probability. The second stage of the 

problem is not considered explicitly, although there might be a violation with 

the converse probability. Therefore this model does not consider the conse-

quences of inadmissibilities in the realization of the plan.  
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- Separate chance-constrained models require each constraint to be not violated 

with a certain probability for each constraint. 

Fat-solution models allow only such decisions that are valid for all scenarios. The 

consideration of the second stage is therefore unnecessary. The solution space is cor-

respondingly small and fat-solution models give usually relative "expensive" deci-

sion support. 

Deterministic replacement-value models: In these models, all uncertain parameters 

are replaced by a deterministic value. That means that the model is solved for only 

one scenario. Often the expected value (expected-value model), the worst value 

(worst-case model) or the expected value with certain surcharges or deductions is 

used.
87

 

3.3.3 Stages of stochastic models 

Stochastic programs can further be classified as two-stage or multistage. The exam-

ple of the transport agency was formulated as a two-stage stochastic program. The 

transport agency has first to decide how many vehicles are ordered and then, after the 

uncertainty is revealed, it can order additional taxis at short notice. Because there is 

only one time when an uncertainty is revealed and there are decisions made before 

and after this uncertainty, this problem is called a two-stage stochastic program.  

In some cases it might be useful to make decisions periodically in certain time inter-

vals. For example, a producing company could decide every year to either expand or 

reduce their production capacity, depending on the development of the demand of the 

last year. In this case, a decision is made every year depending on the scenario of the 

last year. This program is called a multistage stochastic program. In multistage sto-

chastic programs, every stage has its own scenarios. The next figure shows a scenario 

tree for a two-stage and for a multistage stochastic program with eight scenarios. The 

multistage program has two scenarios in every stage. Note that, although this is often 

the case, not every year or every period has to be one stage in the stochastic program: 

If every second year/period new decisions for the next two years/periods are made, 

then the program has twice as many years/periods as stages.  
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Figure 10 Two-stage vs. multistage scenario tree 

With every scenario and its unique path through the scenario tree, a recourse model 

analogue to the two-stage recourse models described before can be created. The un-

certain parameters, which change their values during the stages, are additionally in-

dexed by a stage-index. In every stage greater than one a scenario has occurred and 

compensating measures for decisions taken in earlier stages can be done as well as 

new decisions for this stage have to be made. The different stages are usually con-

nected by constraints, e.g. storage-balance-constraints.  
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If the decision variables are also indexed by stage and scenario, additional constraints 

have to be added, so that for every scenario which has identical stochastic data up to 

a certain stage the same decisions are made. These constraints are called non-

anticipativity-constraints.
88

 Omitting these constraints changes the model from a 

here-and-now model to a wait-and-see model. 

3.3.4 Solving Stochastic Optimization Models 

3.3.4.1 Benders‗ Decomposition 

A very efficient solution method for stochastic programs is Benders‟ Decomposition. 

Consider the linear optimization model: 

min 𝑐𝑥 + 𝑓𝑦          (11.1) 

𝑠. 𝑡.  𝐴𝑥 = 𝑏          (11.2) 

𝐵𝑥 + 𝐷𝑦 = 𝑑          (11.3) 

𝑥, 𝑦 ≥ 0          (11.4) 

In this model, the x-variables can be defined as stage-1 decisions and the y-variables 

as stage-2 decisions. Now a more complex format associated with two-stage stochas-

tic programming is introduced: 
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min 𝑐𝑇𝑥 + 𝛼1𝑓1
𝑇𝑦1 + 𝛼2𝑓2

𝑇𝑦2 +⋯+ 𝛼𝐾𝑓𝐾
𝑇𝑦𝐾           (12.1) 

𝑠. 𝑡.  𝐴𝑥                                                              = 𝑏          (12.2) 

𝐵1𝑥 + 𝐷1𝑦1                                                         = 𝑑1          (12.3) 

𝐵2𝑥                 + 𝐷2𝑦2                                        = 𝑑2          (12.4) 

…                                        …                                   … 

𝐵𝐾𝑥                                                      + 𝐷𝐾𝑦𝐾 = 𝑑𝐾           (12.5) 

𝑥,𝑦1,… ,𝑦𝐾 ≥ 0          (12.6) 

This format is called block-ladder, because every scenario represents one block of 

constraints. Figure 11 from Freund
89

 shows this structure. 

 

Figure 11 Block-ladder structure 

This model can be reformulated to: 
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min 𝑐𝑥 + 𝑎𝑖

𝐾

𝑖=1

𝑧𝑖(𝑥)          (13.1) 

𝑠. 𝑡.  𝐴𝑥 = 𝑏          (13.2) 

𝑥 ≥ 0          (13.3) 

with 𝑃2𝑖 : 𝑧𝑖 𝑥 = min 𝑓𝑖𝑦𝑖           (13.4) 

𝑠. 𝑡. : 𝐷𝑖𝑦𝑖 = 𝑑𝑖 − 𝐵𝑖𝑥          (13.5) 

𝑦𝑖 ≥ 0          (13.6) 

The problem P2 represents the second-stage decisions, when the first-stage decisions 

are already made. 

The dual problem of P2 is: 

𝐷2𝑖 : 𝑧𝑖 𝑥 =  𝑚𝑎𝑥𝑝𝑖𝑝𝑖
𝑇(𝑑𝑖 − 𝐵𝑖𝑥)          (14.1) 

𝑠. 𝑡.  𝐷𝑖
𝑇𝑝𝑖 ≤ 𝑓𝑖           (14.2) 

The set of feasible solutions of D2i  is: D2
i = {pi|Di

Tpi ≤ fi} and the extreme points 

and extreme rays can be enumerated: pi
1,… , pi

Ii  are the extreme points of D2
i  and 

ri
1,… , ri

Ii  are the extreme rays of D2
i . Solving D2i  then either returns an extreme ray 

 ri
j
 

T
(di − Bix) > 0 (if D2i  is unbounded) or an extreme point and the optimal ob-

jective with: zi x = (pi
j2

)T di − Bix = maxk=1,…,Ii
 pi

k 
T
 di − Bix   

D2i  can therefore be written as: 

𝐷2𝑖 : 𝑧𝑖 𝑥 = 𝑚𝑖𝑛𝑧𝑖𝑧𝑖           (15.1) 

𝑠. 𝑡.   𝑝𝑖
𝑗2
 
𝑇
 𝑑𝑖 − 𝐵𝑖𝑥  ≤ 𝑧𝑖          ∀𝑗2 = 1,… , 𝐼𝑖           (15.2) 

          𝑟𝑖
𝑗
 
𝑇
 𝑑𝑖 − 𝐵𝑖𝑥 ≤ 0         ∀𝑗 = 1,… , 𝐽𝑖           (15.3) 

By inserting this formulation into the original problem, the y-variables are removed 

and the Full-Master-Problem with new constraints is obtained:  
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𝑚𝑖𝑛𝑥 ,𝑧1 ,…,𝑧𝐾𝑐𝑥 + 𝑎𝑖

𝐾

𝑖=1

𝑧𝑖           (16.1) 

𝑠. 𝑡.  𝐴𝑥 = 𝑏          (16.2) 

𝑥 ≥ 0          (16.3) 

 𝑝𝑖
𝑗2
 
𝑇
 𝑑𝑖 − 𝐵𝑖𝑥  ≤ 𝑧𝑖          ∀𝑗2 = 1,… , 𝐼𝑖      ∀𝑖 = 1,… ,𝐾          (16.4) 

 𝑟𝑖
𝑗
 
𝑇
 𝑑𝑖 − 𝐵𝑖𝑥 ≤ 0         ∀𝑗 = 1,… , 𝐽𝑖      ∀𝑖 = 1,… ,𝐾          (16.5) 

The Benders‟ Decomposition Algorithm begins with solving the Full-Master-

Problem without the constraints, which are derived from the stage-2 variables. This 

model is called the Restricted-Master-Problem. They are left out, because many of 

them might be inactive because of their high number.  

The optimal objective value of the Restricted-Master-Problem is a dual bound for the 

optimal objective value of the Full-Master-Problem. This value is saved. The optimal 

solution is saved in x  , z1 ,… , zK   . 

To test if the obtained solution is the optimal solution of the Full-Master-Problem, it 

has to be checked that all constraints that have not been considered are not violated. 

Therefore K subproblems are solved, with the first-stage solution x  , z1 ,… , zK   .  

If a subproblem is unbounded, an extreme ray is generated and the constraint 

 ri
j
 

T
 di − Bix ≤ 0 is added to the restricted master problem.  

If a subproblem has an optimal solution, the algorithm returns an optimal extreme 

point pi = pi
j2

 for some j2 and the optimal solution yi     . If  pi
j2
 

T
 di − Bix  > zi  the 

constraint  pi
j2
 

T
 di − Bix  ≤ zi  is added to the Restricted-Master-Problem.  

If every subproblem has a finite optimal objective function, the solution x , y1 ,… , yK    

is also valid for the original problem. If this solution is better than the primal bound, 

this solution is saved as the best solution and the primal bound is updated with its 

objective value.  

Next, it is checked if the inequality  pi
j2
 

T
 di − Bix  ≤ zi  holds for every subprob-

lem. In this case the algorithm can be terminated, because the solution found is op-
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timal for the whole problem. The algorithm also terminates if the difference between 

the dual and primal bound is smaller than a pre-defined tolerance, otherwise it starts 

a new iteration with solving the restricted master problem with the new constraints.
90

 

3.3.4.2 The deterministic equivalent 

Let us come back to the extensive form of the stochastic optimization model of the 

example from Chapter 3.3.1. In the extensive form, every stage-2 variable is addi-

tionally indexed by its scenario and the variables, objective-terms and constraints for 

every scenario were added to the model.  

If the model has more than two stages, the scenario tree can be represented by index-

ing all decision variables by stage and scenario and adding additional constraints 

(non-anticipativity-constraints.
91

), so that for every scenario which has identical sto-

chastic data up to a certain stage, the same decisions are made.  

A stochastic optimization model in its extensive form is also called the deterministic 

equivalent of a stochastic optimization model. The deterministic equivalent is a LP or 

a MIP and can therefore be solved with a standard LP/MIP-solver. A formal descrip-

tion of the ways how the deterministic equivalent can be derived for different types 

of stochastic programs can be found in Kall and Wallace
92

.  

Like the deterministic equivalent of the transport agency problem, deterministic 

equivalents are usually large models, because they explicitly contain every constraint 

although many of them might be inactive.  

Solving a deterministic equivalent with a standard LP/MIP-solver does not leave out 

inactive constraints, what is done in the Benders‟ Decomposition Algorithm. There-

fore using deterministic equivalents seems to be inferior. But solving stochastic pro-

grams as deterministic equivalent also has practical advantages: 

- Deterministic equivalents can easily be (re-)formulated and bookkeeping va-

riables that calculate values over several scenarios can be easily integrated. 

                                                 

90
 See [Fre04] 

91
 See [Sch01] p. 80ff 

92
 See [KW94] p. 25ff 
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- Because LPs and MIPs are widely used, modeling software and highly spe-

cialized implementations of solution algorithms are available. 

- The inactive constraints of the model can often be eliminated by advanced 

preprocessing techniques of LP/MIP-solvers. 

Therefore for practical applications it is an appropriate alternative to solve a stochas-

tic program as deterministic equivalent. 

3.3.5 Selected risk measures in stochastic optimization models 

This section describes how to integrate the worst scenario and the Conditional Value 

at Risk into a stochastic optimization model. 

The worst scenario, as a very basic risk measure, can often be integrated into optimi-

zation models very easily. It is especially easy to integrate it if you make use of 

bookkeeping variables like 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 or 𝑐𝑜𝑠𝑡𝑠 that already contain the objective func-

tion values for each scenario. Then, in case of maximizing profits, maximizing or 

constraining 𝑤𝑜𝑟𝑠𝑡𝑠𝑐𝑒𝑛 is possible by integrating the following constraint. 

𝑤𝑜𝑟𝑠𝑡𝑠𝑐𝑒𝑛 ≤ 𝑝𝑟𝑜𝑓𝑖𝑡𝑠      ∀𝑠 ∈ 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠𝑒𝑡          (17.1) 

In case of minimizing costs the following inequality enables constraining or mini-

mizing the worst scenario 

𝑤𝑜𝑟𝑠𝑡𝑠𝑐𝑒𝑛 ≥ 𝑐𝑜𝑠𝑡𝑠      ∀𝑠 ∈ 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠𝑒𝑡          (17.2) 

Note that the variable 𝑤𝑜𝑟𝑠𝑡𝑠𝑐𝑒𝑛 only contains the value of the worst scenario, if it 

is optimized in the objective function, otherwise it may contain worse values than the 

real value of the worst scenario.  

The Conditional Value at Risk, as described in Chapter 3.1.4, is a measure for risk 

that matches the perception of risk very well. The CVaR can be integrated into opti-

mization models and formulated with linear variables and constraints. Because of 

this nice fact integrating the CVaR into existing optimization models hardly increas-

es their computational complexity. Therefore the dual formulation of Fabian
93

 was 

                                                 

93
 See [Fab08] 
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slightly adjusted and can be integrated into a stochastic optimization model with the 

scenarioset 𝑆 with the following additional variables and constraints: 

Variables: 

𝑐𝑣𝑎𝑟  Bookkeeping variable which represents the Conditional Value at Risk 

𝑦0  Dual variable  

𝑦𝑠  ∀𝑠 ∈ 𝑆 Dual variables for every scenario  

Constraints: 

𝑐𝑣𝑎𝑟 = −
1

𝛼
 𝛼 ∙ 𝑦0 + 𝑦𝑠 ∙

1

 𝑆 
𝑠∈𝑆

           (18.1) 

𝑦0 + 𝑦𝑠 ≥ −𝑝𝑟𝑜𝑓𝑖𝑡𝑠          ∀𝑠 ∈ 𝑆          (18.2) 

𝑦𝑠 ≥ 0          ∀𝑠 ∈ 𝑆          (18.3) 

The parameter 𝛼 ∈  0. .1  represents the percentage of the scenarios with profits that 

fall below the corresponding Value at Risk. The bookkeeping variables 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 con-

tain the profit in scenario 𝑠; in case of cost minimization −𝑝𝑟𝑜𝑓𝑖𝑡𝑠 should be re-

placed by a variable like 𝑐𝑜𝑠𝑡𝑠.  

The CVaR can be limited in constraints as well as be optimized in the objective func-

tion. Note that in cases where the bookkeeping variable 𝑐𝑣𝑎𝑟 is not optimized in the 

objective function it might also contain meaningless values in the solution. If the 

variable is limited in a constraint, but not optimized, (and the limit does not influence 

the optimal solution) it might have a value between the limit and the real CVaR. A 

„feasible‟ solution for the variable 𝑐𝑣𝑎𝑟 is then worse or equal to the real CVaR. In 

this case the real CVaR should be calculated manually after the optimization. 

Because the CVaR matches the perception of risk very well and adds only very little 

complexity to optimization models, it will be used as risk measure in this thesis. 



Principles of risk management and optimization under uncertainty Page 51 

3.3.6 Discussion of methods for optimization under uncertainty 

This section now discusses other methods for optimization under uncertainty besides 

stochastic programming. These approaches can be divided into approaches that 

represent uncertainty indirectly and approaches that consider uncertainty directly. 

A motivation to use a model with an indirect representation of uncertainty is that 

these models can usually be modeled and solved very easily. For example existing 

standard software for deterministic optimization can often be used. 

One method is the use of deterministic replacement values. Thereby every stochastic 

value is replaced by a deterministic value. These can be the expected value, the most 

probable value or another estimated value. For risk averse planning, a safety margin 

can be added to the values. The most risk adverse solution will be obtained, if the 

worst-case values for all uncertain parameters are used. This will probably lead to a 

very expensive solution. 

The second approach is sensitivity analysis. Sensitivity analysis is an ex-post analy-

sis, because it analyzes the effects of changing one or several parameters to the ob-

jective function and/or to the solution structure. But especially for optimization mod-

els with integer variables, the sensitivity analysis can only be used in a very limited 

way. This is because an integer-solution can completely change if one parameter is 

changed to another value. Therefore, many optimization runs with different parame-

ter combinations are often necessary to find valid results with sensitivity analysis.  

The sensitivity analysis can be combined with simulation and statistic analysis. The-

reby parameter combinations are randomly created and then the impacts of the para-

meter changes are evaluated with statistical measures. Because the results of the sen-

sitivity analysis always depend on the parameter constellation, it cannot be seen as a 

method for optimization under uncertainty itself. 

As a third approach, a risk profile can be created. Every possible scenario is opti-

mized independently in an optimization model. After that it is evaluated with which 

probability a certain objective value is achieved. But in this approach all scenarios 

are optimized independently and therefore different decisions for every scenario may 

be made, but in reality only one decision can be made. Therefore a wait-and-see de-
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cision is evaluated, although the planner is in a here-and-now situation, which is a 

drawback of this approach.
94

 

In contrast to indirect representation of uncertainties, direct representation explicitly 

uses the given information – scenarios and probabilities. Models that represent un-

certainty explicitly and use the given information are stochastic optimization mod-

els.
95

 The different types are described in Chapter 3.3.2. 

In this thesis, stochastic optimization models are used. One reason is that it is a me-

thod that verifiably finds the optimal solution for the given data. This enables exact 

evaluations and complete comparability of test runs with different parameters or dif-

ferent model variations where certain variables are enabled or disabled. Thus, an 

additional inexactness caused by a heuristic solution procedure is avoided by using 

stochastic optimization models. 

Furthermore, risk measures, such as the Conditional Value at Risk, can be integrated 

into stochastic optimization models and can be constrained to an exact value. That 

enables an exact evaluation of solutions with different risk levels.  

Although stochastic optimization models are computationally harder to solve, prac-

tical instances of real-world problems can nowadays be solved. Therefore the appli-

cability of stochastic optimization models is given and they are used because of the 

advantages shown above. 

                                                 

94
 [Sch01] p. 186ff 

95
 [Sch01] p. 196 



Airline schedule design under fuel price and demand uncertainty Page 53 

4 Airline schedule design under fuel price and demand 

uncertainty 

This chapter introduces a new stochastic programming approach for robust airline 

schedule design under fuel price and demand uncertainty.
96

  

4.1 Motivation and goals 

As shown in Chapter 2.2.1, today the two largest parts of the expenditures of airlines 

are the costs for labor and fuel.
97

 The percentage for jet fuel expenditures has in-

creased in the last years. They have grown from approx. one tenth to one third in 

only ten years.
98

 As jet fuel price fluctuations are also high
99

, airlines face a growing 

uncertainty for their costs. It therefore becomes more important for airlines to think 

about minimizing fuel costs and counteracting fuel price uncertainty. 

As the schedule design significantly determines the fuel consumption of an airline, 

we aimed to develop a model that supports strategic decisions about this planning 

phase under fuel price uncertainty. We determine the optimal offered flights between 

a given set of airports with their frequency. To counteract jet fuel price uncertainty, 

we consider financial hedging instruments. As demand is highly uncertain at the time 

when the schedule is planned and aircraft seats are one of the most perishable servic-

es, we also introduce stochastic demands. 

In this chapter, we focus on the schedule design phase and develop a strategic plan-

ning model for the airline industry under jet fuel price and demand uncertainty. Simi-

larly to Lederer and Nambimadom
100

 we mean by schedule the frequency of service 

between two airports. We therefore determine if and how often a flight between two 

airports should be flown with a certain aircraft type and how much fuel should be 

hedged as a decision under uncertainty. The optimal passenger flow in each scenario 
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enables the evaluation. The flight times are not determined as this model aims to 

support decisions on a strategic level and focuses on uncertainty. To measure the 

robustness of the solutions, we integrate and restrict the Conditional Value at Risk 

(CVaR) as risk measure. 

Although the flight schedule of an airline depends on other factors as well, the study 

will give some insight into the impacts of fuel price uncertainty on strategic airline 

schedule planning. We only consider the most important aspects of schedule design, 

because we aim to focus on uncertainties. Thereby we can integrate fuel price and 

demand scenarios and keep the model smaller and solvable. 

4.2 Problem Description 

Minimizing jet fuel consumption is possible with the use of larger aircraft. Larger 

aircraft usually have less jet fuel consumption per passenger.
101

 The airbus A380 is 

the first long-haul aircraft that consumes less than 3 liters per passenger per 100 km. 

But using larger aircraft is only beneficial when there are enough passengers. There-

fore it might be necessary to route passengers through hubs and to merge flights. For 

example if there are several flights from Europe to North America, the passengers 

from all the European locations could first be flown to London and one flight with a 

larger aircraft from London to North America could save jet fuel. On the other hand, 

this means less comfort for the European passengers who do not start in London, 

because they have to change the plane. Some possible passengers might then choose 

another airline that offers a non-stop-flight from their hometown. The airline could 

also offer a discount as compensation for the discomfort. This tradeoff between re-

ducing passenger comfort, which might decrease revenues, and reducing jet fuel con-

sumption will be considered in this study.  

It is also possible to pass the higher jet fuel costs to the passengers via fuel sur-

charges. To consider that, the model could be solved with other demand and price 

data that could be calculated from a revenue management framework.  

                                                 

101
 [AF08] 
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To counteract the high jet fuel price fluctuations financial hedging instruments can 

be used. With financial hedging the price for future purchases can be fixed. If an air-

line wants to hedge against higher jet fuel prices, it can sign a contract that fixes the 

price for jet fuel for a certain amount for a certain time. Then higher fuel prices do 

not have negative effects on the airline, but the airline is also not able to benefit from 

lower jet fuel prices anymore. Financial hedging instruments can be used to minim-

ize fluctuations and are therefore an effective method for risk management.
102

 

Cobbs and Wolf
103

 argue that futures or forward-contracts for jet fuel are often not 

available, but show dynamic hedging strategies to hedge the jet fuel price using de-

rivatives with other underlying assets like crude oil or heating oil, whose prices high-

ly correlate with the jet fuel price. With an industry survey they also show that hedg-

ing was at the end of 2003 not very common at the majority of airlines. Their re-

search results indicate that hedging creates market value and that the consideration of 

financial hedging instruments therefore could create a competitive advantage for an 

airline. Another study by Carter et al.
104

 concludes that hedging is positively related 

to airlines‟ firm value.  

In general, a good risk management strategy can be beneficial for companies. For a 

detailed description see Chapter 3.1.  

4.3 Model 

4.3.1 Model description 

This section presents the developed mathematical optimization model that deter-

mines the optimal flights offered with their frequency and the optimal passenger 

flows for a given network of airports. The passengers can be directly transported to 

their destination on a non-stop flight or they can be indirectly transported via one or 

two airports, where they change the aircraft. When passengers do not fly non-stop, a 

discount on the price of the flight is given to compensate the discomfort. For a two-
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stop flight the discount is given two times. Passenger spill and recapture is not consi-

dered. Furthermore different aircraft types with their capacities and their fuel con-

sumption are assigned to the flights to anticipate future fleet assignment. 

As jet fuel costs become the major part of an airline‟s expenses and jet fuel prices 

have high fluctuations, this model explicitly considers the uncertainty of jet fuel pric-

es with a scenarioset for each jet fuel price. The demand scenarios are also consi-

dered in a scenarioset and every demand scenario is combined with every fuel price 

scenario. The model is a two-stage stochastic program with  no. of fuel scenarios ×

 no. of demand scenarios   scenarios. 

To counteract the jet fuel price uncertainty, this model considers financial hedging 

instruments. With forward-contracts/futures the purchases of jet fuel can be hedged. 

This model assumes that there are futures for jet fuel, which may not exist, but as 

Cobbs and Wolf
105

 argue, airlines can use futures on commodities whose prices high-

ly correlate with jet fuel prices. The hedging can include a risk premium and the 

amount of the jet fuel bought that can be hedged is arbitrary from 0% to 100%. Re-

verse hedging or hedging more than 100% is not allowed. 

The jet fuel price scenarios and the prices for the financial instruments are adjusted 

to each other, so that there is no riskless arbitrage strategy. As risk measure in this 

model we use the Conditional Value at Risk. It can be formulated as LP with the dual 

formulation of Fabian
106

. This formulation has been slightly adjusted and integrated.  

Altogether this model is a strategic optimization model for airline schedule design 

under fuel price and demand uncertainty which considers risk/robustness measure-

ment and financial instruments as countermeasures to uncertainty. 
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4.3.2 Complete model 

Sets: 

𝐴 Set of airports 

𝑇 Set of aircraft types 

𝐹𝑆 Scenarioset for jet fuel prices 

𝐷𝑆  Scenarioset for demands 

 

Parameters: 

𝑑𝑖𝑠𝑡𝑖 ,𝑗  Distance from airport 𝑖 to airport 𝑗 in km 

𝑝𝑖 ,𝑗  Sell-price for a flight from 𝑖 to 𝑗 

𝑑𝑖 ,𝑗 ,𝑑𝑠   Flight demand from airport 𝑖 to airport 𝑗 (stochastic parameter) 

𝑝𝑑  Price discount given for every aircraft change 

𝑥𝑚𝑖𝑛   Percentage of expected demand for every possible flight con-

nection that has to be satisfied. Can ensure a certain service 

level. 

𝑚𝑡  Passenger capacity of aircraft type 𝑡 

𝑐𝑜𝑛𝑠𝑡  Jet fuel consumption of aircraft type 𝑡 in liters per km 

𝑐𝑝𝑚𝑡  Operational cost per km of aircraft type 𝑡 (without jet fuel 

costs) 

𝑟𝑚𝑎𝑥𝑡  Maximum range of aircraft type 𝑡 

𝑟𝑚𝑖𝑛𝑡  Minimum range of aircraft type 𝑡 

𝑢𝑏𝑡   Maximum number of flights with aircraft type 𝑡 

𝑓_𝑝𝑟 Forwarded jet fuel price  

𝑓_𝑚𝑎𝑟𝑔𝑖𝑛  Margin for forwards in percent  

𝑝𝑟𝑓𝑠  Jet fuel price per liter in fuel-scenario 𝑓𝑠 (stochastic parame-

ter) 

𝑝𝑟𝑜𝑏𝑓𝑠 ,𝑑𝑠  Probability for the combination of demand scenario 𝑑𝑠 and jet 

fuel price scenario 𝑓𝑠 

𝛼  Probability value for the CVaR 
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Stage-1 variables: 

𝑦𝑖 ,𝑗 ,𝑡;∀𝑖,𝑗𝜖𝐴 :𝑖<𝑗  Number of flights per day from 𝑖 to 𝑗 and 𝑗 to 𝑖 with aircraft 

type 𝑡 (nonnegative integer variable) 

𝑏𝑢𝑦_𝑠𝑡𝑜𝑐 Bought amount of fuel in liters to the stochastic price (nonneg-

ative continuous variable) 

𝑏𝑢𝑦_𝑒𝑑𝑔𝑒 Bought amount of fuel in liters to the hedged price (nonnega-

tive continuous variable) 

 

Stage-2 variables: 

𝑥0𝑖 ,𝑗 ,𝑑𝑠 :𝑖≠𝑗  Passenger flow - directly transported from 𝑖 to 𝑗 in demand-

scenario 𝑑𝑠 (nonnegative continuous variable) 

𝑥1𝑖 ,𝑘 ,𝑗 ,𝑑𝑠 :𝑖≠𝑗≠𝑘  Passenger flow - transported passengers from 𝑖 to 𝑗 over 𝑘 with 

aircraft change on airport 𝑘 in demand scenario 𝑑𝑠 (nonnega-

tive continuous variable) 

𝑥2𝑖 ,𝑘 ,𝑙 ,𝑗 ,𝑑𝑠 :𝑖≠𝑗≠𝑘≠𝑙  Passenger flow - transported passengers from 𝑖 to 𝑗 over 𝑘 and 

𝑙 with aircraft change on airport 𝑘 and airport 𝑙 in demand-

scenario 𝑑𝑠 (nonnegative continuous variable) 

 

Bookkeeping variables: 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑑𝑠   Revenue in demand scenario 𝑑𝑠 

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  Jet fuel consumption 

𝑓𝑢𝑒𝑙_𝑐𝑜𝑠𝑡𝑠𝑓𝑠   Jet fuel costs in fuel price scenario 𝑓𝑠 

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡𝑠  Sum of operational costs (without jet fuel costs) 

𝑝𝑟𝑜𝑓𝑖𝑡𝑓𝑠 ,𝑑𝑠   Profit in demand scenario 𝑑𝑠 in jet fuel scenario 𝑓𝑠 

𝑐𝑣𝑎𝑟  Conditional Value at Risk 

𝑐𝑣𝑎𝑟_𝑦0  Auxiliary variable for the dual CVaR-formulation 

𝑐𝑣𝑎𝑟_𝑦𝑓𝑠 ,𝑑𝑠   Nonnegative auxiliary variables for the dual CVaR-

formulation 

 

Objective Function: 

max  𝑝𝑟𝑜𝑏𝑓𝑠 ,𝑑𝑠  ∙ 𝑝𝑟𝑜𝑓𝑖𝑡𝑓𝑠 ,𝑑𝑠

𝑓𝑠𝜖𝐹𝑆𝑐𝑒𝑛 ,𝑑𝑠𝜖𝐷𝑆𝑐𝑒𝑛

          (19.1) 
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Constraints:  

𝑥0𝑖 ,𝑗 ,𝑑𝑠 +  𝑥1𝑖 ,𝑘 ,𝑗 ,𝑑𝑠

𝑘∈𝐴:𝑖≠𝑗≠𝑘

+  𝑥2𝑖 ,𝑘 ,𝑙,𝑗 ,𝑑𝑠

𝑘 ,𝑙∈𝐴:𝑖≠𝑗≠𝑘≠𝑙

≤ 𝑑𝑖 ,𝑗 ,𝑑𝑠      ∀𝑖, 𝑗𝜖𝐴: 𝑖

≠ 𝑗,𝑑𝑠𝜖𝐷𝑆          (19.2) 

 

𝑥𝑚𝑖𝑛 ∙   𝑝𝑟𝑜𝑏𝑓𝑠 ,𝑑𝑠 ∙

𝑓𝑠∈𝐹𝑆

𝑑𝑖 ,𝑗 ,𝑑𝑠

𝑑𝑠∈𝐷𝑆

≤   𝑝𝑟𝑜𝑏𝑓𝑠 ,𝑑𝑠 ∙

𝑓𝑠∈𝐹𝑆

 𝑥0𝑖 ,𝑗 ,𝑑𝑠

𝑑𝑠∈𝐷𝑆

+   𝑥1𝑖 ,𝑘 ,𝑗 ,𝑑𝑠 +  𝑥2𝑖 ,𝑘 ,𝑙 ,𝑗 ,𝑑𝑠

𝑙∈𝐴:𝑖≠𝑗≠𝑘≠𝑙

 

𝑘∈𝐴:𝑖≠𝑗≠𝑘

      ∀𝑖, 𝑗𝜖𝐴: 𝑖

≠ 𝑗          (19.3) 

 

𝑥0𝑖 ,𝑗 ,𝑑𝑠 +   𝑥1𝑖 ,𝑗 ,𝑘 ,𝑑𝑠 + 𝑥1𝑘 ,𝑖,𝑗 ,𝑑𝑠 

𝑘∈𝐴:𝑖≠𝑗≠𝑘

+   𝑥2𝑖 ,𝑗 ,𝑘 ,𝑙 ,𝑑𝑠 + 𝑥2𝑘 ,𝑖 ,𝑗 ,𝑙 ,𝑑𝑠 + 𝑥2𝑘 ,𝑙 ,𝑖,𝑗 ,𝑑𝑠 

𝑘 ,𝑙∈𝐴:𝑖≠𝑗≠𝑘≠𝑙

 

≤ 𝑚𝑡

𝑡∈𝑇

∙ 𝑦𝑖𝑗𝑡      ∀𝑖, 𝑗𝜖𝐴: 𝑖 < 𝑗,𝑑𝑠𝜖𝐷𝑆          (19.4) 

 

𝑥0𝑖 ,𝑗 ,𝑑𝑠 +   𝑥1𝑖 ,𝑗 ,𝑘 ,𝑑𝑠 + 𝑥1𝑘 ,𝑖,𝑗 ,𝑑𝑠 

𝑘∈𝐴:𝑖≠𝑗≠𝑘

+   𝑥2𝑖 ,𝑗 ,𝑘 ,𝑙 ,𝑑𝑠 + 𝑥2𝑘 ,𝑖 ,𝑗 ,𝑙 ,𝑑𝑠 + 𝑥2𝑘 ,𝑙 ,𝑖,𝑗 ,𝑑𝑠 

𝑘 ,𝑙∈𝐴:𝑖≠𝑗≠𝑘≠𝑙

 

≤ 𝑚𝑡

𝑡∈𝑇

∙ 𝑦𝑗𝑖𝑡      ∀𝑖, 𝑗𝜖𝐴: 𝑖 > 𝑗,𝑑𝑠𝜖𝐷𝑆          (19.5) 

 

𝑦𝑖𝑗𝑡 = 0     ∀𝑖, 𝑗𝜖𝐴: 𝑖 < 𝑗, 𝑡𝜖𝑇, 𝑖𝑓 𝑑𝑖𝑠𝑡𝑖 ,𝑗 > 𝑟𝑚𝑎𝑥𝑡  𝑜𝑟 𝑑𝑖𝑠𝑡𝑖 ,𝑗 < 𝑟𝑚𝑖𝑛𝑡           (19.6) 

 

 2 ∙ 𝑦𝑖𝑗𝑡
𝑖 ,𝑗 ∈𝐴:𝑖<𝑗

≤ 𝑢𝑏𝑡      ∀𝑡𝜖𝑇          (19.7) 
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𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑑𝑠 =  𝑝𝑖 ,𝑗
𝑖 ,𝑗∈𝐴:𝑖≠𝑗

∙  𝑥0𝑖 ,𝑗 ,𝑑𝑠 +  1 − pd ∙  𝑥1𝑖 ,𝑘 ,𝑗 ,𝑑𝑠

𝑘∈𝐴::𝑖≠𝑗≠𝑘

+  1 − 2 ∙ pd  𝑥2𝑖 ,𝑘 ,𝑙 ,𝑗 ,𝑑𝑠

𝑘 ,𝑙∈𝐴:𝑖≠𝑗≠𝑘≠𝑙

     ∀𝑑𝑠𝜖𝐷𝑆          (19.8) 

 

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  2 ∙ 𝑦𝑖𝑗𝑡 ∙ 𝑑𝑖𝑠𝑡𝑖𝑗 ∙ 𝑐𝑜𝑛𝑠𝑡
𝑖 ,𝑗∈𝐴:𝑖<𝑗 ,𝑡∈𝑇

          (19.9) 

 

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡𝑠 =  2 ∙ 𝑦𝑖𝑗𝑡 ∙ 𝑑𝑖𝑠𝑡𝑖𝑗 ∙ 𝑐𝑝𝑚𝑡

𝑖 ,𝑗∈𝐴:𝑖<𝑗 ,𝑡∈𝑇

          (19.10) 

 

𝑏𝑢𝑦_𝑠𝑡𝑜𝑐 + 𝑏𝑢𝑦_𝑒𝑑𝑔𝑒 = 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛           (19.11) 

 

𝑓𝑢𝑒𝑙_𝑐𝑜𝑠𝑡𝑠𝑓𝑠 = 𝑏𝑢𝑦_𝑠𝑡𝑜𝑐 ∙ 𝑝𝑟𝑓𝑠 + 𝑏𝑢𝑦_𝑒𝑑𝑔𝑒 ∙ 𝑓_𝑝𝑟

∙  1 +
𝑓_𝑚𝑎𝑟𝑔𝑖𝑛

100
      ∀𝑓𝑠𝜖𝐹𝑆          (19.12) 

 

𝑝𝑟𝑜𝑓𝑖𝑡𝑓𝑠 ,𝑑𝑠 = 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑑𝑠 − 𝑓𝑢𝑒𝑙_𝑐𝑜𝑠𝑡𝑠𝑓𝑠

− 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡𝑠     ∀𝑓𝑠𝜖𝐹𝑆,𝑑𝑠𝜖𝐷𝑆          (19.13) 

 

𝑐𝑣𝑎𝑟 =
−1

𝛼
 𝛼 ∙ 𝑐𝑣𝑎𝑟_𝑦0 +  𝑐𝑣𝑎𝑟_𝑦𝑓𝑠 ,𝑑𝑠 ∙ 𝑝𝑟𝑜𝑏𝑓𝑠 ,𝑑𝑠

𝑑𝑠∈𝐷𝑆 ,𝑓𝑠∈𝐹𝑆

           (19.14) 

 

𝑐𝑣𝑎𝑟_𝑦0 + 𝑐𝑣𝑎𝑟_𝑦𝑓𝑠 ,𝑑𝑠 ≥ −𝑝𝑟𝑜𝑓𝑖𝑡𝑓𝑠 ,𝑑𝑠      ∀𝑓𝑠𝜖𝐹𝑆,𝑑𝑠𝜖𝐷𝑆          (19.15) 

 

The objective function maximizes the expected profit, but the Conditional Value at 

Risk can also be maximized. The constraint (19.2) ensures that the passenger flow 

variables do not exceed the demand; minimum demand satisfaction is forced by 

(19.3). This should ensure a connection (with 0, 1 or 2 aircraft changes) between 

every pair of airports in the network, if there is a demand between these airports. The 
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inequalities (19.4) and (19.5) implement aircraft capacity, (19.6) assures that the 

maximum and minimum distance of the aircraft types is not exceeded. The constraint 

(19.7) ensures the maximum number of flights with an aircraft type while (19.8) as-

signs the revenue. The constraint (19.9) calculates the consumed jet fuel and (19.10) 

calculates the additional operational costs. The equality (19.11) sets the variables for 

hedged and non-hedged fuel purchases. The fuel costs and the profit for every scena-

rio are calculated in (19.12) and (19.13). Finally (19.14) and (19.15) integrate the 

Conditional Value at Risk into the optimization model.  

The stage-2 variables are only indexed by the demand scenario and not by the fuel 

price scenario. This is possible, because when the flights are planned by the stage-1 

variables the fuel-price does not have any impact on the transported passengers – as 

much as possible are transported in every demand scenario. Thereby we only need 

one tenth of the stage-2 variables, when we use ten fuel price scenarios, and can de-

crease computational complexity. The connection of the fuel price scenarios and the 

demand scenarios is done by the bookkeeping variables. 

4.3.3 An illustrative application 

The data for this model is a small case study that was developed with a European 

airline. We consider two countries with six airports in each country; the countries are 

on different continents.  

The considered aircraft types are a small one for domestic and medium-haul connec-

tions and a larger long-haul aircraft for intercontinental distances. The usage of air-

craft types is constrained by a minimum range to avoid high consumption because of 

too short flights with large aircraft and by their maximum range. The flight distance 

between the airports is always the shortest line between the airports.  

To calculate the demand scenarios, we use the expected demand for the flights, 

which is symmetric for each pair of airports, and create a random value for each sce-

nario from a normal distribution with 𝜇 = expected demand and 

𝜎 = expected demand 6   for each flight. These values are multiplied with factors 

from 77% to 122% depending on the five demand scenarios to create scenarios with 

different lower and higher total demands. Finally, negative values are set to 0.  The 
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value used for 𝑝𝑑 is 0.1; the value for 𝛼 is also 0.1 – therefore the worst 10% of all 

scenarios are considered in the CVaR.  

The jet fuel in November 2009 costs 0.55 $ per liter.
107

 The model takes ten scena-

rios for the future jet fuel price into account. The spread of the fuel prices in the sce-

narios is quite large in order to examine the effects of the jet fuel price development. 

Scenario 1 2 3 4 5 6 7 8 9 10 

Jet fuel 

price $/l 
0.06 0.11 0.17 0.28 0.41 0.55 0.69 0.83 1.05 1.38 

Probability 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

Table 8 Jet fuel price scenarios 

The fair forward rate for the scenarios is then calculated and an adjustable margin for 

the forward-contracts is added. 

The parameter 𝑥𝑚𝑖𝑛  is set to 0.5, which means that 50% of the expected demand for 

each connection has to be satisfied. The prices of the flights depend on the combina-

tion of the countries of the origin and destination airport.  

Note that in this example a new network is constructed. With this model, it would 

also be possible to refine an existing network, which is commonly done in practice. 

Then the y-variables of non-modifiable flights should be fixed to the desired fre-

quency of the connection between the two airports. This will also decrease the com-

putational complexity of the model. 

4.4 Results 

4.4.1 Models for every jet fuel price scenario 

Our results begin with a study of the impacts of different fuel prices on optimal of-

fered flights. We would like to show how they are determined by the development of 

the jet fuel price. Therefore we optimize one model for each jet fuel price scenario 

                                                 

107
 See [IATA] 
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without allowing financial instruments. The model for each jet fuel price scenario is 

also a stochastic model but the only uncertainty is the demand uncertainty. Then we 

look if the demand is satisfied and how many flights are carried out with each aircraft 

type. Figure 12 shows how many passengers are non-stop transported to their desti-

nation, how many are transported with an aircraft change and how many are not 

transported because their transportation would be unprofitable. (Note that the jet fuel 

price for scenario 1 is the lowest and for 10 the highest) 

 

Figure 12 Transported demand 

Figure 12 shows that if the jet fuel price rises, transporting fewer passengers be-

comes profitable and therefore more demand is not satisfied. The unsatisfied demand 

from scenario 1 to 5 is below 2%, but grows to nearly 6.5% in scenario 10. The per-

centage of non-stop transported passengers also decreases from 95% in scenario 1 to 

89.5% in scenario 10, while the percentage of transported passengers with aircraft 

change is always between 3.5% and 4%. This shows that the amount of flights with 

aircraft changes of all flights slightly grows with higher jet fuel prices, although 

those passengers are less profitable because of the discount that is given for aircraft 

changes and the additional fuel and operational costs that they cause because of the 

indirect route. Note that the percentages are the average percentages over the five 

demand scenarios for each jet fuel price scenario. 
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Figure 13 Load factor 

Figure 13 shows the average load factor of all flights depending on the different jet 

fuel prices. From scenario 1 to 4 values between 76% and 78% are optimal. The op-

timal load factor grows to 84% in scenario 10, where the demand satisfaction de-

creases from >98% in the scenarios 1 to 6 to 93% in the highest fuel price scenario. 

The increase of the load factor has a minor impact on the demand satisfaction in sce-

nario 1 to 6. The impact becomes higher from scenario 7 on where the load factor 

grows to values of 80% and higher. The increase of the load factor now decreases the 

satisfied demand more significantly. 

This may be explained by the demand uncertainty: When the average seat usage of 

all demand scenarios grows to higher levels than 80%, we cannot transport all pas-

sengers in the higher demand scenarios. This additional demand in the higher de-

mand scenarios is not satisfied, which causes the significant decrease in demand sa-

tisfaction. Connections also become unprofitable so that some flights are not offered 

anymore which decreases the demand satisfaction, too. 

Financial hedging instruments are not considered in the models for every jet fuel 

price scenario, because as there is only one fuel price in each model and the profit is 

maximized for each scenario, the financial instruments could not change the risk. 
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Note that the results for this section, where one model for every fuel price scenario is 

created, might not be implemented without changes in practice. For example, the 

flight prices could be increased in the high fuel price scenarios so that more profita-

ble flights could be offered, the demand satisfaction could increase, and lower load 

factors could be optimal because the aircraft does not need to have every seat occu-

pied to be profitable. This section only shows the significant impacts of different fuel 

prices on offering the optimal flights by creating one solution for every fuel price 

scenario. In reality, one decision for offering flights has to be made here and now for 

all scenarios under fuel price uncertainty. This underlines the importance of consi-

dering fuel price uncertainty in the optimization model, what is done in the further 

results of this chapter with our proposed model. 

4.4.2 Models considering both uncertainties and robustness 

In this section, we present the calculations for the stochastic model that considers all 

jet fuel price and demand scenarios. The decision which flights should be offered and 

flown has to be done under uncertainty. Also the amount of jet fuel that should be 

hedged is a stage-1 decision. The stage-2 decisions are the passenger flows. To 

measure robustness, we restrict the Conditional Value at Risk at different risk levels. 

4.4.2.1 Non-integrated hedging approaches 

At first, we take a look at the risk/profit-distribution of the model without financial 

instruments. Therefore we first maximize the expected profit, then maximize the 

Conditional Value at Risk, and afterwards again the expected profit under the con-

straint of different risk levels. We first do this without financial instruments and ob-

tain the pareto-frontline of optimal solutions shown in Figure 14. 
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Figure 14 Profit/risk-profile without hedging 

In Table 9, we compare the solutions with the highest expected profit (upper-left 

solution) and the lowest risk (bottom-right solution). 

 
Highest expected  

profit 
Lowest risk 

Expected profit 15.106m 12.780m 

CVaR 7.372m 10.306m 

Profit of the worst scenario 5.522m 9.296m 

Profit the best scenario 22.450m 14.659m 

Scenarios with profit < -10m 8 1 

Flights medium-haul aircraft 502 330 

Flights long-haul aircraft 26 16 

Consumed jet fuel (l) 4.342m 2.715m 

Table 9 Results highest expected profit - lowest risk 

We can see that the most robust solution with the lowest risk has a Conditional Value 

at Risk of 10.306m instead of 7.372m. Also the profit in the worst scenario has in-
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creased from 5.522m to 9.296m, and the spread between the best and the worst sce-

nario is significantly lower. On the other hand, the expected profit has also decreased 

from 15.106m to 12.780m. The risk is reduced by offering fewer flights and there-

fore consuming less jet fuel – the consumption is reduced by about one third. 

These significant changes show that gaining maximum robustness needs severe op-

erational changes, which might not be desired in practice. One medium solution with 

CVaR 9.132m, expected profit 14.623m and 436 and 20 flights with the aircraft 

types might be the most robust solution that is still practical. Therefore other me-

thods for gaining robustness are necessary. 

An approach could be to hedge the bought jet fuel. We expect that the minimum risk 

exposure is obtained by hedging 100% of the purchases. We then obtain an addition-

al pareto-frontline shown in Figure 15. 

 

Figure 15 Profit/risk-profile with 0% and 100% hedging 

If the fuel purchases are completely hedged, the best Conditional Value at Risk can 

be increased significantly from 10.306m to 11.492m. Hedging therefore can signifi-

cantly increase robustness. But we also find out that the expected profit is lower than 

the maximum expected profit without hedging jet fuel. This is because the costs for 

the hedging premium lower the expected profit. Hedging all jet fuel purchases is bet-
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ter than hedging no fuel purchases when the minimum accepted CVaR is higher than 

~8.5m  (where the two lines cross each other). 

We also see that the expected profit does not grow if we allow lower CVaR values 

than 9m. Up to this CVaR, it is not necessary to change any flight or any passenger 

flow to gain less risk. The risk for the solutions with a CVaR lower than 9m is com-

pletely covered by financial hedging. But could we gain more profit by hedging less 

jet fuel? Probably yes, because the costs for the hedging premium then would also 

decrease. But which percentage of the bought jet fuel should then be hedged? And if 

we first create a flight schedule and then determine the amount of hedged jet fuel or 

vice versa, do we disregard interactions? These questions lead to the integrated con-

sideration of financial hedging instruments in the next section. 

4.4.2.2 Integrated hedging approach 

This section shows the results for the additional integration of financial hedging in-

struments into the optimization model. Now the amount of hedged fuel purchases is 

determined simultaneously with the other decisions in the model. This adds a degree 

of freedom and leads to the new pareto-frontline shown in Figure 16.  

  

 Figure 16 Integrated profit/risk-profile 
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The first obvious result is that the integrated model has the best solution at all risk 

levels. This is because it can save the hedging premium in high-risk solutions and is 

also able to determine the right amount of hedging in robust solutions in a way that 

not too much hedging (and thereby paying more hedging premium) lowers the ex-

pected profit. It therefore determines the best combination of hedging and operation-

al changes simultaneously to gain a certain risk level with the best possible profit. 

In the case where the risk is minimized, we calculate the same solution in the inte-

grated model and in the model where 100% of the fuel purchases are hedged; in the 

case where the profit is maximized with no other risk-constraints, the model without 

financial instruments and the integrated model create the same solution. In between, 

when a risk limit is specified, the solutions of the integrated model dominate the non-

integrated approaches and always find the global optimum. 

As nowadays fuel hedging is usually planned independently from operational plan-

ning in airlines‟ financial departments, and operational planning departments only 

take the percentage of hedged fuel into account, this can lead to worse solutions than 

the global optimum. 

Furthermore, we look at a more detailed comparison of the different solutions with 

integrated hedging and without hedging. Table 10 shows the expected profit, the 

number of flights with the different aircraft types and the amount of fuel hedged of 

the different solutions. 
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7.37m 15.11m 15.11m 502 26 502 26 0 

7.52m 15.10m 15.10m 492 26 494 26 0.3 

8.25m 14.99m 15.04m 474 22 490 24 22.1 

9.13m 14.62m 14.88m 436 20 488 24 89.0 

9.72m 14.06m 14.72m 394 18 458 22 99.8 

10.07m 13.51m 14.56m 350 18 450 20 99.6 

10.22m 13.14m 14.47m 340 16 442 20 100 

10.28m 12.93m 14.43m 334 16 436 20 99.8 

10.31m 12.78m 14.41m 330 16 432 20 100 

  13.80m   388 18 100 

  13.16m   352 16 100 

  12.73m   326 16 100 

  12.30m   308 16 100 

Table 10 Detailed results with and without hedging 

We can see that a significant decrease of flights in the solutions with integrated hedg-

ing begins at a higher robustness level than in the solutions without hedging. The 
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maximum robustness without hedging (CVaR= 10.31m) can be gained by using 

hedging and a practically reasonable decrease of flights and profit. Very large 

changes in the number of flights offered are usually not desired, because usually only 

a small share of the aircraft used is chartered and only a low number of aircraft is 

separated out during one flight plan period. 

We also spot that fuel hedging sometimes slightly decreases (from 99.8%to 99.6% or 

from 100% to 99.8%) although the CVaR is limited to higher values. These can be 

explained by interactions between financial and operational planning that the inte-

grated model can utilize. 

Because financial instruments can be integrated with a LP-based formulation, the 

computational complexity of the integrated model is not significantly increased. 

Therefore, we recommend using an integrated approach. 

4.4.3 Evaluation of the stochastic model 

To evaluate the model developed, we calculate two well known ratios for stochastic 

optimization models: The expected value of perfect information (EVPI) and the val-

ue of the stochastic solution (VSS). The EVPI is the difference between the here-

and-now solution and the wait-and-see solution of the stochastic model and therefore 

denotes the price that should be paid at maximum to purchase perfect information 

about the future. The VSS is the difference between the EEV-Solution and the here-

and-now solution. To gain the EEV-solution, all uncertain parameters are set to their 

expected value, the optimal solution of a deterministic model with these parameters 

is calculated and evaluated for every scenario. The expected value of these solutions 

is the EEV. The VSS therefore denotes the advantage of solving a stochastic model 

instead of a deterministic model.  

For this model maximizing the expected profit with both uncertainties and no hedg-

ing the EVPI is 1.195m. If hedging is allowed the EVPI grows to 1.773m. This is 

because hedging can gain additional profit, if the airline knew the future price of the 

jet fuel and can then hedge it only in the scenarios where the future price is higher 

than the fair hedge rate. This value is therefore hypothetical.  
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The VSS is 0.578m in both cases. It does not change because there are no wait-and-

see decisions like in the models that calculate the EVPI. This value underlines the 

benefit of using stochastic optimization models for this application. 

4.5 Conclusion 

First we used models for every jet fuel price scenario to examine the impacts of dif-

ferent jet fuel prices. We showed that different jet fuel prices have impacts on optim-

al schedule planning: Higher jet fuel prices make more flights become unprofitable. 

Passengers will have to accept more aircraft changes when jet fuel prices increase. 

Also less empty seats are optimal at higher fuel prices. That showed the need for 

considering jet fuel price uncertainty in optimization models for airline schedule de-

sign. 

Therefore we developed and used models that consider jet fuel price and demand 

uncertainty. We examined the robustness of the solutions by creating profit/risk-

profiles for a model without hedging, for a model with hedging 100% purchases and 

for an integrated model. It was shown that the integrated model produces better solu-

tions because it allows interactions between financial instruments and the operational 

decisions of the basic model and that financial instruments can significantly increase 

the robustness when risk is restricted.  

Thus, we developed a new model for decision support in strategic airline schedule 

planning under fuel price uncertainty that considers operational and contractual risk 

management simultaneously.  
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5 Re-Fleeting under fuel price and demand uncertainty 

This chapter introduces a new stochastic programming approach for robust re-

fleeting under fuel price and demand uncertainty.
108

  

5.1 Introduction 

In the last years, the costs for jet fuel have increased, so that they have become the 

largest part of airlines‟ expenditures and are nowadays higher than crew costs that 

previously were the dominating part. Moreover, fuel prices have very high fluctua-

tions, so that it becomes more important for airlines to counteract fuel price uncer-

tainty.  

As the fleet assignment allocates the different aircraft types to the airlines‟ flights, it 

highly determines the fuel consumption of an airline. Furthermore, the capacity of an 

aircraft has to fit to the demand. A too large aircraft with empty seats wastes fuel, 

while a too small aircraft cannot serve the demand, so that possible revenue is not 

generated.
109

 As the fleet assignment has to be done at a time when the final demand 

is still unknown, we also add demand uncertainty to the model. 

We present a two-stage stochastic program for fleet assignment to better cope with 

fuel price and demand uncertainty. We also integrate financial hedging instruments 

to enable improvements of the solutions‟ risk measures. The Conditional Value at 

Risk, as one of the risk measures that fit very well to the perception of risk, is inte-

grated. 

5.2 Problem description 

The planning phase on which this chapter focuses on is called fleet assignment. It is 

usually carried out after the airline schedule design phase. An aircraft type for each 

offered flight is determined. Also, flow conservation and the number of available 
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aircraft have to be considered. Flight costs and expected revenue are important data 

for this planning phase. 

The solution of the fleet assignment is used as a basis for the aircraft maintenance 

routing. In this step the flow of every single aircraft through the flight network is 

planned, so that every flight is covered and maintenance constraints are met before 

the crew scheduling assigns the crews to the flights.
110

 

The fleet assignment is planned several months before the flight, since the crew 

scheduling depends on the fleet assignment and has to be planned 8-10 weeks prior 

to departure because of union regulations. But crews are usually able to fly several 

aircraft types within one family. Therefore changes within the type-family closer to 

the flight date without affecting the crew schedule are possible, and thus only the 

type-family for each flight has to be fixed before the crew scheduling is planned.
111

  

This flexibility can be used to counteract uncertainty: More precise information for 

fuel prices and demand can be utilized, so that for the final type assignment a specif-

ic reaction in each scenario is possible. This approach, that first determines the type-

family and later the specific type depending on more precise information of the un-

certain parameters, is called re-fleeting. 

Note that when re-fleeting is used, the usual airline schedule planning process, as 

described in chapter 2.1, has to be modified: Instead of the whole fleet assignment 

only the assignment of the type-family is done after the schedule design. The crew 

scheduling is planned directly after that. The final type assignment is done as late as 

possible to have more precise information on uncertain parameters. Finally, the air-

craft routing is planned. Figure 17 shows the changes in airline schedule planning 

when re-fleeting is used. 
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Figure 17 Process changes because of re-fleeting 

Because of the advantages of an integrated risk management strategy
112

, we again 

integrate financial hedging instruments into the optimization model to hedge against 

jet fuel price uncertainty. This enables interactions of financial hedging and opera-

tional flexibility. To the best knowledge of the author, there is no such model for re-

fleeting that integrates financial hedging instruments and considers fuel price and 

demand uncertainty.  

5.3 Model 

This section describes our proposed two-stage stochastic program for re-fleeting. We 

first describe the underlying network structure and then show the mathematical for-

mulation. 
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5.3.1 Model description  

Like Zhu
113

 we use a time-space network as underlying network structure for our 

model. Figure 18 shows an exemplary network for one aircraft type. 
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Figure 18 Time-space network for re-fleeting 

The arcs (F1, …, F6) are flight arcs, the arcs (G1, …, G9) are the ground arcs and the 

dashed arcs (N1, N2 and N3) are the overnight arcs, which are a subtype of the 

ground arcs.  

Such a network layer is constructed for every aircraft type. During this process we 

already consider the compatibility of aircraft type and airport as well as the maxi-

mum range of the specific types, so that incompatible flight arcs can be left out and 

layers therefore may look very different for domestic and long-haul aircraft types, for 

example. 

For each flight, a flight arc is added to all compatible network layers. Every flight arc 

has one starting node and one ending node. Every node is then connected via a 

ground arc with the next node at the same airport. The last node in the planning hori-

zon of each airport is connected with the first node of the airport via an overnight arc.  

Finally, all arcs that pass forward in time through a certain timeline are marked. The 

sum of the flows of the marked arcs denotes the number of used aircraft of the cor-

responding aircraft type. This is done to consider the maximum available aircraft of 

the specific type later in the optimization model. In the example network layer above, 
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these arcs are N1, N2, F5 and G9. N3 is not marked, because F5 and G9 already pass 

the timeline and N3 starts later. 

For our calculations, we use the flight network and the fleet data of a large European 

airline. The fuel price and demand scenarios are considered in a scenarioset and 

combined with each other, so that the total number of scenarios is the number of fuel 

price scenarios multiplied by the number of demand scenarios. The rates for the fi-

nancial hedging instruments considered in this model are adjusted to the jet fuel price 

scenarios, so that a riskless arbitrage strategy is impossible. Reverse hedging is not 

allowed and we furthermore integrate a margin for the financial instruments to con-

sider costs like transaction costs or margins for contracting parties.  

5.3.2 A two-stage stochastic re-fleeting model 

Our proposed mathematical optimization model is a two-stage stochastic program 

and is formulated in the following way: 

Sets: 

𝐾   Set of typeclasses 

𝑇𝑘   Set of types in class 𝑘 

𝑇  Set of all types 

𝐹  Set of flights 

𝑆  Scenarioset 

𝑃  Set of paths 

𝑃(𝑓)  Set of paths that use flight 𝑓 

𝑇𝑙𝑡   Set of arcs passing forward in time through a counting time-line in  

network layer 𝑡  

𝐺𝑡    Set of ground arcs in network layer 𝑡 

𝑁𝑡   Set of nodes in network layer 𝑡 

 

Parameters: 

𝑐𝑓𝑡   Costs for flight 𝑓 with type 𝑡, without jet fuel costs 

𝑝𝑟𝑝   Selling price for path 𝑝 

𝑝𝑟𝑜𝑏𝑠  Probability for scenario 𝑠 
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𝑢𝑏𝑡   Maximum available aircraft of type 𝑡  

𝑚𝑡   Capacity of aircraft type 𝑡 

𝑑𝑝𝑠   Demand on path 𝑝 in scenario 𝑠 

𝑏𝑓𝑓𝑛   +1 if flight 𝑓 ends at node 𝑛, -1 if it begins there 

𝑏𝑔𝑔𝑛   +1 if ground arc 𝑔 ends at node 𝑛, -1 if it begins there 

α  Probability value for the CVaR 

𝑓𝑝𝑠  Fuel price in scenario 𝑠 

𝑓𝑝  Hedged fuel price 

𝑐𝑜𝑛𝑠𝑡   Jet fuel consumption of aircraft type 𝑡 in liters per km 

𝑑𝑖𝑠𝑡𝑓   Distance of flight 𝑓 in km 

𝑚𝑎𝑟  Margin for hedging in percent 

 

Variables: 

Stage 1: 

𝑦𝑓𝑘   Flight 𝑓 is flown by typeclass 𝑘 (𝜖{0; 1}) 

𝑏𝑢𝑦_  Bought fuel in liters to the hedged fuel price (≥ 0) 

 

Stage 2: 

𝑥𝑓𝑡𝑠   Flight 𝑓 is flown by type 𝑡 in scenario 𝑠 (𝜖{0; 1}) 

𝑥𝑔𝑔𝑠   Flow on ground arc 𝑔 in scenario 𝑠 (≥ 0,∈ ℤ) 

𝑝𝑎𝑠𝑠𝑝𝑠   Passenger flow on path 𝑝 in scenario 𝑠 (≥ 0) 

𝑏𝑢𝑦_𝑠𝑠  Bought fuel to the non-hedged fuel price in scenario 𝑠  

 

Bookkeeping variables: 

𝑝𝑟𝑜𝑓𝑖𝑡𝑠 Profit in scenario 𝑠 

𝑐𝑣𝑎𝑟   Conditional Value at Risk 

𝑐𝑦0   Auxiliary variable for the dual CVaR-formulation 

𝑐𝑦𝑠   Auxiliary variables for the dual CVaR-formulation 

𝑓𝑢𝑒𝑙𝑠  Fuel costs in scenario 𝑠 
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Objective: 

𝑀𝑎𝑥:  𝑝𝑟𝑜𝑏𝑠 ∙ 𝑝𝑟𝑜𝑓𝑖𝑡𝑠𝑠𝜖𝑆  / 𝑀𝑎𝑥: 𝑐𝑣𝑎𝑟          (20.1) 

Constraints: 

 𝑦𝑓𝑘
𝑘∈𝐾

= 1          ∀𝑓 ∈ 𝐹          (20.2) 

 𝑥𝑓𝑡𝑠
𝑡∈𝑇𝑘

= 𝑦𝑓𝑘           ∀𝑓 ∈ 𝐹,𝑘 ∈ 𝐾, 𝑠 ∈ 𝑆          (20.3) 

 𝑏𝑓𝑓𝑛 ∙ 𝑥𝑓𝑡𝑠
𝑓∈𝐹

+  𝑏𝑔𝑔𝑛 ∙ 𝑥𝑔𝑔𝑠
𝑔∈𝐺𝑡

= 0          ∀𝑛 ∈ 𝑁𝑡 , 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆          (20.4) 

 𝑥𝑓𝑡𝑠
𝑓∈𝑇𝑙𝑡

+  𝑥𝑔𝑔𝑠
𝑔∈𝑇𝑙𝑡

≤ 𝑢𝑏𝑡           ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆          (20.5) 

 𝑝𝑎𝑠𝑠𝑝𝑠
𝑝∈𝑃(𝑓)

≤ 𝑚𝑡

𝑡∈𝑇

∙  𝑥𝑓𝑡𝑠          ∀𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆          (20.6) 

𝑝𝑎𝑠𝑠𝑝𝑠 ≤ 𝑑𝑝𝑠          ∀𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆          (20.7) 

𝑏𝑢𝑦_𝑠𝑠 + 𝑏𝑢𝑦_ ≥  𝑥𝑓𝑡𝑠 ∙ 𝑑𝑖𝑠𝑡𝑓 ∙ 𝑐𝑜𝑛𝑠𝑡
𝑡∈𝑇𝑓∈𝐹

          ∀𝑠𝜖𝑆          (20.8) 

𝑓𝑢𝑒𝑙𝑠 = 𝑏𝑢𝑦_𝑠𝑠 ∙ 𝑓𝑝𝑠 + 𝑏𝑢𝑦_ ∙ 𝑓𝑝 ∙  1 +
𝑚𝑎𝑟

100
          ∀𝑠𝜖𝑆          (20.9) 

𝑝𝑟𝑜𝑓𝑖𝑡𝑠 =  𝑝𝑟𝑝 ∙ 𝑝𝑎𝑠𝑠𝑝𝑠
𝑝∈𝑃

−   𝑐𝑓𝑡 ∙ 𝑥𝑓𝑡𝑠
𝑓∈𝐹𝑡∈𝑇𝑘𝑘∈𝐾

− 𝑓𝑢𝑒𝑙𝑠           ∀𝑠 ∈ 𝑆        (20.10) 

𝑐𝑣𝑎𝑟 =
−1

𝛼
 𝛼 ∙ 𝑐𝑦0 + 𝑐𝑦𝑠 ∙ 𝑝𝑟𝑜𝑏𝑠

𝑠∈𝑆

           (20.11) 

𝑐𝑦0 + 𝑐𝑦𝑠 ≥ −𝑝𝑟𝑜𝑓𝑖𝑡𝑠          ∀𝑠𝜖𝑆          (20.12) 

The objective function can maximize the expected profit or the Conditional Value at 

Risk. Constraint (20.2) assigns the typeclass to each flight in stage 1. The second 

constraint assigns the type to the flights in stage 2 regarding the typeclass assigned in 
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stage 1. The equation (20.4) ensures the flow-conservation at each node in the net-

work while the inequality (20.5) implements the maximum number of aircraft of 

each type. The maximum aircraft capacity and the transported passengers are consi-

dered in (20.6) and (20.7). The fuel purchases and the fuel costs are modeled by the 

constraints (20.8) and (20.9), while (20.10) calculates the profit for the scenarios. 

Finally, the constraints (20.11) and (20.12) implement the Conditional Value at Risk. 

5.4 Results 

5.4.1 Implications of fuel prices on fleet assignment – a study with 

deterministic optimization 

In this section, we study the impacts of different fuel prices on fleet assignment. For 

every fuel price scenario, we add different demand scenarios. Every scenario is op-

timized independently in its own optimization model. The proposed stochastic re-

fleeting model then becomes a deterministic fleet assignment model because only 

one scenario is considered.  

We study four fuel price scenarios and four demand scenarios resulting in a total 

number of 16 optimization models. The models 1-4, 5-8, 9-12 and 13-16 have the 

same fuel price, but other demand scenarios. The models 1-4 have the lowest fuel 

price and 13-16 the highest. As solution we have a plan where every flight has been 

assigned exactly one aircraft type.  

The considered aircraft types are shown in Table 11. 

Medium-haul types Seats Range Long-haul types Seats Range 

Boeing 737-500 111 2520 Airbus A330 221 10000 

Boeing 737-300 127 2590 Airbus A340-300 221 12700 

Airbus A319 132 3470 Airbus A340-600 306 12200 

Airbus A320 156 3470 Boeing 747 352 12500 

Airbus A321 190 4100 Airbus A380 526 12000 

Table 11 Aircraft types 
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The fuel efficiency, measured as consumption per seat-kilometer, for the medium-

haul types increases with their seat capacity. The order from minimum to maximum 

efficiency therefore is: Boeing 737-500, Boeing 737-300, Airbus A319, Airbus 

A320, and Airbus A321. The long-haul type efficiency ordered from minimum to 

maximum is: Airbus A340-300, Boeing 747, Airbus A330, Airbus A340-600, and 

Airbus A380. Thus, the Boeing 747 as a large aircraft is relatively inefficient. Also 

the A340-300 consumes more fuel than the A330, which has the same seat capacity. 

First, we show the number of flights that are carried out by the different medium-

haul aircraft types depending on the scenario.  

 

Figure 19 Flights with medium-haul types 

It can be seen that the smaller less efficient Boeing types (B737-300 and B737-500) 

carry out less flights in higher fuel price scenarios, while the more efficient larger 

types fly on more flights. Especially the number of flights with the most efficient 

type, the Airbus A321, significantly increases in higher fuel price scenarios. 
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Figure 20 Flightkilometers with medium-haul types 

When we analyze the flightkilometers
114

 carried out by each type the results are in-

tensified. Thus, more efficient larger types, especially the A321, do not only carry 

out more flights, they are also used for larger distances. This further saves fuel. The 

A319, as the median in efficiency and seat capacity, can probably increase flightki-

lometers because it can replace the less efficient B737-300, which has a very similar 

seat capacity, very well when fuel prices increase.  
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Figure 21 Flights with long-haul types 

By examining the number of flights of the different long-haul types, it can be seen 

that the less efficient A340-300 is used on very few flights. In the four scenarios with 

the highest fuel price it does not even carry out one single flight. It can be perfectly 

replaced by the more efficient A330 with the same seat capacity. Also the less effi-

cient Boeing 747 is used for fewer flights in higher fuel price scenarios. The A380, 

as a very efficient type, is used on more flights, and the usage of the A340-600 does 

not change in higher fuel price scenarios. But why does the A330, the median of the 

long-haul types, carry out fewer flights in higher fuel price scenarios, although it is a 

very good substitute for the less efficient A340-300? This will be explained later. 
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Figure 22 Flightkilometers with long-haul types 

The detailed view of the flightkilometers of the different long-haul types confirms 

the preliminary results for the B747. It also shows that the A340-300 flies very few 

kilometers.  

Furthermore, it is remarkable that the A380 dominates the other types, although it is 

used on fewer flights than other types (especially in the scenarios with lower fuel 

prices). Because of the high fuel efficiency of the A380, it is used for more flights in 

scenarios with high fuel prices and for large distances, such as the A321 in the results 

for the medium-haul types. The same tendency can be seen for the A340-600: The 

flightkilometers slightly increase with increasing fuel prices. 

While the A330 carries out the highest number of flights in most scenarios, it flies 

only very few kilometers. Thus, it must be used for shorter distances. We now show 

the average distance flown with each type depending on the scenario. 
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Figure 23 Average kilometer per flight 

To complete the basic study, we can now explain the significant decrease in flights 

and flightkilometers of the A330. In higher fuel price scenarios, it seems to be re-

placed by the A321, which is more efficient. The A321 - compared to other medium-

haul types - has a very high average distance, especially in higher fuel price scena-

rios, while the A330 has a low average distance for a long-haul type decreasing with 

growing fuel prices. In general, the more efficient types are used to fly larger dis-

tances in higher fuel price scenarios. We also notice a very small decrease in load 

factors in the four highest fuel price scenarios (0%-0.5%). This indicates that for 

profit-maximization fuel efficiency becomes more important than load factor max-

imization in the highest fuel price scenarios. 

The result that the optimal fleet assignment highly depends on the fuel price and the 

demand scenario again shows the importance of our proposed re-fleeting model. Be-

sides uncertain demands, fuel prices can change quickly while the crew assignment 

has to be fixed several weeks before the flight date. A re-fleeting model that enables 

short-term crew-independent changes of aircraft types can counteract these uncer-

tainties more dynamically. 
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5.4.2 Stochastic optimization and risk measures  

We now compare our proposed stochastic optimization model with deterministic 

optimization. We calculate the expectation of the expected value problem (EEV-

solution). Therefore, we first optimize the expected value problem (EV-solution) 

which is a model where all stochastic parameters are set to their expected values. 

This solution is evaluated for every scenario. The weighted average of these objec-

tive functions denotes the EEV solution. This value is compared to the solution of the 

stochastic programming model in terms of expected profit and risk (measured with 

the risk measure CVaR). With stochastic optimization, we are able to create a pareto-

optimal solution set in terms of expected profit and CVaR. Fuel hedging will be con-

sidered later. The different stochastic programming solutions are calculated by re-

stricting the CVaR and optimizing expected profit. Note that we only use a part of 

the network for further calculations because of the increased computational complex-

ity and the large number of optimization runs that have to be completed. 

 

Figure 24 Comparison of stochastic and deterministic solutions 

Because the stochastic optimization model has more flexibility – it can change air-

craft types within their typeclass depending on fuel price and demand development – 

the stochastic programming solutions dominate the EEV-solution. With stochastic 

optimization, we are also able to restrict the CVaR to specific risk levels while this is 

not possible in deterministic optimization models. 
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5.4.3 Fuel hedging 

To further decrease risk, we now compare the pareto-optimal set of stochastic solu-

tions shown in Figure 24 with other solution sets where the fuel purchases are partly 

and completely hedged. 

 

Figure 25 Solutions sets for different levels of fuel hedging 

It can be seen that hedging fuel purchases can improve the CVaR very much. But on 

the other hand the maximum expected profit is decreased because of the hedging 

premium.  

Up to now, the percentage of hedged fuel is usually planned by airlines‟ financial 

department, which decides independently from operational planning. When opera-

tional planning wants to restrict the risk measure to a certain level, it takes the fuel 

hedging into account and creates the fleet assignment depending on this data, which 

leads to the solutions presented in Figure 25. 

But the different lines that represent the solution sets show that for different risk le-

vels different levels of fuel hedging are better. But what is the right combination of 

hedging and changing the fleet assignment to obtain a certain risk level with the 

maximum expected profit?  
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To obtain the optimal combination, an integrated approach is necessary. Figure 26 

shows the solutions of the integrated hedging decision compared to the preliminary 

results. 

 

Figure 26 Integrated hedging decision 

The result is that the solution set of the integrated approach dominates all the pre-

vious solution sets. The numerical results indicate that the pareto-optimal solution 

sets of the non-integrated hedging strategies are nearly tangent to the solution set, 

where the hedging decision is integrated. This shows that the right combination of 

hedging and operational planning has to be met if planning is not integrated. 

But as the integration of financial hedging is possible with a LP-formulation and, 

therefore, the computational complexity is not notably increased, we suggest using 

this integrated approach for financial and operational risk management in re-fleeting. 

5.5 Conclusion 

A new two-stage stochastic optimization model for re-fleeting under demand and 

fuel price uncertainty that considers financial hedging was presented. We began with 

a study of the impacts of different fuel price scenarios on fleet assignment. The study 

reveals that higher fuel prices cause significant changes in optimal fleet assignment 

and therefore underlines the need for our proposed model.  
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Furthermore, the interdependency of risk management with financial hedging and 

fleet assignment was examined. It was shown that the usual non-integrated approach 

of hedging and fleet assignment can produce only one combination of risk and ex-

pected profit that can compete with the integrated planning approach. As the integra-

tion does not lead to an increased computational complexity, financial hedging and 

fleet assignment should be integrated to gain the optimal expected profit at different 

risk levels. 
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6 Robust vehicle scheduling in public bus transport 

This chapter introduces a new stochastic programming approach for robust vehicle 

scheduling in public bus transport.
115

  

6.1 Introduction 

The vehicle schedules in public bus transport are traditionally planned several weeks 

before their execution. The buses are assigned to the given timetabled trips, so that 

every trip is covered by one bus. Thereby the trip has to be carried out by an allowed 

vehicle type for this trip. Furthermore, the vehicles have to start and end at their de-

pot at the beginning and at the end of the planning horizon. The objective is usually 

to minimize costs. The costs are fixed cost per vehicle as well as variable cost per 

driven distance and time spent outside the depot. We call all these costs planned 

costs. 

On the day of operations, the real driving times might vary. Disruptions cause delays 

and increase the operational costs. Moreover, they cause contractual penalty fees.  

If there is waiting time between two service trips, delays can be absorbed. But as 

more buffer time in schedules causes more planned costs, cost-optimal schedules 

tend to contain few buffers. Thus, they are especially sensitive to disruptions. There-

fore possible disruptions should be considered during the planning process to minim-

ize the sum of planned costs and expected disruption costs. Figure 27 exemplarily 

illustrates the characteristics of different vehicle schedules. 
116

 

                                                 

115
 The results of this chapter have partly been published in [NSK11] 

116
 See [KKM09] 
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Figure 27 Planned costs and disruption costs  

The solution shown on the left is cost-optimal for planned costs, but – as there are 

few buffers – disruptions cause high costs. On the other hand the solution at the right 

contains lots of buffers – every delay can be absorbed – but it is very expensive in 

planned costs. The solution in the middle has the lowest sum of planned and ex-

pected disruption costs. 

6.2 Delay tolerance and robustness 

Before describing how we aim to increase the delay tolerance and the robustness of 

vehicle schedules, we define some terms that will be used later. 

A primary delay is a delay that is directly caused by a disruption, for example if a 

road is blocked, if there is a traffic jam, because of snow, etc. As disruptions occur, 

primary delays cannot be avoided. Primary delays cause a late arrival of a service trip 

that has started punctually.  

If a delayed service trip causes a delayed start of a following service trip, we call this 

delay a secondary delay. Secondary delays occur because of dependencies of con-

secutive service trips. They can be prevented by inserting buffer time.  
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Most public transport companies, especially smaller companies, do not have an oper-

ations control center so that they cannot dynamically react on disruptions with re-

planning. Therefore, if there is not enough buffer time to absorb the delayed arrival 

of a service trip, the subsequent service trip will start later. This effect is called delay 

propagation. 

We call a vehicle schedule more delay tolerant, if it is able to absorb secondary de-

lays better than a reference schedule. A schedule that has more buffer time is usually 

more expensive, because of additional operational costs (e.g. for waiting time outside 

the depot), but causes less penalty costs. Penalty costs are incurred for every second-

ary delay, depending on the length of the delay.  

Our aim is to optimize the expected sum of planned costs plus additional operational 

costs because of disruptions plus penalty costs. Thus, we aim to create a schedule 

that has the lowest expected costs considering all delay scenarios.  

We call a schedule more robust, if the total costs in the particular scenarios have a 

better risk measure. Precisely, we use the Conditional Value at Risk as a measure of 

robustness of the vehicle schedule. 

6.3 Network Models 

6.3.1 Delays in network models 

Dessouky et al.
117

 present a summary of distribution functions used in former studies. 

They define lateness as a deviation from scheduled arrival time, which fits our defi-

nition of a delay. The distribution function used for lateness in former studies was the 

exponential distribution. Because real delay scenarios for our timetable were not 

available, we also use the exponential distribution and extend it with a factor depend-

ing on the daytime of the service trip to consider the impacts of rush hours.  

We use this modified distribution function to generate several delay scenarios. The 

scenarios are generated in a way that there are some scenarios with a low probability 

for a delay and a low delay length and some with a high probability and a high delay 
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length and in between many other scenarios. Scenarios with a low delay length and a 

high probability for delays and scenarios with a low probability for a delay but a high 

length are not generated. Thus, we have scenarios with correlating delay length and 

delay probability and therefore some good and some bad scenarios and many in be-

tween. The reason for generating scenarios in this way is that we want to cover very 

bad days like days in winter with bad weather conditions or days with road closures 

downtown and on the other hand days where only few disruptions occur. Figure 28 

exemplarily shows how the delay scenarios are generated. 

 

Figure 28 Generation of delay scenarios 

Although we tried to generate the scenarios in a realistic way, the best method would 

be using real delay data of past days. This would regard the characteristics of the 

particular road network and also would be the most convenient way in practice.  

6.3.2 Problems of modeling delays in a TSN 

In our definition, a service trip is primarily delayed, if it has started on time and ar-

rives not punctually at its ending station. We consider penalty cost, if a primarily 

delayed service trip causes a non-punctual start of a following service trip. To im-

plement this, we add penalty costs to the connection of the delayed service trip with 
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its following service trips, if the buffer time is too small to absorb the delay. This 

modeling leads to problems using a standard time-space network.  

For modeling we use a time-space network (TSN) like in Kliewer et al.
118

, but we 

have to use more deadhead and waiting arcs, because of the penalty costs. Let us 

consider the part of a time-space network at a certain bus station shown in Figure 29. 

 

W1 W2

S: Service trip arc

W: Waiting arc
S1

S2 S3

... ...
(waiting time 5 min) (waiting time 5 min)

 

Figure 29 Penalty costs in a TSN 1 

The service trip S1 ends at the bus station and the service trips S2 and S3 start 5 mi-

nutes and 10 minutes later at the same bus station. Now we assume that service trip 

S1 is delayed and arrives at the bus station with a delay of 8 minutes. As a conse-

quence, S2 cannot start punctually when the same bus is used for it, because there is 

only a planned waiting time of 5 minutes. Therefore penalty costs are added to the 

waiting arc W1.  

A more delay tolerant plan could now decide to use the same bus for S1 and S3 and 

use another bus for S2 to avoid the unpunctual start of S2. S3 could start punctually 

because of the buffer time of 10 minutes. 

The problem of a TSN is now that if the same bus is used for S3 and S1, the arcs W1 

and W2 would be used to connect these service trips. Using W1 and W2 would ab-

sorb the delay of 8 minutes, but the penalty costs added to W1 are still added to the 
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solution‟s costs. Therefore we need an additional waiting arc connecting the end-

node of S1 with the start-node of S3: 

W1 W2

S: Service trip arc

W: Waiting arc
S1

S2 S3

... ...
(waiting time 5 min) (waiting time 5 min)

W3
(waiting time 10 min)

 

Figure 30 Penalty costs in a TSN 2 

For the planned costs of the waiting arcs, the equality 

𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑐𝑜𝑠𝑡 𝑊1 + 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑐𝑜𝑠𝑡 𝑊2 = 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑐𝑜𝑠𝑡(𝑊3) 

is satisfied, but 

𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑐𝑜𝑠𝑡 𝑊1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦  𝑊1 + 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑐𝑜𝑠𝑡 𝑊2 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑊2 

≠ 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑐𝑜𝑠𝑡 𝑊3 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑊3) 

is not satisfied. Because of this non-additivity of the penalty costs, the transitivity of 

waiting arcs in a TSN cannot be utilized anymore. Therefore, we have to use a TSN 

with all connecting arcs to consider penalty costs in our model. This resulting net-

work model also fits the definition of a connection-based network (CBN), but, in 

contrast to many implementations of CBNs, nodes still denote only one point in time 

and service trips are still modeled as arcs.  

6.3.3 Implementation of delays in a network with all connecting arcs 

This section describes the integration of delays in such a network. As argued before, 

we want to penalize the arcs that connect two service trips, if they do not have 

enough buffer time to absorb the delay. There are five possible types of arcs between 

two service trip arcs: 
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- A waiting arc connects them, if the service trips end and start at the same bus 

station at different times. (W1 in Figure 31) 

- If the two service trips end and start at the same time and station, a waiting 

arc with the time 0 is utilized to connect them. (W2) 

- An additional waiting arc is used to model a deadhead to the depot, waiting 

time in the depot, and a deadhead back to the bus station, if there is enough 

time to do this. (DH1) 

- A deadhead arc is used, if the two service trips end and start at two different 

bus stations and there is enough time for the connection. (DH2) 

- An additional deadhead arc is used again to model a deadhead to the depot, 

waiting time in the depot and a deadhead to the bus station where the next 

service trip starts, if there is enough time to do this. (DH3) 

S: Service trip arc

W: Waiting arc

DH: Deadhead arc

S1

S2

W2

(waiting time 0 min)

DH1

W1

(over depot, 

waiting time 5 min)

S3

DH2

DH3
(over depot, 

waiting time 5 min)

S4
(waiting time 20 min)

(waiting time 15 min)

 

Figure 31 Penalty costs in a network with all connecting arcs 

Now, it is possible to penalize every connection independently. For example, if S1 

arrives with a delay of 8 minutes, the arcs W2, DH1 and DH3 would be penalized, 

because there is not enough buffer time to absorb the delay. If planning did not con-
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sider delays, DH1 instead of W1 and DH3 instead of DH2 could be chosen because 

of lower costs. But including delays and penalty costs could lead to a solution that 

uses W1 instead of DH1 and DH2 instead of DH3 because the larger waiting times of 

W1 and DH2 can better absorb delays and therefore cause less penalty costs. There-

fore we cannot exclude any arc because no arc can be dominated by another arc. 

Like Huisman et al.
119

, we consider delays on service trips; delays on depot-trips and 

deadheads are not considered. 

6.4 Mathematical Optimization Model 

This chapter now shows the proposed mathematical optimization model for the ro-

bust vehicle scheduling problem. Therefore a basic formulation of a vehicle schedul-

ing problem is taken and adjusted, so that stochastic delays and penalty costs are 

considered. The resulting model is a stochastic optimization model. The delays are 

represented in a scenarioset. 

6.4.1 Basic optimization model 

We use the following deterministic model formulation for the vehicle scheduling 

problem as a basis for our further development. For an overview on vehicle schedul-

ing problems see Bunte and Kliewer
120

. 

Sets: 

𝑁𝐿  Set of network layers 

𝐹  Set of service trips 

𝐸𝑆𝑓  Set of all service trip arcs representing service trip 𝑓 (one arc is gener-

ated for every compartible combination of depot and vehicle type) 

𝑉𝑛𝑙   Set of nodes in network layer 𝑛𝑙 

𝐸𝑛𝑙   Set of arcs in network layer 𝑛𝑙 
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Parameters: 

𝑐𝑒   Cost of arc 𝑒 

vae   Beginning-node of arc 𝑒 

vee   Ending-node of arc 𝑒 

le   Lower bound of arc 𝑒 (usually 0) 

ue   Upper bound of arc 𝑒 (usually 1 for service trip arcs) 

Variables: 

𝑥𝑒   Flow of arc e 

Objective function: 

min   𝑥𝑒 ∙ 𝑐𝑒
𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          (21.1) 

Flow-conservation constraints: 

 𝑥𝑖
𝑖∈𝐸𝑛𝑙 |𝑣𝑎𝑖=𝑣

−  𝑥𝑗
𝑗 ∈𝐸𝑛𝑙 |𝑣𝑒𝑗=𝑣

= 0          ∀𝑣 ∈ 𝑉𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (21.2) 

Cover constraints: 

 𝑥𝑒
𝑒∈𝐸𝑆𝑓

= 1          ∀𝑓 ∈ 𝐹          (21.3) 

Integrality constraints: 

𝑥𝑒 ∈ 𝑍          ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (21.4) 

Bounds: 

𝑙𝑒 ≤ 𝑥𝑒 ≤ 𝑢𝑒           ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (21.5) 
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6.4.2 Integration of penalty costs 

As argued before, delays cause additional penalty costs. Like Huisman et al.
121

, we 

use a quadratic function for the penalty costs to penalize larger delays overpropor-

tionally. The costs of one delay of 𝛼 seconds should be as high as the fixed costs of 

one vehicle for one day. Therefore the penalty costs for arc 𝑒, which is one of the 

five arc types between two service trips described above, in scenario 𝑠 are: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠,𝑒 = 𝑦𝑠,𝑒
2 ∙

𝑐𝑛𝑙
𝑓𝑖𝑥

𝛼2
          (22.1) 

The variable 𝑦𝑠,𝑒  is the delayed starting time of the service trip following on connec-

tion arc 𝑒 in scenario 𝑠 or 0 if 𝑒 is not used. The parameter 𝑐𝑛𝑙
𝑓𝑖𝑥

 denotes the fixed 

costs for the usage of one additional bus for one day of the bus type in network layer 

𝑛𝑙. The objective function now is: 

min   𝑐𝑒 ∙ 𝑥𝑒
𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

+
1

 𝑆 
    𝑦𝑠,𝑒

2 ∙
𝑐𝑛𝑙
𝑓𝑖𝑥

𝛼2
 

𝑠∈𝑆𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          (22.2) 

The set 𝑆 is the scenarioset. The penalty costs for service trips only have to be consi-

dered in the objective function, if the corresponding service trip arc has a flow great-

er than 0. Therefore the following constraints are added. 

𝑦𝑠,𝑒 ≥ 0        ∀𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸𝑛𝑙 , 𝑛𝑙 ∈ 𝑁𝐿          (22.3) 

𝑦𝑠,𝑒 = 𝑑𝑠,𝑒 ∙ 𝑥𝑒         ∀𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (22.4) 

Now, if 𝑑𝑠,𝑒  is the delayed starting time of a service trip following on connection arc 

𝑒 in scenario 𝑠, 𝑦𝑠,𝑒  represents the delayed starting time for a service trip arc 𝑒 in 

scenario 𝑠 if this service trip arc has a flow greater than 0 and can therefore be added 

to the objective function as described above. 

Unfortunately this model is now a quadratic optimization model and therefore com-

putationally harder to solve than a linear optimization model. But as the flow on each 

arc in a network with all connecting arcs, except on the circulation arc, is 0 or 1 and 

penalty costs do not need to not be added to the circulation arc, this model can be 
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reformulated to a linear model. We plug the equation 𝑦𝑠,𝑒 = 𝑑𝑠,𝑒 ∙ 𝑥𝑒  in the objective 

function and obtain: 

min   𝑐𝑒 ∙ 𝑥𝑒
𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

+
1

 𝑆 
    (𝑑𝑠,𝑒 ∙ 𝑥𝑒)𝑠,𝑒

2 ∙
𝑐𝑛𝑙
𝑓𝑖𝑥

𝛼2
 

𝑠∈𝑆𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          (22.5) 

= min   𝑐𝑒 ∙ 𝑥𝑒
𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

+
1

 𝑆 
    𝑥𝑒

2 ∙
𝑑𝑠,𝑒

2 ∙ 𝑐𝑛𝑙
𝑓𝑖𝑥

𝛼2
 

𝑠∈𝑆𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          (22.6) 

𝑥𝑒∈{0,1}
      min   𝑐𝑒 ∙ 𝑥𝑒

𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

+
1

 𝑆 
    𝑥𝑒 ∙

𝑑𝑠,𝑒
2 ∙ 𝑐𝑛𝑙

𝑓𝑖𝑥

𝛼2
 

𝑠∈𝑆𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          (22.7) 

= min   𝑥𝑒 ∙  𝑐𝑒 +
1

 𝑆 
 

𝑑𝑠,𝑒
2 ∙ 𝑐𝑛𝑙

𝑓𝑖𝑥

𝛼2

𝑠∈𝑆

 

𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          (22.8) 

6.4.3 Complete model 

This chapter now shows the stochastic optimization model after its reformulation of 

the previous section. It is a stochastic model for the multi depot vehicle scheduling 

problem with multiple vehicle types. 

Objective function: 

min   𝑥𝑒 ∙  𝑐𝑒 +
1

 𝑆 
 

𝑑𝑠,𝑒
2 ∙ 𝑐𝑛𝑙

𝑓𝑖𝑥

𝛼2

𝑠∈𝑆

 

𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          (23.1) 

Flow-conservation constraints: 

 𝑥𝑖
𝑖∈𝐸𝑛𝑙 |𝑣𝑎𝑖=𝑣

−  𝑥𝑗
𝑗 ∈𝐸𝑛𝑙 |𝑣𝑒𝑗=𝑣

= 0          ∀𝑣 ∈ 𝑉𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (23.2) 

Cover constraints: 

 𝑥𝑒
𝑒∈𝐸𝑆𝑓

= 1          ∀𝑓 ∈ 𝐹          (23.3) 

Integrality constraints: 

𝑥𝑒 ∈ 𝑍          ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (23.4) 
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Bounds: 

𝑙𝑒 ≤ 𝑥𝑒 ≤ 𝑢𝑒           ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (23.5) 

For the calculations in the next section the objective function can either be the ex-

pected costs or the Conditional Value at Risk. The model for the calculations, where 

the objective is the Conditional Value at Risk, is: 

 Objective function: 

min
1

𝛼𝑐𝑣𝑎𝑟
 𝛼𝑐𝑣𝑎𝑟 ∙ 𝑦0 + 𝑦𝑠 ∙

1

 𝑆 
𝑠∈𝑆

           (24.1) 

Flow-conservation constraints: 

 𝑥𝑖
𝑖∈𝐸𝑛𝑙 |𝑣𝑎𝑖=𝑣

−  𝑥𝑗
𝑗 ∈𝐸𝑛𝑙 |𝑣𝑒𝑗=𝑣

= 0          ∀𝑣 ∈ 𝑉𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (24.2) 

Cover constraints: 

 𝑥𝑒
𝑒∈𝐸𝑆𝑓

= 1          ∀𝑓 ∈ 𝐹          (24.3) 

Integrality constraints: 

𝑥𝑒 ∈ 𝑍          ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (24.4) 

Bounds: 

𝑙𝑒 ≤ 𝑥𝑒 ≤ 𝑢𝑒           ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (24.5) 

Costs in scenarios: 

𝑐𝑜𝑠𝑡𝑠 =   𝑥𝑒 ∙  𝑐𝑒 +
𝑑𝑠,𝑒

2 ∙ 𝑐𝑛𝑙
𝑓𝑖𝑥

𝛼2
 

𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          ∀𝑠 ∈ 𝑆          (24.6) 

Implementation of the Conditional Value at Risk: 

𝑦0 + 𝑦𝑠 ≥ 𝑐𝑜𝑠𝑡𝑠           ∀𝑠 ∈ 𝑆          (24.7) 

𝑦𝑠 ≥ 0          ∀𝑠 ∈ 𝑆          (24.8) 
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Additional variables are: 𝑐𝑜𝑠𝑡𝑠, 𝑦𝑠 and 𝑦0; 𝛼𝑐𝑣𝑎𝑟  is an additional parameter. For a 

description of them and of the Conditional Value at Risk as well as for its integration 

into optimization models see Chapter 3.1.4 and 3.3.5.  

6.5 Results 

In this section, we show the results for the vehicle schedules calculated with our sto-

chastic programming approach. We compare them with the cost-optimal vehicle 

schedule and a simple approach that adds fixed buffer times between service trips. If 

a service trip is delayed, these buffer times are used to absorb (at least a part of) the 

delay. The instances are real timetables from small- and medium-sized German ci-

ties. 

6.5.1 Tradeoff of planned-costs and penalty-costs 

At first, we show the planned and penalty costs for different solutions. We expect 

that there are solutions with low planned costs, but high penalty costs as well as with 

low penalty costs, but high planned costs. The value for 𝛼 is 1800, so that a delay of 

30 minutes is as expensive as using one additional bus. Figure 32 and Figure 33 

show the planned costs and the penalty costs for two different timetables. 

 

Figure 32 Planned and penalty costs for real_313_1_1 
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Figure 33 Planned and penalty costs for real_426_1_1 

The figures show that the optimal solution for planned costs has the highest penalty 
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Solution Approach 
Total 

Costs 

Planned 

Costs 

Penalty 

Costs 

Used 

Vehicles 

Minimize planned costs 44563 40311 4252 30 

Stochastic programming 43115 41256 1859 30 

Fixed Buffer Time 15s 45508 41537 3971 31 

Fixed Buffer Time 30s 45627 41555 4072 31 

Fixed Buffer Time 60s 45683 41591 4092 31 

Fixed Buffer Time 120s 50142 46935 3207 35 

Fixed Buffer Time 180s 51999 49798 2201 37 

Fixed Buffer Time 240s 52880 51322 1558 38 

Fixed Buffer Time 300s 54249 52641 1608 39 

Fixed Buffer Time 420s 57051 55978 1073 41 

Fixed Buffer Time 600s 60855 60206 649 44 

Fixed Buffer Time 1200s 68329 68221 108 49 

Table 12 Solution comparison for real_313_1_1 
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Solution Approach 
Total 

Costs 

Planned 

Costs 

Penalty 

Costs 

Used 

Vehicles 

Minimize planned costs 2315517 1933416 382100 32 

Stochastic programming 1992585 1937304 55282 32 

Fixed Buffer Time 15s 2367236 1993618 373619 33 

Fixed Buffer Time 30s 2347397 1994178 353219 33 

Fixed Buffer Time 60s 2358511 2054656 303856 34 

Fixed Buffer Time 120s 2485118 2236416 248701 37 

Fixed Buffer Time 180s 2496536 2297684 198852 38 

Fixed Buffer Time 240s 2477632 2298080 179552 38 

Fixed Buffer Time 300s 2568495 2418512 149982 40 

Fixed Buffer Time 420s 2570616 2479332 91284 41 

Fixed Buffer Time 600s 2547004 2480862 66142 41 

Fixed Buffer Time 1200s 3036038 3025127 10911 50 

Table 13 Solution comparison for real_426_1_1 

The tables proof that the stochastic programming solutions are always best in total 

costs. This could have been expected, because stochastic programming always finds 

the optimal solution for the given data. The more interesting result is that the tradi-

tional approach that adds fixed buffer times between service trips finds solutions that 

are much worse than the stochastic programming solutions. They can decrease penal-

ty costs to a minimum, but this increases the planned costs so much, that the total 

costs and the number of used vehicles result in very high values. The solutions pro-

duced with the simple approach, that adds buffer times after the service trips, there-

fore cannot compete with the stochastic programming solutions and are practically 

not usable. 
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6.5.2 Tradeoff of total costs and robustness 

We now introduce the Conditional Value at Risk and calculate a set of pareto-

optimal solutions. One extreme solution of this set has the minimum expected costs 

and one has the best Conditional Value at Risk. The intermediate solutions are calcu-

lated by restricting the Conditional Value at Risk and optimizing expected costs. 

Figure 34 shows the pareto-optimal set of solutions for two different timetables and 

the improvement in terms of total costs (planned costs plus penalty costs) and Condi-

tional Value at Risk. 

 

Figure 34 Pareto-optimal solutions calculated with stochastic programming  

The solutions with the lowest expected costs are at the upper left and with the best 

CVaR at the bottom right of the solution sets. There are no solutions with a better 

CVaR or lower costs for these instances, so that these sets of solutions are pareto-

optimal for these timetables. The set of pareto-optimal solutions generally show a 

convex behavior.  

If we compare the solutions found by stochastic programming with the solutions with 

fixed buffer times in terms of total costs and CVaR, we see again that they are infe-

rior. Figure 35 and Figure 36 show this comparison for the same timetables. 

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40

Ex
p

. c
o

st
s 

(p
la

n
n

e
d

+p
e

n
al

ty
) 

im
p

ro
ve

m
e

n
t 

%

Robustness (CVaR) improvement %

Pareto-optimal solution sets

real_313_1_1 real_426_1_1 Optimal Solution for planned cost



Robust vehicle scheduling in public bus transport Page 107 

 

Figure 35 Total Costs and CVaR for real_313_1_1 

 

Figure 36 Total Costs and CVaR for real_426_1_1  
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6.5.3 Introducing delay propagation  

In our preliminary results, we compared the optimal solutions calculated with sto-

chastic programming, those with fixed buffer times and the cost-optimal solution. 

The penalty costs were calculated when a disruption causes a delayed start of a fol-

lowing service trip. Further delay propagation was not considered. Under these as-

sumptions, stochastic programming finds the optimal solution. 

Now, we consider entire delay propagation and again compare our solutions calcu-

lated with stochastic programming with the solutions that add buffer times between 

service trips. We do this with a simulation software to examine if our stochastic pro-

gramming approach that is heuristic, because it does not consider entire delay propa-

gation during optimization, also leads to better results when entire delay propagation 

is considered. This is the real-world situation. 

Because entire delay propagation is not considered in the stochastic model, the im-

pacts of disruptions and the resulting costs caused by disruptions are underestimated. 

To compensate this, we change the parameter 𝛼 in the optimization model to other 

values. That means that we change the function of the penalty costs. If we choose a 

lower value for 𝛼, a smaller delay will cause penalty costs of the amount of the fixed 

costs for the usage of one bus for one day. We therefore overestimate the penalty 

costs of a delayed start of a service trip to compensate the underestimation because 

of the lack of entire delay propagation in the optimization model. 

After calculating the vehicle schedules with different values of 𝛼, we use a simula-

tion software to evaluate the vehicle schedules with the starting value of 𝛼, which is 

1800 seconds. Figure 37, Figure 38, Figure 39 and Figure 40 show the simulated 

results for the different approaches for four timetables. 
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Figure 37 Costs of vehicle schedules for real_313_1_1 

 

Figure 38 Costs of vehicle schedules for real_424_1_1 
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Figure 39 Costs of vehicle schedules for real_426_1_1 

 

Figure 40 Costs of vehicle schedules for real_662_1_2 
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fact adding fixed buffer times between service trips can now decrease total costs. 

This was not possible in our preliminary results. Once more it can be seen, that add-

ing fixed buffer times between service trips cannot compete with stochastic pro-

gramming. A fixed buffer time of 240s can reduce total costs to 74.1% on average 

(compared to the planned cost-optimal solution) whereas stochastic programming 

with a value of 1200 for 𝛼 can reduce them to 62.5% on average. 

How should we now choose the value for 𝛼? The results indicate that the values 

1800, 1200 and 900 produce good results for all instances. 1800 is the value that is 

also used in the simulation to calculate the penalty. Figure 41 shows the average 

changes in total costs of the four vehicle schedules above mentioned depending on 

the method used to create the vehicle schedule. 

 

Figure 41 Changes in total cost 
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agation. The best results can be obtained with a value of 1200 for 𝛼. Thus, a small 

overestimation of the delay costs in the optimization is the best choice to compensate 

the additional delay costs because of entire delay propagation. 

6.5.4 Evaluation with other scenariosets 

As the real instances used to calculate the optimal solutions contain a large number 

of service trips that can be delayed, we cannot calculate every possible combination 

of delayed service trips and use them as a scenario. Therefore a certain number of 

scenarios, in our case 100, were included into the optimization model and the model 

was optimized with this data. It is now necessary to show, that our approach does not 

only produce good solutions because the solutions fit to the specific scenarios used 

for optimization.  

This is important because the delay scenario of a day during the execution of a ve-

hicle schedule will probably not be the same as it was on a former day. Disruptions 

will occur on other service trips, so that former days can be used as scenarios for 

optimization, but they have to lead to a good vehicle schedule for other days with the 

same distribution for the disruptions. Therefore, we use another scenarioset with 300 

scenarios and evaluate the solutions, which were calculated with the first set, with the 

other scenarioset. Figure 42 shows the results. 
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Figure 42 Evaluation with different scenariosets 
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not analyzed in this thesis. Such a sensitivity analysis of the whole method with dif-

ferent data records and their implications is a subject for further research.  

6.5.5 Delay propagation and risk measures 

We now again introduce the Conditional Value at Risk to examine, if the tradeoff 

between robustness and costs is still apparent when entire delay propagation is con-

sidered. For this examination, we use the same set of scenarios in the simulation and 

in the optimization and a value of 1200s for 𝛼 during optimization and 1800s in the 

simulation. 

 

Figure 43 Costs and CVaR - entire delay propagation real_313_1_1 
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Figure 44 Costs and CVaR - entire delay propagation real_313_1_1 (2) 

 

Figure 45 Costs and CVaR - entire delay propagation real_426_1_1 
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Figure 46 Costs and CVaR - entire delay propagation real_426_1_1 (2) 
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Figure 47 Optimizing risk measures with other scenarios real_313_1_1 

 

Figure 48 Optimizing risk measures with other scenarios real_313_1_1 (2) 
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Figure 49 Optimizing risk measures with other scenarios real_426_1_1 

 

Figure 50 Optimizing risk measures with other scenarios real_426_1_1 (2) 
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Why does that happen? The definition of the CVaR says that it is the expected value 

of the x%, in our case 5%, worst scenarios. Therefore, by optimizing the CVaR we 

create a plan that optimizes the 5% of the worst scenarios. But when the scenarios 

change, the increase in planned costs cannot be rewarded with additional robustness, 

because the 5% of the worst scenarios have changed. The new 5% worst scenarios 

may have disruptions on other service trips.  

Because of this fact, an optimization of the risk measure CVaR only makes sense, if 

at least the 5% worst scenarios are known or can be well approximated. For example, 

if it is known that certain service trips are always late when there is frost, snow or 

rain, etc. It is also applicable, when the more robust solutions lead to a higher num-

ber of vehicles; then the solution with the lowest expected total costs from the solu-

tions with the higher number of vehicles should be chosen. Otherwise, the solution 

with the lowest expected costs is best in costs as well as in robustness. But the solu-

tions created with stochastic programming still outperform the optimal solution for 

planned costs and the solutions with fixed buffer times as shown in Figure 47 and 

Figure 49. 

6.6 Model extension with weather-derivatives  

As an extension of this work in robust vehicle scheduling in public bus transport, an 

approach that integrates weather derivatives into the optimization model to further 

increase robustness is presented in this chapter. Although some research about the 

reasons of disruptions has to be done, this model extension shows that using weather 

derivatives is a promising approach in this area. 
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6.6.1 Model adaption 

As a basis for integrating weather derivatives, we use the formulation of the stochas-

tic optimization model of Chapter 6.4.3 and limit the Conditional Value at Risk to 

the parameter 𝐶𝑉𝑎𝑅𝑙𝑖𝑚𝑖𝑡: 

Objective function:  

min
1

 𝑆 
∙ 𝑐𝑜𝑠𝑡𝑠
𝑠𝜖𝑆

          (25.1) 

Flow-conservation constraints: 

 𝑥𝑖
𝑖∈𝐸𝑛𝑙 |𝑣𝑎𝑖=𝑣

−  𝑥𝑗
𝑗 ∈𝐸𝑛𝑙 |𝑣𝑒𝑗=𝑣

= 0          ∀𝑣 ∈ 𝑉𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (25.2) 

Cover constraints: 

 𝑥𝑒
𝑒∈𝐸𝑆𝑓

= 1          ∀𝑓 ∈ 𝐹          (25.3) 

Integrality constraints: 

𝑥𝑒 ∈ 𝑍          ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (25.4) 

Bounds: 

𝑙𝑒 ≤ 𝑥𝑒 ≤ 𝑢𝑒           ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (25.5) 

Costs in scenarios: 

𝑐𝑜𝑠𝑡𝑠 =   𝑥𝑒 ∙  𝑐𝑒 +
𝑑𝑠,𝑒

2 ∙ 𝑐𝑛𝑙
𝑓𝑖𝑥

𝛼2
 

𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          ∀𝑠 ∈ 𝑆          (25.6) 

Conditional Value at Risk: 

1

𝛼𝑐𝑣𝑎𝑟
 𝛼𝑐𝑣𝑎𝑟 ∙ 𝑦0 + 𝑦𝑠 ∙

1

 𝑆 
𝑠∈𝑆

 ≤ 𝐶𝑉𝑎𝑅𝑙𝑖𝑚𝑖𝑡          (25.7) 

𝑦0 + 𝑦𝑠 ≥ 𝑐𝑜𝑠𝑡𝑠           ∀𝑠 ∈ 𝑆          (25.8) 

𝑦𝑠 ≥ 0          ∀𝑠 ∈ 𝑆          (25.9) 
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Hull
122

 describes how prices for weather derivatives can be calculated: The correct 

price of a derivative is the expected payoff discounted by the risk-free interest rate. 

We therefore use historical weather data of a German city and integrate two weather 

derivatives. For the sake of simplicity, we assume zero interest rate. Furthermore, a 

margin for the derivatives can be defined. Therefore, we add the following variables 

and parameters into the optimization model: 

Variables: 

𝑑𝑤𝑖𝑛𝑑    Amount of money spent for windy day derivatives (stage-1 variable) 

𝑑𝑖𝑐𝑒    Amount of money spent for icy day derivatives (stage-1 variable) 

𝑜𝑠   Payoffs from derivatives in scenario 𝑠 (stage-2 variable) 

Parameters: 

𝑝𝑤𝑖𝑛𝑑   Probability that a day is a windy day (highest wind speeds ≥ 9bft)  

𝑝𝑖𝑐𝑒   Probability that a day is an icy day (precipitation > 1mm and average 

daily temperature below 0˚C) 

𝑚𝑎𝑟𝑔𝑖𝑛 Margin for weather derivatives 

𝑖𝑠
𝑤𝑖𝑛𝑑   1 if scenario 𝑠 is a windy day, 0 if not 

𝑖𝑠
𝑖𝑐𝑒   1 if scenario 𝑠 is an icy day, 0 if not 
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The model with weather derivatives is: 

Objective function: 

min
1

 𝑆 
∙  𝑐𝑜𝑠𝑡𝑠 − 𝑜𝑠 

𝑠𝜖𝑆

+ 𝑑𝑤𝑖𝑛𝑑 + 𝑑𝑖𝑐𝑒           (26.1) 

Flow-conservation constraints: 

 𝑥𝑖
𝑖∈𝐸𝑛𝑙 |𝑣𝑎𝑖=𝑣

−  𝑥𝑗
𝑗 ∈𝐸𝑛𝑙 |𝑣𝑒𝑗=𝑣

= 0          ∀𝑣 ∈ 𝑉𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (26.2) 

Cover constraints: 

 𝑥𝑒
𝑒∈𝐸𝑆𝑓

= 1          ∀𝑓 ∈ 𝐹          (26.3) 

Integrality constraints: 

𝑥𝑒 ∈ 𝑍          ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (26.4) 

Bounds: 

𝑙𝑒 ≤ 𝑥𝑒 ≤ 𝑢𝑒           ∀𝑒 ∈ 𝐸𝑛𝑙 ,𝑛𝑙 ∈ 𝑁𝐿          (26.5) 

Costs in scenarios: 

𝑐𝑜𝑠𝑡𝑠 =   𝑥𝑒 ∙  𝑐𝑒 +
𝑑𝑠,𝑒

2 ∙ 𝑐𝑛𝑙
𝑓𝑖𝑥

𝛼2
 

𝑒∈𝐸𝑛𝑙𝑛𝑙∈𝑁𝐿

          ∀𝑠 ∈ 𝑆          (26.6) 

Conditional Value at Risk implementation: 

1

𝛼𝑐𝑣𝑎𝑟
 𝛼𝑐𝑣𝑎𝑟 ∙ 𝑦0 + 𝑦𝑠 ∙

1

 𝑆 
𝑠∈𝑆

 ≤ 𝐶𝑉𝑎𝑅𝑙𝑖𝑚𝑖𝑡          (26.7) 

𝑦0 + 𝑦𝑠 ≥ 𝑐𝑜𝑠𝑡𝑠 + 𝑑𝑤𝑖𝑛𝑑 + 𝑑𝑖𝑐𝑒 − 𝑜𝑠           ∀𝑠 ∈ 𝑆          (26.8) 

Outcomes from hedging: 

𝑜𝑠 =  1−𝑚𝑎𝑟𝑔𝑖𝑛 ∙  
𝑑𝑤𝑖𝑛𝑑 ∙ 𝑖𝑠

𝑤𝑖𝑛𝑑

𝑝𝑤𝑖𝑛𝑑
+
𝑑𝑖𝑐𝑒 ∙ 𝑖𝑠

𝑖𝑐𝑒

𝑝𝑖𝑐𝑒
           ∀𝑠 ∈ 𝑆          (26.9) 

𝑦𝑠 ≥ 0          ∀𝑠 ∈ 𝑆          (26.10) 

𝑑𝑤𝑖𝑛𝑑 ,𝑑𝑖𝑐𝑒 ≥ 0          (26.11) 
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We do not exactly know how severe weather conditions affect the traffic in public 

bus transport because there is no available data. Further data collection is necessary 

to find out in which way snow, freezing rain, storm and/or other weather phenome-

nons affect the occurrence of delays in vehicle schedules. We therefore assume that 

the traffic is influenced on days with these weather conditions: 

- Strong winds with breaking branches from trees (peak wind velocity ≥ 75 

km/h ≜ ≥ 9𝑏𝑓𝑡) 

- Snowfall or freezing rain (average daily temperature below 0˚C and precipita-

tion > 1mm) 

We call these scenarios windy and icy days. We implement these conditions by indi-

cating delay scenarios from the worst 10% of all scenarios, therefore days with a 

large delay length and a high delay probability, as windy and/or icy days.  

The data used to calculate the scenarios is the historical data of the weather-station 

Berlin-Tempelhof from 1/1/1991 until 31/12/2009
123

. In this period a windy day 

happened in average about eight times per year and an icy day about four times per 

year. Weather derivatives are integrated independently for windy and icy days. 

6.6.2 Computational Results 

For our results, we again use the real schedule of a German city with 313 service 

trips. Even, if we assume a margin of 5% for the weather derivatives, we obtain re-

sults that are very promising.  

                                                 

123
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Figure 51 Weather derivatives for real_313_1_1 

Figure 51 shows the pareto-optimal solution sets with hedging and without hedging. 

We can see that the minimum total costs cannot be decreased with weather deriva-

tives, but at levels where the CVaR is restricted to better values the use of financial 

hedging instruments can gain the same level of robustness with lower costs. Fur-

thermore, the maximum robustness level could be slightly increased with weather 

derivatives, as the best CVaR decreases from 45636 to 45508. 

The results in this chapter were not simulated, so that delay propagation is not consi-

dered. Since we have shown that the vehicle schedules are applicable under the pres-

ence of delay propagation in Chapter 6.5, we do not do this again for the results of 

this model expansion with weather derivatives.  

Let us remark that for robustness considerations it is important that some of the worst 

scenarios, which are considered to calculate the Conditional Value at Risk, are bad 

because of weather. Otherwise weather derivatives would not be able to change the 

Conditional Value at Risk and the robustness would not be increased. This assump-

tion is also important for transferring the results to reality, where entire delay propa-

gation has to be considered, as argued in Chapter 6.5.6. On the other hand, when 

changing the robustness measure to another measure, for example to the variance, 

weather derivatives could also decrease the variance if icy or windy days do not lead 
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to such bad scenarios that they are considered in the CVaR. As detailed data for 

weather impacts on public bus transport is not available, data collection and future 

research in this area is necessary. 

To conclude we can say that the use of weather derivatives enables further cost sav-

ings at the same robustness level if the disruption scenarios caused by weather have 

impacts on the robustness measure.  

6.7 Considering entire delay propagation with a column gener-

ation approach 

As a further extension of this work, a specialized solution algorithm is presented. It 

enables a consideration of entire delay propagation during optimization. The aim is 

to find the optimal solution that might not necessarily be found with the prior (heu-

ristic) solution approach. 

6.7.1 Introduction 

In the former model, delay propagation was only considered from one service trip to 

the next following service trip, but not entirely over several service trips. Implement-

ing entire delay propagation was not possible because of the modeling, so that an 

overestimation during the optimization was used to compensate the lack of consider-

ing entire delay propagation. 

To consider entire delay propagation a mathematical model that uses paths instead of 

trips as variables is created. Then for each path through the network the delays in 

each scenario and the resulting penalty costs can be calculated at the beginning of 

every service trip, so that entire delay propagation can be considered in the optimiza-

tion model. 

Enumerating all paths from the first node on the day to the last node on the day 

would lead to an astronomically large number of variables. Because the resulting 

model would even for very small instances be unsolvable, a specialized solution me-

thod is necessary.  

As solution method, column generation is used. Column generation is a method that 

begins with a small subset of variables that contain at least one feasible solution and 
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adds variables to the master problem until the optimal solution is found. These va-

riables are derived in the pricing that uses the dual solution of the master problem.  

Solution approaches with column generation algorithms have been used in the con-

text of public transport by Borndörfer et al.
 124

 for the line planning problem, by De-

srochers and Soumis
125

 for the crew scheduling problem and by Ribeiro and Sou-

mis
126

 for the vehicle scheduling problem, for example. Steinzen et al.
127

 present an 

integrated model for vehicle and crew scheduling. Column generation will not be 

described in detail in this thesis. For an introduction see Wolsey
128

. 

6.7.2 Master Problem 

The Master problem is: 

Sets: 

𝑃 Set of paths in the network layers (from and to first arc in morning, 

including circulation arc as last arc) 

Parameters: 

𝛿𝑝 ,𝑓   1 if path 𝑝 serves service trip 𝑓, 0 otherwise 

𝑐𝑜𝑠𝑡𝑝    Expected costs of path 𝑝 including operational costs and penalty costs 

Variables: 

𝑧𝑝   Flow on path 𝑝 (binary variable) 
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Objective function: 

min 𝑧𝑝 ∙ 𝑐𝑜𝑠𝑡𝑝
𝑝∈𝑃

          (27.1) 

Constraints: 

 𝑧𝑝 ∙ 𝛿𝑝 ,𝑓 = 1

𝑝∈𝑃

          ∀𝑓 ∈ 𝐹          (27.2) 

𝑧𝑝𝜖{0,1}          ∀𝑝 ∈ 𝑃          (27.3) 

As starting variables, the optimal solutions for total expected costs for different val-

ues of 𝛼 were used. The values were 600s, 900s, 1200s, 1800s and 2700s.
129

 

6.7.3 Pricing 

In the pricing, new paths are created and added to the master problem. The network 

is updated with the dual values of the solution of the master problem. The reduced 

costs for each service trip arc are:  

𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝐶𝑜𝑠𝑡𝑠 𝑡𝑟𝑖𝑝

=  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑜𝑠𝑡𝑠𝑡𝑟𝑖𝑝  𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑒𝑎𝑟𝑙𝑖𝑒𝑟 𝑡𝑟𝑖𝑝𝑠 𝑜𝑛 𝑡𝑒 𝑝𝑎𝑡  

 –  𝑑𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑟𝑜𝑤 𝑖𝑛 𝑚𝑎𝑠𝑡𝑒𝑟𝑡𝑟𝑖𝑝           (28.1) 

The expected costs are the operational costs plus the expected penalty costs of all 

delay scenarios. The penalty costs of a service trip in a delay scenario depend on the 

path on which the service trip is served, as the penalty is a function of the time the 

service trip has been delayed (which depends on the propagated delays of earlier ser-

vice trips).  

Therefore a simple version of Dijkstra‟s Algorithm
130

 cannot be used, as it cannot 

consider different arc costs of the same arc depending on the path on which the arc 

was arrived. A modified version that updates and saves a certain set of parameters on 

each node was used. The parameters saved on each node were the propagated delays 
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for each scenario and the predecessor node on the path on which the node was ar-

rived.  

As this modified version of Dijkstra‟s Algorithm only adds one variable in each pric-

ing-iteration, another algorithm called Bellman-Ford
131

 that adds several variables 

with different path-lengths was also implemented. This algorithm was selected be-

cause it finds short and long paths and therefore very different paths. 

6.7.4 Results 

The solutions found with the prior approach could not be improved by the column 

generation algorithm within reasonable time: The objective value did not improve 

within 12 hours for several schedules. As the penalty costs of the solutions found 

with the prior approach are only a very small percentage of total costs, the optimal 

solution might have been found by the prior approach. That shows that the stochastic 

programming approach produces very good solutions that are suitable in practice, 

when real delay scenarios of past days are used and there are no substantial changes 

in the road network or timetable. 

6.8 Conclusion and outlook 

We have shown that stochastic programming for the vehicle scheduling problem with 

disruptions leads to superior solutions compared to other approaches. If delay-

propagation is not considered, stochastic programming finds the optimal solution for 

the given data, which outperforms a simple approach that adds fixed buffer times to 

the schedule. We created a set of pareto-optimal solutions in terms of maximum ro-

bustness (measured as CVaR) and minimum total costs. 

When entire delay propagation is considered, the solutions of stochastic program-

ming are still superior compared to a simple approach that adds fixed buffer times, 

although this simple approach can decrease total costs significantly compared to the 

cost-optimal solutions. A small overestimation of the delay costs in the developed 

stochastic optimization model is appropriate to compensate the heuristic delay prop-
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agation in the model. Using another scenarioset for evaluation has confirmed the 

applicability of the stochastic programming approach. Furthermore, we have seen 

that optimizing a risk measure is still applicable, when entire delay propagation is 

considered, but it highly depends on the nature of the specific scenarios considered in 

the risk measure. 

Moreover, an extension of the model with weather derivatives was proposed and it 

was shown that the costs for gaining the same robustness level with stochastic pro-

gramming could further be decreased if weather leads to disruption scenarios that are 

considered in the risk measure. 

The integration of this model with a column generation approach could not improve 

the solutions found. That shows that although the solution approach is heuristic be-

cause of not considering entire delay propagation, the solutions found are of very 

high quality.  

Finally, it was shown that the scenarios in the optimization model and the considera-

tion of a quadratic penalty function do not add significant complexity to the optimi-

zation model. This is done with a reformulation of the optimization model and the 

calculation of the penalty costs in the network model. This necessitates a network 

with all connecting arcs, which is computationally more complex than the tradition-

ally used time-space network in this application.  

Despite the increased computational complexity, real instances can be solved in rea-

sonable time. For our calculations we used instances of small- and medium-sized 

German cities with few network layers and with several hundred service trips. In-

stances of larger cities or large metropolitan areas can up to now not be solved with 

our approach. When more computational power, more memory and more efficient 

solution algorithms for MIPs will be available, this model will also be solvable for 

timetables of larger cities. 
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7 Rota scheduling in public transport under uncertainty 

This chapter introduces a new stochastic programming approach for robust rota 

scheduling in public transport.
 132

 

7.1 Motivation 

In public bus transport, the reserve shifts currently are evenly planned for all drivers 

without considering more detailed information such as historical or weekday-

depended sickness absence rates. In case that the absence rate exceeds the available 

reserve personnel, usually additional drivers are called manually. This causes discon-

tent for the drivers as well as a continuous organizational effort for the bus company. 

In order to reduce the discrepancy between a planned roster and the actual one, we 

present a new stochastic optimization model for rota scheduling in public bus trans-

port. In addition to the present reserve shifts, optional reserve shifts are introduced. 

7.2 Problem description 

The rota scheduling problem assigns drivers to a set of crew duties. Each duty has its 

corresponding shift type (for example early shift). For each group of drivers a cyclic-

based rota is developed in the rota scheduling problem. The given data is the set of 

shifts and free days as well as reserve shifts; management considerations, labor laws 

and the preferences of drivers have to be considered. All drivers in one group have 

the same qualification and work preferences.  

Each column in the rota represents one weekday. The rows represent the weeks. A 

rota has as many rows as drivers in the group. Each driver begins in one row (the 

first driver in the first row, the second in the second row etc.). After every driver has 

accomplished the whole rota, they again begin at their starting point.  

As every driver in a group has to accomplish the whole rota and thus has to do the 

same work, such a cyclic-based rota is very fair and therefore widely adopted. The 

time period for that a rota is used, is mostly a longer period. 
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The reserve shifts are nowadays usually planned as a fixed number or percentage. As 

absences due to illness are normally not foreseeable, it can happen that there are 

more drivers absent than reserve personnel is available. In this case, usually addi-

tional drivers are called manually at short notice. This inaccurate planning of reserve 

shifts has several disadvantages: 

- It is an additional constant task to manage the reserves for every day for the 

company. 

- It causes more costs for the reserves than necessary.  

- It causes discontent for the drivers. 

A new stochastic optimization model is therefore formulated for the rota scheduling 

problem and is compared to deterministic optimization. The scenarios of the stochas-

tic program are created on a basis of historical and weekday-dependent sickness ab-

sence rates. In addition to the present reserve shifts, optional reserve shifts are intro-

duced. This integration of contractual risk management offers better working-

conditions for the reserve drivers and enables a specific reaction on the sickness ab-

sence rate of the day by exercising the optional reserves. Optional reserves can, but 

do not have to be exercised. 

Thus, instead of either planning a large number of costly reserves or continuously 

calling drivers at short notice, the best combination of traditional present reserves for 

covering normal absence rates and optional reserves for handling exceptional high 

absence rates can be used.  

7.3 Model 

7.3.1 Case study 

The case study used for our calculations was freely invented, but has the structure of 

real data used for the rota scheduling problem. We use 10 different shift types, 6 shift 

types with different starting and ending times during the day, 2 shift types in the 

night and 2 split shift types. A total number of 220 drivers are grouped into 3 rota 

groups that represent the desired shift types depending on the weekday. 
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We add 50 different scenarios to the stochastic optimization model. For calculating 

them, we use the historical sickness absence rate of Germany. The average value for 

the sickness absence rate of the years 2000-2009 is 3.64%
133

. We multiply this data 

with a factor depending on the weekday to consider that in a bus company historical-

ly the absence rate was higher or lower on different weekdays. These weekday-

dependent numbers are used as mean values for a Normal-distribution from which 

we select a random number (random values <0 are set to 0). One week with different 

sickness absence rates for the weekdays is one scenario. 

The costs for assigning undesired shift types, reserve shifts and optional reserve 

shifts as well as for exercising optional reserve shifts are different on weekdays and 

weekends. Nonetheless, the costs for the reserve types satisfy the following inequali-

ty on every weekday: 

𝑐𝑜𝑠𝑡(𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑒) ≤ 𝑐𝑜𝑠𝑡(𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑟𝑒𝑠𝑒𝑟𝑣𝑒)

≤ 𝑐𝑜𝑠𝑡(𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑒)          (29.1) 

The percentage of the worst scenarios considered in the CVaR is 10%. 

7.3.2 A two-stage stochastic optimization model 

The stochastic optimization model in its extensive form is presented in this chapter. 

The sets and parameters are: 

𝑆𝑇 Set of different shift types 

𝐺 Set of rota-groups / driver groups 

𝑆𝑐𝑒𝑛 Scenarioset 

𝑎𝑔   Number of weeks for group 𝑔 

𝑠𝑑 ,𝑡   Number of shifts of type 𝑑 to assign on weekday 𝑡 (sum over all 

weeks) 

𝑎𝑏𝑠𝑡,𝑠 Number of absent drivers on weekday 𝑡 in scenario 𝑠 

                                                 

133
 Calculated with data from the German Federal Ministry of Labour and Social Affairs 

[BMAS10] 
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𝑢𝑑  (Average) working time in minutes (duration) of shift type 𝑑 

𝑏𝑑  Starting time of shift type 𝑑 in minutes 

𝑒𝑑   Ending time of shift type 𝑑 in minutes 

𝑢𝑟 (Average) working time (duration) of a reserve shift 

𝑏𝑟 Starting time of a reserve shift 

𝑒𝑟 Ending time of a reserve shift 

𝑎𝑤 Maximum total work time per week per driver 

𝑐𝑑 ,𝑔 ,𝑡  Penalty cost if shift type 𝑑 is not a desired shift type of group 𝑔 on 

weekday 𝑡, 0 otherwise 

𝑐𝑟𝑔,𝑡  Cost for one present reserve shift in group 𝑔 on weekday 𝑡 

𝑐𝑜𝑔 ,𝑡  Cost for one optional reserve shift in group 𝑔 on weekday 𝑡 (without 

exercising) 

𝑐𝑜𝑒𝑔 ,𝑡  Additional cost for exercising the optional reserve shift in group 𝑔 

on weekday 𝑡 

𝑐𝑢  Penalty cost for an unassigned shift and for an outage due to reserve 

shortage  

𝑟𝑑 Minimum rest period between two consecutive shifts 

𝑟𝑤 Minimum rest period per week 

𝑠𝑓𝑔  Minimum number of single free days for group 𝑔 

𝑑𝑓𝑚𝑖𝑛𝑔  Minimum number of double free days for group 𝑔 

𝑑𝑓𝑚𝑎𝑥𝑔   Maximum number of double free days for group 𝑔 

𝑤𝑑𝑚𝑖𝑛𝑔  Minimum number of working days for group 𝑔 

𝑤𝑑𝑚𝑎𝑥𝑔  Maximum number of working days for group 𝑔 

𝑓𝑑𝑔  Maximum number of free days for group 𝑔 

𝛼 Probability value for the CVaR 
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𝑑𝑎𝑦(𝑤, 𝑡, 𝑖)  Function that returns the tupel (week 𝑤′, day 𝑡′) that represents the 

„date‟ i days after day t in week w 

 

Bookkeeping variables and auxiliary variables: 

𝑓2𝑔 ,𝑤 ,𝑡  Equal to 1, if a two-day free period begins on day 𝑡 in week 𝑤 in 

group 𝑔 

𝑓1𝑔 ,𝑤 ,𝑡  Equal to 1, if a one-day free period begins on day 𝑡 in week 𝑤 in 

group 𝑔 (not including two-day free periods) 

𝑐𝑜𝑠𝑡𝑠  Costs in scenario s 

𝑐𝑣𝑎𝑟  Conditional Value at Risk 

𝑥0  Auxiliary variable needed to integrate the CVaR 

𝑥𝑠  Auxiliary variables needed to integrate the CVaR 

 

Decision Variables: 

Stage 1: 

𝑦𝑑 ,𝑔 ,𝑤 ,𝑡  Equal to 1, if shift type 𝑑 is assigned to weekday 𝑡 in week 𝑤 in 

group 𝑔, 0 otherwise 

𝑦𝑓𝑔 ,𝑤 ,𝑡  Equal to 1, if weekday 𝑡 in week 𝑤 in group 𝑔 is a free day, 0 other-

wise 

𝑦𝑟𝑔,𝑤 ,𝑡  Equal to 1, if weekday 𝑡 in week 𝑤 in group 𝑔 is a present reserve 

shift day, 0 otherwise 

𝑦𝑜𝑔 ,𝑤 ,𝑡  Equal to 1, if weekday 𝑡 in week 𝑤 in group 𝑔 is an optional reserve 

shift day, 0 otherwise 

Stage 2: 

𝑦𝑜𝑒𝑔 ,𝑤 ,𝑡 ,𝑠 Equal to 1, if the optional reserve on weekday 𝑡 in week 𝑤 in group 

𝑔 is used in scenario 𝑠 



Rota scheduling in public transport under uncertainty Page 135 

𝑦𝑢𝑛𝑡 ,𝑠 Number of outages on day 𝑡 in scenario 𝑠 due to lack of available 

reserve 

 

The mathematic model is described as follows. The objective function minimizes the 

expected costs or the Conditional Value at Risk 

min
1

 𝑆𝑐𝑒𝑛 
∗  𝑐𝑜𝑠𝑡𝑠
𝑠∈𝑆𝑐𝑒𝑛

          (30.1) 

or 

min 𝑐𝑣𝑎𝑟           (30.2) 

s.t. 

Only one/exactly one shift type/free day/reserve type is assigned to a day: 

𝑦𝑓𝑔 ,𝑤 ,𝑡 + 𝑦𝑟𝑔 ,𝑤 ,𝑡 + 𝑦𝑜𝑔 ,𝑤 ,𝑡 +  𝑦𝑑 ,𝑔,𝑤 ,𝑡

𝑑∈𝑆𝑇

= 1   ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤

= 1…𝑎𝑔           (30.3) 

No overassignment of shift types: 

  𝑦𝑑 ,𝑔 ,𝑤 ,𝑡

𝑤∈ 1..𝑎𝑔 𝑔∈𝐺

≤ 𝑠𝑑 ,𝑡   ∀𝑑 ∈ 𝑆𝑇, 𝑡 = 1,… ,7          (30.4) 

Minimum rest periods between each two sequencing duties within one group: 

1440 −  𝑦𝑑 ,𝑔,𝑑𝑎𝑦 (𝑤 ,𝑡 ,−1)  ∗ 𝑒𝑑
𝑑∈𝑆𝑇

− 𝑦𝑟𝑔 ,𝑑𝑎𝑦 (𝑤 ,𝑡,−1)  ∗ 𝑒𝑟 +  𝑦𝑑 ,𝑔,𝑤 ,𝑡  ∗ 𝑏𝑑
𝑑∈𝑆𝑇

+ 𝑦𝑟𝑔 ,𝑤 ,𝑡  ∗ 𝑏𝑟 + 1440

∗  𝑦𝑓𝑔 ,𝑑𝑎𝑦 (𝑤 ,𝑡 ,−1) + 𝑦𝑜𝑔 ,𝑑𝑎𝑦 (𝑤 ,𝑡 ,−1) + 𝑦𝑓𝑔 ,𝑤 ,𝑡 + 𝑦𝑜𝑔 ,𝑤 ,𝑡 ≥ 𝑟𝑑  ∀𝑔

∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.5) 

Upper bound of the working time for each driver per week: 

  𝑢𝑟 ∗ 𝑦𝑟𝑔 ,𝑤 ,𝑡 + 𝑢𝑟 ∗ 𝑦𝑜𝑔 ,𝑤 ,𝑡 +  𝑢𝑑 ∗ 𝑦𝑑 ,𝑔,𝑤 ,𝑡

𝑑∈𝑆𝑇

 

𝑡∈{1..7}

 ≤ 𝑎𝑤   𝑤 = 1,… ,𝛼𝑔 ,

∀𝑔 ∈ 𝐺          (30.6) 
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Minimum weekly rest period: 

  𝑢𝑟 ∗ 𝑦𝑟𝑔,𝑤 ,𝑡 + 𝑢𝑟 ∗ 𝑦𝑜𝑔 ,𝑤 ,𝑡 +  𝑢𝑑 ∗ 𝑦𝑑 ,𝑔,𝑤 ,𝑡

𝑑∈𝑆𝑇

 

𝑡∈ 1..7 

≤ 7 ∗ 1440 − 𝑟𝑤   

𝑤 = 1,… ,𝛼𝑔 ,∀𝑔 ∈ 𝐺          (30.7) 

Maximum number of possible working days: 

   𝑦𝑟𝑔 ,𝑤 ,𝑡 + 𝑦𝑜𝑔 ,𝑤 ,𝑡 +  𝑦𝑑 ,𝑔,𝑤 ,𝑡

𝑑∈𝑆𝑇

 

𝑡∈{1..7}𝑤∈{1..𝑎𝑔}

≤ 𝑤𝑑𝑚𝑎𝑥𝑔  ∀𝑔 ∈ 𝐺          (30.8) 

Minimum number of working days: 

   𝑦𝑟𝑔,𝑤 ,𝑡 +  𝑦𝑑 ,𝑔 ,𝑤 ,𝑡

𝑑∈𝑆𝑇

 

𝑡∈{1..7}𝑤∈{1..𝑎𝑔}

≥ 𝑤𝑑𝑚𝑖𝑛𝑔  ∀𝑔 ∈ 𝐺          (30.9) 

Maximum number of possible free days: 

  𝑦𝑓𝑔 ,𝑤 ,𝑡 + 𝑦𝑜𝑔 ,𝑤 ,𝑡

𝑡∈{1..7}𝑤∈{1..𝑎𝑔}

≤ 𝑓𝑑𝑔  ∀𝑔 ∈ 𝐺          (30.10) 

Single free days: 

 1 − 𝑦𝑓𝑔 ,𝑤 ,𝑡 + 𝑦𝑓𝑔 ,𝑑𝑎𝑦  𝑤 ,𝑡,1 + 𝑦𝑓𝑔 ,𝑑𝑎𝑦  𝑤 ,𝑡,−1 + 𝑓1𝑔 ,𝑤 ,𝑡 ≥ 1   ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤

= 1…𝑎𝑔           (30.11) 

 1− 𝑓1𝑔 ,𝑤 ,𝑡 + 𝑦𝑓𝑔 ,𝑤 ,𝑡 ≥ 1    ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.12) 

 1 − 𝑓1𝑔 ,𝑤 ,𝑡 + (1− 𝑦𝑓𝑔 ,𝑑𝑎𝑦  𝑤 ,𝑡 ,1 ) ≥ 1    ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤

= 1…𝑎𝑔           (30.13) 

 1− 𝑓1𝑔 ,𝑤 ,𝑡 + (1 − 𝑦𝑓𝑔 ,𝑑𝑎𝑦  𝑤 ,𝑡,−1 ) ≥ 1    ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤

= 1…𝑎𝑔           (30.14) 
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Double free days: 

 1− 𝑦𝑓𝑔 ,𝑤 ,𝑡 +  1− 𝑦𝑓𝑔 ,𝑑𝑎𝑦  𝑤 ,𝑡 ,1  + 𝑓2𝑔 ,𝑤 ,𝑡 ≥ 1   ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤

= 1…𝑎𝑔           (30.15) 

 1− 𝑓2𝑔 ,𝑤 ,𝑡 + 𝑦𝑓𝑔 ,𝑤 ,𝑡 ≥ 1    ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.16) 

 1− 𝑓2𝑔 ,𝑤 ,𝑡 + 𝑦𝑓𝑔 ,𝑑𝑎𝑦  𝑤 ,𝑡,1 ≥ 1    ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.17) 

Minimum number of single free days: 

  𝑓1𝑔 ,𝑤 ,𝑡

𝑤∈{1..𝑎𝑔}𝑡∈{1..7}

≥ 𝑠𝑓𝑔  ∀𝑔 ∈ 𝐺          (30.18) 

Minimum number of double free days: 

  𝑓2𝑔 ,𝑤 ,𝑡  

𝑤∈{1..𝑎𝑔}𝑡∈{1..7}

≥ 𝑑𝑓𝑚𝑖𝑛𝑔  ∀𝑔 ∈ 𝐺          (30.19) 

Maximum number of double free days: 

  𝑓2𝑔 ,𝑤 ,𝑡  

𝑤∈{1..𝑎𝑔}𝑡∈{1..7}

≤ 𝑑𝑓𝑚𝑎𝑥𝑔  ∀𝑔 ∈ 𝐺          (30.20) 

At least one double free in two weeks: 

 𝑓2𝑔 ,𝑑𝑎𝑦 (𝑤 ,0,𝑗) 

14

𝑗=1

≥ 1  𝑤 = 0,… , 𝑎𝑔 ,∀𝑔 ∈ 𝐺          (30.21) 

Reserve usage: 

𝑦𝑢𝑛𝑡 ,𝑠 +   𝑦𝑜𝑒𝑔 ,𝑤 ,𝑡 ,𝑠 + 𝑦𝑟𝑔,𝑤 ,𝑡

𝑤∈{1..𝑎𝑔}

 

𝑔∈𝐺

≥ 𝑎𝑏𝑠𝑡 ,𝑠 ∀ 𝑡 = 1,… , 7, 𝑠 ∈ 𝑆𝑐𝑒𝑛    (30.22) 

Only use available options: 

𝑦𝑜𝑒𝑔 ,𝑤 ,𝑡 ,𝑠 ≤ 𝑦𝑜𝑔 ,𝑤 ,𝑡  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔 , 𝑠 ∈ 𝑆𝑐𝑒𝑛          (30.23) 
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Total costs in scenarios: 

𝑐𝑜𝑠𝑡𝑠 =    𝑠𝑑 ,𝑡 −  𝑦𝑑 ,𝑔 ,𝑤 ,𝑡

𝑤∈ 1..𝑎𝑔 𝑔∈𝐺

 

𝑡∈ 1..7 

∗ 𝑐𝑢

𝑑∈𝑆𝑇

+     𝑦𝑑 ,𝑔 ,𝑤 ,𝑡 ∗ 𝑐𝑑 ,𝑔 ,𝑡  

𝑑∈𝑆𝑇

 

𝑤∈ 1..𝑎𝑔 𝑡∈ 1..7 𝑔∈𝐺

+    𝑦𝑟𝑔 ,𝑤 ,𝑡 ∗ 𝑐𝑟𝑔,𝑡  

𝑤∈{1..𝑎𝑔}𝑡∈ 1..7 𝑔∈𝐺

+    𝑦𝑜𝑔 ,𝑤 ,𝑡 ∗ 𝑐𝑜𝑔,𝑡  

𝑤∈{1..𝑎𝑔}𝑡∈{1..7}𝑔∈𝐺

+    𝑦𝑜𝑒𝑔 ,𝑤 ,𝑡,𝑠 ∗ 𝑐𝑜𝑒𝑔 ,𝑡  

𝑤∈{1..𝑎𝑔}𝑡∈{1..7}𝑔∈𝐺

+  𝑦𝑢𝑛𝑡 ,𝑠 ∗ 𝑐𝑢

𝑡∈{1..7}

∀𝑠

∈ 𝑆𝑐𝑒𝑛          (30.24) 

CVaR-Integration: 

𝑥0 + 𝑥𝑠 ≥ 𝑐𝑜𝑠𝑡𝑠  ∀𝑠 ∈ 𝑆𝑐𝑒𝑛          (30.25) 

𝑐𝑣𝑎𝑟 =
1

𝛼
 𝛼 ∙ 𝑥0 +  𝑥𝑠 ∙

1

 𝑆𝑐𝑒𝑛 
𝑠∈𝑆𝑐𝑒𝑛

           (30.26) 

Binary variables, integer variables and bounds for variables: 

𝑦𝑑 ,𝑔,𝑤 ,𝑡 ∈  0,1  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔 ,𝑑 ∈ 𝑆𝑇          (30.27) 

𝑓2𝑔 ,𝑤 ,𝑡  ∈  0,1  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.28) 

𝑓1𝑔 ,𝑤 ,𝑡 ∈  0,1  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.29) 

𝑦𝑓𝑔 ,𝑤 ,𝑡 ∈  0,1  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.30) 

𝑦𝑟𝑔,𝑤 ,𝑡 ∈  0,1  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.31) 

𝑦𝑜𝑔 ,𝑤 ,𝑡 ∈  0,1  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔           (30.32) 

𝑦𝑜𝑒𝑔 ,𝑤 ,𝑡 ,𝑠 ∈  0,1  ∀𝑔 ∈ 𝐺, 𝑡 = 1,… , 7,𝑤 = 1…𝑎𝑔 ,∀𝑠 ∈ 𝑆𝑐𝑒𝑛          (30.33) 

𝑦𝑢𝑛𝑡 ,𝑠 ∈ ℕ0 ∀𝑡 = 1,… , 7,∀𝑠 ∈ 𝑆𝑐𝑒𝑛          (30.34) 

𝑥𝑠 ≥ 0 ∀𝑠 ∈ 𝑆𝑐𝑒𝑛          (30.35) 
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The constraint (30.3) ensures that for every driver on every day in every week either 

exactly one shift or reserve type is assigned or the day is a free day. The inequality 

(30.4) prevents that more shifts than needed are assigned, while (30.5) implements 

the minimum rest period between two consecutive shifts. With the constraints (30.6) 

and (30.7) the maximum working time per week and the minimum rest period per 

week are considered. The inequalities (30.8) and (30.9) bound the maximum and 

minimum number of working days per rota before (30.10) limits the maximum num-

ber of possible free days in the rota. The set of constraints (30.11), (30.12), (30.13) 

and (30.14) implement the correct calculation of single free days; the set (30.15), 

(30.16) and (30.17) do the same for double free days. These constraint groups have 

been derived by applying propositional logic. Single free days are only counted if the 

day before and the day after are not free while a double free is also counted if the 

days before and after are free days. Therefore a period with three free days is counted 

as two double frees, a period with four consecutive free days as three double frees 

etc. The total single frees and double frees per rota are constrained with the inequali-

ties (30.18), (30.19) and (30.20), while (30.21) requires at least one double free every 

two weeks. The constraints (30.5)-(30.21) implement the legal and firm-specific 

work regulations and may be different depending on the country and company. The 

constraint (30.22) assigns the reserve usage and the outages due to reserve shortage 

for each scenario. The inequality (30.23) ensures that only planned optional reserve 

shifts are used. The equality (30.24) calculates the total costs for each scenario before 

(30.25) and (30.26) finally implement the Conditional Value at Risk. 

7.4 Results 

7.4.1 Advantages of the stochastic model 

We begin with the evaluation of the stochastic optimization model by introducing the 

expectation of the expected value problem (EEV-solution). For this, we solve a mod-

el with expected values to obtain the EV-solution and evaluate this solution with all 

scenarios. The weighted average is the EEV-solution. 

We first do not consider optional reserve shifts (from now on also called options) and 

minimize costs. Table 14 shows the results. 
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 Exp. Costs CVaR Worst Scen. Best Scen. 

EEV (no options) 66800 122200 142200 12200 

Table 14 EEV Solution without options 

The EV-solution has costs of only 12200 after optimization, but when the solution 

obtained is evaluated with the full scenarioset this solutions has expected costs of 

66800. That shows that using expected values and deterministic optimization leads to 

a very bad approximation of real costs.  

We now compare the EEV-solution with the stochastic solution (here-and-now solu-

tion). Table 15 shows the results. 

 Exp. Costs CVaR Worst Scen. Best Scen. 

EEV (no options) 66800 122200 142200 12200 

Stochastic solution 

(no options) 
19200 21000 29000 19000 

Table 15 EEV and here-and-now comparison 

The results show that stochastic optimization can reduce the expected costs to 28.7%, 

the VSS is 47600. Also the robustness in terms of CVaR and worst scenario of the 

solution is greatly increased. Deterministic optimization with average values can 

therefore not compete with stochastic optimization. 

We now allow optional reserve shifts and again compare the results. The results are 

shown in Table 16. 



Rota scheduling in public transport under uncertainty Page 141 

 Exp. Costs CVaR Worst Scen. Best Scen. 

Stochastic solution 

(no options) 
19200 21000 29000 19000 

Stochastic solution 

(with options) 
14891 16525 16825 12625 

Table 16 Stochastic solutions with and without options 

Adding optional reserve shifts to the model can again significantly decrease expected 

costs and increase robustness simultaneously. The costs are decreased by 22.4% and 

the CVaR is decreased by 21.3%. 

Up to now we only have optimized the expected costs. To check if a further im-

provement in robustness is possible, we minimize the CVaR and show all pareto-

optimal solutions with and without options in Figure 52. 

 

Figure 52 Pareto-optimal solution sets 

We see that with and without options a further improvement in robustness is possible 

when costs are slightly increased. Without options a significant decrease of 1700 is 

possible with a cost increase of only 100. With options the CVaR can be decreased 
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by 170 with a cost increase of 140, or may also be slightly increased by 22.75 with a 

cost increase of only 2. 

As a result we can conclude that using optional reserve shifts leads to better solutions 

in terms of expected costs and robustness simultaneously. The solutions can be 

slightly adjusted by restricting CVaR to levels between the cost-optimal solution and 

the maximum CVaR. 

At last, we compare the here-and-now solutions with the wait-and-see solutions with 

and without optional reserve shifts and calculate the EVPI in order to examine the 

impact of uncertainty on the objective value. Table 17 shows the results. 

 No options With options 

Here-and-now 19200 14891 

Wait-and-see 12154 12154 

EVPI 7046 2737 

Table 17 EVPI with and without options 

The expected costs of both wait-and-see solutions have the same value because using 

optional reserve shifts is more expensive than any other shift type. In the wait-and-

see models we can make an independent decision for every scenario, because we 

assume that we can anticipate the scenario because of having perfect information. 

Therefore, optional reserve shifts are not used under this unrealistic assumption. The 

wait-and-see models are only useful to assess the value of perfect information, if it 

was available. 

We also can see that the EVPI is much lower in the model with options. That shows 

that optional reserve shifts are an efficient method to counteract uncertainty and lead 

to better solution quality. 

7.4.2 Reserve usage 

We now take a closer look at the reserve usage of the stochastic solutions without 

options. We compare the solution with the best Conditional Value at Risk and the 

cost-optimal solution.  
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Objective Expected costs CVaR 

Options allowed no no 

Expected costs 19200 19300 

Present reserves 63 64 

Outages due to 

reserve shortage 
1 0 

Table 18 Reserve usage comparison without options 

The cost-optimal solution uses 63 present reserves while the solution with the best 

CVaR has 64 present reserves. With this additional reserve, the costs of one or sever-

al of the expensive scenarios are improved, so that the CVaR decreases. The cost-

optimal solution causes one outage although that causes penalty costs that are be-

tween 33.33 times and 50 times higher than one reserve (depending on the weekday). 

We now add the solutions with options to the table to analyze them. 

Objective Exp. costs CVaR Exp. costs CVaR 

Options allowed no no yes yes 

Expected costs 19200 19300 14891 15031 

Present reserves 63 64 22 28 

Options - - 42 36 

Exercised Options 

(avg. per scenario) 
- - 11.62 7.68 

Outages due to reserve 

shortage 
1 0 0 0 

Table 19 Reserve usage comparison with and without options 

The results show that present reserves are significantly less used when options are 

available. Because options enable a specific reaction on the scenario, present reserves 

are not needed for days where further absences are unlikely: These can be covered by 

options, what is altogether cheaper. This explains the decrease of the expected costs. 
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Furthermore, the outage disappears. Concluding, it is inefficient to have many out-

ages: Only one outage in one solution is optimal; all other absences are covered by 

reserve shifts. 

The sum of present reserves and average exercised options, which denotes the num-

ber of average used reserves, also decreases significantly. This is possible because of 

the additional flexibility of optional reserve shifts. Figure 53 shows a comparison. 

 

Figure 53 Reserve usage comparison 

We see that the number of non-exercised options, which are relatively cheap, is high-

er than the number of exercised options, which are relatively expensive. This again 

shows the decrease of expected costs.  

The solution with options where the CVaR is optimized uses more present reserves 

compared to the cost-optimal solution with options, because then in more scenarios 

the cheaper present reserves can be used so that less options need to be exercised in 

costly scenarios what results in a solution where the values of the costs of the scena-

rios are less wide spread. Therefore the CVaR is better. On the other hand, due to the 
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usage of more present reserves, which are not needed in all scenarios, the expected 

costs of this solution increase. 

7.4.3 Evaluation with another scenarioset 

In our preliminary results, we used the same scenarioset for optimization and evalua-

tion. But as we can only use a limited number of scenarios during the optimization 

and therefore not include all integer combinations of different sickness absence rates 

for all weekdays and future scenarios might be different to those used during optimi-

zation, we have to evaluate the solutions with another scenarioset to validate the so-

lutions found with the stochastic optimization model.  

To do this, we solve the stochastic model with the scenarioset for optimization, fix 

all stage-1 variables to the values of the optimal solution and then optimize the mod-

el again with the other scenarioset for evaluation. Now the only unfixed decision 

variables are the stage-2 variables that are the recourse decisions for the scenarios. 

Thus, only the planned optional reserves can be used to adjust the solution to the 

scenarioset used for evaluation.  

These solutions are now compared with the EEV-solution, which is also evaluated 

with the other scenarioset. Figure 54 shows the expected costs and the CVaR of the 

solutions found; it compares these values and shows their changes due to the evalua-

tion with the other scenarioset. 
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Figure 54 Solutions evaluated with other scenarioset 

We can see that although the costs of the stochastic solutions with options increase 

after simulating them with the other scenarioset, they are by far better than the de-

terministic EEV-solution. Even the stochastic model without using options is signifi-

cantly better than a deterministic solution. This is because the EEV-solution does not 

use any information about the scenario distribution. A further drawback that results 

from this fact is that the deterministic solution does not use options although it may 

do: Using options is more expensive than using present reserves to cover absences 

and as there is only one scenario in the deterministic model, it only uses present re-

serves. 

If we now take a closer look at the costs and the CVaR of the solutions before and 

after the simulation, we spot that after the simulation some solutions are dominated. 

Table 20 and Table 21 show these values for the solutions; dominated solutions are 

italic. 
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Costs before    

simulation 

CVaR before  

simulation 

Costs after      

simulation 

CVaR after     

simulation 

19200 21000 20000 29000 

19300 19300 20300 29300 

Table 20 Solutions without options before and after simulation 

Regarding the solutions without options, the solution with a better CVaR after the 

optimization has higher costs and a worse CVaR after simulating it with the other 

scenarioset. Therefore it is dominated. 

Costs before    

simulation 

CVaR before   

simulation 

Costs after       

simulation 

CVaR after      

simulation 

14891 16525 15793 26565 

14893 16475 15835 26635 

15031 16355 16055 26555 

Table 21 Solutions with options before and after simulation 

The same can be observed at the second solution in Table 21, where options are al-

lowed. This is because by restricting or optimizing the CVaR, additional costs are 

used to change the worst scenarios of the scenarioset. By changing the scenarioset, 

other scenarios are considered in the CVaR, so that the additional costs may not im-

prove the worst scenarios in the other scenarioset. Nonetheless, the last solution of 

Table 21 is just as good as to be not dominated. Therefore, some common properties 

in the scenariosets seem to exist, that enable slightly better CVaRs after evaluation 

with another scenarioset.  

7.5 Conclusion 

A new stochastic optimization model for rota scheduling in public transport with 

optional reserve shifts was developed. The stochastic model outperforms the deter-

ministic optimization model significantly. The expected costs could be decreased to 

29% by using stochastic optimization.  
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It is possible to solve stochastic models with data-instances of real size. The integra-

tion of optional reserve shifts was also possible without a significant increase of solu-

tion times. This integration as a method of contractual risk management could further 

increase solution quality and robustness simultaneously.  

Finally, the solutions were validated with simulation: The stochastic solutions with 

and without options will find good solutions independently from the scenarioset, as 

costs only slightly increase after simulation. Deterministic solutions led to excessive 

high costs and can therefore not compete with the stochastic solutions. This new ap-

proach developed is therefore better as it produces cheaper solutions than determinis-

tic optimization. Furthermore, it reduces the daily managerial burden of bus compa-

nies as plans fit better to the real situation and additional reserve drivers do not have 

to be called at short notice anymore. 
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8 Conclusion and outlook 

The aim of this thesis was to create better models for robust planning under uncer-

tainty in scheduled passenger traffic by implementing an integrated risk management 

strategy into the models of the planning process. First, the planning process with its 

uncertainties was introduced, the relevant literature was reviewed and open research 

questions were discussed in Chapter 2.  

The foundations for this thesis were introduced in Chapter 3. The terms risk and ro-

bustness were defined, risk management was explained and the advantages of an 

integrated risk management strategy were discussed. Also the methods for optimiza-

tion under uncertainty were reviewed and stochastic programming, as the most suita-

ble method for this work, was introduced in detail. 

The open research questions were treated in the Chapters 4 - 7. For each developed 

model realistic case studies were used as data for the optimization. In Chapter 4 a 

new model for robust airline schedule design under fuel price and demand uncertain-

ty was developed. The impacts of different fuel price scenarios on optimal schedule 

design were shown. Furthermore the integration of financial hedging instruments into 

the operational planning enabled best profits at every robustness level.  

A new model for robust airline re-fleeting under fuel price and demand uncertainty 

was introduced in Chapter 5. The fuel price scenarios also had a significant impact 

on optimal fleet assignment. Again, only the integrated planning of financial hedging 

instruments and operational planning could guarantee the best profit for all risk le-

vels. 

Chapter 6 showed a new approach for robust vehicle scheduling in public bus trans-

port. A new stochastic programming model was developed. Although this model is 

only heuristic, the simulation and integration of a column generation approach could 

prove that it produces good results for robust planning under real conditions. Fur-

thermore, a promising extension that integrated weather derivatives was proposed, 

but real data on the impact of weather on delays in public bus transport is necessary 

to score the effectiveness of this extension.  

Chapter 7 finally presented a model for rota scheduling under uncertain illness ab-

sence rates in public transport. The results show that an explicit consideration of his-
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torical illness absence rates in a stochastic optimization model leads to better results 

than deterministic optimization. The integration of contractual risk management via 

optional reserve shifts could again create superior solutions in terms of robustness 

and costs. 

Therefore all open research questions found were treated. In every case, a stochastic 

optimization model with an integrated risk management strategy was used to show 

that robust planning could be improved. Every time a set of pareto-optimal solutions 

in terms of profit or costs and robustness, including solutions from the most robust 

solution to the solution with optimal costs/profit, was created. The maximum robust-

ness could be increased by integrating contractual risk management in all four mod-

els.  

All models were implemented in C# and solved as deterministic equivalent with 

Cplex 11
134

. As they offer precise evaluation, stochastic programming models with 

an integrated risk management strategy were a suitable method to enable better risk-

aware planning in scheduled passenger traffic. Although computational power still 

prevents solving large-scale instances to optimality, it was possible to solve real 

small and medium-sized instances of the stochastic optimization models developed. 

This shows their applicability. Thus, stochastic optimization was an appropriate me-

thod to show the tradeoffs between robustness and profit-optimality.  

In future, when more computationally powerful computers and better software for 

solving stochastic optimization models might be available, also large instances may 

be solvable. It may also be possible to create more specialized solution methods for 

the models developed in this thesis in order to solve larger instances. 

Another topic for future research is the scenario generation and the sensitivity analy-

sis of the whole models developed, if the distributions for the uncertain parameters 

are unknown. Like for most stochastic programming applications, it was assumed 

that at least the distributions for the uncertain parameters are known or that real sce-

narios exist and can be used for optimization, as argued in chapter 6. If this is not the 

case, the models developed could be optimized with one distribution and evaluated 

                                                 

134
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with several other distributions to score if they also produce good results under these 

circumstances. 

Furthermore it may be possible to integrate several planning phases into one stochas-

tic optimization model to take advantage of potential interactions between planning 

phases in future. This could, for example, be done for airline schedule design and 

airline re-fleeting to take advantage of interactions between network planning and 

fleet assignment under uncertainty. In addition, several booking classes like econo-

my, business or first class could be added to these models. 

The integration of several planning phases is already done with deterministic optimi-

zation models in this field of application and often shows good results, but the devel-

opment of applicable approaches for large real problem instances is still a task for 

future research because of the highly increased computational complexity. 





References Page 153 

 

9 References 

[AF08]  Air France Press Office ―The Air France commitment to the environment‖, 
http://corporate.airfrance.com/uploads/media/DP-Environnemental-
EN.pdf (accessed 06/01/11) (2008)  

[ATA10] Air Transportation Association ―Annual Traffic and Ops: World Airlines‖, 
http://www.airlines.org/economics/traffic/World+Airline+Traffic.htm (ac-
cessed 02/10/10) 

[ATA11]  Air Transportation Association - Office of Economics ―U.S. passenger 
airline cost index – 3rd quarter 2010‖, 
http://www.airlines.org/Economics/DataAnalysis/Documents/CostIndexCh
arts.pdf (accessed 02/16/11) 

[ATA11b] Air Transportation Association ―ATA Quarterly Cost Index: U.S. Passen-
ger Airlines", 
http://www.airlines.org/Economics/DataAnalysis/Documents/CostIndexTa
bles.xls (accessed 02/16/11) 

[BaCo04] C. Barnhart and A. Cohn ―Airline Schedule Planning: Accomplishments 
and Opportunities‖, Manufacturing & Service Operations Management 6, 
3-22 (2004) 

[Bar99] P. Barla ―Demand Uncertainty and Airline Network Morphology with Stra-
tegic Interactions‖, Université Laval - Département d'économique - Cahi-
ers de recherché, No 9907 (1999) 

[BarCon99] P. Barla and C. Constantatos ―The Role of Demand Uncertainty in Airline 
Network Structure‖, Université Laval - Département d'économique - 
Cahiers de recherché, No 9903 (1999) 

[BeHo93] M. E. Berge and C. A. Hopperstad ―Demand Driven Dispatch: A Method 
for Dynamic Aircraft Capacity Assignment, Models and Algorithms‖, Op-
erations Research 41, 153-168 (1993) 

[BGP07] R. Borndörfer, M. Grötschel and M. E. Pfetsch ― A Column-Generation 
Approach to Line Planning in Public Transport‖, Transportation Science 
41, 123-132 (2007) 

[BiLo97]  J. R. Birge and F. Louveaux ―Introduction to stochastic programming‖, 
Springer, New York et al. (1997) 

[BMAS10] Bundesministerium für Arbeit und Soziales ―Statistisches Taschenbuch 
2010―, 
http://www.bmas.de/portal/47982/statistisches__taschenbuch__2010.htm
l (accessed 04/26/10) 

[BuKl09] S. Bunte and N. Kliewer ―An Overview on Vehicle Scheduling Models‖, 
Public Transport 1, 299-317 (2009) 

[CaMa10] L. Cadarso, A. Marín ―Robust passenger oriented airline scheduling‖, 
http://www.optimization-online.org/DB_FILE/2010/10/2782.pdf (accessed 
08/10/2011) 

[Cen09] A. Cento ―The Airline Industry‖, Springer, Heidelberg (2009) 

[Chv83] V. Chvátal ―Linear Programming‖, W. H. Freeman, New York (1983) 

[CLLR10] J. Clausen, A. Larsen, J. Larsen and N. Rezanova ―Disruption manage-
ment in the airline industry – concepts, models and methods‖, Computers 
& Operations Research 37, 809–821 (2010) 



Page 154 References 

 

[CJNZ97] L. Clarke, E. Johnson, G. Nemhauser and Z. Zhu ―The aircraft rotation 
problem‖, Annals of Operations Research 69, 33-46 (1997) 

[CERS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein „Introduction to Al-
gorithms‖, 2. Edition, MIT Press and McGraw-Hill, Cambridge (2001) 

[CoWo04]  R. Cobbs and A. Wolf ―Jet fuel hedging strategies: Options available for 
airlines and a survey of industry practices‖, Finance 467 (2004) 

[CRS06] D. Carter, D.A. Rogers and B.J. Simkins ―Does Hedging Affect Firm Val-
ue? Evidence from the US Airline Industry―, Financial Management 35, 
53-86 (2006) 

[DB08]  Deutsche Bank Research ―Aviation sector in crisis: There will be consoli-
dation, but not a bloodbath‖, 
http://www.dbresearch.de/PROD/DBR_INTERNET_DE-
PROD/PROD0000000000231327.pdf  (accessed 06/01/11) (2008) 

[DDD+97] G. Desaulniers, J. Desrosiers, Y. Dumas, M. Solomon, F. Soumis ‖Daily 
Aircraft Routing and Scheduling‖, Management Science 43, 841-855 
(1997)  

[DeSo89] M. Desrochers and F. Soumis ―A Column Generation Approach to the 
Urban Transit Crew Scheduling Problem‖, Transportation Science 23, 1-
13 (1989) 

[DHNM99] M. Dessouky, R. Hall, A. Nowroozi and K. Mourikas ―Bus dispatching at 
timed transfer transit stations using bus tracking technology‖, Transporta-
tion Research Part C 7, 187-208 (1999) 

[Dü10] V. Dück ―Increasing Stability of Aircraft and Crew Schedules―, Disserta-
tion at the University of Paderborn (2010) 

[DWD] Deutscher Wetterdienst ―Klimadaten Deutschland - Zeitreihen an Statio-
nen - Tageswerte - 10384 Berlin-Tempelhof‖, 
http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop?_nfpb=tru
e&_windowLabel=T82002&_urlType=action&_pageLabel=_dwdwww_kli
ma_umwelt_klimadaten_deutschland (accessed 09/12/10) 

[EIA]  Energy Information Administration ―Petroleum Navigator‖, 
http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_d.htm (accessed 
11/26/2009) 

[EJH+04]  A. T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens and D. Sier ―An An-
notated Bibliography of Personnel Scheduling and Rostering‖, Annals of 
Operations Research 127, 21–144 (2004) 

[EJKS04] A. T. Ernst, H. Jiang, M. Krishnamoorthy and T. Sier ―Staff scheduling 
and rostering: A review of applications, methods and models‖, European 
Journal of Operational Research 153, 3-27 (2004) 

[EKS00] T. Emden-Weinert, H. Kotas and U. Speer ―DISSY – a driver scheduling 
system for public transport‖, Version 0.35, 05/17/2000, 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.7675 (ac-
cessed 06/28/2011) 

[EUR11] Eurocontrol ―CODA Digest – Annual 2010‖, 
http://www.eurocontrol.int/coda/gallery/content/public/docs/coda_reports/
2010/Annual%202010%20DIGEST.pdf (accessed 04/20/11) 

[EtMa85] M. Etschmeier and D. Mathaisel „Airline Scheduling: An Overview―, 
Transportation Science 19, 127-138 (1985) 



References Page 155 

[Fab08]  C. Fabian ―Handling CVaR objectives and constraints in two-stage sto-
chastic models‖, European Journal of Operations Research 191, 888-911 
(2008) 

[Fre04] R. Freund ―Benders‘ Decomposition Methods for Structured Optimization, 
including Stochastic Optimization‖, Massachusetts Institute of Technology 
(2004) 

[GoJo05] B. Gopalakrishnan and E. Johnson ―Airline Crew Scheduling: State-of-
the-Art‖, Annals of Operations Research 140, 305–337 (2005) 

[GoTa98] R. Gopalan and K. T. Talluri ―Mathematical models in airline schedule 
planning: A survey‖, Annals of Operations Research 76, 155–185 (1998) 

[HFW04] D. Huisman, R. Freling and A. Wagelmans ―A Robust Solution Approach 
to the Dynamic Vehicle Scheduling Problem‖, Transportation Science 38, 
447-458 (2004) 

[Hull03] J. C. Hull ―Options, Futures & other Derivatives‖, 5. Edition. Prentice Hall, 
New Jersey (2003) 

[HsWe00] C. Hsu and Y. Wen ―Application of Grey theory and multiobjective pro-
gramming towards airline network design‖, European Journal of Opera-
tional Research 127, 44-68 (2000) 

[HsWe02] C. Hsu and Y. Wen ―Reliability evaluation for airline network design in 
response to fluctuation in passenger demand‖, Omega 30, 197-213 
(2002) 

[IATA] International Air Transport Association ―Jet fuel price monitor‖ 
http://www.iata.org/whatwedo/economics/fuel_monitor/index.htm (ac-
cessed 11/22/09) 

[IATAb] International Air Transport Association ―Load Factors Drop as Passenger 
Demand Falls - Freight Stabilises‖, 
http://www.iata.org/pressroom/pr/2009-04-28-01.htm (accessed 02/10/10) 

[IBM] IBM ―IBM ILOG CPLEX Optimizer‖, http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/ (accessed 
10/20/12) 

[JGN00] A. Jarrah, J. Goodstein and R. Narasimhan ―An Efficient Airline Re-
Fleeting Model for the Incremental Modification of Planned Fleet Assign-
ments‖, Transportation Science 34, 349-363 (2000) 

[KKM09] S. Kramkowski, N. Kliewer and C. Meier „Heuristic Methods for Increas-
ing Delay-Tolerance of Vehicle Schedules in Public Bus Transport‖, Me-
taheuristic International Conference 2009 Proceedings (2009) 

[KMS06] N. Kliewer, T. Mellouli and L. Suhl „A time–space network based exact 
optimization model for multi-depot bus scheduling―, European Journal of 
Operational Research 175, 1616–1627 (2006) 

[Kli05] N. Kliewer ―Optimierung des Fahrzeugeinsatzes im öffentlichen Perso-
nennahverkehr―, Dissertation at the University of Paderborn (2005) 

[KW94] P. Kall and S. Wallace ―Stochastic Programming‖, Wiley, Chichester et al. 
(1994) 

[Lau96] H. C. Lau ―On the complexity of manpower shift scheduling‖, Computers 
& Operations Research 23, 93-102 (1996) 

[LCB06] S. Lan, J.-P. Clarke and C. Barnhart "Planning for robust airline opera-
tions: Optimizing aircraft routings and flight departure times to minimize 
passenger disruptions", Transportation Science 40, 15–28 (2006) 



Page 156 References 

 

[LeNa98] P. Lederer and R. Nambimadom ―Airline Network Design‖, Operations 
Research 46, 785-804 (1998) 

[Leu98] H. Leuthardt „Kostenstrukturen von Stadt-, Überland- und Reisebussen―, 
Der Nahverkehr 6, 19-23 (1998) 

[LWN+03] G. List, B. Wood, L. Nozick, M. Turnquist, D. Jones, E. Kjeldgaard and C. 
Lawton ―Robust Optimization for fleet planning under uncertainty‖, Trans-
portation Research Part E 39, 209-227 (2003) 

[LoBa04]  M. Lohatepanont and C. Barnhart. ―Airline Schedule Planning: Integrated 
Models and Algorithms for Schedule Design and Fleet Assignment‖, 
Transportation Science 38, 19-32 (2004) 

[NaSu12] M. Naumann, L. Suhl ―How does fuel price uncertainty affect strategic 
airline planning?‖,Operational Research, DOI 10.1007/s12351-012-0131-
0, http://dx.doi.org/10.1007/s12351-012-0131-0 (accessed 02/23/13) 
(2012) 

[NSK11] M. Naumann, L. Suhl, S. Kramkowski „A stochastic programming ap-
proach for robust vehicle scheduling in public bus transport‖, Procedia 
Social & Behavioral Sciences 20, 826-835 (2011) 

[NSF12] M. Naumann, L. Suhl, M. Friedemann ―A stochastic programming model 
for integrated planning of re-fleeting and financial hedging under fuel 
price and demand uncertainty‖, EWGT 2012 Compendium of Papers, 
http://www.lvmt.fr/ewgt2012/compendium_7.pdf (accessed 10/20/12) 
(2012) 

[NW99] G. Nehmhauser and L. Wolsey ―Integer and combinatorial Optimization‖, 
Wiley, New York et al. (1999) 

[RiSo94] C. Ribeiro and F. Soumis ―A Column Generation Approach to the Mul-
tiple-Depot Vehicle Scheduling Problem‖, Operations Research 42, 41-52 
(1994) 

[RoUr00]  R. Rockafellar and S. Uryasev ―Optimization of Conditional Value-at-
Risk‖, The Journal of Risk 2, 21-41 (2000) 

[SBH10] H. D. Sherali, K. Bae and M. Haouari „Integrated Airline Schedule Design 
and Fleet Assignment: Polyhedral Analysis and Benders Decomposition 
Approach―, Informs Journal on Computing 22, 500-513 (2010)  

[SBZ05] H. D. Sherali, E. Bish and X. Zhu. ―Polyhedral analysis and algorithms for 
a demand driven re-fleeting model for aircraft assignment‖, Transporta-
tion Science 39, 349-366 (2005) 

[SBZ06] H. D. Sherali, E. K. Bish and X. Zhu. „Airline fleet assignment concepts, 
models, and algorithms―, European Journal of Operational Research 172, 
1–30 (2006) 

[Sch01] A. Scholl ―Robuste Planung und Optimierung: Grundlagen, Konzepte und 
Methoden – Experimentelle Untersuchungen‖, Physica-Verlag, Heidel-
berg (2001) 

[Schä03]  H. Schäfer „Hedging von Geschäftsrisiken im Rahmen des betrieblichen 
Risikomanagements― In: H. Schäfer (Eds.) „Finanzmanagement im Wan-
del. Innovative Praxiskonzepte für die Herausforderungen von morgen―, 
Lemmens-Verlag, Bonn, 151-171 (2003) 

[SFR80] F. Soumis, J. A. Ferland and J. Rousseau ‖A model for large—scale air-
craft routing and scheduling problems‖, Transportation Research Part B 
14 (1-2), 191-201 (1980) 



References Page 157 

[SGSK10] I. Steinzen, V. Gintner, L. Suhl, N. Kliewer „A Time-Space Network Ap-
proach for the Integrated Vehicle- and Crew-Scheduling Problem with 
Multiple Depots‖, Transportation Science 44, 367-382 (2010) 

[ShZh08] H. D. Sherali and X. Zhu ―Two-Stage Fleet Assignment Model Consider-
ing Stochastic Demands‖, Operations Research 56, 383-399 (2008) 

[SJKN05] A. Schaefer, E. Johnson, A. Kleywegt and G. Nemhauser ‖Airline Crew 
Scheduling Under Uncertainty‖, Transportation Science 39, 340–348 
(2005) 

[SoNo04] M. S. Sodhi and S. Norris ―A Flexible, Fast, and Optimal Modeling Ap-
proach Applied to Crew Rostering at London Underground‖, Annals of 
Operations Research 127, 259-281 (2004) 

[Sta12] Statista GmbH ―Durchschnittlicher Preis für Dieselkraftstoff in den Jahren 
1950 bis 2012 (Cent pro Liter)―, 
http://de.statista.com/statistik/daten/studie/779/umfrage/durchschnittsprei
s-fuer-dieselkraftstoff-seit-dem-jahr-1950/ (accessed 09/15/12) (2012) 

[SZ08] U. Schmidt and H. Zank „Versicherungsnachfrage und Ausfallerwartung―, 
Zeitschrift für die gesamte Versicherungswissenschaft 97, 21-32 (2008) 

[Ta96] K. T. Talluri ―Swapping Applications in a Daily Airline Fleet Assignment‖, 
Transportation Science 30, 237-248 (1996) 

[Tri05]  A. J. Triantis ―Corporate Risk Management: Real Options and Financial 
Hedging‖. In: M. Frenkel, U. Hommel, M. Rudolf ―Risk Management―, 2nd 
Edition, 591-608, Springer, Berlin (2005) 

[WeHs06] Y. Wen and C. Hsu ―Interactive multiobjective programming in airline 
network design for international airline code-share alliance‖, European 
Journal of Operational Research 174, 404–426 (2006) 

[WH+08] V. Warburg, T. Hansen, A. Larsen, H. Norman and E. Andersson „Dy-
namic airline scheduling: An analysis of the potentials of refleeting and 
retiming―, Journal of Air Transport Management 14, 163–167 (2008) 

[Wol98]  L. A. Wolsey ―Integer Programming‖, Wiley, New York et al. (1998) 

[XNS12] L. Xie, M. Naumann, L. Suhl ―A stochastic model for rota scheduling in 
public bus transport‖, Proceedings of 2nd Stochastic Modeling Tech-
niques and Data Analysis International Conference, Chania, 785-792 
(2012) 

[YTF08] S. Yan, C. Tang and T. Fu ―An airline scheduling model and solution al-
gorithms under stochastic demands‖, European Journal of Operational 
Research 190, 22–39 (2008) 

[Yu98] G. Yu (Ed.) ―Operations Research in the airline industry‖, Kluwer Acad. 
Publ., Boston et al. (1998) 

[Zhu06] X. Zhu „Discrete Two-Stage Stochastic Mixed-Integer Programs with 
Applications to Airline Fleet Assignment and Workforce Planning Prob-
lems―, Dissertation at the Virginia Polytechnic Institute and State Univer-
sity, Blacksburg (2006) 

 


