
Martin Dräxler

Resource Allocation and Scheduling in
Dense Mobile Access Networks

Dissertation

accepted by the

Faculty of Electrical Engineering,
Computer Science, and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

Paderborn, April 2015

mailto:martin.draexler@uni-paderborn.de

Referees:
Prof. Dr. Holger Karl, University of Paderborn, Germany
Dr. Vincenzo Mancuso, IMDEA Networks Institute, Madrid, Spain

Additional committee members:
Prof. Dr. Gitta Domik-Kienegger, University of Paderborn, Germany
Prof. Dr. Falko Dressler, University of Paderborn, Germany
Dr. Jens Simon, University of Paderborn, Germany

Submission: 29.04.2015
Examination: 12.06.2015

Abstract

Traffic in wireless access networks has been growing substantially in recent years,
both in terms of total volume and of data rate required by individual users. This
leads to the deployment of very dense and heterogeneous wireless networks. This
growth cannot only be addressed by simply scaling existing networks by orders of
magnitude, to fulfill traffic forecasts, due to limited backhaul capacity, increased
energy consumption, and explosion of signaling traffic. Thus wireless transmis-
sions have to be coordinated and available wireless resources have to be utilized
more efficiently. Furthermore backhaul networks have to be dynamically adapted
to the requirements of wireless access networks.

In this thesis, I present two different approaches for the efficient operation of
wireless access networks:

First, I introduce anticipatory download scheduling, an approach to efficient
download scheduling for video segments in high demand video streaming, based
on prediction of future available data rates. I investigate this approach with
respect to the quality of experience (QoE) for users and also present an extension
to use this approach to increase the energy efficiency of mobile access networks.

Second, I introduce backhaul network reconfiguration to efficiently allocate back-
haul resources based on requirements from wireless coordination. This approach is
based on Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON)
backhaul networks and increases the feasibility of wireless coordination while re-
ducing the power consumption of the backhaul network.

For both approaches I present a system architecture to integrate the approaches
into the existing infrastructure of mobile access networks. Based on these archi-
tectures, I also present prototype implementations for both approaches.

Zusammenfassung

Der Datenverkehr in drahtlosen Zugangsnetzen hat sich in den letzten Jahren
erheblich vervielfacht, sowohl im Bezug auf die gesamte Verkehrslast, als auch
im Bezug auf die geforderte Datenrate pro Benutzer. Dies führt dazu, dass sehr
dichte, heterogene drahtlose Zugangsnetze notwendig sind. Dieses Wachstum an
Datenverkehr, das auch verschiedene Studien für die Zukunft vorhersagen, kann
nicht einfach nur durch ein Verdichten der drahtlosen Zugangspunkte gehand-
habt werden, da dadurch mehrere Probleme durch begrenzte Backhaulkapazitäten,
erhöhten Energieverbrauch und verstärkt nötige Signalisierung im Netzwerk ent-
stehen. Deshalb müssen zudem die drahtlosen Übertragungen koordiniert werden
und die zur Verfügung stehenden drahtlosen Ressourcen effizienter genutzt wer-
den. Weiterhin muss auch das Backhaulnetzwerk dynamisch an die Anforderungen
des drahtlosen Zugangsnetzwerks angepasst werden.

In dieser Arbeit stelle ich zwei verschiedene Ansätze vor, um das drahtlose
Zugangsnetz effizienter zu betreiben:

Als erstes stelle ich anticipatory download scheduling vor, einen Ansatz zur Ko-
ordination von effizienten Segment-Downloads für hochauflösendes Video-Streaming,
basierend auf der Vorhersage von zukünftig zur Verfügung stehenden Datenraten.
Ich untersuche diesen Ansatz in Bezug auf die Dienstgüte für die Nutzer und stelle
zudem eine Erweiterung vor, um die Energieeffizienz des drahtlosen Zugangsnetzes
zu erhöhen.

Als zweites stelle ich backhaul network reconfiguration vor, um die Ressourcen
des Backhaulnetzes effizient, auf Basis der Anforderungen des drahtlosen Zugangs-
netzes, zuzuteilen. Dieser Ansatz basiert auf Wavelength-Division-Multiplexed
Passive Optical Network (WDM-PON) Backhaul-Netzen und erhöht die Rea-
lisierbarkeit von drahtloser Koordination. Zudem verringert dieser Ansatz den
Energieverbrauch des Backhaulnetzwerks.

Für beide Ansätze stelle ich konkrete Systemarchitekturen vor, um die Ansätze
in die bestehende Zugangsnetz-Infrastruktur zu integrieren. Auf Basis dieser Sys-
temarchitekturen habe ich zudem einen Prototypen für jeden der Ansätze imple-
mentiert.

Acknowledgements

First of all, I would like to thank Holger Karl for supervising me during my work
that led to this thesis. He was always open for interesting discussions, always
encouraged me with my work, and was always available when I needed advice.

I would also like to thank my current and former colleagues in the Research
Group Computer Networks at the University of Paderborn, in the EU project
CROWD and the SPAN collaboration for all the insightful discussions and shared
experiences. Especially I would like to thank Vincenzo Mancuso for being available
as the second examiner of this thesis, and Thorsten Biermann and Stefan Valentin
for the inspiring discussions that eventually led to the approaches and results in
this thesis.

Finally, I am very thankful for Sevil always being there for me, always loving
me and always supporting me with my work and my thesis. Also, I would have
never finished my PhD without the support from my family and all the friends in
different parts of the world.

Contents

1 Introduction 1
1.1 Current Trends and Issues in Mobile Access Networks 1

1.1.1 Increasing Data Rate Demands 1
1.1.2 Densification of Mobile Access Networks 2

1.2 Scope & Goals . 3
1.3 Approaches . 4

1.3.1 Anticipatory Download Scheduling 4
1.3.2 Backhaul Reconfiguration 5

1.4 Contributions . 5
1.5 Structure of the Thesis . 7

2 Technical Background 11
2.1 Backhaul Networks . 11

2.1.1 WDM-PON . 12
2.1.2 Power Consumption . 13
2.1.3 Software Defined Networks 13

2.2 Wireless Access Networks . 14
2.2.1 Simple 3GPP Radio Model 15
2.2.2 GreenTouch Radio Model 16
2.2.3 Power Consumption . 17

2.3 Wireless Coordination . 18
2.3.1 Coordinated Multipoint Transmission and Reception 18
2.3.2 Software Defined Base Station Coordination 20

2.4 Application Layer . 20
2.4.1 HTTP Live Streaming . 20
2.4.2 Data Rate Prediction . 21

3 State of the Art & Related Work on Anticipatory Download Schedul-
ing 23
3.1 Smarter Phones and Networks . 23
3.2 Related Work . 24

4 Anticipatory Download Scheduling with Perfect Prediction 27
4.1 Problem Description . 28
4.2 Optimal Solution . 29

4.2.1 Model Assumptions . 29
4.2.2 Mixed Integer Quadratically Constrained Program 30
4.2.3 Objective . 32

vii

Contents

4.2.4 Complexity . 32
4.3 Fill Algorithm . 33
4.4 Greedy Algorithms . 36

4.4.1 BufferFirst Algorithm . 36
4.4.2 QualityFirst Algorithm . 37

4.5 Evaluation . 38
4.5.1 Scenario . 38
4.5.2 Results . 39
4.5.3 Algorithm Running Times 41

4.6 Summary . 42

5 Anticipatory Download Scheduling with Uncertain Prediction 43
5.1 Problem Description . 44
5.2 Generic Predictor . 44

5.2.1 Stochastic Model of Prediction Errors 45
5.2.2 Implementation . 45

5.3 Evaluation of Perfect Prediction Algorithms with Uncertain Predictions 46
5.3.1 Scenario . 46
5.3.2 Results . 46

5.4 Plan Algorithm . 49
5.5 Evaluation . 56

5.5.1 Comparison with Perfect Prediction Schedulers 56
5.5.2 Influence of the Prediction Horizon 61

5.6 Summary . 62

6 Anticipatory Download Scheduling for Energy Efficiency 63
6.1 Problem Description . 64
6.2 Optimal Solution . 65

6.2.1 OptBasic . 66
6.2.2 OptFlex . 68

6.3 Two-Phase Algorithm . 69
6.3.1 Quality selection phase . 69
6.3.2 Base station disabling phase 72

6.4 Evaluation . 73
6.4.1 Scenarios . 73
6.4.2 Three BSs Scenario Results 74
6.4.3 Train Scenario Results . 78

6.5 Summary . 79

7 Anticipatory Download Scheduling Prototype 81
7.1 System Design . 81

7.1.1 Design Decisions . 82
7.1.2 Architecture and Implementation 83

7.2 Prototype Implementation . 84
7.2.1 Protocol Extension . 84
7.2.2 Testbed . 86

viii

Contents

7.3 Evaluation . 88
7.4 Summary . 90

8 State of the Art & Related Work on Backhaul Network Reconfigu-
ration 91
8.1 Backhaul Network Reconfiguration for CoMP 91
8.2 CROWD Controller Architecture . 93
8.3 Related Work . 96

9 Backhaul Network Reconfiguration 97
9.1 Problem Description . 98
9.2 Optimal Solution . 99

9.2.1 Integer Linear Program . 99
9.2.2 Complexity . 102

9.3 BFS Algorithm . 102
9.3.1 Inputs . 103
9.3.2 Algorithm Implementation 103

9.4 Evaluation . 107
9.4.1 Scenario . 107
9.4.2 Comparison: Optimization vs. Heuristic Algorithm 108
9.4.3 Heuristic Algorithm in Large Scenarios 110
9.4.4 Energy Efficiency . 113

9.5 Summary . 114

10 Backhaul Network Reconfiguration Extension for DenseNets 115
10.1 Problem Description . 116
10.2 Hotspot BFS Algorithm . 116
10.3 Evaluation . 118

10.3.1 Hotspot Scenario . 118
10.3.2 Hotspot Scenario Results . 119
10.3.3 Non-Hotspot Scenario Extended Results 123

10.4 Summary . 127

11 Backhaul Network Reconfiguration Prototype 129
11.1 Architecture . 130
11.2 Implementation . 131

11.2.1 Controller and CLC Manager Plugin 131
11.2.2 Backhaul Network with Maxinet 133
11.2.3 Prototype Setup . 134

11.3 Evaluation . 136
11.3.1 Scenario . 136
11.3.2 Results . 136

11.4 Summary . 138

12 Conclusion & Future Research Directions 139
12.1 Discussion . 139

ix

Contents

12.2 Conclusion . 140
12.3 Future Research Directions . 141

Acronyms 143

Bibliography 145

x

List of Figures

1.1 Scope of the thesis . 3

2.1 WDM-PON example . 12
2.2 Software-Defined Network (SDN) architecture [ONF13] 14
2.3 Radio model components . 15
2.4 Coordinated Multipoint Transmission and Reception 19
2.5 Single variant HTTP Live Streaming (HLS) example with high-quality

segments, each 10 seconds long . 20
2.6 Multi-variant master playlist with three variants 21

4.1 Scheduling Example . 29
4.2 Flowchart for Fill Scheduler, specifically Algorithm 4.2 34
4.3 Coordinated Multipoint Transmission and Reception 36
4.4 Example for BufferFirst Algorithm 37
4.5 Example for QualityFirst Algorithm 37
4.6 Evaluation scenario . 38
4.7 Simulation results: average quality 40
4.8 Simulation results: average lateness 40
4.9 Simulation results: average buffer level 41
4.10 Algorithm running times . 42

5.1 Example for scheduling with uncertain prediction 44
5.2 Evaluation of perfect prediction algorithms with uncertain predictions 48
5.3 Flowchart of the Plan algorithm 51
5.4 Probability density function for data rate prediction 52
5.5 Buffering behavior of schedulers . 53
5.6 Plan algorithm example . 56
5.7 Scheduler performance without errors e = 0 57
5.8 Scheduler performance with errors e = 2 59
5.9 Scheduler performance with errors e = 20 60
5.10 Influence of different prediction horizons 61

6.1 Interaction between problem variables and resulting effects 65
6.2 Example . 65
6.3 Flowchart for 2-Phase . 70
6.4 Segment quality and available data rate example 71
6.5 Three-Base Stations (BSs) scenario: disabled BSs 75
6.6 Three-BSs scenario: energy consumption 76
6.7 Three-BSs scenario: average video quality 76

xi

List of Figures

6.8 Three-BSs scenario: average running time 77
6.9 Train scenario results . 78

7.1 Architecture . 83
7.2 Merged single-variant HLS playlist with REFRESH and BUFFERSIZE ex-

tensions; colors indicate the different variants 85
7.3 Testbed . 87
7.4 Testbed measurement results (dashed lines) compared to simulation

results (solid lines), greedy algorithms 89
7.5 Testbed measurement results (dashed lines) compared to simulation

results (solid lines), MIQCP and Fill algorithm 90

8.1 Overall Coordinated Base Station Set (CBS) selection/reconfiguration
system architecture . 92

8.2 CROWD Controller Architecture (CCA) controllers: architecture and
interfaces [AACdlO+13a] . 94

8.3 CROWD network architecture [AACdlO+13a] 95

9.1 Example: controller selection and wavelength assignment 98
9.2 BFS Algorithm . 104
9.3 Total Wavelengths . 108
9.4 Wavelengths per Link . 109
9.5 Feasible CBSs . 109
9.6 Execution Time . 110
9.7 Feasible CBSs . 111
9.8 Total Wavelengths . 112
9.9 Wavelengths per Link . 112
9.10 Backhaul Power Consumption . 113

10.1 Hotspot BFS Algorithm . 117
10.2 Parameter study examples . 119
10.3 CBS Prioritization Simulation (mesh) 121
10.4 CBS Prioritization Simulation (tree) 122
10.5 Feasible CBSs . 123
10.6 Total Wavelengths . 124
10.7 Wavelengths per Link . 125
10.8 Backhaul Power Consumption . 126

11.1 System Architecture . 130
11.2 OpenDaylight architecture [ODL] 132
11.3 CROWD Regional Controller (CRC) modules in OpenDayLight (ODL) 133
11.4 Schematic view of Maxinet . 134
11.5 Testbed . 135
11.6 Prototype Evaluation . 137

xii

List of Tables

2.1 WDM-PON components power consumption [GRA+11] 13
2.2 Green Touch power consumption model[Gre13b, Gre13a] 18

4.1 MIQCP input parameters . 30
4.2 MIQCP variables . 30

5.1 Input variables of Plan, Algorithm 5.1 52
5.2 Example of P values in bestQualities (Cs = 8, n = 3, Q = [5, 3, 2]) 55

6.1 Input parameters . 66
6.2 Variables . 66
6.3 Train ride Paderborn-Herford, all times are given in minutes. 74

7.1 BUFFERSIZE values for time slots . 86

9.1 ILP input parameters . 99
9.2 ILP variables . 100

xiii

List of Algorithms

4.1 fillScheduler(U, T,Q) . 33
4.2 scheduleSegment(u, t, s, Q,C) 35

5.1 Plan(t, k, s, cc, Cpred, Dpred, Q) . 50
5.2 bestQualities(Cs, n,Q)) . 55

6.1 qualityAssigment(u,Du,a,t) . 71
6.2 segmentDemand(u,Du,a,t) . 72

9.1 CheckPathConstraints(u, v, s, i) 105
9.2 BackTrackBFSTrees(T,Ci) . 106
9.3 assignWavelengths(M) . 107

xv

1
Introduction

1.1 Current Trends and Issues in Mobile Access Networks 1

1.1.1 Increasing Data Rate Demands 1

1.1.2 Densification of Mobile Access Networks 2

1.2 Scope & Goals . 3

1.3 Approaches . 4

1.3.1 Anticipatory Download Scheduling 4

1.3.2 Backhaul Reconfiguration 5

1.4 Contributions . 5

1.5 Structure of the Thesis 7

1.1 Current Trends and Issues in Mobile Access
Networks

Recent studies [Cis12, Cis14a, Cis14b, Law13] on the development of mobile access
networks indicate a steep increase in volume of traffic that has to be processed
and transmitted by network equipment. This is due to two trends: 1. increasing
data rate demands from users and consequently 2. a densification of mobile access
networks. The approaches presented in this thesis deal with the issues arising from
these two trends. Both trends are described in more detail in this section.

1.1.1 Increasing Data Rate Demands

The most recent “Global Mobile Data Traffic Forecast” [Cis14b] published by
Cisco in 2014 provides very interesting insights into current and future develop-
ments of traffic in mobile access networks. In 2013, global mobile data traffic
increased by 81%, from 820 petabytes per month in 2012 to 1,5 exabytes per
month in 2013, which corresponds to 18 times as much as the monthly traffic of

1

1 Introduction

the entire Internet in 2000. More than half (53%) of the mobile data traffic in
2013 was video traffic.

For the year 2018, the study predicts a monthly global mobile data traffic of
more than 15 exabytes and a 69% share of video traffic over mobile networks.

The infrastructure of mobile access networks has to keep up with this trend
and provide the data rates to satisfy the increasing demands. This is not feasible
by only using more and more network equipment or by simply increasing the
physical layer capacity of wireless transmissions (e.g, using more spectrum). In
addition, coordination and scheduling approaches on the application layer have
to be used to utilize the physical resources of the wireless channel more efficiently
[ASM15, SPJFL15]. As video traffic already represents half of the traffic in 2013
and is expected to increase to over two thirds in 2018, the first part of this thesis
is focused especially on mobile video traffic.

In addition to the limited wireless channel resources, the backhaul network,
which transports the data between the radio access network and the core net-
work, has to be considered. With the increase in traffic handled by the radio
access network, the traffic load on the backhaul network also increases signifi-
cantly. This traffic load on the backhaul network is even increased further by the
control information that has to be exchanged between the Base Stations (BSs)
to coordinate and schedule the wireless transmissions and the backhaul network
will become a bottleneck for mobile traffic [TMF+14, JMJ+13, BSC+11, BSC+12].
Thus, in the second part, this thesis addresses the efficient allocation of backhaul
network resources.

1.1.2 Densification of Mobile Access Networks

In conjunction with increasing data rate demands, there is also an increase in the
number of network devices, referred to as densification of mobile access networks.
According to a recent study by Cisco [Cis14b] there are globally 7 billion User
Equipments (UEs) (smartphones, tablets, etc.) with an average downlink data
rate of 1.4 Mb/s per UE. 30% of traffic is transmitted over 4G networks and 45%
of traffic is offloaded to WiFi access points or femto cells. The study predicts for
2018 that the number of UEs will increase to 10 billion with an average downlink
data rate of 2.5 Mb/s per UE. 51% of traffic will be transmitted over 4G networks
and over 50% is offloaded to WiFi access points or femto cells.

This densification of UEs cannot just be met by new generations of physical
layer technologies, but has to be met by a densification of mobile access networks
[And13, BLM+14]. This means that more base stations have to be deployed with
heterogeneous cell sizes (macro, pico, femto) and heterogeneous radio technologies
(4G, 5G, WiFi). Such a densified deployment of base stations together with the
increase in mobile traffic leads to two major issues: increased potential for harmful
interferences and a backhaul bottleneck [TMF+14, JMJ+13, BSC+11, BSC+12].

Harmful interference cannot be avoided by simple, static coordination tech-
niques like frequency reuse, because usually full frequency reuse is required to
achieve the desired data rates inside one cell. Instead, radio transmissions have
to be coordinated dynamically. Wireless coordination schemes require high data

2

1.2 Scope & Goals

rate and low-latency access to base stations to exchange coordination information.
This coordination information is exchanged over the backhaul network together
with the normal UE traffic. With the predicted increase in UE traffic, the back-
haul will likely become a bottleneck if the use of backhaul resources is not also
coordinated in a dynamic way.

1.2 Scope & Goals

The issues introduced in the previous section need to be addressed by different
approaches in different areas of the mobile access network. Both the approaches
and the parts of the mobile access network are related to each other, as illustrated
in Figure 1.1:

First of all there is the tight relation between the radio access network (on
the left) and the backhaul network (on the right) because the traffic from the
radio access network has to be handled by the backhaul network. Approaches for
control mechanisms (indicated by gears) for both the radio access network and
the backhaul network have to be implemented in the backhaul network because
for both domains the control information has to be exchanged via the backhaul
network. In this thesis I do not develop new control mechanisms for the radio
access network and focus on control mechanisms for the backhaul network to
optimize both the utilization of backhaul network resources and to facilitate the
implementation of control mechanisms for the radio access network.

Furthermore, the applications running on the UEs (indicated by filmstrips)
largely determine the amount of traffic that has to be handled by the radio access
network and consequently the backhaul network as well. Thus in this thesis I
also focus on approaches to make the applications “smarter” with respect to the
amount of resources of the mobile access network they use.

Figure 1.1: Scope of the thesis

For the new approaches that I present in this thesis I define the following overall
goals with respect to the previously introduced scope and issues:

1. Efficient use of wireless resources
Applications should use the available wireless resources as efficiently as pos-

3

1 Introduction

sible. Efficiency implies that no wireless resources are allocated which could
be used elsewhere or are allocated but not used by an application, e.g., data
is transmitted over the wireless channel but later discarded by the applica-
tion.

2. Efficient allocation of backhaul resources
Backhaul resources should be allocated in a way that no resources are allo-
cated and not utilized while they could be allocated and utilized elsewhere.

3. Limited QoE degradation
The quality of experience (QoE) for users should not be degraded as the
result from using a new approach presented in this thesis. Degraded QoE
means, for example, reducing the visual quality of a streamed video or fre-
quent interruptions of the playback.

4. Reduced energy consumption
As long as there are unused resources, network equipment should be powered
off to reduce the energy consumption of the network, both for the mobile
access network and the backhaul network.

In the final chapter of my thesis, after describing my approaches and presenting
the evaluation results, I discuss how my approaches help in achieving these goals.

1.3 Approaches

My approach for the application area is anticipatory download scheduling. For
the problem area of the backhaul network, I focus on backhaul reconfiguration. I
introduce both approaches in this section.

1.3.1 Anticipatory Download Scheduling

Radio access networks usually employ the prediction of future states of the wireless
channel into the scheduling of wireless channel resources. This channel prediction
is bound to a small horizon of few milliseconds and has to be very precise to allow
fine-grain scheduling of wireless channel resources. This idea of channel prediction
can be extended to the prediction of future available data rates to larger horizons
of multiple seconds or even minutes. Such a data rate prediction does not have to
be as precise as the channel prediction. Instead of using the prediction to schedule
channel resources, data rate prediction can be used to make scheduling decisions
for applications running on the UEs. Because these scheduling decisions employ
knowledge of future available data rates, I call them anticipatory.

Such anticipatory decisions are especially possible with applications which con-
tinuously download data and where the data that has to be downloaded in the
future is known in advance. The most straightforward example are streaming ap-
plications for video or audio, but also more complex applications like on-demand
games are possible.

4

1.4 Contributions

My approach is built around the application of mobile video streaming, in par-
ticular, segmented video streaming. In segmented video streaming, a video player
application downloads the video file not as a continuous stream of data, but di-
vided into multiple segments of a fixed duration. Normally, these segments are
downloaded constantly during the playout. A small amount of segments is usually
buffered by the player application to account for short phases of small available
data rate. The video provider can also make segments available in multiple video
quality levels, which result in different file sizes for the segments. Usually the
video player application selects the quality of each segment, based on a retrospec-
tive analysis of the available data rate.

This simple buffering scheme together with the retrospective selection of video
quality levels is not sufficient to deliver an acceptable QoE to the users and to use
available wireless resources efficiently, because it does not take any variation of
future available data rates into account. Thus I extend segmented video streaming
by an anticipatory approach to schedule both the download time and the video
quality of each segment, based on the prediction of future available data rates.
Future available data rates refers to the available data rates for a user in the next
seconds or minutes, not to data rates available through new technologies in the
next years.

I describe and evaluate my approach in Chapters 4 to 6 and present a prototype
implementation in Chapter 7.

1.3.2 Backhaul Reconfiguration

Wireless resources can only be efficiently utilized if there is a backhaul network
that provides sufficient capacity and sufficiently low latency to both transport the
user data to the BSs and to exchange coordination information between coordi-
nated BSs. I refer to this set of coordinated BSs as CBS. In order to achieve these
capabilities in the backhaul network, the idea of backhaul reconfiguration has been
introduced [DBK13]. With backhaul reconfiguration, resources in the backhaul
network are assigned proportional to actual demands.

I have extended the basic idea of backhaul reconfiguration in three novel ways:
first, I explicitly model the assignment of optical wavelengths in WDM-PON back-
haul networks (Chapter 9); second, I add the capability to manage the backhaul
for dense wireless access networks with hotspots of users (Chapter 10); third, I
show how backhaul reconfiguration can be implemented together with Software-
Defined Network (SDN) based on a prototype implementation (Chapter 11).

1.4 Contributions

My contributions in this thesis are divided into three areas. I have published
or co-authored five conference papers related to anticipatory download scheduling
and four conference papers related to backhaul reconfiguration. Additionally, I
have co-authored five conference papers and two journal papers on background
and related work.

5

1 Introduction

Anticipatory Download Scheduling

� M. Dräxler, J. Blobel, and H. Karl. Anticipatory Download Scheduling in
Wireless Video Streaming with Uncertain Data Rate Prediction. In Proceed-
ings of the 8th IFIP Wireless and Mobile Networking Conference (WMNC),
2015. submitted.

� M. Dräxler, J. Blobel, P. Dreimann, S. Valentin, and H. Karl. Smarter-
Phones: Anticipatory Download Scheduling for Wireless Video Streaming.
In Proceedings of the International Conference on Networked Systems (Net-
Sys), 2015.

� M. Dräxler, P. Dreimann, and H. Karl. Anticipatory Power Cycling of Mo-
bile Network Equipment for High Demand Multimedia Traffic. In IEEE On-
line Conference on Green Communications (IEEE Online GreenComm’14),
2014.

� M. Dräxler and H. Karl. SmarterPhones: Anticipatory Download Schedul-
ing for Segmented Wireless Video Streaming. In 1st KuVS Workshop on
Anticipatory Networks, 2014.

� M. Dräxler, J. Blobel, P. Dreimann, S. Valentin, and H. Karl. Anticipatory
Buffer Control and Quality Selection for Wireless Video Streaming. arXiv
preprint arXiv:1309.5491v2, 2014.

� M. Dräxler and H. Karl. Cross-Layer Scheduling for Multi-Quality Video
Streaming in Cellular Wireless Networks. In Proceedings of the 9th IEEE
International Wireless Communications and Mobile Computing Conference
(IWCMC), 2013.

Backhaul Reconfiguration

� S. Auroux, M. Dräxler, A. Morelli, and V. Mancuso. Dynamic network re-
configuration in wireless DenseNets with the CROWD SDN architecture. In
Proceedings of the 2015 European Conference on Networks and Communi-
cations (EuCNC), 2015.

� M. Dräxler and H. Karl. Dynamic Backhaul Network Configuration in SDN-
based Cloud RANs. arXiv preprint arXiv:1503.03309, 2015.

� M. I. Sanchez, A. Asadi, M. Dräxler, R. Gupta, V. Mancuso, A. Morelli,
A. de la Oliva, and V. Sciancalepore. Tackling the increased density of 5G
networks; the CROWD approach. In IEEE 81st Vehicular Technology Con-
ference: VTC2015-Spring, First International Workshop on 5G Architecture
(5GArch 2015), 2015.

� M. Dräxler and H. Karl. Feasibility of Base Station Coordination and Dy-
namic Backhaul Network Configuration in Backhaul Networks with Limited
Capacity. In European Wireless 2014 (EW2014), 2014.

6

1.5 Structure of the Thesis

� P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. Hassan Zahraee, and
H. Karl. MaxiNet: Distributed Emulation of Software-Defined Networks.
In Proceedings of the 2014 IFIP Networking Conference (Networking 2014),
2014.

Background and Related Work

� F. Beister, M. Dräxler, J. Aelken, and H. Karl. Power model design for
ICT systems – A generic approach. Computer Communications, 50:77–85,
September 2014.

� C. Cicconetti, A. Morelli, M. Dräxler, H. Karl, V. Mancuso, V. Sciancale-
pore, R. Gupta, A. de la Oliva, I. Sánchez, P. Serrano, and L. Roullet. The
Playground of Wireless Dense Networks of the Future. In Future Network
and MobileSummit 2013, 2013.

� M. Dräxler, T. Biermann, and H. Karl. Improving Cooperative Transmission
Feasibility by Network Reconfiguration in Limited Backhaul Networks. In-
ternational Journal of Wireless Information Networks, 20(3):183–194, 2013.

� H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, M. Dräxler, R. Gupta, V. Man-
cuso, L. Roullet, and V. Sciancalepore. CROWD: An SDN Approach for
DenseNets. In Second European Workshop on Software Defined Networks,
2013.

� A. de la Oliva, A. Morelli, V. Mancuso, M. Dräxler, T. Hentschel, T. Melia,
P. Seite, and C. Cicconetti. Denser networks for the Future Internet, the
CROWD approach. In MONAMI OConS Workshop: Workshop on Open
Connectivity Services for the Future Internet, 2012.

� M. Dräxler, T. Biermann, H. Karl, and W. Kellerer. Cooperating Base
Station Set Selection and Network Reconfiguration in Limited Backhaul
Networks. In Proceedings of the IEEE 23nd International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC), 2012.

� M. Dräxler, F. Beister, S. Kruska, J. Aelken, and H. Karl. Using OM-
NeT++ for Energy Optimization Simulations in Mobile Core Networks. In
Proceedings of the 5th International ICST Conference on Simulation Tools
and Techniques (SIMUTOOLS), 2012.

1.5 Structure of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2: Technical Background
In this chapter, I explain the technical background required for the following
chapters. I focus on application layer techniques, wireless access networks
and backhaul network technologies.

7

1 Introduction

• Chapter 3: State of the Art & Related Work on Anticipatory
Download Scheduling
This chapter contains an overview of related work and other state of the art
approaches for anticipatory download scheduling.

• Chapter 4: Anticipatory Download Scheduling with Perfect Pre-
diction
In this chapter, I introduce anticipatory download scheduling with perfect
prediction of future available data rates. I present an optimal solution
based on a mixed integer quadratically constrained program (MIQCP) and
a heuristic solution called Fill algorithm. Both solutions are evaluated and
compared via simulation.

• Chapter 5: Anticipatory Download Scheduling with Uncertain
Prediction
In contrast to the previous chapter, I focus on anticipatory download schedul-
ing with uncertain prediction. I present a dynamic algorithm called Plan.
The algorithm is evaluated in a simulation and compared to the solutions
with a perfect prediction.

• Chapter 6: Anticipatory Download Scheduling for Energy Effi-
ciency
Anticipatory download scheduling can be used together with power cycling
of base stations to reduce the energy consumption of mobile access networks.
In this chapter, I present an extension to the MIQCP from Chapter 4 to in-
corporate a base station power cycling scheme. Additionally, I present a
2-phase heuristic algorithm. Both solutions are evaluated via simulation.

• Chapter 7: Anticipatory Download Scheduling Prototype
In this chapter I, describe how anticipatory download scheduling can be
implemented in a real mobile access network and present a backwards-
compatible extension to the HTTP Live Streaming (HLS) protocol. Finally,
I show how anticipatory download scheduling with perfect prediction works
in a small testbed prototype.

• Chapter 8: State of the Art & Related Work on Backhaul Network
Reconfiguration
This chapter contains an overview of related work and other state of the art
approaches for backhaul network reconfiguration.

• Chapter 9: Backhaul Network Reconfiguration
In this chapter, I introduce backhaul network reconfiguration and show how
it can be implemented both as an integer linear problem (ILP) and a heuris-
tic algorithm, called the BFS algorithm. Both implementations are evalu-
ated and compared in a simulation, with which I also investigate the energy
efficiency of the approach.

8

1.5 Structure of the Thesis

• Chapter 10: Backhaul Network Reconfiguration Extension for
DenseNets
To enable the backhaul network reconfiguration heuristic to work in dense
networks with hotspots of users, I have extended the heuristic with a prior-
itization mechanism, which I present and evaluate in this chapter.

• Chapter 11: Backhaul Network Reconfiguration Prototype
In this chapter I show how backhaul reconfiguration can be implemented on
top of an emulated OpenFlow backhaul network.

• Chapter 12: Conclusion & Future Research Directions
In this final chapter, I review how both previously presented approaches,
anticipatory download scheduling and backhaul reconfiguration contribute
to achieving the goals of this thesis. Then I conclude the work presented in
previous chapters and give an outlook on further research directions.

9

2
Technical Background

2.1 Backhaul Networks 11

2.1.1 WDM-PON . 12

2.1.2 Power Consumption 13

2.1.3 Software Defined Networks 13

2.2 Wireless Access Networks 14

2.2.1 Simple 3GPP Radio Model 15

2.2.2 GreenTouch Radio Model 16

2.2.3 Power Consumption 17

2.3 Wireless Coordination 18

2.3.1 Coordinated Multipoint Transmission and Reception 18

2.3.2 Software Defined Base Station Coordination 20

2.4 Application Layer 20

2.4.1 HTTP Live Streaming 20

2.4.2 Data Rate Prediction 21

In this chapter, I give an overview of the technical background for my approaches
which I present in the following chapters. Here, I focus solely on the technical
background. I give an overview of related work and state of the art for the
anticipatory download scheduling and the backhaul reconfiguration separately in
Chapters 3 and 8 respectively.

The technical background in this chapter is split into four sections: backhaul
networks, wireless access networks, wireless coordination, and applications.

2.1 Backhaul Networks

The backhaul network describes the part of the mobile access network between the
radio access network and the core network. The backhaul network mainly has two

11

2 Technical Background

tasks: routing all user data traffic between the base stations and the core network
and exchanging control information between the Base Stations (BSs), including
control information required for wireless coordination.

A backhaul network can be implemented using wireless technologies like Free
Space Optics (FSO) or Point-to-Point (PtP) microwave or wired technologies (op-
tical fiber or cables). Because of the high capacity demands for the backhaul
network, especially in future wireless access networks with wireless coordination,
optical technologies are the most promising candidate technology. The Green-
Touch project [Gre13a] explicitly names Passive Optical Networks (PONs) as the
backhaul technology to meet future capacity demands and to provide means for
energy savings. In this thesis I focus on Wavelength-Division-Multiplexed Passive
Optical Networks (WDM-PONs) as the backhaul technology.

2.1.1 WDM-PON

Figure 2.1: WDM-PON example

WDM-PON [RSS10] is an optical fiber technology that multiplexes optical car-
rier signals on an optical fiber using different wavelengths or colors of laser light.

In a WDM-PON there is one Optical Line Terminal (OLT) which modulates the
data on an optical fiber to be received by multiple Optical Network Units (ONUs).
To split an optical signal for all ONUs the WDM-PON uses an Array Waveguide
Grating (AWG). An AWG is capable of routing individual wavelengths to the
ONUs. Thus the OLT modulates the data on the fiber using different wave-
lengths for the ONUs. Different technological implementations how the wave-
lengths are split are described by Banerjee et al. [BPC+05]. Figure 2.1 shows an
example where each ONU receives data from the OLT using one wavelength λi
and sends data back using a different wavelength λN+i. Based on this scheme
WDM-PON provides individual point-to-point connections between the OLT and
the ONUs, which use their own wavelength. Thus one wavelength does not have
to be shared among multiple ONUs. This allows great flexibility in deploying
and operating backhaul networks. Wavelengths can be added, dropped or ma-

12

2.1 Backhaul Networks

nipulated in network nodes, enabling to build dynamic topologies in backhaul
networks. This flexibility is mainly enabled by the fact that Wavelength Division
Multiplexing (WDM) allows operations like multiplexing different wavelengths
and converting wavelengths in a purely optical way, avoiding slow and energy-
consuming optical-electrical-optical conversions. WDM-PON networks provide a
splitting ratio of 40 ONUs per OLT and typically achieve transmission rates up
to 2.5 Gb/s per wavelength [BPC+05], but also 10 Gb/s are theoretically possible
[GE08].

2.1.2 Power Consumption

The flexibility of WDM-PON makes it possible to model the power consumption
of backhaul networks in a fine grain way. Individual Transmission and Reception
Unit (TRX) ports of an OLT can be disabled if the wavelength of that port is not
assigned to an ONU. Also, a whole ONU can be disabled if the connected BS is
powered off. Table 2.1 gives an overview of the power consumption of WDM-PON
components.

Table 2.1: WDM-PON components power consumption [GRA+11]

Component Power consumption

Complete OLT with 40 wavelengths at 1 Gb/s 20 W
Individual OLT TRX port 0.5 W
AWG -
ONU TRX with 1 Gb/s tunable laser 1 W

Wang et al. [WLLM13] showed that reducing the power consumption is possible
by reducing the number of used wavelengths and switching off unused components
in the WDM-PON. The results indicate a potential energy saving of 40 % in the
investigated scenario.

2.1.3 Software Defined Networks

Software-Defined Networks (SDNs) are based on the concept of decoupling net-
work control and packet forwarding in a network, i.e., decoupling of making for-
warding decisions and executing the actual forwarding. The actual forwarding
is executed in the network elements, i.e., switches, and forwarding decisions are
made by an SDN controller. Consequently, the network control can be directly
programmed and the physical network infrastructure is abstracted for applications
and network services.

The Open Networking Foundation (ONF) describes the different components
of the SDN architecture [ONF12, ONF13], depicted in Figure 2.2, as follows:

• The SDN Controller is the central entity responsible for translating the
requirements from SDN Applications down to network elements and addi-
tionally providing SDN Applications with an abstract view of the network.

13

2 Technical Background

Figure 2.2: SDN architecture [ONF13]

• SDN Applications (Apps) are software programs that explicitly, directly, and
programmatically communicate their network requirements and their desired
network behavior to the SDN Controller. They may build an abstracted view
of the network for their internal decision making process.

• An SDN-enabled network element (e.g., a switch) exposes visibility and
control over its forwarding and data processing capabilities. The exposed
data can include all or a subset of the physical resources of the network
element.

The OpenFlow protocol [MAB+08] is the best-known protocol to implement the
communication between the SDN controller and network elements. A number of
platforms for the SDN controller have been developed, including OpenDayLight
(ODL) [MTVG14], which I use for my prototype implementation in this thesis.

Version 1.4 of the OpenFlow specification [OF 13] includes interfaces to expose
the capabilities of a WDM-PON switch, including control of optical switch ports,
their wavelength assignment, and power management.

2.2 Wireless Access Networks

Due to the fact that none of the approaches in this thesis modifies existing pro-
tocols or standards for the wireless communication in wireless access networks, I
introduce two existing, basic models for the wireless channel. For the backhaul
reconfiguration for base station coordination, I am only interested in the Signal

14

2.2 Wireless Access Networks

to Interference and Noise Ratio (SINR) between a User Equipment (UE) and its
surrounding BSs, in order to determine which BSs should cooperate for serving
a particular UE. For the anticipatory download scheduling I am furthermore
interested in the data rate at which a UE can download from a given BS.

A radio model for wireless access networks includes the following aspects, as
illustrated in Figure 2.3:

• Path loss : attenuation of the transmitted signal due to the distribution of
the signal.

• Shadowing : attenuation of the transmitted signal due to obstacles

• Noise: general modification of the transmitted signal.

• Interference: modification of the transmitted signal due to other transmis-
sions.

Figure 2.3: Radio model components

2.2.1 Simple 3GPP Radio Model

The 3rd Generation Partnership Project (3GPP) has published a simple Long
Term Evolution (LTE) wireless radio model [3GP09]. It calculates the path loss
in dB L between the a UE and a BS as

L = 128.1 + 37.6 · log10(d) + Sln (2.1)

where d represents the distance between the UE and the BS’s antenna in kilome-
ters. Sln is a normal random variable with zero mean and standard deviation of
10 dB to model slow fading as part of the path loss. Given a known transmission
power P in dBm for each BS, it is possible to calculate the received signal strength
for all BSs in the range of a UE as P − L.

By using Shannon’s equation, it is also possible to calculate an achievable data
rate for each BS as

D = B · log2

(
1 +

P − L
B · (N + I)

)
(2.2)

15

2 Technical Background

where B is the allocated channel bandwidth for the UE, N the noise power per
Hertz, and I the simplified average interference per Hertz.

2.2.2 GreenTouch Radio Model

The GreenTouch project has also compiled a wireless radio model [Gre13b] that
especially incorporates power consumption and is useful for evaluations related to
energy efficiency.

Similar to the 3GPP radio model, the received signal power at a UE u from a
BS’s antenna a is calculated as

rx poweru,a = tx powera − coupling lossu,a (2.3)

where tx powera is the transmission power of the BS, depending on its type, i.e.,
macro or pico. coupling loss is the amount of signal power loss that occurs between
the time a signal is generated at the BS and the time it is received at the UE. It
is defined as

coupling lossu,a =−max gaina + wall penetration

+ path lossu,a + shadowingu,a

− directedu,a

(2.4)

where max gaina is the gain in signal strength produced by the radio frequency
amplifier after the signal generation. wall penetration is a signal attenuation
depending on frequency and the UE’s position in a building. The parameter
directedu,a attenuates the signal further if the UE is outside of the directed an-
tenna’s angle. The values are calculated using a 3D antenna model as described
by the 3GPP [3GP09]. The values for these parameters can be found in the
GreenTouch documents [Gre13b] and are omitted here for confidentiality reasons.

Path loss between the UE and the BS is calculated as

path lossu,a = path loss constanta + path loss factora · log10 d (2.5)

where path loss constanta and path loss factora are frequency-dependent param-
eters from the GreenTouch documents [Gre13b] and d is the distance between the
UE and the BS in kilometers.

Additionally, the model includes shadowing, which is the random attenuation
of the signal due to obstacles. It is computed by using two normally distributed
random variables. The first random variable represents shadowing due to the
UE’s position and is the same for all BSs. The second random variable represents
shadowing for the connection between the UE and the BS and is calculated for
each BS.

shadowingu,a =

 UE position︷ ︸︸ ︷
N (µ = 0, σ = 10) +

UE BS connection︷ ︸︸ ︷
N (µ = 0, σ = 10)

√

2
(2.6)

16

2.2 Wireless Access Networks

Both random variables use the same parameters µ = 0 and σ = 10.
In addition to path loss and shadowing, the GreenTouch model also includes

interference as the sum of received power from all antennas A, except the currently
connected antenna a.

interferenceu,a = W 7→dBm

∑
x∈A\b

dBm7→W
(
rx poweru,x

) (2.7)

To sum up the individual rx poweru,x values, they have to be converted from dBm
to Watt and vice versa using dBm 7→W() and W 7→dBm() respectively.

The GreenTouch model also includes noise as

noise = noise per hz + W 7→dBm(bandwidth) + rx noise figure (2.8)

where noise per hz and bandwidth are again taken from the parameters in the
GreenTouch documents [Gre13b]. The parameter rx noise figure models signal
attenuation due to the signal receiving process of user equipments.

Finally, the SINR can be calculated as

sinru,a =rx poweru,a

−W 7→dBm
(
dBm7→W

(
interferenceu,a

)
+ dBm 7→W (noise)

)
(2.9)

In order to obtain a data rate from the SINR value, the GreenTouch model uses
a lookup table to convert the SINR of each UE to a spectral efficiency value in bits
per second per Hertz (Bits/s/Hz). The model includes different lookup tables for
different antenna configurations (2x2, 4x2 and 8x2 MIMO) [Gre13b], which are
omitted here for confidentiality reasons. Together with a value for the allocated
bandwidth per UE from the wireless resource scheduler, the achievable data rate
can be calculated from the spectral efficiency.

2.2.3 Power Consumption

The GreenTouch model defines two power consumption models for BSs. One
is based on data from the year 2010 and the other one is a forecast of energy
consumption of BSs in 2020 [Gre13b, Gre13a]. The 2010 model only considers
macro BSs while the 2020 model also considers pico BSs.

Both models include three different states for a BS:

• Sleep where the BS is turned off.

• No Load where the BS is turned on but completely idle.

• Full Load where the BS is fully utilized.

For any other load situation between No Load and Full Load the power consump-
tion is linearly interpolated. The values for the load states are listed in Table
2.2.

17

2 Technical Background

I use the model from the GreenTouch document [Gre13b] with the values in
Table 2.2 for my simulations in this thesis. Recently, the GreenTouch project
has internally released a document [Gre14] with updates to the model parameters
which result in different values for the power consumption. I use the older version
for all my simulations to maintain comparability of the results.

Table 2.2: Green Touch power consumption model[Gre13b, Gre13a]

BS type Sleep No Load Full Load

Macro BS 2010 648 W 712 W 1394 W
Macro BS 2020 157 W 189 W 665 W
Pico BS 2020 2 W 4 W 11 W

2.3 Wireless Coordination

Wireless coordination is a broad term to describe the paradigm shift in mobile
access networks, from coordination of transmission and reception of a single BS
to joint coordination of transmissions and receptions of multiple BSs. A large
number of different approaches for wireless coordination have been investigated
and presented. I do not present any new approaches in the wireless domain and
focus on the impact of wireless coordination in the backhaul network. Therefore,
I only give a broad overview of two approaches for wireless coordination here:
Coordinated MultiPoint transmission and reception (CoMP) and Software Defined
Base Station Coordination.

2.3.1 Coordinated Multipoint Transmission and Reception

CoMP refers to a number of different coordination schemes, which I describe indi-
vidually in this section. A detailed description how to integrate CoMP into mobile
access networks is given by Sawahashi et al. [SKM+10] and Deb et al. [DMMS14].
CoMP schemes can be implemented for both downlink (joint processing and down-
link interference coordination) and uplink (joint multipoint reception and coordi-
nated multipoint reception) connections as follows.

• Joint Processing
If two or more BSs are coordinated to perform joint transmission, as shown
in Figure 2.4a, all participating BSs send downlink data to the UE syn-
chronously. Hence the UE receives the downlink signal with a higher signal
power and the transmission is less prone to harmful interference. Joint trans-
mission requires that the downstream data is present at all participating BSs,
resulting in an increased demand for backhaul capacity. Additionally, tight
coordination of the participating BSs, including the exchange of Channel
State Information (CSI), requires low latency in the backhaul network.

18

2.3 Wireless Coordination

(a) Joint processing (b) Downlink interference coordination

(c) Joint multipoint reception (d) Coordinated multipoint reception

Figure 2.4: Coordinated Multipoint Transmission and Reception

• Downlink Interference Coordination
When multiple UEs are served by multiple BSs, different signals from the
BSs cause harmful interference that decreases the wireless throughput. The
BSs need to coordinate their transmissions in order to reduce the interfer-
ence. As shown in Figure 2.4b, BSs can, for example, schedule their trans-
mission to different time slices. The use of Physical Resource Blocks (PRBs)
can also be coordinated between the BSs and a technique called coordinated
beamforming can reduce interference on the physical level of the transmitted
waveform. Downlink interference coordination also requires the exchange of
additional information via the backhaul network.

• Joint Multipoint Reception
For joint multipoint reception multiple BSs combine the data they have re-
ceived from individual UEs. Additionally, if multiple UEs cause interference,
as shown in Figure 2.4c, the BSs are able to filter out interference by using
interference rejection combining. Similar to joint transmission, this time in
the reverse direction, all received data has to be sent from multiple BSs over
the backhaul resulting in more required backhaul capacity.

• Coordinated Multipoint Reception
Analogously to coordinated transmissions for BSs, it is also possible to co-
ordinate the uplink transmissions from multiple UEs. For example, trans-
missions from the UEs can be scheduled to only occur from a single UE at
a time, as shown in Figure 2.4d. In that case, the coordination information
also has to be exchanged by the base stations over the backhaul network.

Overall, schemes with joint transmission and reception provide a higher gain in
terms of efficient utilization of physical resources compared to simple coordination
schemes, but also require significantly more capacity in the backhaul network.
This makes these schemes especially interesting for the approaches I present in
this thesis.

19

2 Technical Background

2.3.2 Software Defined Base Station Coordination

The idea behind CoMP has also been developed further to allow new coordination
schemes between BSs. There is especially the idea to apply the SDN paradigm
to the coordination of BSs. The control of coordination mechanisms is moved to
a controller node, thus backhaul capacity constraints similar to CoMP also apply
between the controller node and the BSs. A number of different approaches for
this idea have been proposed [AACdlO+13a, AACdlO+13b, BMKL12]. These ap-
proaches feature a central controller for a set of coordinated BSs, which introduces
similar requirements in terms of data rate and latency to the backhaul network
as CoMP.

One example for an SDN controller architecture for wireless coordination is the
CROWD Controller Architecture (CCA), which I describe in detail in Section 8.2.

2.4 Application Layer

On the application layer, I focus on HTTP Live Streaming, which I introduce in
Section 2.4.1. I give an overview of existing approaches for data rate prediction
in Section 2.4.2.

2.4.1 HTTP Live Streaming

HTTP Live Streaming (HLS) is an HTTP-based multimedia streaming protocol
that has been initially developed by Apple Inc. [App] and has been published
as an IETF draft [PMA13]. It is, among others, available in the stock media
players of Android [Goo] and iOS [App] operating systems and is available as an
open-source implementation in the VLC player [Vid].

To stream a video using HLS, the video has to be encoded for it. This encoding
is a CPU-intensive, one-time task. The video input is cut into independently
playable segments with equal playback durations. Uniform Resource Locators
(URLs) of these segments are then added to a playlist. An example of a typical
HLS playlist is shown in Figure 2.5.

#EXTM3U

#EXT-X-VERSION:3

#EXT-X-TARGETDURATION:10

#EXTINF:10,

http://hostname/high/001.ts

#EXTINF:10,

http://hostname/high/002.ts

#EXTINF:10,

http://hostname/high/003.ts

#EXTINF:10,

http://hostname/high/004.ts

#EXTINF:10,

http://hostname/high/005.ts

#EXTINF:10,

http://hostname/high/006.ts

#EXTINF:10,

http://hostname/high/007.ts

#EXTINF:10,

http://hostname/high/008.ts

#EXT-X-ENDLIST

Figure 2.5: Single variant HLS example with high-quality segments, each 10 sec-
onds long

20

2.4 Application Layer

#EXTM3U

#EXT-X-STREAM-INF:BANDWIDTH=1000000

http://hostname/low/hls.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=1500000

http://hostname/med/hls.m3u8

#EXT-X-STREAM-INF:BANDWIDTH=3000000

http://hostname/high/hls.m3u8

Figure 2.6: Multi-variant master playlist with three variants

HLS can provide multiple variants of a video. Each variant can be encoded
using a different codec, bit-rate, or resolution. HLS players can switch between
different variants for each segment because all segments have equal length and are
independently playable. A separate playlist is created for each variant, in addition
to a master playlist with links to all variant playlists. An example of a master
playlist with three variants is shown in Figure 2.6. The master playlist contains
parameters for each variant to enable HLS players to select the most appropriate
one. For example, the required download data rate as BANDWIDTH in bit/s.

Playlists and segments are placed on a normal HTTP server. An HLS player
only needs the URL to the HLS master playlist. From there, all variants and their
segments can be accessed.

The standards for HLS do not specify how the download of segments should be
organized, thus there is no standard download scheduling algorithm for HLS. I
analyzed the source code of the HLS component of the VLC media player [Vid]
resulting in three findings:

1. VLC has a fixed buffer it always tries to fill with video segments.

2. The quality selection is based on a measurement of the current connection
speed.

3. The size of the buffer is measured in number of segments and not in storage
space.

I use these findings to model HLS download scheduling in this thesis in Chapters
4 to 7.

2.4.2 Data Rate Prediction

Prediction of network traffic patterns in wired networks have been studied and
appropriate algorithms exist [SL02]. However, for mobile access networks the
physical layer exhibits a much larger variance as many factors influence the SINR
that directly correlates with the achievable data rate. In spite of this, it has been
shown that achievable rates can be predicted for different time scales and with
different contextual information taken into account:

It can be observed that in many cases user movement follows recurring regular
patterns (e.g., the way to work, public transportation networks), which leads

21

2 Technical Background

to the idea that such regular patterns are reflected in the achievable data rate
which can then also be predicted. Song et al. [SQBB10] analyzed the entropy of
over 50.000 user mobility patterns and concluded that human movement behavior
shows highly regular patterns, which leads to a correct prediction of such patterns
of up to 93 % of the investigated cases.

Yao et al. [YKH08] analyzed the feasibility of predicting available data rates
based on information gathered during repeated trips in a range of eight months.
The results are based on the analysis of the entropy as a measure for the uncer-
tainty and are thus independent from a particular prediction technique. They
show that there is no significant correlation between signals at different points of
time during a single trip. But when the measurements of past trips are taken into
account, accuracy of the data rate prediction increases significantly. Using the
UE location as a context information improves accuracy even further.

The results from these studies strongly support the feasibility of data rate pre-
diction in mobile access networks. They also indicate that the feasibility and
accuracy of data rate prediction does not depend on a particular prediction tech-
nique. Thus I do not focus on any particular prediction technique in this thesis
and introduce a generic model in Section 5.2.

22

3
State of the Art & Related Work on
Anticipatory Download Scheduling

3.1 Smarter Phones and Networks 23

3.2 Related Work . 24

My approach for anticipatory download scheduling originates from the context of
the “Smarter Phones and Networks” (SPAN) project, a cooperation with Alcatel
Lucent Bell Labs Stuttgart, which I introduce in Section 3.1. After that I give an
overview of related work in Section 3.2.

3.1 Smarter Phones and Networks

The main idea behind the “Smarter Phones and Networks” (SPAN) project was
to develop a new technology called “Context-Aware Video Streaming”, based on
Alcatel Lucent Bell Labs’ platform “Context-Aware Radio Access” (CARA). This
technology makes use of location-based information, including road and network
coverage maps and radio performance data, to enable algorithms that predict up-
coming network performance. Based on this prediction, a video player application
can download more video content to the user’s device in areas with good wireless
coverage before the user enters an area with poor wireless coverage. This results
in a dramatic reduction in video playback interruptions and the quality of expe-
rience is greatly improved for the user. In the context of this project, I worked
together with Frederic Beister and Stefan Valentin, whose work in the context of
the project I introduce in this section.

Stefan Valentin focused on aspects related to wireless access. Together with
H. Abou-Zeid and H.S. Hassanein [AzHV14] he presented the “Predictive Green
Streaming” (PGS) optimization framework for using predicted wireless data rates
to reduce the required wireless transmission time for mobile video streaming. The
goal was to reduce the overall energy consumption of the mobile access network.
In a simulation together with N. Barman [BV14], he investigated the prediction of
future wireless data rates based on radio coverage maps in conjunction with street

23

3 State of the Art & Related Work on Anticipatory Download Scheduling

maps. The results show that for a user moving between two street intersections the
future data rates until the arrival at the next intersection can be predicted using
radio coverage maps. He also investigated a wireless resource allocation scheme
[Val14] based on prediction of future channel states to minimize required wireless
resources for smooth video streaming. Finally, together with W. Bao [BV15], he
developed an approach for anticipatory buffering of HTTP Live Streaming (HLS)
segments based on observation of the current channel state and prediction of future
channel states. The approach is based on Markov Decision Processes (MDPs)
obtained from real traces of vehicular users.

Frederic Beister focused on the prediction of user behavior. He analyzed traces
of video downloads from a large European mobile network operator to deduce
patterns in the behavior of users and HLS video players with respect to mobile
video streaming [BK14, Bei14]. Based on this analysis, he created Hidden Markov
Models (HMMs) to predict the inter-download times of HLS video segments. To-
gether with him, I also investigated the design of power consumption models for
network equipment [BDAK14, DBK+12].

3.2 Related Work

Incorporating channel prediction into video streaming in mobile networks has
been investigated in general [LdV13, KPS+06] and specifically for public trans-
port scenarios [RVGH13, REV+12, YKH12, YKH11, YKH08]. None of these
consider video quality selection and buffering, which results in a significantly less
complex problem than my combined approach. Lu et al. [LdV13] propose an
online algorithm for scheduling the transmissions of video segments and evalu-
ate this approach using measured wireless capacity traces. Khan et al. [KPS+06]
propose a cross-layer optimization strategy that jointly optimizes the applica-
tion layer, data link layer, and physical layer to maximize user satisfaction with
wireless video streaming. Riiser et al. [REV+12, RVGH13] analyze real-world
measurement traces of the wireless data rate for users on popular public trans-
port routes in Oslo, Norway, and propose a GPS-based bandwidth-lookup ser-
vice in order to better predict near-future data rates and create a schedule for
the video playout that takes future availability of data rates into account. Yao
et al. [YKH12, YKH11, YKH08] investigate the predictability of future available
data rates for commuting users and also propose an adaptive downloading scheme
based on data rate maps.

Recent studies have also investigated the quality adaptation mechanism of
HTTP video streaming [HJM13, LZG+14] in a reactive way, without the com-
bination with data rate prediction. Huang et al. [HJM13] propose a buffering
scheme based on the currently observed buffering behavior and not on the pre-
diction of data rates. Li et al. [LZG+14] introduce a scheme for adapting the
download behavior in HLS based on probing of the available data rate. Miller
et al. [MQGW12, MATW15] investigated how the quality adaptation mechanism
of HTTP video streaming can be adapted by measurements of the current TCP
throughput. They use a simple moving average over the past and TCP throughput

24

3.2 Related Work

as a short-term predictor for the future available throughput.
Approaches and results presented by Radhakrishnan et al. [RTN12, RN12] in-

vestigate the performance of Scalable Video Coding (SVC) [SMW07] in Long Term
Evolution (LTE) networks. SVC is a video encoding technique which encodes a
video as multiple subset video bitstreams. Such a subset video bitstream can
be derived by dropping packets from a larger video to reduce the bandwidth re-
quired for the subset video bitstream. In SVC the quality adaptation mechanism
[SMW07, OAJ14] is more complex than the simple selection of a quality from an
existing set of video streams as in HLS.

Anticipatory approaches based on existing data rate traces have also been pre-
sented [HZM14, BHK13] that focus solely on the quality selection and do not
incorporate the full download scheduling with the option to pre-buffer a variable
number of segments. Hao et al. [HZM14] present a video streaming system that
uses the GPS sensor in mobile phones to lookup future available data rates in a
coverage map. Bokani et al. [BHK13] propose a data rate prediction scheme for
wireless video streaming based on MDPs.

The measurements by Riiser et al. [RBV+12] and Müller et al. [MLT12] illus-
trate the bad performance of unmodified HLS in mobile networks, but do not
include any prediction mechanism or cross-layer approach. Finally, a survey by
Seufert et al. [SES+14] gives an overview of various approaches and improvements
for HTTP video streaming, none of which incorporates any data rate prediction
mechanism. In the following chapters I focus on filling this gap.

Finally, Hoßfeld et al. have investigated which factors impact the Quality of
Experience (QoE) of users watching HTTP video streams. They conclude that
1) playback interruptions have the biggest negative impact on the QoE [HSH+11]
and 2) switching between qualities of the video during playback has no negative
effect as long as the video quality is high on average [HSSZ14, HSS+15]. They
also argue that both metrics, playback interruptions and video quality, should be
analyzed separately because a combined QoE metric is difficult to define. I use
these findings to define the objectives for anticipatory download scheduling in the
following chapters.

25

4
Anticipatory Download Scheduling
with Perfect Prediction

4.1 Problem Description 28

4.2 Optimal Solution . 29

4.2.1 Model Assumptions 29

4.2.2 Mixed Integer Quadratically Constrained Program . 30

4.2.3 Objective . 32

4.2.4 Complexity . 32

4.3 Fill Algorithm . 33

4.4 Greedy Algorithms 36

4.4.1 BufferFirst Algorithm 36

4.4.2 QualityFirst Algorithm 37

4.5 Evaluation . 38

4.5.1 Scenario . 38

4.5.2 Results . 39

4.5.3 Algorithm Running Times 41

4.6 Summary . 42

In this chapter, I introduce the approach for anticipatory download scheduling
based on HTTP Live Streaming (HLS). I assume that there is no limit or error
on the prediction of future available data rates: precise predicted data rates for
an unlimited future are always available to a scheduler. While this assumption
is not necessarily realistic, it allows to create an optimal solution to establish a
baseline for comparison with other solutions.

27

4 Anticipatory Download Scheduling with Perfect Prediction

Based on the findings by Hoßfeld et al. [HSH+11, HSSZ14, HSS+15] described in
Section 3.2 the objectives for anticipatory download scheduling are the following,
sorted by their importance:

1. Minimize playback interruptions and avoid them completely if possible

2. Maximize video quality on average

3. Minimize buffering to avoid waste of wireless resources

After a problem description in Section 4.1, I formulate an optimal solution in
Section 4.2 and introduce a heuristic algorithm in Section 4.3. For a comparison
with the state of the art behavior of HLS players, I introduce greedy algorithms
without prediction in Section 4.4. In Section 4.5, I show evaluation results for
both solutions and compare them to the greedy algorithms.

4.1 Problem Description

In Section 2.4.1, I have introduced the basic mechanisms of HLS, including seg-
mentation of a video stream and the ability to encode a video in multiple video
qualities that can be selected during the playback of the video. The segmenta-
tion implies that for uninterrupted playback, segment i+ 1 has to be downloaded
entirely before segment i has been played to its end in the player application.
HLS allows to buffer segments in the player application, i.e., download them be-
fore they are immediately needed for playback, to avoid playback interruptions.
For the video quality, the video player application selects the quality level, for
example, based on its measured downlink data rate.

By combining segment buffering and quality selection with the prediction of
future available data rates the following scheduling decisions for downloading video
segments have to be taken:

1. Downloading and buffering more segments in advance if a short period of
bad channel quality is predicted for the near future.

2. Switching to a lower quality to download and buffering more segments in
advance if a longer period of bad channel quality is predicted for the near
future.

The advantage of such an anticipatory download schedule is shown in Figure 4.1.
Darker shades for video segments indicate higher video quality and thus larger
segment size. Since the duration of a segment is fixed, larger segments need
a higher data rate to download. As a simplification I assume that a segment
has to be downloaded completely within a single time slot. When downloading
segments greedily without any prediction of future available data rates, as shown
in Figure 4.1a, lack of available data rate in time slices 4 and 5 leads to a playback
interruption because no segments are buffered in advance and the whole available
data rate in time slices 1 to 3 is used to download segments with the maximum
possible quality. In contrast to that, when the lack of available data rate in time

28

4.2 Optimal Solution

slices 4 and 5 is predicted and taken into account for the selection of segments
to download, as depicted in Figure 4.1b, the playback is not interrupted because
enough segments at a lower quality level are buffered in time slices 1 and 2.

(a) No download scheduling (b) Anticipatory download scheduling

Figure 4.1: Scheduling Example

With the model in this chapter, an anticipatory download schedule is created
independently for each user, as the available data rates are given from the radio
resource scheduler which takes care of the resource sharing between the users.
Strictly speaking the optimization problem in the next section should thus be
implemented without the consideration of multiple users. But the extension of
anticipatory download scheduling for energy efficiency in Chapter 6 requires the
consideration of multiple users. To keep both models compatible I already include
the consideration of multiple users into the model in this chapter.

4.2 Optimal Solution

The Mixed Integer Quadratically Constrained Program (MIQCP) described in
this section precisely specifies the previously illustrated scheduling problem and
is amenable to an automatic solution. Before describing the actual MIQCP I
describe the model assumptions.

4.2.1 Model Assumptions

I use a discrete time model, which means that time is represented as a discrete
sequence of time slots ti with equal lengths. For simplification, I assume that the
length of every time slot ti is equal to the HLS video segment length. Also, an
HLS video segment is either downloaded completely within a single time slot or
considered as not downloaded at all, i.e., HLS video segments cannot be down-
loaded across multiple time slots. The video download starts in the first time slot
and ends in the last time slot. Thus, for the video to be played back without any
interruptions every HLS video segment si has to be downloaded in time slot ti at
the latest. This means that segment si does not already have to be downloaded
in time slot ti−1 which is a simplification to make the optimization problem more
straightforward. Otherwise there would be no playback in time slot t0 and no
download in time slot t|T |. If a segment si is not downloaded in or before time

29

4 Anticipatory Download Scheduling with Perfect Prediction

slot ti and the playback is interrupted, I quantify the lateness of segment si as the
difference between time slot ti and the time slot tj when the segment was actually
downloaded.

Downloads in each time slot are constrained by the available data rate of each
user. Furthermore, each segment has a certain video quality level which determines
the required data rate to download the segment with the selected quality level.

4.2.2 Mixed Integer Quadratically Constrained Program

Input parameters to the MIQCP are listed in Table 4.1 and decision variables in
Table 4.2. Although I assume that the number of time slots T and the number of
segments S are equal, the model is also capable of modeling different numbers of
time slots and segments. The capacity per user is calculated as the capacity after
a radio resource scheduler divides the available wireless resources and thus each
Cu,t is independent. The video qualities are defined in required capacity, thus Cu,t
and Qi have the same unit.

Table 4.1: MIQCP input parameters

T set of time slices, e.g., {0, 1, 2, 3}
S set of segments to transfer, e.g., {0, 1, 2, 3}
U set of users
Cu,t capacity (data rate · segment length) for user u in time slot t
Q set of video qualities e.g., {10, 20, 50}

Table 4.2: MIQCP variables

ds,t,u ∈ {0, 1} deliver segment s at time t to user u
es,u,q ∈ {0, 1} deliver segment s for user u at quality q
fs,u ∈ N quality for segment s for user u
gs,t,u ∈ N quality for segment s for user u at time t
ls,u ∈ N lateness per segment s for user u
ms,u ∈ N aggregated lateness per segment s for user u after playback
bt,u ∈ N number of buffered segments at time t for user u

First, it has to be ensured that each segment is downloaded exactly once
(Eq. 4.1) and that exactly one quality level is selected for each segment (Eq. 4.2).

30

4.2 Optimal Solution

Of course multiple segments can be downloaded in one time slot.∑
t∈T

ds,t,u = 1,∀s ∈ S, u ∈ U (4.1)∑
q∈Q

es,u,q = 1,∀s ∈ S, u ∈ U (4.2)

Then the selected quality for each segment (Eq. 4.3) and value for the decision
variable that indicates when a segment with a selected quality level is actually
downloaded (Eqs. 4.4 and 4.5) have to be calculated.

fs,u =
∑
q∈Q

es,u,q · q,∀s ∈ S, u ∈ U (4.3)

gs,t,u ≥ fs,u · ds,t,u,∀s ∈ S, t ∈ T, u ∈ U (4.4)

gs,t,u ≤ fs,u · ds,t,u,∀s ∈ S, t ∈ T, u ∈ U (4.5)

Now the segment download has to be constrained by the per-user data rate
(Eq. 4.6). ∑

s∈S

gs,t,u ≤ Cu,t,∀t ∈ T, u ∈ U (4.6)

The constraints specified so far only require each segment to be download eventu-
ally but do not consider playback interruptions caused by delayed segment down-
loads.

The quadratic nature of the problem, in contrast to being entirely linear, stems
from the combination of quality selection and scheduling. It requires for each
video segment s to multiply the integer decision variable for the selected quality
fs,u with a binary decision variable ds,t,u to determine the scheduled time slice.
This decision turns the problem from a linear one to a quadratically constrained
problem. The problem retains its positive semidefinite nature and is thus still
efficiently solvable by an optimizer.

To formulate the objective function additional constraints to handle playback
interruptions and buffering of segments are required.

The lateness for each segment (Eq. 4.7) and the aggregated lateness after play-
back (Eq. 4.8) can now be calculated.

ls,u =
∑

t∈[s+1,max(T))

ds,t,u · t,∀s ∈ S, u ∈ U (4.7)

ms,u =
∑

x∈[0,s+1)

lx,u,∀s ∈ S, u ∈ U (4.8)

The number of buffered segments for each user u in time slot t also have to be
taken into account. They are calculated by summing up the number of downloaded
segments until t and subtracting t because up to time slot t, t segments have to

31

4 Anticipatory Download Scheduling with Perfect Prediction

be played out (Eq. 4.9).

bt,u =

 ∑
∀x∈[0,t)
s∈S

ds,x,u

− t, ∀t ∈ T, u ∈ U (4.9)

4.2.3 Objective

To formulate the objective function I define three weight factors: Wl for the
lateness of video segments, Wq for the selected quality level of the video segments
and Wb for the number of buffered segments. I formulate the objective function
as

minimize: Wl ·
∑

s∈S,u∈U

ls,u (4.10)

−Wq ·
∑

s∈S,u∈U

fs,u

+Wb ·
∑

t∈T,u∈U

bt,u

This formulation allows both to trade-off the metrics lateness, video quality, and
buffer usage as well as to define a lexicographical ordering of these metrics, which
I will do for my evaluation. As an alternative to this objective function it is
also possible to set fixed limits to one or two of the metrics and to maximize or
minimize the remaining ones, deriving a corresponding Pareto front.

With respect to the Quality of Experience (QoE) for the users and based on the
findings by Hoßfeld et al. [HSH+11, HSSZ14, HSS+15] described in Section 3.2, I
use a lexicographical order of 1) minimizing lateness, 2) maximizing video quality,
and 3) minimizing buffer usage. The precise weights depend on the number of
users and segments, but the following inequality has to hold: Wl >> Wq >> Wb.
I also use this lexicographical order for designing heuristic algorithms for which I
use the optimization problem as a baseline for evaluation.

4.2.4 Complexity

The problem underlying the MIQCP is a combination of two knapsack problem
variants [KPP04]:

The decision in which time slice to download each segment corresponds to the
multiple knapsacks problem: Each time slice is one of the multiple knapsacks
and the reward for putting a segment into a knapsack corresponds to whether the
segment is downloaded too early, on time or too late. If this concept is transformed
to a suitable reward function, a Polynomial-Time Approximation Scheme (PTAS)
exists to approximately solve this problem in polynomial time [CK00].

The decision which quality to use for each segment corresponds to the multiple
choice knapsack problem, where the choice of items is limited to a certain sets

32

4.3 Fill Algorithm

of items. This corresponds to the different quality levels in my combined prob-
lem. The multiple choice knapsack problem can also be solved approximatively
in polynomial time with time O(n · log(n) + m·n

ε
) and space O(n+ m2

ε
) where n is

the number of items and m the number of sets to choose from [Law79].

I cannot simply divide the scheduling problem into completely separate in-
stances of both knapsack problems in a way to apply both approximations sep-
arately. Instead, both PTAS approaches would have to be combined into a new
approximation to solve our scheduling problem. Since both PTAS approaches
alone are already very complex and this is only the baseline case with perfect
prediction, I developed a heuristic algorithm instead of a fixed approximation
algorithm.

4.3 Fill Algorithm

Consistent with the optimization problem, the Fill algorithm is an offline sched-
uler. Data rates for all time slots are known in advance and the result of the
algorithm is a complete schedule for all users over all time slots. The assumptions
are the same as for the optimization problem.

The Fill algorithm takes available data rate for each user in each time slot as
its input parameter and iterates over all time slots to fill the buffer with video
segments independently for all users. Algorithm 4.1 shows this basic structure of
the algorithm.

Algorithm 4.1 fillScheduler(U, T,Q)

1: // users U, times T, qualities Q
2: for all u ∈ U do // schedule all users
3: C ← predictUserRates(u) // from channel prediction
4: s← 0 // initialize counter for scheduled segments
5: for all t ∈ [0..|T |] do // schedule all time slots/segments
6: s← s + scheduleSegment(u, t, s,Q,C)
7: end for
8: end for

The function predicteUserRates(u) returns the predicted data rates for a
user for all time slots based on the underlying radio resource scheduler.

The control flow of scheduleSegment (Algorithm 4.2) is illustrated in Figure
4.2. For each time slot there are two different operations, depending on the avail-
able data rate in that time slot: If there is enough data rate to download a new
segment in the currently examined time slot (Algorithm 4.2, lines 3 and 4), the
Fill algorithm schedules this video segment at maximum possible quality. This
behavior ensures a minimum number of segments in the buffer as long as there
is no need for buffering more segments for future time slots with insufficient data
rate. If, during the iteration, the predicted data rate in some time slot t does not
suffice to download a new video segment (Algorithm 4.2, lines 6 to 22) even at the
lowest video quality level, the Fill algorithm has to change the schedule for one

33

4 Anticipatory Download Scheduling with Perfect Prediction

Figure 4.2: Flowchart for Fill Scheduler, specifically Algorithm 4.2

or more previous time slots to download and buffer a video segment before time
slot t with insufficient data rate.

This part of the algorithm, outlined in Algorithm 4.2, requires the following
helper functions:

• getBestQuality(Q, c)
Returns the best downloadable quality (out of Q) for a segment with pre-
dicted available data rate c, or FALSE if the data rate is insufficient even
for the lowest quality

• getBestQualityRange(Q, n, c)
Returns the best possible quality (out of Q) at which n segments can be
downloaded with predicted available data rate c, or FALSE if there is not
enough data rate to download all n segments even in the lowest quality

• getSegmentsForQuality(q, c)
Returns the number of downloadable segments with quality q and available
data rate c

• schedule(u, s, t, q)
Schedule the download of segment s for user u at time t with quality q

From time slot t where downloading of a full segment was not possible, the algo-
rithm goes back time slot by time slot. In the revisited time slots, it downgrades
the video quality of the segments, freeing up capacity to enable downloading of
the segment that has to be played out in time slot t. It can change the scheduled

34

4.3 Fill Algorithm

Algorithm 4.2 scheduleSegment(u, t, s, Q,C)

1: q ← getBestQuality(Q,C[t])
2: if q 6= false then // enough capacity in current time slot for new segment?
3: schedule(u, s, t, q) // schedule new segment with maximum quality for available

data rate
4: return 1
5: else // even lowest quality not feasible in time slot t
6: for all g ∈ [t..0] do
7: // enough capacity in range [g..t] for all scheduled segments and new one?

8: if getBestQualityRange(Q, t− g + 1,
t∑
i=g

C[i]) 6= false then // going back to

g provides enough data rate
9: q ← getBestQualityRange(Q, t− g + 1, C[g...t])

10: p← 0
11: for all r ∈ [g..t] do // reschedule all segments from range
12: n← getSegmentsForQuality(q, C[r])
13: for all v ∈ [(g + p)..(g + p + n)] do
14: schedule(u, v, r, q)
15: end for
16: p← p + n
17: end for
18: return 1
19: end if
20: end for // video start reached
21: return 0 // incur lateness for new segment
22: end if

download times of earlier segments in order to fit more segments into time slots.
Once a range of time slots is found where all segments including the one to be
played out in time slot t fit in (at reduced quality), computation of the schedule up
to time slot t is complete. This schedule serves as the basis to plan downloading
the segment for time slot t+ 1 in the next iteration.

For example, consider the situation in Figure 4.3a. The rectangles show the
video segments with different qualities, indicated by their shading, and the solid
line above the rectangles indicates the available data rate. There is not enough
data rate in the fourth and fifth time slots to download a video segment, but in
the second time slot there is enough data rate to download three segments. So
the algorithm goes back to the third time slot and determines that only going
back to the third time slot is not sufficient. Then it also move back to the second
time slot and resolves the lack of data rate in the fourth and fifth time slots so
the video can be played back uninterruptedly.

The downside of the Fill algorithm is the fact that the reduction of playback
interruptions results in a significant reduction of the video quality level. By com-
paring the example schedule from the Fill algorithm in Figure 4.3a with the
schedule generated from the optimization problem in Figure 4.3b this behavior
becomes obvious: the Fill algorithm goes back to the second time slot, and there

35

4 Anticipatory Download Scheduling with Perfect Prediction

(a) Example for Fill Algorithm (b) Example for MIQCP Schedule

Figure 4.3: Coordinated Multipoint Transmission and Reception

it can resolve the lack of data rate in the fourth and fifth time slots by download-
ing the segments in the lowest video quality, whereas going back to the first time
slot and downloading the segments with a medium video quality level provides a
better average video quality level. In this toy example, one could argue to allow
the Fill algorithm to go back a number of additional time slots to fix that issue.
But in a real scenario there is no way to reasonably limit such a number of addi-
tional time slots to consider, and it would essentially turn the algorithm into an
exhaustive search algorithm.

4.4 Greedy Algorithms

I this section, I introduce two greedy scheduling algorithms, that illustrate the
behavior of standard HLS player applications as a reference of the evaluation.
Since there is no specified default behavior for HLS player applications, I introduce
two different greedy behaviors, each with its specific mode of operation: 1) keeping
a full buffer or 2) maintaining a high video quality.

Both greedy scheduling algorithms take the available data rate for each user in
each time slot and a maximum buffer size as their input. Based on their respective
mode of operation, they iterate over all time slots and decide which segments to
download to fill the buffer with video segments. In each time slot, they consider
the currently available data rate, the current number of buffered segments, and
the quality levels of the segments not yet scheduled.

These algorithms cannot change the maximum buffer size and both fill the buffer
according to their respective mode of operation. This can result in unnecessary
buffering if enough data rate is available to play the video without buffering, or
unwanted playback interruptions if the chosen buffer size is not big enough to
continue playback in phases of insufficient data rate.

4.4.1 BufferFirst Algorithm

The mode of operation of the BufferFirst algorithm is to fill the entire buffer
with video segments. If the buffer is not completely full in a time slot, the al-
gorithm initially schedules the download of the maximum possible number of

36

4.4 Greedy Algorithms

segments at the lowest quality supported by the currently available data rate and
free buffer space. If there is also enough data rate available to download segments
in higher quality levels, it afterwards increases the quality for the scheduled seg-
ments to create a final schedule for each time slot. Thus, the algorithm never
decides to download fewer segments to increase the quality.

Figure 4.4: Example for BufferFirst Algorithm

Figure 4.4 shows an example for the BufferFirst algorithm with a maximum
buffer size of two segments. The red line indicates the available data rate in each
time slot. The buffer is filled with segments of medium quality in the first time
slot. In the second and third time slots, one segment is downloaded to fill the
buffer again. With this schedule the video playback will not be interrupted in the
fourth time slot because there is still one segment in the buffer. But the video
playback is interrupted in the fifth time slot.

4.4.2 QualityFirst Algorithm

The mode of operation of the QualityFirst algorithm is to download segments
with the highest quality possible. If the buffer is not completely full in a time slot,
the algorithm schedules the download of new segments at the maximum possible
quality depending on the currently available data rate. If there is still free buffer
space and data rate it continues to schedule downloading further segments.

As a consequence, this algorithm favors downloading segments at higher video
quality levels instead of buffering segments.

Figure 4.5: Example for QualityFirst Algorithm

37

4 Anticipatory Download Scheduling with Perfect Prediction

Figure 4.5 shows an example for the QualityFirst algorithm with a maximum
buffer size of two segments. As the algorithm favors to download segments with
high quality levels before filling the buffer, there are no segments in the buffer to
avoid a playback interruption in the fourth and fifth time slot.

4.5 Evaluation

With the MIQCP, the Fill algorithm and the two greedy algorithms, I can both
compare the optimal solution to the state of the art, represented by the greedy
algorithms, and compare the performance of the heuristic Fill algorithm to the
optimal solution.

I first introduce the simulation scenario in Section 4.5.1 and present the evalu-
ation results in Section 4.5.2.

4.5.1 Scenario

The basic structure for the evaluation scenario is a line of Base Stations (BSs) with
fixed, equal distance. The users are moving along the BSs through the scenario
from the first BS to the last BS as illustrated in Figure 4.6.

Figure 4.6: Evaluation scenario

To decrease the available data rate and to create the need for buffering, I remove
BSs from the scenario, as illustrated by BSs B and D. The more BSs are removed,
the more gaps without any available data rate occur and the more segments have
to be buffered to avoid playback interruptions. The users all move as a group
from the first BS to the last BS (e.g., a public transport scenario).

The wireless links are modeled according to the 3GPP LTE model (Section
2.2.1, [3GP09]). The BSs are placed equidistantly with an inter-site distance of
1500 meters, which is slightly larger than a normal urban scenario in order to
augment the effects resulting from removing cells. I consider four active users in
the scenario, to maintain comparability between the simulation results and the
testbed measurements in Section 7.3.

For the channel capacity I assume an asymptotically error-free communica-
tion channel, modeled by the Shannon equation with the following parameters:
10 MHz bandwidth, 46 dBm transmission power, isotropic antennas with 0 dB
gain, -174 dBm/Hz noise power spectral density and -149 dBm/Hz average in-
terference. The maximum data rate for a BS is limited to 30 Mbit/s to account

38

4.5 Evaluation

for the small number of users in the scenario. The allocation of data rates to the
users in each time slot is determined by a wireless resource scheduler, which is,
in this case, a simple proportional fair scheduler executed independently per time
slot. For each time slot, a user is associated with that BS that provides the best
Signal to Interference and Noise Ratio (SINR).

The maximum buffer size for the greedy scheduling algorithms is set to 3 seg-
ments, which corresponds to the default setting for VLC on Android.

The video quality levels and the corresponding required data rates are taken
from a HLS test video I have generated from the clip “Tears of Steel”1. The result-
ing segment sizes for the three video quality levels are 1.413 MB (low), 2.951 MB
(medium) and 3.613 MB (high). As the real file size of all segments varies slightly
by a few hundred kilobytes due to the video encoding, we use the maximum size
over all generated video segments in one video quality level as the parameter for
the scheduling algorithms. The segment length is set to 10 seconds, corresponding
to the recommended value in the HLS standard. The video has a total length of
44 segments.

The scenario consists of a 44 BSs. The number of removed BSs varies from 0 to
20, which means that in the worst case half of all BSs are removed. The removed
BSs are selected uniformly, but the first and last 2 of the 44 BSs are never removed
to avoid side effects. Removing more base stations yields infeasible scenarios for
the MIQCP because some segments can never be downloaded.

The weights for the MIQCP objective function, as described in Section 4.2,
are set to enforce the following lexicographical order: minimize lateness before
maximizing quality and before minimizing buffering (Wl = 440, Wq = 10, Wb = 1).

4.5.2 Results

I evaluate three different metrics: the average downloaded video quality level in
MB per segment, the lateness of segments in seconds averaged over all users as an
indicator for playback interruptions and the average buffer level in segments. All
plots are based on multiple simulation runs and show confidence intervals at 95%
confidence level; small intervals might be covered by the plot markers.

The simulation results for the average video quality are shown in Figure 4.7.
The dashed lines indicate the reference value of the high, medium and low video
quality levels. MIQCP delivers the overall highest video quality level, which de-
creases only slightly once more than 10 BSs are removed from the scenario. This
indicates that MIQCP can exploit the available data rate in order to deliver and
buffer high quality segments whenever possible. The QualityFirst algorithm
delivers the overall second highest video quality level, which is only slightly less
than the one from the MIQCP. This corresponds to the expected behavior of the
QualityFirst algorithm. The BufferFirst algorithm exhibits the opposite
behavior and delivers the overall lowest video quality level, which also corresponds
to the expected behavior. The Fill algorithm provides the same high video qual-
ity level as the MIQCP when only a small number of BSs is removed and enough

1https://mango.blender.org/

39

https://mango.blender.org/

4 Anticipatory Download Scheduling with Perfect Prediction

0 5 10 15 20
Number of removed base stations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Vi
de

o
Qu

al
ity

 L
ev

el
 [M

B/
se

gm
en

t] MIQCP
Fill
Quality
First
Buffer
First

Figure 4.7: Simulation results: average quality

data rate is available. When more BSs are removed, the delivered video qual-
ity level from the Fill scheduler decreases but is still higher compared to the
BufferFirst algorithm.

0 5 10 15 20
Number of removed base stations

10

0

10

20

30

40

50

Av
er

ag
e

La
te

ne
ss

 [s
ec

on
ds

]

MIQCP
Fill
Quality
First
Buffer
First

Figure 4.8: Simulation results: average lateness

Figure 4.8 shows the results for the average lateness over all users in the simula-
tion. MIQCP and the Fill algorithm never download segments too late. For both
the QualityFirst and BufferFirst algorithms lateness increases when more
than 10 BSs are removed. Because of the mode of operation to download segments
in higher quality levels instead of buffering more segments, the QualityFirst
algorithm incurs the highest lateness.

The simulation results for the average buffer fill level are shown in Figure 4.9.
Both greedy scheduling algorithms always try to fill their buffer up to the maxi-

40

4.5 Evaluation

0 5 10 15 20
Number of removed base stations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Bu
ffe

r L
ev

el
 [s

eg
m

en
ts

] MIQCP
Fill
Quality
First
Buffer
First

Figure 4.9: Simulation results: average buffer level

mum buffer level of 3 segments. Because the greedy scheduling algorithms have
no mechanism to reduce buffer usage, buffer levels only decrease when there is not
enough available data rate to fill the buffer entirely. This happens when more and
more BSs are removed from the scenario. The MIQCP and the Fill scheduler
are designed to minimize buffer usage where possible, thus both start off with
little buffering and only increase the buffer level as more and more BSs are re-
moved from the scenario. After removing more than 10 BSs from the scenario the
MIQCP uses more buffer space than the Fill algorithm. This is caused by the
preference of the MIQCP objective function to download segments with a higher
video quality level rather than minimizing the buffer level. The Fill algorithm,
on the other hand, will switch to lower video quality levels instead of buffering
more segments.

4.5.3 Algorithm Running Times

Figure 4.10 shows the running times for the different scheduling algorithms on the
simulation scenario. All schedulers are executed using a single Intel Xeon X5650
CPU at 2.67 Ghz.

Solving the MIQCP takes around 2.5 orders of magnitude longer than running
the Fill algorithm. The running time of the Fill algorithm does not change sig-
nificantly when more base stations are removed from the scenario. The running
time of the greedy scheduling algorithms is less than the running time of the Fill
algorithm because they are less complex than the Fill algorithm. Their run-
ning time slightly decreases as more base stations are removed from the scenario
because with less available data rate, the greedy algorithms have to make fewer
decisions on how to use the available data rate.

41

4 Anticipatory Download Scheduling with Perfect Prediction

0 5 10 15 20
Number of removed base stations

10-3

10-2

10-1

100

101

102

Av
er

ag
e

Al
go

rit
hm

 R
un

ni
ng

 T
im

e
[s

ec
on

ds
] MIQCP

Fill
Quality
First
Buffer
First

Figure 4.10: Algorithm running times

4.6 Summary

In this chapter I have described the anticipatory download scheduling problem
with perfect prediction of available data rates. I have used this variant of the
problem to establish a baseline case by formulating a Mixed Integer Quadratically
Constrained Program (MIQCP) to solve the problem. I have also described how
current state of the art HLS players schedule their downloads without prediction
of future available data rates, to compare my solutions to a real-world case. Based
on the behavior of the MIQCP I have implemented a heuristic algorithm to solve
the problem.

The evaluation results clearly indicate that incorporating the prediction of
future available data rates into the download scheduling essentially eliminates
playback interruptions in the investigated scenario. With the solution from the
MIQCP also the video quality is not decreased, whereas the heuristic algorithm
reduces the video quality to avoid playback interruptions.

After establishing the baseline case in this chapter, I investigate anticipatory
download scheduling with uncertain prediction of future available data rates in
the next chapter.

42

5
Anticipatory Download Scheduling
with Uncertain Prediction

5.1 Problem Description 44

5.2 Generic Predictor 44

5.2.1 Stochastic Model of Prediction Errors 45

5.2.2 Implementation 45

5.3 Evaluation of Perfect Prediction Algorithms with Un-
certain Predictions 46

5.3.1 Scenario . 46

5.3.2 Results . 46

5.4 Plan Algorithm . 49

5.5 Evaluation . 56

5.5.1 Comparison with Perfect Prediction Schedulers . . . 56

5.5.2 Influence of the Prediction Horizon 61

5.6 Summary . 62

In this chapter I describe how the approach for anticipatory download schedul-
ing based on HTTP Live Streaming (HLS) can also be implemented with erroneous
prediction of future available data rates. Here I assume that (a) data rate predic-
tion is only available for a limited number of future time slots and (b) predicted
data rates can be subject to errors. I call such erroneous predictions uncertain.

Together with Johannes Blobel, I have first created a generic predictor (Sec-
tion 5.2) to pass information about the uncertainty of predictions to a scheduler.
We then evaluated how the algorithms based on perfect prediction behave if used
together with uncertain predictions (Section 5.3) and developed a new prediction-
error-aware-scheduling algorithm (Section 5.4) that takes the uncertainty of pre-
dictions into account. We finally evaluated the new algorithm (Section 5.5) to
show how anticipatory download scheduling is also feasible with uncertain predic-
tions.

43

5 Anticipatory Download Scheduling with Uncertain Prediction

5.1 Problem Description

The basic underlying problem is the same as before in Chapter 4, but the scope
of scheduling decisions is inherently different: When perfect prediction of future
data rates is available, the problem to solve is to establish a download schedule
for a whole scenario, i.e., the whole duration of a video playout. With uncertain
prediction of future data rates, the problem to solve is to decide what do download
in the current time slot and to take this decision in every time slot during the
playout of a video because the prediction information is updated in every time
slot. A scheduler also has to take the accuracy of predicted data rates into account.

Figure 5.1: Example for scheduling with uncertain prediction

Figure 5.1 illustrates how a scheduler with uncertain prediction works. For the
current time slot, the exact available data rate is known to the scheduler. For the
next two time slots a predicted data rate with low probability of a prediction error
(indicated by the error bars) is available. For the third and fourth future time
slots, there are predictions of data rates but with a high probability of prediction
error. For the following time slots, no predicted data rates are available to the
scheduler. The scheduler now decides to trust the predictions for the next two
future time slots, therefore it downloads and buffers a segment for the second time
slot. Because the predictions for the fourth and fifth time slot are too uncertain,
the scheduler does not trust them and does not schedule the download of additional
segments yet.

5.2 Generic Predictor

In this section I present a generic error model for data rate prediction that can
be used to implement a generic predictor to simulate the behavior of a real data
rate predictor based on one of the introduced prediction techniques (see Section
2.4.2).

To evaluate the performance of anticipatory scheduling algorithms with un-
certain predictions, it would of course be possible to just implement one of the
prediction techniques introduced in Section 2.4.2. But the accuracy of these tech-
niques highly depends on the amount and quality of used training data. Without
sufficient training data the performance of an otherwise accurate algorithm can

44

5.2 Generic Predictor

significantly be degraded [GUR+13]. As it is known from machine learning tech-
niques, the sets of training and validation data should be distinct from each other
in order to receive valid results [Mit02]. In a simulation environment the training
data would be generated from the same scenarios that the predictor is evaluated
with.

To avoid this problem, we have implemented a generic predictor which does
not predict future data rate based on any machine learning technique. Instead,
predicted data rates are distributed to represent the predicted values from a real
predictor. Thus, the uncertainties follow a similar distribution.

5.2.1 Stochastic Model of Prediction Errors

Bui et al. [BMW14, BW14] showed that data rate prediction errors can be modeled
using Gaussian random walks. The main source of prediction errors of category
2 and 1 (see Section 2.4.2) are uncertainties in the system parameters, above all
user distance to a Base Station (BS) resulting from the user’s location. To obtain
error sequences, they simulated a user’s movement in a scenario in which BSs
are randomly placed. For these scenarios they trained an Autoregressive Moving
Average (ARMA) model to retrieve predicted values and the corresponding error
sequences.

Then, they derived a model that describes data rate prediction errors as a
normally distributed random variable with zero mean. The standard deviation of
the error distribution σ was formulated as:

σ2
k(s, Ts) = A(s, Ts)k +B(s, Ts) (5.1)

where s is the user’s speed, Ts the sampling period, k the prediction horizon, i.e.,
how far in the future the data rates are predicted. A and B are linear functions
A(s, Ts) = A1 · s · Ts + A2 and B(s, Ts) = B1 · s · Ts + B2 whose coefficients have
been fitted by minimizing the least square error between the model and the data.
Results from Bui et al. [BMW14, BW14] show that distributions of the stochastic
model and of the generated error sequences from the ARMA predictor are in fact
identical. With the fitted coefficients the real errors could be matched closely.

5.2.2 Implementation

Based on the stochastic model, we have implemented a generic predictor to sim-
ulate the behavior of a real predictor by adding a Gaussian error to the actual
data rate of a user. Because the user’s speed and the sampling period are fixed
throughout the simulations, the two functions A and B (Equation 5.1) can be
replaced by constants: We replace A by a the error factor e to parameterize the
accuracy of the model and replace B by 0 because we assume a perfect knowledge
of the current available data rate (i.e., there is no intrinsic randomness in the
prediction as assumed by Bui et al. [BW14]).

The error factor e represents the accuracy of the simulated prediction algorithm
and the simulated training data. A small factor represent a good and accurate

45

5 Anticipatory Download Scheduling with Uncertain Prediction

prediction, a large factor a bad and uncertain prediction. The predictor’s accu-
racy depends on the error factor e and the prediction horizon (i.e., how far into
the future a prediction is made). According to this and Equation 5.1 from the
stochastic model, the predicted data rate b of a user u at time slot ti has a standard
deviation of

σu,t =
√
e · (ti − t0)) (5.2)

where t0 is the time slot in which the predictor is queried.
The generic predictor can also be used to generate a prediction for the complete

duration of the simulation. This ensures that the predicted values can also be given
to the schedulers for perfect prediction that require knowledge of predicted data
rates for the whole scenario.

5.3 Evaluation of Perfect Prediction Algorithms
with Uncertain Predictions

In this section I present an evaluation of the Fill scheduler and the greedy sched-
ulers (Chapter 4) with uncertain predictions using the generic predictor from the
previous section.

5.3.1 Scenario

The evaluation scenario consists of a line of BSs similar to Section 4.5. In contrast
to the previous evaluation in Section 4.5, here we use the GreenTouch radio model
(Section 2.2.2). The scenario has 25 equidistantly placed BSs, 12 of which are
removed uniformly at random to create gaps. The video duration is 30 minutes
with a segment length of 10 seconds.

Since the schedulers for perfect prediction from Chapter 4 need predicted data
rates for the whole scenario, data rates are calculated using the generic predictor
from Section 5.2 which is queried every k-th time slot.

5.3.2 Results

Simulation results in Figure 5.2 show the influence of introducing an error factor
e and the prediction horizon k on the existing schedulers. All plots are based on
multiple simulation runs and show confidence intervals at 95% confidence level;
small intervals might be covered by the plot markers.

The greedy schedulers do not take anticipated data rates into account. Hence,
the added error has no influence on the performance of these schedulers. Because
12 BSs are removed from the scenario, the greedy schedulers with a maximum
buffer size of 3 segments incur a high lateness. Consistent with the previous results
in Section 4.5, the QualityFirst scheduler delivers a slightly better average
video quality and slightly worse lateness.

As shown in Figure 5.2a, with a perfect prediction (e = 0), the Fill scheduler
achieves much better lateness than the greedy schedulers, which is consistent with

46

5.3 Evaluation of Perfect Prediction Algorithms with Uncertain Predictions

the previous results. But as the error factor is increased, the lateness also increases
significantly.As before, average video quality is not affected by the prediction errors
and consistent with the previous results from Section 4.5. This is due to the fact
that the wrong decisions based on the prediction errors only delay the download
of segments and do not change the quality selected by the scheduling algorithm.

The size of the prediction horizon k also influences the performance as shown
in Figure 5.2b. The later the prediction horizon is (i.e., the less frequent the
prediction is queried), the steeper is the increase of lateness for the Fill scheduler.
This is due to the fact that with fewer queries of the predictor, the data rates that
lie further in the future become more and more inaccurate.

The results clearly indicate that the existing Fill scheduler does not work with
uncertain predictions. Thus we introduce a new prediction-error-aware scheduler
in the next section.

47

5 Anticipatory Download Scheduling with Uncertain Prediction

0 5 10 15 20 25 30 350

50

100

150

Av
g.

 L
at

en
es

s
[s

]

0 5 10 15 20 25 30 35
Error factor e

2.6
2.8
3.0
3.2
3.4

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

(a) k = 3

0 5 10 15 20 25 30 350

50

100

150

Av
g.

 L
at

en
es

s
[s

]

0 5 10 15 20 25 30 35
Error factor e

2.6
2.8
3.0
3.2
3.4

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

(b) k = 12

0 5 10 15 20 25 30 35
0
5

10
15
20

Av
g.

 L
at

en
es

s
[s

]

0 5 10 15 20 25 30 35
Error factor e

2.6
2.8
3.0
3.2
3.4

Av
g.

 Q
ua

lit
y

[M
Bi

t/s
]

BufferFirst QualityFirst Fill

Scheduler performance with erroneous predictions
 Prediction Horizon k=3

Figure 5.2: Evaluation of perfect prediction algorithms with uncertain predictions

48

5.4 Plan Algorithm

5.4 Plan Algorithm

To make anticipatory download scheduling work in a scenario with uncertain pre-
dictions it is necessary to implement a scheduler that can handle prediction errors.
The generic predictor that I introduced in Section 5.2 not only yields predicted
data rate values but also the standard deviation of this value. This additional
information about the accuracy of the prediction can be used by a scheduler to
determine if it should consider or discard predicted values. The real future data
rate cannot be determined with the knowledge of the standard deviation; it is
only an indicator of the accuracy of the prediction. Without any additional infor-
mation the scheduler would just have to guess the accuracy of the prediction and
would have no substantial information to base its decisions on.

The design of this algorithm is based on the following considerations:

• The current data rate is more important than future values and should thus
have a greater influence on the scheduling decisions than future predicted
values.

• Predicted values with high standard deviation should have a smaller influ-
ence than predicted values with low standard deviation.

• When there is sufficient predicted data rate in the future, only the neces-
sary segments should be downloaded and no additional segments should be
buffered.

The scheduling algorithm is executed for every time slot to determine how many
segments should be downloaded in which quality in this time slot. The algorithm
is divided into four phases:

• Phase 1: Dynamic Buffer
Determine the number of necessary segments

• Phase 2: Summed Capacity
Calculate the weighted summed capacity (data rate over time)

• Phase 3: Schedule Plan
Create a preliminary schedule plan for the next h time slots

• Phase 4: Implementation of Plan
Schedule as much as possible from the preliminary plan in the current time
slot

The basic structure of the algorithm is outlined as a flow chart in Figure 5.3
and the pseudo code is listed in Algorithm 5.1. Input variables to this algorithm
are listed in Table 5.1.

The four phases of the algorithm are explained below in more detail.

49

5 Anticipatory Download Scheduling with Uncertain Prediction

Algorithm 5.1 Plan(t, k, s, cc, Cpred, Dpred, Q)

// Phase 1: Dynamic Buffer
1: r ← 1
2: low ← false
3: for all ci ∈ Cpred, di ∈ Dpred do
4: if max(ci − 1.4 · di, 0) < min(Q) then
5: r ← r + 1
6: low ← true
7: end if
8: if max(ci − 1.4 · di, 0) > max(Q) and low = true then
9: h← x

10: break // End of low phase
11: end if
12: end for
13: n← t+ r − s // subtract already downloaded segments

// Phase 2: Summed Capacity
14: Cs = cc +

∑i≤h
i=0 max(ci − 1.4 · di, 0)

with ci ∈ Cpred, di ∈ Dpred

// Phase 3: Schedule Plan
15: P ← bestQualities(Cs, n,Q)

// Phase 4: Implementation of Plan
16: while

∑
qi∈P qi > cc do

17: removeSegment(P)
18: end while
19: for 0 ≤ i < |P | do
20: Schedule(s+ i, Pi)
21: end for

50

5.4 Plan Algorithm

Figure 5.3: Flowchart of the Plan algorithm

51

5 Anticipatory Download Scheduling with Uncertain Prediction

Variable Description

t Current time slot
k Prediction horizon
s Number of already loaded segments
cc Current capacity (data rate · time slot length)
Cpred List of predicted future capacities (data rate · time slot length)
Dpred List of corresponding standard deviations
Q List of available video qualities (required capacity per segment)

Table 5.1: Input variables of Plan, Algorithm 5.1

Phase 1: Dynamic Buffer The first step of the algorithm is to determine the
number of segments n that should be downloaded in the current time slot to ensure
an uninterrupted video playback. To do so it counts the number of future time
slots r within the prediction horizon k, for which the predicted capacity ci minus
the standard deviation di is less than the lowest quality min(Q) (lines 1 to 12 in
Algorithm 5.1). These time slots are called low time slots. Using ci − 1.4 · di to
estimate the real capacity from the predicted capacity is a conservative approach
to not over-estimate the capacity as it implies a 95% confidence that the predicted
value is not lower than the real value, based on the Gaussian distribution of
the prediction error (see Section 5.2.1). The estimation only has to ensure that
the the capacity is not over-estimated, thus a one-sided 95% confidence level is
sufficiently conservative. This consideration is illustrated in Figure 5.4: It shows
the Probability Density Function (PDF) for a normal distribution with µ = 40
and σ = 10 and the dashed vertical line indicates the point of µ − 1.4 · σ. Using
ci − 1.4 · di as a bound for the predicted capacity ensures that the real capacity
lies within the the blue area and not the red area with a probability of 95%.

0 10 20 30 40 50 60 70 80
Predicted capacity [MB]

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Pr
ob

ab
ili

ty

Figure 5.4: Probability density function for data rate prediction

If the prediction horizon is large, the predicted values that lie further in the
future become very inaccurate. Also, it is not necessary to download segments for
a time slot with low capacity in the far future, if there is a phase with time slots

52

5.4 Plan Algorithm

with sufficient capacity in the near future. Thus the algorithm stops the search
for low time slots, if there is a time slot in which ci − di > max(Q). This time
slot is called high.

The algorithm only downloads a single segment if the conditions are good
(line 1). If the data rate in the future decreases for a longer period, the buffer is
filled with segments, to avoid playback interruptions in this phase.

0 20 40 60 80 100 120 140 160 180
100
10203040506070

Da
ta

 R
at

e
 [M

bi
t/s

]

0 20 40 60 80 100 120 140 160 180
Time [s]

2
0
2
4
6
8

10
12

Pl
an

Bu
ffe

r

0 20 40 60 80 100 120 140 160 180
Time [s]

20
24
68

101214

Fi
ll

Bu
ffe

r

0 20 40 60 80 100 120 140 160 180
Time [s]

2
1
0
1
2
3

Bu
ffe

rF
irs

t
Bu

ffe
r

Figure 5.5: Buffering behavior of schedulers

This dynamic adaption of the buffer size for a single user is illustrated in Fig-
ure 5.5 in comparison to the buffering behavior of the Fill and BufferFirst
algorithms. The figure shows the available data rate for one user and the number
of buffered segments for the different schedulers. If the data rate is sufficient,
the Plan scheduler and the Fill scheduler only download the next segment and
the buffer fill level is zero because the loaded segment is consumed right away.
Around seconds 30, 60, 100 and 130 there are phases with no or very low data
rate available for the user. While the anticipatory schedulers increase the buffer
size before these phases to avoid playback interruptions, the simple greedy algo-
rithm experiences buffer underruns denoted by a buffer fill level of −1. Due to
the limited prediction horizon of the Plan scheduler, buffer underruns cannot be
prevented completely. If the low data rate phase is too long, like around second
150, not enough segments can be buffered before.

Figure 5.5 illustrates the sliding prediction window of the Plan scheduler. As
low data rate time slots enter the window, the algorithm starts to increase the

53

5 Anticipatory Download Scheduling with Uncertain Prediction

buffer size, which leads to the pyramidal pattern of the buffer fill level. In contrast
to this, the Fill scheduler increases the buffer size shortly before the low data
rate phase, which can be seen by the saw tooth pattern in the plot.

Phase 2: Summed Capacity As the second phase, the algorithm has to cal-
culate how much capacity is available until the prediction horizon h, to later
determine how many segments should be downloaded and buffered in the current
time slot.

The summed capacity consists of the current capacity cc that is known precisely
and the sum of the predicted capacities Cpred (line 14). The summed capacity
is only calculated for time slots up to time h because Phase 1 only considers
segments up to time h. Identical to the calculation in the previous phase we
calculate the predicted capacity for future time slot i as

ci − 1.4 · di (5.3)

to again obtain a 95% confidence that the predicted value is not lower than the
real value. The summed capacity is thus calculated as

Cs = cc +

i≤h∑
i=0

max(ci − 1.4 · di, 0) (5.4)

Phase 3: Schedule Plan Based on the number of necessary segments from
Phase 1 and the summed capacity from Phase 2, the algorithm has to decide
which segments to download in which quality level (line 15), considering also how
many segments have already been downloaded. This decision, which we call a
plan, describes what should be downloaded until time t + h. This plan is then
used in the next phase to decide what to actually schedule for time slot t.

To create the plan, the algorithm uses the helper function bestQualities
(Algorithm 5.2) which takes the summed capacity Cs, the number of necessary
segments n and the set of qualities Q as input. This helper function solves a
simplified version of the knapsack problem where the value and weight of an item
is equal and from each item there is an unlimited number.

The helper function initially assigns the best quality to each segment (line 3) and
then subsequently reduces the quality until the resulting data rate requirement is
sufficient (line 8). If the quality for all segments is reduced to the lowest quality
and the data rate requirement is not met, the helper function starts to remove
segments.

Table 5.2 contains an example of the iterations of the algorithm: The available
summed capacity is Cs = 8, n = 3 segments have to be scheduled and the available
qualities are Q = [5, 3, 2]. After four iterations, the selected qualities sum up to
the available summed capacity, which is a valid quality selection.

Phase 4: Implementation of Plan As the last step, the scheduler checks how
much of the plan can be scheduled within the current time slot t, by subsequently

54

5.4 Plan Algorithm

Algorithm 5.2 bestQualities(Cs, n,Q))

1: P = q0, q1, . . . , qn
2: for all qi ∈ P do
3: qi ← max(Q)
4: end for
5: while

∑
qi∈P qi > Cs do

6: if max(qi ∈ P) > min(Q) then
7: imax ← argmax(qi ∈ P)// if more than one segment has the highest

quality, choose the one lying in the farthest future
8: qimax ← lowerQuality(qimax)
9: else

10: removeSegment(P)
11: end if
12: end while
13: return P

Iteration qi ∈ P
∑

P qi

0 [5, 5, 5]
∑

= 15 > 8
1 [3, 5, 5]

∑
= 13 > 8

2 [3, 3, 5]
∑

= 11 > 8
3 [3, 3, 3]

∑
= 9 > 8

4 [2, 3, 3]
∑

= 8 ≥ 8

Table 5.2: Example of P values in bestQualities (Cs = 8, n = 3, Q = [5, 3, 2])

removing segments from the generated plan until the sum of all segments is less
than or equal to the current capacity cc.

Figure 5.6 shows an example of how the algorithm works. In the first time
slot (Figure 5.6a), the algorithm detects a low phase in the second time slot and
thus schedules two segments (r = 2) at medium quality. In the second time slot,
the available data rate is too low to download any segment. In the third time
slot (Figure 5.6b), the algorithm detects a low phase in the fifth and sixth time
slots, but is only able to schedule two segments at low quality. The algorithm
would schedule another segment at low quality in the fourth time slot and incur
a playback interruption in the sixth time slot.

When the algorithm is executed in the first time slot, it is aware of a poten-
tially low data rate in the fourth and fifth time slots, but does not include this
information into its decision due to two reasons: first, this low phase occurs after
a high phase in the third time slot (see Phase 1 of the algorithm), and second,
the prediction for the fourth and fifth time slots has a high standard deviation
and lies in the far future, thus it is included into the data rate calculation with a
low weight (see Phase 2 of the algorithm).

55

5 Anticipatory Download Scheduling with Uncertain Prediction

(a) t = 1 (b) t = 3

Figure 5.6: Plan algorithm example

5.5 Evaluation

To compare the Plan scheduler with the perfect prediction schedulers, we first
show simulation results without a prediction error (e = 0). The simulation pa-
rameters are the same as in Section 5.3, except that the number of removed BSs
is varied between 0 and 12. All plots are based on multiple simulation runs and
show confidence intervals at 95 % confidence level unless they are covered by the
plot markers.

5.5.1 Comparison with Perfect Prediction Schedulers

We again evaluate the performance of the schedulers in terms of average lateness
(amount of playback interruptions), average video quality, and average buffer level.

Without Prediction Error Figure 5.7 shows the simulation results without any
prediction errors (e = 0). They are consistent with the previous results in Section
4.5: The greedy schedulers with the fixed buffer size cannot prevent playback
interruptions when BSs are removed. The Fill scheduler can prevent playback
interruptions even when BSs are removed.

The Plan scheduler differs from the other schedulers in a very important as-
pect: When making scheduling decisions at time t, the scheduler only knows the
predicted data rates until time t + k because of the limited predicted horizon.
In terms of lateness, it performs similar to the Fill scheduler but incurs small
playback interruptions when too many BSs are removed. Regarding the average
video quality, the Plan scheduler performs better than the Fill scheduler. Com-
paring Figures 5.7a and 5.7b shows how the Plan scheduler benefits from a larger
prediction horizon k.

The average buffer level remains almost constant for the greedy schedulers, as
expected. For Fill and Plan, the average buffer level increases as more and more
BSs are removed, with Plan buffering a significantly higher amount of segments.

These results concur with the observations about the buffering behavior in Fig-
ure 5.5: Fill buffers segments late (i.e., saw tooth pattern in buffering behavior)
at the expense of video quality, while Plan buffers early (i.e., pyramidal pattern
in the buffering behavior) and has more freedom to increase the video quality.

56

5.5 Evaluation

0 2 4 6 8 10 12
0

20
40
60
80

100
120
140
160
180

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

0 2 4 6 8 10 12
Number of removed base stations

0
1
2
3
4
5

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

(a) k = 6

0 2 4 6 8 10 12
0

20
40
60
80

100
120
140
160
180

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

0 2 4 6 8 10 12
Number of removed base stations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

(b) k = 12

0 2 4 6 8 10 12
0
5

10
15
20
25

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
bi

t/s
]

0 2 4 6 8 10 12
Number of removed base stations

0
1
2
3
4
5
6

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

Plan BufferFirst QualityFirst Fill

Scheduler Performance with erroneous Predictions
 Prediction Horizon k=3

Error e=0

Figure 5.7: Scheduler performance without errors e = 0

57

5 Anticipatory Download Scheduling with Uncertain Prediction

With Prediction Error Figures 5.8 and 5.9 show the results of simulations where
the prediction was erroneous (error factor e = 2 and e = 20). The prediction
horizons k are the same as before. The performance of the greedy schedulers is
not affected by the additional error because they do not consider predicted data
rates. The Fill scheduler cannot prevent playback interruptions anymore even for
small error factors (Figure 5.8). With a large error factor, as shown in Figure 5.9b,
the performance of the Fill scheduler becomes as bad as the greedy schedulers.

Because the Plan scheduler averages out the errors in Phase 2, it is not as
heavily affected by the prediction errors as the Fill scheduler. For small error
factors it performs better than the greedy and Fill schedulers and can keep this
level if the error further increases. As soon as the prediction becomes uncertain,
the Plan scheduler outperforms the other schedulers in all points: lower lateness,
better quality and more efficient buffering.

58

5.5 Evaluation

0 2 4 6 8 10 12
0

20
40
60
80

100
120
140
160

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

0 2 4 6 8 10 12
Number of removed base stations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

(a) k = 6

0 2 4 6 8 10 12
0

20
40
60
80

100
120
140
160

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

0 2 4 6 8 10 12
Number of removed base stations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

(b) k = 12

0 2 4 6 8 10 12
0
5

10
15
20
25

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
bi

t/s
]

0 2 4 6 8 10 12
Number of removed base stations

0
1
2
3
4
5
6

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

Plan BufferFirst QualityFirst Fill

Scheduler Performance with erroneous Predictions
 Prediction Horizon k=3

Error e=0

Figure 5.8: Scheduler performance with errors e = 2

59

5 Anticipatory Download Scheduling with Uncertain Prediction

0 2 4 6 8 10 12
0

20
40
60
80

100
120
140

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

0 2 4 6 8 10 12
Number of removed base stations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

(a) k = 6

0 2 4 6 8 10 12
0

20
40
60
80

100
120
140

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

0 2 4 6 8 10 12
Number of removed base stations

0
1
2
3
4
5
6

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

(b) k = 12

0 2 4 6 8 10 12
0
5

10
15
20
25

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
bi

t/s
]

0 2 4 6 8 10 12
Number of removed base stations

0
1
2
3
4
5
6

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

Plan BufferFirst QualityFirst Fill

Scheduler Performance with erroneous Predictions
 Prediction Horizon k=3

Error e=0

Figure 5.9: Scheduler performance with errors e = 20

60

5.5 Evaluation

5.5.2 Influence of the Prediction Horizon

As the Plan scheduler bases its scheduling decisions only on a limited amount of
anticipatory knowledge about future data rates, the size of the prediction horizon
plays an important role for its performance. If it is set to k = 0, the scheduler
only knows the current data rate. If it is set to the duration of the scenario, it
knows as much as the other schedulers. But a very high prediction horizon also
means that the predicted data rate that lies further in the future would be very
inaccurate.

With an increasing number of removed BSs, the gaps between the BSs become
larger. If the prediction horizon is too small, the scheduler cannot know about all
time slots with low or no available data rate and will not buffer enough segments
to avoid a playback interruption. But since in Phase 1 the algorithm stops the
search for time slots with low data rate if there is a subsequent phase with high
data rate, increasing the prediction horizon to be larger than these gaps has no
benefit.

0 2 4 6 8 10 12
0

20
40
60
80

100
120
140

Av
g.

 L
at

en
es

s
[s

]

0 2 4 6 8 10 12
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

[M
B/

se
gm

en
t]

0 2 4 6 8 10 12
Number of removed base stations

0
1
2
3
4
5
6
7

Av
g.

 B
uf

ffe
rs

iz
e

[s
eg

m
en

ts
]

0 2 4 6 8 10 12
0
2
4
6
8

10
12

Av
g.

 L
at

en
es

s
(s

eg
m

en
ts

)

0 2 4 6 8 10 12
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Av
g.

 Q
ua

lit
y

(M
bi

t/s
)

0 2 4 6 8 10 12
Number of removed base stations Spacing

0
1
2
3
4
5
6

Av
g.

 B
uf

ffe
rs

iz
e

(s
eg

m
en

ts
)

k=0
k=3

k=6
k=9

k=12
k=25

Error Aware Scheduler with different prediction horizons.
Error: 0f

Figure 5.10: Influence of different prediction horizons

Figure 5.10 illustrates these considerations: The prediction horizon should be at
least as large as the gaps between base stations. Otherwise playback interruptions
occur.

61

5 Anticipatory Download Scheduling with Uncertain Prediction

5.6 Summary

In this chapter, I have described how anticipatory download scheduling is feasible
with uncertain prediction of available data rates. I have introduced a generic
predictor, based on a stochastic model of prediction errors and presented the
Plan algorithm that is able to handle uncertain predictions.

The evaluation results show that the Plan algorithm is able to significantly
reduce playback interruptions compared to greedy scheduling without the predic-
tion of future available data rates. The Plan algorithm is also able to increase
the delivered video quality compared to the Fill scheduler.

These results prove the feasibility of anticipatory download scheduling with
uncertain predictions, as they would occur in a real world scenario.

62

6
Anticipatory Download Scheduling
for Energy Efficiency

6.1 Problem Description 64

6.2 Optimal Solution . 65

6.2.1 OptBasic . 66

6.2.2 OptFlex . 68

6.3 Two-Phase Algorithm 69

6.3.1 Quality selection phase 69

6.3.2 Base station disabling phase 72

6.4 Evaluation . 73

6.4.1 Scenarios . 73

6.4.2 Three BSs Scenario Results 74

6.4.3 Train Scenario Results 78

6.5 Summary . 79

In the previous two chapters, simulating phases of low available data rate is
done by random removal of Base Stations (BSs), resembling users in an area
with limited coverage from the mobile access network. The good results in terms
of Quality of Experience (QoE) with anticipatory download scheduling in these
scenarios led to the question if a similar approach in scenarios with full coverage
from the mobile access network can be used to reduce the number of active BSs by
switching them off while still maintaining a good QoE for the users. The more BSs
would be switched of the less energy the mobile access network would consume.

Together with Philipp Dreimann, I have extended the model of anticipatory
download scheduling to also include different power states for BSs. This requires
also a new model with a modified assignment of wireless channel resources. Based
on the new model, we have extended the Mixed Integer Quadratically Constrained
Program (MIQCP) from Section 4.2 and created a new heuristic algorithm. Both

63

6 Anticipatory Download Scheduling for Energy Efficiency

approaches jointly optimize the number of active BSs and the anticipatory down-
load scheduling. We evaluate both approaches in comparison to greedy download
scheduling and a simple power cycling mechanism for the BSs.

6.1 Problem Description

Similar to the original problem description of anticipatory download scheduling in
Section 4.1, the problem of anticipatory download scheduling with power cycling
of BSs can be summarized by two questions:

1. When should each segment be downloaded at which quality from which BS?

2. Which BS should be turned on when?

To formulate the scheduling problem as an optimization problem we assume a
discrete time model. Like in the previous chapters we assume that a video stream
is downloaded by all users and streaming starts in the first time slot t0 and ends
in the last time slot t|T |. The video is |T | segments long and the length of a
video segment is equal to the length of a time slot. Again, this means that for
an uninterrupted playback a segment si has to be downloaded at the latest in
time slot ti. The quality of the video is determined by the resolution, bit rate, or
codec and different qualities result in different file sizes for each segment in each
quality. For simplicity we assume that all segments with quality q have the same
file size, hence, quality and file sizes are interchangeable. Thus for each segment
s, a quality q and a download time t have to be determined per user like in the
previous chapters.

The BS power cycling can be modeled in a simple way: For each time slot t a
BS a can be switched on or off. If it is switched on, users can be associated with
it and the BS can provide data rate to its associated users. For this approach we
always assume that there is an always-on macro BS available to provide coverage
for voice calls, especially emergency calls, and we only switch on or off additional
BSs to provide capacity for data transmissions, i.e., video streaming.

Figure 6.1 illustrates the correlation between the two scheduling decisions and
the resulting effects: enabling more BSs potentially increases available data rate,
but also increases power consumption. The more data rate is available the more
freedom to schedule downloads of segments exists and playback interruptions are
reduced. Also, a higher video quality can be downloaded if more data rate is
available. Furthermore, additional active BSs generate harmful interference which
decreases available data rate. We only model interference as a static, worst-case
value according to the GreenTouch model (Section 2.2.2) because computing a
dynamic value would introduce too much complexity into the model.

Before introducing our optimization model, we give a short example of how
the described scheduling problem works. Figure 6.2a shows how the existing
anticipatory scheduling approach from Chapter 4 without power cycling behaves:
In time slot 3 there is a decrease in available data rate, so an additional segment has
to be downloaded and buffered in time slot 2. This avoids a playback interruption,
but additionally available data rate in time slots 1, 5 and 6 is not exploited.

64

6.2 Optimal Solution

Figure 6.1: Interaction between problem variables and resulting effects

(a) Existing scheduler (download) (b) New scheduler (download + BSs)

Figure 6.2: Example

Our new approach (shown in Figure 6.2b) downloads and buffers additional
segments in time slots 1, 2 and 5. With this download schedule, the BSs can be
switched off in time slots 3, 4 and 6 without causing any playback interruption.
For simplicity, the selection of video quality is omitted in this example.

6.2 Optimal Solution

In this section we describe the optimization problem, which is based on the
MIQCP in Section 4.2. Two schedulers, OptBasic and OptFlex, are imple-
mented with this optimization problem. We first describe OptBasic in Section
6.2.1 and then describe OptFlex as an extension of OptBasic in Section 6.2.2.

The input parameters for both optimization problems are defined in Table 6.1
and the decision variables in Table 6.2. The parameters and variables related to
the download scheduling are the same as in Chapter 4 and the parameters and
variables related to BSs are new in this chapter.

65

6 Anticipatory Download Scheduling for Energy Efficiency

Table 6.1: Input parameters

T set of time slices, e.g., {0,1,2,3}
S set of segments to transfer, e.g., {0,1,2,3}
U set of users, e.g., {0,1,2,3}
Q set of qualities, e.g., {10, 20, 50}
A set of BSs, e.g., {0, . . . 9}
Du,a,t data rate of user u connected to BS a at time t, e.g., 42

B resource blocks per BS and time, e.g., {0, . . . 99}
DB
u,a,t data rate per resource block of user u

connected to BS a at time t, e.g., 0.42

Table 6.2: Variables

ds,t,u ∈ {0, 1} deliver segment s at time t to user u
es,u,q ∈ {0, 1} deliver segment s for user u at quality q
fs,u ∈ N quality for segment s for user u
gs,t,u ∈ N quality for segment s for user u at time t
ls,u ∈ N lateness per segment s for user u
ms,u ∈ N summed lateness per segment s for user u
cu,a,t ∈ {0, 1} connection of user u to BS a at time t
ru,t ∈ Q+ data rate per u and time t
pa,t ∈ {0, 1} power status of a BS a at time t

su,a,t,b ∈ {0, 1} resource block b assigned to user u at BS a and time t

6.2.1 OptBasic

The most important addition to the optimization problem is the model for power
cycling of BSs. Since a scenario consists of multiple BSs, the data rate for each
user and BS in each time slot has to be derived. The Du,a,t input parameter
contains these data rate values. Data rates are a worst-case estimate with respect
to the interference according to the GreenTouch model. First, we compile a list of
users that can connect to a BS by checking if the Signal to Interference and Noise
Ratio (SINR) is above the minimum threshold of valid SINR values, as defined
by the GreenTouch radio model (Section 2.2.2). Each user then gets an equal
share of bandwidth per BS to model a simple underlying radio resource scheduler,
consistent to the previous evaluations in Chapters 4 and 5. The second step is to
use the SINR value to look up the spectral efficiency. This value is then multiplied
with the bandwidth to derive the actual data rate for each user per time and BS.

Equation 6.1 defines that a user can be connected to at most one BS per time
slot. The available data rate per user and time ru,t is then defined in Equation
6.2. ∑

a∈A

cu,a,t ≤ 1,∀u ∈ U, t ∈ T (6.1)

66

6.2 Optimal Solution

ru,t =
∑
a∈A

Du,a,t · cu,a,t,∀u ∈ U, t ∈ T (6.2)

Equation 6.3 ensures that each user downloads each segment exactly once. Equa-
tion 6.4 controls that each segment is only downloaded in one quality. Each
segment also has to be downloaded once. Equation 6.5 calculates which segment
is downloaded in which quality as fs,u.∑

t∈T

ds,t,u = 1,∀s ∈ S, u ∈ U (6.3)

∑
q∈Q

es,u,q = 1,∀s ∈ S, u ∈ U (6.4)

fs,u =
∑
q∈Q

es,u,q · q,∀s ∈ S, u ∈ U (6.5)

The time when a segment with a certain quality is downloaded is defined in Equa-
tion 6.6. A segment can only be downloaded if there is enough available data rate
as defined in Equation 6.7.

gs,t,u = fs,u · ds,t,u, ∀s ∈ S, t ∈ T, u ∈ U (6.6)∑
s∈S

gs,t,u ≤ ru,t,∀u ∈ U, t ∈ T (6.7)

Equation 6.8 defines the per user and per segment lateness ls,u. The individual
lateness values per user and segment are summed up as ms,u in Equation 6.9.

ls,u =
∑

t∈[s+1,max(T)]

ds,t,u · t,∀s ∈ S, u ∈ U (6.8)

ms,u =
∑

x∈[0,s+1]

lx,u,∀s ∈ S, u ∈ U (6.9)

So far, all BSs are modeled as always powered on. Thus we need a new state
variable pa,t per BS and time slot to model whether a BS is enabled. This variable
is used to determine to which BSs users can connect. Equation 6.10 restricts
connections only to enabled BSs (variable cu,a,t).

cu,a,t ≤ pa,t,∀u ∈ U, a ∈ A, t ∈ T (6.10)

The inverse direction needs to be considered too: Equation 6.11 makes sure that
a BS is disabled if no users are connected.

pa,t ≤
∑
u∈U

cu,a,t,∀a ∈ A, t ∈ T (6.11)

Additionally, users only need to be connected to a BS in a time slot if they
download segments in that time slot. The sum of segments has to be rounded up

67

6 Anticipatory Download Scheduling for Energy Efficiency

in case segment qualities smaller than 1 are available. This constraint is shown in
Equation 6.12.

cu,a,t ≤ d
∑
s∈S

gs,t,ue,∀u ∈ U, a ∈ A, t ∈ T (6.12)

OptBasic combines the different goals video quality, lateness, and enabled BSs
in an objective function with weight factors, similar to the objective function
in Section 4.2. For the objective function in Equation 6.13, each goal has an
individual weight factor to create a trade-off between the different goals: Wq for
video quality, Wl for lateness and Wp for enabled BSs.

maximize: Wq ·
∑

s∈S,u∈U

fs,u (6.13)

−Wl ·
∑

s∈S,u∈U

ms,u

−Wp ·
∑

a∈A,t∈T

pa,t

OptBasic already takes a long time to solve (see Section 6.4.2), limiting the
size of evaluation scenarios. This predicament notwithstanding, we wanted to
investigate if a more flexible and realistic model for the assignment of data rates
to users would show any significant gains. Thus we extended the model for the
OptFlex scheduler.

6.2.2 OptFlex

To model the wireless channel resources more realistically we use Resoure Blocks
(RBs). RBs are generic resource allocation units for the bandwidth of a BS to a
user, similar to Physical Resource Blocks (PRBs) in LTE.

Because of the RBs, we need a new input parameter for the data rate DB
u,a,t

which has to be used differently than Du,a,t. A new variable su,a,t,r is used to
model the assignment of RBs to users. Instead of dividing the bandwidth by the
number of users, the data rate is calculated using several intermediate steps. First,
we assume each user is the only user connected to a BS, this results in a data rate
per user hypothetically using the cell alone. Second, this hypothetic data rate
has to be shared with other users in the cell. For this the hypothetic data rate is
divided by the total number of RBs (|B |). The result is a data rate DB

u,a,t per user
and per RB which can multiplied with the number of assigned RBs of the user in
the linear equations as follows. Again, these data rates are a worst-case estimate
with respect to the interference according to the GreenTouch model. The number
of RBs per BS and time slot is limited by Equation 6.14.∑

u∈U,b∈B

su,a,t,b ≤ |B|,∀a ∈ A, t ∈ T (6.14)

Equation 6.15 and Equation 6.16 control from which BS a user can use an RB.
To use an RB, a user must be connected to an enabled BS (Equation 6.15). If a

68

6.3 Two-Phase Algorithm

user has no RBs assigned, it should not be connected (Equation 6.16).

su,a,t,b ≤ cu,a,t,∀u ∈ U, a ∈ A, t ∈ T, b ∈ B (6.15)∑
b∈B

su,a,t,b ·DB
u,a,t ≥ cu,a,t,∀u ∈ U, a ∈ A, t ∈ T (6.16)

The data rate per user and time slot can now be computed with Equation 6.17.
This replaces Equation 6.2, the definition of a data rate per user and time as used
by OptBasic.

dru,t =
∑

a∈A,b∈B

DB
u,a,t · su,a,t,b,∀u ∈ U, t ∈ T (6.17)

Because of the large number of new variables in this version of the optimization
problem, it takes two orders of magnitude longer to solve it compared to Opt-
Basic (see Section 6.4.2).

6.3 Two-Phase Algorithm

Because of the complexity and long solving time of the optimization problem, we
have implemented a heuristic scheduling algorithm called 2-Phase. It operates
in two phases: The first phase finds the highest quality per segment that can be
scheduled without incurring lateness assuming all BSs are enabled. Based on this
schedule, all BSs that are not needed for downloads are disabled in the second
phase. The results from the two phases are then used to determine both the
download schedule for each user (when should each segment be downloaded at
which quality?) and the power cycling schedule (which base station or BS should
be turned on when?).

The initial goal of the scheduler is to find a segment quality assignment that
does not introduce lateness. The power consumption is only considered afterwards
and reduced as much as possible. We now describe the two phases of 2-Phase
in Sections 6.3.1 and 6.3.2. The overall structure of the algorithm is illustrated in
Figure 6.3.

6.3.1 Quality selection phase

Because in this phase of the algorithm all BSs are still switched on and are able to
provide capacity to the users to download segments, we can use a simple algorithm
to select segment qualities that is simpler than for example the Fill algorithm
from Section 4.3.

The first step of this phase is to calculate the anticipated available data rate
for each user in each time slot with each BS Du,a,t.Then, the algorithm executes
Algorithm 6.1 for each user. The goal of the algorithm is to find the highest
video quality that can be downloaded by a user at the anticipated data rate.
The algorithm starts without an initial solution Z (line 2). A list of all possible
quality assignments is stored in Qoptions in line 3. The quality assignments are
sorted increasing from the last to the first segment. In line 4, variable S is set

69

6 Anticipatory Download Scheduling for Energy Efficiency

Figure 6.3: Flowchart for 2-Phase

to a list in which each value represents the number of segments that have to be
downloaded to support the lowest quality. These two variables are the basis for
the following functions.

The crucial problem of this algorithm is to determine in which quality each
segment can be downloaded while keeping the lateness low and the average qual-
ity high. While determining the quality, it also generates a list of BSs for each
time slot which provide sufficient data rate for the segment downloads. The al-
gorithms solves the quality assignment problem by checking all possible quality
assignments, starting from the lowest to the highest using a fast validation loop
over all options (lines 8 to 16). For example, the content of the Qoptions in line 3 for
a scenario with Q = {1, 2} and |T | = 2 is {{1, 1}, {1, 2}, {2, 1}, {2, 2}}, generated
by qualityOptionsIncr(Q, |T |).

The semantics of the result of the segmentDemand function are explained
with the example in Figure 6.4 and the implementation of the function is shown in
Algorithm 6.2. The parameters of the example scenario are |T | = 4 and Q = {1}.
In this example, only one BS is available. Available data rate per time slot is
given by the red line. The blue boxes 0–3 represent the data rate demand of the
lowest quality qmin in the algorithm (line 2).

S|T | of the last time interval is initialized with the duration |T | of the scenario
(line 3). This means, if all segments (of which there are |T |many) are downloaded,
the schedule has no playback interruptions. For time slot t = 3, there is enough

70

6.3 Two-Phase Algorithm

Algorithm 6.1 qualityAssigment(u,Du,a,t)

1: // qualities Q and duration |T | from scenario
2: Z ← ∅ // no initial solution
3: Qoptions ← qualityOptionsIncr(Q, |T |)
4: S ← segmentDemand(u, ru,a,t)
5: for all q ∈ Qoptions do
6: A← ∅ // used BSs
7: c← 0 // count of downloaded segments
8: for all t ∈ T do // iterate over all time slots
9: a ← sufficientBSs(t, c, q, S)

10: if |a| 6= 0 then
11: c← c + minDown(t, c, q, a)
12: A← A ∪ {a}
13: else
14: return Z
15: end if
16: end for
17: Z ← (q, A)
18: end for

Figure 6.4: Segment quality and available data rate example

data rate available to download segment three. Therefore D3 = 3 (line 16) and
segment 3 is added and then removed from the list of late segments L (lines 6 and
15). In time slot t = 2, the situation is the same as in time slot t = 3. Sufficient
data rate is available, thus D2 = 2. In time slot t = 1, the data rate is not even
sufficient to download the lowest quality. If the segment cannot be downloaded
in an earlier time slot, the lateness would increase. This information is stored by
setting S0 = 2 and S1 = 2. Additionally, segment 1 is kept in the list of late
segments, due to i = 0 and C = ∅. At time slot t = 0 sufficient data rate for
two segments is available and segments 1 and 2 are in the list of late segments
L. Therefore c = 2 and C = {1, 2} after the while loop, and both segments are
removed from the list of late segments L. S−1 is set to 0 which indicates that
there is a schedule for this scenario that incurs no lateness.

In the validation loop in Algorithm 6.1 (lines 5 to 18), the previously computed
possible quality assignments are validated. First, the list of usable BSs and the
counter of downloaded segments are initialized (line 6 and 7). Then, for all time
slots, it is checked whether there are BSs available that provide sufficient data

71

6 Anticipatory Download Scheduling for Energy Efficiency

Algorithm 6.2 segmentDemand(u,Du,a,t)

1: // qualities Q, duration |T | and BSs A from scenario
2: qmin ← min(Q)
3: S|T | ← |T |
4: L← ∅ // late segments
5: for all t ∈ reversed(T) do
6: L← L ∪ {t}
7: r ← maxa∈A(Du,a,t)
8: i← 0
9: C ← ∅ // feasible segments

10: while (r ≥ qmin)and(c ≤ |L|) do
11: r ← r − qmin
12: C ← C ∪ {Li}
13: i← i + 1
14: end while
15: L← L \ C
16: St−1 ← St − i
17: end for
18: return S

rate. The invariant is that c is always greater or equal to St, which is checked in
line 11.

sufficientBSs() schedules as many segments from q as permitted by the avail-
able data rate of the BSs. If this number of newly downloaded segments added
to c of previously downloaded segments is greater or equal to St, then the BS
is returned. Additionally, ∅ is added to the list of BSs if c is greater or equal
to St without new downloaded segments. If sufficientBSs() does not return
any BSs then there is no solution for this quality assignment and the given BSs.
This validation approach does not find all possible BS combinations for a given
schedule. This is due to the fact that c is only increased by the minimum number
of segments that all sufficient BSs can download. As soon as a quality assignment
is not valid, the last successfully tested solution is returned together with the list
of BSs per time (line 14).

At the end of this phase the returned values from qualityAssignment()
(Algorithm 6.1) are passed on to the next phase as two sets of variables qu,s and
Au,t, where qu,s is the best valid quality assignment per user u for segment s and
Au,t the BSs which can fulfill the quality assignment qu,s for user u and time t.

6.3.2 Base station disabling phase

The second phase of the algorithm tries to find and disable unneeded BSs. The
previous phase only decided in which quality which segment can be downloaded
and from which potential BSs in each time slot. An assignment of users per time
slot to an exact BS is needed for a valid schedule. BSs per time slot can be
disabled until as few BSs as possible are left. 2-Phase sequentially uses three
strategies to disable BSs.

72

6.4 Evaluation

Unused base stations The first strategy is to search for completely unused BSs
and to disable them. The algorithm iterates over all possible time slots and checks
per time slot for each BS if any user can use it according to Au,t. If not, the BS
is added to the list of disabled BSs for that time slot.

Weak base stations The second strategy removes those BSs that provide less
data rate than others. This is achieved by creating a list of all users from Au,t
that can connect to an BS per time slot. The data rates of those users are then
summed per BS and sorted in increasing order. The algorithm disables BSs for
that time slot until one BS remains usable per user.

Segment buffering The third strategy is to disable BSs if their data rate is not
essential. Not essential means that the data rate to download segments in a time
slot t is also available in the previous time slot t − 1. Thus the segments are
scheduled for the previous time slot t− 1 and the BS can be disabled in time slot
t.

6.4 Evaluation

Because of the complexity of the optimization problem, the evaluation is twofold:
First, we compare the optimization problem, the heuristic algorithm and the al-
gorithms from Chapter 4 in a small scenario. Second, we compare the heuristic
algorithm with the QualityFirst greedy algorithm (Section 4.4).

6.4.1 Scenarios

Both evaluations use the radio and power models from the GreenTouch project
(Section 2.2.2). Segment sizes are again set to 1.413 MB for low, 2.951 MB for
medium, and 3.613 MB for high video quality.

The first scenario (Three BSs) consists of three base stations placed in a line
and a variable number of stationary users uniformly placed between them. We
use this scenario once with macro BSs (one undirected sector, 8x2 MIMO, rural
environment, 80% of rural ISD: 3464 m) and once with pico BSs (ISD 200 m)
according to the GreenTouch model. Both models for BSs have different power
consumption characteristics and are thus interesting for this evaluation.

For the second scenario (Train) we simulate a train ride on a regional train: A
group of users moves along a line with several stations in between where the train
stops. Based on a real train schedule connecting the cities Paderborn and Herford1

in Germany, the train moves for a certain amount of time from one station to the
next station and then stops there for one or two minutes, as listed in Table 6.3.
Each station is equipped with a pico base station that can be turned on to allow
the users on the train to download and buffer more video segments.

1Kursbuchstreckennummer 405, see http://kursbuch.bahn.de, accessed 10.03.2015

73

http://kursbuch.bahn.de

6 Anticipatory Download Scheduling for Energy Efficiency

Table 6.3: Train ride Paderborn-Herford, all times are given in minutes.

Station Journey Stop

Paderborn Hbf - 2
Altenbeken 12 1
Sandebeck 11 1

Leopoldstal 3 1
Horn-Bad Meinberg 2 2

Detmold 8 2
Lage (Lippe) 6 2

Sylbach 3 1
Schoetmar 3 1

Bad Salzuflen 2 1
Herford 6 2

We compare five different schedulers in this evaluation:

• OptBasic is the optimization problem without flexible data rate assign-
ment (Section 6.2.1)

• OptFlex is the optimization problem with flexible data rate assignment
(Section 6.2.2)

• 2-Phase is the heuristic scheduler (Section 6.3)

• OptLegacy is the existing optimization problem from Chapter 4 without
explicit power cycling. BSs are initially all switched on and only BSs with
no associated users are considered switched off in a post processing step.

• GreedyLegacy is the QualityFirst greedy scheduler (Section 4.4) to-
gether with BS power cycling in a post processing step.

All plots show confidence intervals at 95% confidence level unless they are cov-
ered by the plot markers.

6.4.2 Three BSs Scenario Results

The most significant result in this scenario is the number of disabled BSs as shown
in Figures 6.5a and 6.5b. In both the macro and pico scenarios OptFlex can
disable the overall highest number of base stations because it can schedule with
the highest degree of freedom by being able to flexibly assign data rates to users.
It is closely followed by OptBasic and 2-Phase which perform equally. With
more than 15 users neither scheduler is able to disable any BS as the load is too
high. With GreedyLegacy a few BSs can be disabled for a small number of
users because this scheduler buffers segments and does not have to download a new
segment in each time slot. OptLegacy performs worst as it tries to minimize

74

6.4 Evaluation

5 10 15 20 25

Number of users

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#
B

a
se

 S
ta

ti
o
n
s

(a) Macro BSs

5 10 15 20 25

Number of users

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#
B

a
se

 S
ta

ti
o
n
s

(b) Macro BSs

OptLegacy OptBasic 2-Phase OptFlex GreedyLegacy

Figure 6.5: Three-BSs scenario: disabled BSs

buffering of segments and downloads segments in almost all time slots without
considering energy efficiency.

As the power consumption of the mobile access network is not only influenced
by the enabled BSs but also depends on the traffic load, the overall energy usage is
different from the number of enabled BSs, as shown in Figures 6.6a and 6.6b. For
a low number of users OptBasic and 2-Phase achieve a slightly lower energy
usage than the other schedulers. For a higher number of users OptFlex uses
significantly more energy. This is because this scheduler schedules more data to be
downloaded as it uses a higher video quality (Figures 6.7a and 6.7b). Considering
both energy usage and video quality together, the energy used per transferred bit
is similar for all schedulers.

The overall energy usage if no power cycling scheme is employed is between
113.4 kJ (no load) and 399 kJ (full load) for macro BSs and between 7.2 kJ (no
load) and 19.8 kJ (full load) for pico BSs. Thus all presented power cycling schemes
reduce the energy usage.

Figure 6.8 shows the average running times for the different scheduling algo-
rithms in the pico BSs case. The heuristic algorithms are around two orders of
magnitude faster than the simple optimization problems OptBasic and OptLe-
gacy. The more detailed optimization problem OptFlex takes around two
orders of magnitude longer to solve than the simple problems.

75

6 Anticipatory Download Scheduling for Energy Efficiency

5 10 15 20 25

Number of users

100

150

200

250

300

350

E
n
e
rg

y
[k

J]

(a) Macro BSs

5 10 15 20 25

Number of users

4
6
8

10
12
14
16
18

E
n
e
rg

y
[k

J]

(b) Pico BSs

OptLegacy OptBasic 2-Phase OptFlex GreedyLegacy

Figure 6.6: Three-BSs scenario: energy consumption

5 10 15 20 25

Number of users

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

V
id

e
o
 Q

u
a
lit

y
 [

M
B

/s
e
g
m

e
n
t]

(a) Macro BSs

5 10 15 20 25

Number of users

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

V
id

e
o
 Q

u
a
lit

y
 [

M
B

/s
e
g
m

e
n
t]

(b) Pico BSs

OptLegacy OptBasic 2-Phase OptFlex GreedyLegacy

Figure 6.7: Three-BSs scenario: average video quality

76

6.4 Evaluation

5 10 15 20 25
Number of users

10-3
10-2
10-1
100
101
102
103

Av
er

ag
e

Ru
nn

in
 T

im
e

[s
ec

on
ds

]

OptLegacy OptBasic 2-Phase OptFlex GreedyLegacy

Figure 6.8: Three-BSs scenario: average running time

77

6 Anticipatory Download Scheduling for Energy Efficiency

6.4.3 Train Scenario Results

As the train scenario is too big to solve with the optimization-based schedulers, we
only compare 2-Phase and GreedyLegacy. For up to 20 users 2-Phase uses
significantly less energy (Figure 6.9a). For a very low number of users 2-Phase
delivers a higher video quality, but for more users it drops slightly below the
quality delivered by GreedyLegacy (Figure 6.9b). This drop in video quality
is mitigated by the significantly lower occurrence of video interruptions (lateness)
with 2-Phase (Figure 6.9c).

These results show that our algorithm also works in a practical scenario and
is able to reduce energy usage by maintaining a satisfying QoE for the users.
The overall energy consumption without any power cycling scheme is between
190.08 kJ (no load) and 522.72 kJ (full load). Thus both power cycling schemes
reduce the energy usage.

5 10 15 20 25

Number of users

96
98

100
102
104
106
108
110

E
n
e
rg

y
[k

J]

(a) Energy usage

5 10 15 20 25

Number of users

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

V
id

e
o
 Q

u
a
lit

y
 [

M
B

/s
e
g
m

e
n
t]

(b) Average Quality

5 10 15 20 25

Number of users

5
0
5

10
15
20
25
30
35
40

La
te

n
e
ss

 [
se

co
n
d
s]

(c) Average Lateness

2-Phase GreedyLegacy

Figure 6.9: Train scenario results

78

6.5 Summary

6.5 Summary

In this chapter, I have described how the approach for anticipatory download
scheduling can be used to reduce the energy consumption of a mobile access net-
work. I have shown an optimization problem as well as an heuristic algorithm
that incorporate the aspect of BSs power cycling.

The evaluation results indicate a significant reduction of energy consumption
compared to using no power cycling scheme and a smaller, but still significant re-
duction comparing a simple power cycling scheme with greedy download schedul-
ing to the integrated power cycling scheme with anticipatory download schedul-
ing.

79

7
Anticipatory Download Scheduling
Prototype

7.1 System Design . 81

7.1.1 Design Decisions 82

7.1.2 Architecture and Implementation 83

7.2 Prototype Implementation 84

7.2.1 Protocol Extension 84

7.2.2 Testbed . 86

7.3 Evaluation . 88

7.4 Summary . 90

Although the simulations in the previous chapters are designed to relate to
real-world scenarios, they do not answer the question how anticipatory down-
load scheduling can be integrated into a real video streaming application. In this
chapter, I present how anticipatory download scheduling can be integrated into
a mobile access network and how the HTTP Live Streaming (HLS) protocol can
be extended to include anticipatory download scheduling. I have used this pro-
tocol extension to set up a testbed and evaluate the scheduling algorithms from
Chapter 4. The testbed has been set up in the context of the Smarter Phones
And Networks (SPAN) project together with Johannes Blobel, Philipp Dreimann,
Christoph Schniedermeier und Stefan Valentin.

7.1 System Design

In this section I describe how anticipatory download scheduling can be integrated
into a real system, using existing tools and existing protocols with backwards-
compatible extensions. I first explain the design decisions and their implications
on the system behavior and then continue with the system architecture and its
interfaces in Section 7.1.2.

81

7 Anticipatory Download Scheduling Prototype

7.1.1 Design Decisions

The implementation of anticipatory download scheduling requires changes to exist-
ing systems of the mobile access network and the video content provider, to control
when which segments of a video are downloaded by User Equipments (UEs). In
order to implement these changes, two design decisions with different advantages
and disadvantages/costs have to be made:

• Should the buffering behavior be controlled at the UE or in the network?

• Should arbitrary or only pre-selected content providers be supported?

These design decisions have direct implications on the buffering behavior of the
system regarding buffering and playback interruptions. Every combination of
the design decisions results in the following requirements and capabilities of the
system:

1. No download control at UEs and arbitrary content providers
This implementation requires Deep Packet Inspection (DPI) on the network
to separate video traffic from other traffic or video traffic from supported
video content providers and video traffic from unsupported video content
providers, as long as there is no list of preselected, supported video content
providers. That imposes additional cost and requires additional processing
for the network operator. When there is no modified UE which allows to
control the buffer, I assume that the UE downloads greedily. To implement
the schedule I can only control the data flows in the network. I can prevent
excessive buffering only by limiting the connection speed for a UE and there-
fore prevent the UE from downloading more segments than it should. But
since I cannot force a UE to buffer more than it wants to (greedy behavior),
playback interruptions cannot be avoided.

2. No download control at UEs and pre-selected content providers
When implementing the buffer control mechanisms only for pre-selected con-
tent providers which I know beforehand, the separation of video traffic from
other traffic becomes trivial, in contrast to the previous case. The problem
with playback interruptions, however, still remains the same.

3. Download control at UEs and arbitrary content providers
When I have the means to control the download behavior of a UE, e.g.,
by a modified version of the video player, I can prevent excessive buffering
and minimize playback interruptions by explicitly instructing the UE from
the scheduler how many segments it should download at a certain time. A
modified software could also support the separation of video traffic from
other traffic and the identification of the video content provider, e.g., by
sending all video requests over a special proxy.

4. Download control at UEs and preselected content providers
If I can fully control the download behavior and can easily separate video
traffic from other traffic the implementation of the system becomes most

82

7.1 System Design

easy. I then can optimize the buffer sizes on the UEs with little additional
complexity on the network side.

Although implementing my approach with the maximum level of control on both
the UEs and the content providers is the easiest way, a trade-off has to be accepted
here: Limiting the available content providers to a selected few also limits the
usefulness to the users. However, the best performance can only be achieved with
modifications to the UE, otherwise there is no means to reliably prevent playback
interruptions and preventing excessive buffering is difficult to implement.

7.1.2 Architecture and Implementation

For my prototype implementation I chose to use a modified video player on the
UEs. With this setup I can fully control the download behavior and I can analyze
the performance of the system. My implementation supports arbitrary content
providers but in my evaluation I use my own video source to eliminate external
influences.

Figure 7.1: Architecture

To implement my schedulers I assume an overall architecture as depicted in
Figure 7.1. This architecture does not require any changes to current mobile
access networks and can be implemented in a cellular network as well as in a
wireless LAN scenario since the scheduler is implemented in higher layers. It also
does not require any changes to the content provider since all scheduling decisions
and the schedule is enforced in the Anticipatory Scheduling Controller. The Data
Rate Prediction works based on live data, e.g. GPS data, and previously collected
data, e.g. coverage maps or traces, depending on the prediction techniques it uses.
Predicted data rates are then provided to the Anticipatory Scheduling Controller
as is the central entity in this architecture. It intercepts the requests from the UEs

83

7 Anticipatory Download Scheduling Prototype

to the content providers. It can then perform the download control and quality
selection with the following three steps:

1. Intercept the video request from the UE and analyze it (video data rates,
available HLS variants)

2. Calculate a schedule based on video data and predicted information on fu-
ture data rates

3. Control the buffering behavior of the UE according to the schedule

To do so, the Anticipatory Scheduling Controller could be configured as an HTTP
proxy as HLS video requests are transported via HTTP. This can be enforced in
mobile access networks by the network operator or done voluntarily by the users.
Both operators and users have incentives to do so: less load on the network, better
QoE for the users.

7.2 Prototype Implementation

In this section I first explain the implementation details and adjustments to the
HLS protocol necessary to use the scheduling algorithms in Section 7.2.1. The
concrete Testbed implementation which I used to verify my simulation results is
described afterwards in Section 7.2.2.

7.2.1 Protocol Extension

My protocol extension is based on the HLS protocol, which I introduced in Section
2.4.1.

To control the buffering behavior of HLS players, I need a method to pass
messages to them. HLS players have no interface to receive control data besides
playlists and segments via their own HTTP-GET requests. I intercept the requests
for playlists and modify the replies in the anticipatory scheduling controller.

The controller is aware of the schedule but also needs a means of inserting buffer-
ing instructions in the playlists. Thus, I introduce two new tags to HLS playlists:
BUFFERSIZE and REFRESH. Both are defined as natural numbers including 0. These
new tags are backwards-compatible because the HLS standard instructs players
to ignore tags which they do not recognize [PMA13].
BUFFERSIZE sets the size of the HLS player buffer to the given value. Up to this

amount of segments, the player will greedily try to download more segments. If
there are more segments in the buffer than instructed, the buffer content is played
and no downloaded segments are discarded. As soon as there are fewer segments
in the buffer than the given limit, the HLS player downloads additional segments
to fill the buffer.

The REFRESH parameter instructs the HLS player to refresh the playlists every
REFRESH seconds. This refresh will then update the BUFFERSIZE and REFRESH

parameters. I suggest to set REFRESH to the playback length of a segment, so that
after playing one segment the HLS player updates its buffering parameters.

84

7.2 Prototype Implementation

The two parameters together control the downloading behavior of the HLS
player by precisely adapting the HLS player buffer size according to the schedule.
This indirectly influences when an HLS player can download a segment.

Another property of an HLS stream that the scheduling algorithm needs to
decide is which quality to download. In the case of multi-variant HLS streams,
the player tries to download the segments in the quality it prefers by doing its
own local measurements. But the schedules also include the HLS video quality
for each segment, selected from the available HLS variants.

Every time the HLS player requests an HLS master playlist the anticipatory
scheduling controller downloads the playlists of the scheduled variants and creates
a merged single-variant playlist out of the multi-variant playlist.

#EXTM3U

#EXT-X-VERSION:3

#EXT-X-TARGETDURATION:10

#EXT-X-BUFFERSIZE: 2 ← new tag for buffer size
#EXT-X-REFRESH:10 ← new tag for refresh interval
#EXTINF:10,

http://hostname/med/001.ts ← from medium quality variant
#EXTINF:10,

http://hostname/med/002.ts ← from medium quality variant
#EXTINF:10,

http://hostname/med/003.ts ← from medium quality variant
#EXTINF:10,

http://hostname/med/004.ts ← from medium quality variant
#EXTINF:10,

http://hostname/low/005.ts ← from low quality variant
#EXTINF:10,

http://hostname/med/006.ts ← from medium quality variant
#EXTINF:10,

http://hostname/high/007.ts ← from high quality variant
#EXTINF:10,

http://hostname/high/008.ts ← from high quality variant
#EXT-X-ENDLIST

Figure 7.2: Merged single-variant HLS playlist with REFRESH and BUFFERSIZE ex-
tensions; colors indicate the different variants

As shown in Figure 7.2, segments from different variants are selected and placed
in a new single variant playlist according to the download schedule. Only the
merged single-variant playlist is then returned to the HLS player. The decision
which quality to download is hereby made by the anticipatory scheduling controller
and not by the HLS player anymore. The merged playlist contains the REFRESH

and BUFFERSIZE parameters. Each time an HLS player refreshes an HLS playlist,
it receives a new value for the BUFFERSIZE parameter. A list of example values
for the BUFFERSIZE in Figure 7.2 for each time slot are listed in Table 7.1 for each
refresh of the playlist.

85

7 Anticipatory Download Scheduling Prototype

Table 7.1: BUFFERSIZE values for time slots

Time slot 1 2 3 4 5 6 7 8

BUFFERSIZE 2 3 3 0 0 1 1 1

Through both the BUFFERSIZE and the RERESH mechanisms, the buffer size
(when to download) and pre-selection of variants (which quality to download) can
be controlled. Thus, anticipatory buffering and quality selection based on the
previously described algorithms can be performed by simply extending the HLS
protocol with two small extensions to the playlist parameters.

7.2.2 Testbed

In order to analyze the algorithms and to test the HLS protocol extension in a
real system, I have set up a testbed that allows to run extensive tests with real
hardware and compare the results of these tests with the simulations.

The testbed is based on the architecture explained before. The UEs are smart-
phones and tablets with a customized Android operating system and a modified
VLC video player. The modifications enable VLC to parse the additional playlist
parameters and adapt its buffer size accordingly. It also outputs extended infor-
mation about the buffer size and the downloaded segments which is used for our
measurements.

The radio access network in the testbed is implemented with 802.11g wire-
less LAN [WLA12] without any modifications and four access points. Scheduling
happens on the application layer, thus changes to the wireless MAC are not neces-
sary. The access points are normal PCs with wireless LAN cards and Linux with
hostapd running on them.

A fifth PC serves as central control and measurement unit and runs the antici-
patory scheduling controller. All phones are connected to this PC via USB and are
controlled with the Android debug bridge (ADB). The access points are controlled
via an SSH connection. With the ADB we execute arbitrary shell commands on
the phones and emulate simple user interaction like starting or stopping a video
stream. No data is transmitted via USB; it only serves to make experiments
repeatable.

The resulting testbed architecture and setup can be seen in Figure 7.3.
For the HLS video stream content I use the publicly available movie “Tears

Of Steel”1 which I converted to a HLS stream using the VLC framework. The
segments and playlists are served by an unmodified Apache webserver.

The anticipatory scheduling controller, which intercepts and modifies the playlist
requests from the UEs, is implemented as a transparent HTTP proxy using the
Python framework Twisted [Twi]. The access points redirect all traffic coming
from the UEs to the proxy thus it is not necessary to change any configuration on
the UEs.

1https://mango.blender.org/

86

https://mango.blender.org/

7.2 Prototype Implementation

(a) Testbed Architecture

(b) Testbed Setup

Figure 7.3: Testbed

I wanted to be able to run a lot of repeatable and comparable tests, which is
why the movement of the UEs is emulated and not done physically. Movement
emulation works by limiting the link speed and enforcing handovers between access
points. I achieve this by using standard traffic shaping capabilities of Linux on
the access points and on the phone. From a predefined scenario I get the data rate
for every UE and base station per time slot. These values are then set as speed
limits on the access points at the corresponding time. Handover events between
the access points are also pre-calculated based on the scenario and then triggered
on the phones. With this setup I can run tests without the need to physically
move the UEs.

I automatically start the video stream via the ADB connection to the phones
and collect information about the streaming (i.e., when a segment has been actu-
ally downloaded in which quality). The results returned by the testbed runs are
in the same format as the simulation results and allow a direct comparison.

87

7 Anticipatory Download Scheduling Prototype

7.3 Evaluation

In this evaluation, I assume a perfect prediction of future data rates and only
compare the algorithms with perfect prediction from Chapter 4 to avoid any side
effects from prediction errors.

The plots in Figures 7.4 and 7.5 show a comparison between simulation results
with the testbed scenario and the measurements obtained from the testbed. The
results from the simulation are plotted with a solid line and the testbed measure-
ments with a dashed line, both using the same markers to distinguish between the
schedulers. The plots are separated for the greedy algorithms and the anticipatory
solutions for better readability.

Ideally, the simulation results and the testbed measurements should be identical.
Differences in the results are due to the following effects, which are present in the
testbed but not considered in the simulation:

• Continuous time
The simulation is based on a discrete time model with time slots, whereas
the testbed runs in real time. In order to compare the simulation and testbed
results, the measurements are converted to discrete time. This, for example,
implies that a segment that is actually downloaded after 61 seconds, but
should have been downloaded at or before 60 seconds is treated as late as a
segment that is downloaded after 69 seconds.

• Network protocol side effects
The simulation does not consider underlying network protocols for trans-
porting the HLS segments. In contrast to that the testbed uses real HLS
over TCP/IP over 802.11g wireless LAN with its own wireless resource sched-
uler. I am only sure that the data rate limits we use in the calculation of
the schedules are not exceeded, but we cannot ensure that they actually fully
achieved in the testbed. Both TCP congestion control and the wireless re-
source scheduler can influence the actual data rates in the testbed, resulting
in longer segment downloads, which are then treated as late.

• Video player issues
In case the video player in the testbed has issues while decoding the video,
the timing between the downloads from the player and the schedule can be
disturbed. For example, if VLC decides to skip frames from the video the
playback runs ahead of the calculated schedule and subsequent segments are
needed for playback before their download was scheduled to be complete.
This can happen because the video player runs on a real Android device and
has to share the CPU with the system and background processes.

The measurement results for the average video quality in Figures 7.4a and
7.5a show small differences between the simulation and testbed. These small
differences are a result from slightly delayed segment downloads or issues with the
video player as previously before. This indicates that the extension to the HLS
standard (Section 7.2.1) for quality selection works in the testbed implementation
as well as expected based on the simulation.

88

7.3 Evaluation

Figures 7.4b and 7.5b show the average lateness in the testbed. The measure-
ment results for the greedy schedulers show only small differences compared to the
simulation but the measurement results for the MIQCP and the Fill scheduler
show a significantly higher lateness for the testbed. I discovered that this is due to
the buffer minimization in these two schedulers: being forced to use a low buffer
level, and ideally not buffering any segments at all if it is not necessary, makes
the video player more susceptible to the timing side effects I previously listed.

The results for the average buffer fill level in Figures 7.4c and 7.5c show only
a small difference between the simulation results and the testbed measurements.
This indicates that the extension to the HLS standard (Section 7.2.1) for the
buffer level works in the testbed implementation as well as expected based on the
simulation.

0 1 2 3 4
Base Station Gap Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Vi
de

o
Qu

al
ity

 L
ev

el
 [M

B/
se

gm
en

t]

(a) Average Quality

0 1 2 3 4
Base Station Gap Size

0

10

20

30

40

50

Av
er

ag
e

La
te

ne
ss

 [s
ec

on
ds

]

(b) Average Lateness

0 1 2 3 4
Base Station Gap Size

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Bu
ffe

r L
ev

el
 [s

eg
m

en
ts

]

(c) Average Buffering

BufferFirst
(Simulation)
BufferFirst
(Testbed)
QualityFirst
(Simulation)
QualityFirst
(Testbed)

Figure 7.4: Testbed measurement results (dashed lines) compared to simulation
results (solid lines), greedy algorithms

89

7 Anticipatory Download Scheduling Prototype

0 1 2 3 4
Base Station Gap Size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Vi
de

o
Qu

al
ity

 L
ev

el
 [M

B/
se

gm
en

t]

(a) Average Quality

0 1 2 3 4
Base Station Gap Size

0

10

20

30

40

50

Av
er

ag
e

La
te

ne
ss

 [s
ec

on
ds

]

(b) Average Lateness

0 1 2 3 4
Base Station Gap Size

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

Bu
ffe

r L
ev

el
 [s

eg
m

en
ts

]

(c) Average Buffering

MIQCP
(Simulation)
MIQCP
(Testbed)
Fill
(Simulation)
Fill
(Testbed)

Figure 7.5: Testbed measurement results (dashed lines) compared to simulation
results (solid lines), MIQCP and Fill algorithm

7.4 Summary

In this chapter, I have shown a prototype implementation for anticipatory down-
load scheduling. The prototype implementation includes a backwards-compatible
extension to the HLS protocol that can also be used in a real-world deployment
of anticipatory download scheduling.

Based on my evaluation of the prototype and taking into account the side ef-
fects from the testbed setup, I can sum up that the testbed implementation of
the anticipatory scheduling works as forecasted by the simulation results. This
agreement of results between two different and independent evaluation method-
ologies lends considerable evidence to the utility and feasibility of the proposed
anticipatory scheduling scheme.

90

8
State of the Art & Related Work on
Backhaul Network Reconfiguration

8.1 Backhaul Network Reconfiguration for CoMP . . . 91

8.2 CROWD Controller Architecture 93

8.3 Related Work . 96

My work on backhaul network reconfiguration is based on previous work I did to-
gether with Thorsten Biermann, which I introduce in Section 8.1. The approaches
presented in this thesis are also strongly related to the CROWD Controller Ar-
chitecture (CCA) as part of the EU FP7 project CROWD. I explain the CCA in
Section 8.2. After that I give an overview of related work in Section 8.3.

8.1 Backhaul Network Reconfiguration for CoMP

In his PhD thesis [Bie12], Thorsten Biermann investigated the requirements and
constraints on backhaul networks from implementing Coordinated MultiPoint
transmission and reception (CoMP). Together with him I developed an approach
[DBKK12, DBK13] to check for Coordinated Base Station Sets (CBSs) and whe-
ther they are feasible with respect to the backhaul network or not. We imple-
mented this approach both as a linear optimization problem and as a heuristic
algorithm. Both are the basis for my approach in Chapters 9 and 10.

We have developed the following system architecture for backhaul network re-
configuration, as shown in Figure 8.1. After detecting that CoMP is required
in step À, e.g., because the requested service quality of a User Equipment (UE)
cannot be satisfied, the desired CBSs are determined. This is done in step Á and
requires information about the wireless channel conditions, like Received Signal
Strength Indication (RSSI) measurements. There are several methods to deter-
mine desired CBSs [PGH08]. These CBSs are used together with the current
status of the backhaul network to calculate which part of the desired CBSs is
feasible. This happens in step Â and is done by a heuristic algorithm. Now if the
backhaul capabilities are sufficient to establish the complete desired CBS, CoMP

91

8 State of the Art & Related Work on Backhaul Network Reconfiguration

Figure 8.1: Overall CBS selection/reconfiguration system architecture

is conducted immediately in step Ä. Otherwise, backhaul network reconfiguration
is triggered to improve the number of feasible CBS.

Block Ã needs to decide which actions to take in the backhaul network to
improve the number of CBS. This decision is made based on two kinds of infor-
mation. First, the output of the CBS selection heuristic in step Â, which contains
the reasons why certain Base Stations (BSs) cannot be in a feasible CBS. And
second, information about the backhaul network itself, e.g., which parameters can
be changed for which links. This information is provided by the network control
plane. Now, by matching these two things, the backhaul network can be reconfig-
ured via its control plane to eliminate the bottlenecks that prevent desired CBSs.
This mechanism can also be used to reduce the backhaul network resources again
when they are not needed, e.g., to save energy.

After a reconfiguration step, the CBS selection in step Â has to be done again
to check the improved CBS feasibility. If necessary, this loop can be executed
multiple times until the desired CBS becomes feasible or a termination condition,
like a maximum number of performed reconfigurations, is reached.

This overall procedure has to be repeated whenever the desired CBS, i.e., the
long-term wireless channel conditions, or the CBS feasibility, i.e., the backhaul
network load and latency, change significantly. In these cases, the corresponding
CBS selection steps have to be done again, as indicated by the arrows on the right
side of Figure 8.1.

This overall architecture clearly separates selection of CBS and reconfiguration
of the backhaul network in two individual steps (Â and Ã). This split reduces the

92

8.2 CROWD Controller Architecture

number of feasible CBSs compared to an integrated approach which I present in
Chapter 9. The evaluations from Thorsten Biermann and myself [DBK13] also
show that this split approach cannot be applied successfully in scenarios with a
high density of UEs. My integrated approach removes this limitation as I show in
Chapter 10.

8.2 CROWD Controller Architecture

I developed my approach for backhaul network reconfiguration as a part of the
CROWD Controller Architecture (CCA) [AACdlO+13a, CMD+13]. The CCA
is a mobile access network architecture for dense wireless access networks. It is
developed based on the Software-Defined Network (SDN) paradigm (see Section
2.1.3) and supports software-defined base station coordination (see Section 2.3.2).
In this section I present a high-level overview of the CCA.

The CCA encompasses both Long Term Evolution (LTE) and WiFi cells, which
are the technologies expected to have the highest penetration in future mobile
access networks. It is based on the assumption that all network elements belong to
the same administrative domain (e.g., network operator). Thus, security measures
for preventing malicious access of the control functions and avoiding unauthorized
disclosure of sensitive information from customers are neglected so far.

The architecture is structured into two logical tiers: districts with a limited
but fine-grain scope for short time scales and regions with a broader but more
coarse-grain scope for long time scales.

A district consists of BSs, i.e., LTE eNodeBs and WiFi Access Points (APs), as
well as interconnecting backhaul links that are assumed, without loss of generality,
to be reconfigurable via an open protocol, e.g., OpenFlow. Operation within
a district is optimized by applications connected to a so-called CROWD Local
Controller (CLC) via a set of Application Programming Interfaces (APIs), referred
to as northbound interfaces in the SDN terminology. There are two types of
northbound APIs:

1. Technology-specific APIs, which expose fine-grained details as acquired from
the BSs (e.g., sub-frame utilization in LTE) and offer methods which are only
valid for the specific communication protocol.

2. Technology-agnostic APIs, which expose abstract and aggregated data (e.g.,
average node utilization) and offer generic modifiers which may be valid for
a wide range of technologies and capabilities (e.g., switch off a node).

Any application can connect to one or more APIs, depending on its optimization
goals and requirements. Based on the technologies present in the district, the CLC
can access different southbound interfaces for LTE and WiFi to control the wireless
operations and OpenFlow for controlling the backhaul network. An overview of
the CLC interfaces is shown in Figure 8.2a.

A special use of the technology-agnostic API is to connect a CLC to its higher-
level controller, the so-called CROWD Regional Controller (CRC), which operates

93

8 State of the Art & Related Work on Backhaul Network Reconfiguration

inside a region. The region is defined as a logical area including several districts
in which technology-agnostic applications are executed for longer scale optimiza-
tions, compared to the CLC applications. Regional optimization is proposed to
compensate for sub-optimal choices which may be taken at district level because
of the myopic sight of the local controllers. An overview of the CRC interfaces
is shown in Figure 8.2b. The CRC only exposes a technology-agnostic interface
on its northbound API for regional control applications. The southbound API
of the CRC includes a specific interface to control CLCs inside the region and
interfaces to the OpenFlow backhaul network and for information exchange with
the network operator infrastructure.

NB-LTE NB-WiFi

SB-LTE

CLC

Northbound API

Southbound API

NB-Tech

Agnostic
NB-Mobility

SB-WiFi SB-OF

Controller Platform

Control ApplicationsCRC

(a) CLC

SB-CLC

CRC

Northbound API

Southbound API

NB-Tech

Agnostic

SB-OF

Controller Platform

Control Applications

CLCsCLCsCLCs

SB-OP

(b) CRC

Figure 8.2: CCA controllers: architecture and interfaces [AACdlO+13a]

A simplified example for the interaction between the CLC and the CRC is the
following: From the point of view of an application running within the CLC with
the goal of minimizing energy consumption, an “optimal” choice could be forcing
all user terminals to associate to BSs outside of the district and switching off all
the BSs inside the district. Such a drastic decision would be obviously sub-optimal
from a broader network viewpoint, thus any CRC application aiming to minimize
energy consumption would certainly override it.

A diagram of the overall network architecture is shown in Figure 8.3, which also
shows the southbound interfaces between the CLC and the BSs and backhaul, as
well as some key interconnections with new and existing network elements.

For example, in the case of LTE, the eNodeBs have a split connection: the
control path, i.e., via the 3GPP S1-MME and X2 interfaces, goes entirely through
the CLC, whereas the data path is directed to the Distributed Mobility Manage-
ment (DMM) gateway, which is a novel element proposed as a part of the CCA.
Therefore, a CLC application can intercept the communication between the eN-
odeB and the Mobility Management Entity (MME) and anticipate/override intra-
district mobility decisions. Note also that the CCA proposes the use of the X2
interface for collecting fast and detailed measurements from the LTE eNodeBs,
since it already supports a wide range of data, even though the standard assumes
that information is exchanged between peer eNodeBs.

94

8.2 CROWD Controller Architecture

N
B

-L
T

E
N

B
-M

o
b

ili
ty

S
B

-L
T

E

C
L

C

N
o

rt
h

b
o

u
n

d
 A

P
I

S
o

u
th

b
o

u
n

d
 A

P
I

N
B

-T
e

c
h

A
g

n
o

s
ti
c

C
o

n
tr

o
l

C
o

n
tr

o
l

N
B

-W
iF

i
N

B
-M

o
b

ili
ty

S
B

-W
iF

i

C
L

C

N
o

rt
h

b
o

u
n

d
 A

P
I

S
o

u
th

b
o

u
n

d
 A

P
I

N
B

-T
e

c
h

A
g

n
o

s
ti
c

S
B

-O
F

S1-MME & X2

C
o

n
tr

o
l

P
la

n
e

D
a

ta

P
la

n
e

OpenFlow +WiFi

extensions

D
M

M

G
W

D
M

M

G
W

R
e

c
o

n
fi
g

u
ra

b
le

 B
a

c
k
h

a
u

lin
g

R
e

g
io

n

W
iF

i

d
is

tr
ic

t

L
T

E

d
is

tr
ic

t

C
R

C

DMM Control plane

and local mobility

management

M
M

E

Figure 8.3: CROWD network architecture [AACdlO+13a]

95

8 State of the Art & Related Work on Backhaul Network Reconfiguration

8.3 Related Work

Existing evaluations show how a limited backhaul network reduces the efficiency
of CoMP [BSC+11, SSPS09] but the proposed approaches only try to improve the
CBS selection on the wireless side to incorporate the backhaul limitations.

The problem of a limited backhaul network together with implementing CoMP
has been addressed in existing work:

Soliman et al. [SNK13] analyze how the backhaul resources have to be shared
to achieve a feasible data exchange between coordinated BSs but their model only
considers two BSs. Their approach is designed to react to a constrained backhaul,
not to reconfigure it.

De Domenico et al. [DSK13] and Olmos et al. [OFGZ13] investigate the as-
signment of users to coordinated base stations but considering also the backhaul
network capacity. With this approach they also react to a constrained backhaul
and ensure that the capacity of the backhaul is not exceeded by the user assign-
ment, but they do not reconfigure the backhaul network as it is only considered
as a simple capacity constraint.

The approach presented by Zhao et al. [ZL12] aims at limiting the coordination
of transmissions to minimize the required backhaul load and does not take a
constrained backhaul into account at all.

Marsch et al. [MF07] developed a framework to optimize the performance of
wireless coordination under a constrained backhaul by selecting only a subset
of users for coordinated transmissions. This is very similar to the selection of
CBSs, but does not consider any reconfiguration of the backhaul network. Also
their backhaul model is very generic as they only investigate a simple full mesh
backhaul topology without any latency constraints.

Zhang et al. [ZYM12] investigate effects of a constrained backhaul on different
BS coordination schemes and propose a selection method to choose the best coor-
dination scheme for the available backhaul capacity. Their approach but do not
include the selection of feasible CBSs.

Bartelt et al. [BFW+13] analyze the challenges for backhaul networks arising
from a cloud-based RAN and conclude that optical networks are a promising
technology for Cloud RAN backhauls, if the data rate and latency demands are
included into a joint optimization of radio access and backhaul. My combination
of CBSs selection and backhaul network reconfiguration is exactly such a joint
optimization.

Liu et al. [LSJ+13] investigate a dynamic backhaul network for the dynamic
assignment of base stations to controllers with a reconfigurable backhaul architec-
ture, including a small testbed evaluation. For their approach they consider the
backhaul network as an virtual overlay network on top of a static physical back-
haul network. This makes the reconfiguration of the backhaul network simpler
compared to my approach for Wavelength-Division-Multiplexed Passive Optical
Network (WDM-PON) backhauls.

96

9
Backhaul Network Reconfiguration

9.1 Problem Description 98

9.2 Optimal Solution . 99

9.2.1 Integer Linear Program 99

9.2.2 Complexity . 102

9.3 BFS Algorithm . 102

9.3.1 Inputs . 103

9.3.2 Algorithm Implementation 103

9.4 Evaluation . 107

9.4.1 Scenario . 107

9.4.2 Comparison: Optimization vs. Heuristic Algorithm . 108

9.4.3 Heuristic Algorithm in Large Scenarios 110

9.4.4 Energy Efficiency 113

9.5 Summary . 114

In this chapter, I introduce my approach for backhaul network reconfiguration.
As introduced before in Section 1.3.2, wireless coordination is only feasible if
the backhaul network provides sufficient capacity and low latency between the
Base Stations (BSs) and the controller, which is responsible for managing the
coordination scheme. Thus the goal of the backhaul network reconfiguration is
to find a suitable allocation of backhaul resources, in particular wavelengths in
Wavelength-Division-Multiplexed Passive Optical Networks (WDM-PONs) back-
haul networks, for each desired Coordinated Base Station Set (CBS) to make it
feasible.

I provide a formal problem description in Section 9.1 and describe an optimal
solution in Section 9.2 and a heuristic algorithm in Section 9.3. In Section 9.4 I
present evaluation results for both solutions, including results about the energy
efficiency of the approach.

97

9 Backhaul Network Reconfiguration

9.1 Problem Description

For each desired CBS two decisions have to be taken:

1. Which node should be the controller for the CBS?

2. Which links and wavelengths in the backhaul should be used to form routing
paths to exchange data between the controller and the BSs in the CBS?

A CBS can only be considered feasible if at least one feasible controller node
can be found. Finding a controller node is only feasible if at least one feasible
wavelength assignment for all routing paths to the BSs exists in the backhaul
network. A wavelength assignment is feasible if either there is sufficient free
capacity on already assigned wavelengths or new wavelengths can be assigned to
provide sufficient capacity.

I consider the backhaul network as a directed graph G with vertices V and
edges E. In my model all vertices are BSs, which means they can all be part of a
CBS and are all able to act as a controller. Without loss of generality, my model
can easily be extended with nodes that cannot be part of a CBS or cannot act
as a controller (e.g., switches or routers). All desired CBSs are defined as sets
Wi of vertices from V . For each CBS i there is a required capacity breq(v, i) for
each vertex v and a maximum latency lmax(i) between the controller and all BSs
in the CBS. For all edges there is a set of unassigned wavelengths K that can
be assigned to each edge. Consistent with the requirements from the CBSs, each
edge (u, v) has a latency lcap(u, v) and a capacity per wavelength bcap(u, v, k) for
each wavelength k.

In order to consider a CBS feasible regarding the backhaul network, one vertex
ci has to be selected as the controller for CBS i. Additionally, routing paths from
the controller ci to all vertices of the CBS have to be computed. Each routing
path is a list of consecutive edges and an assigned wavelength per edge, such
that (a) the capacity on all assigned wavelengths is greater than or equal to the
required capacity of the BS and (b) the total latency of the path does not exceed
the maximum latency for the CBS. If a controller and routing paths are found,
the CBS is considered as feasible, otherwise as infeasible.

Figure 9.1: Example: controller selection and wavelength assignment

98

9.2 Optimal Solution

Figure 9.1 shows a simple example: vertex B is selected as the controller and
routing paths from vertex B to vertices A, C, D, E and F are assigned. Assum-
ing the capacity requirement for each vertex is equal to the capacity of a whole
wavelength, the controller at vertex B is the only feasible choice. The wavelength
assignment for the paths from B to A, C, E and F is arbitrary, but the assignment
shown in the figure for the link from C to D is the only feasible assignment because
the other two wavelengths are already used for routing paths of another CBS.

9.2 Optimal Solution

The Integer Linear Program (ILP) described in this section provides a precise
specification of the problem outlined in the previous section and is amenable to
an automatic solution.

9.2.1 Integer Linear Program

The optimization problem is an ILP and takes the parameters listed in Table 9.1
as inputs. It correspond to the problem definition in Section 9.1.

Table 9.1: ILP input parameters

V set of Base Stations (BSs)
E set of links with E ⊆ V × V
K set of wavelengths
W1 ... Wn n input CBSs with Wi ⊆ V
breq(v, i) required capacity for BS v in CBS i
bcap(u, v, k) capacity for wavelength k on link from BS u to BS v
lmax(i) maximum round-trip latency between controller and BS

in CBS i
lcap(u, v) latency on a link from BS u to BS v

The variables listed in Table 9.2 are used to represent the decisions about the
controller placement and the backhaul configuration for each CBS.

The following constraints have to be ensured. Some constraints use a big-M
constant denoted as M, which is a very large constant.

All BSs of one CBS need to be the end of a path (Eq. 9.1) and all paths need
to start at a controller (Eq. 9.2).∑

s∈V,s 6=d,
(u,d)∈E,o∈K

fs,d,u,d,o,i = wi,∀d ∈ Wi, i ∈ {0, ..., n} (9.1)

∑
s∈V,s 6=d,

(s,v)∈E,o∈K

fs,d,s,v,o,i = wi,∀d ∈ Wi, i ∈ {0, ..., n} (9.2)

99

9 Backhaul Network Reconfiguration

Table 9.2: ILP variables

wi ∈ {0, 1} determines whether CBS i is fully established
cs,i ∈ {0, 1} determines whether BS s is a controller for CBS i
ku,v,o ∈ {0, 1} determines whether wavelength o is used on a link from

BS u to BS v
jo ∈ {0, 1} determines whether wavelength o is used anywhere
ps,d,o,i ∈ {0, 1} determines whether wavelength o is used on the path

between s and d in CBS i
qd,i ∈ N determines the number of wavelengths used for BS d

in CBS i
fs,d,u,v,o,i ∈ {0, 1} determines whether link u to v using wavelength o

is included in the path from a controller at BS s
to a BS d for CBS i

For all other nodes (non-controllers, BSs not in the CBS) the ingress and egress
paths have to be balanced (Eq. 9.3).∑

(u,v)∈E,o∈K

fs,d,u,v,o,i =
∑

(v,w)∈E,o∈K

fs,d,v,w,o,i, (9.3)

∀s ∈ V, d ∈ Wi, v ∈ V, i ∈ {0, ..., n}, s 6= v, d 6= v, s 6= d

Whenever a wavelength is used for a path, the decision variable for this wavelength
has to be activated (Eq. 9.4).

M · ku,v,o ≥
∑

s∈V,d∈Wi,s 6=d

fs,d,u,v,o,i,∀(u, v) ∈ E, o ∈ K, i ∈ {0, ..., n} (9.4)

Also the decision variable for the controller placement has to be activated for the
selected node for the controller (Eqs. 9.5 and 9.6).

M · cs,i ≥
∑

d∈Wi,s 6=d,
(u,v)∈E,o∈K

fs,d,u,v,o,i,∀s ∈ V, i ∈ {0, ..., n} (9.5)

cs,i ≤
∑

d∈Wi,s 6=d,
(u,v)∈E,o∈K

fs,d,s,u,o,i,∀s ∈ V, i ∈ {0, ..., n} (9.6)

Furthermore, no path must end at a controller (Eq. 9.7).∑
(u,s)∈E,
o∈K

fs,d,u,s,o,i = 0,∀s ∈ V, d ∈ Wi, s 6= d, i ∈ {0, ..., n} (9.7)

For each CBS determined to be feasible the decision variable has to be activated
(Eq. 9.8).

wi =
∑
s∈V

cs,i,∀s ∈ V, i ∈ {0, ..., n} (9.8)

100

9.2 Optimal Solution

For the variables j, p and q the number of active wavelengths has to be counted
(Eq. 9.9, 9.10 and 9.11).

M · jo ≥
∑

u∈V,v∈V,
(u,v)∈E

ku,v,o,∀o ∈ K (9.9)

M · ps,d,o,i ≥
∑

u∈V,v∈V,
(u,v)∈E

fs,d,u,v,o,i, (9.10)

∀s ∈ V, d ∈ Wi, i ∈ {0, ..., n}, o ∈ K, s 6= d

qd,i =
∑

s∈V,o∈K,
s 6=d

ps,d,o,i,∀d ∈ Wi, i ∈ {0, ..., n} (9.11)

Each wavelength must only be used for one direction of a link between two nodes
(Eq. 9.12).

ku,v,o + kv,u,o ≤ 1, ∀(u, v) ∈ E, (v, u) ∈ E, o ∈ K (9.12)

For each wavelength on a link the maximum capacity limit has to be ensured
(Eq. 9.14). ∑

i∈{0,...,n},s∈V,
d∈Wi,s 6=d

fs,d,u,v,o,i · breq(d, i) ≤ bcap(u, v), (9.13)

∀(u, v) ∈ E, o ∈ K

For each path between the controller and each BS in the CBS the limit on the
maximum latency has to be ensured (Eq. 9.15).∑

(u,v)∈E,
o∈K

fs,d,u,v,o,i · (lcap(u, v) + lcap(v, u)) ≤ lmax(i), (9.14)

∀i ∈ {0, ..., n}, s ∈ V, d ∈ Wi, , s 6= d

The objective function (Eq. 9.16) uses the following weight factors: mb for es-
tablished CBSs, mc for used wavelengths per BS in CBS, mg for globally used
wavelengths and mk for used edges.

maximize: mb ·
∑

i∈{0,...,n}

wi (9.15)

−mc ·
∑

d∈Wi,i∈{0,...,n}

qd,i

−mg ·
∑
o∈K

jp

−mk ·
∑

(u,v)∈E,o∈K

ku,v,o

101

9 Backhaul Network Reconfiguration

I use these weight factors to define the following lexicographical ordering:

1. Maximize established CBSs

2. Minimize the number of used wavelengths per CBS

3. Minimize the overall number of used wavelengths

4. Minimize used links

To establish a correct lexicographical order, the exact values of the weight factors
have to be adapted to the number of CBSs, wavelengths and links.

9.2.2 Complexity

Biermann et al. have shown that CBS selection without desired CBSs as input
is an NP-hard problem [BSWK11]. The main difference to this former problem
is the additional input of desired CBSs and the changed objective: instead of
searching for an arbitrary set of CBSs that covers all BSs in the network, I look
for a CBS that includes all or as many as possible desired CBSs, while adhering to
the backhaul network constraints for capacity and latency. There are no further
restrictions how desired CBSs are structured, each desired CBS is just a set of BSs.
Additionally I consider the assignment of wavelengths in the backhaul network,
which was also not considered by Biermann et al.

Without considering the wavelength assignment and only considering the deter-
mination of feasible routing paths from the controller to all BSs in a single CBS,
the problem can be interpreted as an extended variant of the bandwidth-delay-
constrained least-cost multicast routing problem for each CBS with the controller
as source and all BSs in the CBS as destinations. This problem is known to be
NP-hard without a known Polynomial-Time Approximation Scheme (PTAS) and
it can only be solved heuristically [FMHG08, SRV02, ZBE01].

In the problem I presented in this chapter I additionally consider multiple CBSs
and the assignment of wavelength and thus conclude that no PTAS for my problem
exists.

9.3 BFS Algorithm

Because the ILP cannot be solved for instances with a realistic size for real-world
deployments, a heuristic approach is required. I developed an algorithm that solves
the problem with a modified Breadth-First-Search (BFS), based on previous work
together with Thorsten Biermann [DBK13, DBKK12]. The algorithm in previous
work separated the selection of CBSs and the assignment of backhaul resources
in two different steps and did not consider the assignment of generic capacities
instead of individual wavelengths.

The core concept of the algorithm is to start a BFS individually for each CBS
from every BS in the backhaul network, which yields a tree for each start BS.
These trees are then checked in an iterative process whether they contain the

102

9.3 BFS Algorithm

desired CBS and whether they obey the constraints on capacity and delay. If
the CBS is matched and no constraints are violated, the root BS of the tree is
a potential controller for the CBS. After that the routing paths between the
controller BS and all BSs from the CBS are mapped to wavelengths.

In contrast to the optimization problem where all CBSs are handled simultane-
ously, the heuristic algorithm handles the CBSs one by one. If the CBSs had an
assigned priority, this priority could be used to order the CBSs for processing. As
I do not have any priorities in my model, I use a random order.

9.3.1 Inputs

The inputs to the algorithm are the backhaul network as an annotated graph
G = (V,E), where each vertex corresponds to a node (e.g., BS) in the backhaul
network and each edge to a link between two nodes with a set of wavelengths
K and the desired CBS Wi with Wi ⊂ V . The annotations include the capacity
per wavelength bcap(u, v, k), the edge latency lcap(u, v), the required capacity per
vertex in CBS i breq(v, i), and the maximum round-trip latency lmax between two
cooperating BSs.

9.3.2 Algorithm Implementation

An overview of the heuristic is depicted in Figure 9.2 and the individual steps are
explained below.

1. Maximum-Path BFS The heuristic performs a modified BFS, separately
from each vertex of the graph as the root. Whenever a new tree edge (u, v)
is discovered, the predecessor annotation p(v) for vertex v is set to u and the
constraints for the new edge are checked in the following way:

• Is the latency to the new vertex v via the whole path from the root via u
and the new edge (u, v) smaller than the maximum round-trip latency?

• Are there any wavelengths on (u, v) with enough free capacity to connect v
to the root vertex, if v is part of the CBS?

If either of these checks fails, the new vertex v is not added to the tree. The result
of this step is a set T of BFS trees, which only contain vertices that meet the
constraints within the tree. This does not yet take into account reciprocal effects
between multiple BSs in the CBS.

The implementation for checking the constraints is described in Algorithm 9.1.
The input parameters are the new vertex v, its predecessor u, the BFS tree root
node s, and the CBS index i.

2. Match CBS The heuristic checks for every BFS tree Ti from step 1. whether
it completely contains the desired CBS. The result is a set of BFS trees T that
match the desired CBS.

103

9 Backhaul Network Reconfiguration

1. Maximum-Path BFS
� start modified BFS from each vertex
� output : BFS tree for each vertex

2. Match CBS
� match BFS trees against CBS
� output : possible candidate BFS trees for CBS

3. Back-Track BFS Trees

a) Check constraints
� recheck constraints on candidate BFS trees

b) Wavelength Assignment
� determine wavelengths for all candidate BFS trees

� output : possible candidate BFS trees and their wavelength assignment
for CBS

4. Match CBS
� match BFS trees against CBS again
� output : confirmed candidate BFS trees for CBS

5. Find Best BFS Tree
� compare candidate BFS trees
� output : best BFS tree for CBS

Figure 9.2: BFS Algorithm

3. Back-Track BFS Trees The constraint checking in step 1. discards vertices
based on the latency for the whole paths to the start node and only the link
capacity for single links and not for whole paths between the start node and each
BS. Thus, the capacity constraints need to be checked again, now taking into
account also the capacities on whole paths.

If the constraints are not violated a wavelength assignment for all routing paths
between the BSs from the CBS and the BFS tree root has to be determined.
Because the required data structures for this step can easily be constructed in
the back-tracking phase, it makes sense to combine the back-tracking and the
wavelength assignment into one step.

3.a) Check Constraints The goal of this step is to perform a check of the ca-
pacity constraints on the whole paths from each BS of the CBS to the BFS tree
root, similar to the check in Algorithm 9.1 for the latency constraints. During
this step the algorithm does not only determine if there is sufficient capacity on
a link, but also which wavelengths have sufficient capacity. This information is
stored in the matrix WL and is needed in step 3.b).

104

9.3 BFS Algorithm

Algorithm 9.1 CheckPathConstraints(u, v, s, i)

p(v) = u
lsum ← 0
cmax ← 0
for all k ∈ K do // check capacity

if bcap(u, v, k) > cmax then
cmax ← bcap(u, v, k)

end if
end for
if cmax < breq(v, i) then

return false // not enough capacity
end if
while v 6= s do // check latency
lsum ← lsum + lcap(u, v)
v ← u
u← p(u)

end while
if lsum · 2 > lmax then

return false // latency too high
end if
return true // all checks passed

The implementation of this step is described in Algorithm 9.2. The input pa-
rameters are the BFS tree T and the CBS Ci. Whenever a vertex from the CBS
violates the capacity constraints on its routing path, the vertex is removed from
the BFS tree. If the constraints are fulfilled for all edges on the path, the ca-
pacity annotations for all edges on the path are updated. The implementation of
updateAnnotations(T) is simple and omitted here. The implementation of the
wavelength assignment in assignWavelengths(WL(u,v), c) is explained in step
3.b) and Algorithm 9.3.

3.b) Wavelength Assignment The input to the wavelength assignment is a
BS c from the CBS and a map M that contains, for each edge (u, v), a set of
wavelengths M(u,v) with all candidate wavelengths that have enough capacity to
fulfill the capacity constraints of c.

To assign one wavelength out of the corresponding set to each edge (u, v), the
algorithm iteratively selects the wavelength that can be used on the maximum
number of edges and assigns it (mostFreqentlyAvailableWL(M)). This step
is repeated for all remaining edges without an assignment until all edges have a
wavelength assignment. Because of the check in step 3.a) it is guaranteed that at
least one candidate wavelength per edge exists.

4. Match CBS After removing vertices in the previous step, the information
on trees matching the CBS is not valid anymore. Thus, step 2. of the heuristic

105

9 Backhaul Network Reconfiguration

Algorithm 9.2 BackTrackBFSTrees(T,Ci)

for all c ∈ Ci do
s← true
M ← map()
v ← c
u← p(c)
while v 6= s do // check capacity
M(u,v) ← set()
for all k ∈ K do // check wavelengths

if bcap(u, v, k) > breq(v, i) then
insert(WL(u,v), k))

end if
end for
if length(WL(u,v)) = 0 then
s ← false // no wavelength with enough capacity available, tree is not
a valid candidate

end if
v ← u
u← p(u)

end while
if s = true then
updateAnnotations(T)
assignWavelengths(M)

else
remove(T, v)

end if
end for

has to be repeated for the BFS trees reduced in the previous step. If a tree still
matches the CBS, the root is a valid candidate for controlling that CBS.

5. Find Best BFS Tree In the final step, the best BFS tree from the remaining
candidates has to be determined. The algorithm calculates three different costs
per candidate tree and adds them up in a weighted sum, similar to the objective
function of the optimization problem in Section 9.2, as

n =
∑

(wg · ng + wa · na + wl · nl) (9.16)

with

• ng as the total number of wavelengths used in the tree, with weight wg

• na as the number of wavelengths that have to be assigned additionally for
using that tree, with weight wa

• nl as the number of used links, with weight wl

106

9.4 Evaluation

Algorithm 9.3 assignWavelengths(M)

while M 6= ∅ do
m← mostFreqentlyAvailableWL(M)
for all (u, v) ∈M do

if m ∈M(uv) then
assign((u, v),m)
remove(M, (u, v))

end if
end for

end while

These costs are then weighted and summed up to calculate the total cost n per
tree.

The algorithm then selects the tree with the lowest total cost, sets the root BS
as the controller, stores the routing paths, and updates the annotations on G for
running the next iteration for the next CBS. The precise weight factors depend
on the number of CBSs, wavelengths and links.

9.4 Evaluation

The evaluation is twofold: First, I compare the results of solving the optimization
problem to using the heuristic algorithm on small instances. Second, I present
results for using the heuristic algorithm in larger, real-world size instances.

All evaluations are executed on Intel Xeon X5650 CPUs running at 2.67 GHz.
The optimization problem is solved with Gurobi running in single-thread mode
for a comparison with the heuristic algorithm, which is implemented in Python.
All plots contain confidence intervals at a 95% level, unless they are too small and
covered by the plot markers.

9.4.1 Scenario

In all evaluations, a fixed number of BSs are placed on a regular grid, with a mean
inter-BS distance along the grid of s̄ = 1000 m (urban scenario [BAWB13]), and
are then shifted in both x and y direction according to a normally distributed
random variable with zero mean and standard deviation s̄

8
.

The backhaul network topology can then be generated either as a mesh or as
a tree topology. In the mesh topology, two BSs are connected by a link if their
distance is less or equal to 1.5 · s̄. This value produces a partially connected mesh
network; smaller or larger values result in too sparse or too dense topologies, which
are not realistic.

For a tree topology the BSs in the same area are connected to a common central
node according to a WDM-PON splitting factor. All central nodes are located in
a central site and are interconnected.

In both cases all links in the backhaul network are assigned the same set of

107

9 Backhaul Network Reconfiguration

available wavelengths K and each wavelength is assigned the same fixed capacity
of 2.5 Gb/s. The latency for each link is determined by the distance multiplied by
1.45 divided by the speed of light as we are modeling an optical backhaul network.

The desired CBSs are generated by placing circles uniformly at random on the
plane covered by the placed BSs. The BSs which are considered as the CBS are
all BSs located inside this circle with a given radius. We determine this radius by
multiplying the mean inter-BS distance with a factor r = 1.5, which results in 5
BSs per CBS on average. The capacity demand d for each BS in the CBS is set
to the same value and is either 0.625 Gb/s, 1.25 Gb/s, or 2.5 Gb/s. This implies
that at a demand of 2.5 Gb/s one complete wavelength is required to connect a
BS to the controller.

9.4.2 Comparison: Optimization vs. Heuristic Algorithm

To compare the results from solving the optimization problem with those of the
heuristic algorithm, I choose a scenario with 16 BSs and a mesh backhaul network
topology. I use scenarios with 2 or 4 available wavelengths. These scenarios are
big enough to see the important effects and small enough to run in reasonable
time.

0 2 4 6 8 10 12
Number of desired CBSs

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
o
ta

l
W

a
v
e
le

n
g
th

s

(a) |K| = 2

0 2 4 6 8 10 12
Number of desired CBSs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
o
ta

l
W

a
v
e
le

n
g
th

s

(b) |K| = 4

Algorithm (d=0.625 GB/s)
Optimization (d=0.625 GB/s)

Algorithm (d=1.25 GB/s)
Optimization (d=1.25 GB/s)

Algorithm (d=2.5 GB/s)
Optimization (d=2.5 GB/s)

Figure 9.3: Total Wavelengths

For the total number of used wavelengths (Figures 9.3a and 9.3b) the results
for d = 1.25 and d = 2.5 are very similar for the optimization and the heuristic
algorithm. Only for d = 0.625 the heuristic algorithm performs significantly worse
than the optimization, especially for the scenario with 4 wavelengths.

The results for the average number of wavelengths per link (Figures 9.4a and
9.4b) are statistically identical, except for d = 2.5. In that case one BS demands a
whole wavelength for its connection to the controller and the optimization problem

108

9.4 Evaluation

0 2 4 6 8 10 12
Number of desired CBSs

1.0

1.1

1.2

1.3

1.4

W
a
v
e
le

n
g
th

s
p
e
r

Li
n
k

(a) |K| = 2

0 2 4 6 8 10 12
Number of desired CBSs

0.8

1.0

1.2

1.4

1.6

1.8

2.0

W
a
v
e
le

n
g
th

s
p
e
r

Li
n
k

(b) |K| = 4

Algorithm (d=0.625 GB/s)
Optimization (d=0.625 GB/s)

Algorithm (d=1.25 GB/s)
Optimization (d=1.25 GB/s)

Algorithm (d=2.5 GB/s)
Optimization (d=2.5 GB/s)

Figure 9.4: Wavelengths per Link

prefers to assign a new wavelength on an already used link instead of routing via
a different link as the heuristic algorithm does.

0 2 4 6 8 10 12
Number of desired CBSs

0.85

0.90

0.95

1.00

Fe
a
si

b
le

 C
B

S
s

(a) |K| = 2

Algorithm (d=0.625 GB/s)
Optimization (d=0.625 GB/s)

Algorithm (d=1.25 GB/s)
Optimization (d=1.25 GB/s)

Algorithm (d=2.5 GB/s)
Optimization (d=2.5 GB/s)

Figure 9.5: Feasible CBSs

Also due to this behavior, the heuristic algorithm is not able to establish all
desired CBSs for d = 2.5 and |K| = 2 as shown in Figure 9.5a. For |K| = 4 all
CBSs are feasible, thus I omit this plot.

The total execution time for both the optimization and the heuristic algorithm is
shown in Figures 9.6a and 9.6b. With an increasing number of CBSs the execution
time also increases and there is only a small influence from different capacity
demands d. Overall, the heuristic algorithm is about four orders of magnitude

109

9 Backhaul Network Reconfiguration

0 2 4 6 8 10 12
Number of desired CBSs

10-2

10-1

100

101

102

103

104

E
x
e
cu

ti
o
n
 T

im
e
 [

s]

(a) |K| = 2

0 2 4 6 8 10 12
Number of desired CBSs

10-2

10-1

100

101

102

103

104

E
x
e
cu

ti
o
n
 T

im
e
 [

s]

(b) |K| = 4

Algorithm (d=0.625 GB/s)
Optimization (d=0.625 GB/s)

Algorithm (d=1.25 GB/s)
Optimization (d=1.25 GB/s)

Algorithm (d=2.5 GB/s)
Optimization (d=2.5 GB/s)

Figure 9.6: Execution Time

faster than solving the optimization problem.

This significant speedup and the overall closeness of agreement in the solution
quality between the optimization problem and the heuristic algorithm make the
heuristic algorithm suitable for efficient CBS selection and wavelength assignment
during operation of the network.

9.4.3 Heuristic Algorithm in Large Scenarios

To evaluate the benefits of dynamic backhaul configuration by using our heuristic
algorithm for controller selection and wavelength assignment, I use a scenario
with 36 BSs. For the backhaul topology I both evaluate a mesh and a tree with a
splitting factor of 9, which results in 4 central nodes. The number of CBSs is varied
between 1 and 61 CBSs. Again I show evaluation results for 2 (solid lines) and 4
(dashed lines) available wavelengths per link. I call the case with 2 wavelengths
the baseline case without reconfiguration and the case with 4 wavelengths the
reconfigurable case.

The results for the number of feasible CBSs in Figures 9.7a and 9.7b show the
expected behavior: with 4 available wavelengths in the reconfigurable case, more
CBSs are feasible and can be established. I can also identify three tipping points
at around 3, 7 and 16 CBSs for the tree topology and 2, 10, 20 for the mesh
topology, respectively for d = 2.5, d = 1.25 and d = 0.625. At these tipping
points the capacity with 2 available wavelengths is not sufficient to establish all
desired CBSs and the feasibility starts to drop below one. These tipping points
are marked in the plots by vertical dashed lines.

In the results for the used total wavelengths (Figure 9.8a) and the used wave-
lengths per link (Figures 9.9a and 9.9b) before the respective tipping points the
number of used wavelengths is identical for both 2 and 4 available wavelengths. For

110

9.4 Evaluation

0 10 20 30 40 50 60
Number of desired CBSs

0.2

0.4

0.6

0.8

1.0

Fe
a
si

b
le

 C
B

S
s

(a) tree topology

0 10 20 30 40 50 60
Number of desired CBSs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Fe
a
si

b
le

 C
B

S
s

(b) mesh topology

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 9.7: Feasible CBSs

the total number of used wavelengths in the mesh scenario (Figure 9.8b) the num-
ber of used wavelengths is identical until closely before the tipping points. This
indicates that the algorithm does not assign additional available wavelengths until
the traffic demands have increased to a level where not assigning additional wave-
lengths would impair the feasibility of BSs coordination, i.e. reduce the number
of feasible CBSs. Also, after the tipping points the number of assigned wave-
lengths increases gradually and does not escalate immediately. This shows that
the algorithm dynamically assigns wavelengths precisely according to the current
demand.

111

9 Backhaul Network Reconfiguration

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
T
o
ta

l
W

a
v
e
le

n
g
th

s

(a) tree topology

0 10 20 30 40 50 60
Number of desired CBSs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
o
ta

l
W

a
v
e
le

n
g
th

s

(b) mesh topology

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 9.8: Total Wavelengths

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

W
a
v
e
le

n
g
th

s
p
e
r

Li
n
k

(a) tree topology

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.2

1.4

1.6

1.8

W
a
v
e
le

n
g
th

s
p
e
r

Li
n
k

(b) mesh topology

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 9.9: Wavelengths per Link

112

9.4 Evaluation

9.4.4 Energy Efficiency

Based on the power consumption model by Grobe et al. [GRA+11] which I have
introduced in Section 2.1.2, it is possible to calculate the power consumption of
the backhaul network with different assignments of wavelengths. The results for
both the tree and mesh topologies are shown in Figures 9.10a and 9.10b and
the reference power consumption of a full, static assignment of all wavelengths
are indicated by horizontal, dashed lines in the plots, the lower one for |K| = 2
and the higher one for |K| = 4. As the number of desired CBSs increases, the
power consumption of the backhaul network increases too. Especially in the tree
topology the power consumption exhibits a logarithmic slope. Thus backhaul
network reconfiguration can significantly reduce the power consumption during
idle phases of the wireless access network. Even at the peak number of desired
CBSs in this evaluation there is a notable gap to the reference power consumption.

0 10 20 30 40 50 60
Number of desired CBSs

0
50

100
150
200
250
300
350
400
450

Ba
ck

ha
ul

 P
ow

er
 C

on
su

m
pt

io
n

[W
]

(a) tree

0 10 20 30 40 50 60
Number of desired CBSs

0

100

200

300

400

500

600

700

Ba
ck

ha
ul

 P
ow

er
 C

on
su

m
pt

io
n

[W
]

(b) mesh

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 9.10: Backhaul Power Consumption

113

9 Backhaul Network Reconfiguration

9.5 Summary

In this chapter, I presented an approach to verify the feasibility of Coordinated
Base Station Sets (CBSs) with respect to backhaul network capabilities. My
approach includes the dynamic assignment of backhaul resources (i.e., wavelengths
and links). This new approach ensures that BS coordination mechanisms that are
required for an optimal operation of the wireless part of the network are feasible
in backhaul networks with limited resources.

My evaluation shows that the presented heuristic algorithm assigns backhaul re-
sources only if they are needed. This is not possible with the model and algorithm
in previous work (Section 8.1).

Considering the possible reduction of energy consumption by switching off un-
needed WDM-PON equipment, my approach is also able to reduce the overall
energy consumption of the backhaul network. Thus, my approach can contribute
to shape the energy consumption of whole wireless access network towards a more
traffic-proportional way.

114

10
Backhaul Network Reconfiguration
Extension for DenseNets

10.1 Problem Description 116

10.2 Hotspot BFS Algorithm 116

10.3 Evaluation . 118

10.3.1 Hotspot Scenario 118

10.3.2 Hotspot Scenario Results 119

10.3.3 Non-Hotspot Scenario Extended Results 123

10.4 Summary . 127

The approach for backhaul network reconfiguration presented in the previous
chapter combines the identification of feasible Coordinated Base Station Sets
(CBSs) and the dynamic assignment of backhaul resources into a single step;
this was separated in two different steps in previous work. In the evaluation in
the previous chapter I focused on the comparison of the heuristic BFS Algorithm
with an optimal solution and the performance of the BFS algorithm in large sce-
narios. This version of the BFS algorithm and the evaluation did not account for
the densification of mobile access networks.

In this chapter I introduce an extension to the BFS algorithm to prioritize CBSs
without external configuration. CBS prioritization enables the BFS algorithm to
also deal with dense wireless access networks (DenseNets), where hotspots with a
high density of users occur. I evaluate the extended BFS algorithm in scenarios
with different densities of hotspots.

115

10 Backhaul Network Reconfiguration Extension for DenseNets

10.1 Problem Description

Regardless of the presence of hotspots of CBSs, the core decisions for each desired
CBS remain the same as in Chapter 9:

1. Which node should be the controller for the CBS?

2. Which links and wavelengths in the backhaul should be used to form routing
paths to exchange data between the controller and the Base Stations (BSs)
in the CBS?

But an additional question as a consequence of the presence of hotspots of CBSs
is:

3. To which CBSs should backhaul resources be assigned first, to keep the
number of feasible CBSs high, especially in the hotspots?

In the next section I explain how the algorithm from Section 9.3 can be extended
by an initial classification step to identify CBSs in the hotspots.

10.2 Hotspot BFS Algorithm

To deploy the algorithm in dense scenarios with hotspots of CBSs, I extend the
heuristic algorithm from Section 9.3 by a CBS prioritization mechanism. This
mechanism is explained in detail in this section together with a brief recap of the
overall algorithm from Chapter 9 together with the extension.

The inputs for the heuristic are the same as in Chapter 9: the backhaul network
as an annotated graph G = (V,E), a set of available wavelengths per link K, and
the desired CBSs W with each Wi ⊂ V together with their constraints on data
rate and latency.

An overview of the heuristic is depicted in Figure 10.1 and the individual steps
are explained below. Steps 1 to 5 are the same as in the original BFS algorithm
in Chapter 9 and are repeated briefly for completeness.

CBS Prioritization This new step of the algorithm divides the desired CBS into
two sets Whotspot and Wnormal. The calculations in this step use two threshold
values to divide the desired CBSs: tv, which determines how strict the filtering
of hotspot vertices should be, and th, which determines how strict the filtering of
hotspot CBS should be. The threshold values depend on the scenario and can be
determined using a parameter study.

The algorithm first calculates for each vertex v from the backhaul graph in how
many CBS the vertex is present as:

hv =
∑
Wi∈W

1v∈Wi

116

10.2 Hotspot BFS Algorithm

CBS Prioritization
� decide for each CBS if it belongs to a hotspot
� output : list of hotspot CBSs and normal CBSs
For each CBS in Whotspot, then for each CBS in Wnormal

1. Maximum-Path BFS
� start modified BFS from each vertex
� output : BFS tree for each vertex

2. Match CBS
� match BFS trees against CBS
� output : possible candidate BFS trees for CBS

3. Back-Track BFS Trees

a) Check constraints
� recheck constraints on candidate BFS trees

b) Wavelength Assignment
� determine wavelengths for all candidate BFS trees

� output : possible candidate BFS trees and their wavelength assignment for
CBS

4. Match CBS
� match BFS trees against CBS again
� output : confirmed candidate BFS trees for CBS

5. Find Best BFS Tree
� compare candidate BFS trees
� output : best BFS tree for CBS

Figure 10.1: Hotspot BFS Algorithm

1X denotes an indicator variable with value 1 if condition X is true and value
0 otherwise. A given vertex v is considered as a hotspot vertex if

hv > |W | · tv

and is added to the set of hotspot vertices Vh. Now each CBS Wi is added to
Whotspot if ∑

v∈Wi
1v∈Vh

|Wi|
≥ th

otherwise it is added to Wnormal.
Now the actual algorithm for placement of the controller and backhaul resource

allocation has to be executed for each CBS. The following steps are executed per
CBS, starting with the CBSs from Whotspot and then the CBSs from Wnormal.

The algorithm steps for the placement of the controller and backhaul resource
allocation for each CBS are identical to the algorithm described in Section 9.3.

117

10 Backhaul Network Reconfiguration Extension for DenseNets

10.3 Evaluation

In this section I present simulation results that show how the extended algorithm
performs compared to the original algorithm from Chapter 9.

10.3.1 Hotspot Scenario

Consistent with the evaluation in Chapter 9, a fixed number of BSs are placed
on a regular grid, with a mean inter-BS distance of s̄ = 1000 m (urban scenario
[BAWB13]), and are then shifted in both x and y direction according to two
independent, normally distributed random variables with zero mean and standard
deviation s̄

8
.

The backhaul network is created as in Chapter 9 with two different topologies:

1. As a mesh topology where two BSs are connected by a link if their distance
is less than or equal to 1.5 · s̄.

2. As a tree topology where the BSs in the same area are connected to a
common central node according to a splitting factor. All central nodes are
located in a central site and are fully interconnected.

All links in the backhaul network are assigned the same set of available wavelengths
K = 4 and each wavelength is assigned the same fixed capacity of 2.5 Gb/s. The
latency for each link is again determined by the distance multiplied by 1.45 divided
by the speed of light as I am modeling an optical backhaul network.

In order to create a hotspot of CBSs, an (x,y) coordinate is selected uniformly at
random as the hotspot center. Now a fraction h of all CBSs is placed around the
hotspot center based on a normal distributions for x and y coordinates with the
hotspot coordinate as the mean and standard deviation s̄

4
as the desired hotspot

CBSs. All other desired CBSs are generated by placing them uniformly at random
on the plane covered by the placed BSs. The BSs that are considered as the CBS
are all BSs located inside a circle around the coordinates of the CBSs with a given
radius. I determine this radius by multiplying the mean inter-BS distance with a
factor r = 1.5, which results in 5 BSs per CBS on average.

The capacity demand d for each BS in the CBSs is set to the same value and
is either 0.625 Gb/s, 1.25 Gb/s, or 2.5 Gb/s. This implies that at a demand of
2.5 Gb/s one complete wavelength is required to connect a BS to the controller.

To determine the threshold values for the CBS prioritization tv and th, I per-
formed a parameter study and identified tv = 0.1 and th = 0.9 as the best values
to maximize the number of feasible CBSs in this scenario. Figure 10.2 shows two
graphical example outputs from the parameter study for d = 1.25 Gb/s and 45
desired CBSs.

118

10.3 Evaluation

(a) h = 0 (b) h = 0.75

Figure 10.2: Parameter study examples

10.3.2 Hotspot Scenario Results

The results for the simulation are shown in Figures 10.3 and 10.4, where I investi-
gate the influence of different hotspot CBS fractions h for both the mesh and tree
topologies. Each row of plots shows the results for a value of h written above the
row, each column of plots consists of plots with same metric. For h = 0 no hotspot
CBSs exist and for h = 1 all CBSs are hotspot CBSs. Solid lines correspond to the
extended algorithm with the CBS prioritization step, dashed lines the algorithm
from Section 9.3 as a reference.

In Figures 10.3a and 10.4a I show the resulting feasibility of the CBS, i.e., the
fraction of desired CBSs that were successfully established. Even for a scenario
with no hotspots (h = 0) the CBS prioritization step increases the CBS feasibil-
ity to 1 for all capacity demands and all numbers of desired CBSs in the mesh
topology. In the tree topology the prioritization step increases the CBS feasibility
to between 0.95 and 1 compared to worst-case values between 0.4 and 0.6 with-
out prioritization. This indicates that the prioritization step is also beneficial for
scenarios without explicit hotspots of CBSs. In the scenarios with h = 0.5 and
h = 0.75, the feasibility drops as the number of desired CBSs increases for both
topologies. For both h = 0.5 and h = 0.75 the CBS prioritization step increases
the CBS feasibility by around 0.2 with a slightly larger increase in the scenarios
with h = 0.5. This shows that the CBS prioritization step is necessary for scenar-
ios with hotspots of CBSs. In the scenario with all desired CBSs in the hotspot
(h = 1), there is now significant improvement from prioritizing CBSs, which is
the expected outcome as both algorithms work the same in such a scenario.

Figures 10.3b and 10.4b show the results for the overall number of used wave-
lengths and Figures 10.3c and 10.4c show the results for the number of used
wavelengths per link. In the scenario with no hotspot CBSs (h = 0) the CBS
prioritization significantly improves the efficient use of wavelengths, as both the
total number of used wavelengths and the number of wavelengths per link are
significantly lower when using the CBS prioritization. This indicates that assign-

119

10 Backhaul Network Reconfiguration Extension for DenseNets

ing backhaul network resources with a prioritization step in a scenario without
explicit hotspots of CBSs is also beneficial for reducing the number of used back-
haul network resources. This effect is also evident in the scenarios with h = 0.5
and h = 0.75, but the difference to the algorithm without the prioritization step
is smaller compared to the scenario with h = 0. This shows that the presence of
hotspots of CBSs significantly increases the demand of required backhaul network
resources and that the enhanced algorithm is capable to successfully satisfy this
demand considering the results for wavelength assignment and CBS feasibility to-
gether. For h = 1 there is no significant difference between the two algorithm,
which again is the expected behavior.

120

10.3 Evaluation

h = 0

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0
Fe

as
ib

le
 D

is
tr

ic
ts

/C
BS

s

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

0 10 20 30 40 50 60
Number of desired CBSs

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

W
av

el
en

gt
hs

 p
er

 L
in

k

h = 0.5

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 D
is

tr
ic

ts
/C

BS
s

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0
To

ta
l W

av
el

en
gt

hs

0 10 20 30 40 50 60
Number of desired CBSs

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

W
av

el
en

gt
hs

 p
er

 L
in

k

h = 0.75

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 D
is

tr
ic

ts
/C

BS
s

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

0 10 20 30 40 50 60
Number of desired CBSs

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

W
av

el
en

gt
hs

 p
er

 L
in

k

h = 1

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 D
is

tr
ic

ts
/C

BS
s

(a) Feasible CBSs

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

(b) Total wavelengths

0 10 20 30 40 50 60
Number of desired CBSs

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

W
av

el
en

gt
hs

 p
er

 L
in

k

(c) Wavelengths per link

Without Priorities (d=0.625 GBps)
With Priorities (d=0.625 GBps)

Without Priorities (d=1.25 GBps)
With Priorities (d=1.25 GBps)

Without Priorities (d=2.5 GBps)
With Priorities (d=2.5 GBps)

Figure 10.3: CBS Prioritization Simulation (mesh)

121

10 Backhaul Network Reconfiguration Extension for DenseNets

h = 0

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 D
is

tr
ic

ts
/C

BS
s

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

W
av

el
en

gt
hs

 p
er

 L
in

k

h = 0.5

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 D
is

tr
ic

ts
/C

BS
s

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

W
av

el
en

gt
hs

 p
er

 L
in

k

h = 0.75

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 D
is

tr
ic

ts
/C

BS
s

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0
W

av
el

en
gt

hs
 p

er
 L

in
k

h = 1

0 10 20 30 40 50 60
Number of desired CBSs

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 D
is

tr
ic

ts
/C

BS
s

(a) Feasible CBSs

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

(b) Total wavelengths

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

W
av

el
en

gt
hs

 p
er

 L
in

k

(c) Wavelengths per link

Without Priorities (d=0.625 GBps)
With Priorities (d=0.625 GBps)

Without Priorities (d=1.25 GBps)
With Priorities (d=1.25 GBps)

Without Priorities (d=2.5 GBps)
With Priorities (d=2.5 GBps)

Figure 10.4: CBS Prioritization Simulation (tree)

122

10.3 Evaluation

10.3.3 Non-Hotspot Scenario Extended Results

Because of the indicated improved performance of the algorithm in non-hotspot
scenarios, I investigated these scenarios further and performed the same evaluation
as in Section 9.4.3 where I evaluated the performance of the BFS algorithm in
large scenarios. Again I use a tree and a mesh topology scenario, each with 36
BSs and show results for 2 (solid lines) and 4 (dashed lines) available wavelengths
per link. In the previous results I had shown how the BFS algorithm without
CBS prioritization efficiently assigns wavelengths in the reconfigurable case with 4
available wavelengths compared to the baseline case with 2 available wavelengths.
Here I want to evaluate the influence of the added CBS prioritization.

0 10 20 30 40 50 60
Number of desired CBSs

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

Fe
as

ib
le

 C
BS

s

0 10 20 30 40 50 60
Number of desired CBSs

0.92

0.94

0.96

0.98

1.00

Fe
as

ib
le

 C
BS

s

0 50 100 150 200
Number of desired CBSs

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

Fe
as

ib
le

 C
BS

s

(a) tree topology

0 50 100 150 200 250 300
Number of desired CBSs

0.85

0.90

0.95

1.00

Fe
as

ib
le

 C
BS

s

(b) mesh topology

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 10.5: Feasible CBSs

Figures 10.5a and 10.5b show the new results for the number of feasible CBSs:
in the upper plot zoomed in to 1 to 61 desired CBSs as in the previous evaluation
and in the lower plot for the full range of up to 200 and 300 desired CBSs re-
spectively for the tree and mesh topology. There are two major differences to the
previous evaluation: First, especially when looking at a range of 1 to 61 desired

123

10 Backhaul Network Reconfiguration Extension for DenseNets

CBSs, the lines are less smooth with a notable jump around 9 desired CBSs, es-
pecially for d = 2.5. This effect is a result of the CBS prioritization step because
the prioritization of CBSs always happens with respect to the total set of CBSs.
With a small set of total CBSs without explicit hotspot CBSs the algorithm does
not always prioritize CBSs in the best way and the CBS prioritization provides
no advantage yet. Second, and more importantly, the number of feasible CBSs
is significantly improved compared to the previous evaluation without CBS pri-
oritization. Without CBS prioritization the number of feasible CBSs started to
decrease below 1 for d = 0.625 around 60 desired CBSs. With CBS prioritiza-
tion, this decrease occurs at around 200 desired CBSs in the tree topology and at
around 300 desired CBSs in the mesh topology. For d = 1.25 and d = 2.5 there
is a similar improvement and CBS prioritization improves the number of feasible
CBSs by a factor of around 3 in the tree topology and 5 in the mesh topology.

The plots again contain vertical dashed lines indicating tipping points where
the algorithm starts to assign more than 2 wavelengths if there are |K| = 4
wavelengths available per link.

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

To
ta

l W
av

el
en

gt
hs

0 10 20 30 40 50 60
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l W
av

el
en

gt
hs

0 50 100 150 200
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

To
ta

l W
av

el
en

gt
hs

(a) tree topology

0 50 100 150 200 250 300
Number of desired CBSs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

To
ta

l W
av

el
en

gt
hs

(b) mesh topology

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 10.6: Total Wavelengths

124

10.3 Evaluation

The results for the used total wavelengths are shown in Figures 10.6a and 10.6b
and the results for the used wavelengths per link in Figures 10.7a and 10.7b. The
tipping points (vertical dashed lines) also identified in the previous evaluation
exist again at around 3, 10 and 24 CBSs for the tree topology and 2, 12, 27 for the
mesh topology, respectively for d = 2.5, d = 1.25 and d = 0.625. At these tipping
points the capacity with |K| = 2 available wavelengths is not sufficient to establish
all desired CBSs and the algorithm starts to assign more than 2 wavelengths.

The notable jump at around 9 desired CBSs is also visible in the results here
for all values of d and is again due to the CBS prioritization not working ad-
vantageously with a small total set of CBSs. Apart from that, the results are
consistent with the previous results: the algorithm does not assign additional
available wavelengths until the capacity demands have increased so much that
additional wavelengths are required to maintain the feasibility of BSs coordina-
tion, i.e., keep the number of feasible CBSs at 1. Again, after the tipping points
wavelength are assigned gradually.

0 10 20 30 40 50 60
Number of desired CBSs

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
av

el
en

gt
hs

 p
er

 L
in

k

0 10 20 30 40 50 60
Number of desired CBSs

0.95

1.00

1.05

1.10

1.15

1.20

1.25
W

av
el

en
gt

hs
 p

er
 L

in
k

0 50 100 150 200
Number of desired CBSs

0.5

1.0

1.5

2.0

2.5

3.0

W
av

el
en

gt
hs

 p
er

 L
in

k

(a) tree topology

0 50 100 150 200 250 300
Number of desired CBSs

1.0

1.2

1.4

1.6

1.8

W
av

el
en

gt
hs

 p
er

 L
in

k

(b) mesh topology

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 10.7: Wavelengths per Link

125

10 Backhaul Network Reconfiguration Extension for DenseNets

Figures 10.8a and 10.8b show the backhaul power consumption based on the
power consumption model by Grobe et al. [GRA+11] (see Section 2.1.2) as a
comparison to the previous results in Section 9.4.4. Again the reference power
consumption of a full, static assignment of all wavelengths are indicated by hori-
zontal, dashed lines, the lower one for |K| = 2 and the higher one for |K| = 4. The
results for the backhaul power consumption are consistent with the other results:
with CBS prioritization the wavelengths are assigned more efficiently and thus the
power consumption in the range of 1 to 61 desired CBSs is lower compared to the
previous results without CBS prioritization. For the full range of 1 to 200 and
300 desired CBSs respectively, the slope and final value of the backhaul power
consumption is similar to the previous results without CBS prioritization. Thus,
CBS prioritization does not have a negative influence on the energy consumption
of my approach for backhaul network reconfiguration.

0 10 20 30 40 50 60
Number of desired CBSs

0
50

100
150
200
250
300
350
400
450

Ba
ck

ha
ul

 P
ow

er
 C

on
su

m
pt

io
n

[W
]

0 10 20 30 40 50 60
Number of desired CBSs

0

100

200

300

400

500

600

700
Ba

ck
ha

ul
 P

ow
er

 C
on

su
m

pt
io

n
[W

]

0 50 100 150 200
Number of desired CBSs

0
50

100
150
200
250
300
350
400
450

Ba
ck

ha
ul

 P
ow

er
 C

on
su

m
pt

io
n

[W
]

(a) tree topology

0 50 100 150 200 250 300
Number of desired CBSs

0

100

200

300

400

500

600

700

Ba
ck

ha
ul

 P
ow

er
 C

on
su

m
pt

io
n

[W
]

(b) mesh topology

|K|=2, d=0.625 GB/s
|K|=4, d=0.625 GB/s

|K|=2, d=1.25 GB/s
|K|=4, d=1.25 GB/s

|K|=2, d=2.5 GB/s
|K|=4, d=2.5 GB/s

Figure 10.8: Backhaul Power Consumption

126

10.4 Summary

10.4 Summary

In this chapter, I have presented an extension to my approach to verify the fea-
sibility of base station coordination considering capacity and latency constraints
with a backhaul network with limited resources and hotspots of CBSs.

My simulations show that the extension enables the use of my approach in dense
wireless access networks with hotspots of users and furthermore significantly in-
creases the feasibility of base station coordination in scenarios without hotspots.

127

11
Backhaul Network Reconfiguration
Prototype

11.1 Architecture . 130

11.2 Implementation . 131

11.2.1 Controller and CLC Manager Plugin 131

11.2.2 Backhaul Network with Maxinet 133

11.2.3 Prototype Setup 134

11.3 Evaluation . 136

11.3.1 Scenario . 136

11.3.2 Results . 136

11.4 Summary . 138

Based on the CROWD Controller Architecture (CCA) (Section 8.2) and the
Software-Defined Network (SDN) paradigm (Section 2.1.3) I have designed and
implemented a prototype for backhaul network reconfiguration.

My approach for backhaul network reconfiguration needs to be executed on a
regional scope according to the CCA and is thus implemented as an application
for the CROWD Regional Controller (CRC) based on OpenDayLight (ODL). In
line with the ideas behind the CCA the backhaul is implemented using OpenFlow.

129

11 Backhaul Network Reconfiguration Prototype

11.1 Architecture

Figure 11.1: System Architecture

The architecture of the prototype is based on the decoupling of the following
three components of the overall system as shown in Figure 11.1 as a subset of the
CCA (Section 8.2):

• Application

• Controller (CRC)

• Backhaul network

In my prototype setup, the application is the algorithm from Section 10.2 to-
gether with necessary data structures to store the input and output data at run-
time. The system architecture itself can accommodate any other application for
backhaul reconfiguration.

The application is decoupled from the controller by accessing two different
Application Programming Interfaces (APIs) of the controller. Via the Open-
Flow API the application can both query the topology and flow configuration
of the backhaul network and modify the flow configuration according to the al-
gorithm outputs. In addition to this API, the application also needs to access

130

11.2 Implementation

the CLC Manager API in order to query the status of running CROWD Local
Controllers (CLCs) and to start or stop CLCs.

The CROWD Regional Controller (CRC) acts as the centralized link between
the application and the backhaul network, like an SDN controller [ONF12]. It
exposes the previously described northbound APIs to the application and controls
both the backhaul network and the CLC instances via its southbound plugins.
Consistent with the northbound APIs the controller needs both an OpenFlow
plugin and a CLC Manager plugin.

Of course the backhaul network has to be based on OpenFlow-enabled hard-
ware, i.e., switches, otherwise the controller cannot use the OpenFlow plugin to
reconfigure the backhaul network. All potential nodes for hosting a CLC have to
run a hypervisor to allow the dynamic instantiation of CLC instances.

11.2 Implementation

My reference implementation of the described system architecture is based on
the OpenDayLight (ODL) controller platform [MTVG14, ODL]. ODL includes
a fully featured OpenFlow plugin, thus no additional implementation is required
for this part. The model-based design behind ODL facilitates the implementation
of a CLC Manager plugin. A core concept with ODL is the implementation of
REST-based northbound APIs. The OpenFlow plugin provides APIs for both
querying the topology and configuring flows within the backhaul network. For the
CLC control plugin, I have implemented REST APIs accordingly. I describe this
implementation in more detail in Section 11.2.1.

The implementation of the application is based on Python and solely relies on
the REST APIs of the controller. A small wrapper converts data between the ODL
API format and the data structures for the algorithm. This wrapper is tailored
to the ODL API format, but it can be adapted to any other OpenFlow controller,
making the algorithm implementation independent of the controller platform.

Because I cannot test the application and controller on a real-world OpenFlow-
enabled backhaul network, I have used an emulated network to test and evaluate
my implementation. For this I use Maxinet [WDS+14], an extension to the well
known Mininet emulator [LHM10] for distributed emulation, to emulate a fully
functional, virtual OpenFlow-enabled network on a cluster of physical machines.
I describe Maxinet in more detail in Section 11.2.2.

11.2.1 Controller and CLC Manager Plugin

Based on the two-tier architecture of the CCA (Section 8.2) the backhaul network
reconfiguration should be implemented as a regional control mechanism to be
executed on the CRC. Because OpenDayLight (ODL) is the target platform for
the CRC I had to extend ODL with the necessary functionality for backhaul
network reconfiguration.

The architecture of ODL is shown in Figure 11.2. With the existing OpenFlow
plugin, the CRC controls OpenFlow-enabled devices. To allow access to the APIs

131

11 Backhaul Network Reconfiguration Prototype

Figure 11.2: OpenDaylight architecture [ODL]

132

11.2 Implementation

of the CLCs controlled by the CRC and to control the CLC instances, I have
developed a new set of modules for ODL called CLCManager.

The modules of the CLCManager are shown in Figure 11.3 and described in
the following:

• CLCManager Interface: provides a northbound Representational State Trans-
fer (REST) API and translates queries between this API and the core mod-
ules.

• CLCManager Service: handles commands and function calls to the core
plugin according to the Service Abstraction Layer (SAL) architecture of
ODL.

• CLCManager Plugin: manages the CLC inventory

• Inventory: data structure for the actual CLC inventory.

• CLCConnector: handles the communication with the CLCs (Because the
prototype does not include real instances of the CLC, this module is only
implemented as a non-functional stub)

Figure 11.3: CRC modules in ODL

11.2.2 Backhaul Network with Maxinet

Maxinet is an abstraction layer to connect multiple, unmodified instances of
Mininet [LHM10] running on different physical hosts. It provides a centralized API
for accessing this cluster of Mininet instances and uses GRE tunnels [Dom00] to
interconnect virtual switches emulated on different physical hosts. Maxinet works
as a frontend for Mininet that sets up all Mininet instances, invokes commands
at the virtual nodes and sets up the tunnels required for proper connectivity.

133

11 Backhaul Network Reconfiguration Prototype

Figure 11.4: Schematic view of Maxinet

Figure 11.4 shows a schematic view of Maxinet. A network experiment can
use the Maxinet API to set up, control and shut down a virtual network. This
Maxinet API is designed to be very close to the Mininet API to easily distribute
existing experiments over a cluster of Mininet instances. The emulation of the
network as such happens on a cluster of workers. All Workers are controlled by
Maxinet using the Mininet API. Communication between Maxinet and Mininet
is implemented through RPC calls.

I developed Maxinet together with Philip Wette, Arne Schwabe, Felix Wal-
laschek and Mohammad Hassan Zahraee [WDS+14].

11.2.3 Prototype Setup

I use a small setup with four physical machines, as shown in Figure 11.5. One ma-
chine hosts the backhaul network reconfiguration , OpenDaylight, and the Maxinet
frontend; the three other machines are used as Maxinet workers to emulate the
backhaul network. Since I do not have any wireless interface integrated into the
testbed, the traffic between the Base Stations (BSs) and the CLCs is emulated
using iperf [HK98].

134

11.2 Implementation

(a) Testbed Architecture

(b) Testbed Setup

Figure 11.5: Testbed

135

11 Backhaul Network Reconfiguration Prototype

11.3 Evaluation

For evaluating the prototype I used my prototype described in Section 11.2.

11.3.1 Scenario

For the prototype evaluation I use a smaller scenario, compared to the simulation
scenario, with only 16 BSs. To avoid a bottleneck from the Maxinet worker
interconnect, which is provided by a 100 Mb/s Ethernet switch, a Coordinated
Base Station Set (CBS) can only contain BSs being emulated on the same worker
machine. Apart from this limitation, CBSs are generated in the same random
way as in the simulations (Section 9.4). All emulated links also have a capacity of
2.5 Gb/s, and for the demand per BS I only consider 1.25 Gb/s because the other
values from the simulation (0.625 Gb/s and 2.5 Gb/s) do not provide additional
insights from the evaluation results.

I also use three different implementations for the application to compare the
performance of the algorithm:

• Full Backhaul Reconfiguration uses the full algorithm described in Section
10.2 with the full flexibility in terms of backhaul network configuration and
CLC placement.

• Limited Backhaul Reconfiguration uses a limited version of the algorithm
where the CLC is placed on a fixed BS and the algorithm only performs
flow routing and wavelength assignment.

• Static Backhaul does not use the algorithm at all and relies on a fixed CLC
placement and a static assignment of wavelengths and always uses shortest
paths for the flow routing.

11.3.2 Results

For the prototype evaluation, I consider three different metrics.
The a priori feasibility is calculated from the output of the application. In

Figure 11.6a we can see that the a priori feasibility decreases for both applications
that are based on the algorithm as the number of desired CBSs increases. This
is due to the limited available resources in the backhaul network. The results
also show that using the full flexibility of the algorithm yields a better a priori
feasibility than using the limited version. The a priori feasibility for the static
backhaul implementation is always 100% because this implementation does not
consider any resource constraints in an a priori way.

In order to measure the a posteri feasibility of all implementations I perform a
UDP throughput measurement using iperf [HK98] with a desired throughput of
1.25 Gb/s. As results from this measurement I obtain both the achieved through-
put (Figure 11.6b) and the packet loss (Figure 11.6c). Both implementations with
the algorithm achieve the desired throughput and do not cause any packet loss.

136

11.3 Evaluation

0 2 4 6 8 10
Districts/CBSs

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
Pr

io
ri

Fe
as

ib
ili

ty

(a) A Proiri Feasibility

0 2 4 6 8 10
Districts/CBSs

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Ac
hi

ev
ed

 T
hr

ou
gh

pu
t [

Gb
ps

]

(b) Achieved Throughput

0 2 4 6 8 10
Districts/CBSs

0

10

20

30

40

50

Pa
ck

et
 L

os
s

(c) Packet Loss

Full Backhaul Reconfiguration
Static Backhaul
Static Backhaul Reconfiguration

Figure 11.6: Prototype Evaluation

In contrast to that, the static implementation is not able to achieve the desired
throughput and causes a significant packet loss.

137

11 Backhaul Network Reconfiguration Prototype

11.4 Summary

In this chapter, I have presented a prototype implementation for backhaul network
reconfiguration based on the CROWD Controller Architecture (CCA) (Section
8.2). With this prototype I have shown how backhaul network reconfiguration
can be implemented as an application to run on top of the OpenDayLight SDN
controller to dynamically reconfigure a backhaul network implemented with Open-
Flow.

My evaluation results show that backhaul network reconfiguration improves the
feasibility of BS coordination in such a real-world setup.

138

12
Conclusion & Future Research
Directions

12.1 Discussion . 139

12.2 Conclusion . 140

12.3 Future Research Directions 141

In Section 1.2, I have introduced four goals for the approaches I presented in
this thesis. In Section 12.1 I discuss how my approaches contribute to achieving
these goals. After that I conclude my work in Section 12.2 and outline future
research directions in Section 12.3.

12.1 Discussion

In this section I discuss how my approaches contribute to achieving the four goals
introduced in Section 1.2.

1. Efficient use of wireless resources
My approach for anticipatory download scheduling directly contributes to
this goal by preventing excessive buffering of video segments in situations
where buffering of segments is not (yet) required. Wireless resources that
are not wasted by such early downloads of segments can be used by other
users, whose future available data rates might require the download and
buffering of more segments.

Backhaul network reconfiguration does not directly interact with the wire-
less resources but it enables wireless coordination in situations where the
limitations of a static backhaul prevent the implementation of wireless co-
ordination. Wireless coordination itself greatly enhances the efficient use
of wireless resources and thus backhaul network reconfiguration indirectly
contributes to achieving this goal as well.

2. Efficient allocation of backhaul resources
As I have pointed out in my evaluations in Chapters 9 and 10, my ap-

139

12 Conclusion & Future Research Directions

proach for backhaul network reconfiguration allocates Wavelength-Division-
Multiplexed Passive Optical Network (WDM-PON) wavelengths exactly
where they are required by the coordination of Base Stations (BSs). I devel-
oped this approach with this goal in mind and thus it directly contributes
to achieving it.

3. Limited QoE degradation
I developed my approach for anticipatory download scheduling with the goal
to decrease the degradation of the QoE for users as much as possible. My
evaluation results in Chapters 4, 5 and 6 focus on the QoE for users with
respect to playback interruptions (lateness) and video quality. My approach
does not degrade the QoE but actually increases it significantly compared
to greedy download scheduling. My approach greatly reduces the number
of playback interruptions and especially the Plan algorithm (Chapter 5)
delivers the video in a high quality to the users.

Backhaul network reconfiguration has no direct implication on the QoE for
users but it enables wireless coordination, which in turn helps to achieve a
better QoE for the users.

4. Reduced energy consumption
In Chapters 6 and 9, I have shown evaluations specifically addressing the
influence of my approaches on the power consumption of the mobile access
network.

I have especially presented an extension for increased energy efficiency for
the anticipatory download scheduling approach in Chapter 6. My results
show the potential for a significant reduction of power consumption by us-
ing anticipatory download scheduling as an enabling approach to power off
unused BSs.

My evaluation results in Chapter 9 also show that the dynamic allocation of
backhaul resources with backhaul network reconfiguration decrease the power
consumption of the backhaul network, if unneeded backhaul equipment is
powered off.

12.2 Conclusion

In all results that evaluate the behavior of state of the art approaches together
with the increased traffic demands in future mobile access networks, I have seen
substantial drawbacks in QoE and energy efficiency. In contrast to that, I have im-
proved both QoE and energy efficiency with the new approaches I have proposed
in this thesis. These results lend evidence to the fact that new, optimized ap-
proaches are needed to continuously operate mobile access networks in an efficient
way. My approaches can help to achieve this goal.

140

12.3 Future Research Directions

12.3 Future Research Directions

For the anticipatory download scheduling approach, the following directions should
be investigated further:

Integrated PHY scheduling The current anticipatory download scheduling ap-
proach is implemented in the application layer. In my investigation of energy
efficiency I have also included the allocation of Physical Layer (PHY) resources
but have not investigated it further, to keep the approach compatible with exist-
ing radio access protocols and standards. But combining download scheduling on
the application layer with the scheduling and allocation of physical resources can
increase the benefits of the approach even more.

Full multi-user scheduling After integrating PHY scheduling, it would also be
possible to extend the approach to include the explicit swapping of resources be-
tween multiple users. This would allow multi-user fairness based on the delivered
video quality and lateness instead of fairness only based on the allocation of PHY
resources. Such an approach would be a full cross-layer approach combining fair-
ness in both the PHY and application layer.

Prototype field test My prototype is only implemented as a stationary testbed
with emulated user movement but all the components of the system are deployable
in a larger field test with real moving users and a full implementation of a predictor
for future available data rates.

Refined prediction error model The current prediction error model is based on
the analysis of common prediction algorithms. After deploying a real field test
with the prototype, it would be possible to derive a refined prediction error model
that is tailored to the specific use case of mobile video streaming.

Furthermore, for backhaul network reconfiguration the following issues should be
researched:

WDM-PON conversion model The current model for WDM-PONs in the op-
timization problem and the algorithms does not explicitly consider the conversion
of wavelengths. If this model included a distinction between optical-optical and
optical-electrical-optical conversion, it would be possible to derive even more pre-
cise results about energy efficiency and deployment costs.

Integrated prototype The prototype implementation does not include any wire-
less transmissions and wireless coordination. With proper wireless testbed equip-
ment it would be possible to integrate and test the prototype implementation with
a real wireless access networks to further show its real world applicability.

141

Acronyms

3GPP 3rd Generation Partnership Project

AP Access Point

API Application Programming Interface

ARMA Autoregressive Moving Average

AWG Array Waveguide Grating

BFS Breadth-First-Search

BS Base Station

CBS Coordinated Base Station Set

CCA CROWD Controller Architecture

CLC CROWD Local Controller

CoMP Coordinated MultiPoint transmission and reception

CRC CROWD Regional Controller

CSI Channel State Information

DMM Distributed Mobility Management

DPI Deep Packet Inspection

FSO Free Space Optics

HLS HTTP Live Streaming

HMM Hidden Markov Model

ILP Integer Linear Program

ISD Inter Site Distance

LTE Long Term Evolution

MDP Markov Decision Process

MIMO Multiple Input Multiple Output

143

Acronyms

MIQCP Mixed Integer Quadratically Constrained Program

MME Mobility Management Entity

ODL OpenDayLight

OLT Optical Line Terminal

ONF Open Networking Foundation

ONU Optical Network Unit

PDF Probability Density Function

PHY Physical Layer

PON Passive Optical Network

PRB Physical Resource Block

PTAS Polynomial-Time Approximation Scheme

PtP Point-to-Point

QoE Quality of Experience

RB Resoure Block

REST Representational State Transfer

RSSI Received Signal Strength Indication

SAL Service Abstraction Layer

SDN Software-Defined Network

SINR Signal to Interference and Noise Ratio

SPAN Smarter Phones And Networks

SVC Scalable Video Coding

TRX Transmission and Reception Unit

UE User Equipment

URL Uniform Resource Locator

WDM Wavelength Division Multiplexing

WDM-PON Wavelength-Division-Multiplexed Passive Optical Network

144

Bibliography

[3GP09] 3GPP. Further advancements for E-UTRA physical layer aspects.
Technical Report 36.814 V9.0.0, 3GPP, March 2009.

[AACdlO+13a] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, M. Dräxler,
R. Gupta, V. Mancuso, L. Roullet, and V. Sciancalepore.
CROWD: An SDN Approach for DenseNets. In Second European
Workshop on Software Defined Networks, 2013.

[AACdlO+13b] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, V. Mancuso, M. R.
Sama, P. Seite, and S. Shanmugalingam. An SDN-based Network
Architecture for ExtremelyDense Wireless Networks. In Proceed-
ings of IEEE Software Defined Networks for Future Networks and
Services (IEEE SDN4FNS), 2013.

[ADMM15] S. Auroux, M. Dräxler, A. Morelli, and V. Mancuso. Dynamic
network reconfiguration in wireless DenseNets with the CROWD
SDN architecture. In Proceedings of the 2015 European Confer-
ence on Networks and Communications (EuCNC), 2015.

[And13] J. G. Andrews. Seven ways that HetNets are a cellular paradigm
shift. IEEE Commun. Mag., 51(3):136–144, 2013.

[App] Apple Inc. HTTP Live Streaming. https://developer.apple.

com/resources/http-streaming.

[ASM15] A. Asadi, V. Sciancalepore, and V. Mancuso. On the efficient
utilization of radio resources in extremely dense wireless networks.
IEEE Communications Magazine, 53(1):126–132, January 2015.

[AzHV14] H. Abou-zeid, H.S. Hassanein, and S. Valentin. Energy-efficient
adaptive video transmission: Exploiting rate predictions in wire-
less networks. Vehicular Technology, IEEE Transactions on,
63(5):2013–2026, Jun 2014.

[BAWB13] O. Blume, A. Ambrosy, M. Wilhelm, and U. Barth. Energy Effi-
ciency of LTE networks under traffic loads of 2020. In Proceedings
of the Tenth International Symposium on Wireless Communica-
tion Systems (ISWCS), 2013.

[BDAK14] F. Beister, M. Dräxler, J. Aelken, and H. Karl. Power model
design for ICT systems – A generic approach. Computer Commu-
nications, 50:77–85, September 2014.

145

https://developer.apple.com/resources/http-streaming
https://developer.apple.com/resources/http-streaming

Bibliography

[Bei14] F. Beister. Analyzing user video download behavior with clus-
tering and hidden markov models. In 1st KuVS Workshop on
Anticipatory Networks, 2014.

[BFW+13] J. Bartelt, G. Fettweis, D. Wubben, M. Boldi, and B. Melis. Het-
erogeneous backhaul for cloud-based mobile networks. In IEEE
78th Vehicular Technology Conference (VTC Fall), 2013.

[BHK13] A. Bokani, M. Hassan, and S. Kanhere. HTTP-Based Adaptive
Streaming for Mobile Clients using Markov Decision Process. In
Packet Video Workshop (PV), 2013 20th International, 2013.

[Bie12] T. Biermann. Dealing with Backhaul Network Limitations in Co-
ordinated Multi-point Deployments. PhD thesis, University of
Paderborn, Germany, 2012.

[BK14] F. Beister and H. Karl. Predicting mobile video inter-download
times with hidden markov models. In 7th IEEE International
Workshop on Selected Topics in Wireless and Mobile computing
(STWiMob 2014), 2014.

[BLM+14] N. Bhushan, Junyi Li, D. Malladi, R. Gilmore, D. Brenner,
A. Damnjanovic, R. Sukhavasi, C. Patel, and S. Geirhofer. Net-
work densification: the dominant theme for wireless evolution
into 5G. Communications Magazine, IEEE, 52(2):82–89, Febru-
ary 2014.

[BMKL12] M. Bansal, J. Mehlman, S. Katti, and P. Levis. OpenRadio: a
programmable wireless dataplane. In Proc. of the first workshop
on Hot topics in software defined networks, 2012.

[BMW14] N. Bui, F. Michelinakis, and J. Widmer. A Model for Throughput
Prediction for Mobile Users. In Proceedings of 20th European
Wireless Conference, 2014.

[BPC+05] A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer,
K. Kim, and B. Mukherjee. Wavelength-division-multiplexed pas-
sive optical network (WDM-PON) technologies for broadband ac-
cess: a review [Invited]. Journal of optical networking, 4(11):737–
758, 2005.

[BSC+11] T. Biermann, L. Scalia, C. Choi, H. Karl, and W. Kellerer. Back-
haul Network Pre-Clustering in Cooperative Cellular Mobile Ac-
cess Networks. In Proc. IEEE World of Wireless Mobile and Mul-
timedia Networks (WoWMoM), 2011.

[BSC+12] T. Biermann, L. Scalia, C. Choi, H. Karl, and W. Kellerer. CoMP
clustering and backhaul limitations in cooperative cellular mobile
access networks. Pervasive and Mobile Computing, 8(5):662–681,
2012.

146

Bibliography

[BSWK11] T. Biermann, L. Scalia, J. Widmer, and H. Karl. Backhaul Design
and Controller Placement for Cooperative Mobile Access Net-
works. In Proc. IEEE Vehicular Technology Conference (VTC-
Spring), 2011.

[BV14] N. Barmann and S. Valentin. Wireless link quality prediction
using street and coverage maps. In 1st KuVS Workshop on An-
ticipatory Networks, 2014.

[BV15] W. Bao and S. Valentin. Bitrate adaptation for mobile video
streaming based on buffer and channel state. In Proceedings of
the IEEE International Conference on Communications (ICC),
2015.

[BW14] N. Bui and J. Widmer. Modelling Throughput Prediction Errors
as Gaussian Random Walks. In 1st KuVS Workshop on Antici-
patory Networks, 2014.

[Cis12] Cisco Visual Networking Index: Forecast and Methodology, 2011-
2016. http://www.cisco.com/en/US/solutions/collateral/

ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.

pdf, 2012.

[Cis14a] Cisco Visual Networking Index: Forecast and
Methodology, 2013–2018. http://www.cisco.com/

c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_paper_

c11-481360.pdf, 2014.

[Cis14b] Cisco Visual Networking Index: Global Mobile Data Traf-
fic Forecast Update, 2013–2018. http://www.cisco.

com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white_paper_c11-520862.

pdf, 2014.

[CK00] C. Chekuri and S. Khanna. A PTAS for the multiple knapsack
problem. In Proceedings of the eleventh annual ACM-SIAM sym-
posium on Discrete algorithms, 2000.

[CMD+13] C. Cicconetti, A. Morelli, M. Dräxler, H. Karl, V. Mancuso,
V. Sciancalepore, R. Gupta, A. de la Oliva, I. Sánchez, P. Serrano,
and L. Roullet. The Playground of Wireless Dense Networks of
the Future. In Future Network and MobileSummit 2013, 2013.

[DBD+14] M. Dräxler, J. Blobel, P. Dreimann, S. Valentin, and H. Karl.
Anticipatory Buffer Control and Quality Selection for Wireless
Video Streaming. arXiv preprint arXiv:1309.5491v2, 2014.

147

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf

Bibliography

[DBD+15] M. Dräxler, J. Blobel, P. Dreimann, S. Valentin, and H. Karl.
SmarterPhones: Anticipatory Download Scheduling for Wireless
Video Streaming. In Proceedings of the International Conference
on Networked Systems (NetSys), 2015.

[DBK+12] M. Dräxler, F. Beister, S. Kruska, J. Aelken, and H. Karl. Using
OMNeT++ for Energy Optimization Simulations in Mobile Core
Networks. In Proceedings of the 5th International ICST Confer-
ence on Simulation Tools and Techniques (SIMUTOOLS), 2012.

[DBK13] M. Dräxler, T. Biermann, and H. Karl. Improving Cooperative
Transmission Feasibility by Network Reconfiguration in Limited
Backhaul Networks. International Journal of Wireless Informa-
tion Networks, 20(3):183–194, 2013.

[DBK15] M. Dräxler, J. Blobel, and H. Karl. Anticipatory Download
Scheduling in Wireless Video Streaming with Uncertain Data
Rate Prediction. In Proceedings of the 8th IFIP Wireless and
Mobile Networking Conference (WMNC), 2015. submitted.

[DBKK12] M. Dräxler, T. Biermann, H. Karl, and W. Kellerer. Cooperat-
ing Base Station Set Selection and Network Reconfiguration in
Limited Backhaul Networks. In Proceedings of the IEEE 23nd
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), 2012.

[DDK14] M. Dräxler, P. Dreimann, and H. Karl. Anticipatory Power Cy-
cling of Mobile Network Equipment for High Demand Multimedia
Traffic. In IEEE Online Conference on Green Communications
(IEEE Online GreenComm’14), 2014.

[DK13] M. Dräxler and H. Karl. Cross-Layer Scheduling for Multi-Quality
Video Streaming in Cellular Wireless Networks. In Proceedings of
the 9th IEEE International Wireless Communications and Mobile
Computing Conference (IWCMC), 2013.

[DK14a] M. Dräxler and H. Karl. Feasibility of Base Station Coordina-
tion and Dynamic Backhaul Network Configuration in Backhaul
Networks with Limited Capacity. In European Wireless 2014
(EW2014), 2014.

[DK14b] M. Dräxler and H. Karl. SmarterPhones: Anticipatory Download
Scheduling for Segmented Wireless Video Streaming. In 1st KuVS
Workshop on Anticipatory Networks, 2014.

[DK15] M. Dräxler and H. Karl. Dynamic Backhaul Network
Configuration in SDN-based Cloud RANs. arXiv preprint
arXiv:1503.03309, 2015.

148

Bibliography

[dlOMM+12] A. de la Oliva, A. Morelli, V. Mancuso, M. Dräxler, T. Hentschel,
T. Melia, P. Seite, and C. Cicconetti. Denser networks for the
Future Internet, the CROWD approach. In MONAMI OConS
Workshop: Workshop on Open Connectivity Services for the Fu-
ture Internet, 2012.

[DMMS14] S. Deb, P. Monogioudis, J. Miernik, and J. P. Seymour. Algo-
rithms for enhanced inter-cell interference coordination (eicic) in
lte hetnets. IEEE/ACM Transations on Networking, 22(1):137–
150, February 2014.

[Dom00] G. Dommety. Key and Sequence Number Extensions to GRE.
RFC 2890 (Proposed Standard), September 2000.

[DSK13] A. De Domenico, V. Savin, and D. Ktenas. A backhaul-aware cell
selection algorithm for heterogeneous cellular networks. In IEEE
24th International Symposium on Personal Indoor and Mobile Ra-
dio Communications (PIMRC), 2013.

[FMHG08] R. Forsati, M. Mahdavi, A.T. Haghighat, and A. Ghariniyat. An
efficient algorithm for bandwidth-delay constrained least cost mul-
ticast routing. In Proceedings of the Canadian Conference on
Electrical and Computer Engineering (CCECE), May 2008.

[GE08] K. Grobe and J. P. Elbers. PON in adolescence: from TDMA
to WDM-PON. Communications Magazine, IEEE, 46(1):26–34,
2008.

[Goo] Google Inc. Android 3.0 Highlights. http://developer.

android.com/about/versions/android-3.0-highlights.

html.

[GRA+11] K. Grobe, M. Roppelt, A. Autenrieth, J.-P. Elbers, and M. H.
Eiselt. Cost and energy consumption analysis of advanced WDM-
PONs. IEEE Communications Magazine, 49(2), 2011.

[Gre13a] GreenTouch. GreenTouch Green Meter Research Study: Reduc-
ing the Net Energy Consumption in Communications Networks
by up to 90% by 2020, 2013.

[Gre13b] GreenTouch. Mobile Communications WG Architecture Doc2:
Reference scenarios, Version 1.3, 2013.

[Gre14] GreenTouch. Mobile Communications WG Architecture Doc2a:
Update on Modelling Parameter, Version 1.3, 2014.

[GUR+13] S. Göndör, A. Uzun, T. Rohrmann, J. Tan, and R. Henniges.
Predicting User Mobility in Mobile Radio Networks to Proactively
Anticipate Traffic Hotspots. In MOBILWARE’13, 2013.

149

http://developer.android.com/about/versions/android-3.0-highlights.html
http://developer.android.com/about/versions/android-3.0-highlights.html
http://developer.android.com/about/versions/android-3.0-highlights.html

Bibliography

[HJM13] T.-Y. Huang, R. Johari, and N. McKeown. Downton Abbey With-
out the Hiccups: Buffer-based Rate Adaptation for HTTP Video
Streaming. In Proceedings of the 2013 ACM SIGCOMM Work-
shop on Future Human-centric Multimedia Networking, 2013.

[HK98] C.-H. Hsu and U. Kremer. Iperf: A framework for automatic
construction of performance prediction models. In Proceedings
of the Workshop on Profile and Feedback-Directed Compilation
(PFDC), 1998.

[HSH+11] T. Hossfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and
R. Schatz. Quantification of YouTube QoE via Crowdsourcing. In
Proceedings of the IEEE International Symposium on Multimedia
(ISM), 2011.

[HSS+15] Tobias Hoßfeld, Michael Seufert, Christian Sieber, Thomas Zin-
ner, and Phuoc Tran-Gia. Identifying qoe optimal adaptation of
{HTTP} adaptive streaming based on subjective studies. Com-
puter Networks, (0):–, 2015. In Press, Uncorrected Proof.

[HSSZ14] T. Hossfeld, M. Seufert, C. Sieber, and T. Zinner. essing effect
sizes of influence factors towards a qoe model for http adaptive
streaming. In Proceedings of the 6th International Workshop on
Quality of Multimedia Experience (QoMEX), 2014.

[HZM14] J. Hao, R. Zimmermann, and H. Ma. GTube: Geo-predictive
Video Streaming over HTTP in Mobile Environments. In Pro-
ceedings of the 5th ACM Multimedia Systems Conference, 2014.

[JMJ+13] V. Jungnickel, K. Manolakis, S. Jaeckel, M. Lossow, P. Farkas,
M. Schlosser, and V. Braun. Backhaul requirements for inter-site
cooperation in heterogeneous LTE-Advanced networks. In IEEE
International Conference on Communications Workshops (ICC),
2013.

[KPP04] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer, 2004.

[KPS+06] S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer.
Application-driven cross-layer optimization for video streaming
over wireless networks. IEEE Comm. Magazine, 44(1):122–130,
2006.

[Law79] E. L. Lawler. Fast Approximation Algorithms for Knapsack Prob-
lems. Mathematics of Operations Research, 4(4):pp. 339–356,
1979.

[Law13] W. Law. Delivering Over The Top Video at Scale - Akamai at
OTTCon 2013, 2013.

150

Bibliography

[LdV13] Z. Lu and G. de Veciana. Optimizing Stored Video Delivery For
Mobile Networks: The Value of Knowing the Future. In Proc. of
the IEEE Int. Conf. on Comp. Comm. (INFOCOM), 2013.

[LHM10] B. Lantz, B. Heller, and N. McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
2010.

[LSJ+13] C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G.-K.
Chang. The case for re-configurable backhaul in cloud-ran based
small cell networks. In Proceedings of the 2013 IEEE INFOCOM,
2013.

[LZG+14] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A.C. Begen, and D. Oran.
Probe and Adapt: Rate Adaptation for HTTP Video Streaming
At Scale. Selected Areas in Communications, IEEE Journal on,
32(4):719–733, April 2014.

[MAB+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling
innovation in campus networks. SIGCOMM Comput. Commun.
Rev., 38(2):69–74, March 2008.

[MATW15] K. Miller, A.-K. Al-Tamimi, and A. Wolisz. Low-Delay Adaptive
Video Streaming Based on Short-Term TCP Throughput Predic-
tion. arXiv preprint arXiv:1503.02955v2, 2015.

[MF07] P. Marsch and G. Fettweis. A Framework for Optimizing the Up-
link Performance of Distributed Antenna Systems under a Con-
strained Backhaul. In Proc. IEEE European Wireless Conference
(EW), 2007.

[Mit02] T. M. Mitchell. Machine learning. McGraw-Hill, New York, 2002.

[MLT12] C. Müller, S. Lederer, and C. Timmerer. An evaluation of dynamic
adaptive streaming over HTTP in vehicular environments. In
Proc. of the 4th Workshop on Mobile Video, 2012.

[MQGW12] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz. Adapta-
tion algorithm for adaptive streaming over http. In Packet Video
Workshop (PV), 2012 19th International, May 2012.

[MTVG14] J. Medved, A. Tkacik, R. Varga, and K. Gray. Opendaylight:
Towards a model-driven sdn controller architecture. In A World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014
IEEE 15th International Symposium on, 2014.

151

Bibliography

[OAJ14] J. Otwani, A. Agarwal, and A. Jagannatham. Optimal scalable
video scheduling policies for real time single and multiuser wire-
less video networks. IEEE Transactions on Vehicular Technology,
PP(99):1–1, 2014.

[ODL] OpenDayLight: Technical Overvew. http://www.

opendaylight.org/project/technical-overview. Accessed:
26.04.2015.

[OF 13] OpenFlow Switch Specification, Version 1.4.0 (Wire Protocol
0x05). https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.4.0.pdf, 2013.

[OFGZ13] J.J. Olmos, R. Ferrus, and H. Galeana-Zapien. Analytical Mod-
eling and Performance Evaluation of Cell Selection Algorithms
for Mobile Networks with Backhaul Capacity Constraints. Wire-
less Communications, IEEE Transactions on, 12(12):6011–6023,
2013.

[ONF12] Software-Defined Networking: The New Norm for Net-
works. https://www.opennetworking.org/images/stories/

downloads/sdn-resources/white-papers/wp-sdn-newnorm.

pdf, 2012.

[ONF13] SDN Architecture Overview. https://www.opennetworking.

org/images/stories/downloads/sdn-resources/

technical-reports/SDN-architecture-overview-1.0.pdf,
2013.

[PGH08] A. Papadogiannis, D. Gesbert, and E. Hardouin. A Dynamic
Clustering Approach in Wireless Networks with Multi-Cell Coop-
erative Processing. In Proc. IEEE International Conference on
Communications (ICC), 2008.

[PMA13] R. Pantos, W. May, and Apple Inc. HTTP
Live Streaming. http://tools.ietf.org/html/

draft-pantos-http-live-streaming-11, April 2013.

[RBV+12] H. Riiser, H. S. Bergsaker, P. Vigmostad, P. Halvorsen, and
C. Griwodz. A comparison of quality scheduling in commercial
adaptive HTTP streaming solutions on a 3G network. In Proc. of
the 4th Workshop on Mobile Video, 2012.

[REV+12] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and
P. Halvorsen. Video streaming using a location-based bandwidth-
lookup service for bitrate planning. ACM Transactions on Multi-
media Computing, Communications, and Applications, 8(3):1–19,
July 2012.

152

http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
http://tools.ietf.org/html/draft-pantos-http-live-streaming-11
http://tools.ietf.org/html/draft-pantos-http-live-streaming-11

Bibliography

[RN12] R. Radhakrishnan and A. Nayak. Cross layer design for efficient
video streaming over LTE using scalable video coding. In Commu-
nications (ICC), 2012 IEEE International Conference on, 2012.

[RSS10] R. Ramaswami, K.N. Sivarajan, and G.G.H. Sasaki. Optical
Networks: A Practical Perspective. Morgan Kaufmann. Else-
vier/Morgan Kaufmann, 2010.

[RTN12] R. Radhakrishnan, B. Tirouvengadam, and A. Nayak. Chan-
nel quality-based AMC and smart scheduling scheme for SVC
video transmission in LTE MBSFN networks. In Communica-
tions (ICC), 2012 IEEE International Conference on, 2012.

[RVGH13] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute
path bandwidth traces from 3G networks: analysis and applica-
tions. In Proc. of the 4th ACM Multimedia Sys. Conf., 2013.

[SAD+15] M. I. Sanchez, A. Asadi, M. Dräxler, R. Gupta, V. Mancuso,
A. Morelli, A. de la Oliva, and V. Sciancalepore. Tackling the
increased density of 5G networks; the CROWD approach. In
IEEE 81st Vehicular Technology Conference: VTC2015-Spring,
First International Workshop on 5G Architecture (5GArch 2015),
2015.

[SES+14] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and
P. Tran-Gia. A survey on quality of experience of http adap-
tive streaming. IEEE Communications Surveys Tutorials, PP(99),
2014.

[SKM+10] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and
M. Tanno. Coordinated multipoint transmission/reception tech-
niques for LTE-advanced [Coordinated and Distributed MIMO].
IEEE Wireless Communications, 17(3):26–34, 2010.

[SL02] A. Sang and S. Li. A predictability analysis of network traffic. In
Computer networks, 2002.

[SMW07] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable
video coding extension of the h.264/avc standard. IEEE Transac-
tions on Circuits and Systems for Video Technology, 17(9):1103–
1120, Sept 2007.

[SNK13] H. M. Soliman, O. A. Nasr, and M. M. Khairy. Analysis and
optimization of backhaul sharing in CoMP. In IEEE 24th Inter-
national Symposium on Personal Indoor and Mobile Radio Com-
munications (PIMRC), 2013.

[SPJFL15] B. Soret, K.I. Pedersen, N.T.K. Jorgensen, and V. Fernandez-
Lopez. Interference coordination for dense wireless networks.
IEEE Communications Magazine, 53(1):102–109, January 2015.

153

Bibliography

[SQBB10] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási. Limits of
predictability in human mobility. Science, 327(5968):1018–1021,
2010.

[SRV02] H.F. Salama, D.S. Reeves, and Y. Viniotis. Evaluation of mul-
ticast routing algorithms for real-time communication on high-
speed networks. Selected Areas in Communications, 15(3):332–
345, 2002.

[SSPS09] O. Simeone, O. Somekh, H. V. Poor, and S. Shamai. Downlink
multicell processing with limited-backhaul capacity. EURASIP
Journal on Advances in Signal Processing, 2009.

[TMF+14] S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and
J. Zander. Is backhaul becoming a bottleneck for green wireless
access networks? In Proceedings of the IEEE International Con-
ference on Communications (ICC), June 2014.

[Twi] Twisted Matrix Labs. Twisted. http://twistedmatrix.com/.

[Val14] S. Valentin. Anticipatory resource allocation for wireless video
streaming. In Proceedings of the IEEE International Conference
on Communication Systems (ICCS), 2014. invited paper.

[Vid] VideoLAN Organization. VideoLAN. http://www.videolan.

org/videolan/.

[WDS+14] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. Has-
san Zahraee, and H. Karl. MaxiNet: Distributed Emulation of
Software-Defined Networks. In Proceedings of the 2014 IFIP Net-
working Conference (Networking 2014), 2014.

[WLA12] IEEE Standard for Information technology–Telecommunications
and information exchange between systems Local and metropoli-
tan area networks–Specific requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-
2007), 2012.

[WLLM13] R. Wang, H.H. Lee, S.S. Lee, and B. Mukherjee. Energy saving
via dynamic wavelength sharing in WDM-PON. ONDM, pages
235–239, 2013.

[YKH08] J. Yao, S. S. Kanhere, and M. Hassan. An empirical study of
bandwidth predictability in mobile computing. In Proc. of the 3rd
ACM Int. Workshop on Wireless network testbeds, experimental
evaluation and characterization - WiNTECH, 2008.

154

http://twistedmatrix.com/
http://www.videolan.org/videolan/
http://www.videolan.org/videolan/

Bibliography

[YKH11] J. Yao, S. S. Kanhere, and M. Hassan. Mobile Broadband Perfor-
mance Measured from High-Speed Regional Trains. In Proc. of
the IEEE Vehicular Technology Conference (VTC Fall), 2011.

[YKH12] J. Yao, S. S. Kanhere, and M. Hassan. Improving QoS in High-
Speed Mobility Using Bandwidth Maps. IEEE Trans. Mob. Com-
put., 11(4):603–617, 2012.

[ZBE01] W. Zhengying, S. Bingxin, and Z. Erdun. Bandwidth-delay-
constrained least-cost multicast routing based on heuristic genetic
algorithm. Computer Communications, 24(7-8):685–692, 2001.

[ZL12] J. Zhao and Z. Lei. Clustering methods for base station cooper-
ation. In Wireless Communications and Networking Conference
(WCNC), 2012 IEEE, 2012.

[ZYM12] Q. Zhang, C. Yang, and A.F. Molisch. Cooperative downlink
transmission mode selection under limited-capacity backhaul. In
Wireless Communications and Networking Conference (WCNC),
2012 IEEE, pages 1082–1087, 2012.

155

	1 Introduction
	1.1 Current Trends and Issues in Mobile Access Networks
	1.1.1 Increasing Data Rate Demands
	1.1.2 Densification of Mobile Access Networks

	1.2 Scope & Goals
	1.3 Approaches
	1.3.1 Anticipatory Download Scheduling
	1.3.2 Backhaul Reconfiguration

	1.4 Contributions
	1.5 Structure of the Thesis

	2 Technical Background
	2.1 Backhaul Networks
	2.1.1 WDM-PON
	2.1.2 Power Consumption
	2.1.3 Software Defined Networks

	2.2 Wireless Access Networks
	2.2.1 Simple 3GPP Radio Model
	2.2.2 GreenTouch Radio Model
	2.2.3 Power Consumption

	2.3 Wireless Coordination
	2.3.1 Coordinated Multipoint Transmission and Reception
	2.3.2 Software Defined Base Station Coordination

	2.4 Application Layer
	2.4.1 HTTP Live Streaming
	2.4.2 Data Rate Prediction

	3 State of the Art & Related Work on Anticipatory Download Scheduling
	3.1 Smarter Phones and Networks
	3.2 Related Work

	4 Anticipatory Download Scheduling with Perfect Prediction
	4.1 Problem Description
	4.2 Optimal Solution
	4.2.1 Model Assumptions
	4.2.2 Mixed Integer Quadratically Constrained Program
	4.2.3 Objective
	4.2.4 Complexity

	4.3 Fill Algorithm
	4.4 Greedy Algorithms
	4.4.1 BufferFirst Algorithm
	4.4.2 QualityFirst Algorithm

	4.5 Evaluation
	4.5.1 Scenario
	4.5.2 Results
	4.5.3 Algorithm Running Times

	4.6 Summary

	5 Anticipatory Download Scheduling with Uncertain Prediction
	5.1 Problem Description
	5.2 Generic Predictor
	5.2.1 Stochastic Model of Prediction Errors
	5.2.2 Implementation

	5.3 Evaluation of Perfect Prediction Algorithms with Uncertain Predictions
	5.3.1 Scenario
	5.3.2 Results

	5.4 Plan Algorithm
	5.5 Evaluation
	5.5.1 Comparison with Perfect Prediction Schedulers
	5.5.2 Influence of the Prediction Horizon

	5.6 Summary

	6 Anticipatory Download Scheduling for Energy Efficiency
	6.1 Problem Description
	6.2 Optimal Solution
	6.2.1 OptBasic
	6.2.2 OptFlex

	6.3 Two-Phase Algorithm
	6.3.1 Quality selection phase
	6.3.2 Base station disabling phase

	6.4 Evaluation
	6.4.1 Scenarios
	6.4.2 Three BSs Scenario Results
	6.4.3 Train Scenario Results

	6.5 Summary

	7 Anticipatory Download Scheduling Prototype
	7.1 System Design
	7.1.1 Design Decisions
	7.1.2 Architecture and Implementation

	7.2 Prototype Implementation
	7.2.1 Protocol Extension
	7.2.2 Testbed

	7.3 Evaluation
	7.4 Summary

	8 State of the Art & Related Work on Backhaul Network Reconfiguration
	8.1 Backhaul Network Reconfiguration for CoMP
	8.2 CROWD Controller Architecture
	8.3 Related Work

	9 Backhaul Network Reconfiguration
	9.1 Problem Description
	9.2 Optimal Solution
	9.2.1 Integer Linear Program
	9.2.2 Complexity

	9.3 BFS Algorithm
	9.3.1 Inputs
	9.3.2 Algorithm Implementation

	9.4 Evaluation
	9.4.1 Scenario
	9.4.2 Comparison: Optimization vs. Heuristic Algorithm
	9.4.3 Heuristic Algorithm in Large Scenarios
	9.4.4 Energy Efficiency

	9.5 Summary

	10 Backhaul Network Reconfiguration Extension for DenseNets
	10.1 Problem Description
	10.2 Hotspot BFS Algorithm
	10.3 Evaluation
	10.3.1 Hotspot Scenario
	10.3.2 Hotspot Scenario Results
	10.3.3 Non-Hotspot Scenario Extended Results

	10.4 Summary

	11 Backhaul Network Reconfiguration Prototype
	11.1 Architecture
	11.2 Implementation
	11.2.1 Controller and CLC Manager Plugin
	11.2.2 Backhaul Network with Maxinet
	11.2.3 Prototype Setup

	11.3 Evaluation
	11.3.1 Scenario
	11.3.2 Results

	11.4 Summary

	12 Conclusion & Future Research Directions
	12.1 Discussion
	12.2 Conclusion
	12.3 Future Research Directions

	Acronyms
	Bibliography

