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Abstract

Lattices are classical objects in the geometry of numbers. A lattice L is a discrete
(abelian) subgroup of the n-dimensional vector space over the real numbers. Lattices
have numerous applications ranging from number theory over computer algebra to opti-
mization and cryptography.

In this thesis, we study the complexity of four classical problems from the geometry
of numbers, the shortest vector problem (Svp), the successive minima problem (Smp),
the shortest independent vectors problem (Sivp), and the closest vector problem (Cvp).
These problems can be de�ned for any norm on Rn. The focus of this thesis is the algo-
rithmic complexity of the four lattice problems described above with respect to arbitrary,
especially non-Euclidean norms.

Extending and generalizing results of Ajtai et al. we present probabilistic single expo-
nential time algorithms for all four lattice problems using single exponential space. The
algorithms solve Svp and restricted versions of the other problems optimally using at
most (2n log2(r))O(1) arithmetic operations, where n is the dimension of the vector space
and r is an upper bound on the size of the input instance. Furthermore, the algorithms
solve the general versions of Smp, Sivp, and Cvp almost optimally, i.e., with approx-
imation factor 1 + ε, where 0 < ε < 3/2. Here, the number of arithmetic operations
of the algorithms is ((2 + 1/ε)n log2(r))O(1). While single exponential time algorithms
that solve Svp optimally and Cvp almost optimally were �rst presented in the seminal
work of Ajtai et al., see [AKS01], [AKS02], the results for approximating Sivp and Smp
improve upon previous results. Furthermore, Ajtai et al. describe their algorithm only
for the Euclidean norm, whereas our algorithms work for any `p-norm, 1 ≤ p ≤ ∞.

To obtain algorithms that solve Smp, Sivp, and Cvp exactly with respect to arbi-
trary norms, we consider Cvp in detail since there exist polynomial time reductions
from Smp and Sivp to Cvp which work for any norm, see [Mic08]. We will describe
in this thesis deterministic polynomially space bounded algorithms for Cvp for all `p-
norms, 1 < p < ∞, and all polyhedral norms, in particular for the `1-norm and the
`∞-norm. For the running time we achieve the following results: For all `p-norms with
1 < p <∞ the number of arithmetic operations of the algorithm is p·log2(r)O(1)n(2+o(1))n,
where r is an upper bound on the size of the Cvp-instance and n is the dimension of
the vector space. For polyhedral norms, we obtain an algorithm with running time
(s · log2(r))O(1)n(2+o(1))n, where r and n are de�ned as above and s is the number of
constraints de�ning the polytope. To the best of our knowledge this is the �rst result of
this type. While there exist deterministic algorithms for Cvp with respect to arbitrary
norms using n(4/3+o(1))n log2(r)O(1) arithmetic operations, see [DPV11], [DV12], these
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algorithms do not run in polynomial space.
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Zusammenfassung

Gitter sind klassische Objekte aus der Geometrie der Zahlen. Ein Gitter ist de�niert als
eine diskrete (abelsche) Untergruppe des Rn. Gitter haben eine Vielzahl von Anwendun-
gen, die von der Zahlentheorie über die Computeralgebra bis hin zur Optimierung und
Kryptographie reichen.

Diese Dissertationsschrift beschäftigt sich mit der algorithmischen Komplexität von
vier klassischen Problemen aus der Geometrie der Zahlen, dem Problem des kürzesten
Gittervektors, dem Problem der sukzessiven Minima, dem Problem der kürzesten linear
unabhängigen Gittervektoren sowie dem Problem des nächsten Gittervektors. Diese Prob-
leme können bezüglich jeder beliebigen Norm auf dem Rn de�niert werden. Der Schwer-
punkt dieser Dissertation liegt auf der Untersuchung der algorithmischen Komplexität
dieser oben erwähnten Gitterprobleme mit einem speziellen Fokus auf ihrer Lösbarkeit
bezüglich allgemeiner, nicht euklidischer Normen.

Aufbauend auf Algorithmen von Ajtai, Kumar und Sivakumar ([AKS01], [AKS02]) für
das Problem des kürzesten Gittervektors und das Problem des nächsten Gittervektors
beschreiben wir in dieser Arbeit randomisierte Algorithmen mit einfach exponentieller
Laufzeit für alle vier erwähnten Gitterprobleme. Diese Algorithmen lösen das Problem
des kürzesten Gittervektors sowie wie eingeschränkte Varianten der anderen Gitterprob-
leme exakt. Dabei ist die Anzahl der arithmetischen Operationen beschränkt durch
(2n log2(r))O(1), wobei n die Dimension des betrachteten Vektorraumes und r eine obere
Schranke für die Eingabeinstanz ist. Für die allgemeinen Varianten des Problems der
sukzessiven Minima, des Problems der kürzesten linear unabhängigen Gittervektoren
sowie des Problems des nächsten Gittervektors beschreiben wir randomisierte Algorith-
men mit einfach exponentieller Laufzeit, die diese Probleme mit Approximationsfaktor
1 + ε für 0 < ε < 3/2 lösen. Die Anzahl der benötigten arithmetischen Operationen ist
dabei beschränkt durch ((2 + 1/ε)n log2(r))O(1). Im Gegensatz zu den Algorithmen von
Ajtai, Kumar und Sivakumar arbeiten alle von uns vorgestellen Algorithmen nicht nur
für die euklidsche Norm sondern für allgemeine `p-Normen mit 1 ≤ p ≤ ∞.

Um Algorithmen für das Problem der sukzessiven Minima, das Problem der kürzesten
linear unabhängigen Gittervektoren sowie für das Problem des nächsten Gittervektors
zu entwickeln, die diese Probleme exakt lösen, konzentrieren wir uns im zweiten Teil
dieser Dissertationsschrift auf das Problem des nächsten Gittervektors. Dabei nutzen
wir aus, dass sowohl das Problem der sukzessiven Minima als auch das Problem der
kürzesten linear unabhängigen Gittervektoren polynomiell auf das Problem des nächsten
Gittervektors reduzierbar sind, unabhängig von der entsprechenden Norm ([Mic08]).
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Zusammenfassung

Für das Problem des nächsten Gittervektors entwickeln wir in dieser Arbeit deter-
ministische Algorithmen, die das Problem für alle `p-Normen mit 1 < p < ∞ und alle
Normen gegeben durch ein Polytop lösen, insbesondere auch für die `1-Norm und die
`∞-Norm. Alle Algorithmen benötigen lediglich polynomiellen Platz. Allerdings ist die
Anzahl der benötigten arithmetischen Operationen p · log2(r)O(1)n(2+o(1))n, wenn man
das Problem des nächsten Gittervektors bezüglich einer `p-Norm mit 1 < p < ∞ löst.
Dabei ist r eine obere Schranke für die Gröÿe der Koe�zienten der Eingabeinstanz und
n die Dimension des betrachteten Vektorraumes. Ist die Norm gegeben durch ein Poly-
top, so benötigt der Algorithmus zur Lösung des Problems des nächsten Gittervektors
(s · log2(r))O(1)n(2+o(1))n arithmetische Operationen. Dabei sind die Parameter r und n
wie oben de�niert und s ist die Anzahl der Ungleichungen, die das Polytop de�nieren.
Zwar existieren deterministische Algorithmen, die das Problem des nächsten Gittervek-
tors bezüglich allgemeiner Normen mit n(4/3+o(1))n log2(r)O(1) arithmetischen Operatio-
nen lösen ([DPV11], [DV12]), allerdings verwenden diese Algorithmen einfach exponen-
tiell viel Platz.
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1. Introduction

Lattices are classical objects in the geometry of numbers, a mathematical theory estab-
lished by Hermann Minkowski around 1900, see [Hil11]. A lattice L is a discrete (abelian)
subgroup of the n-dimensional vector space over the real numbers. Each lattice has a
basis that is a sequence ofm elements of the lattice that generate the lattice as an abelian
group. We call m the rank of the lattice.
Lattices establish the connection between discrete aspects of the Euclidean vector space

Rn, i.e., integer numbers, and elements from geometry, especially from the convex ge-
ometry. They have numerous applications ranging from number theory over computer
algebra to optimization and cryptography.

In this thesis, we consider four classical problems from the geometry of numbers,

� the shortest vector problem (Svp), where we are given a lattice and want to �nd a
shortest non-zero lattice vector,

� the successive minima problem (Smp), where we are given a lattice and want to
successively compute linearly independent lattice vectors of minimal length,

� the shortest independent vectors problem (Sivp), where we are given a lattice and
want to compute linearly independent lattice vectors with maximum length as short
as possible, and

� the closest vector problem (Cvp), where we are given a lattice together with some
target vector from the vector space spanned by the lattice vectors and we want to
compute the closest lattice vector to this target vector.

In the last 30 years, the complexity of these lattice problems has been studied intensively.
It is known that all these problems are NP-hard and even hard to approximate, see for ex-
ample [vEB81], [Ajt98], [ABSS93], [DKS98], [BS99], [Mic01], [DKRS03], [Kho05], [RR06],
[HR07], and [Pei08].

The lattice problems Svp, Smp, Sivp, and Cvp can be de�ned for any norm on Rn.
Thus, we stated them without referring to a speci�c norm. Often, they are considered
with respect to the Euclidean norm. However, it is also common to consider these lattice
problems with respect to other non-Euclidean norms, in particular the `∞-norm:

� Cryptosystems based on the knapsack problem can be broken if we can solve the
shortest vector problem with respect to the `∞-norm, see [Rit96].

1



1. Introduction

� If we are able to solve the closest vector problem with respect to the `∞-norm, we
are able to solve the so-called hidden number problem which leads to attacks on
the Digital Signature Algorithm (DSA), see [Ngu01] and [NS00].

� Up to now, the hardness of all lattice based cryptosystems is based on the hardness
of lattice problems with respect to the Euclidean norm. But it seems that lattice
problems in the Euclidean norm are easier than in any other norm, see [Pei08].
Hence, if we construct cryptosystems whose security is based on the hardness of
certain lattice problems in a non-Euclidean norm, these cryptosystems are possibly
harder to break.

� If we consider a polytope {x ∈ Rm|Bx − t ≤ β · 1n and Bx − t ≥ −β · 1n} given
by some nonsingular matrix B ∈ Rn×m, a vector t ∈ Rn and a radius β > 0, then
the integer vectors in this polytope are characterized as the lattice vectors in the
lattice L(B) whose distance to t with respect to the `∞-norm is at most β.

In this thesis, we study upper bounds on the complexity of the four lattice problems
Svp, Smp, Sivp, and Cvp. Thereby, we concentrate on positive results, i.e., algorithms
that solve these lattice problems either optimally or approximately. Furthermore we fo-
cus on their algorithmic complexity with respect to arbitrary norms.

Extending and generalizing results of Ajtai, Kumar, and Sivakumar we will present
probabilistic single exponential time algorithms for all four lattice problems using sin-
gle exponential space. The algorithms solve the shortest vector problem and restricted
versions of the other problems optimally, using at most (2n log2(r))O(1) arithmetic oper-
ations, where n is the dimension of the vector space and r is an upper bound on the size
of the input instance. Furthermore, the algorithms solve the general versions of Smp,
Sivp, and Cvp almost optimally, i.e., with approximation factor 1 + ε with 0 < ε < 3/2.
Here, the number of arithmetic operations of the algorithms is ((2 + 1/ε)n log2(r))O(1)

and the representation size of each number computed by the algorithm is polynomial in
the representation size of the input.
While single exponential time algorithms that solve Svp optimally and Cvp almost

optimally, were �rst presented in the seminal work of Ajtai, Kumar, and Sivakumar, see
[AKS01], [AKS02], the results for Sivp and Smp improve upon previous results. Fur-
thermore, Ajtai, Kumar, and Sivakumar describe their algorithms only for the Euclidean
norm, our algorithms work for any so-called tractable norm, in particular for any `p-norm
with 1 ≤ p ≤ ∞.
While there exist deterministic single exponential time algorithms that solve all four

lattice problems exactly in the Euclidean norm, for general `p-norms our approximation
algorithms for Smp, Sivp, and Cvp are the best randomized algorithms. An excep-
tion is the algorithm of Eisenbrand, Hähnle, and Niemeier which is based on our algo-
rithm for Cvp and approximates Cvp with approximation factor 1 + ε using at most
((2 + log2(1/ε))n log2(r))O(1) arithmetic operations, see [EHN11].
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To obtain algorithms that solve Smp, Sivp, and Cvp exactly with respect to arbitrary
norms, we consider the closest vector problem in detail, since there exist polynomial time
reductions from Smp and Sivp to Cvp that work for any norm and preserve the rank of
the lattice, see [Mic08]. In this thesis, we will describe deterministic polynomially space
bounded algorithms for the closest vector problem for all `p-norms, 1 < p < ∞, and
all polyhedral norms, in particular for the `1-norm and the `∞-norm. For the running
time we achieve the following results: For all `p-norms with 1 < p < ∞ the number of
arithmetic operations of the algorithm is p · log2(r)O(1)n(2+o(1))n, where r is an upper
bound on the size of the coe�cients of the target vector and the lattice basis and n is
the dimension of the vector space. For polyhedral norms, we obtain an algorithm using
(s · log2(r))O(1)n(2+o(1))n arithmetic operations, where r and n are de�ned as above and s
is the number of constraints de�ning the polytope. In particular, for the `1-norm and the
`∞-norm, we obtain a deterministic algorithm for the closest vector problem which uses
log2(r)O(1)n(2+o(1))n arithmetic operations. Since there are polynomial time reductions
from Svp, Smp, and Sivp to Cvp that work for any norm, we obtain also deterministic
algorithms for these problems.
For the shortest vector problem, this result is not really interesting since there exists

already a deterministic polynomially space bounded algorithm that solves Svp in any
`p-norm using at most n(1+o(1))n log2(r)O(1) arithmetic operations, see [Kan87b]. For the
other three problems, to the best of our knowledge this is the �rst result of this type.
While there exist algorithms for the closest vector problem with respect to arbitrary
norms using n(4/3+o(1))n log2(r)O(1) arithmetic operations, see [DPV11], [DV12], these
algorithms do not run in polynomial space.

Outline and main results

We brie�y present the main results of this thesis and how it is organized.

Chapter 2 We start with a short introduction about arbitrary norms and their relation
to convex bodies which are symmetric about the origin. Especially we show that every
norm de�nes a unit ball which is a convex body symmetric about the origin and that every
convex body symmetric about the origin can be used to de�ne a norm. Furthermore, we
consider some computational aspects of convex bodies that arise if we work with them in
algorithms. At the end of this chapter, we introduce some special classes of convex bodies
and consider the corresponding norms. These are ellipsoids, `p-balls with 1 ≤ p ≤ ∞,
and polytopes.

Chapter 3 In this chapter we give a short introduction into lattices and their connection
to convex bodies. We de�ne several fundamental concepts from the geometry of numbers
and state the main important results. Particularly, we show how lattices interact with
convex bodies, e.g., in Minkowski's convex body theorem which gives a su�cient criterion
for the fact that a convex body contains a lattice vector.

3



1. Introduction

Chapter 4 Whereas in Chapter 3 we considered lattices mainly from a pure mathemat-
ical point of view, in this chapter we focus on their computational aspects. We de�ne
the four classical lattice problems, Svp, Smp, Sivp, and Cvp and consider their com-
plexity. We consider their similarities and di�erences as far as they are relevant for the
development of algorithms for them. Particularly, we focus on the main di�culties that
arise if we want to adapt an algorithm working for the Euclidean norm to an algorithm
working for arbitrary norms.

At the end of this chapter, we make some preparations that we will use for the devel-
opment of a uni�ed algorithmic treatment for the four classical lattice problems.
Explicitly, we de�ne a new lattice problem, the generalized shortest vector problem
(Gsvp). This lattice problem is some kind of a generalization of the shortest vector
problem: We are given some lattice L together with a subspace M of the R-vector space
span(L) spanned by the vectors in L. The goal is to compute a shortest lattice vector
outside this subspace. Interestingly, the generalized shortest vector problem can also
be seen as the generalization of the other three lattice problems. That means, there
exist polynomial time reductions from the exact and approximate versions of Svp, Smp,
Sivp, and Cvp to exact and approximate versions of the generalized shortest vector prob-
lem. The reductions work for any so-called tractable norm in particular for all `p-norms,
1 ≤ p ≤ ∞.

Despite these results, it seems that the closest vector problem with respect to arbi-
trary norms is harder than the other lattice problems, since there exist polynomial time
reductions from Svp, Smp, and Sivp to Cvp which work for any norm and preserve the
approximation factor, see [Mic08]. Hence, we take a closer look on the closest vector
problem and consider some kind of a geometric reformulation of the closest vector prob-
lem. We call this problem the lattice membership problem (Lmp): We are given a lattice
L together with a bounded convex set C and the goal is to �nd a lattice vector in this
convex set or to decide that the convex set does not contain a lattice vector. The lattice
membership problem is a generalization of the integer programming feasibility problem
from polyhedra to bounded convex sets. We show a polynomial time reduction from the
closest vector problem to the lattice membership problem, which works for any so-called
enumerable norm, in particular for any `p-norm, 1 ≤ p ≤ ∞, and any polyhedral norm.

At the end of this chapter, we have two starting points for the development of lattice
algorithms, the generalized shortest vector problem and the lattice membership problem
as it is illustrated in Figure 1.1.

Parts of the results presented in this chapter are published in [BN07], [BN09], and
[BN11] as a joint work with J. Blömer.

Chapter 5 In this chapter, we present a probabilistic single exponential time algorithm
that approximates the generalized shortest vector problem with approximation factor

4



Smp

Svp Sivp

Gsvp Cvp

Lmp

Figure 1.1.: Relations among the lattice problems that will be used in this

thesis. Arrows indicate polynomial time reductions preserving the rank of
the lattice and the approximation factor. The arrow from Cvp to Gsvp is
marked dashed since the approximation factor is not exactly preserved by
the reduction. The arrow from Cvp to Lmp is marked dotted since this
reduction works only for the exact version of Cvp.

1 + ε for arbitrary 0 < ε < 3/2. Furthermore, we present an algorithm that solves
for special restricted instances the generalized shortest vector problem exactly. These
instances are characterized by the property that the number of (1 + ε)-approximate so-
lutions is at most single exponential in the dimension.

The algorithms are based on the AKS-sampling technique developed by Ajtai, Kumar,
and Sivakumar in 2001, see [AKS01]. It works for all so-called tractable norms, in par-
ticular for all `p-norms with 1 ≤ p ≤ ∞. The number of arithmetic operations of the
exact algorithm for Gsvp is (2n log2(r))O(1), where n is the dimension of the vector space
and r is an upper bound on the size of the Gsvp-instance. The number of arithmetic
operations of the approximate algorithm for Gsvp depends additionally on the approxi-
mation factor ε and is bounded from above by ((2 + (1/ε))n log2(r))O(1). The algorithm
uses single exponential space but the representation size of each number computed by
the algorithm is polynomial in the representation size of the input.

Using the polynomial time reduction from Chapter 4, we obtain also probabilistic sin-
gle exponential time approximation algorithms for Svp, Smp, Sivp, and Cvp. Since for
every instance of the shortest vector problem, the number of (1 + ε)-approximate solu-
tions is at most (2+ε)n, we can use the exact algorithm for Gsvp to obtain a randomized
single exponential time algorithm that solves Svp for all tractable norms exactly. We
can show the same for the restricted versions of Smp, Sivp, and Cvp, and obtain also
randomized single exponential time algorithms that solve these instances for all tractable
norms exactly.
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1. Introduction

Parts of the results presented in this chapter are published in [BN07] and [BN09] as a
joint work with J. Blömer.

Chapter 6 To obtain algorithms that solve Smp, Sivp, and Cvp in non-Euclidean
norms exactly, we develop algorithms for the lattice membership problem. Since the
lattice membership problem is a generalization of the integer programming feasibility
problem, these algorithms are based on Lenstra's algorithm for integer programming, see
[Len83]. Based on this algorithm, we present a general framework for algorithmic solu-
tions for the lattice membership problem, which works for classes of bounded convex sets
under the assumption that we have access to an algorithm that for each full-dimensional
bounded convex set from this class computes a so-called approximate Löwner-John ellip-
soid. For a full-dimensional bounded convex set C, an approximate Löwner-John ellipsoid
is an ellipsoid which is contained in C and the approximation factor is the factor which
we need to scale the ellipsoid with such that the scaled ellipsoid contains the convex set.
Under the assumption that we are able to compute such an approximate Löwner-John
ellipsoid for polytopes and generalizations of `p-balls, we obtain a deterministic polyno-
mially space bounded algorithm for the lattice membership problem where the convex
sets are polytopes or `p-balls. In Chapter 7, we will show that this assumption is true,
i.e., we will show that there exists algorithms that compute approximate Löwner-John
ellipsoids for polytopes and generalizations of `p-balls.

Using the deterministic polynomially space bounded algorithm for the lattice mem-
bership problem together with the polynomial time reduction from the closest vector
problem to the lattice membership problem, we obtain a deterministic polynomially
space bounded algorithm for the closest vector problem that works for all `p-norms,
1 ≤ p ≤ ∞, and all polyhedral norms. The number of arithmetic operations of this
algorithm is p · log2(r)O(1)n(2+o(1))n if we consider an `p-norm with 1 < p <∞, where n
is the dimension of the lattice and r is an upper bound on the size of the Cvp-instance.
If we consider the closest vector problem with respect to a polyhedral norm, we obtain an
algorithm where the number of arithmetic operations is (s · log2(r))O(1)n(2+o(1))n, where
n and r are de�ned as above and s is the number of constraints de�ning the polytope.

Parts of the results presented in this chapter are published in [BN11] as a joint work
with J. Blömer.

Chapter 7 As mentioned before, to realize the lattice membership algorithm presented
in Chapter 6 for a concrete class of bounded convex sets, we need access to an algorithm
that computes an approximate Löwner-John ellipsoid for the convex sets from this class.
For the class of full-dimensional polytopes, there exists such an algorithm. Extending

a method from Lenstra, Go�n described in 1984 a polynomial time algorithm that com-
putes a 2n-approximate Löwner-John ellipsoid for a full-dimensional polytope in Rn, see
[Gof84]. This algorithm is based on a variant of the ellipsoid method developed by Shor,
Yudin and Nemirovskii.
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The second class we consider are generalizations of `p-balls, so called `p-bodies. These
`p-bodies are full-dimensional bounded convex sets which are de�ned as the image of
an `p-ball under a bijective a�ne transformation intersected with hyperplanes orthog-
onal to the unit vectors. In this chapter, we present an algorithm that computes a
2n-approximate Löwner-John ellipsoid for an `p-body of dimension n. The algorithm
is a concrete realization of a general algorithmic framework that computes for a given
full-dimensional bounded convex set an approximate Löwner-John ellipsoid with approx-
imation factor c · n for some constant c > 1. This algorithmic framework is a variant of
a polynomial time algorithm due to Grötschel, Lovász and Schrijver, which is based on
the ellipsoid method and computes a

√
n(n + 1)-approximate Löwner-John ellipsoid of

a convex body, combined with some ideas of Kochol, Hildebrand, and Köppe. One can
show that the approximation factor achieved by our algorithm is almost optimal. The
number of arithmetic operations of the algorithm is single exponential in the dimension.
The results presented in this chapter complete the description of the algorithms for

the lattice membership problem presented in Chapter 6.

Parts of the results presented in this chapter are published in [BN11] as a joint work
with J. Blömer.
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2. Norms and convex bodies

In this thesis we consider lattices, which are discrete objects in the vector space Rn,
where n ∈ N. Thereby, we focus on certain computational problems related to lattices,
so-called lattice problems. These problems are often de�ned with respect to some norm
on the vector space Rn. Thus, before we give a formal de�nition of lattices and state
their main properties, we give in this chapter a short introduction into convexity as far
as it is needed for the understanding of this thesis.

In particular we show that there is an equivalence between convex bodies symmetric
about the origin and norms: Every norm on Rn can be used to de�ne a convex body in
Rn which is symmetric about the origin. Conversely, every convex body in Rn which is
symmetric about the origin de�nes a norm on Rn. This equivalence enables us to use
results of convex geometry in functional analysis and vice versa.
At the end of this chapter, we consider some special classes of norms respectively

convex bodies in detail: The Euclidean norm and general Euclidean norms together
with ellipsoids, `p-norms and the corresponding `p-balls with 1 ≤ p ≤ ∞, and �nally
polyhedral norms and polytopes.

2.1. Equivalence between norms and convex bodies

symmetric about the origin

We start with some basics about convexity, especially convex sets and convex functions.
Most of the results in this section appear without a proof. They can be found together
with more details on this topic in [BV09], [Web94], and [Roc70].

2.1.1. Basic properties of convex sets and convex functions

Convex sets

Geometrically, a set C ⊆ Rn is convex if for any two vectors x, y ∈ C the line segment
between them lies in C. The set C is strictly convex if for any vectors x, y ∈ C, every
point on the line segment between them lies in the interior of C, int(C).

De�nition 2.1.1. ((Strictly) convex set)
A set C ⊆ Rn is convex if for any two vectors x, y ∈ Rn and 0 ≤ θ ≤ 1, we have

θ · x+ (1− θ) · y ∈ C.

9



2. Norms and convex bodies

The set C is strictly convex if for two vectors x, y ∈ Rn, x 6= y, and 0 < θ < 1 we have
that

θ · x+ (1− θ) · y ∈ int(C).

Important convex sets in Rn are the empty set ∅, any single vector {x} with x ∈ Rn,
and the whole vector space Rn.
Given k vectors x1, . . . , xk ∈ Rn, the convex hull of these vectors is de�ned as the

smallest convex set which contains these vectors. It is denoted by conv(x1, . . . , xk). We
have

conv(x1, . . . , xk) =

{
k∑
i=1

θixi

∣∣∣∣∣θi ≥ 0 satisfying
k∑
i=1

θi = 1

}
.

The dimension of a non-empty a�ne subspace is de�ned as the dimension of the
subspace parallel to it. By convention, the dimension of ∅ is −1. We de�ne the dimension
of a set as the dimension of the smallest a�ne subspace containing it. A convex set which
is full-dimensional and compact is called a convex body.

De�nition 2.1.2. (Convex Body)
A compact convex set C ⊆ Rn with non-empty interior is called a convex body.

There are some basic operations for subsets of Rn that preserve convexity. If we apply
one of these operations to convex sets, the result is also a convex set. These operations
allow the construction of new convex sets from other convex sets.

� The translation of a (convex) set C ⊆ Rn by a vector t ∈ Rn is the set

C + t := {x+ t|x ∈ C}.

If C is (strictly) convex, C + t is (strictly) convex.

� For two (convex) sets C1, C2 ⊆ Rn their Minkowski sum is de�ned as

C1 + C2 := {x+ y|x ∈ C1, y ∈ C2}.

If C1 and C2 are (strictly) convex, their Minkowski sum C1 + C2 is also a (strictly)
convex set.

� For a scalar θ ∈ R we de�ne the scaling of C by the factor θ as the set

θ · C := {θ · x|x ∈ C}.

One can show that if C is (strictly) convex, the set θ · C is also a (strictly) convex
set. We observe that for positive real numbers θ1, θ2 > 0 we have

(θ1 + θ2) · C = θ1 · C + θ2 · C.

10



2.1. Equivalence between norms and convex bodies symmetric about the origin

� Another important observation is that convexity is preserved under intersection. If
C1, C2 ⊆ Rn are (strictly) convex sets, their intersection C1 ∩ C2 is also a (strictly)
convex set.

Furthermore, convexity is preserved by bijective a�ne transformation. If f : Rn → Rn

is a mapping of the form x 7→ Q · x + q, where Q ∈ Rn×n is nonsingular and q ∈ Rn,
then the image f(C) of a convex set C ⊆ Rn under this mapping f is also a convex set.

One of the main characterizing properties of a set is its volume. The following result
is fundamental for the computation of volumes of sets.

Lemma 2.1.3. Let S ⊆ Rn be a measurable set. Let T : Rn → Rn be an a�ne
transformation given by x 7→ Q · x+ q for x ∈ Rn, where Q ∈ Rn×n, q ∈ Rn. Then

voln(T (S)) = | det(Q)| · voln(S).

Particularly, we obtain that for θ > 0 that the set θ · S has volume

voln(θ · S) = θn · voln(S).

Separating and supporting hyperplanes

We now describe an important idea in convexity which has a great in�uence on the al-
gorithmic use of convexity.

Every vector d ∈ Rn\{0} de�nes a family of a�ne hyperplanes in Rn by

Hk,d := {x ∈ Rn|〈d, x〉 = k},

where k ∈ R. The set H0,d = {x ∈ Rn|〈x, d〉 = 0} is called a hyperplane. Every hyper-
plane is a subspace of Rn of dimension n − 1. Here 〈·, ·〉 denotes the Euclidean scalar
product, i.e., 〈x, y〉 =

∑n
i=1 xi · yi for x, y ∈ Rn.

From the analytical point of view, an a�ne hyperplane is the solution set of a non-
trivial linear equation. From the geometrical point of view, an a�ne hyperplane is the
set of all vectors which have a constant scalar product with some given vector d, called
the normal vector. In this case, the constant k de�nes the translation of the hyperplane
from the origin. If x0 ∈ Rn is an arbitrary vector in the a�ne hyperplane Hk,d, i.e., if
〈d, x0〉 = k, then we have Hk,d = {x ∈ Rn|〈d, x− x0〉 = 0}.

Any a�ne hyperplane separates the vector space Rn in two halfspaces. A (closed)
halfspace is the set of all vectors of the form {x ∈ Rn|〈x, d〉 ≤ k} with d ∈ Rn\{0}
and k ∈ R, that means the solution set of a non-trivial linear inequality. Obviously,
halfspaces and (a�ne) hyperplanes are convex sets.
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2. Norms and convex bodies

Hk,d

C2
C1

{x∈R2|〈d,x〉≥k}{x∈R2|〈d,x〉≥k}

Figure 2.1.: Separating hyperplanes. The a�ne hyperplane Hk,d separates the dis-
joint sets C1 and C2.

Halfspaces can be used to give an alternative characterization of convex sets. Every
closed convex set C ⊆ Rn can be represent as the intersection of all halfspaces containing
it,

C =
⋂
{H−|H− ⊆ Rn halfspace with C ⊆ H−}.

If a convex set can be represented as the intersection of �nitely many halfspaces, it is
called a polyhedron.

The following result is fundamental in the idea of convexity. It states that for each
two disjoint convex sets there exists an a�ne hyperplane that separates them, as it is
illustrated in Figure 2.1. A proof of the following theorem can be found for example in
[BV09].

Theorem 2.1.4. (Separating hyperplane theorem)
Let C1, C2 ⊆ Rn be two disjoint convex sets, i.e. C1 ∩ C2 = ∅. Then there exists an a�ne
hyperplane {x ∈ Rn|〈d, x〉 = k} given by a vector d ∈ Rn\{0} and a number k ∈ R which
separates C1 and C2. That means for all x ∈ C1 we have 〈d, x〉 ≤ k and for all x ∈ C2 we
have 〈d, x〉 ≥ k.

If we consider a convex set C ⊆ Rn together with a vector v ∈ Rn which is not
contained in C, then the separating hyperplane theorem guarantees that there exists an
a�ne hyperplane which separates C and v. That means, there exists a vector d ∈ Rn\{0}
such that

〈d, x〉 ≤ 〈d, v〉 for all x ∈ C.

We call such an a�ne hyperplane a separating hyperplane. An a�ne hyperplane Hk,d

strictly separates the vector v from the set C if 〈d, v〉 < k < 〈d, x〉 for all x ∈ C. In
general, it is not guaranteed that for two convex sets, there exists an a�ne hyperplane
that strictly separates them. But in some special cases, for example if one of the convex
sets consists of a single vector and the other convex set is closed, one can show that there
exists an a�ne hyperplane that strictly separates v from C.
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2.1. Equivalence between norms and convex bodies symmetric about the origin

g

(y,g(y))

(x,g(x))

f

(y,f(y))

(x,f(x))

Figure 2.2.: Convex and strictly convex functions. The function f is convex but not
strictly convex. The line segment between the points (x, f(x)) and (y, f(y))
lies on the graph of f . The function g is strictly convex since for all x, y the
line segment between the points (x, f(x)) and (y, f(y)) lies above the graph.

Lemma 2.1.5. Let C ⊆ Rn be a closed convex set and v 6∈ C. Then there exists a vector
d ∈ Rn such that 〈d, v〉 < 〈d, x〉 for all x ∈ C.

If we are given some vector v ∈ Rn on the boundary of some set C ⊆ Rn and there
exists a vector d ∈ Rn\{0} such that 〈d, x〉 ≤ 〈d, v〉 for all x ∈ C, the a�ne hyperplane
H〈d,v〉,d = {x ∈ Rn|〈d, x〉 = 〈d, v〉} is called a supporting hyperplane to the set C at
the vector v. The geometric interpretation of this situation is that the a�ne hyperplane
H〈d,v〉,d is a tangent to the set C at the vector v and the halfspace {x ∈ Rn|〈x, d〉 = 〈d, v〉}
contains C. Based on the separating hyperplane theorem is can be shown that for every
convex set C ⊆ Rn and every vector v on its boundary there exists an a�ne hyperplane
given by a vector d ∈ Rn\{0} which supports the set C at the vector v.

Convex functions

Geometrically, a function f : Rn → R is convex on Rn if for all x, y ∈ Rn the line
segment between (x, f(x)) and (y, f(y)) lies above the graph of f .

De�nition 2.1.6. A function f : Rn → R is convex if its domain, dom(f), is a convex
set and if for all x, y ∈ Rn and θ ∈ R with 0 ≤ θ ≤ 1 we have

f(θ · x+ (1− θ) · y) ≤ θ · f(x) + (1− θ) · f(y).

The function f is strictly convex on Rn if for all x, y ∈ Rn linearly independent and
0 < θ < 1 we have

f(θ · x+ (1− θ) · y) < θ · f(x) + (1− θ) · f(y).

The di�erence between convex functions and strictly convex functions is illustrated in
Figure 2.2.
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2. Norms and convex bodies

x2 + y2 = 1
x3 + y3 = 1

00

2

Figure 2.3.: Quasiconvex functions. The left picture shows the 1-sublevel set of the
function (x, y) 7→ x2 + y2, which is quasiconvex. The right picture shows the
1-sublevel set of the function (x, y) 7→ x3 + y3, which is not quasiconvex.

This shows that we can characterize the convexity of a function geometrically via its
graph. We can formalize this notion as follows: A function f : Rn → R is convex if and
only if its epigraph

epi(f) = {(x, t)|x ∈ Rn with f(x) ≤ t} ⊆ Rn+1

is a convex set.

For a function f : Rn → R and a parameter α ∈ R, an α-sublevel set of f is de�ned
as the set

Cα := {x ∈ dom(f)|f(x) < α}.

For all α ∈ R the α-sublevel set of f is a convex set if f is a convex function. The
converse is not true: For example, the function f : R → R, x 7→ −ex is not convex
although all its sublevel sets are convex. Such a function is called quasiconvex.

De�nition 2.1.7. (Quasiconvex function)
A function f : Rn → R is called quasiconvex, if all α-sublevel sets Cα, α ∈ R are convex
sets.

An example for a function which is not quasiconvex is the function f : Rn → R,
x 7→

∑n
i=1 x

3
i , see Figure 2.3 for an illustration.

For di�erentiable functions f : Rn → R there is another possibility to characterize
them as convex functions using its �rst-order Taylor expansion. For a vector x ∈ Rn the
�rst-order Taylor expansion of f is given by the function y 7→ f(x) + ∇f(x)T (y − x),
where ∇f(x) ∈ Rn denotes the gradient of f at the vector x. The important property of
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f

f(x)+∇f(x)T (y−x)

(x,f(x))

Figure 2.4.: First-order convexity condition. The function f : R→ R is convex and
di�erentiable. It's �rst-order Taylor expansion is a global underestimator of
f .

a convex function is that for all x ∈ dom(f) the �rst-order Taylor expansion is a global
underestimator of the function f and vice versa. This criterion is known as the �rst-order
convexity condition. Its geometric idea is illustrated in Figure 2.4.

Lemma 2.1.8. (First-order convexity condition)
Let f : Rn → R be a di�erentiable function. Then f is convex if and only if its domain
dom(f) is convex and if

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom(f).

Also strict convexity can be characterized using the �rst-order convexity condition. A
di�erentiable function f : Rn → R is strictly convex if and only if its domain dom(f) is
convex and if f(y) > f(x) +∇f(x)T (y − x) for all x, y ∈ dom(f), x 6= y.

Norms

In this thesis, we work with special convex functions called norms. In general, a norm
on Rn is de�ned by a function p : Rn → R, which satis�es certain properties.

De�nition 2.1.9. (Norm)
A function p : Rn → R is called a norm on Rn if it satis�es the following properties:

� (Positivity) For all x ∈ Rn it holds that p(x) ≥ 0. Furthermore, we have p(x) = 0
if and only if x = 0.

� (Absolute Homogenity) We have p(λ · x) = |λ| · p(x) for all x ∈ Rn, λ ∈ R.

� (Subadditivity) We have p(x+ y) ≤ p(x) + p(y) for all x, y ∈ Rn.

The last property is also known as the triangle inequality. It follows directly from the
positivity and the absolute homogenity that every norm is a convex function. Further-
more we observe that a norm is strictly convex if and only if for all x, y ∈ Rn linearly

15
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independent we have ‖x+ y‖ < ‖x‖+ ‖y‖.

The commonly used norm is the Euclidean norm, which is de�ned as

‖ · ‖2 : Rn → R, x 7→

(
n∑
i=1

|xi|2
)1/2

.

Sometimes this norm is also called the `2-norm. For a vector x ∈ Rn its Euclidean norm
is that what is usually associated with the length of a vector. The overall approach of
norms as de�ned in De�nition 2.1.9 generalizes this notion of the length of a vector.

2.1.2. Relation between norms and convex bodies symmetric about the
origin

After this short introduction, we now focus on the relation between norms and convex
bodies symmetric about the origin. As we already mentioned, for every convex function
and every parameter α ∈ R the corresponding α-sublevel set is a convex set. For a norm
‖ · ‖ on Rn we denote this sublevel sets by B(‖·‖)

n (0, α) := {y ∈ Rn|‖y‖ < α}. If we
translate this sets by a vector x ∈ Rn, we obtain

B(‖·‖)
n (x, α) :=

{
y ∈ Rn | ‖y − x‖ < α

}
.

We call this convex set the ball generated by the norm ‖ ·‖ with center x ∈ Rn and radius

α > 0. By B̄(‖·‖)
n (x, α) we denote the corresponding closed ball,

B̄(‖·‖)
n (x, α) :=

{
y ∈ Rn | ‖y − x‖ ≤ α

}
.

The ball B̄(‖·‖)
n (0, 1) is called the unit ball of the norm ‖ · ‖. The ball corresponding to

the Euclidean norm is denoted by B̄(2)
n (x, α). The volume voln(B

(‖·‖)
n (x, α)) of the ball

B
(‖·‖)
n (x, α) satis�es the following condition,

voln(B(‖·‖)
n (x, θ · α)) = θn · voln(B(‖·‖)

n (x, α)) (2.1)

for all θ > 0. This result follows directly from Lemma 2.1.3 and will be used several
times in this thesis.

For every norm the corresponding unit ball is a convex body which is symmetric about
the origin. The main part to prove this is to show that the unit ball of a norm is
compact and has non-empty interior. This is based on the observation that every norm
is a continuous mapping.

Lemma 2.1.10. Let ‖ · ‖ : Rn → R≥0 be a norm on Rn. Then ‖ · ‖ is continuous.

Proof. We consider the standard basis of the vector space Rn given by the vectors
e1, . . . , en ∈ Rn. That means for every vector x ∈ Rn with x = (x1, . . . , xn)T we
have x =

∑n
i=1 xiei. We set

γ := max{‖ei‖|1 ≤ i ≤ n}.
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2.1. Equivalence between norms and convex bodies symmetric about the origin

Then it follows from the subadditivity of the norm that

‖x‖ = ‖
n∑
i=1

xiei‖ ≤
n∑
i=1

|xi| · ‖ei‖ ≤ γ ·
n∑
i=1

|xi|.

For any two vectors x, y ∈ Rn we obtain from the triangle inequality that

‖x‖ = ‖y + (x− y)‖ ≤ ‖y‖+ ‖x− y‖ and
‖y‖ = ‖x+ (y − x)‖ ≤ ‖x‖+ ‖y − x‖.

This shows that

∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ ≤ γ · n∑
i=1

|xi − yi|

from which it follows that ‖ · ‖ is continuous.

Using this, we can show that for every norm the corresponding unit ball is a convex
body.

Proposition 2.1.11. Let ‖ · ‖ be a norm on Rn. Then the set

B̄(‖·‖)
n (0, 1) := {x ∈ Rn| ‖x‖ ≤ 1}.

is a convex body symmetric about the origin.

Proof. To prove the convexity of the set B̄(‖·‖)
n (0, 1) we consider two vectors x, y ∈

B̄
(‖·‖)
n (0, 1) together with a parameter θ satisfying 0 < θ ≤ 1. Since ‖ · ‖ is a norm

on Rn, it holds that

‖θ · x+ (1− θ) · y‖ ≤ |θ| · ‖x‖+ |1− θ| · ‖y‖ ≤ θ + (1− θ) = 1,

where we use that ‖x‖ ≤ 1 and ‖y‖ ≤ 1. The symmetry of the set B̄(‖·‖)
n (0, 1) follows

from the absolute homogenity of the norm. We have ‖x‖ = ‖ − x‖ for all x ∈ Rn. This

shows that B̄(‖·‖)
n (0, 1) is a convex set symmetric about the origin.

It remains to show that the set is compact, i.e., closed and bounded, and that it has
non-empty interior. To show this, we use that every norm is a continuous mapping as
we have seen in Lemma 2.1.10. We consider the closed set{

λ ∈ R | |λ| ≤ 1
}

which is the image of the unit ball B̄(‖·‖)
n (0, 1) under the mapping ‖ · ‖,

‖ · ‖ : B̄(‖·‖)
n (0, 1) 7→

{
λ ∈ R | |λ| ≤ 1

}
.
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That means, the set B̄(‖·‖)
n (0, 1) is the preimage of a closed set under a continuous map-

ping which shows that B̄(‖·‖)
n (0, 1) is also closed.

To prove that B̄(‖·‖)
n (0, 1) is bounded we consider the unit sphere of the Euclidean norm,

Sn−1 :=
{
x ∈ Rn| ‖x‖2 = 1

}
.

Obviously, we have ‖x‖ > 0 for all x ∈ Sn−1. Since ‖ · ‖ is continuous, there exists a

δ > 0 such that ‖x‖ > δ for all x ∈ Sn−1. Hence, it follows that for all x ∈ B̄(‖·‖)
n (0, 1)

we have

1

‖x‖2
≥ ‖x‖
‖x‖2

=
∥∥ x

‖x‖2
∥∥ > δ,

where the last inequality follows from x/‖x‖2 ∈ Sn−1. This shows that ‖x‖2 < 1/δ for

all x ∈ B̄(‖·‖)
n (0, 1) and that B̄(‖·‖)

n (0, 1) is compact.

Finally, we show that the origin is an interior point of the unit ball B̄(‖·‖)
n (0, 1). Since

‖ · ‖ is continuous, there exists a β > 0 such that ‖x‖ ≤ β for all x ∈ Sn−1. Hence, for
all x ∈ Rn with ‖x‖2 ≤ 1/β we obtain that

‖x‖ =
‖x‖
‖x‖2

· ‖x‖2 <
∥∥ x

‖x‖2
∥∥ · 1

β
≤ β · 1

β
= 1.

The last inequality is due to the fact that x/‖x‖2 ∈ Sn−1.

To show that every convex body symmetric about the origin de�nes a norm, we use
the so-called Minkowski function of a set. For a given set C ⊆ Rn and a vector x ∈ Rn

the value of the Minkowski function of C at x is that minimal positive real number θ by
which we need to scale the set such that x is contained in the set θ · C. The Minkowski
function of a convex body is illustrated in Figure 2.5.

De�nition 2.1.12. (Minkowski function)
Let C ⊆ Rn be a set. The Minkowski function of C is de�ned as the function

FC : Rn → [0,∞], x 7→ inf{θ > 0|x ∈ θC}.

If the set C is closed, FC(x) is the positive real number θ such that x is contained on
the boundary of θ · x. Additionally, we observe that a vector x ∈ θ · C if and only if the
vector θ−1x ∈ C.

Proposition 2.1.13. Let C ( Rn be a convex body symmetric about the origin. Then
the Minkowski function

FC : Rn → R, x 7→ inf{ρ > 0|x ∈ ρ · C}

is a norm on Rn.

Often, the norm de�ned by a convex body C symmetric about the origin is denoted by
‖ · ‖C .
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2.1. Equivalence between norms and convex bodies symmetric about the origin

x

‖x‖E= 3
2

E

Figure 2.5.: The Minkowski function of convex body. If we scale the convex set E
by the factor 3/2, the vector x lies on its boundary.

Proof. Since C is a convex body, the Minkowski function FC is well-de�ned. Particularly,
since C is full-dimensional and closed, we have FC(x) <∞ for all x ∈ Rn. It remains to
show that FC satis�es the norm properties. The positivity and the absolute homogenity
follow directly from the de�nition of FC . To prove the subadditivity, we consider two
vectors x, y ∈ Rn with FC(x) = ρ1 and FC(y) = ρ2. Without loss of generality, we assume
that ρ1, ρ2 > 0.
For all ε > 0 it holds that x ∈ (ρ1 + ε) · C and that y ∈ (ρ2 + ε) · C. Since ρ1, ρ2 > 0, it
follows from the convexity of C that

x+ y ∈ (ρ1 + ρ2 + 2ε) · C.

Since ε > 0 arbitrary, this shows that

FC(x+ y) ≤ ρ1 + ρ2 = FC(x) + FC(y).

Proposition 2.1.11 and Proposition 2.1.13 show the equivalence between norms and
convex bodies symmetric about the origin.

2.1.3. Algorithmic aspects of norms and convex bodies

Since early all algorithms presented in this thesis involve norms or convex sets, we now
consider some algorithmic aspects of norms and convex bodies.
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2. Norms and convex bodies

If we consider computational statements, we always assume that all numbers we are
dealing with are rationals. The size of a rational number α = p/q with gcd(p, q) = 1 is
de�ned as the maximum of the numerator and denominator in absolute values,

size(α) := max{|p|, |q|}.

By the bit size or the representation size of a number α, we mean log2(size(α)). The size
of a matrix or respectively a vector is the maximum of the size of its coordinates.

If we want to use norms in an algorithmic surrounding, we need some more require-
ments on the norm. First of all, we need to be able to compute the norm of a given
vector e�ciently. We call a norm which satis�es this property e�ciently computable.

De�nition 2.1.14. Let ‖ · ‖ be a norm on Rn. We call the norm e�ciently computable
if the norm function is polynomial time computable, i.e., if there exists an algorithm
that given a vector v ∈ Qn and an accuracy parameter δ outputs a number in the in-
terval [‖v‖ ± δ] and the number of arithmetic operations of the algorithm is at most
(n · log2(size(v)) · log2(1/δ))O(1).

For the sake of simplicity, we will neglect the implementation detail of this de�nition
in the following. We will assume that for an e�ciently computable norm there exists
an algorithm that given a vector v ∈ Qn outputs ‖v‖ and the number of arithmetic
operations of the algorithm is (n · log2(size(v)))O(1).

Often, it is not su�cient that the norm function is e�ciently computable. Additionally,
we need some guarantees that the unit ball of the norm is in some way well-bounded. In
this case we call a norm tractable. The following de�nition of a tractable norm is due to
Goldreich and Goldwasser, see [GG00].

De�nition 2.1.15. Let ‖ · ‖ be a norm on Rn. We call the norm tractable if it satis�es
the following requirements:

� The norm function is e�ciently computable.

� There exists a polynomial c ∈ Z[X] such that for all x ∈ Rn

2−c(n)‖x‖2 ≤ ‖x‖ ≤ 2c(n)‖x‖2.

We will later see that all standard norms, especially the so-called `p-norms are tractable
norms.

If we require in the de�nition of a tractable norm that there exists a polynomial
c ∈ Z[X] such that for all x ∈ Rn we have 2−c(n)‖x‖2 ≤ ‖x‖ ≤ 2c(n)‖x‖2, then this is
re�ected in the fact that we often consider a family of norms. That means, we consider
a sequence Ni, i ∈ N where Ni : Ri → R is a norm on Ri. Of course, if we consider a
�xed norm on Rn with n �xed, then c is always a constant.
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2.1. Equivalence between norms and convex bodies symmetric about the origin

The geometric interpretation of the second requirement of De�nition 2.1.15 is that the
unit ball B̄(‖·‖)

n (0, 1) de�ned by the norm ‖·‖ contains a Euclidean ball with radius 2−c(n)

centered at the origin and is contained in a Euclidean ball with radius 2c(n) centered at
the origin,

B̄(2)
n (0, 2−c(n)) ⊆ B̄(‖·‖)

n (0, 1) ⊆ B̄(2)
n (0, 2c(n)).

In this case we call the ball B̄(‖·‖)
n (0, 1) well-bounded.

De�nition 2.1.16. (Well-bounded convex set)
A convex set C is called well-bounded if the following information about C is given ex-
plicitly:

� an integer n ∈ N such that C ⊆ Rn,

� a positive rational number R such that C ⊆ B̄(2)
n (0, R), and

� a positive rational number r such that C contains a Euclidean ball with radius r.
The center of this ball need not be known explicitly.

In the following, whenever we say that a convex set C is well-bounded we mean that
we know some parameter n ∈ N such that C ⊆ Rn, and that we are able to determine
the numbers r and R explicitly from the shape of the convex body.

We will often assume that we are given the convex set in form of an oracle. That
means, we have access to some algorithm which provides us some information about the
convex set. For example the algorithm could be a �membership algorithm� that decides
for a given vector whether it is contained in the convex set or not.
Mainly, we distinguish in the following between two di�erent types of oracles.

De�nition 2.1.17. (Membership oracle of a convex set)
A membership oracle of a convex set C ⊆ Rn decides for a given vector x ∈ Rn whether
x is contained in C or not.

Obviously, if a norm ‖ · ‖ on Rn is e�ciently computable then we are able to realize

an e�cient membership oracle for the balls B(‖·‖)
n (x, α) with x ∈ Rn and α > 0.

The second oracle also decides whether a given vector is contained in the convex set
but it provides additionally some kind of a certi�cate if the vector is not contained in the
convex set. This certi�cate is given in form of an a�ne hyperplane that separates this
vector from the convex set.

De�nition 2.1.18. (Separation oracle of a convex set)
A separation oracle of a convex set C ⊆ Rn decides for a given vector x ∈ Rn whether x
is contained in C or not. If x 6∈ C, the oracle outputs an a�ne hyperplane that separates
x from C.
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2. Norms and convex bodies

In general, we cannot realize an e�cient separation oracle for balls B(‖·‖)
n (x, α) with

x ∈ Rn, α > 0 for some e�ciently computable norm ‖ · ‖ on Rn. But one can show that
for every e�ciently computable norm we are able to realize an e�cient separation oracle
for the corresponding balls if we are able to compute e�ciently a so-called subgradient
of the norm, see [Lov86]. In Chapter 7, we will do this for generalization of `p-norms.

2.2. Special convex bodies and the corresponding norms

In the rest of this chapter, we consider some special classes of convex bodies and the
corresponding norms that will be considered throughout this thesis. We start with the
Euclidean norm and its generalization. The corresponding convex bodies of general
Euclidean norms are ellipsoids.

2.2.1. Euclidean norms and ellipsoids

The Euclidean norm The most frequently used norm in Rn is the Euclidean norm

‖ · ‖2 : Rn → R, x 7→
(∑n

i=1 |xi|2
)1/2

. The corresponding unit ball of the Euclidean
norm is the Euclidean unit ball

B̄(2)
n (0, 1) = {x ∈ Rn|‖x‖2 ≤ 1} = {x ∈ Rn|xTx ≤ 1}.

The surface of this ball is denoted by Sn−1 := Sn−1(1). We de�ne

Sn−1(α) := {x ∈ Rn| ‖x‖2 = α}.

The volume of the Euclidean unit ball is

voln
(
B(2)
n (0, 1)

)
=

πn/2

Γ
(
1 + n

2

) ,
where Γ(·) denotes the Gamma function, see Section A.0.3 in the Appendix.

The important property of the Euclidean norm is that it is based on an inner product.
An inner product on Rn ×Rn is a symmetric bilinear mapping s : Rn ×Rn → R which
satis�es the following properties:

� s(x, x) ≥ 0 for all x ∈ Rn and s(x, x) = 0 if and only if x = 0,

� s(θ · x, y) = θ · s(x, y) for all x, y ∈ Rn and θ ∈ R,

� s(x+ y, z) = s(x, z) + s(y, z) for all x, y, z ∈ Rn, and

� s(x, y) = s(y, x) for all x, y ∈ Rn.

Based on an inner product s : Rn ×Rn → R we can de�ne a norm on Rn by

Rn → R, x 7→
√
s(x, x).
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De�nition 2.2.1. (Norm induced by an inner product)
A norm ‖ · ‖ : Rn → R is induced by an inner product if there exists an inner product
s : Rn ×Rn → R such that ‖x‖ =

√
s(x, x) for all x ∈ Rn.

For the Euclidean norm, we have ‖x‖2 =
√
〈x, x〉 for all x ∈ Rn, where 〈·, ·〉 is de�ned

as the scalar product

〈x, y〉 :=
n∑
i=1

xi · yi = xT y

for x, y ∈ Rn. In the following, we will use both representations of the scalar product,
〈x, y〉 as well as xT y, depending on what is more suitable in the context.

Lemma 2.2.2. (Cauchy-Schwarz-inequality)
For x, y ∈ Rn we have

|〈x, y〉| ≤ ‖x‖2 · ‖y‖2.

The Euclidean norm on Rn induces a matrix norm on Rn×n, i.e., a norm Rn×n → R.
For a matrix A ∈ Rn×n, we set

‖A‖2 := max

{
‖Ax‖2
‖x‖2

∣∣∣ x ∈ Rn\{0}
}
.

Obviously, this mapping de�nes a norm on Rn×n, see for example [SK09]. The matrix
norm ‖ · ‖2 induced by the Euclidean norm is called the spectral norm of the matrix A.
The Euclidean norm and the spectral norm are compatible, that means we have

‖Ax‖2 ≤ ‖A‖2 · ‖x‖2

for all A ∈ Rn×n and x ∈ Rn. Using symmetric positive de�nite matrices, we can develop
an alternative characterization of the spectral norm of a matrix.

De�nition 2.2.3. (Symmetric positive de�nite matrices)
A matrix D ∈ Rn×n is called symmetric positive de�nite if it is symmetric and if xTDx >
0 for all x ∈ Rn\{0}.

Every symmetric positive de�nite matrix is nonsingular and the inverse matrix is also
symmetric positive de�nite. Furthermore, all eigenvalues of a symmetric positive de�-
nite matrix are positive real numbers and for every symmetric positive de�nite matrix
D ∈ Rn×n there exists a decomposition D = QT · Q, where Q ∈ Rn×n. One can show
that there exists a uniquely determined symmetric positive de�nite matrix X such that
D = XT ·X = X ·X. We call X the square root of D, denoted by D1/2, see [HJ85].

Based on the observation that the Euclidean norm is induced by an inner product
we can show that spectral norm ‖A‖2 of a matrix A is the square root of the largest
eigenvalue of the symmetric positive de�nite matrix ATA. For A ∈ Rn×n and x ∈ Rn,
we have ‖Ax‖2 =

√
xTATAx and the matrix ATA is symmetric positive de�nite.
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2. Norms and convex bodies

Lemma 2.2.4. Let D ∈ Rn×n be a symmetric positive de�nite matrix. Then we have

max

{
xTDx

xTx

∣∣∣ x ∈ Rn\{0}
}

=
√
ηn(D),

where ηn(D) is the largest eigenvalue of the matrix D.

Proof. Since the matrix D is symmetric positive de�nite, there exists an orthogonal
matrix Q ∈ Rn×n such that

D = Q · Λ ·QT

where Λ ∈ Rn×n is a diagonal matrix which consists of the real positive eigenvalues
η1(D), . . . , ηn(D) of the matrix D. This result is known as the spectral theorem, see e. g.
[Str06]. Thus, for every vector x ∈ Rn we obtain that

xTDx = xTQ · Λ ·QTx = (QTx)Λ(QTx).

If we set y := QTx ∈ Rn, we have

xTDx =
n∑
i=1

ηi(D) · y2
i .

Without loss of generality, we assume that ηn(D) is the largest eigenvalue of the matrix
D,

xTDx =
n∑
i=1

ηi(D) · y2
i ≤ ηn(D)

n∑
i=1

y2
i .

By de�nition, we have
n∑
i=1

y2
i = yT · y = xTQQTx = xTx

and it follows that

xTDx ≤ ηn(D) · xTx.

This shows that for all x ∈ Rn\{0} we have

xTDx

xTx
≤ ηn(D).

Furthermore, the vector x = Q · en ∈ Rn satis�es

xTDx

xTx
=
eTnQ

TDQen
eTnQ

TQen
= eTnΛen = ηn(D),

which shows that

max

{√
xTDx

xTx

∣∣∣ x ∈ Rn\{0}

}
=
√
ηn(D).
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2.2. Special convex bodies and the corresponding norms

Using this result with D = AT · A, it follows that the spectral norm of the matrix A
is the square root of the largest eigenvalue of the matrix ATA,

‖A‖2 = ηn(ATA).

If A is symmetric, we obtain ‖A‖2 = ηn(A). If A is nonsingular, the spectral norm of the
inverse matrix A−1 is the square root of the largest eigenvalue of (AT )−1A−1 = (AAT )−1.
Since the eigenvalues of (AAT )−1 are the inverse of the eigenvalues of the matrix AAT ,
the spectral norm of A−1 is the inverse of the smallest eigenvalue of the matrix AAT ,
‖A−1‖2 = (η1(AAT ))−1. The matrices ATA and AAT are similar since A−1(AAT )A =
ATA, which means that they have the same eigenvalues. From this, it follows that

‖A−1‖2 =
1√

η1(ATA)
,

where η1(ATA) is the smallest eigenvalue of ATA. Since ATA is symmetric positive
de�nite, we have η1(ATA) > 0.

General Euclidean norms Using symmetric positive de�nite matrices, we can de�ne
generalizations of the Euclidean unit ball. The corresponding norms are also based on
an inner product.

For a symmetric positive de�nite matrix D ∈ Rn×n we de�ne the mapping

Rn ×Rn → R, (x, y) 7→ xTDy.

Since D is positive de�nite, we have xTDx > 0 for all x ∈ Rn\{0} and xTDx = 0 for
x = 0. Obviously, this mapping satis�es also the other required properties of an inner
product. This shows that the mapping

‖ · ‖D : Rn → R, x 7→
√
xTD−1x

de�nes a norm on Rn. Norms of this type are called general Euclidean norms. At a �rst
glance, it is not clear why we use here the matrix D−1 in the de�nition instead of the
matrix D. But later, we will see that many properties of this norm and the corresponding
convex body can be deduced directly from the properties of the matrix D.

For general Euclidean norms we can generalize the Cauchy-Schwarz inequality pre-
sented in Lemma 2.2.2.

Lemma 2.2.5. (Generalized Cauchy-Schwarz inequality)
Let D ∈ Rn×n be a symmetric positive de�nite matrix. For all x, y ∈ Rn we have that

|xT y| ≤
√
xTD−1x ·

√
yTDy.

25



2. Norms and convex bodies

Proof. Since A is symmetric positive de�nite, there exists a uniquely determined square
root D1/2. Using the Cauchy-Schwarz inequality, see Lemma 2.2.2, we obtain

|xT y| = |xTD−1/2D1/2yT |
= |〈D−1/2x,D1/2y〉|
≤ ‖D−1/2x‖2 · ‖D1/2y‖2.

By de�nition of the Euclidean norm, the statement follows

|xT y| ≤
√

(D−1/2x)T (D−1/2x) ·
√

(D1/2y)T (D1/2y)

≤
√
xTD−1x ·

√
yTD−1y.

Sometimes general Euclidean norms are also called ellipsoidal norms due to the fact
that the corresponding unit balls of an ellipsoidal norm are ellipsoids centered at the
origin.

De�nition 2.2.6. (Ellipsoids)
A set E ⊆ Rn is called an ellipsoid if there exists a vector c ∈ Rn and a symmetric
positive de�nite matrix D ∈ Rn×n such that

E =
{
x ∈ Rn| (x− c)TD−1(x− c) ≤ 1

}
.

The vector c is called the center of the ellipsoid and we denote by E(D, c) the ellipsoid
given by the matrix D and the vector c.

The decomposition of a symmetric positive de�nite matrix D = QT ·Q can be used to
de�ne a bijective a�ne transformation that maps the Euclidean unit ball to the ellipsoid
E(D, c), see Figure 2.6 for an illustration. This leads to an alternative characterization
of an ellipsoid.

Lemma 2.2.7. A set E ⊆ Rn is an ellipsoid E = E(D, c) for a symmetric positive
de�nite matrix D ∈ Rn×n and a vector c ∈ Rn if and only if E is the a�ne image of the
Euclidean unit ball, i.e.,

E = QT · B̄(2)
n (0, 1) + c = QT B̄(2)

n ((QT )−1c, 1),

where D = QT ·Q.

Proof. We consider a matrix Q such that D = QT · Q. A vector x ∈ Rn is contained
in the ellipsoid E = E(D, c) if and only if (x − c)TD−1(x − c) ≤ 1. By straightforward
calculation, we see that

(x− c)TD−1(x− c) = (x− c)TQ−1(QT )−1(x− c)

=
(
(QT )−1(x− c)

)T (
(QT )−1(x− c)

)
.

This shows that the vector x ∈ Rn is contained in E(D, c) if and only if ‖(QT )−1(x −
c)‖2 ≤ 1 or equivalently if x is of the form x = QT y + c, where y ∈ B̄(2)

n (0, 1).
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B̄
(2)
n (0,1)

E(D,c)c

0
QT x+c

Figure 2.6.: Characterization of an ellipsoid. The ellipsoid E(D, c) is the image of

the Euclidean unit ball B̄(2)
n (0, 1) under the a�ne bijective transformation

x 7→ QTx+ c, where D = QT ·Q.

This relation between ellipsoids and the Euclidean unit ball is fundamental in the
understanding of ellipsoids. Nearly every property of an ellipsoid can be deduced from
the corresponding property of the Euclidean unit ball by applying the transformation
QT . For example, we are able to compute the volume of an ellipsoid.

Lemma 2.2.8. Let E(D, c) ⊆ Rn be an ellipsoid. The volume of this ellipsoid is

voln(E(D, c)) =
√

det(D) · voln(B(2)
n (0, 1)).

Proof. Let D = QT · Q be an arbitrary decomposition of the matrix D de�ning the
ellipsoid. Then the ellipsoid E(D, c) is the image of the Euclidean unit ball under the
bijective a�ne transformation x 7→ QTx + c, see Lemma 2.2.7. Hence, the statement
follows directly from Lemma 2.1.3 using that

|det(QT )| =
√

det(QT )2 =
√

det(Q) · det(QT ) =
√

det(D).

Furthermore, it follows that the relation between the volumes of two ellipsoids E1, E2 ⊆
Rn is invariant under a�ne bijective transformation, i.e.,

voln(E1)

voln(E2)
=

voln(T (E1))

voln(T (E2))
, (2.2)

where T : Rn → Rn is a bijective a�ne transformation.

Since the decomposition of a symmetric positive de�nite matrix D in D = QT · Q
is not uniquely determined, there exists many transformations that map the Euclidean
unit ball to the same ellipsoid E(D, c). Each decomposition D = QT ·Q of the matrix D
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de�nes a di�erent transformation. However, the decomposition of a symmetric positive
de�nite matrix is unique except for multiplication with an orthogonal matrix O, i.e., a
matrix satisfying OT ·O = In, where In is the identity matrix in Rn. Geometrically, this
multiplication with an orthogonal matrix rotates the Euclidean unit ball before we apply
the transformation. That means, the bijective a�ne transformation B̄(2)

n (0, 1)→ E(D, c)
is unique up to rotation of the Euclidean unit ball.

In the following, we will sometimes need a bijective a�ne transformation τ : B̄
(2)
n (0, 1)→

E(D, c) satisfying an additional property: Given two vectors e ∈ B̄
(2)
n (0, 1) and d ∈

E(D, c) with eT · e = (d − c)TD−1(d − c) we are searching for a transformation τ such
that τ(e) = d. Such a transformation can be found as follows: We start with an arbitrary
bijective a�ne transformation

τ : B̄(2)
n (0, 1)→ E(D, c), x 7→ QTx+ c

and compute the preimage of the vector d under this transformation,

τ−1(d) = (QT )−1(d− c) ∈ B̄(2)
n (0, 1).

Now we compute an orthogonal matrix O ∈ Rn×n such that

(QT )−1(d− c) = O · e.

Such an orthogonal matrix exists since the vectors (QT )−1(d − c) and e have the same
length,

‖(QT )−1(d− c)‖22 = 〈(QT )−1(d− c), (QT )−1(d− c)〉
= (d− c)TQ−1(QT )−1(d− c)
= (d− c)TD−1(d− c)
= eT · e = ‖e‖22.

Then, the bijective a�ne transformation

τ̄ : x 7→ (OT ·Q)Tx+ c = QTOx+ c

maps the vector e ∈ B̄(2)
n (0, 1) to the vector d ∈ E(D, c),

QTOe+ c = QT (QT )−1(d− c) + c = d.

This proves the following statement.

Lemma 2.2.9. Let E(D, c) ⊆ Rn an ellipsoid given by D ∈ Rn×n symmetric positive
de�nite and c ∈ Rn. Let e, d ∈ Rn satisfying

eT e = (d− c)TD−1(d− c) ≤ 1.

Then there exists a bijective a�ne transformation τ̄ : B̄
(2)
n (0, 1) → E(D, c) satisfying

τ̄(e) = d.
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Obviously, every norm de�ned by an ellipsoid E(D, 0) is e�ciently computable. Fur-
thermore, we can explicitly determine the radius of a circumscribed and of an inscribed
Euclidean ball. The radius of the circumscribed Euclidean ball is given by the square
root of the largest eigenvalue of the matrix D de�ning the ellipsoid, whereas the radius
of the inscribed Euclidean ball is the square root of the smallest eigenvalue of D.

Lemma 2.2.10. Let E(D, c) ⊆ Rn be an ellipsoid given by D ∈ Rn×n symmetric positive
de�nite and c ∈ Rn. Then

B̄(2)
n

(
c,
√
η1(D)

)
⊆ E(D, c) ⊆ B̄(2)

n

(
c,
√
ηn(D)

)
,

where η1(D) denotes the smallest and ηn(D) the largest eigenvalue of D.

Since D is symmetric positive de�nite all eigenvalues of D are real and positive, i.e.,
the radii of the Euclidean balls are well-de�ned. As we have seen before, ηn(D) is the
spectral norm of the matrix D and η1(D) is the spectral norm of the inverse matrix D−1.
Hence, Lemma 2.2.10 shows that the ellipsoid E(D, c) is contained in a Euclidean ball
with radius ‖D‖2 and contains a Euclidean ball with radius ‖D−1‖2.

Proof. Without loss of generality, we assume that c = 0. Since D ∈ Rn×n is symmetric
positive de�nite, for all x ∈ Rn\{0} we have that

xTD−1x ≤ ηn(D−1) · xTx

as we have already seen in Lemma 2.2.4. Since the largest eigenvalue of the matrix D−1

is the inverse of the smallest eigenvalue of the matrix D, ηn(D−1) = 1/η1(D), we have

xTD−1x ≤ 1

η1(D)
xTx for all x ∈ Rn\{0}.

This shows that every vector x ∈ B̄(2)
n (0,

√
η1(D)) satis�es xTD−1x ≤ 1, since xTx ≤

η1(D). This shows that x ∈ E(D, 0).
With the same argumentation as in the proof of Lemma 2.2.4 we can show that

xTD−1x ≥ η1(D−1)xTx

for all x ∈ Rn. Again using that η1(D−1) = 1/ηn(D), we obtain that

xTD−1x ≥ 1

ηn(D)
xTx for all x ∈ Rn\{0},

from which it follows that xTx ≤ ηn(D) for x ∈ E(D, 0).

A fundamental observation is that every full-dimensional bounded convex set can be
approximated using an ellipsoid. By the approximation of a bounded convex set C by an
ellipsoid E we understand an ellipsoid which is contained in the convex set, E ⊆ C. The
approximation factor is that factor, which we need to scale the ellipsoid with such that
the scaled ellipsoid contains the convex set.
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2. Norms and convex bodies

By scaling an ellipsoid with a positive factor r > 0 we understand the ellipsoid obtained
from E by scaling it from its center by the factor r. We denote this as r ? E. Formally,
if E = E(D, c), then

r ? E := r · E(D, 0) + c.

Lemma 2.2.11. Let E = E(D, c) ⊆ Rn be an ellipsoid and r > 0. Then,

r ? E = E(r2 ·D, c).

Proof. Without loss of generality we assume that c = 0. A vector x ∈ Rn is contained in
the ellipsoid r ? E if and only if x ∈ r · E(D, 0), i.e., if there exists a vector y ∈ E(D, 0)
such that x = r · y. By de�nition of an ellipsoid, the vector y satis�es yTD−1y ≤ 1.
Using the following rearrangements

yTD−1y =
(x
r

)T
D−1

(x
r

)
= xT ·

(
1

r2
D−1

)
· x = xT ·

(
r2D

)−1
x,

we get that the vector x is contained in r ? E if and only if xT (r2D)−1x ≤ 1.

An ellipsoid which approximates a bounded convex set is called an approximate Löwner-
John ellipsoid.

De�nition 2.2.12. (Approximate Löwner-John ellipsoid)
Let C ⊆ Rn be a full-dimensional bounded convex set and 0 < γ < 1. An ellipsoid E
satisfying E ⊆ C ⊆ (1/γ) ? E is called 1/γ-approximate Löwner-John ellipsoid of C. We
call 1/γ the approximation factor (of the Löwner-John ellipsoid).

If we consider a γ-approximate Löwner-John ellipsoid of a convex set C where the
approximation factor γ is optimal, we call this ellipsoid the Löwner-John ellipsoid. Here,
optimal means that for all γ′ < γ there does not exist an ellipsoid E′ satisfying E′ ⊆ C ⊆
(1/γ′) ? E′.
A fundamental result is that every full-dimensional bounded convex set in Rn can be
approximated by an ellipsoid with approximation factor of at most n. For symmetric
convex sets, the approximation factor can be improved to

√
n. Results of this type have

been proved independently by several persons, see [DGK63]. The �rst result of this type
is attributed to Löwner. The following theorem is due to John, see [Joh48]. A proof of
it can be found in [Bal97].

Theorem 2.2.13. (John's Lemma)
Let C ⊆ Rn be a full-dimensional closed, bounded convex set. Then there exists an
ellipsoid E ⊆ Rn such that

E ⊆ C ⊆ n ? E.

If C is symmetric about the origin, the approximation factor can be improved by the factor√
n, i.e., in this case there exists an ellipsoid E satisfying

E ⊆ C ⊆
√
n ? E.
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2.2. Special convex bodies and the corresponding norms

Figure 2.7.: John's lemma. On the left, we see that for a regular simplex in R2 the
ratio between a inscribed and circumscribed circle is exactly 2 and that it
is the best possible. On the right, we consider a symmetric cube where the
ratio between the inscribed and circumscribed circle is exactly

√
2.

In general, these approximation factors are best possible. An example for the optimal-
ity are the regular simplex or the cube, see Figure 2.7.

A Löwner-John ellipsoid of a bounded convex set can also be characterized as follows:
The inscribed ellipsoid E is the ellipsoid contained in E with maximal volume, also called
maximum volume ellipsoid. Analogously, the circumscribed ellipsoid γ ?E is the ellipsoid
with minimal volume that contains E, also called the minimum volume ellipsoid. For
more details about John's lemma and its consequences, see [Mat02], [Bar02] or [Bal97].

Unfortunately, the proof of John's lemma is not constructive. In general, the compu-
tation of an approximate Löwner-John ellipsoid is hard. For example, for a given �nite
set of points it is NP-hard to compute the smallest enclosing ellipsoid if the dimension is
part of the input, see [Mat02].

We observe that if we are given a γ-approximate Löwner-John ellipsoid for a full-
dimensional bounded convex set, we are able to compute an inscribed and circumscribed
Euclidean ball for the convex set, i.e., the convex set is well-bounded.

Lemma 2.2.14. Let C ⊆ Rn be a full-dimensional bounded convex set and E(D, c) ⊆ Rn

be a γ-approximate Löwner-John ellipsoid of C for some parameter γ ≥ 1. Then

B̄(2)
n (c,

√
η1(D)) ⊆ C ⊆ B̄(2)

n (c, γ ·
√
ηn(D)),

where η1(D) is the smallest and ηn(D) is the largest eigenvalue of the matrix D.

The proof of this lemma follows directly from Lemma 2.2.10 together with the fact
that E(D, c) ⊆ C ⊆ E(γ2 ·D, c).
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0

B̄
(1)
2 (0,1)

B̄
(∞)
2 (0,1)

B̄
(3)
n (0,1)

B̄
(2)
n (0,1)

Figure 2.8.: Unit balls of di�erent norms. The picture shows the unit ball of the
`1-norm, the Euclidean norm, the `3-norm, and the `∞-norm.

2.2.2. `p-norms and `p-balls with 1 ≤ p ≤ ∞

The mostly used non-Euclidean norms are arbitrary `p-norms with 1 ≤ p ≤ ∞. The
`p-norm of a vector x ∈ Rn is de�ned by

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

for 1 ≤ p <∞ and

‖x‖∞ := max{|xi||1 ≤ i ≤ n}.

For p = 2 we obtain the Euclidean norm. The balls generated by an `p-norm with

1 ≤ p ≤ ∞ are called `p-balls. We denote them by B(p)
n (x, α) or B̄(p)

n (x, α) respectively.
The unit balls of some `p-norms are illustrated in Figure 2.8.

It follows immediately from its de�nition that the function ‖ · ‖p satis�es the �rst
two properties of a norm, positivity and absolute homogenity. The proof of the third
property, the subadditivity, is more substantial. It is based on Hölder's inequality.

Proposition 2.2.15. (Hölder's inequality)
Let 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1. We set 1/∞ = 0. For all x, y ∈ Rn\{0} we have

|〈x, y〉| ≤ ‖x‖p · ‖y‖q.

The inequality is ful�lled with equality if and only if there exists θ ∈ R such that

θ · x1/p
k = y

1/q
k for all 1 ≤ k ≤ n.
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2.2. Special convex bodies and the corresponding norms

Originally, this inequality was obtained by Rogers in 1888. One year later, in 1889, it
was derived in another way by Hölder. The form as it is presented above is due to Riesz,
who also recognized its fundamental role. Thus, the inequality might be better called
Rogers-Hölder-Riesz inequality. For a proof of the inequality see for example [Ste04].
Based on Hölder's inequality we can prove the following statement.

Proposition 2.2.16. (Minkowski's Inequality)
Let x, y ∈ Rn and p ≥ 1. Then it holds that

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Moreover, if p > 1 and x 6= 0, the inequality is ful�lled with equality if and only if there
exists a constant θ ∈ R such that |xk| = |θ| · |yk| for all 1 ≤ k ≤ n and xk and yk have
the same sign for each 1 ≤ k ≤ n.

The proof of Minkowski's inequality follows from Hölder's inequality and can also be
found in [Ste04]. In particular, Minkowski's inequality shows that the `p-norms with
1 < p <∞ are strictly convex, i.e., for x, y ∈ Rn\{0}, x 6= y it holds that

‖x+ y‖p < ‖x‖p + ‖y‖p

or equivalently that

‖θx+ (1− θ)y‖p < θ‖x‖p + (1− θ)‖y‖p

for all 0 < θ < 1. In contrast, the `1-norm and the `∞-norm are not strictly convex.
Geometrically, we see this since the boundaries of their unit balls contain straight lines.
Analytically, we have for the `∞-norm that

∥∥1

2

((
1
1

)
+

(
−1
1

))∥∥
∞ = 1 =

1

2

∥∥( 1
1

)∥∥
∞ +

1

2

∥∥( −1
1

)∥∥
∞

respectively. For the `1-norm, we obtain a similar result if we consider the vectors (1, 0)T

and (0, 1)T .

We observe that for p < 1, the function Rn → R, x 7→ (
∑n

i=1 |xi|p)
1/p does not de�ne

a norm since this function is not convex and does not satisfy the triangle inequality.

All `p-norms with 1 ≤ p ≤ ∞ are e�ciently computable. Furthermore, we obtain as a
special case of Hölder's inequality a relation between the Euclidean norm and arbitrary
`p-norms: For all x ∈ Rn we have

‖x‖2 ≤ ‖x‖p ≤ n1/p−1/2‖x‖2

if 1 ≤ p ≤ 2 and

n1/p−1/2‖x‖2 ≤ ‖x‖p ≤ ‖x‖2
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2. Norms and convex bodies

if 2 < p <∞. For the `∞-norm it holds that

n−1/2‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2.

This shows that all `p-norms are tractable norms and that the corresponding unit balls
are well-bounded.

We have already observed that the `1-norm and the `∞-norm are in some kind special
`p-norms since they are not strictly convex. Furthermore, their corresponding unit balls
are polytopes.

2.2.3. Polyhedral norms and polytopes

A polyhedron is the solution set of a system of inequalities given by a matrix A ∈ Rs×n

and a vector β ∈ Rs,

{x ∈ Rn|A · x ≤ β}. (2.3)

Obviously, a set P ⊆ Rn is a polyhedron if and only if it can be represented as the
intersection of �nitely many halfspaces. A bounded polyhedron is called a polytope.

Mainly there are two possible ways how a polyhedron can be described: As the solution
set of a system of inequalities as it is done in (2.3) or as the convex hull of �nitely many
vectors. This is illustrated by the unit ball of the `1-norm and the unit ball of the
`∞-norm.

� The polytope which de�nes the `1-norm is given by the 2n constraints 〈x, e〉 ≤ 1,
where e ∈ {±1}n, i.e.,

B̄(1)
n (0, 1) = {x ∈ Rn|〈x, e〉 ≤ 1 for all e ∈ {±1}n} . (2.4)

Alternatively, B̄(1)
n (0, 1) can be described as the convex hull of the 2n unit vectors

±ei ∈ Rn where 1 ≤ i ≤ n, i.e., B̄(1)
n (0, 1) = conv({±ei|1 ≤ i ≤ n}).

� In contrast, the polytope which de�nes the `∞-norm is given by the 2n constraints
〈x, ei〉 ≤ 1 and 〈x,−ei〉 ≤ 1 for 1 ≤ i ≤ n,

B̄(∞)
n (0, 1) = {x ∈ Rn|〈x, ei〉 ≤ 1 and 〈x,−ei〉 ≤ 1 for all 1 ≤ i ≤ n}. (2.5)

Accordingly, B̄(∞)
n (0, 1) can be described as the convex hull of the 2n vectors {±1}n,

B̄
(∞)
n (0, 1) = conv({±1}n}).

In this thesis, we will always assume that a polyhedron is given in the �rst way, i.e.,
in the form as it is described in (2.3). Thus, whenever we speak in the following about
the polytope which de�nes the `1-norm or the `∞-norm, we always assume that they are
given as in (2.4) or (2.5) respectively.
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2.2. Special convex bodies and the corresponding norms

Since we are interested in computational statements, we always assume that the poly-
hedron is given by a rational matrix A ∈ Qs×n and a rational vector β ∈ Qn. We
denote by the size of a polyhedron P the maximum of n, s, and the size of the coordi-
nates of A and β, i.e., if P = {x ∈ Rn|A · x ≤ β} with A ∈ Qs×n and β ∈ Qn then
size(P ) := max{n, s, size(A), size(β)}.

Given a full-dimensional polytope P symmetric about the origin, we call the corre-
sponding norm a polyhedral norm, denoted by ‖ · ‖P . Particularly, the `1-norm and the
`∞-norm are polyhedral norms, whereas `p-norms with 1 < p < ∞ are not polyhedral
norms.

In the rest of this section, we show that polytopes symmetric about the origin are
well-bounded convex bodies, i.e., that we compute the radius of a inscribed and of a
circumscribed Euclidean ball.
If P is a polytope symmetric about the origin, there exists a parameter s ∈ N and a set
of constraints HP = {h1, . . . , hs/2} ⊆ Rn such that P is the intersection of a collection
of halfspaces determined by HP ,

P =

s/2⋂
i=1

{x ∈ Rn|〈x, hi〉 ≤ 1} ∩
s/2⋂
i=1

{x ∈ Rn|〈x, hi〉 ≥ −1}

= {x ∈ Rn|〈x, hi〉 ≤ 1 and 〈x,−hi〉 ≤ 1 for 1 ≤ i ≤ s/2} ,

see [BJWW98]. Here, s is the number of facets of the polytope, i.e., the number of
(n − 1)-dimensional faces of the polytope. A face of a polytope P is a set F 6= ∅
satisfying F = {x ∈ P |〈x, hi〉 = 1 or 〈x, hi〉 = −1 for some 1 ≤ i ≤ s/2}.
If we deal with algorithms, we can always assume that HP ⊆ Qn. Sometimes, it will be
easier to assume that HP ⊆ Zn. Then, the polyhedron P is given by a set HP ⊆ Zn
together with a set of parameters {β1, . . . , βs/2} ⊆ N,

P = {x ∈ Rn|〈x, hi〉 ≤ βi and 〈x,−hi〉 ≤ βi for all 1 ≤ i ≤ s/2} .

In the next lemma, we show that every polytope symmetric about the origin contains a
ball whose radius is determined by the facets of the polytope.

Lemma 2.2.17. Let P ⊆ Rn be a full-dimensional polyhedron symmetric about the
origin,

P = {x ∈ Rn|〈x, hi〉 ≤ 1 and 〈x,−hi〉 ≤ 1 for all 1 ≤ i ≤ s/2}.

De�ne h := min{1/‖hi‖2|1 ≤ i ≤ s/2}. Then

B̄(2)
n (0, h) ⊆ P.

Proof. Every vector x ∈ B̄(2)
n (0, h) = h · B̄(2)

n (0, 1) is of the form

x = h · x′,
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where x′ ∈ Rn with ‖x′‖2 ≤ 1. To show that x is contained in the polytope, we need to
show that x satis�es all s constraints de�ning P .
For all x ∈ Rn with 1 ≤ j ≤ n we have

〈hj , x〉 = h · 〈hj , x′〉 ≤
1

‖hj‖2
〈hj , x′〉 ≤

1

‖hj‖2
· ‖hj‖2 · ‖x′‖2 ≤ 1

using the Cauchy-Schwarz inequality. With the same argument, we see that 〈−hj , x〉 ≤ 1.
Altogether, this shows that x ∈ P .

For the computation of the radius of a circumscribed Euclidean ball we need a result
about the relation between the Euclidean length of a vector and its size and between the
size of a matrix and its determinant.

Claim 2.2.18. For x ∈ Qn we have

‖x‖2 ≤
√
n · size(x).

For D ∈ Qn×n we have

| det(D)| ≤ nn/2 size(D)n.

Proof. The �rst statement follows directly from the de�nition of the Euclidean norm.
For all x ∈ Rn we have

‖x‖22 =
n∑
i=1

x2
i ≤

n∑
i=1

size(x)2 ≤ n · size(x).

To prove the second statement we consider the columns d1, . . . , dn of the matrix D. Using
Hadamard's inequality, it follows directly from the �rst statement that

|det(D)| ≤
n∏
i=1

‖di‖2 ≤
n∏
i=1

√
n size(di) ≤

n∏
i=1

size(D) = nn/2 size(D)n,

see Section A.0.1 in the Appendix.

Using this result, we are able to compute the radius of a circumscribed Euclidean ball
for every full-dimensional polytope. This radius is determined by the size of the polytope.
First we compute the radius of a circumscribed `∞-ball for a given polytope.

Lemma 2.2.19. Let P ⊆ Rn be a full-dimensional polytope given by s integral inequali-
ties 〈ai, x〉 ≤ βi, where ai ∈ Zn, βi ∈ Z for 1 ≤ i ≤ s, i.e.,

P = {x ∈ Rn|〈ai, x〉 ≤ βi for 1 ≤ i ≤ s} =
{
x ∈ Rn|ATx ≤ β

}
,

where A is the matrix, which consists of the columns ai. Then P is contained in an
`∞-ball with radius nn/2rn, centered at the origin,

P ⊆ B̄(∞)
n (0, nn/2rn),

where r is the representation size of the polytope.
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2.2. Special convex bodies and the corresponding norms

Proof. Let v ∈ P be an arbitrary vertex of the polytope. Then there exists a n × n
submatrix C of AT such that C · v = d, where d is the column vector which consists of
the corresponding coe�cients of β. Using Cramer's Rule, the coe�cients vi of the vertex
v are given by

vi =
det(Ci)

det(C)
,

where Ci is the matrix C, where the i-th column is replaced by d. Since AT is a matrix
with integer coe�cients, we have |det(C)| ≥ 1 and we obtain for all coe�cients of v the
upper bound

|vi| ≤ | det(Ci)| ≤ nn/2 size(C)n,

where the last inequality was shown in Claim 2.2.18. This proves that the statement of
the lemma is correct.

Corollary 2.2.20. Let P ⊆ Rn be a full-dimensional polytope given by m integral in-
equalities 〈ai, x〉 ≤ βi where ai ∈ Zn, βi ∈ Z for 1 ≤ i ≤ m, i.e.,

P = {x ∈ Rn|〈ai, x〉 ≤ βi for 1 ≤ i ≤ m} = {x ∈ Rn|ATx ≤ β},

where A is the matrix which contains of the columns ai. Then P is contained in an
Euclidean ball with radius n(n+1)/2rn,

P ⊆ B̄(2)
n (0, Rout) with Rout = n(n+1)/2rn

where r is an upper bound on the representation size of the polytope.

The proof of this statement follows directly from Lemma 2.2.19, using that it follows
from Hölder's inequality that B̄(∞)

n (0, 1) ⊆
√
n · B̄(2)

n (0, 1).

Combining Corollary 2.2.20 and Lemma 7.1.4 we see that every full-dimensional poly-
tope symmetric about the origin is a well-bounded convex body.
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3. Lattices

In this chapter, we de�ne several fundamental concepts and state important results from
the geometry of numbers that will be used throughout this thesis. We focus on the inter-
action between lattices and convex sets and consider lattices from a purely mathematical
point of view. For a more detailed introduction see [Cas71] or [MG02].

3.1. Fundamentals about lattices

A lattice L is a nonempty subset of Rn which is closed under addition and subtraction,
i.e., if v, w ∈ L, then v − w ∈ L. Furthermore there exists an ε > 0 such that the
Euclidean ball B̄(2)

n (0, ε) does not contain a non-zero lattice vector.

De�nition 3.1.1. (Lattice)
A lattice L is a discrete abelian subgroup of Rn.

Each lattice has a basis, i.e., a sequence b1, . . . , bm ofm elements of L that generate the
lattice as an abelian group. We denote this by L = L(B), where B = [b1, . . . , bm] ∈ Rn×m

is the matrix with the column vectors bi. Then the lattice L(B) is the set of all linear
integer combinations of the basis vectors, see Figure 3.1.

De�nition 3.1.2. (Lattice generated by a basis)
Let b1, . . . , bm ∈ Rm be linearly independent (over R). Set B := [b1, . . . , bm] ∈ Rn×m.
The set

L(B) :=

{
m∑
i=1

xibi
∣∣xi ∈ Z for 1 ≤ i ≤ m

}
= {Bx | x ∈ Zm}

is called the lattice generated by the basis vectors b1, . . . , bm.

De�nition 3.1.1 and De�nition 3.1.2 are equivalent. That means, for each discrete
(abelian) subgroup L of Rn there exists a basis B ∈ Rn×m such that L = L(B) and each
set L(B) ⊆ Rn de�ned by m linearly independent vectors B = [b1, . . . , bm] is a discrete
abelian subgroup of Rn, see for example [Bar02].

Obviously, there exist di�erent bases that generate the same lattice. We call two ma-
trices B,B′ ∈ Rn×m equivalent if they generate the same lattice, i.e., if L(B) = L(B′).
Algebraically, two lattice bases are equivalent if and only if there exists a unimodular
matrix U ∈ Zn×n such that B′ = B · U . A matrix U ∈ Zn×n is called unimodular if
|det(U)| = 1. The set of all unimodular matrices U ∈ Zn×n is called the special linear
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b1

b2

Figure 3.1.: A lattice. The lattice is generated by the vectors b1 = (1, 2)T ∈ R2 and
b2 = (2, 1)T ∈ R2.

group over Z and is a multiplicative group.

A vector v ∈ L is called primitive if (1/k) · v 6∈ L for all k ∈ Z\{0,±1}. Every
primitive lattice vector v ∈ L can be extended to a basis of the lattice, i.e., there exists
b2, . . . , bm ∈ L such that {v, b2, . . . , bm} is a basis of L. A proof of this result can be
found for example in [Cas71].

If a lattice L is given by a basis B ∈ Rn×m, we callm the rank of L and n its dimension.
If m = n, the lattice is full-dimensional. In this case, the vector space spanned by the
basis, span(B), is the whole space Rn. Obviously, the vector space spanned by a lattice
is independent of the chosen basis. It is denoted by span(L). The dimension of span(L)
corresponds to the rank of the lattice L.

De�nition 3.1.3. Let L ⊆ Rn be a lattice given by a basis B ∈ Rn×m. Then

span(L) :=

{
n∑
i=1

xibi
∣∣ xi ∈ R for 1 ≤ i ≤ m

}
is the subspace of Rn which contains the lattice.

One can show that the subspace generated by a lattice L ⊆ Rn is the smallest subspace
in Rn which contains the whole lattice.

For a set B = [b1, . . . , bm] ∈ Rn×m of linearly independent vectors we de�ne the half
open parallelepiped

P(B) :=


n∑
j=1

αjbj
∣∣ 0 ≤ αj < 1, j = 1, . . . , n

 .
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v

w

v − w

Figure 3.2.: Fundamental parallelepiped. The lattice is generated by the vectors
b1 = (2, 1) ∈ R2 and b2 = (1, 2) ∈ R2. The corresponding fundamental
parallelepiped covers the whole space R2. Thus for every vector v ∈ R2

there exists a unique vector w ∈ P(B) such that v − w is a lattice vector.

If B is a basis of a lattice L, this parallelepiped is called fundamental parallelepiped
or fundamental region of the lattice L with respect to the basis B. The fundamental
parallelepiped can be used to de�ne a disjoint covering of the whole subspace span(B),

span(B) =
⋃

v∈L(B)

(v + P(B)) ,

as it is illustrated in Figure 3.2. If L is a full-dimensional lattice, we have span(B) = Rn

and the fundamental parallelepiped can be used to de�ne a covering of the whole space.

Using a fundamental parallelepiped P(B) de�ned by some basis B of the lattice L, for
every vector v ∈ span(B) = span(L) we can de�ne a unique representation v = u + w
with u ∈ L and w ∈ P(B). We call two vectors v, w to be congruent modulo L, v ≡ w
mod L, if the di�erence vector v−w is a lattice vector, i.e., if v−w ∈ L. By computing
a vector w satisfying w ≡ v mod L, we mean computing the unique w ∈ P(B) with
v − w ∈ L = L(B).

Lemma 3.1.4. Let L ⊆ Rn be a lattice given by a basis B ∈ Rn×m. For every vector
v ∈ span(L) there exists a unique vector w ∈ P(B) such that v − w ∈ L.

The proof of this result follows directly from the observation that for every vector
v ∈ span(B) = span(B) there exists a unique representation as a linear combination
of the basis vectors, v =

∑m
i=1 vibi with vi ∈ R, 1 ≤ i ≤ m. For all 1 ≤ i ≤ m the

coe�cients vi can be uniquely represented as vi = bvic+ (vi − bvic), where bvic ∈ Z and
0 ≤ vi − bvic < 1.
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If we consider a lattice L ⊆ Rn of rank m together with m linearly independent
lattice vectors, these lattice vectors do not necessarily form a basis of the lattice. A
simple geometric criterion to decide whether a set of linearly independent lattice vectors
b′1, . . . , b

′
m ∈ L for a basis of the lattice is to consider the parallelepiped P(B′) spanned

by these vectors, where B′ := [b′1, . . . , b
′
m]. One can show that B′ is a lattice basis of L

if and only if the parallelepiped spanned by these vectors does not contain a non-zero
lattice vector, i.e., if P(B′) ∩ L = {0}.

For every set B′ = [b′1, . . . , b
′
m] of m linearly independent lattice vectors of the lattice

L the set L(B′) is always a lattice and we have L(B′) ⊆ L. The lattice L(B′) is called a
sublattice of L. If L(B′) ( L we say that L(B′) is a proper sublattice of L.

De�nition 3.1.5. Let L ⊆ Rn be a lattice and B′ = [b′1, . . . , b
′
m] ∈ Rn×m with b′i ∈ L

for all 1 ≤ i ≤ m. For all v ∈ L the set

v + L(B′) :=
{
v + w

∣∣w ∈ L(B′)
}

is called a coset of L modulo L(B′). The set of all cosets is denoted by L/L(B′).

Determinant of a lattice

One fundamental constant of a lattice is its determinant.

De�nition 3.1.6. (Determinant of a lattice)
Let L ⊆ Rn be a lattice of rank m. The determinant of L, det(L), is de�ned as the
m-dimensional volume of the fundamental parallelepiped P(B) for some arbitrary basis
B ∈ Rn×m of L, i.e.,

det(L) :=
√

det(BT ·B).

The determinant of a lattice is a lattice invariant, i.e., it is independent of the basis
de�ning the lattice. This follows directly from the observation that for two equivalent
bases B, B′ of a lattice L there exists a unimodular matrix U such that B′ = B · U and
we have det(B′TB′) = det(BTB).
If the lattice L is full-dimensional, we have det(L) = |det(B)| and the determinant of

the lattice is the n-dimensional volume of its fundamental parallelepiped. Geometrically,
the inverse of the determinant of a lattice can be interpreted as the density of the lattice
vectors.

Given a basis of the lattice the determinant can be computed in polynomial time using
Gaussian elimination. Another way to compute the determinant of a lattice is to use the
Gram-Schmidt orthogonalization of the basis.

De�nition 3.1.7. (Gram-Schmidt orthogonalization)
Let B = [b1, . . . , bm] ∈ Rn×m be a set of linearly independent vectors. The Gram-Schmidt
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orthogonalization B† = [b†1, . . . , b
†
m] of B is de�ned by

b†1 := b1,

b†i := bi −
i−1∑
j=1

µi,jb
†
j for 1 < i ≤ n and µi,j :=

〈bi, b†j〉

〈b†j , b
†
j〉

for 1 ≤ j < i ≤ n.

The Gram-Schmidt-orthogonalization depends on the order of the original basis vec-
tors. The important properties of the Gram-Schmidt orthogonalization is that its vectors
are pairwise orthogonal. Furthermore, they span the same vector space as the original
vectors, that means we have span(b1, . . . , bm) = span(b†1, . . . , b

†
m).

Given a basis B ∈ Rn×m of a lattice L and the corresponding Gram-Schmidt orthog-
onalization B† ∈ Rn×m we have B = B† · G where G ∈ Rm×m is an upper triangular
matrix whose elements on its diagonal are 1. Thus, we have

det(BT ·B) = det
(
GT (B†)TB†G

)
= det(GT ) · det

(
(B†)TB†

)
· det(G)

= det
(

(B†)TB†
)

and it follows from Hadamard's inequality, that√
det(BTB) =

√
det ((B†)TB†) =

m∏
i=1

‖b†i‖2,

see Section A.0.1 in the Appendix.

Lattices under orthogonal projection

Let L ⊆ Rn be a lattice given by a basis [b1, . . . , bm] ∈ Rm×n. For simplicity, we assume
that L is full-dimensional, i.e., m = n. Let Lk be the sublattice generated by the �rst k
basis vectors, i.e.,

Lk := L(b1, . . . , bk)

for 1 ≤ k ≤ n. For some �xed parameter k, 1 < k ≤ n, we de�ne the mapping

πk : Rn −→ span(b†k, . . . , b
†
n)

x 7→
n∑
j=k

〈x, b†j〉

〈b†j , b
†
j〉
b†j .

Since Rn = span(b†1, . . . , b
†
n) and span(b1, . . . , bk−1) = span(b†1, . . . , b

†
k−1), we have

span(b1, . . . , bk−1)⊥ = span(b†k, . . . , b
†
n).
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3. Lattices

Thus, πk is the orthogonal projection onto the orthogonal complement of span(Lk−1),
i. e., πk : Rn −→ span(Lk−1)⊥.

We now consider the image of the lattice L under this orthogonal projection πk and
we de�ne

L(n−k+1) := πk(L).

It is easy to see that L(n−k+1) is a lattice of rank n−k+ 1 and that a basis of this lattice
is given by [πk(bk), . . . , πk(bn)]. The lattice L(n−k+1) is often called the projected lattice.
It is a classical technique to use this projected lattice to show statements by induction
on the rank of the lattice.

Obviously, we have

πk(b
†
j) = 0 for all 1 ≤ j ≤ k − 1 and

πk(b
†
j) = b†j for all k ≤ j ≤ n.

Using this, we can show that the projection πk decreases the length of a vector, that means
for all v ∈ Rn we have ‖v‖2 ≥ ‖πk(v)‖2: Since the Gram-Schmidt orthogonalization B†

is a basis of Rn, for every vector v ∈ Rn there exists a representation v =
∑n

i=1 vib
†
i with

vi ∈ R for all 1 ≤ i ≤ n. Hence, the squared Euclidean length of v is at least

‖v‖22 =
n∑
i=1

v2
i ‖b
†
i‖

2
2 ≥

n∑
i=k

v2
i ‖b
†
i‖

2
2

=
n∑
i=k

v2
i ‖πk(b

†
i )‖

2
2 = ‖πk(v)‖22.

3.2. Minkowski's convex body theorem and successive

minima

3.2.1. Minkowski's convex body theorem

Minkowski's convex body theorem provides a su�cient condition such that a convex
body contains a lattice vector. It is based on a result of Blichfeldt which shows that
every measurable set whose volume is larger than the determinant of the lattice contains
a non-zero lattice vector. The proof of Blichfeldt's theorem uses a generalization of the
pigeonhole principle.

Theorem 3.2.1. (Blichfeldt's Theorem)
Let L ⊆ Rn be a full-dimensional lattice and S ⊆ Rn be a measurable set. If voln(S) >
det(L), there exists two vectors z1, z2 ∈ S, z1 6= z2, such that z1 − z2 ∈ L.
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Proof. Let B ∈ Rn×n be a basis of the lattice L. Then the set L + P(B) is a partition
of the space Rn, that means L + P(B) = Rn and for all u, v ∈ L, u 6= v, we have
u+ P(B) ∩ v + P(B) = ∅.
For each lattice vector v ∈ L we consider the intersection of the set S with the corre-
sponding translation of the fundamental parallelepiped,

Sv := S ∩ (v + P(B)).

Since B is a basis of Rn and the lattice is full-dimensional, the sets Sv, v ∈ L, are a
partition of the set S and we have

voln(S) =
∑
v∈L

voln(Sv).

Now we consider the translations of the sets Sv in the fundamental parallelepiped. For
v ∈ L we de�ne

S ′v := Sv − v.

Then we have for all v ∈ L that S ′v = (S − v)∩P(B) and voln(S ′v) = voln(Sv). It follows
that ∑

v∈L
voln(S ′v) =

∑
v∈L

voln(Sv) = voln(S) > det(L) = voln(P(B)).

Since for all v ∈ L we have S ′v ⊆ P(B), this shows that there exists vectors v, w ∈ L
such that S ′v ∩S ′w 6= ∅. Let z ∈ S ′v ∩S ′w. Since z ∈ S ′v there exists z1 ∈ Sv ⊆ S such that
z = z1 − v. Since z ∈ S ′w there exists z2 ∈ Sw ⊆ S such that z = z2 − w. Obviously, we
have v 6= w and z1 6= z2. From this it follows

z1 − z2 = z + v − (z + w) = v − w ∈ L\{0}.

As a consequence, we obtain

Theorem 3.2.2. (Minkowski's convex body theorem)
Let L ⊆ Rn be a full-dimensional lattice and C ⊆ Rn be a convex set, which is symmetric
about the origin. If voln(C) > 2n det(L), the set C contains a non-zero lattice vectors
v ∈ C ∩ L\{0}.
Proof. We consider the set C′ := (1/2) · C. The volume of C′ satis�es

voln(C′) = 2−n voln(C) > det(L),

see Lemma 2.1.3 in Chapter 2. According to Blichfeldts' Theorem, Theorem 3.2.1, there
exists two vectors z1, z2 ∈ C′ such that z1 − z2 ∈ L\{0}.
Furthermore, we have 2z1, 2z2 ∈ C and due to the symmetry of C it follows that −2z2 ∈ C.
Since C is convex, we have

1

2
(2z1 + (−2z2)) = z1 − z2 ∈ C.

This shows that C contains the non-zero lattice vector z1 − z2.
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B̄
(2)
n (0,1)

P

Figure 3.3.: The minimum distance of a lattice in di�erent norms. We consider
the integer lattice Z2. With respect to the Euclidean norm, the unit vectors
±e1 and ±e2 are the shortest non-zero lattice vectors in Z2. If we consider
the norm de�ned by the polytope P symmetric about the origin, we see that
the vectors (1, 1) ∈ Z2 and (−1,−1) ∈ Z2 are the shortest non-zero lattice
vectors.

3.2.2. Successive minima

A fundamental parameter of a lattice is its minimal distance which is de�ned as the
minimal distance between two di�erent lattice vectors

min{‖x− y‖|x, y ∈ L, x 6= y}.

This distance can be de�ned for any norm ‖ · ‖ on Rn. Obviously, the minimal distance
between two di�erent lattice vectors is the same as the length of a shortest non-zero lattice
vector: Since a lattice is a subgroup of Rn, it is closed under addition and subtraction.
Thus, the di�erence vector x− y of two distinct lattice vectors x, y ∈ L is guaranteed to
be a non-zero lattice vector. We de�ne

λ
(‖·‖)
1 (L) := min{‖x− y‖|x, y ∈ L, x 6= y}.

and call it the �rst successive minimum of the lattice L with respect to the norm ‖ · ‖.
The �rst successive minimum of a lattice is the length of the shortest non-zero vector
in the lattice. Obviously, the minimum distance of a lattice and the vector achieving it
depends on the corresponding norm as it is illustrated in Figure 3.3.

The number of shortest non-zero lattice vectors with respect to the Euclidean norm is
called the kissing number of the lattice. One can show that this number is at most single
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λ
(1)
2 (L)=

√
2

λ
(2)
2 (L)=

√
5

Figure 3.4.: The successive minima of a lattice. The lattice is generated by the
vectors (1, 2)T ∈ R2 and (2, 1)T ∈ R2. The minimum distance of this lattice
with respect to the Euclidean norm of this lattice is

√
2 and the length of

the second successive minimum is
√

5.

exponential in the dimension, see [CS93].

An equivalent way to de�ne the �rst successive minimum λ
(‖·‖)
1 (L) is the following:

λ
(‖·‖)
1 (L) is the radius of the smallest ball centered in the origin containing one linearly

independent lattice vector.
This de�nition can be generalized easily to de�ne the i-th successive minimum of a lattice
with 1 ≤ i ≤ n as the smallest real number ρ such that L contains i linearly independent
vectors of length at most ρ, see Figure 3.4.

De�nition 3.2.3. (Successive minima)
Let L ⊆ Rn be a lattice of rank m and ‖ · ‖ be a norm on Rn. The i-th successive

minimum λ
(‖·‖)
i (L) is de�ned as

λ
(‖·‖)
i (L) := inf

{
ρ
∣∣ dim

(
span(L) ∩ B̄(‖·‖)

n (0, ρ)
)
≥ i
}
.

Since every lattice L is discrete, there exists a constant ε > 0 such that the minimal
distance of this lattice is at least ε. From this it follows that for every ρ > 0, the ball
B̄

(‖·‖)
n (0, ρ) around the origin with radius ρ contains only �nitely many lattice vectors.

Using this, one can show that for every lattice L of rank m, there exist linearly inde-
pendent lattice vectors whose lengths are exactly the successive minima, i.e., there exists
v1, . . . , vm ∈ L linearly independent with ‖vi‖ = λ

(‖·‖)
i (L), see [Cas71]. It is not guaran-

teed that these vectors are a basis of the lattice.
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Using Minkowski's convex body theorem, it can be guaranteed that every lattice con-
tains a non-zero lattice vector whose length with respect to the `∞-norm is at most
det(L)1/m, where m is the rank of the lattice.

Theorem 3.2.4. Let L ⊆ Rn be a lattice of rank m. Then

λ
(∞)
1 (L) ≤ det(L)1/m.

Proof. Obviously, the intersection of the open `∞-ball with radius λ(∞)
1 (L) with span(L)

contains exactly one lattice vector,(
B(∞)
n

(
0, λ

(∞)
1 (L)

)
∩ span(L)

)
∩ L = {0}.

Let B ∈ Rn×m be a basis of the lattice L. Then there exists a rotation given by an
orthogonal matrix O ∈ Rn×n such that

span(O ·B) = span(e1, . . . , em) = Rn ∩
n⋂

i=m+1

H0,ei .

Obviously, the convex set O ·
(
B

(∞)
n

(
0, λ

(∞)
1 (L)

)
∩ span(L)

)
contains exactly one lattice

vector from the lattice L(O ·B),

O ·
(
B(∞)
n

(
0, λ

(∞)
1 (L)

)
∩ span(L)

)
∩ L(O ·B) = {0}.

Since L(O · B) ⊆ Rn ∩
⋂n
i=m+1H0,ei and O ·

(
B

(∞)
n (0, λ

(∞)
1 (L)) ∩ span(L)

)
⊆ Rn ∩⋂n

i=m+1H0,ei we can apply Minkowski's convex body theorem, Theorem 3.2.2, and obtain
that

volm

(
O ·
(
B(∞)
n (0, λ

(∞)
1 (L)) ∩ span(L)

))
≤ 2m det(L(OB)). (3.1)

Since O is an orthogonal matrix, we have det(L(OB)) = det(L(B)) = det(L) and

volm

(
O ·
(
B(∞)
n

(
0, λ

(∞)
1 (L)

)
∩ span(L)

))
= volm

(
B(∞)
n (0, λ

(∞)
1 (L)) ∩ span(L)

)
= λ

(∞)
1 (L)m · volm

(
B(∞)
n (0, 1) ∩ span(L)

)
.

One can show that the m-dimensional volume of the intersection of the n-dimensional
`∞-unit ball with an m-dimensional subspace has volume at least 2m, that means for
every m-dimensional subspace H ⊆ Rn we have

volm(B(∞)
n (0, 1) ∩H) ≥ 2m.

This result is shown by Vaaler, see [Vaa79]. Thus, we obtain that

volm

(
O ·
(
B(∞)
n (0, λ

(∞)
1 (L)) ∩ span(L)

))
≥
(

2λ
(∞)
1 (L)

)m
.

Combining this with (3.1) we obtain

λ
(∞)
1 (L) ≤ det(L)1/m.
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3.2. Minkowski's convex body theorem and successive minima

Unfortunately, the proof of this result is not constructive. It is easy to see that
this bound is tight if we consider the integer lattice which satis�es λ(∞)

1 (Zn) = 1 =
det(Zn)1/n. Using Hölder's inequality, we obtain corresponding results for arbitrary `p-
norms. The result for the Euclidean norm is also known as Minkowski's �rst theorem.

Corollary 3.2.5. (Minkowski's �rst theorem)
Let L ⊆ Rn be a lattice of rank m. Then

λ
(2)
1 (L) ≤

√
n · det(L)1/m.

It can be shown that this result is asymptotically tight, i.e., there exist lattices L ⊆ Rn

such that λ(2)
1 (L) > c ·

√
n det(L)1/n for some �xed constant c. Minkowski also proved a

stronger result which gives an upper bound on the product of all successive minima of a
lattice. For a proof of the following theorem see [Mar03].

Theorem 3.2.6. (Minkowski's second theorem)
Let L ⊆ Rn be a lattice of rank m. Then(

m∏
i=1

λ
(2)
i (L)

)1/m

≤
√
n det(L)1/m.

3.2.3. Packing radius and covering radius

There exists a further geometric interpretation of the minimum distance of a lattice: We
consider balls around each lattice vector. Then λ(‖·‖)

1 (L)/2 is the largest number α such

that the open balls B(‖·‖)
n (v, α) with v ∈ L do not intersect. We have

B(‖·‖)
n

(
v,
λ

(‖·‖)
1 (L)

2

)⋂
B(‖·‖)
n

(
w,
λ

(‖·‖)
1 (L)

2

)
= ∅ for all v, w ∈ L, v 6= w

and for all α > λ
(‖·‖)
1 (L)/2 there exist v, w ∈ L, v 6= w, such that

B(‖·‖)
n (v, α) ∩B(‖·‖)

n (w,α) 6= ∅.

The value λ(‖·‖)
1 (L)/2 is called the packing radius of the lattice.

Compared with this, the covering radius of a lattice is the smallest radius such that the
closed balls centered at all lattice vectors cover the whole space. For an illustration see
Figure 3.5.

De�nition 3.2.7. (Covering radius)
Let L ⊆ Rn be a lattice. The covering radius of L with respect to the norm ‖ · ‖ is the
smallest radius ρ such that the balls B̄(‖·‖)

n (v, ρ), v ∈ L, cover the whole space span(L),
i.e.,

span(L) =
⋃
v∈L

B̄(‖·‖)
n (v, ρ).

The covering radius is denoted by µ(‖·‖)(L).
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Figure 3.5.: The packing radius and the covering radius of a lattice. We con-
sider the lattice L generated by b1 = (2, 1)T ∈ R2 and b2 = (1, 2)T ∈ R2.
The left side shows a packing of the lattice L with Euclidean balls with ra-
dius λ(2)

1 (L)/2, whereas the right side shows a covering of the lattice with
Euclidean balls with radius µ(2)(L).

3.3. The dual lattice and transference bounds

Analogously as the dual space of a vector space, we can consider the dual of a lattice
L ⊆ Rn. The dual of a lattice L is the set

L∗ = {f : L→ Z|f linear} (3.2)

of all functions f : L→ Z satisfying f(α · v+β ·w) = α · f(v) +β · f(w) for all α, β ∈ R,
v, w ∈ L.

One can show that L and L∗ are isomorphic by de�ning an isomorphism from the
group L to the group L∗. Given a basis B ∈ Rn×m, B = [b1, . . . , bm] of the lattice L,
every lattice vector v ∈ L can be represented as an integer linear combination of the basis
vectors, v =

∑m
i=1 vibi with vi ∈ Z for all 1 ≤ i ≤ m. Thus, the functions βi : L → Z,∑m

j=1 vjbj 7→ vj are well-de�ned linear functions. Now, it is easy to see that the mapping
L→ L∗,

∑m
i=1 vibi →

∑m
i=1 vi · βi is an isomorphism.

The de�nition of a dual lattice as it is given in (3.2) is not very useful in practice. It
is more common to represent the elements of the dual lattice by vectors. Every vector
v ∈ span(L) can be interpreted as the linear map

fv : L→ R, y 7→ 〈v, y〉,

where 〈·, ·〉 denotes the Euclidean scalar product. However, fv does not need to be an
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element in L∗ since 〈v, y〉 is not mandatory an element in Z. Moreover, we have

fv ∈ L∗ if and only if 〈v, y〉 ∈ Z for all y ∈ L.

This leads to the following equivalent de�nition of a dual lattice.

De�nition 3.3.1. (Dual lattice)
Let L ⊆ Rn be a lattice. The dual lattice L∗ of the lattice L is de�ned as the set

L∗ = {x ∈ span(L)|〈x, v〉 ∈ Z for all v ∈ L}.

Thus the dual lattice L∗ is the set of all vectors in the vector space spanned by the
lattice L, whose scalar product with every lattice vector is an integer.

Obviously, if B = [b1, . . . , bm] is a basis of the lattice L, we observe that for a vector
y ∈ span(L) we have that 〈v, y〉 ∈ Z for all v ∈ L if and only if 〈v, bi〉 ∈ Z for all
1 ≤ i ≤ n. Hence, L∗ = {y ∈ span(L)|〈y, bi〉 ∈ Z for all 1 ≤ i ≤ n}.

The integer lattice Zn is self dual, i.e., (Zn)∗ = Zn since for all v, w ∈ Zn we have
〈v, w〉 ∈ Z.

Before we state some important properties of the dual lattice, we give a geometric
interpretation of it.

3.3.1. Geometric representation of the dual lattice

Let L = L(B) ⊆ Rn be a lattice of rank m given by a basis B = [b1, . . . , bm]. As we
have seen, the corresponding dual lattice consists of all vectors in span(B) whose scalar
product with all basis vectors is an integer.

We start with the �rst basis vector b1. The set of all vectors in span(B) whose scalar
product with b1 is zero is the hyperplane

H0,b1 = {y ∈ span(B)|〈y, b1〉 = 0}

orthogonal to b1.
Let v1 ∈ span(B) be a vector whose scalar product with b1 is exactly 1, for example
v1 = b1/‖b1‖22. The translations of the hyperplane H0,b1 in direction of this vector are
the a�ne hyperplanes r ·v1+H0,b1 with r ∈ R. For a �xed number r the a�ne hyperplane
r · v1 +H0,b1 consists of all vectors in span(B) whose scalar product with b1 is exactly r.
Hence, all vectors in span(B) which have an integer scalar product with b1 are contained
in an a�ne hyperplane of the form

Hk,b1 = {y ∈ span(L)|〈b1, y〉 = k}
= {k · v1 + y|y ∈ span(B) satisfying 〈y, b1〉 = 0}
= k · v1 +H0,b1 ,
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b1

Hk,b1=k·v1+H0,b1

Figure 3.6.: Construction of the dual lattice (I). The lattice is generated by the
vectors b1 = (2, 1)T ∈ R2 and b2 = (1, 2)T ∈ R2. The vector v1 =
(1/5) · (1, 1)T ∈ R2 satis�es 〈v1, b1〉 = 1. We observe that there exist a�ne
hyperplanes which do not contain lattice vectors.

where k ∈ Z. That means we have

{y ∈ span(L)|〈y, b1〉 = k} =
⋂
k∈Z

Hk,b1 .

The Euclidean distance between the distinct a�ne hyperplanes is

‖v1‖2 =
‖b1‖2
‖b1‖22

=
1

‖b1‖2
. (3.3)

That means the longer the Euclidean length of the vector b1 is, the shorter the distance
between the distinct a�ne hyperplanes. The whole situation is illustrated in Figure 3.6.

We can proceed in the same way for the other basis vectors. Then the dual lattice is
the set of all intersections of the di�erent a�ne hyperplanes as it is illustrated in Figure
3.7.

3.3.2. Properties of the dual lattice

De�nition 3.3.2. Let B ∈ Rn×m be a lattice basis of the lattice L. Then, the corre-
sponding dual basis D ∈ Rn×m is de�ned by

� span(D) = span(B) and
� BT ·D = In.

As the solution of a linear equation system the matrix D is uniquely determined, i.e.
for every lattice basis B there exists a uniquely determined dual basis. If the lattice
L = L(B) is full-dimensional, then D = (BT )−1. Otherwise, we have D = B(BT ·B)−1.

Furthermore, we can show that L∗ = L(D) is a lattice and that (L∗)∗ = L.
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b1

b2

Hk,b1 with k ∈ Z

Hl,b2 with l ∈ Zv1

v2

Figure 3.7.: Construction of a dual lattice (II). The lattice is generated by the vectors
b1 = (2, 1)T ∈ R2 and b2 = (1, 2)T ∈ R2. The dual lattice is the set of all
intersection points of the a�ne hyperplanes Hk,b1 and Hl,b2 with k, l ∈ Z.

The determinant of the dual lattice is the inverse of the determinant of the original
lattice. This follows directly from the linearity of the determinant.

Lemma 3.3.3. Let L ⊆ Rn be a lattice. Then,

det(L∗) =
1

det(L)
.

For a vector v ∈ Rn\{0} the hyperplane H0,v = {x ∈ Rn|〈x, v〉 = 0} is a subspace of
the vector space Rn of dimension n− 1 which consists of all vectors orthogonal to v. For
lattices, we can show a similar result using the primitive vectors in the dual lattice. We
can show that for every primitive vector v ∈ L∗ the intersection L ∩H0,v is a sublattice
of L of rank n− 1.

Lemma 3.3.4. Let L ⊆ Rn be a lattice of rank m and v ∈ L∗ be a primitive vector.
Then L ∩H0,v is a sublattice of L of rank m− 1.

Proof. Since v ∈ L∗ is a primitive vector, there exists a lattice basis of L∗ which contains
v, V = [v, v2, . . . , vm] ⊆ L∗. Let B = [b1, . . . , bm] be the corresponding dual basis. That
means we have

〈v, bi〉 = 0 for all 2 ≤ i ≤ n.

This shows that the sublattice L(b2, . . . , bm) of rank m− 1 is contained in L ∩H0,v.

This result shows that a primitive vector v ∈ L∗ can be used to represent a lattice as
the union of sets

L =
⋃
k∈Z

Lk,v with Lk,v := {x ∈ L|〈x, v〉 = k},
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where the sets Lk,v are translations of the sublattice L0,v = L ∩H0,v, i.e.,

Lk,v = L0,v + k
1

〈v, v〉
v.

3.3.3. Transference bounds

The relevance of the dual lattice is that some important informations about a given
lattice L can be extracted from the properties of the corresponding dual lattice L∗.
These relations are described in so-called transference bounds. For example the following
relation is a direct applications of Minkowski's �rst theorem.

Lemma 3.3.5. Let L ⊆ Rn be a lattice and L∗ ⊆ Rn be the corresponding dual lattice.
Then,

λ
(2)
1 (L) · λ(2)

1 (L∗) ≤ n.

Proof. Using Minkowski's �rst theorem, Corollary 3.2.5, we obtain that

λ
(2)
1 (L) ≤

√
n det(L)1/n and

λ
(2)
1 (L∗) ≤

√
n det(L∗)1/n.

Since det(L) = 1/ det(L∗), the statement follows.

The following theorem is a remarkable result relating the covering radius of a lattice
and the minimum distance of the corresponding dual lattice.

Theorem 3.3.6. (Banszczyk, [Ban93])
Let L ⊆ Rn be a lattice and L∗ ⊆ Rn be the corresponding dual lattice. Then we have

1 ≤ µ(2)(L) · λ(2)
1 (L∗) ≤ n

2
.

This result was proven by Banaszczyk in 1993 using techniques from harmonic analysis.
It can be generalized to non-Euclidean norms using the so-called dual norm, see [BLPS99].

To illustrate the geometric interpretation of this transference bound of Banaszczyk
we suppose that we are given a lattice L ⊆ Rn where the covering radius of the lattice
is greater than ρ, µ(2)(L) > ρ. Now it follows from the transference bound stated in
Theorem 3.3.6 that the minimum distance of the dual lattice is upper bounded by

λ
(2)
1 (L∗) ≤ µ(2)(L)

ρ
· λ(2)

1 (L∗) <
n

2ρ
.

Thus, if v ∈ L∗ is a shortest non-zero lattice vector in L∗ and we consider the repre-
sentation of L as L =

⋃
k∈Z Lk,v, then each translation Lk,v is contained in the a�ne

hyperplane Hk,v and the Euclidean distance between the a�ne hyperplanes Hk,v, k ∈ Z,
is at least 2ρ/n, see Equation (3.3). In other words, the translations Lk,v are well-
separated.
For a more detailed introduction into the algorithmic use of the dual lattice see [Vaz01].
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4. Lattices: A complexity theoretic

perspective

In this chapter we consider lattices from the complexity theoretical point of view. We give
a formal de�nition of the four classical lattice problems from the geometry of numbers,
the shortest vector problem (Svp), the successive minima problem (Smp), the shortest
independent vectors problem (Sivp), and the closest vector problem (Cvp). We state the
most important results concerning their complexity and we present the main algorithms
that solve these problems.

After these general considerations, we take a closer look on the lattice problems. First
of all, we observe why it is (mostly) di�cult to adapt an algorithm that solves a lattice
problem with respect to the Euclidean norm to an algorithm that solves the corresponding
lattice problem with respect to an arbitrary norm. Furthermore, we consider the num-
ber of possible solutions of the four lattice problems and we will see why the solution of
Svp is comparatively uncomplicated compared with the solution of Smp, Sivp, and Cvp.

Then we focus on the relation between Svp, Smp, Sivp, andCvp to develop approaches
for a uni�ed algorithmic treatment of these problems. Based on these results we will
present in Chapter 5 and Chapter 6 algorithms for all four lattice problems for arbitrary
norms, in particular for `p-norms with 1 ≤ p ≤ ∞.

4.1. The lattice problems Svp, Smp, Sivp, and Cvp

In the following we consider some arbitrary norm ‖ · ‖ on Rn. We start with a formal
de�nition of the shortest vector problem which is associated to the minimum distance of
a lattice.

De�nition 4.1.1. (Shortest Vector Problem (Svp))
Given a lattice L ⊆ Rn, �nd a non-zero lattice vector v ∈ L\{0} such that

||v|| = λ
(‖·‖)
1 (L),

i.e., ‖v‖ ≤ ‖w‖ for any other w ∈ L\{0}.

This variant of the shortest vector problem is also denoted as the search version of the
shortest vector problem since the goal is really to �nd a shortest non-zero lattice vector.
There are two other variants of the shortest vector problem, the optimization variant
and the decisional variant. In the optimization shortest vector problem we are given a
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4. Lattices: A complexity theoretic perspective

lattice and the goal is to determine the minimum distance of the lattice with respect to
the corresponding norm. In the decisional shortest vector problem we are given a lattice
and an additional parameter α > 0. Here, the goal is to decide whether the minimum
distance of the lattice is at most α. Kannan showed that all three versions of the shortest
vector problem are polynomial time equivalent, see [Kan87b].

Often we are not able to solve the shortest vector problem exactly. Thus we consider
an approximated version of the shortest vector problem and look for approximation
algorithms for Svp.

De�nition 4.1.2. (γ-Approximate Shortest Vector Problem (Svpγ))

Given a lattice L ⊆ Rn, �nd a vector v ∈ L\{0} such that ‖v‖ ≤ γ · λ(‖·‖)
1 (L).

The parameter γ ≥ 1 is some arbitrary approximation factor. The approximation
factor can be a constant or a function of any parameter associated to the lattice. Often
the parameter γ depends on the dimension of the lattice. For the other variants of Svp
approximate versions can be de�ned analogously.

As the minimum distance of a lattice can be generalized to the successive minima of
a lattice, we can generalize the problem to compute a shortest non-zero lattice vector to
the problem to compute n linearly independent lattice vectors with minimal length.

De�nition 4.1.3. (Successive Minima Problem (Smp))
Given a lattice L ⊆ Rn of rank m, �nd m linearly independent vectors v1, . . . , vm ∈ L
such that

||vi|| = λ
(‖·‖)
i (L)

for all i = 1, . . . ,m.

As we have already seen in Chapter 3, every lattice contains linearly independent vector
achieving the successive minima. In many situations it is not important to compute m
linearly independent lattice vectors where each vector is as short as possible but to
compute m linearly independent lattice vectors where all vectors are not too long. The
task to compute such vectors is called the shortest independent vectors problem.

De�nition 4.1.4. (Shortest Independent Vectors Problem (Sivp))
Given a lattice L ⊆ Rn of rank m, �nd m linearly independent vectors v1, . . . , vm ∈ L
such that

||vi|| ≤ λ(‖·‖)
m (L)

for all i = 1, . . . ,m.

Analogously as in the case of the shortest vector problem, we can de�ne approximate
versions of Smp and Sivp.
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t
Closest lattice vector to t

b1

b2

Figure 4.1.: The closest vector problem. We consider the lattice generated by the
basis vectors b1 = (2, 1)T ∈ R2 and b2 = (1, 2)T ∈ R2. The closest lattice
vector to the target vector t = (3.2, 2.5)T ∈ R2 with respect to the Euclidean
norm is the vector b1 + b2 = (3, 3)T ∈ R2.

De�nition 4.1.5. (γ-Approximate Successive Minima Problem (Smpγ))
Given a lattice L ⊆ Rn of rank m, �nd m linearly independent vectors v1, . . . , vm ∈ L
such that

||vi|| ≤ γ · λ(‖·‖)
i (L)

for all i = 1, . . . ,m.

De�nition 4.1.6. (γ-Approximate Shortest Independent Vectors Problem (Sivpγ))
Given a lattice L ⊆ Rn of rank m, �nd m linearly independent vectors v1, . . . , vm ∈ L
such that

||vi|| ≤ γ · λ(‖·‖)
m (L)

for all i = 1, . . . ,m.

Another important lattice problem is the closest vector problem which is a (somewhat)
inhomogeneous variant of the shortest vector problem. Here, we are given the lattice
together with a target vector from the vector space spanned by the lattice. The goal is
to �nd a lattice vector with minimal distance to this target vector. The closest vector
problem is illustrated in Figure 4.1.

De�nition 4.1.7. (Closest Vector Problem (Cvp))
Given a lattice L ⊆ Rn and some target vector t ∈ span(L), �nd a lattice vector v ∈ L
such that

||v − t|| ≤ min
{
‖w − t‖ | w ∈ L

}
.

We denote by µ(‖·‖)(t, L) := min{‖w − t‖ | w ∈ L} the minimal distance between the
target vector t and the lattice L.
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4. Lattices: A complexity theoretic perspective

From this point of view, the covering radius of a lattice L is the smallest radius ρ such
that for any target vector t ∈ span(L) there exists a lattice vector within distance of at
most ρ, i.e.,

µ(‖·‖)(L) = max
{
µ(‖·‖)(t, L) | t ∈ span(L)

}
.

As for the other lattice problems we can de�ne a decisional and an optimization variant
of the closest vector problem. For all `p-norms with 1 ≤ p ≤ ∞ and all polyhedral norms
these variants are equivalent, see [MG02] and [BN11].

De�nition 4.1.8. (γ-approximate closest vector problem (Cvpγ))
Given a lattice L ⊆ Rn and some target vector t ∈ span(L), �nd a lattice vector v ∈ L
such that

‖v − t‖ ≤ γ · µ(‖·‖)(t, L).

If we consider these lattice problems with respect to an `p-norm, we will denote this by
Svp

(p), Smp(p), Sivp(p), or Cvp(p) respectively. If the norm is described as the Minkowski
function of a convex body C symmetric about the origin, we denote the corresponding
version by Svp(C), Smp(C), Sivp(C), or Cvp(C).

To obtain computational statement for the four lattice problems Svp, Smp, Sivp, and
Cvp, we always assume L ⊆ Qn. The size of a lattice L ⊆ Qn with respect to a basis
B is the maximum of the dimension n, the rank m, and the size of the numerators and
denominators of the coordinates of the basis vectors. In the sequel, if we speak of the size
of a lattice L without referring to some speci�c basis, we implicitly assume that some
basis [b1, . . . , bm] for the lattice L is given.

Let us brie�y review the main known hardness results for these four lattice problems.
All known hardness results for them hold for the decisional variants of the corresponding
problems, whereas all algorithms solve or approximate the search versions of the prob-
lems.

It is not hard to see that the decisional variants of Svp, Smp, Sivp, and Cvp are
in NP. In 1981, van Emde Boas proved that closest vector problem is NP-hard with
respect to any `p-norm with 1 ≤ p ≤ ∞, see [vEB81]. Furthermore, he proved that the
shortest vector problem is NP-hard with respect to the `∞-norm. In the same paper, he
conjectured that the shortest vector problem with respect to the Euclidean norm is also
NP-hard. Solving this task is the big outstanding question in the area of lattice problems.
In 1996, Ajtai achieved a remarkable partial success. He showed that the shortest vector
problem and the shortest independent vectors problem with respect to any `p-norm with
1 ≤ p ≤ ∞ are NP-hard under randomized reduction, see [Ajt98].

These results have been improved in a long sequence of works. Up to now, we know
that for any `p-norm with 1 ≤ p ≤ ∞ the shortest vector problem is NP-hard under ran-
domized reduction, see [Kho05], [Din02], [RR06]. The same results hold for the successive

58
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minima problem and the shortest independent vectors problem, see [BS99], [RR06]. The
closest vector problem in any `p-norm with 1 ≤ p ≤ ∞ is NP-hard to approximate within
some factor mO(1/ log2 log2m), where m is the rank of the lattice, see [ABSS93], [DKRS03],
and [Din02].

On the other hand, we are able to approximate all these lattice problems using polyno-
mial time approximation algorithms with some approximation factor single exponential
in the rank of the lattice. These algorithms go back to an idea of Gauss, [Gau01]. The
so-called Gaussian reduction algorithm is a generalization of the Euclidean algorithm
to dimension 2 and solves the shortest vector problem with respect to the Euclidean
norm exactly. It computes in polynomial time a so-called Gaussian reduced basis and
for lattices of rank 2 such a basis always contains a shortest non-zero lattice vector, see
for example [MG02]. The Gaussian reduction algorithm can be generalized to arbitrary
norms, see [KS96].

It was a breakthrough result when Lenstra, Lenstra, and Lovász presented in the early
1980s a generalization of the Gaussian reduction algorithm to arbitrary dimension. The
so-called LLL-algorithm was the �rst polynomial time algorithm that approximates the
shortest vector problem. Although the achieved approximation factor is single exponen-
tial in the dimension, the algorithm still has a deep impact in many areas in mathematics
and computer science. For more information about the relevance of the LLL-algorithm
see [NV10].

The LLL-algorithm is a polynomial time algorithm which computes for a given lattice
a so-called LLL-reduced basis.

De�nition 4.1.9. (LLL-reduced basis)
Let L ⊆ Rn be a lattice. A basis B = [b1, . . . , bm] is called an LLL-reduced basis of the
lattice if L = L(B) and if B satis�es the following properties:

1. For all j < i we have

µi,j =
〈bi, b†j〉

〈b†j , b
†
j〉

with |µi,j | ≤
1

2
.

2. For all 1 ≤ i < n we have

3

4
· ‖b†i‖

2
2 ≤ ‖µi+1,ib

†
i + b†i+1‖

2
2.

To obtain a trade o� between the approximation factor and the running time the
notion of an LLL-reduced basis can be parameterized using a parameter δ satisfying
1/4 < δ < 1. We neglect this aspect here.

Theorem 4.1.10. (LLL-algorithm, [LLL82])
Given a lattice basis B ∈ Zm×n, the LLL-algorithm computes an LLL-reduced basis using
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4. Lattices: A complexity theoretic perspective

O(n5 · log2(r)) arithmetic operations on integers of length at most O(n2 log2(r)), where
r is an upper bound on the size of the basis vectors.

A complete description of the LLL-algorithm together with a proof of this result can
be found for example in [MG02] or [vzGG03]. In the following theorem, we state the
main properties of an LLL-reduced basis.

Theorem 4.1.11. Let B = [b1, . . . , bm] be an LLL-reduced basis of a lattice L ⊆ Rn.
Then

� ‖bi‖2 ≤ 2(m−1)/2λ
(2)
i (L) for all 1 ≤ i ≤ m and

� for all 1 ≤ i < j ≤ m, we have

‖b†i‖
2
2 ≤ 2j−i‖b†j‖

2
2.

This shows that the LLL-algorithm can be used to compute a 2(m−1)/2-approximation
of the successive minima of a lattice, in particular of its minimum distance. There exist
some (slight) improvements and generalizations of the LLL-algorithm due to Schnorr,
see [Sch94]. Furthermore, we observe that the LLL-algorithm can be used to solve the
shortest vector problem in �xed dimension exactly in polynomial time.

Lovász and Scarf adapted the LLL-algorithm to arbitrary norms, see [LS92]. This al-
gorithm is called the generalized basis reduction algorithm. Unfortunately, it cannot be
guaranteed that the number of arithmetic operations of the generalized basis reduction
algorithm is polynomially bounded in the dimension.

For the closest vector problem, there exist two polynomial time algorithms that achieve
single exponential approximation factor, see [Bab86]. In 1986, Babai showed that a simple
rounding method can be used to obtain a cm-approximation of the closest vector problem
for some �xed constant c: For a given target vector t ∈ Qn from the vector space spanned
by the lattice, we consider the representation of t as a linear combination of the basis
vectors of some LLL-reduced basis of the lattice, t =

∑m
i=1 tibi for ti ∈ Q, 1 ≤ i ≤ m.

Babai showed that the lattice vector
∑m

i=1btiebi is a cm approximation of the closest
lattice vector to t with respect to the Euclidean norm.
Furthermore, he presented in his paper a variant of the LLL-algorithm that can be used
to obtain a polynomial time approximation algorithm for the closest vector problem. The
achieved approximation factor is also single exponential in the rank of the lattice.

Theorem 4.1.12. (Nearest-plane-algorithm, [Bab86])
Given a lattice L ⊆ Zn of rank m and some target vector t ∈ Zn ∩ span(L), the nearest-
plane-algorithm computes in polynomial time a vector v ∈ L such that

‖v − t‖2 ≤ 2m/2µ(2)(t, L).
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4.1. The lattice problems Svp, Smp, Sivp, and Cvp

Again, there exists some improvements of this algorithm, see [Sch87], [Kan87a], and
[Sch94].

Of course, all these polynomial time approximation algorithms can be generalized to
arbitrary `p-norms with 1 ≤ p ≤ ∞ using Hölder's inequality. In this case, the ap-
proximation factor increases by the factor roughly

√
n. The same holds also for all

tractable norms: If ‖ · ‖ is a tractable norm on Rn where c ∈ Z[X] is a polynomial such
that 2−c(n)‖x‖2 ≤ ‖x‖ ≤ 2c(n)‖x‖2 for all x ∈ Rn, the LLL-algorithm or the nearest-
plane-algorithm can be used to solve Svp or Cvp with respect to the norm ‖ · ‖ with
approximation factor 2c(n)2m/2, where m is the rank of the lattice.

Between these two extremes, the NP-hardness of the lattice problems with small ap-
proximation factors and the existence of polynomial time algorithms which achieve single
exponential time approximation factors, there is a wide gap. Over the last years, a great
e�ort by researchers was spent to close this gap. For example, one can show that approx-
imating Svp or Cvp with respect to an arbitrary `p-norm, 1 ≤ p ≤ ∞, with an almost
linear factor is NP-hard unless P = NP, see [LLS90], [Hås88], [Ban93]. For a nice survey
on these results see [Reg10] and [Kho10].

In the rest of this thesis, we concentrate on positive results, i.e., known algorithms
that solve the lattice problems Svp, Smp, Sivp, and Cvp (almost) optimally. As we
have seen, we cannot expect to obtain polynomial time algorithms. Before we focus on
algorithms that solve the lattice problems with respect to arbitrary norms, we shortly
review the main algorithms that solve the lattice problems with respect to the Euclidean
norm and discuss whether they can be adapted to arbitrary norms.

In a breakthrough paper, Micciancio and Voulgaris describe a deterministic single
exponential time algorithm that solves the closest vector problem with respect to the
Euclidean norm exactly, see [MV10a]. It is based on the computation of the Voronoi cell
of a lattice. Using this algorithm, we also obtain a deterministic single exponential time
algorithm for the other lattice problems.

Theorem 4.1.13. (Voronoi-based algorithms for Svp(2), Smp(2), Sivp(2), and Cvp(2),
[MV10a])
There exist deterministic algorithms that solve Svp(2), Smp(2), Sivp(2), and Cvp(2). The
number of arithmetic operations of these algorithms is 2(2+o(1))n log2(r)O(1) and each
number computed by the algorithm has bit size log2(r)O(1), where n is the rank of the
lattice and r is an upper bound on the size of the basis de�ning the lattice. The space
used by the algorithms is 2(1+o(1))n log2(r)O(1).

The algorithms can be easily generalized to all norms which are generated by an inner
product or equivalently to general Euclidean norms as remarked in [DPV11]. Unfortu-
nately, it seems that the Voronoi-based algorithms cannot be generalized to other norms
since then the Voronoi cell of a lattice is not necessarily convex.
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The disadvantage of the algorithms of Miccancio and Voulgaris is that they use expo-
nential space.

The fastest algorithm for the shortest vector problem which uses polynomial space is
an algorithm due to Kannan invented in 1983 and re�ned in 1985 by Helfrich. Recently,
the analysis of the algorithm was improved by Hanrot and Stehlé, see [Kan87b], [Hel85],
and [HS07].

Theorem 4.1.14. (Kannan's algorithm for Svp(2), [Kan87b], [Hel85], [HS07])
There exists a deterministic polynomially space bounded algorithm that solves Svp with
respect to the Euclidean norm. The number of arithmetic operations of the algorithm
is 2O(n)nn/(2e) log2(r)O(1) and each number computed by the algorithm has bit size of at
most (log2(r))O(1), where n is the rank of the lattice, r is an upper bound on the size of
the basis de�ning the lattice, and e is Euler's constant.

This algorithm can be adapted easily to arbitrary `p-norms. In this case, the number
of arithmetic operations is 2O(n)nn log2(r)O(1), see [Kan87b].

For the closest vector problem with respect to the Euclidean norm, there exist basically
two algorithms that run in polynomial space. Since there exist polynomial rank preserv-
ing reductions from the successive minima problem and the shortest independent vectors
problem to the closest vector problem, these polynomially space bounded algorithms also
solve the successive minima problem and the shortest independent vectors problem with
respect to the Euclidean norm.

One of the polynomially space bounded algorithms for Cvp is also due to Kannan and
is improved by Helfrich and Hanrot and Stehlé.

Theorem 4.1.15. (Kannan's algorithm for Cvp(2), [Kan87b], [Hel85], [HS07])
There exists a deterministic polynomially space bounded algorithm that solves the closest
vector problem with respect to the Euclidean norm. The number of arithmetic operations
of the algorithm is 2O(n)nn/2 log2(r)O(1) and each number computed by the algorithm has
bit size of at most (log2(r))O(1), where n is the rank of the lattice and r is an upper bound
on the size of the basis de�ning the lattice.

Another algorithm that solves Cvp optimally is due to Blömer, see [Blö00].

Theorem 4.1.16. (Algorithm for Cvp(2) based on dual Hkz-bases, [Blö00])
There exists a deterministic polynomially space bounded algorithm that solves the closest
vector problem with respect to the Euclidean norm. The number of arithmetic operations
of the algorithm is 2O(n)n! log2(r)O(1) and each number computed by the algorithm has
bit size of at most (log2(r))O(1), where n is the rank of the lattice and r is an upper bound
on the size of the basis de�ning the lattice.

It may be di�cult to generalize these two algorithms to non-Euclidean norms (although
Kannan claims the opposite in his paper), since they both use orthogonal projections: At
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some stage during the algorithm, they consider a target vector which is not contained in
the vector space spanned by the lattice. Since it is not possible in this situation to give
an upper bound on the distance between the target vector and the lattice, they consider
the orthogonal projection of the target vector onto the subspace spanned by the lattice.
Unfortunately, if we consider non-Euclidean norms as for example arbitrary `p-norms,
then the closest lattice vector to the target vector is not a closest lattice vector to the
orthogonal projection of the target vector or vice versa. Also, if we use norm projections
as de�ned in [Man99] or [LS92], this is not true. We will focus on this aspect in the next
Section.

4.2. Similarities and di�erences of the lattice problems

We now consider the four lattice problems Svp, Smp, Sivp, and Cvp in detail. First
of all, we bring up an aspect that we already mentioned in the last section, orthogonal
projections. This technique is used in all deterministic algorithms that solve the closest
vector problem with respect to the Euclidean norm. We give examples why it is di�cult
to generalize this technique to norms which are not based on an inner product.

4.2.1. Orthogonal Projections

As we have seen in Chapter 2, we can distinguish between two types of norms on the
vector space Rn: The norms which are induced by an inner product and the norms which
are not. To recall, all general Euclidean norms are induced by an inner product, whereas
all `p-norms with p 6= 2 are not induced by an inner product. The general Euclidean
norms on Rn are exactly the norms whose unit ball is an ellipsoid. For such norms the
solution of the closest vector problem can be easily reduced to the solution of the closest
vector problem with respect to the Euclidean norm using the fact that each ellipsoid is
the image of the Euclidean unit ball under a bijective a�ne transformation, see Lemma
2.2.7 in Chapter 2.

As we already mentioned, the technique of orthogonal projections plays an important
roll in the algorithmic treatment of lattice problems, e.g. it is used in the Cvp(2)-
algorithms of Kannan and Blömer. In this section, we will show why it does not seem
possible to use projections for algorithmic solution of the closest vector problem for
norms which are not based on an inner product. We start with a description of the
situation and show how we can use projections if we consider the closest lattice vector
problem with respect to a norm induced by an inner product. Then, we give an exam-
ple why this does not seem to work for norms which are not induced by an inner product.

In the following, we assume that we are given a lattice L = L(b1, . . . , bn−1) ⊆ Rn by
the basis vectors b1, . . . , bn−1 ∈ Rn together with some target vector t ∈ Rn. Let bn ∈ Rn

be a vector such that [b1, . . . , bn] is a basis of the vector space Rn. We are searching for
the lattice vector in L which is closest to this target vector t. This situation is illustrated
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span(b1, . . . , bn−1)

b†n bn

t̄⊥

t

Figure 4.2.: Projection in a subspace. The vector t lies in span(b1, . . . , bn). The vector
t̄⊥ denotes the orthogonal projection of t onto span(b1, . . . , bn−1).

in Figure 4.2.

Since t 6∈ span(L), the distance between the target vector and the lattice can be
arbitrarily large. In order to handle this problem we consider the orthogonal projection
of t in span(b1, . . . , bn−1), which is given by

t̄⊥ = t− πn(t) = t− 〈t, b
†
n〉

〈b†n, b†n〉
b†n, (4.1)

where b†n is the n-th Gram-Schmidt-vector of the basis [b1, . . . , bn], see Section 3.1 in
Chapter 3. If we are searching for a solution of the closest vector problem with respect
to the Euclidean norm, we can show the following:

Proposition 4.2.1. Let L = L(b1, . . . , bn−1) ⊆ Rn be a lattice and t ∈ Rn some tar-
get vector. The vector v ∈ L is a closest lattice vector to t with respect to the Eu-
clidean norm if and only if v is a lattice vector in L closest to the projection t̄⊥ of t in
span(b1, . . . , bn−1).

Proof. Let y ∈ L ⊆ span(b1, . . . , bn−1) be a closest lattice vector to t. Since the Euclidean
norm is induced by an inner product, we have ‖t − y‖22 = 〈t − y, t − y〉. Using that

t = t̄⊥ +
(
〈t, b†n〉/〈b†n, b†n〉

)
b†n, see Equation (4.1), we obtain

‖t− y‖22 = 〈t̄⊥ − y, t̄⊥ − y〉+ 2
〈t, b†n〉
〈b†n, b†n〉

〈
b†n, t̄⊥ − y

〉
+

〈
〈t, b†n〉
〈b†n, b†n〉

b†n,
〈t, b†n〉
〈b†n, b†n〉

b†n

〉
.

Since b†n is orthogonal to t̄⊥ − y ∈ span(L), we get

‖t− y‖22 = ‖t̄⊥ − y‖22 + ‖ 〈t, b
†
n〉

〈b†n, b†n〉
b†n‖22,

where the term ‖
(
〈t, b†n〉/〈b†n, b†n〉

)
b†n‖22 is independent of the lattice vector y. Hence, we

see that ‖t− v‖2 is minimized over L if and only if ‖t̄⊥ − v‖2 is minimized over L.
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t̄⊥ = t̄`3

Figure 4.3.: Norm projections. We consider the vector space spanned by the vector
b1 = (1, 1)T ∈ R2 together with the target vector t = (0, 5)T ∈ R2. The
orthogonal projection of t in span(b1) is t̄⊥ = (2.5, 2.5)T ∈ R2, which is also
the `3-projection. The `1-projection is the whole segment k · b1, 0 ≤ k ≤ 5.

This result can be easily adapted to all norms which are based on an inner product,
i.e., if the norm ‖ · ‖ is de�ned by ‖x‖ =

√
s(x, x), for x ∈ Rn, where s : Rn×n → R is a

symmetric bilinear mapping satisfying the corresponding properties, see De�nition 2.2.1
in Chapter 2. Then we use instead of the orthogonal projection de�ned in (4.1), the pro-

jection t−
(
s(t, b†n)/s(b†n, b

†
n)
)
b†n, where b

†
n is a vector orthogonal to span(b1, . . . , bn−1),

with respect to the inner product de�ned by s, i.e., s(b†n, bi) = 0 for all 1 ≤ i ≤ n− 1.

In the rest of this section, we show that Proposition 4.2.1 is not true if the norm is not
induced by an inner product. Additionally, we show that this statement is not true if we
consider the corresponding norm projection instead of the orthogonal projection: As the
norm projection of a vector in a subspace we understand the vector in the subspace with
minimal distance in the corresponding norm. That means, we consider

t̄min ∈ span(L) with ‖t− t̄min‖ = min {‖t− x̄‖ | x̄ ∈ span(L)} . (4.2)

Mangasarian gave an explicit closed form for this projection using the dual norm, see
[Man99]. If we consider a norm induced by an inner product, the norm projection and
the orthogonal projection coincide. Additionally, we need to observe that the norm pro-
jection might not be uniquely determined if the norm is not strictly convex. In Figure
4.3 we see an example of di�erent norm projections.

In the following, we give examples which show that Proposition 4.2.1 does not hold for
non-Euclidean norms. We consider two norms in detail. First, we consider the `1-norm
which is very descriptive. Then we consider a strictly convex norm, the `3-norm.
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Figure 4.4.: Counterexample for projections with respect to the `1-norm. We
consider the lattice spanned by the vector b1 together with the target vector
t. The vector t̄⊥ is the orthogonal projection of t in span(b1), t̄min is the
`1-projection.

Projection with respect to the `1-norm We consider the vector space R2 and the
lattice spanned by the vector b1 = (4, 7)T ∈ R2. Additionally, we consider the target
vector t = (0, 5)T ∈ R2 which is not contained in the subspace span(b1). We are searching
for a lattice vector in L(b1) which is closest to t with respect to the `1-norm, see Figure
4.4 for an illustration.

Claim 4.2.2. The vector v = 0 is the closest lattice vector to t in L(b1) with respect to
the `1-norm.

Proof. Every lattice vector v ∈ L(b1) is of the form v = v1b1 = (4v1, 7v1)T with v1 ∈
Z. Using this representation, the distance between t and a lattice vector is given by
‖t− v1b1‖1 = 4|v1|+ |5− 7v1| and it becomes minimal over Z if v1 = 0.

Now, we consider the orthogonal projection t̄⊥ of t in span(b1) with respect to the
Euclidean norm, see Equation (4.1). The vector (−7, 4)T is orthogonal to b1. Hence, t̄⊥
is given by

t̄⊥ = t−

〈
t,

(
−7
4

)〉
〈( −7

4

)
,

(
−7
4

)〉 ( −7
4

)
=

7

13

(
4
7

)
.

We are searching for the closest lattice vector to t̄⊥ with respect to the `1-norm. Obvi-
ously, in a lattice of rank 1 we get the closest lattice vector by rounding.
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Claim 4.2.3. The vector b1 is a closest lattice vector to t̄⊥ = (7/13) · (4, 7)T in L(b1)
with respect to the `1-norm.

Hence, this is an example where the lattice vector which is closest to t is not the lattice
vector which is closest to the orthogonal projection of t in the lattice. We now consider
the vector t̄min ∈ span(b1) which is closest to t with respect to the `1-norm, as de�ned
in (4.2).

The `1-projection of a vector t onto a subspace S depends of the orientation of the
subspace. In R2, if the angle θ is di�erent from π/4, the projection is unique but directly
along the y-axis or the x-axis. If θ = π/4, the projection is a segment and it includes the
points along both unit directions.
In our example, we obtain

min {‖t− x̄‖1 | x̄ ∈ span(b1)} = min

{∥∥( 0
5

)
− x1

(
4
7

)∥∥
1
| x1 ∈ R

}
= min

{
4|x1|+ |5− 7x1| | x1 ∈ R

}
This value becomes minimal if x1 = 5/7. Hence, t̄min = (5/7) · (4, 7)T . Obviously, we get
the following result.

Claim 4.2.4. The vector b1 = (4, 7)T is the closest lattice vector to t̄min in L(b1) with
respect to the `1-norm.

Hence, this is additionally an instance of the closest vector problem where a lattice
vector that is closest to t is not closest to the target vector t̄min which is the `1-projection
of t in span(L).

Projection with respect to the `3-norm We consider the R2 and the lattice spanned
by the vector b1 = (−12, 44)T ∈ R2. Additionally, we consider the target vector t =
(−20, 19)T ∈ R2, which is not contained in the subspace span(b1). We are searching for
a lattice vector in L(b1) which is closest to t with respect to the `3-norm.

Claim 4.2.5. The vector v = 0 is the closest lattice vector to t in L(b1) with respect to
the `3-norm.

Proof. Every lattice vector v ∈ L(b1) is of the form v = v1b1 = (−12v1, 44v2)T with
v1 ∈ Z. Using this representation, the distance between t and a lattice vector in L(b1)
becomes minimal over Z if

‖t− v1b1‖33 = | − 20 + 12v1|3 + |19− 44v1|3

becomes minimal over Z, i.e., if v1 = 0.
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We now consider the orthogonal projection t̄⊥ of t in span(b1) with respect to the
Euclidean norm. The vector (44, 12)T is orthogonal to b1. Hence, t̄⊥ is given by

t̄⊥ = t−

〈
t,

(
44
12

)〉
〈( 44

12

)
,

(
44
12

)〉 ( 44
12

)
=

269

520

(
−12
44

)

Since L(b1) is a lattice of rank 1, we obtain the closest lattice vector to t̄⊥ with respect
to the `3-norm by rounding.

Claim 4.2.6. The vector b1 is a closest lattice vector to t̄⊥ in L(b1) with respect to the
`3-norm.

To compute the vector t̄min ∈ span(b1) which is the closest vector to t in span(b1), we
are searching for

min
{
‖t− λb1‖33 | λ ∈ R

}
= min

{
| − 20 + 12λ|3 + |19− 44λ|3 | λ ∈ R

}
,

see Equation (4.2). Using standard techniques, it is easy to compute that this minimum
is achieved for λ = (13 +

√
33)/32, i.e., t̄min = ((13 +

√
33)/32) · b1. Hence we obtain the

following result.

Claim 4.2.7. The vector b1 = (−12, 44)T is the closest lattice vector to t̄min in L(b1)
with respect to the `3-norm.

These examples illustrate why it is not possible to use orthogonal projections for the
solution of the closest vector problem with respect to non-Euclidean norms.

4.2.2. Number of solutions

In this section, we study the question if there exists an upper bound on the number of
optimal solutions for lattice problems. We will show that the shortest vector problem
is the only lattice problem among the four classical lattice problems where the number
of almost optimal solutions is at most single exponential in the dimension. This result
holds for any norm.
The results presented in this section are based on results of Niemeier for the number
of optimal solutions of the shortest vector problem and the closest vector problem for
arbitrary `p-norms with 1 < p <∞, see [Nie07].

First of all, we show that for every strictly convex norm the number of exact solutions
of Svp, Smp, and Cvp is at most 2m+1 where m is the rank of the lattice.
To show this, we consider the cosets of the group L/2L. To recall, two lattice vectors
v, w ∈ L are contained in the same coset if and only if v −w ∈ 2L, i.e, if (v −w)/2 ∈ L,
see De�nition 3.1.5 in Chapter 3. The number of cosets of L/2L is exactly 2m. Given a
basis B = [b1, . . . , bm] of the lattice L every lattice vector v ∈ L can be uniquely repre-
sented as v =

∑m
i=1(2v̄i + v̂i)bi with v̄i ∈ Z and v̂i ∈ {0, 1} for all 1 ≤ i ≤ m. Using this
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representation, two lattice vectors v, w ∈ L are contained in the same coset if and only
if v̂i = ŵi for all 1 ≤ i ≤ m.

The main idea to give an upper bound on the number of solutions is as follows: If
two lattice vectors v, w ∈ L are contained in the same coset, the vector (v+w)/2 is also
contained in the lattice L and it follows from the strict convexity of the norm that

∥∥w + v

2

∥∥ < 1

2
‖w‖+

1

2
‖v‖.

That means if v and w have the same length, the vector (v + w)/2 is a shorter lattice
vector than v and w. This leads directly to an upper bound on the number of possible
solutions for the shortest vector problem.

Lemma 4.2.8. Let ‖ · ‖ be a strictly convex norm on Rn. Let L ⊆ Rn be a lattice of
rank m. Then the number of shortest non-zero lattice vectors in L with respect to the
norm ‖ · ‖ is at most 2m+1.

Proof. Let u, v ∈ L\{0}, be two shortest distinct lattice vectors, that means

‖u‖ = ‖v‖ = λ
(‖·‖)
1 (L) and u 6= ±v.

If u and v are contained in the same coset L/2L, then (v − w)/2 ∈ L. Since L is an
additive subgroup of Rn, this shows that also (1/2)(v−w) +w = (1/2)(v+w) ∈ L\{0}.
Since the norm is strictly convex, we have

∥∥1

2
(u+ v)

∥∥ < 1

2
‖u‖+

1

2
‖v‖ = λ

(‖·‖)
1 (L),

which yields a contradiction. Hence, every coset contains at most two shortest non-zero
lattice vectors v1, v2 ∈ L which satisfy v1 = −v2. Since the number of cosets of L/2L is
exactly 2m, the number of shortest non-zero lattice vectors is at most 2 · 2m = 2m+1.

We can use the same argument to give an upper bound on the number of optimal
solutions for the successive minima problem.

Lemma 4.2.9. Let ‖ · ‖ be a strictly convex norm on Rn. Let L ⊆ Rn be a lattice
of rank m. For 1 < i ≤ m, let v1, . . . , vi−1 ∈ L be linearly independent such that
‖vj‖ = λ

(‖·‖)
j (L) for 1 ≤ j < i. Then the number of shortest lattice vector v ∈ L with

v 6∈ span(v1, . . . , vi−1) is at most 2m+1.

Proof. Let u, v ∈ L be two distinct vectors satisfying u, v 6∈ span(v1, . . . , vi−1), u 6= ±v,
and ‖u‖ = ‖v‖ = λ

(‖·‖)
j (L). If u and v are contained in the same coset, we have (u−v)/2 ∈

L. Since u and v are not contained in span(v1, . . . , vi−1), we have either (u + v)/2 6∈
span(v1, . . . , vj−1) or (u−v)/2 6∈ span(v1, . . . , vj−1). Without loss of generality we assume
that (u+ v)/2 6∈ span(v1, . . . , vj−1).

69



4. Lattices: A complexity theoretic perspective

Since the norm is strictly convex, we obtain the contradiction to the de�nition of the
j-th successive minimum that

∥∥1

2
(u+ v)

∥∥ < 1

2
‖u‖+

1

2
‖v‖ = λ

(‖·‖)
j (L).

This shows that the vectors u, v are not contained in the same coset. Since the number
of cosets of L/2L is exactly 2m, the number of lattice vectors in L\ span(v1, . . . , vj−1)
with minimal length is at most 2 · 2m = 2m+1.

Also for the closest vector problem we can show that the number of optimal solutions
is single exponential in the rank of the lattice.

Lemma 4.2.10. Let ‖ · ‖ be a strictly convex norm on Rn. Let L ⊆ Rn be a lattice of
rank m and t ∈ Rn be some target vector. Then the number of lattice vectors in L which
are closest to t with respect to the norm ‖ · ‖ is at most 2m.

Proof. Let u, v ∈ L, u 6= v, be closest lattice vectors to t with respect to the norm ‖ · ‖.
If u ≡ v mod 2L, we have (1/2)(u − v) ∈ L Since L is an additive subgroup of Rn, it
follows that (u + v)/2 = (u − v)/2 + v ∈ L. Using the strict convexity of the norm, we
obtain that ∥∥1

2
(u+ v)− t

∥∥ =
1

2
‖u+ v − 2t‖ < 1

2
‖u− t‖+

1

2
‖v − t‖.

Since u, v ∈ L are closest lattice vectors to t we obtain the contradiction that

∥∥1

2
(u+ v)− t

∥∥ < µ(‖·‖)(t, L).

Hence every coset contains at most one closest lattice vector to t. Since the number of
cosets of L/2L is exactly 2m, the number of closest lattice vectors is at most 2m.

For Smp and Cvp these results do not hold if the norm is not strictly convex, as it is
illustrated in Figure 4.5.

For the shortest vector problem we can show that for every norm the number of exact
solutions is single exponential in the dimension. This result is based on the following
lemma which is a generalization of Claim 5 in [Reg04] based on an idea of Goldreich and
Goldwasser, see [GG00].

Lemma 4.2.11. Let ‖ · ‖ be a norm on Rn. Let L ⊆ Rn be a lattice, t ∈ Rn and R > 0.

Then the number of lattice vectors in the ball B̄(‖·‖)
n (t, R) is at most

|B̄(‖·‖)
n (t, R) ∩ L| <

(
2R+ λ

(‖·‖)
1 (L)

λ
(‖·‖)
1 (L)

)n
.
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B̄
(∞)
n (0,1/2)

b1=(1,0)T

b2=(0,δ)T

t

B̄
(∞)
n (0,λ

(∞)
2 (L))

b1=(δ,0)T

b2=(0,1)T

Cvp Smp

Figure 4.5.: Number of solutions for Smp and Cvp with respect to not strictly

convex norms. On the left, we consider the lattice generated by the basis
vectors (1, 0)T ∈ R2 and (0, δ)T ∈ R2 with δ > 0 small together with the
target vector t = (1/2, 0). The distance between this target vector and the
lattice in the `∞-norm is 1/2. The smaller the parameter δ, the greater

the number of lattice vectors in B̄
(∞)
n (t, 1/2). On the right, we consider

the lattice generated by the basis vectors (δ, 0)T ∈ R2 and (0, 1)T ∈ R2.
The minimum distance of this lattice with respect to the `∞-norm is δ and
the second successive minimum is 1. The smaller the parameter δ is, the
greater the number of lattice vectors in B̄(∞)

n (0, 1) which are not contained
in span((δ, 0)T ).

Proof. By de�nition of the minimum distance, for all lattice vectors v, w ∈ L, v 6= w, the
balls with radius λ(‖·‖)

1 (L)/2 around these vectors are disjoint,

B(‖·‖)
n

(
v,
λ

(‖·‖)
1 (L)

2

)
∩B(‖·‖)

n

(
w,
λ

(‖·‖)
1 (L)

2

)
= ∅ for all v, w ∈ L.

If we regard only lattice vectors in B̄
(‖·‖)
n (t, R), it follows from the convexity of the

norm that their union is contained in B̄(‖·‖)
n (t, R+λ

(‖·‖)
1 (L)/2). Therefore the number of

elements in B̄(‖·‖)
n (t, R) ∩ L is at most

∣∣∣B̄(‖·‖)
n (t, R) ∩ L

∣∣∣ ≤ voln

(
B̄

(‖·‖)
n

(
t, R+

λ
(‖·‖)
1 (L)

2

))
voln

(
B

(‖·‖)
n

(
v,

λ
(‖·‖)
1 (L)

2

)) =

(
2R+ λ

(‖·‖)
1 (L)

λ
(‖·‖)
1 (L)

)n
,

where the last equality follows from Equation (2.1) in Chapter 2.

Using this result with radius R = γλ
(‖·‖)
1 (L) for some parameter γ ≥ 1, we obtain the

following.
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B̄
(2)
n (0,1)

b1=(1,0)T

b2=(0,δ)T
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b1t

B̄
(2)
n (0,3λ

(2)
2 (L))

b1=(δ,0)T

b2=(δ/2,1)T

Cvp Smp

Figure 4.6.: Number of approximate solutions for Cvp and Smp. On the left, we
consider the lattice generated by the basis vectors (1, 0)T ∈ R2 and (0, δ)T ∈
R2 with δ > 0 small together with the target vector t = (1/2, 0)T ∈ R2. The
Euclidean distance between the target vector and the lattice is 1/2. The
smaller the parameter δ, the greater the number of lattice vectors which are
contained in Euclidean ball with radius 1 around the target vector t. On the
right, we consider the lattice generated by the basis vectors (δ, 0)T ∈ R2 and
(δ/2, 1)T ∈ R2. The minimum distance of this lattice in the Euclidean norm

is δ, the second successive minimum is λ(2)
2 (L) =

√
δ2/4 + 1. The smaller

the parameter δ is, the greater the number of lattice vectors in the Euclidean
ball with radius 3λ

(2)
2 (L).

Corollary 4.2.12. Let ‖ · ‖ be a norm on Rn. Let L ⊆ Rn be a lattice t ∈ Rn. Then the

number of lattice vectors in L with length at most γ · λ(‖·‖)
1 (L) is at most (2γ + 1)n, i.e.,∣∣∣B̄(‖·‖)

n (0, γ · λ(‖·‖)
1 (L)) ∩ L

∣∣∣ ≤ (2γ + 1)n

If we choose γ = 1, this result shows that the number of optimal solutions of the short-
est vector problem for every norm is at most 3n. Furthermore, it shows that also the
number of γ-approximate solutions of Svp is at most single exponential in the dimension.
This is the main reason why the solution of the shortest vector problem is comparatively
uncomplicated. For the other lattice problems Smp, Sivp, and Cvp, such results do not
hold as it is shown in the examples presented in Figure 4.6. The example for Smp also
shows why it is not possible to give an upper bound on the number of optimal solutions
for Sivp.

Of course, if we consider restricted versions of Smp, Sivp, or Cvp, we can use the
result of Lemma 4.2.11. These restricted versions are characterized by the fact that the
successive minima respectively the distance of the target vector to the lattice are not
much longer than the minimum distance of the lattice.

Corollary 4.2.13. Let ‖ · ‖ be a norm on Rn. Let L ⊆ Rn be a lattice satisfying

λ
(‖·‖)
i (L) ≤ c · λ(‖·‖)

i (L) for some c > 0 and some index 1 ≤ i ≤ n. Then the number of
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lattice vectors in L with length at most γ ·λ(‖·‖)
i (L) for some γ ≥ 1, is at most (2γ ·c+1)n,

i.e., ∣∣∣B̄(‖·‖)
n

(
0, γ · λ(‖·‖)

i (L)
)
∩ L
∣∣∣ ≤ (2γ · c+ 1)n

Corollary 4.2.14. Let ‖·‖ be a norm on Rn. Let L ⊆ Rn be a lattice and t ∈ span(L) be

some target vector satisfying µ(‖·‖)(t, L) ≤ c ·λ(‖·‖)
1 (L) for some constant c > 0. Then the

number of lattice vectors in L whose distance to the target vector is at most γ ·µ(‖·‖)(t, L)
for some γ ≥ 1, is upper bounded by (2γ · c+ 1)n, i.e.,∣∣∣B̄(‖·‖)

n

(
0, γ · µ(‖·‖)(t, L)

)
∩ L
∣∣∣ ≤ (2γ · c+ 1)n.

After the general considerations, which make similarities and di�erences between the
lattice problems clear, we now consider the relation between the lattice problems, i.e.,
we deal with the topic if certain lattice problems are easier than others. Furthermore,
we introduce two additional lattice problems that will allow us to present a uni�ed
algorithmic treatment of the lattice problems in the following.

4.3. Relation between lattice problems

Up to now we considered the lattice problems relatively independently. Now we want
to study the relation between them. Since we focus in this thesis on the complexity
of lattice problems with respect to arbitrary norms, we neglect all reductions between
lattice problems which work only for the Euclidean norm.

Obviously, there is a polynomial time reduction from the shortest vector problem to
the successive minima problem which works for any norm. The same holds for the short-
est independent vectors problem and the successive minima problem.

The relation between the shortest vector problem and the closest vector problem is not
so obvious. Although, the closest vector problem is considered as a kind of an inhomo-
geneous version of the shortest vector problem, we have to keep in mind that a shortest
vector in some lattice L is not a closest lattice vector to 0 in the lattice L since 0 is
always a lattice vector. In 1999, Goldreich, Micciancio, Safra, and Seifert showed that
the shortest vector problem is not harder than the closest vector problem, see [GMSS99].
That means there exists a polynomial time reduction from the shortest vector problem
to the closest vector problem. This reduction works for any e�ciently computable norm
and preserves the rank of the lattice. Furthermore, it preserves the approximation factor,
i.e., if we are given an algorithm A that computes for a given lattice L ⊆ Rn and some
target vector t ∈ span(L) ∩Rn a vector v ∈ L such that ‖v − t‖ ≤ f(n) · µ(‖·‖)(t, L) for
some function f : N → R≥0, then there exists an algorithm that computes for a given
lattice L a vector v ∈ L satisfying ‖v‖ ≤ f(n) · λ(‖·‖)

1 (L).
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Smp

Svp Sivp

Cvp

Figure 4.7.: Relation between the lattice problems for arbitrary norms. Arrows
indicate polynomial time reductions preserving the rank of the lattice and
the approximation factor.

In 2008, Micciancio shows the same for the relation between the successive minima
problem and the closest vector problem. In [Mic08], he presented a polynomial time
reduction form the successive minima problem to the closest vector problem which pre-
serves the rank of the lattice and the approximation factor. The reduction works for any
e�ciently computable norm.

These relations between the four lattice problems Svp, Smp, Sivp, and Cvp are illus-
trated in Figure 4.7. For the sake of completeness, one can show that with respect to
the Euclidean norm, Smp, Sivp, and Cvp in their exact version are equivalent and that
there exists a polynomial time reduction from the exact version of Svp to all of these
problems, see [Mic08].

4.3.1. The generalized shortest vector problem

To obtain a uni�ed algorithmic treatment for all four lattice problems we de�ne a new
lattice problem, the generalized shortest vector problem, Gsvp. We will show that there
are polynomial time reductions from Svp, Smp, Sivp, and Cvp to Gsvp. In the next
chapter, Chapter 5, we will present a probabilistic single exponential time algorithm that
approximates the generalized shortest vector problem with approximation factor 1 + ε
for any 0 < ε < 3/2.

De�nition 4.3.1. (Generalized Shortest Vector Problem (Gsvp))
Given a lattice L ⊆ Rn and some subspace M ( span(L) �nd a shortest lattice vector
v ∈ L\M with respect to the norm ‖ · ‖. We set

λ
(‖·‖)
M (L) := min {r ∈ R| ∃v ∈ L\M, ‖v‖ ≤ r}

and call it the subspace avoiding minimum.

The geometry behind the generalized shortest vector problem is illustrated in Figure
4.8.
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M

b1

b2

Figure 4.8.: The generalized shortest vector problem. The lattice L is generated
by the basis vectors b1 = (2, 1)T ∈ R2 and b2 = (1, 2)T ∈ R2, the subspace
M is spanned by the vector v = (−1, 1)T ∈ R2. A shortest vector in L\M
(with respect to the Euclidean norm) is the vector b2.

We now show that there are polynomial time reductions from Svp, Smp, Sivp, and
Cvp to Gsvp as it is illustrated in Figure 4.9. In the following, we are given access to an
algorithm A that solves the generalized shortest vector problem with an approximation
factor 1 + ε for some arbitrary ε ≥ 0. The core of the reductions is a suitable de�nition
of the subspace.

The shortest vector problem

Theorem 4.3.2. For all e�ciently computable norms the shortest vector problem with
approximation factor 1 + ε, ε ≥ 0, is polynomial time reducible to the generalized shortest
vector problem with approximation factor 1 + ε.

Proof. We chooseM := {0} ( span(L). Hence, if we compute a (almost) shortest lattice
vector u ∈ L\M , we compute a (almost) shortest non-zero lattice vector u ∈ L, i.e., we
have λ(‖·‖)

M (L) = λ
(‖·‖)
1 (L). Therefore, using the algorithm A with input of the lattice L

and the subspace M we get a (1 + ε)-approximation of a shortest non-zero lattice vector
in L.

The successive minima problem and the shortest independent vectors problem

Theorem 4.3.3. For all e�ciently computable norms the successive minima problem
and the shortest independent vectors problem with approximation factor 1 + ε, ε ≥ 0, are
polynomial time reducible to the generalized shortest vector problem with approximation
factor 1 + ε.

Proof. Since Sivp reduces to Smp, we concentrate on the reduction of the successive
minima problem to the generalized shortest vector problem. Using the algorithm A, we
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Smp

Svp Sivp

Gsvp Cvp

Figure 4.9.: Relation between Gsvp and the other lattice problems. Arrows in-
dicate polynomial time reductions preserving the rank of the lattice and the
approximation factor. The arrow from Cvp to Gsvp is marked dashed since
the approximation factor is not exactly preserved by the reduction.

get a (1 + ε)-approximation of the �rst successive minimum as in Theorem 4.3.2. For
i > 1 we de�ne the subspace M := span(v1, . . . , vi−1) with v1, . . . , vi−1 ∈ L linearly

independent. Since dim(M) < i, there exists a vector w ∈ L with ‖w‖ ≤ λ
(‖·‖)
i (L) and

w 6∈ M . Therefore, λ(‖·‖)
M (L) < λ

(‖·‖)
i (L) and using the algorithm A with input of the

lattice L and the subspace M we get a (1 + ε)-approximation for the i-th successive
minimum.

The closest vector problem

The reduction of the closest vector problem to the generalized shortest vector problem
relies on a lifting technique introduced by Kannan [Kan87b] and re�ned by Ajtai, Kumar
and Sivakumar [AKS02] and Micciancio and Goldwasser [MG02], respectively.

We assume that we are given an instance of the closest vector problem by a lattice
L ⊆ Rn of rank m and some target vector t ∈ span(L). We construct an instance of the
generalized shortest vector problem by embedding the lattice and the target vector in a
higher dimensional space. We de�ne the (n + 1)-dimensional lattice L′ as the smallest
lattice which contains the vector (tT , γ)T ∈ Rn+1 for some suitable chosen parameter γ
and all vectors of the form (vT , 0)T ∈ Rn+1 where v is a lattice vector from the original
lattice L. If [b1, . . . , bm] ∈ Rn×m is a basis of the lattice L, we de�ne

L′ := L
([(

b1
0

)
, . . . ,

(
bm
0

)
,

(
t
γ

)])
.

The parameter γ ∈ R will be de�ned later. Additionally, we de�ne the subspace

M := span

({(
bi
0

) ∣∣ 1 ≤ i ≤ m
})
⊆ span(L′).
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In the following, we will show that we are able to compute a lattice vector in L which
is (almost) closest to the target vector t if we are given a (almost) shortest vector in L′\M .

Every vector in L′\M is of the form (vT , 0)T + k(tT , γ) with v ∈ L and k ∈ Z. If we
have k = −1, the length of such a vector becomes minimal if and only if the distance
between the target vector t and a lattice vector from L becomes minimal.
The main di�culty of the construction is the choice of the parameter γ. We need to
choose it appropriately such that a shortest vector in L′\M is of the form described
above with k = −1.

Another technical di�culty of the construction described above is that we want to
solve/approximate the closest vector problem with respect to a tractable norm ‖ · ‖ on
Rn using the solution of an instance of the generalized shortest vector problem in Rn+1.
To do so, we need access to an oracle A that solves the generalized shortest vector
problem with respect to the following norm on Rn+1: We de�ne the mapping

F : Rn+1 → R (4.3)

x = (x̄T , x̂)T 7→ ‖x̄‖+ |x̂|.

It is easy to see that F de�nes a norm on Rn+1 if ‖·‖ de�nes a norm on Rn. Furthermore,
we see that F is a tractable norm if ‖ · ‖ is a tractable norm.

Lemma 4.3.4. Let ‖·‖ be a tractable norm on Rn. Then the mapping F : Rn+1 → R≥0,

F : Rn+1 → R

x = (x̄T , x̂)T 7→ ‖x̄‖+ |x̂|.

is a tractable norm on Rn+1.

In the following, we assume that the oracle A solves the generalized shortest vector
problem with respect to this norm F with an approximation factor 1 + ε for any ε ≥ 0.
We show that we are able to solve the closest vector problem with respect to the norm
‖ · ‖ exactly if A solves the generalized shortest vector problem with respect to the norm
F exactly. If A solves the generalized shortest vector problem with respect to the norm
F with an approximation factor 1 + ε, 0 ≤ ε ≤ 1/2, we will �nd a (1 + 6ε)(1 + α)-
approximation of the closest vector problem with respect to the norm ‖ · ‖. Here the
parameter α > 0 is arbitrary.

The main idea is to try to set the parameter γ to some value slightly bigger than the
distance µ(‖·‖)(t, L) between the target vector and its closest vector in the lattice L. Since
we are able to decide in polynomial time whether t ∈ L, we assume µ(‖·‖)(t, L) > 0, see
for example [Coh93]. Given a parameter α > 0 the reduction requires a parameter ρ > 0
with

ρ ≤ µ(‖·‖)(t, L) < (1 + α)ρ.
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To get ρ we try all values

ρ := (1 + α)k

for k ∈ Z satisfying k0 ≤ k ≤ k1, where

k0 := log1+α(r−(n2+n)2−c(n)) and

k1 := log1+α

(
n ·max

{
||bi|| |1 ≤ i ≤ m

})
,

where [b1, . . . , bm] ∈ Qn×m is a basis of the lattice L and c ∈ Z[X] is a polynomial
satisfying 2−c(n)‖x‖2 ≤ ‖x‖ ≤ 2c(n)‖x‖2 for all x ∈ Rn. We need to argue that there
exists an integer k with k0 ≤ k ≤ k1 satisfying ρ ≤ µ(‖·‖)(t, L) < (1 + α)ρ.

Claim 4.3.5. Let ‖ · ‖ be a tractable norm on Rn and c ∈ Z[X] be a polynomial such
that 2−c(n)‖x‖2 ≤ ‖x‖ ≤ 2c(n)‖x‖2 for all x ∈ Rn. Let L ⊆ Qn be a lattice and t ∈
span(L) ∩Qn be some target vector satisfying t 6∈ L. Then

µ(‖·‖)(t, L) ≥ r−(n2+n)2−c(n),

where r is an upper bound on the size of the basis de�ning the lattice and the target vector.

Proof. We can transform the lattice L ⊆ Qn and the target vector t ∈ Qn into a lattice
L̃ ⊆ Zn and a target vector t̃ ∈ Zn by doing the following: We multiply the basis and
the target vector t with the least common multiple lcm of the at most n2 denominators
of the coe�cients of the basis vectors and the n denominators of the coe�cients of the
target vector t. This means, we multiply each coe�cient with an integer of size at most
rn

2+n, since r is an upper bound on the size of the basis vectors and the target vector.
Obviously, t̃ 6∈ L̃. Since L̃ ⊆ Zn and t̃ ∈ Zn, the Euclidean distance between the target
vector t̃ and the lattice L̃ is at least 1, µ(2)(t̃, L̃) ≥ 1. Since ‖ · ‖ is a tractable norm, the
distance between t̃ and L̃ with respect to the norm ‖ · ‖ is at least µ(‖·‖)(t̃, L̃) ≥ 2−c(n).
This implies that

µ(‖·‖)(t, L) ≥ r−(n2+n)2−c(n).

Using a standard rounding argument, we can see that for every target vector t ∈
span(L) its distance to the lattice is at most m ·max{‖bi‖|1 ≤ i ≤ m}, where m is the
rank of the lattice and B = [b1, . . . , bm] is a basis of L:

Claim 4.3.6. Let ‖ · ‖ be a norm on Rn. Let L ⊆ Rn be a lattice given by a basis
B = [b1, . . . , bm] and t ∈ span(L). Then the distance between the target vector t and the
lattice L is at most

µ(‖·‖)(t, L) ≤ 1

2

m∑
i=1

‖bi‖ ≤ m ·max
{
‖bj‖ | 1 ≤ j ≤ m

}
.
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Proof. Since t ∈ span(L), there exists a representation of t as a linear combination of the
basis vectors, t =

∑n
i=1 tibi with ti ∈ R for all 1 ≤ i ≤ m. The distance between t and

the lattice vector
m∑
i=1

btiebi ∈ L(B) = L,

which is given by rounding each coe�cient of t to the nearest integer, is bounded by∥∥t− m∑
i=1

btiebi
∥∥ ≤ m∑

i=1

|ti − btie| · ‖bi‖ ≤
1

2

m∑
i=1

‖bi‖.

Combining Claim 4.3.5 and Claim 4.3.6 we obtain

r−(n2+n)2−c(n) ≤ µ(‖·‖)(t, L) ≤ n ·max{||bi|| | 1 ≤ i ≤ m},

where r is an upper bound on the size of the basis B de�ning the lattice L and the
target vector and c ∈ Z[X] is a polynomial satisfying 2−c(n)‖x‖2 ≤ ‖x‖ ≤ 2c(n)‖x‖2
for all x ∈ Rn. Therefore, there exists an integer k with k0 ≤ k ≤ k1 satisfying
(1 + α)k ≤ µ(‖·‖)(t, L) < (1 + α)k+1. Moreover, we only need to try polynomially (in
log2(r) and 1/α) many guesses of the form r := (1 + α)k.

In the following, we assume that the parameter ρ satis�es ρ ≤ µ(‖·‖)(t, L) < (1 + α)ρ.
For 0 ≤ ε ≤ 1/2 we de�ne the parameter γ as

γ :=
1 + ε

1− ε
(1 + α)ρ. (4.4)

We consider the lattice L′ ⊆ Rn+1 and the subspace M ∈ Rn+1, de�ned as

L′ := L
([(

b1
0

)
, . . . ,

(
bm
0

)
,

(
t
γ

)])
and (4.5)

M := span

({(
bi
0

)
|1 ≤ i ≤ m

})
( span(L′), (4.6)

where [b1, . . . , bm] ∈ Qn×m is a basis of the lattice L.
First of all we give an upper bound on the subspace avoiding minimum of this Gsvp-

instance.

Claim 4.3.7. Let ‖ · ‖ be a norm on Rn and F be de�ned as in (4.3). Let 0 ≤ ε ≤ 1/2,
let L ⊆ Rn be a lattice and let t ∈ span(L) be some target vector. For α > 0 arbitrary let
ρ be a parameter satisfying ρ < µ(‖·‖)(t, L) ≤ (1 + α)ρ. Let the parameter γ, the lattice
L′ ⊆ Rn+1 and the subspace M ( span(L′) be de�ned as above, see (4.4), (4.5), and
(4.6). Then the subspace avoiding minimum of L and M with respect to the norm F is
less than

λ
(F )
M (L′) <

2

1 + ε
γ.
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Proof. Let z ∈ L be the lattice vector that is closest to the target vector t with respect
to the norm ‖ · ‖. Then (z− t,−γ) ∈ L′\M and the length of the vector (z− t,−γ) with
respect to the norm F is bounded by

F ((z − t,−γ)) = ||z − t||+ |γ|
= µ(‖·‖)(t, L) + |γ|

< (1 + α)ρ+
1 + ε

1− ε
(1 + α)ρ

=
2

1− ε
(1 + α)ρ

=
2

1 + ε
γ.

Therefore, the subspace avoiding minimum is smaller than λ(F )
M (L′) < 2γ/(1 + ε).

The following lemma shows that given an oracle A that solves the generalized shortest
vector problem with respect to the norm F de�ned in (4.3) exactly, we can solve the
closest vector problem with respect to the norm ‖ · ‖ exactly.

Lemma 4.3.8. Let ‖ · ‖ be a norm on Rn and F be de�ned as in (4.3). Let 0 ≤ ε ≤ 1/2,
let L ⊆ Rn be a lattice and let t ∈ span(L) be some target vector. For α > 0 arbitrary let
ρ be a parameter satisfying ρ < µ(‖·‖)(t, L) ≤ (1 + α)ρ. Let the parameter γ, the lattice
L′ ⊆ Rn+1 and the subspace M ( span(L′) be de�ned as above, see (4.4), (4.5), and
(4.6).

If u ∈ L′\M with F (u) = λ
(F )
M (L′), then u = ±(z− t,−γ) where z ∈ L is a lattice vector

that is closest to the target vector t with respect to the norm ‖ · ‖.

Proof. We have seen in Claim 4.3.7 that with our assumptions the subspace avoiding
minimum of the lattice L′ and the subspace M with respect to the norm F is less than
2γ,

λ
(F )
M (L′) < 2γ.

Hence, the vector u is of the form u = (z±t,±γ) for some lattice vector z ∈ L. Therefore,
|| ∓ z − t|| = µ(‖·‖)(t, L) and ∓z is a lattice vector closest to t.

This result shows that there exists a polynomial time reduction from the exact ver-
sion of the closest vector problem to the exact version of the generalized shortest vector
problem.

Next, we assume that the oracle A solves the generalized shortest vector problem with
approximation factor 0 < ε ≤ 1/2. Because of the lifting technique we are not able to
solve the closest vector problem with an approximation factor 1 + ε but only with an
approximation factor (1 + 4ε)(1 + α).
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Lemma 4.3.9. Let ‖ · ‖ be a norm on Rn and F be de�ned as in (4.3). Let 0 < ε ≤ 1/2,
let L ⊆ Rn be a lattice and let t ∈ span(L) be some target vector. For α > 0 arbitrary let
ρ be a parameter satisfying ρ < µ(‖·‖)(t, L) ≤ (1 + α)ρ. Let the parameter γ, the lattice
L′ ⊆ Rn+1 and the subspace M ( span(L′) be de�ned as above, see (4.4), (4.5), and
(4.6).

Let v ∈ L′\M be a vector satisfying F (v) < (1 + ε)λ
(F )
M (L′). Then a lattice vector z∗ ∈ L

with

||z∗ − t|| ≤ (1 + 4ε)(1 + α)µ(‖·‖)(t, L)

can be computed in polynomial time.

Proof. Since the subspace avoiding minimum λ
(F )
M (L′) is less than (2/(1+ε))γ, see Claim

4.3.7, the length of the vector v with respect to the norm F is at most

F (v) < (1 + ε)λ
(F )
M (L′) < 2γ. (4.7)

Since v ∈ L′\M , the vector v is of the form v = ±(z∗ − t,−γ) for some lattice vector
z∗ ∈ L. Without loss of generality we assume v = (z∗ − t,−γ). Hence,

F (v) = ||z∗ − t||+ γ (4.8)

and we can give an upper bound on the distance between the lattice vector z∗ and the
target vector t with respect to the norm ‖ · ‖,

‖z∗ − t‖ = F (v)− γ < 2γ − γ = γ,

using Inequality (4.7). The parameter γ is de�ned as γ = ((1 + ε)/(1− ε))(1 + α)ρ, see
Equation (4.4). Since we assume that ρ < µ(‖·‖)(t, L) this is less than

γ <
1 + ε

1− ε
(1 + α)µ(‖·‖)(t, L).

Using the inequality 1/(1− ε) ≤ 1 + 2ε which holds for all ε < 1/2, we obtain

γ < (1 + 2ε)(1 + ε)(1 + α)µ(‖·‖)(t, L) ≤ (1 + 4ε)(1 + α)µ(‖·‖)(t, L).

This shows that the vector z∗ ∈ L is an (1 + 4ε)(1 + α)-approximation of the closest
lattice vector to t with respect to the norm ‖ · ‖.

Summarizing, we get

Theorem 4.3.10. For all tractable norms, the exact version of Cvp is polynomial time
reducible to the exact version of Gsvp. Also, for all e�ciently computable norms, Cvp
with approximation factor (1 + ε)(1 +α) for 0 < ε ≤ 1/2 and α > 0 is reducible to Gsvp
with approximation factor 1+ ε/4. The reduction is polynomial in the representation size
of the Cvp instance and in 1/α.
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If we want to solve the closest vector problem with respect to an `p-norm for 1 ≤ p ≤ ∞
using an oracle for the generalized shortest vector problem, the reduction described above
can be simpli�ed using that for �xed p, the `p-norms are a family of norms. That means

for all n ∈ N, the function Rn → R≥0, x 7→ (
∑n

i=1 |xi|p)
1/p de�nes a norm on Rn

called the `p-norm on Rn. Hence, we do not need to solve the generalized shortest vector
problem with respect to the norm F as de�ned in (4.3). Instead we solve the generalized
shortest vector problem with respect to the `p-norm on Rn+1. In this case, we can use the
same construction for the reduction from the closest vector problem to the generalized
shortest vector problem as above but with the parameter

γ :=
1

p
√

2p − (1 + ε)p
(1 + ε)(1 + α)ρ

for 1 ≤ ρ <∞. For the `∞-norm, we set

γ :=
1

2
(1 + ε)(1 + α)ρ.

Then we obtain

Theorem 4.3.11. For all `p-norms with 1 ≤ p ≤ ∞, the exact version of the closest
vector problem in the `p-norm is polynomial time reducible to the exact version of the
generalized shortest vector problem in the `p-norm.
Also, for all `p-norms with 1 ≤ p ≤ ∞, the closest vector problem in the `p-norm with
approximation factor (1 + ε)(1 + α) for 0 < ε ≤ 1/2 and α > 0 is reducible to the
generalized shortest vector problem in the `p-norm with approximation factor 1 + ε/6.
The reduction is polynomial time in the representation size of the Cvp-instance and in
1/α.

The proof of this theorem can be found in [BN09].

4.3.2. The lattice membership problem

In this section we give a geometric reformulation of the closest vector problem. We will
use this di�erent point of view on the closest vector problem to present in Chapter 6 a
deterministic polynomial space bounded algorithm for this lattice problem. Since there
exist polynomial time reductions from Svp, Smp, and Sivp to Cvp, we also obtain de-
terministic polynomially space bounded algorithms for the other lattice problems, see
Figure 4.10.

For the reformulation, we use the equivalence between norms and convex bodies which
we considered already in Chapter 2 of this thesis, see Section 2.1. We reformulate the
closest vector problem as a membership problem for certain convex sets.

De�nition 4.3.12. (Lattice membership problem (Lmp))
Given a lattice L ⊆ Rn and a bounded convex set C ⊆ span(L), output a lattice vector in
C or decide that C does not contain a vector from L.
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Smp

Svp Sivp

Cvp

Lmp

Figure 4.10.: Relation between Lmp and the other lattice problems. Arrows indi-
cate polynomial time reductions preserving the rank of the lattice and the
approximation factor. The arrow from Cvp to Lmp is marked dotted since
this reduction works only for the exact version of Cvp.

The lattice membership problem is a generalization of the integer programming fea-
sibility problem from polyhedra to bounded convex sets. In the integer programming
feasibility problem we are given a polyhedron and the goal is to decide whether this
polyhedron contains an integer vector. It is known that the integer programming feasi-
bility problem in NP-complete, see [Coo71].

There is a strong relation between the lattice membership problem and the decisional
variant of the closest vector problem. As already mentioned, in the decisional closest
vector problem we are given a lattice L ⊆ Rn, some target vector t ∈ span(L) and a
parameter α > 0. The goal is to decide whether the distance between the target vector
and the lattice is at most α or not. Obviously, the decisional closest vector problem can
be seen as a special case of the lattice membership problem where the corresponding
convex set is the ball B̄(‖·‖)

n (t, α) and where we obtain an additional certi�cate if the
distance between the target vector t and the lattice is at most α.

In this section we show that if we are able to solve the lattice membership problem for
balls generated by a norm, we are able to solve the closest vector problem with respect
to this norm. As already mentioned, we can assume in the following that we consider a
lattice L ⊆ Zn and some target vector t ∈ span(L) ∩ Zn.

Theorem 4.3.13. Let ‖ · ‖ be a norm on Rn. Assume that there exists an algorithm
A that for all lattices L(B′) ⊆ Zn of rank m and all target vectors t′ ∈ span(B) ∩ Zn

solves the lattice membership problem for the ball B(‖·‖)
n (t′, α) using at most T (‖·‖)

m,n (r′, α)
arithmetic operations. Here r′ is an upper bound on the size of the basis B′ and the target
vector t′.

� If the norm is an `p-norm with 1 ≤ p ≤ ∞, there exists an algorithm A′ that
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solves the closest vector problem for all lattices L(B) ⊆ Zn and target vectors
t ∈ span(B) ∩ Zn. The number of arithmetic operations of this algorithm is

k · nO(1) log2(r)2 · T (p)
m,n(r,mn3/2r),

where k = p for 1 ≤ p <∞ and k = 1 for p =∞.

� If the norm is a polyhedral norm given by a full-dimensional polytope symmetric
about the origin with s constraints, then there exists an algorithm that solves the
closest vector problem for all lattice L(B) ⊆ Zn and target vectors t ∈ span(B)∩Zn.
The number of arithmetic operations of this algorithm is

s · nO(1) log2(size(P ) · r) · T (P )
m,n(r, nmr size(P )).

In both cases, r is an upper bound on the size of the basis B and the target vector t.

The proof of this result is a variant of the proof that all three variants of the closest
vector problem are equivalent. For the closest vector problem with respect to the Eu-
clidean norm this was shown by Micciancio and Goldwasser, see [MG02] and [Mic07].
Their result can be generalized to arbitrary `p-norms, 1 ≤ p ≤ ∞, and to polyhedral
norms, see [BN11].

The reduction from the closest vector problem to the lattice membership problem is
based on binary search. This binary search is performed on the set of all possible values
which can be achieved by the norm of an integer vector if the norm lies in some certain
interval. Hence, we need to ensure that we are able to enumerate all these values and
we need an upper bound on the cardinality of such a set - depending on the size of the
interval. To guarantee all that, we consider special norms which we call enumerable.
In general, we call a function enumerable if it maps every integer vector to a discrete
enumerable set.

De�nition 4.3.14. A function f : Rn → R is called (k,K)-enumerable for parameters
k,K ∈ N or simply enumerable if there exists K̃ ∈ N with K̃ ≤ K, such that

K̃ · f(x)k ∈ N0 for all x ∈ Zn.

Obviously, every `p-norm,1 ≤ p ≤ ∞, is (k, 1)-enumerable with k = p for 1 ≤ p < ∞
and k = 1 for p =∞. Later, we will show that also all polyhedral norms are enumerable.
In contrast, the function over R which maps every number to its inverse in absolute
values,

R→ R, x 7→
{

1/|x| , x 6= 0
0 , x = 0

is not enumerable. For all K ∈ N there exists an integer whose image is not contained
in (1/K) ·N0, for example 1/(K + 1) 6∈ (1/K) ·N0.
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For all (k,K)-enumerable norms which are e�ciently computable we are able to give
a reduction from the closest vector problem to the lattice membership problem. The
number of arithmetic operations depends on the parameters k and K.

Proposition 4.3.15. Let ‖ · ‖ be a (k,K)-enumerable norm on Rn which is e�ciently
computable. Assume that there exists an algorithm A that for all lattices L(B′) ⊆ Zn

of rank m, all balls B(‖·‖)
n (t′, α) with t′ ∈ span(B′) ∩ Zn and α > 0, solves the lattice

membership problem. Let T (‖·‖)
m,n (r′, α) be an upper bound on the number of arithmetic

operations of A where r′ is an upper bound on the size of the lattice basis B′ and the
vector t′.
Then, there exists an algorithm that solves the closest vector problem for all lattices
L(B) ⊆ Zn and all target vectors t ∈ span(B) ∩ Zn with respect to the norm ‖ · ‖. The
number of arithmetic operations of this algorithm is(

k · log2(m · ‖b‖) + log2(K)
)
· nO(1) · T (‖·‖)

m,n (r,m · ‖b‖),

where r is an upper bound on the size of the Cvp-instance (L(B), t) and ‖b‖ is an upper
bound on the length of each basis vector of the basis B, ‖b‖ := max{‖bj‖|1 ≤ j ≤ m}.
Each number computed by the algorithm has size of at most

max{m · ‖b‖,K}k

Proof. Let B = [b1, . . . , bm] ⊆ Zn×m be a lattice basis of the lattice L and t ∈ span(L)∩
Zn be some target vector. Without loss of generality, we assume that t 6∈ L, i.e.,
µ(‖·‖)(t, L) > 0. Since t ∈ span(L), we can choose

R := m ·max{‖bj‖|1 ≤ j ≤ m}

as an upper bound for the distance between the target vector and the lattice, see Claim
4.3.6.

We have L ⊆ Zn and t ∈ Zn. Hence, the distance vector of t and its closest lattice
vector is an integer vector. Using that ‖ · ‖ is a (k,K)-enumerable norm, we obtain that
the distance between t and the lattice is of the form

µ(‖·‖)(t, L) = k

√
p

q
, where p, q ∈ N with gcd(p, q) = 1 and 1 ≤ q ≤ K.

Since R is an upper bound on the distance between the vector t and the lattice, we have
p/q ≤ Rk.

Now, we perform a binary search on the interval [0, Rk]. We start by calling the algo-

rithm A with input of the lattice L(B) and the convex set B(‖·‖)
n (t, R/ k

√
2). Either the

algorithm computes a lattice vector in this ball or it decides that B(‖·‖)
n (t, R/ k

√
2) does

not contain a lattice vector. Depending on the answer, we continue in the usual way.
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Suppose we have found two radii r1 > r0 > 0 such that B(‖·‖)
n (t, r0) does not contain a

lattice vector, whereas the convex set B(‖·‖)
n (t, r1) contains a lattice vector v ∈ L. If the

di�erence between r0 and r1 is less than 1/K2, then v ∈ L is a closest lattice vector to t:
In an interval of length less than 1/K2 there exists at most one number of the form p/q
with gcd(p, q) = 1 and 1 ≤ q ≤ K.
Since v ∈ L ⊆ Zn, the norm of v is the k-th root of such a number, ‖v − t‖k = p/q
with p, q ∈ N, gcd(p, q) = 1 and 1 ≤ q ≤ K. Hence, v ∈ L is a lattice vector with
‖v − t‖ = µ(‖·‖)(t, L).

The number of calls to the algorithm A is at most O(log2(Rk · K2)), since we are
�nished if the length of the current interval is less than 1/K2. As a consequence, the
number of arithmetic operations needed to solve the closest vector problem is

O
(
k · log2(R) + 2 log2(K)

)
· nO(1) · T (‖·‖)

m,n (S,R).

Since the distance between the target vector and the lattice is of the form k
√
p/ k
√
q, where

p, q ∈ N with 1 ≤ q ≤ K and p ≤ m · max{‖bj‖|1 ≤ j ≤ m} = m · ‖b‖, each number
computed by the algorithm has size at most max{m · ‖b‖,K}k.

Now we want to apply this result to `p-norms, 1 ≤ p ≤ ∞, and polyhedral norms.
The corresponding result for all `p-norms follows directly from a special case of Hölder's
inequality, see Proposition 2.2.15 in Chapter 2.

Corollary 4.3.16. For all `p-norms with 1 ≤ p ≤ ∞, assume that there exists an
algorithm A that solves the lattice membership problem for all lattices L(B′) ⊆ Zn of

rank m and balls B(‖·‖)
n (t′, α), where t′ ∈ span(B′) ∩ Zn and α > 0. The number of

arithmetic operations of the algorithm is at most T (‖·‖)
m,n (r′, α), where r′ is an upper bound

on the size of the basis B′ and the target vector t′.
Then, there exists an algorithm A′, that solves the closest vector problem for all lattices
L(B) ⊆ Zn. The number of arithmetic operations of the algorithm A′ is at most

k · nO(1) log2(r)T (r,mn3/2r),

where k = p for 1 ≤ p <∞ and k = 1 for p =∞. Here, r is an upper bound on the size
of the basis B and the target vector t.

Proof. Obviously, all `p-norms are (k, 1) enumerable with k = p for 1 ≤ p <∞ and k = 1
for p =∞. Hence, it follows from Proposition 4.3.15 that there exists an algorithm that
solves the closest vector problem in any `p-norm. The number of arithmetic operations
of this algorithm is at most

log2(r)k · log2(‖b‖p)nO(1) · T (p)
m,n(r,m · ‖b‖),

where ‖b‖p is an upper bound on the length of the basis vectors. The length of the basis
vectors is upper bounded by

‖bi‖p ≤ n · ‖bi‖2 ≤ n3/2 size(B) = n3/2 · r,

see Claim 2.2.18 in Chapter 2. This shows that the statement is correct.
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To get the corresponding result for polyhedral norms, we need to show that all poly-
hedral norms are enumerable. This is done in the following lemma.

Lemma 4.3.17. Let P ⊆ Rn be a full-dimensional polytope symmetric about the origin
given by s constraints, i.e., P = {x ∈ Rn|〈x, hi〉 ≤ βi and 〈x,−hi〉 ≤ βi for all 1 ≤
i ≤ s/2}, where h1, . . . , hs/2 ∈ Zn and β1, . . . , βs/2 ∈ N. Then ‖ · ‖P is a (1,

∏s/2
j=1 βj)-

enumerable norm.

Proof. Given an integer vector x ∈ Zn\{0} its polyhedral norm has value r if the following
two properties are satis�ed:

� The vector x is contained in the scaled polytope r · P , that means 〈x, hi〉 ≤ r · βi
and 〈x,−hi〉 ≤ βi for all 1 ≤ i ≤ s/2.

� There exists at least one inequality de�ning the polytope which is ful�lled with
equality. Let j ∈ N, 1 ≤ j ≤ s/2, be such an index. Without loss of generality, we
assume that 〈x, hj〉 = r · βj . Since 〈x, hj〉 ∈ Z, we have r = 〈x, hj〉/βj ∈ Q. That
means, there exists p, q ∈ N with gcd(p, q) = 1 such that r = p/q. Additionally,
we know that βj is divisible by q.

That means, that each value, which can be achieved by the norm ‖ · ‖P of an integer
vector, is a rational of the form p/q with p, q ∈ N and gcd(p, q) = 1, and there exists an
index j, 1 ≤ j ≤ s/2, such that q divides βj . Hence, for each vector x ∈ Zn we obtain

that (
∏s/2
j=1 βj) · ‖x‖P ∈ N0.

Corollary 4.3.18. Let P ⊆ Rn be a full-dimensional polytope symmetric about the origin
given by s constraints. Assume that there exists an algorithm A that solves the lattice
membership problem for all lattices L(B′) ⊆ Zn of rank m and all convex sets B(P )

n (t′, α),

where t′ ∈ span(B′)∩Zn and α > 0 using at most T (P )
m,n(r, α) arithmetic operations, where

r′ is an upper bound on the size of the basis B′ and the vector t′.
Then there exists an algorithm A′ that solves the closest vector problem with respect
to the polyhedral norm ‖ · ‖P for all lattices L(B) ⊆ Zn of rank m and target vectors
t ∈ span(B) ∩ Zn in time

s · nO(1) log2(size(P ) · r) · T (P )
m,n(r, n ·m · r · size(P )),

where r is an upper bound on the size of the basis B and the target vector t.

Proof. Assume that P is given by a set HP = {h1, . . . , hs/2} ⊆ Zn and a set of parame-
ters {β1, . . . , βs/2} ⊆ N, i.e., P = {x ∈ Rn|〈x, hi〉 ≤ βi and 〈x,−hi〉 ≤ βi for all 1 ≤ i ≤
s/2}.
We have seen in Lemma 4.3.17 that the norm ‖ · ‖P de�ned by the polytope P is

(1,
∏s/2
j=1 βj)-enumerable. Since the parameters βj , 1 ≤ j ≤ s/2, are integers, we have

s/2∏
j=1

βj ≤ size(P )s/2.
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Smp

Svp Sivp

Gsvp Cvp

Lmp

Figure 4.11.: Relations among the lattice problems that will be used in this

thesis. Arrows indicate polynomial time reductions preserving the rank of
the lattice and the approximation factor. The arrow from Cvp to Gsvp is
marked dashed since the approximation factor is not exactly preserved by
the reduction. The arrow from Cvp to Lmp is marked dotted since this
reductions works only for the exact version of Cvp.

Hence, it follows from Proposition 4.3.15 that there exists an algorithm A′ that solves
the closest vector problem with respect to the polyhedral norm ‖ · ‖P and the number of
arithmetic operations of this algorithm is at most(

log2(‖b‖P ) + r · log2(size(P ))
)
nO(1) · T (r,m · ‖b‖P ),

where ‖b‖P is an upper bound on the length of the basis vectors. As we have seen in
Corollary 2.2.20, we have ‖x‖P ≤ n(n+1)/2 size(P )n‖x‖2. Thus, for all 1 ≤ i ≤ m we have

‖bi‖P ≤ n(n+1)/2 size(P )n‖bi‖2 ≤ n(n+1)/2 size(P )n ·
√
n · r,

where r is an upper bound on the size of the basis B de�ning the lattice, see Claim 2.2.18
in Chapter 2. This shows that the statement is correct.

Now the proof of Theorem 4.3.13 follows directly from Corollary 4.3.16 and Corollary
4.3.18.

Perspective

At this point, we have two starting points for the development of lattice algorithms, the
generalized shortest vector problem and the lattice membership problem, see Figure 4.11.
Based on these results we will present in the rest of this thesis essentially two di�erent
types of lattice algorithms.
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4.3. Relation between lattice problems

In the next chapter, we describe randomized single exponential time algorithms for
the generalized shortest vector problem for all tractable norms. The algorithms are
based on a sampling technique developed by Ajtai, Kumar, and Sivakumar in 2001. This
technique is called the AKS-sampling technique. The �rst algorithm described in Chapter
5 approximates the generalized shortest vector problem with approximation factor 1 + ε
for arbitrary 0 < ε < 3/2. Combining this algorithm with the reductions presented in
this chapter, we obtain corresponding single exponential time approximation algorithms
for Svp, Smp, Sivp, and Cvp.
By slightly modifying our algorithm for the generalized shortest vector problem we

obtain an algorithm that solves the generalized shortest vector problem exactly but only
for instances where there do not exist too many short lattice vectors outside the given
subspace. As a consequence, we obtain algorithms that solve the four lattice problems
Svp, Smp, Sivp, and Cvp exactly but only for instances where there do not exist too
many approximate solutions. As we have seen in this chapter, this can only be guaran-
teed for the shortest vector problem, see Corollary 4.2.12. Thus, for Smp, Sivp, and Cvp
we do not obtain algorithms which solves these problems exactly. Another disadvantage
of these algorithms based on the AKS-sampling technique is that they need exponential
space.

For this reason we present in Chapter 6 a deterministic polynomially space bounded
algorithm for the lattice membership problem for polytopes and `p-balls. Compared to
our algorithms for the generalized shortest vector problem, the number of arithmetic
operations of our algorithms is not single exponential in the dimension n but mainly
determined by the factor n(2+o(1))n.
As we have seen, there exists a polynomial time reduction from the closest vector

problem to the lattice membership problem which works for all tractable norms. Hence,
we obtain a deterministic polynomially space bounded algorithm for Cvp which works
for all `p-norms, 1 ≤ p <∞, and all polyhedral norms, in particular for the `1-norm and
the `∞-norm.
Obviously, we obtain also deterministic polynomially space bounded algorithms for

the other lattice problems Svp, Smp, and Sivp, since for all these problems there exist
polynomial time reductions to the closest vector problem. Of course, for Svp this result
is not really interesting.
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generalized shortest vector problem

In this chapter, we present a probabilistic single exponential time algorithm for the gener-
alized shortest vector problem for all tractable norms. To recall, in the generalized short-
est vector problem we are given a lattice L together with some subspace M ( span(L)
and we are asked to �nd a shortest lattice vector in L\M , see De�nition 4.3.1 in Chapter
4. The algorithm solves the generalized shortest vector problem almost optimally, i.e.,
with approximation factor 1 + ε for arbitrary 0 < ε < 3/2. Additionally, we present
a probabilistic single exponential time algorithm that solves a restricted version of the
generalized shortest vector problem optimally. We describe these algorithms only for
full-dimensional lattices. However, our results can easily be generalized to arbitrary lat-
tices.

We have already seen in Chapter 4 that there are polynomial time reductions from
the shortest vector problem, the closest vector problem, the successive minima problem,
and the shortest independent vectors problem to the generalized shortest vector problem.
These reductions establish probabilistic single exponential time algorithms for all these
four lattice problems. For Svp and restricted versions of Cvp, Smp, and Sivp, we obtain
algorithms that solve these problems optimally. For the general versions of Cvp, Smp,
and Sivp, we obtain algorithms with approximation factor 1+ε for arbitrary 0 < ε < 3/2.

The AKS-sampling technique

Prior to the breakthrough paper [AKS01] of Ajtai, Kumar and Sivakumar, randomization
has rarely been utilized in algorithms for lattice problems.1 In their paper from 2001,
they describe a novel sampling technique that generates short vectors from the input
lattice.

The AKS-sampling method for Svp and Cvp In their paper from 2001, Ajtai, Kumar
and Sivakumar describe the �rst probabilistic algorithm that solves the shortest vector
problem with respect to the Euclidean norm optimally with probability exponentially
close to 1. More precisely, the number of arithmetic operations used by their algorithm
is (2n · log2(r))O(1), where n is the rank of the lattice and r is an upper bound on the
size of the lattice. In particular, the number of arithmetic operations of this algorithm is

1An exception is the algorithm of Klein presented in [Kle00] that is a heuristic algorithm for the closest
vector problem with respect to the Euclidean norm. The disadvantage of this algorithm is that its
running time depends on the distance between the target vector and the lattice.
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single exponential only in the rank of the lattice. However, the space complexity of their
algorithm is single exponential.

The AKS-algorithm from 2001 was improved by Nguyen and Vidick, Micciancio and
Voulgaris, and Pujol and Stehlé, see [NV08], [MV10b], [PS09]. The number of arithmetic
operations of the currently fastest AKS-algorithm is 2(2.465+o(1))n log2(r)O(1), whereas its
space complexity is 2(1.233+o(1))n.

In 2002, Ajtai, Kumar and Sivakumar extended their sampling technique to solve the
closest vector problem with respect to the Euclidean norm with approximation factor 1+ε
for any ε > 0, see [AKS02]. The number of arithmetic operations used by their algorithm
is (2(1+1/ε)n log2(r))O(1) and the algorithm is successful with probability exponentially
close to 1.

Main results In this chapter, we extend and generalize the results by Ajtai, Kumar and
Sivakumar. We show that a variant of the AKS-sampling technique can be used to solve
the generalized shortest vector problem. This variant of the AKS-sampling technique is
based on a proposal by Sudan and is described in lecture notes by Regev, see [AKS01]
and [Reg04]. We obtain an approximation algorithm for the generalized shortest vector
problem that works for all tractable norms, i.e., for all e�ciently computable norms, for
which there exists a polynomial c ∈ Z[X] such that 2−c(n)‖x‖2 ≤ ‖x‖ ≤ 2c(n)‖x‖2 for all
x ∈ Rn, see De�nition 2.1.15 in Chapter 2.

Theorem 5.0.1. For all tractable norms, there exists a randomized algorithm that ap-
proximates the generalized shortest vector problem with success probability 1 − 2−Ω(n).
The approximation factor is 1 + ε for any 0 < ε < 3/2 and the number of arithmetic
operations of the algorithm is ((2 + 1/ε)n · log2(r))O(1), where n is the rank of the lattice
and r is an upper bound on the size of the lattice and the subspace.

In Chapter 4 we have already seen that there are polynomial time reductions from
the shortest vector problem, the closest vector problem, the successive minima problem
and the shortest independent vectors problem to the generalized shortest vector problem.
Together with Theorem 5.0.1 we obtain a uni�ed treatment for all four lattice problems
and single exponential time (1 + ε)-approximation algorithms for Svp, Cvp, Smp, and
Sivp for all tractable norms.

Corollary 5.0.2. For all tractable norms, there exist randomized algorithms that approx-
imate Svp, Smp, Sivp, and Cvp with success probability 1− 2−Ω(n). The approximation
factor is 1 + ε for any 0 < ε < 3/2 and the number of arithmetic operations of the algo-
rithm is ((2 + 1/ε)n · log2(r))O(1), where n is an upper bound on the rank of the lattice
and r is an upper bound on the size of the corresponding input instance, i.e., the lattice
and perhaps the target vector.

Next, by slightly modifying the sampling procedure and its analysis, we are able to
compute a shortest lattice vector outside a given subspace, provided there do not exist
too many short lattice vectors outside the given subspace.
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Theorem 5.0.3. Let ‖ · ‖ be a tractable norm on Rn. Let L ⊆ Qn be a full-dimensional
lattice and M ( span(L) be a subspace. Assume that there exist absolute constants c, ε

such that the number of v ∈ L\M satisfying ||v|| ≤ (1 + ε)λ
(‖·‖)
M (L) is bounded by 2cn.

Then, there exists an algorithm that solves the generalized shortest vector problem with
success probability 1 − 2−Ω(n). The number of arithmetic operations of the algorithm
is (2n · log2(r))O(1), where r is an upper bound on the size of the lattice and the sub-
space. The algorithm runs in single exponential space and each number computed by the
algorithm has representation size of at most (n · log2(r))O(1).

For the shortest vector problem this requirement is satis�ed and we obtain a single
exponential time algorithm solving the shortest vector problem optimally.

Theorem 5.0.4. For all tractable norms, there exists a randomized algorithm that solves
the shortest vector problem with success probability 1−2−Ω(n). The number of arithmetic
operations of the algorithm is (2n log2(r))O(1), where n is the rank of the lattice and r
is an upper bound on its size. The algorithm runs in single exponential space and each
number computed by the algorithm has representation size of at most (n · log2(r))O(1).

For the successive minima problem and the shortest independent vectors problem our
approach to determine short vectors outside a given subspace leads to an algorithm
�nding optimal solutions only for instances of Smp/Sivp respectively, where the n-th

successive minimum λ
(‖·‖)
n (L) is bounded by c · λ(‖·‖)

1 (L) for some constant c.

Theorem 5.0.5. Let ‖ · ‖ be a tractable norm on Rn and L ⊆ Qn be a full-dimensional

lattice. Assume that the n-th successive minimum λ
(‖·‖)
n (L) is bounded by c ·λ(‖·‖)

1 (L) for
some constant c ∈ N. Then, with success probability 1 − 2−Ω(n), the successive minima
of L can be computed using (2n log2(r))O(1) arithmetic operations, where r is an upper
bound on the size of the lattice. The algorithm runs in single exponential space and each
number computed by the algorithm has representation size of at most (n · log2(r))O(1).

Similarly, in single exponential time, we can determine the closest lattice vector to a
given target vector provided that the distance of the target vector to the lattice is not
too large, i.e., smaller than c · λ(‖·‖)

1 (L) for some constant c. This variant of the closest
vector problem is also called the bounded distance decoding problem (Bdd). Overall,
we obtain the following results for the closest vector problem.

Theorem 5.0.6. Let ‖ · ‖ be a tractable norm on Rn. Let L ⊆ Qn be a full-dimensional
lattice and t ∈ span(L) ∩ Qn be some target vector. Assume that there exists some

constant c such that µ(‖·‖)(t, L) ≤ c · λ(‖·‖)
1 (L). Then, a closest lattice vector to t can be

computed using at most (2n log2(r))O(1) arithmetic operations, where r is an upper bound
on the size of the lattice and the target vector. The algorithm runs in single exponential
space and each number computed by the algorithm has representation size of at most
(n · log2(r))O(1).
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Further related results Based on our results, Arvind and Joglekar developed a prob-
abilistic algorithm that solves the generalized shortest vector problem with respect to
the Euclidean norm with probability exponentially close to 1. The number of arithmetic
operations of their algorithm is (2n(1/ε)k log2(r))O(1), where n is the rank of the lattice,
k is the dimension of the subspace and r is an upper bound on the size of the lattice and
the subspace, see [AJ08]. Furthermore, they showed that a variant of their algorithm
solves the generalized shortest vector problem exactly using (2nkk log2(r))O(1) arithmetic
operations. At the end of this chapter, when we have a deeper insight into the techniques
used in the AKS-algorithm, we will discuss why it does not seem to be possible to gen-
eralize their approach to non-Euclidean norms.

Recently Eisenbrand, Hähnle, and Niemeier developed a probabilistic algorithm that
solves the closest vector problem with respect to the `∞-norm with approximation fac-
tor 1 + ε, see [EHN11]. The number of arithmetic operations of their algorithm is
(2 log2(1/ε))O(n) log2(r)O(1). The idea of their algorithm is to use our Cvp-algorithm
for some �xed approximation factor, e.g. for the approximation factor 2. Given a 2-
approximation of the closest vector problem they use a covering of the `∞-unit ball
B̄

(∞)
n (0, 1) with ellipsoids to obtain a (1 + ε)-approximation of the closest vector prob-

lem.

The main idea of the sampling procedure is to sample a large number of vectors xi,
1 ≤ i ≤ N , from a ball B̄(‖·‖)

n (0, ρ) in Rn for some parameter ρ > 0. For each vector we
compute a translation yi ∈ Rn, 1 ≤ i ≤ N , from the fundamental parallelepiped which
translates the vector xi to a lattice vector. So, xi − yi is a lattice vector. One can show
that if we sample enough vectors (a number single exponential in the dimension), then
there exist translations yi, yj , 1 ≤ i < j ≤ N which are close with respect to the norm
‖ · ‖. In this case we have found a lattice vector of small length since (xi− yi)− (xj − yj)
is a lattice vector whose length is at most

‖(xi − yi)− (xj − yj)‖ ≤ ‖xi − xj‖+ ‖yi − yj‖ ≤ 2ρ+ ‖yi − yj‖.

The translations yi, yj , 1 ≤ i < j ≤ N , which are close together are found using a sieving
procedure.

The presentation of our sampling procedure closely follows Regev's lecture notes on
the Ajtai, Kumar and Sivakumar single exponential algorithm for Svp, see [Reg04], and
the survey in [Eis10].

In order to almost uniformly select a vector in a ball B̄(‖·‖)
n (x, ρ) we can use the general

algorithm of Dyer, Frieze, and Kannan and its improvement by Kannan, Lovász, and
Simonovits, see [DFK91] and [KLS97]. This algorithm is a polynomial time algorithm
that uniformly selects a vector in any well-bounded convex body given by a membership
oracle. Actually, the algorithm requires that the convex body is given by a separation
oracle. Grötschel, Lovász, and Schrijver show that it is possible to construct a separation
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oracle in polynomial time if the convex body C ⊆ Rn is given by a membership oracle
together with parameters R, r > 0 and a vector c0 ∈ Rn satisfying B̄(2)

n (c0, r) ⊆ C ⊆
B̄

(2)
n (0, R), see [GLS93]. For a proof of the following result see [DFK91] and [KLS97].

Theorem 5.0.7. Let C ⊆ Rn be a convex body given by a membership oracle together
with a parameter γ ≥ 1 such that B̄(2)

n (0, 2−γ) ⊆ C ⊆ B̄
(2)
n (0, 2γ). Then, there exists a

randomized polynomial time algorithm that selects a random vector in C almost uniformly
in the sense that its distribution is at most ε away from the uniform distribution in total
variation distance. The number of calls to the oracle is (n · γ)O(1).

The parameter γ ≥ 1 is arbitrary. It can be a constant or a function of any parameter
associated to the lattice.

In particular, Theorem 5.0.7 shows that for every tractable norm ‖ · ‖ on Rn we are

able to e�ciently select a random vector in B̄(‖·‖)
n (x, ρ) almost uniformly, where x ∈ Rn

and α > 0. For `p-norms with 1 ≤ p < ∞, there exists a simple algorithm to e�ciently

sample from B̄
(p)
n (x, ρ), see [GG00].

For the sake of simplicity, we will neglect all implementation details in the following,
i.e., we will assume that we are able to uniformly select a vector in B̄(‖·‖)

n (x, ρ). Since we
use a polynomial time algorithm to sample a vector almost uniformly, the size of each
vector is at most rn

O(1)
, where r is an upper bound on the size of the center x, the size

of the radius ρ and the dimension n.

Organization This chapter is organized as follows: In Section 5.1 we show that the
generalized shortest vector problem can be approximated with factor 1 + ε for arbitrary
0 < ε < 3/2 using a variant of the AKS-sampling method. Then, we will slightly modify
the sampling method and its analysis to obtain a probabilistic algorithm that solves the
generalized shortest vector problem exactly, provided that there do not exist too many
short lattice vectors outside the given subspace. This is done in Section 5.2. Furthermore,
we will show in this section that in the case of Svp and for restricted versions of Smp,
Sivp, and Cvp, this assumption is always satis�ed, i.e., we obtain probabilistic single
exponential time algorithms that solve Svp and restricted versions of Smp, Sivp, and
Cvp exactly.

5.1. A sampling procedure for approximate Gsvp

In this section, we present a probabilistic algorithm that solves the generalized shortest
vector problem for all tractable norms with approximation factor 1 + ε for arbitrary
0 < ε < 3/2. Before we present a detailed description of the sampling procedure, we
start with some general observations.
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5.1.1. Preparations

First of all, we observe that with respect to the Euclidean norm, the generalized shortest
vector problem can be approximated in polynomial time with approximation factor 2n.

Theorem 5.1.1. The LLL-algorithm can be used to approximate the generalized shortest
vector problem for the `2-norm with approximation factor 2n−1 in polynomial time.

Proof. Let L ⊆ Qn be a full-dimensional lattice andM ( span(L) be some subspace. Let
B = [b1, . . . , bn] be an LLL-reduced basis of the lattice, see De�nition 4.1.9 in Chapter
4. De�ne

k := min{1 ≤ j ≤ n|bj ∈ L\M},

that means b1, . . . , bk−1 ∈ M . Since L 6= M , the index k is well-de�ned. We want to
show that bk is a 2n−1-approximate solution of the generalized shortest vector problem,
i.e., ‖bk‖2 ≤ 2n−1λ

(2)
M (L).

In the following, we consider the orthogonal projection πk onto the orthogonal com-
plement of span(Lk−1), see Section 3.1 in Chapter 3. To recall, πk is de�ned as

πk : Rn → Rn, x 7→
n∑
j=k

〈x, b†j〉

〈b†j , b
†
j〉
b†j ,

where [b†1, . . . , b
†
n] is the Gram-Schmidt orthogonalization of the basis B.

Let v ∈ L\M . Then we have v =
∑n

i=1 vibi with vi ∈ Z for all 1 ≤ i ≤ m. By de�nition
of k and since v ∈ L\M , there exists an index j ≥ k with vj 6= 0. This shows that

πk(v) =
n∑
i=k

viπk(bi) 6= 0,

i.e., we have πk(v) ∈ L(n−k+1)\{0}. Since ‖v‖2 ≥ ‖πk(v)‖2, it follows that the subspace
avoiding minimum of the lattice L and the subspace M is at least the minimum distance
of the lattice L(n−k+1),

λ
(2)
M (L) ≥ λ(2)

1 (L(n−k+1)). (5.1)

Since B is an LLL-reduced basis, the basis [πk(bk), . . . , πk(bn)] of the lattice L(n−k+1)

is also LLL-reduced, see De�nition 4.1.9 in Chapter 4. From the properties of an LLL-
reduced basis, we obtain

‖b†k‖
2
2 ≤ 2n−1λ

(2)
1 (L(n−k+1))2 ≤ 2n−1λ

(2)
M (L)2, (5.2)

see Theorem 4.1.11 in Chapter 4. Since [b1, . . . , bn] is LLL-reduced, we have

bk = b†k +

k−1∑
j=1

µk,jb
†
j with |µk,j | ≤

1

2
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and

‖b†j‖
2
2 ≤ 2k−j‖b†k‖

2
2

for all 1 ≤ j ≤ k. Hence, we obtain that

‖bk‖22 ≤ ‖b
†
k‖

2
2 +

1

4

k∑
j=1

‖b†j‖
2
2

≤

1 +
1

2

k−1∑
j=1

2k−j

 ‖b†k‖22
≤ 2k−1‖b†k‖

2
2.

Combining this with Inequality (5.1) and Inequality (5.2), the statement follows,

‖bk‖22 ≤ 2k−12n−1λ
(2)
M (L)2 ≤ 22(n−1)λ

(2)
M (L).

There exists a generalization of the LLL-algorithm from the Euclidean norm to general
norms which is due to Lovász and Scarf, see [LS92]. This algorithm is called the gener-
alized basis reduction algorithm. Using this algorithm, we are able to approximate the
generalized shortest vector problem with approximation factor 22n. This can be shown
using the same techniques as in the proof of Theorem 5.1.1. Unfortunately, up to now
it is not known whether the number of arithmetic operations of the generalized basis
reduction algorithm is polynomial in the dimension.

If we consider a tractable norm ‖·‖ on Rn, we can use the polynomial time approxima-
tion algorithm for the generalized shortest vector problem with respect to the Euclidean
norm presented in Theorem 5.1.1 to approximate the generalized shortest vector problem
with respect to the norm ‖ · ‖. This approximation can be used to show that we can
restrict ourselves to instances of generalized shortest vector problem, where the subspace
avoiding minimum of the lattice L and the subspace M satis�es 2 ≤ λ(‖·‖)

M (L) < 3.

Lemma 5.1.2. Let ‖ · ‖ be a tractable norm on Rn and c ∈ Z[X] a polynomial satisfying
2−c(n)‖x‖ ≤ ‖x‖2 ≤ 2c(n)‖x‖ for all x ∈ Rn. If there exists an algorithm A that for all

full-dimensional lattices L ⊆ Qn and all subspaces M ( span(L) with 2 ≤ λ
(‖·‖)
M (L) < 3

solves Gsvp with approximation factor 1 + ε using T = T (n, r, ε) arithmetic operations,
then there exists an algorithm A′ that solves Gsvp for all lattices and subspaces with
approximation factor 1 + ε using at most O((n + c(n)) · T + n4 · log2(r)) arithmetic
operations, where r is an upper bound on the lattice and the subspace.

Proof. Given a lattice L = L(B) and a subspace M , a vector v ∈ L\M satisfying

λ
(2)
M (L) ≤ ‖v‖2 < 2n−1λ

(2)
M (L) (5.3)
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can be computed using the LLL-algorithm, see Theorem 5.1.1. Since the norm ‖ · ‖ is
tractable, we know that

2−c(n)‖x‖ ≤ ‖x‖2 ≤ 2c(n)‖x‖ (5.4)

for all x ∈ Rn. We set

λ̃M (L) := ‖v‖

as an estimate for the subspace avoiding minimum. Using the Inequalities in (5.3) and
(5.4), we see that this estimate satis�es

λ
(‖·‖)
M (L) ≤ ‖v‖ = λ̃M (L)

≤ 2c(n) · ‖v‖2
≤ 2c(n) · 2n−1λ

(2)
M (L)

≤ 22c(n) · 2n−1λ
(‖·‖)
M (L).

Using the estimate λ̃M (L) for the subspace avoiding minimum, we want to scale the
lattice such that the subspace avoiding minimum is in the range between 2 and 3. To do
this, we apply algorithm A with the Gsvp-instances (Lk,Mk), k = 0, . . . , 2(n + 2c(n)),
where the lattice Lk := L(Bk) is de�ned by the basis

Bk :=
1

λ̃M (L)

(
3

2

)k
B

and the subspace Mk is given as

Mk :=
1

λ̃M (L)

(
3

2

)k
M.

Let v0, . . . v2(n+2c(n)) be the vectors computed by the algorithm A. De�ne

v′k := λ̃M (L)

(
2

3

)k
· vk

and output the shortest vector among the vectors v′0, . . . , v
′
2(n+2c(n)) that is contained in

L\M .

First of all, we show that there exists an index k ∈ {0, . . . , 2(n + 2c(n))} such that

2 ≤ λ(‖·‖)
Mk

(Lk) < 3. It is easy to see that a vector v ∈ L\M is a shortest vector in L\M ,

i.e., ‖v‖ = λ
(‖·‖)
M (L) if and only if the vector

v :=
1

λ̃M (L)

(
3

2

)k
v ∈ Lk\Mk
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is a shortest vector in Lk\Mk. This shows that

λ
(‖·‖)
Mk

(Lk) =
1

λ̃M (L)

(
3

2

)k
λ

(‖·‖)
M (L).

Thus the subspace avoiding minimum of a Gsvp-instance (Lk,Mk) is contained in the
interval [2, 3), if and only if

2 ≤
(

3

2

)k λ(‖·‖)
M (L)

λ̃M (L)
< 3.

That means the parameter k must satisfy

1 + log2(λ̃M (L))− log2(λ
(‖·‖)
M (L))

log2(3)− 1
≤ k <

log2(3) + log2(λ̃M (L))− log2(λ
(‖·‖)
M )

log2(3)− 1
. (5.5)

The length of this interval is exactly 1, i.e., there exists an integer k ∈ Z satisfying (5.5).

Since λ̃M (L) ≥ λ(‖·‖)
M (L), the lower bound of the interval (5.5) is at least 0. Furthermore,

it follows from λ̃M (L) ≤ 22c(n)2n−1λ
(‖·‖)
M (L) that the upper bound of the interval (5.5)

is at most 2(2c(n) + n). This shows that there exists an index k ∈ {0, . . . , 2(2c(n) + n)}
such that 2 ≤ λ(‖·‖)

Mk
(Lk) < 3.

For this k the algorithm A computes a (1 + ε)-approximation of a shortest vec-
tor vk ∈ Lk\Mk and the corresponding vector v′k := λ̃M (L) · (2/3)kvk is a (1 + ε)-
approximation of a shortest vector in L\M .

The number of arithmetic operations stated in the lemma follows from the number of
arithmetic operations used by the LLL-algorithm, see Theorem 4.1.10 in Chapter 4.

5.1.2. Description of the sampling procedure

In this section, we present a sampling procedure that solves the generalized shortest
vector problem for all tractable norms with approximation factor 1 + ε for arbitrary 0 <
ε ≤
√

2− 1. As we have seen in Lemma 5.1.2, we can assume that we are given a Gsvp-
instance in form of a full-dimensional lattice L ⊆ Qn and some subspace M ( span(L)

with 2 < λ
(‖·‖)
M (L) < 3.

The sieving procedure

The main part of the sampling procedure is a sieving procedure that is presented in Al-
gorithm 1. The sieving procedure �nds in any set of vectors {x1, . . . , xN} ⊆ Rn inside a
ball of radius R a subset J of at most (2a+1)n `representatives' such that any vector has
a representative within a distance of at most R/a. This means that the sieving procedure
constructs a mapping σ : {1, . . . , N} → J with ||xi−xσ(i)|| ≤ R/a for all i ∈ {1, . . . , N}.
The parameter N is arbitrary. However, since we want to achieve an algorithm with
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5. A randomized algorithm for the generalized shortest vector problem

single exponential running time, the sieving procedure makes sense only if N = 2O(n).
The parameter a is rational and a > 1. A detailed description of the sieving procedure
is presented in Algorithm 1.

Algorithm 1 The sieving procedure

Input: x1, . . . , xN ∈ B̄(‖·‖)
n (0, R) for some parameter R > 0 and a ∈ Q with a > 1.

Output: Index set J ⊆ {1, . . . , N} and a mapping σ : {1, . . . , N} → J .

1. Set J ← ∅.

2. For 1 ≤ j ≤ N ,

if there exists i ∈ J with ‖xi − xj‖ ≤ R/a, then σ(j)← i.

Otherwise, set J ← J ∪ {i} and σ(i)← i.

The main properties of the sieving procedure are described in the following lemma.

Lemma 5.1.3. Let ‖ · ‖ be an e�ciently computable norm on Rn. Let R ∈ R, R > 0,

a ∈ Q with a > 1. For any set of vectors x1, . . . , xN ∈ B̄(‖·‖)
n (0, R) the sieving procedure,

Algorithm 1, �nds a subset J ⊆ {1, 2, . . . , N} of size of at most (2a+ 1)n and a mapping
σ : {1, 2, . . . , N} −→ J such that for all i ∈ {1, . . . , N}, ||xi−xσ(i)|| ≤ R/a. The number
of arithmetic operations of the sieving procedure is N2 (n · log2(r))O(1), where r is an
upper bound on the size of the vectors xi, 1 ≤ i ≤ N .

Proof. Obviously for all i ∈ {1, . . . , N}, ||xi − xσ(i)|| ≤ R/a. We now show that |J | ≤
(2a + 1)n. By de�nition of the mapping σ, the distance between any two vectors in J
is greater than R/a. If we consider balls of radius R/(2a) around each vector xi, i ∈ J ,
then these balls are disjoint:

B̄(‖·‖)
n

(
xi,

R

2a

)
∩ B̄(‖·‖)

n

(
xj ,

R

2a

)
= ∅ for all i, j ∈ J, i 6= j.

Because of xi ∈ B̄
(‖·‖)
n (0, R) the union of the balls B̄(‖·‖)

n (xi, R/(2a)) is contained in

B̄
(‖·‖)
n (0, (1 + 1/(2a))R). Therefore, the number of balls (and hence also |J |) is bounded

by

voln

(
B̄

(‖·‖)
n

(
0, (1 + 1

2a)R
))

voln

(
(B̄

(‖·‖)
n

(
0, 1

2aR
)) =

(
2a+1

2a

)n(
1
2a

)n = (2a+ 1)n,

where we use Equation (2.1) from Chapter 2. The number of iterations is N . In the
j-th iteration with 1 ≤ j ≤ N we consider the set J that contains at most j vectors.
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R

R/a

Figure 5.1.: The e�ect of the sieving procedure. Given as input a set of vectors yi,
1 ≤ i ≤ N , the sieving procedure computes for each vector yi a representative
yσ(i) with ‖yi − yσ(i)‖ < R/a. This is illustrated on the left. On the right,
we see the vectors yi − yσ(i), 1 ≤ i ≤ N , which are contained in a ‖ · ‖-ball
with radius R/a.

Therefore, we need to evaluate the norm roughly

N∑
j=1

j = O(N2)

times. Since the norm ‖ ·‖ is e�ciently computable, the number of arithmetic operations
of the sieving procedure is

N2(n · log2(r))O(1),

where r is an upper bound on the size of the vectors xi, 1 ≤ i ≤ N .

Description of the sampling procedure

Now, we present a sampling procedure that for all tractable norms approximates the
generalized shortest vector problem with approximation factor 1 + ε, 0 < ε ≤ 3/2.

The algorithm chooses N vectors uniformly at random in a ball B̄(‖·‖)
n (0, ρ) with radius

ρ > 0. The parameter N will be de�ned later. For each vector xi with i ∈ {1, . . . , N}
we compute the vector yi in the fundamental parallelepiped such that yi − xi is a lattice
vector. For xi =

∑n
j=1 αjbj with αj ∈ Q we have yi =

∑n
j=1(αj −bαjc)bj . We apply the

sieving procedure repeatedly to the vectors yi. Using the mapping σ : {1, . . . , N} −→ J ,
for each yi we get a representative yσ(i) with ||yi − yσ(i)|| < R/a. We replace yi with
yi − (yσ(i) − xσ(i)). This e�ect is illustrated in Figure 5.1.
This procedure is repeated until the distance between the lattice vectors and their rep-

resentatives is small enough. Then we can show that we have found short lattice vectors.
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5. A randomized algorithm for the generalized shortest vector problem

Algorithm 2 The sampling procedure
Input:

� A lattice basis B = [b1, . . . , bm] of a lattice L ⊆ Rn,
� a subspace M ( span(L), and
� parameters 0 < δ <

√
2− 1 and ρ ≥ 1/2.

Used subroutine: Sieving procedure.

Output: A vector v ∈ L\M or �failure�.

1. a) Set R0 ← m ·max{‖bi‖ |1 ≤ i ≤ m}.

b) Choose N vectors x1, . . . , xN uniformly in B̄(‖·‖)
n (0, ρ).

c) Compute yi ∈ P(B) with yi ≡ xi mod L for i = 1, . . . , N .

d) Set Z ← {(x1, y1), . . . , (xN , yN )}.
e) Set R← R0 and a← 1 + 2/δ.

2. While R > (1 + δ)ρ,

a) apply the sieving procedure to the set {yi|(xi, yi) ∈ Z} with the parameters
a = 1 + 2/δ and R. The result is a set J and a mapping σ.

b) Remove all pairs (xi, yi) with i ∈ J from Z.
c) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yσ(i) − xσ(i))).

d) Set R← R/a+ ρ.

3. Set S := {yi − xi|(xi, yi) ∈ Z}.
Output a shortest vector v ∈ S with v 6∈ M if such a vector exists. Otherwise,
the output is �failure�.

A detailed description of the algorithm is presented in Algorithm 2.

We use parameters δ and ρ satisfying

0 < δ ≤
√

2− 1 and

ρ ≥ 1/2.

The required upper bound for the parameter δ is needed to show that the sampling pro-
cedure solves the generalized shortest vector problem with probability exponentially close
to 1. The lower bound on the radius ρ is required to give an upper bound on the number
of arithmetic operations of the algorithm and also in�uences the success probability of
the algorithm.

We have σ(i) = i for each pair (xi, yi) ∈ Z with i ∈ J and therefore yi − (yσ(i) −
xσ(i)) − xi = 0. By removing in step 2b) each pair (xi, yi) with i ∈ J from Z we avoid
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redundant elements.

Now, we analyze the sampling procedure and state its main properties. Furthermore,
the main part of the sampling procedure is the application of the sieving procedure. In
each application of the sieving procedure we remove all pairs (xi, yi) with i ∈ J from Z.
To derive results about the success probability of the sampling procedure, we need to
guarantee that at the end of the sampling procedure the set Z contains su�ciently many
vectors. Hence, we are interested in an upper bound on the number of pairs which are
removed during the sampling procedure.

We start with the analysis of the output and show that the sampling procedure solves
the generalized shortest vector problem correctly if it outputs a vector v and not �failure�.

Lemma 5.1.4. Given a lattice basis B ∈ Qn×n and a subspace M ( span(B) with
parameters ρ and δ chosen as above, the sampling procedure, Algorithm 2, outputs a
vector v ∈ L\M of length at most (2 + δ) · ρ, when it is successful.

Proof. During the sampling procedure, two invariants are maintained:

1. For all (xi, yi) ∈ Z, yi − xi ∈ L(B).

2. For all (xi, yi) ∈ Z, ‖yi‖ ≤ R.

Let us consider the �rst invariant. The algorithm chooses N vectors x1, . . . , xN in
B̄

(‖·‖)
n (0, r) and computes yi with yi ≡ xi mod L(B) for i ∈ {1, . . . , N}. That means,

yi − xi ∈ L(B). During the while-loop in step 2 of the sampling procedure we only
subtract from yi vectors of the form yj − xj that are themselves lattice vectors.
Next, we consider the second invariant. At the start of the while-loop we have yi ∈
P(B). Hence, for all i ∈ {1, . . . , N} the length of yi is bounded by

‖yi‖ ≤
n∑
j=1

‖bi‖ ≤ n ·max {‖bj‖ | 1 ≤ j ≤ m} = R0 = R.

This property is maintained during each iteration of the while-loop since the distance
between every vector yi and its corresponding representative is at most R/a,

∥∥yi − (yσ(i) − xσ(i))
∥∥ ≤ ∥∥yi − yσ(i)

∥∥+
∥∥xσ(i)

∥∥ ≤ R

a
+
∥∥xσ(i)

∥∥ ,
see Lemma 5.1.3. Since xσ(i) ∈ B̄

(‖·‖)
n (0, ρ), it follows that

∥∥yi − (yσ(i) − xσ(i))
∥∥ < R

a
+ ρ ≤ R.

The last inequality is based on the fact that at the end of each iteration of the while-loop
R is replaced by R/a+ ρ.
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If R ≤ (1 + δ)ρ, the while-loop terminates. By the two invariants, each remaining pair
(xi, yi) ∈ Z satis�es yi − xi ∈ L(B) and

‖yi − xi‖ ≤ ‖yi‖+ ‖xi‖ ≤ (1 + δ)ρ+ ρ = (2 + δ)ρ.

Now, we consider the number of arithmetic operations used by the sampling procedure
that is mainly in�uenced by the number of iterations of the while-loop in step 2 of the
sampling procedure. Here we use that the radius ρ is at least 1/2.

Claim 5.1.5. Given a lattice basis B ∈ Qn×n and a subspaceM ( span(B) together with
the parameters 0 < δ <

√
2 − 1 and ρ ≥ 1/2, the number of iterations of the while-loop

of the sampling procedure is at most

2 log2

(
1 +

2

δ

)
·
(

log2(R0) + log2

(
1 +

2

δ

))
,

where R0 = m ·max{‖bi‖ | 1 ≤ i ≤ m} is an upper bound of the input size.

Proof. The parameter R is initialized as R0. After i steps of the while-loop the parameter
R is

R0

ai
+ ρ

i−1∑
j=0

a−j .

The iteration terminates if R ≤ (1 + δ)ρ. Since a 6= 1, we can use the geometric series

R0

ai
+ ρ ·

i−1∑
j=1

a−j ≤ R0

ai
+ ρ · a

a− 1

to see that the iteration terminates if

R0

ai
+ ρ

a

a− 1
≤ (1 + δ)ρ.

We obtain that

i ≥ log2 a · (log2R0 + log2(a− 1)− log2((δ(a− 1)− 1)ρ)) .

Since a = 1 + 2/δ, the number of iterations in step 2 is at most

log2(a) · (log2(R0) + log2(a− 1)− log2((δ(a− 1)− 1)ρ))

≤ log2(a) (log2(R0) + log2(a)− log2(ρ)) .

Since ρ ≥ 1/2, we obtain that this is at most

log2(a) · (log2(R0) + log2(a) + 1)

≤ 2 log2(a) · (log2(R0) + log2(a))

= 2 log2(1 +
2

δ
) · (log2(R0) + log2(1 +

2

δ
)).
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Using this bound for the number of iterations, we can analyze the number of arithmetic
operations of the sampling procedure. Furthermore, we are able to give an upper bound
on the number of pairs which are removed from the set Z during the sampling procedure.

Lemma 5.1.6. Let ‖ · ‖ be a tractable norm on Rn. Given a lattice basis B ∈ Qn×n and
a subspace M ( span(L(B)) with the parameters ρ and δ satisfying 0 < δ <

√
2− 1 and

ρ ≥ 1/2, the sampling procedure, Algorithm 2, satis�es the following properties:

� The number of arithmetic operations of the sampling procedure is bounded by(
log2

(
1 +

2

δ

)
· log2(r) · n ·N

)O(1)

,

where N is the number of vectors chosen in the sampling procedure and r is an
upper bound on the size of the lattice basis B and the subspace M .
The representation size of each number computed by the algorithm is at most(

n · log2

(
1 +

2

δ

)
log2(r)

)O(1)

.

� We remove at most

z(R0, δ) :=

(
log2(R0) + log2

(
1 +

2

δ

))(
2
(

1 +
2

δ

)
+ 1

)n+1

(5.6)

pairs from the set Z.

Proof. The number of iterations of the while-loop dominates the number of arithmetic
operations used by the sampling procedure and is bounded by

2 log2

(
1 +

2

δ

)
·
(

log2(R0) + log2

(
1 +

2

δ

))
, (5.7)

as we have seen in Claim 5.1.5. This term is bounded by

4 log2

(
1 +

2

δ

)2
· log2(R0) ≤

(
m log2

(
1 +

2

δ

)
log2(r)

)O(1)

, (5.8)

where r is an upper bound on the size of the basis B and the subspace M .
In each iteration, we apply the sieving procedure to the set {yi|(xi, yi) ∈ Z}. Since the
size of the vectors xi sampled from B̄

(‖·‖)
n (0, ρ) is at most rn

O(1)
, it is easy to see that the

size of the translations yi is also rn
O(1)

, see Theorem 5.0.7.
In each iteration, we change the vectors yi by adding or subtracting two other vectors
of size of at most rn

O(1)
. Since the number of iterations is at most (m · log2(1 + 2/δ) ·

log2(r))O(1), see (5.8), the size of the vector yi after step 2 of the sampling procedure is
at most

r(n·log2(1+2/δ)·log2(r))O(1)
.
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Hence, in each iteration step of the while-loop, the sieving procedure is applied to vectors
with this size and it follows that the number of arithmetic operations is at most

N2 (n · log2(r))O(1) .

Combining this with the upper bound for the number of iterations of the while-loop given
in (5.8), we obtain that the number of arithmetic operations of the sampling procedure
is bounded by (

log2

(
1 +

2

δ

)
log2(r) · n ·N

)O(1)

.

Since the sieving procedure is executed at most 2 log2(1+2/δ) (log2(R0) + log2(1 + 2/δ))
times, see (5.7), and we �nd a set of size of at most (2a+ 1)n = (2(1 + 2/δ) + 1)n in each
application of the sieving procedure, see Lemma 5.1.3, we remove at most

2 log2

(
1 +

2

δ

)(
log2(R0) + log2

(
1 +

2

δ

))
·
(

2
(

1 +
2

δ

)
+ 1

)n
pairs from Z.

Combining Lemma 5.1.4 and Lemma 5.1.6 with the right choice of parameters, we see
that the sampling procedure computes a set of lattice vectors whose length is at most
(1 + ε)λ

(‖·‖)
M (L) for arbitrary 0 < ε ≤ 3/2.

Theorem 5.1.7. Let ‖ · ‖ be a tractable norm on Rn. For every 0 < ε ≤ 3/2 there exists
a δ > 0 such that the following holds: Given a full-dimensional lattice L ⊆ Qn and a
parameter ρ satisfying

1

2
≤ ρ ≤ 1

2
(1 + δ)2λ

(‖·‖)
M (L),

the sampling procedure, Algorithm 2, computes a set S of vectors from L ∩ B̄(‖·‖)
n (0, (1 +

ε)λ
(‖·‖)
M (L)). The number of arithmetic operations of the sampling procedure is

(
log2

(
2 +

1

ε

)
log2(r) · n ·N

)O(1)

,

where N is the number of vectors chosen in the sampling procedure and r is an upper
bound on the size of the lattice L and the subspace M . The representation size of each
number computed by the sampling procedure is at most(

n · log2

(
2 +

1

ε

)
· log2(r)

)O(1)

.
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Proof. If we choose δ = ε/4, it follows from ε ≤ 3/2 that δ <
√

2 − 1. The sampling
procedure computes a set of pairs (x, y) ∈ Z each satisfying ‖y − x‖ ≤ (2 + δ)ρ and

y − x ∈ L, see Lemma 5.1.6. Since the parameter ρ satis�es ρ ≤ (1/2) · (1 + δ)2λ
(‖·‖)
M (L)

we get

‖y − x‖ ≤ (2 + δ)
1

2
(1 + δ)2λ

(‖·‖)
M (L) =

(
1 +

δ

2
(5 + 4δ + δ2)

)
λ

(‖·‖)
M (L).

Since δ = ε/4, it follows that

‖y − x‖ ≤ (1 + ε)λ
(‖·‖)
M (L).

Using Lemma 5.1.6, the number of arithmetic operations of the sampling procedure is(
log2

(
1 +

2

δ

)
· log2(r) · n ·N

)O(1)

=

(
log2

(
2 +

1

ε

)
· log2(r) · n ·N

)O(1)

and each number computed by the algorithm has representation size of at most(
n · log2

(
1 +

2

δ

)
· log2(r)

)O(1)

=

(
n · log2

(
2 +

1

ε

)
· log2(r)

)O(1)

.

5.1.3. Analysis of the sampling procedure using a modi�ed sampling
procedure

The sampling procedure computes a set of lattice vectors whose length is at most
(1 + ε)λ

(‖·‖)
M (L). So far, we have not excluded the case that all vectors are contained

in the subspace M .

We need to show that the sampling procedure computes vectors in L\M . For this,
we use the randomization in the algorithm. We change our point of view and consider a
modi�ed sampling procedure that behaves exactly like the sampling procedure presented
in Algorithm 2. We are able to show that the modi�ed sampling procedure computes
a vector v ∈ L\M with success probability 1 − 2−Ω(n). Hence, the same is true for the
sampling procedure.

We consider a lattice vector u ∈ L\M with ‖u‖ = λ
(‖·‖)
M (L) and de�ne the sets

C1 := B̄(‖·‖)
n (0, ρ) ∩ B̄(‖·‖)

n (u, ρ) and C2 := B̄(‖·‖)
n (0, ρ) ∩ B̄(‖·‖)

n (−u, ρ).

If the parameter ρ satis�es

1

2
(1 + δ)λ

(‖·‖)
M (L) ≤ ρ ≤ 1

2
(1 + δ)2λ

(‖·‖)
M (L) (5.9)
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0−u u

C1C2

ρ

Figure 5.2.: The sets C1 and C2. We consider balls with radius ρ around the vectors
−u, 0, and u. If the radius ρ is less than ‖u‖, the intersections C1 and C2

are disjoint. If the radius r is greater than ‖u‖/2, the intersections C1 and
C2 are non-empty.

for a 0 < δ <
√

2− 1, we have

ρ >
1

2
λ

(‖·‖)
M (L)

and

ρ ≤ 1

2
(1 + δ)2λ

(‖·‖)
M (L) < λ

(‖·‖)
M (L).

Therefore the sets C1 and C2 are non-empty and disjoint. The form of the sets with
respect to the Euclidean norm is shown in Figure 5.2.

We de�ne a mapping τu : B̄
(‖·‖)
n (0, ρ) −→ Rn depending on the lattice vector u.

τu(x) =


x+ u , x ∈ C2

x− u , x ∈ C1

x , otherwise
. (5.10)

Claim 5.1.8. Let L ⊆ Rn be a lattice and M ( span(L). For 0 < δ <
√

2− 1 let ρ > 0
be a parameter satisfying (5.9). Then the mapping τu de�ned as in (5.10) is a bijective
mapping

τu : B̄(‖·‖)
n (0, ρ)→ B̄(‖·‖)

n (0, ρ)

which maps C1 to C2, C2 to C1, and B̄
(‖·‖)
n (0, ρ)\(C1 ∪ C2) to itself. Particularly, we

have ‖τu(x)‖ ≤ ρ for all x ∈ B̄(‖·‖)
n (0, ρ).

Proof. The statement follows directly by the de�nition of the sets C1 and C2. For x ∈
C1 = B̄

(‖·‖)
n (0, ρ) ∩ B̄(‖·‖)

n (u, ρ) we have

‖τu(x)‖ = ‖x− u‖ ≤ ρ and

‖τu(x) + u‖ = ‖x‖ ≤ ρ,
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that means τu(x) ∈ C2. Analogously, we see that τu(x) ∈ C1 for all x ∈ C2 and that

τu(x) ∈ B̄(‖·‖)
n (0, ρ)\(C1∪C2) for all x ∈ B̄(‖·‖)

n (0, ρ)\(C1∪C2). Obviously, τu is a bijective
mapping.

Using the mapping τu we de�ne the modi�ed sampling procedure which is presented
in Algorithm 3. The modi�ed sampling procedure applies the sieving procedure in the
same way as the original sampling procedure. The result of this sieving procedure is an
index set J . In contrast to the original sampling procedure, for each pair (xi, yi) with
i ∈ J , the modi�ed sampling procedure replaces the vector xi with probability 1/2 by the
vector τu(xi). Furthermore, after the termination of the while-loop for each remaining
pair (x, y) ∈ Z, the modi�ed sampling procedure replaces the vector x with probability
1/2 by the vector τu(x).

The modi�ed sampling procedure is only used for the analysis. Hence, we do not worry
about its running time and the fact that it uses the unknown vector u. Since τu maps
B̄

(‖·‖)
n (0, ρ) to B̄(‖·‖)

n (0, ρ), we have ‖τu(x)‖ ≤ ρ for all x ∈ B̄
(‖·‖)
n (0, ρ). Thus, analo-

gously to Lemma 5.1.7, we can see that the modi�ed sampling procedure returns vectors
in L ∩ B̄(‖·‖)

n (0, (1 + ε)λ
(‖·‖)
M (L)).

The sampling procedure presented in Algorithm 2 and the modi�ed sampling procedure
presented in Algorithm 3 return vectors distributed according to certain distributions.
We call these the output distributions generated by the sampling procedure and the
modi�ed sampling procedure, respectively.

Theorem 5.1.9. The sampling procedure, Algorithm 2, and the modi�ed sampling pro-
cedure, Algorithm 3, generate the same output distribution.

Proof. First, we consider the following modi�cation in step 1b) of the sampling procedure
presented in Algorithm 2. After choosing the vectors xi we decide for each xi uniformly
at random whether to keep xi or to replace it with τu(xi). This does not change the
distribution on the vectors xi. Hence, this modi�cation does not change the output dis-
tribution of the sampling procedure.

Next, we observe that we can postpone the decision of replacing xi to the �rst time in
which it has an e�ect on the algorithm. We observe that u ∈ L implies

yi ≡ xi ≡ τu(xi) mod L, i = 1, . . . , N.

Hence, if we decide for each xi whether to replace it with τu(xi) at the end of step 1
rather than in step 1b), this does not change the output distribution.

But if, without changing the output distribution, we can choose for each xi whether to
keep it or to replace it with τu(xi) at the end of step 1, then making that decision for each
xi prior to the �rst time it is used in step 2 will also not change the output distribution.
Furthermore, for each vector xi not used at all in step 2 we can choose whether to keep
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Algorithm 3 The modi�ed sampling procedure
Input:

� A lattice basis B = [b1, . . . , bn] of a lattice L,
� a subspace M ( span(L), and
� parameters 0 < δ <

√
2− 1 and ρ ≥ 1/2.

Used subroutine: Sieving procedure.

Output: A vector v ∈ L\M or �failure�.

1. a) Set R0 ← n ·max{‖bi‖|1 ≤ i ≤ n}.

b) Choose N vectors x1, . . . , xN uniformly in B̄(‖·‖)
n (0, ρ).

c) Compute yi ∈ P(B) with yi ≡ xi mod L for i = 1, . . . , N .

d) Set Z = {(x1, y1), . . . , (xN , yN )}.
e) Set R← R0 and a← 1 + 2/δ.

2. While R > (1 + δ)ρ,

a) apply the sieving procedure to {yi|(xi, yi) ∈ Z} with the parameters a =
1 + 2/δ and R. The result is a set J and a mapping σ.

b) Remove from Z all pairs (xi, yi) with i ∈ J .
c) For each pair (xi, yi), i ∈ J , replace xi with τu(xi) with probability 1

2 .

d) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yσ(i) − xσ(i))).

e) Set R← R/a+ ρ.

3. For each pair (xi, yi) ∈ Z replace xi with τu(xi) with probability 1
2 .

4. Set S := {yi − xi|(xi, yi) ∈ Z}.
Output a shortest vector v ∈ S with v 6∈ M if such a vector exists. Otherwise,
the output is �failure�.
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5.1. A sampling procedure for approximate Gsvp

it or replace it with τu(xi) at the end of step 2. But this is exactly the modi�cation
leading from the sampling procedure presented in Algorithm 2 to the modi�ed sampling
procedure presented in Algorithm 3.

Mathematically, this proof is not correct. Since we consider a continuous probability
distribution on B̄(‖·‖)

n (0, ρ), the probability of a �nite vector x ∈ B̄(‖·‖)
n (0, ρ) is 0. Hence,

we cannot argue that a vector x ∈ B̄(‖·‖)
n (0, ρ) is chosen with the same probability as the

vector τu(x) ∈ B̄(‖·‖)
n (0, ρ). Nevertheless, the statement in Theorem 5.1.9 is correct. But

to prove it correctly, we need to consider small balls around the vectors x and τu(x) and
we have to argue that they have the same volume. For the sake of simplicity and for a
better understanding we omit this proof here.

For further analysis, we need the probability, that a vector x, which is chosen uniformly
in B̄(‖·‖)

n (0, ρ), is contained in C1 ∪ C2.

Lemma 5.1.10. Let ‖ · ‖ be a norm on Rn, let u ∈ Rn be a vector and ζ > 0. De�ne

C := B̄
(‖·‖)
n (0, (1/2)(1 + ζ)‖u‖) ∩ B̄(‖·‖)

n (u, 1/2(1 + ζ)‖u‖). Then

voln(C)

voln

(
B

(‖·‖)
n

(
0, 1

2(1 + ζ)‖u‖
)) ≥ ( ζ

1 + ζ

)n
.

Proof. Since (1/2)(1 + ζ)‖u‖ > (1/2) · ‖u‖, the intersection C is non-empty. The in-
tersection C contains a ball with radius (1/2)ζ‖u‖ centered around u/2, since for all

s ∈ B̄(‖·‖)
n (u/2, (1/2)ζ‖u‖) it holds that

‖s‖ ≤
∥∥∥s− u

2

∥∥∥+
∥∥∥u

2

∥∥∥ ≤ 1

2
ζ‖u‖+

1

2
‖u‖ =

1

2
(1 + ζ)‖u‖

and

‖s− u‖ ≤
∥∥∥s− u

2

∥∥∥+
∥∥∥u

2

∥∥∥ =
1

2
(1 + ζ)‖u‖.

We get that

voln(C) ≥ voln

(
B̄(‖·‖)
n

(
0,

1

2
ζ‖u‖

))
.

Using Equation (2.1) in Chapter 2, we obtain

voln(C)

voln

(
B

(‖·‖)
n (0, 1

2(1 + ζ)‖u‖)
) ≥ (

1
2ζ · ‖u‖

)n
voln

(
B

(‖·‖)
n (u2 , 1)

)
(

1
2(1 + ζ)‖u‖

)n
voln

(
B

(‖·‖)
n (0, 1)

) =

(
ζ

1 + ζ

)n
.
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0 u

C

B̄
(1)
n (0, 1

2
(1 + ζ)ρ) B̄

(1)
n (u, 1

2
(1 + ζ)ρ)

Figure 5.3.: Volume of the intersection of two `1-balls. The intersection
B̄

(1)
n (0, 1

2(1 + ζ)ρ) ∩ B̄(1)
n (u, 1

2(1 + ζ)ρ) is exactly the `1-ball with radius
(1/2)ζ‖u‖1 centered at u/2.

For general norms, the bound given in this lemma is tight. Consider the vector
u = (u1, 0, . . . , 0) ∈ Rn with respect to the `1-norm. Then, the intersection C is ex-

actly the `1-ball B̄
(1)
n (u/2, (1/2)ζ|u1|), see Figure 5.3. For the Euclidean norm one can

achieve a slightly better bound by looking at a (n− 1)-dimensional cylinder centered at
the vector u/2, see [GG00] and [Reg04].

The sampling procedure and the modi�ed sampling procedure choose N vectors uni-
formly at random in B̄(‖·‖)

n (0, ρ). We are interested in the number of vectors which are
contained in C1 ∪ C2.

Lemma 5.1.11. Let N ∈ N. By q, denote the probability that a random vector in
B̄

(‖·‖)
n (0, ρ) is contained in C1 ∪ C2. If N vectors x1, . . . , xN are chosen uniformly at

random in B̄
(‖·‖)
n (0, ρ), then with probability larger than 1 − 4/(N · q) there are at least

(q ·N)/2 vectors xi ∈ {x1, . . . , xN} with the property xi ∈ C1 ∪ C2.

Proof. Let X be the number of vectors which are contained in C1 ∪ C2. The expected
number of vectors from C1 ∪ C2 is q · N with variance N · q · (1 − q) < N · q. Using
Chebyshev's inequality, see Theorem A.0.1 in the Appendix, we get

P

|X − E(X)︸ ︷︷ ︸
=q·N

| ≥ q ·N
2︸ ︷︷ ︸

=:ε

 ≤ Var(X)

ε2
<

N · q
1
4(N · q)2

=
4

N · q
.

Therefore,

P

(
|X| ≤ q ·N

2

)
≤ 4

N · q
.
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For further analysis only pairs (x, y) with x ∈ C1 ∪C2 are of interest because only for
them the mapping τu is not the identity. The next lemma shows how many vectors N
one has to choose at the beginning of the sampling procedure so that at the end of step
2 of the sampling procedure the set Z contains su�ciently many pairs (x, y) satisfying
the property that x ∈ C1 ∪ C2.

Lemma 5.1.12. Let ‖·‖ be a tractable norm on Rn. We consider the sampling procedure,
Algorithm 2, respectively the modi�ed sampling procedure, Algorithm 3, with input of a
full-dimensional lattice L ⊆ Qn, a subspace M ( span(L) and a parameter ρ satisfying

ρ ≥ 1

2
(1 + δ)λ

(‖·‖)
M (L)

for arbitrary 0 < δ ≤ 1/2. Furthermore, assume that in the �rst step of the sampling
procedure or the modi�ed sampling procedure the number of vectors chosen is

N =

(
1 + δ

δ

)n
2 (ν + z(R0, δ)) ,

where z(R0, δ) is de�ned as in (5.6) and ν ∈ N. Then at the end of step 2 of the sampling
procedure or the modi�ed sampling procedure, the set Z contains with probability 1− 2/ν
at least ν pairs (x, y) with the property x ∈ C1 ∪ C2.

The proof combines Lemma 5.1.10, where we determined the probability that a vector
x which is chosen uniformly at random in B̄(‖·‖)

n (0, ρ) is contained in C1∪C2, with Lemma
5.1.11, where we determined the number of vectors which are contained in C1 ∪C2, if we
choose N vectors at the beginning of the sampling procedure. Additionally, we have to
consider the number of pairs which are removed from the set Z.

Proof. If ρ ≥ (1/2)(1 + δ)λ
(‖·‖)
M (L), we have ρ = (1/2)(1 + ζ)λ

(‖·‖)
M (L) for some ζ ≥ δ.

Using Lemma 5.1.10 with ‖u‖ = λ
(‖·‖)
M (L) and ζ, we obtain that

voln(C1)

voln

(
B̄

(‖·‖)
n (0, ρ)

) ≥ ( ζ

1 + ζ

)n

≥
(

δ

1 + δ

)n
, (5.11)

where the last inequality follows from ζ ≥ δ. It follows from (5.11) that for i ∈ {1, . . . , N}
we have xi ∈ C1 ∪ C2 with probability at least

q :=

(
δ

1 + δ

)n
.

Using this in combination with Lemma 5.1.11, the set {x1, . . . , xN} contains with prob-
ability

1− 4

N · q
= 1− 2

ν + z(R0, δ)
> 1− 2

ν
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at least (q ·N)/2 vectors from C1 ∪C2. With Lemma 5.1.6, we remove at most z(R0, δ)
pairs from Z. Therefore, at the end of the algorithm the set Z contains with probability
larger than 1− 2/ν at least

1

2
q ·N − z(R0, δ) = ν + z(R0, δ)− z(R0, δ) = ν

pairs (x, y) with the property x ∈ C1 ∪ C2.

Using this result, we are able to show that the modi�ed sampling procedure computes
a lattice vector which is not contained in the subspace M with probability exponentially
close to 1.

Theorem 5.1.13. Let ‖ · ‖ be a tractable norm on Rn. For every 0 < ε ≤ 3/2 there
exists a δ > 0 such that the following holds: Given a lattice L ⊆ Qn and a subspace
M ( span(L) satisfying λ(‖·‖)

M (L) ≥ 2 and a parameter ρ satisfying Equation (5.9), i.e.,

1

2
(1 + δ)λ

(‖·‖)
M (L) ≤ ρ ≤ 1

2
(1 + δ)2λ

(‖·‖)
M (L),

then the modi�ed sampling procedure, Algorithm 3, computes a vector v ∈ L\M with
probability 1− 2−Ω(n).

Proof. We apply the sampling procedure with the same parameters as in Theorem 5.1.7,
i.e., we choose

δ = ε/4

N = ((1 + δ)/δ)n 2 (2n + z(R0, δ)) .

Since λ(‖·‖)
M (L) ≥ 2, we have ρ ≥ 1/2. By assumption, u ∈ L\M .

� If y − x ∈M , y − τu(x) = y − x± u ∈ L\M .

� Otherwise, y − x− (y − x± u) = ∓u ∈M .

If at the end of step 2 of the modi�ed sampling procedure there exists a pair (x, y) ∈ Z
with x ∈ C1 ∪ C2 and one of the following conditions holds:

� y − x ∈M and in step 3 we replace x with τu(x) or

� y − x ∈ L\M and in step 3 we do not replace x with τu(x),

the modi�ed sampling procedure returns a vector v ∈ L\M . In step 3 of the modi�ed
sampling procedure we decide for each pair (x, y) ∈ Z uniformly and independently if we
replace it or not. Using Lemma 5.1.12 with ν = 2n, the set Z contains at least 2n pairs
(x, y) with the property x ∈ C1 ∪ C2 with probability 1 − 2−n+1. Therefore, assuming
that the set Z contains at least n such pairs, the probability that the modi�ed sampling
procedure does not return a vector v ∈ L\M , is bounded by 2−2n . Hence, the success
probability of the modi�ed sampling procedure is at least 1− 2−Ω(n).
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5.1. A sampling procedure for approximate Gsvp

The sampling procedure and the modi�ed sampling procedure generate the same out-
put distribution as we have seen in Theorem 5.1.9. Additionally, we have shown in
Lemma 5.1.2 that we can restrict ourselves to instances of the generalized shortest vector
problem with 2 ≤ λ(‖·‖)

M (L) < 3.

Theorem 5.1.14. There exists a randomized algorithm that for all tractable norms solves
Gsvp with approximation factor 1 + ε for arbitrary 0 < ε ≤ 3/2 with success probability
1− 2−Ω(n). The number of arithmetic operations of the algorithm is((

2 +
1

ε

)n
log2(r)

)O(1)

,

where r is an upper bound on the Gsvp-instance. Each number computed by the algorithm
has representation size of at most(

n · log2

(
2 +

1

ε

)
· log2(r)

)O(1)

.

Proof. For all tractable norms, we can assume that we are given a Gsvp-instance in
form of a full-dimensional lattice L ⊆ Qn and some subspace M ( span(L) satisfying

2 ≤ λ(‖·‖)
M (L) < 3, or equivalently

2

3
<

2

λ
(‖·‖)
M (L)

≤ 1,

see Lemma 5.1.2. Let δ = ε/4 and de�ne

κ0 :=

⌊
log1+δ

2

3

⌋
and

l :=

⌈
log1+δ

2

λ
(‖·‖)
M (L)

⌉
,

then κ0 ≤ l ≤ 0 and the parameter ρ := (1 + δ)2−l satis�es Equation (5.9), i.e.,

1

2
(1 + δ)λ

(‖·‖)
M (L) ≤ ρ ≤ 1

2
(1 + δ)2λ

(‖·‖)
M (L).

We apply the sampling procedure for each value ρ = (1 + δ)2−l′ with κ0 ≤ l′ ≤ 0 with
the same parameter N as in Theorem 5.1.7 and in Theorem 5.1.13.
Let vl′ ∈ L\M be the lattice vector discovered by the sampling procedure started with
ρ = (1 + δ)2−l′ if any lattice vector is discovered. The output will be the smallest
vl′ ∈ L\M . As we have seen, for the unique l′ = l such that ρ = (1 + δ)2−l′ satis�es the
Equation (5.9), the sampling procedure will �nd a (1 + ε)-approximation for Gsvp with
probability 1− 2−Ω(n), see Theorem 5.1.13.
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We apply the sampling procedure roughly∣∣∣∣log1+δ

2

3

∣∣∣∣
times. By choosing of δ = ε/4 it follows from Theorem 5.1.7 that the number of arithmetic
operations is ∣∣∣∣log1+ε

2

3

∣∣∣∣ · (log2

(
2 +

1

ε

)
· log2(r) · n ·N

)O(1)

.

By our choice of N , we have

N =

(
1 + δ

δ

)n
· 2(2n + z(R0, δ))

=

(
1 +

1

δ

)n
· 2
(

2n + (log2(R0) + log2(1 +
2

δ
))(2(1 +

2

δ
) + 1)n+1

)
= 2O(n) log2(R0)

(
1 +

2

δ

)O(n)

= log2(r)O(1)

(
2 +

1

ε

)O(n)

.

Overall, we obtain that the number of arithmetic operations of the sampling procedure
is at most ((

2 +
1

ε

)n
log2(r)

)O(1)

.

The upper bound on the representation size of each number computed by the sampling
procedure follows directly from Theorem 5.1.7.

Combining this result with the reductions presented in Chapter 4 we obtain single
exponential time algorithms approximating Svp, Smp, Sivp, and Smp for all tractable
norms with approximation factor 1 + ε for arbitrary 0 < ε < 3/2.

5.2. Using the sampling procedure for optimal solutions

In this section we show that a variant of the sampling procedure presented before can
be used to compute a shortest lattice vector outside a given subspace exactly, provided
there do not exist too many short lattice vectors outside the given subspace.

5.2.1. Description and analysis of the sampling procedure for optimal
solutions

In the following, we are given a lattice L and some subspaceM ( span(L). Furthermore,
we assume that there exist absolute constants c, ε such that the number of lattice vectors

116



5.2. Using the sampling procedure for optimal solutions

v ∈ L\M satisfying ‖v‖ ≤ (1 + ε)λ
(‖·‖)
M (L) is bounded by 2cn. If so, we are able to show

that the sampling procedure presented in the last section satis�es the following property:
With probability exponentially close to 1 there exists at least one vector v ∈ L\M which
is represented by 2n pairs of the set Z (after the iteration). Using a modi�ed sampling
procedure like the one presented in Algorithm 3, we can show that a shortest vector
u ∈ L\M is the di�erence of such two vectors.

Without loss of generality we can assume that ε ≤ 1/2. To turn the (1 + ε)-sampling
procedure into an exact algorithm, we use the sampling procedure described in Algorithm
2 with the parameters

δ = ε/4 and

N = ((1 + δ)/δ)n 2
(

5 · 2(c+1)n + z(R0, δ)
)
, (5.12)

where z(R0, δ) is de�ned as in (5.6) in Lemma 5.1.6. We only modify the output: We
consider the set

O := {(yi − xi)− (yj − xj)|(xi, yi), (xj , yj) ∈ Z} .

The output is a shortest lattice vector v ∈ O with v ∈ L\M . A complete description of
the algorithm is given in Algorithm 4.

The analysis of this sampling procedure and its number of arithmetic operations are
the same as in Section 5.1. Obviously, we can modify the sampling procedure in the same
way as in Theorem 5.1.9 by using the mapping τu with respect to a shortest vector u ∈
L\M . We obtain a modi�ed sampling procedure like the modi�ed sampling procedure
described in Algorithm 3 which generates the same output distribution as the original
sampling procedure. This modi�ed sampling procedure for optimal solutions is presented
in Algorithm 5.
Hence we only need to analyze the success probability of the modi�ed sampling pro-

cedure. We show that the modi�ed sampling procedure computes the lattice vector
u ∈ L\M with probability 1− 2−Ω(n) .

In the following, we consider the set Z after step 2 and before step 3 of the modi�ed
sampling procedure. We de�ne the multiset

F := {(x, y) ∈ Z|x ∈ C1 ∪ C2} ⊆ Z. (5.13)

If we apply the sampling procedure for optimal solutions with input of a parameter
ρ satisfying (1/2)(1 + δ)λ

(‖·‖)
M (L) ≤ ρ ≤ (1/2)(1 + δ)2λ

(‖·‖)
M (L), each pair (x, y) ∈ F

represents a lattice vector y−x ∈ L whose length is at most (1+ε)λ
(‖·‖)
M (L), see Theorem

5.1.7. Furthermore we see that the set F contains with probability 1 − 2−Ω(n) at least
5 · 2(c+1)n pairs, using Lemma 5.1.12 with ν = 5 · 2(c+1)n. The following lemma shows
that at least 2n of these pairs represent the same lattice vector.
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Algorithm 4 The sampling procedure for optimal solutions
Input:

� A lattice basis B = [b1, . . . , bm] of a lattice L,
� a subspace M ( span(L), and
� parameters 0 < δ < 3/2 and ρ ≥ 1/2.

Used subroutine: Sieving procedure.

Output: A vector v ∈ L\M or �failure�.

1. a) Set R0 ← m ·max{‖bi‖1 ≤ i ≤ m}.

b) Choose N vectors x1, . . . , xN uniformly in B̄(‖·‖)
n (0, ρ).

c) Compute yi ∈ P(B) with yi ≡ xi mod L for i = 1, . . . , N .

d) Set Z ← {(x1, y1), . . . , (xN , yN )}.
e) Set R← R0 and a← 1 + 2/δ.

2. While R > (1 + δ)ρ,

a) apply the sieving procedure to the set {yi|(xi, yi) ∈ Z} with the parameters
a and R. The result is a set J and a mapping σ.

b) Remove all pairs (xi, yi) with i ∈ J from Z .

c) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yσ(i) − xσ(i))).

d) Set R← R/a+ r.

3. Set O := {(yi − xi)− (yj − xj)|(xi, yi), (xj , yj) ∈ Z}.
Output a shortest vector v ∈ O with v 6∈ M if such a vector exists. Otherwise,
the output is �failure�.
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5.2. Using the sampling procedure for optimal solutions

Algorithm 5 The modi�ed sampling procedure for optimal solutions
Input:

� A lattice basis B = [b1, . . . , bm] of a lattice L,
� a subspace M ( span(L), and
� parameters 0 < δ < 3/2 and ρ ≥ 1/2.

Used subroutine: Sieving procedure.

Output: A vector v ∈ L\M or �failure�.

1. a) Set R0 ← n ·max {‖bi‖ | 1 ≤ i ≤ n}.

b) Choose N vectors x1, . . . , xN uniformly in B̄(‖·‖)
n (0, ρ).

c) Compute yi ∈ P(B) with yi ≡ xi mod L for i = 1, . . . , N .

d) Set Z = {(x1, y1), . . . , (xN , yN )}.
e) Set R← R0 and a← 1 + 2/δ.

2. While R > (1 + δ)ρ,

a) apply the sieving procedure to {yi|(xi, yi) ∈ Z} with the parameters a and
R. The result is a set J and a mapping σ.

b) Remove all pairs (xi, yi) with i ∈ J from Z.
c) For each pair (xi, yi), i ∈ J , replace xi with τu(xi) with probability 1

2 .

d) Replace each remaining pair (xi, yi) ∈ Z with (xi, yi − (yσ(i) − xσ(i))).

e) Set R← R/a+ ρ.

3. For each pair (xi, yi) ∈ Z replace xi with τu(xi) with probability 1
2 .

4. Set O := {(yi − xi)− (yj − xj)|(xi, yi), (xj , yj) ∈ Z}.
Output a shortest vector v ∈ S with v 6∈ M if such a vector exists. Otherwise,
the output is �failure�.
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5. A randomized algorithm for the generalized shortest vector problem

Lemma 5.2.1. Let L ⊆ Qn be a full-dimensional lattice andM ( span(L) be a subspace.
Assume that there exist absolute constants c, ε such that the number of v ∈ L\M satisfying

‖v‖ ≤ (1 + ε)λ
(‖·‖)
M (L) is bounded by 2cn.

Consider the modi�ed sampling procedure of optimal solutions, Algorithm 5, with input
of the lattice L, the subspace M , and a parameter ρ satisfying

1

2
≤ ρ ≤ 1

2
· (1 + δ)2λ

(‖·‖)
M (L),

where 0 < δ ≤ ε/4. Assume that the multiset F de�ned as in (5.13) contains at least
5 · 2(c+1)n pairs. For v ∈ L we set

Fv := {(xi, yi) ∈ F |yi − xi = v}.

Then, there exists a vector v ∈ L with |Fv| ≥ 2n.

Proof. Assuming that |Fv| < 2n for all lattice vectors v ∈ L, we will derive a contradic-
tion.
In the following, we consider the set of all lattice vectors in L which are represented by
a pair (x, y) ∈ F ,

G := {v ∈ L|∃(x, y) ∈ F with v = y − x}.

Since we assume that |F | > 5 · 2(c+1)n and |Fv| < 2n for all v ∈ L, we obtain

|G| ≥ 5 · 2c·n.

Since the parameter ρ satis�es 1/2 ≤ ρ ≤ (1/2) · (1 + δ)2λ
(‖·‖)
M (L), it is guaranteed by

Theorem 5.1.7 that all lattice vectors in G have length of at most (1+ε)λ
(‖·‖)
M (L). Hence,

if we de�ne

GM := G ∩M,

the set G\GM consists of lattice vectors in L\M of length of at most (1 + ε)λ
(‖·‖)
M (L).

By assumption, |G\GM | ≤ 2cn and therefore

|GM | = |G| − |G\GM | ≥ 5 · 2c·n − 2c·n = 2c·n+2. (5.14)

Every vector v ∈ GM is represented by a pair (x, y) with x ∈ C1 ∪ C2 and v = y − x.
Since τu(x) ∈ B̄(‖·‖)

n (0, ρ), we can see that ‖y − τu(x)‖ ≤ (1 + ε)λ
(‖·‖)
M (L), analogously to

the proof of Theorem 5.1.7. Furthermore, we have

y − τu(x) = y − x± u = v ± u ∈ L\M.

Since τu is injective, this shows that we can de�ne an injective mapping

GM → {v ∈ L\M |‖v‖ ≤ (1 + ε)λ
(‖·‖)
M (L)}, (x, y) 7→ y − τu(x)
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5.2. Using the sampling procedure for optimal solutions

and it follows that

|GM | ≤ |{v ∈ L\M | ‖v‖ ≤ (1 + ε)λ
(‖·‖)
M (L)}|.

Combining this with (5.14), we obtain that the number of lattice vectors v ∈ L\M
satisfying ‖v‖ ≤ (1 + ε)λ

(‖·‖)
M (L) is at least 2c·n+2, i.e.,

|{x ∈ L\M |(1 + ε)λ
(‖·‖)
M (L)}| ≥ 2c·n+2.

This contradicts the assumption that the number of lattice vectors v ∈ L\M satisfying

‖v‖ ≤ (1 + ε)λ
(‖·‖)
M (L) is bounded by 2c·n.

Using this lemma, we get:

Theorem 5.2.2. Let ‖ · ‖ be a tractable norm on Rn. Let L ⊆ Qn be a full-dimensional
lattice and M ( span(L) be a subspace. Assume that there exist absolute constants

c, ε such that the number of v ∈ L\M satisfying ‖v‖ ≤ (1 + ε)λ
(‖·‖)
M (L) is bounded by

2cn. Then, the modi�ed sampling procedure for optimal solutions, Algorithm 5, solves the
generalized shortest vector problem with success probability 1− 2−Ω(n).

Proof. Using Lemma 5.1.12 with ν = 5·2(c+1)n, we obtain that with probability 1−2−Ω(n)

the set F de�ned as in (5.13) contains at least 5 · 2(c+1)n pairs. In this case there exists a
lattice vector v ∈ L with |Fv| ≥ 2n, see Lemma 5.2.1. In step 3 of the modi�ed sampling
procedure we decide for each pair (x, y) ∈ Fv uniformly at random whether we replace x
with τu(x) or not. If there exist (xi, yi), (xj , yj) ∈ Fv such that in step 3 the mapping τ
is applied to xi but not to xj then u ∈ O. Since we decide uniformly whether we replace
x with τu(x) this event happens with probability at least 1− 2 · 2−2n .

Like in Theorem 5.1.9, we can show that the sampling procedure for optimal solutions,
Algorithm 4, and the modi�ed sampling procedure for optimal solutions, Algorithm 5,
generate the same output distribution.

Theorem 5.2.3. (Theorem 5.0.3 restated.)
Let ‖ · ‖ be a tractable norm on Rn. Let L ⊆ Qn be a full-dimensional lattice and
M ( span(L) be a subspace. Assume that there exist absolute constants c, ε such that the

number of v ∈ L\M satisfying ‖v‖ ≤ (1+ε)λ
(‖·‖)
M (L) is bounded by 2cn. Then, there exists

an algorithm that solves the generalized shortest vector problem with success probability
1 − 2−Ω(n). The number of arithmetic operations of the algorithm is (2n · log2(r))O(1),
where r is an upper bound on the size of the lattice and the subspace. The algorithm runs
in single exponential space and each number computed by the algorithm has representation
size of at most (n · log2(r))O(1).

5.2.2. Consequences for other lattice problems

In this section, we show that we can use this result to obtain probabilistic single expo-
nential time algorithms for Svp, Smp, Sivp, and Cvp. For this, we need to show for
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5. A randomized algorithm for the generalized shortest vector problem

each problem that the number of (1 + ε)-approximate solutions is single exponential.

To obtain an upper bound for the number of (1 + ε)-approximate solutions for these
lattice problems we use our results from Chapter 4, where we have seen that the number
of lattice vectors in a ball with radius R is essentially single exponential in the relation
between the radius R and the minimum distance of the lattice, see Lemma 4.2.11.

For the shortest vector problem we can use this result to show that the assumptions
of Theorem 5.0.3 (Theorem 5.2.3 respectively) are always satis�ed. For the successive
minima problem we can use the same result, but here the assumptions of Theorem 5.0.3
are only satis�ed in the special cases where the relation between the n-th successive
minimum and the minimum distance of the lattice is not too large. For the closest vector
problem, we have to go back to the original reduction presented in Section 4.3.1 to see
that in some special cases the assumptions of Theorem 5.0.3 are satis�ed.

Theorem 5.2.4. (Theorem 5.0.4 restated.)
For all tractable norms, there exists a randomized algorithm that solves the shortest vector
problem with success probability 1− 2−Ω(n). The number of arithmetic operations of the
algorithm is (2n log2(r))O(1), where n is the rank of the lattice and r is an upper bound
on its size. The algorithm runs in single exponential space and each number computed
by the algorithm has representation size of at most (n · log2(r))O(1).

Proof. Given a lattice L, we set M := {0}. Then, the subspace avoiding minimum

corresponds to the minimum distance of the lattice, i.e., λ(‖·‖)
M (L) = λ

(‖·‖)
1 (L). We have

seen in Chapter 4 that the number of lattice vectors in L with length at most (1 +

ε)λ
(‖·‖)
1 (L) is upper bounded by∣∣∣B̄(‖·‖)

n

(
0, (1 + ε)λ

(‖·‖)
1 (L)

)
∩ L
∣∣∣ ≤ (2(1 + ε) + 1)n = (3 + 2ε)n = 2cn

for a c ∈ N, see Corollary 4.2.12. With Theorem 5.0.3, we obtain that the sampling
procedure for optimal solutions with input of the lattice L, the subspace M , and the
parameter N chosen as in (5.12) computes a vector v ∈ L\M with ‖v‖ ≤ λ

(‖·‖)
M (L) with

probability exponentially close to 1 and therefore a shortest non-zero lattice vector in
L.

Similarly, the sampling method for optimal solutions can be used to compute the
successive minima of a lattice L exactly provided that the n-th successive minimum
λ

(‖·‖)
n (L) is bounded by cλ(‖·‖)

1 (L) for some constant c. The proof of the following result
is based on the same idea as the reduction from Smp to Gsvp, see Theorem 4.3.3.

Theorem 5.2.5. (Theorem 5.0.5 restated.)
Let ‖ · ‖ be a tractable norm on Rn and L ⊆ Qn be a full-dimensional lattice. Assume

that the n-th successive minimum λ
(‖·‖)
n (L) is bounded by c · λ(‖·‖)

1 (L) for some constant
c ∈ N. Then, with success probability 1 − 2−Ω(n), the successive minima of L can be
computed using (2n · log2(r))O(1) arithmetic operations, where r is an upper bound on
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5.2. Using the sampling procedure for optimal solutions

the size of the lattice. The algorithm runs in single exponential space and each number
computed by the algorithm has representation size of at most (n · log2(r))O(1).

Proof. We have seen in Theorem 5.2.4 that we are able to use the sampling procedure for
optimal solutions to get a shortest non-zero vector in L. Given v1, . . . , vi−1 ∈ L linearly
independent for i > 1, we consider the subspace M := span(v1, . . . , vi−1). Then we get

λ
(‖·‖)
M (L) ≤ λ

(‖·‖)
i (L). Since λ(‖·‖)

n (L) ≤ c · λ(‖·‖)
1 (L), for all ε > 0, the number of lattice

vectors in L of length of at most (1 + ε)λ
(‖·‖)
i (L) is upper bounded by∣∣∣B̄(‖·‖)

n

(
0, (1 + ε)λ

(‖·‖)
i (L)

)
∩ L
∣∣∣ ≤ (2(1 + ε)c+ 1)n ,

see Corollary 4.2.13. With Theorem 5.0.3 we get that the sampling procedure for optimal
solutions with input of the lattice L, the subspace M and the parameter N de�ned as in
(5.12) computes a vector vi ∈ L\M with ‖vi‖ ≤ λ(‖·‖)

M (L).

For the closest vector problem, we obtain a similar result for instances of Cvp where
the distance between the target vector and the lattice is at most c times the minimum
distance of the lattice for some �xed constant c > 0.

Theorem 5.2.6. (Theorem 5.0.6 restated.)
Let ‖ · ‖ be a tractable norm on Rn. Let L ⊆ Qn be a full-dimensional lattice and
t ∈ span(L)∩Qn be some target vector. Assume that there exists some absolute constant

c such that µ(‖·‖)(t, L) ≤ c·λ(‖·‖)
1 (L). Then, a vector v ∈ L satisfying ‖t−v‖ = µ(‖·‖)(t, L)

can be computed using (2n · log2(r))O(1) arithmetic operations, where r is an upper bound
on the size of the Cvp-instance. The algorithm runs in single exponential space and each
number computed by the algorithm has representation size of at most (n · log2(r))O(1).

To prove this theorem, we follow the reduction from Cvp to Gsvp presented in Section
4.3.1 in Chapter 4. Given a lattice L ⊆ Rn and a target vector t ∈ Rn together with a
parameter α > 0, we consider the unique parameter ρ such that

ρ ≤ µ(‖·‖)(t, L) ≤ (1 + α)ρ.

We use the same lifting technique and the same parameter

γ :=
1 + ε

1− ε
(1 + α)ρ (5.15)

with 0 < ε < 1/2 to de�ne the (n+ 1)-dimensional lattice

L′ := L
((

b1
0

)
, . . . ,

(
bm
0

)
,

(
t
γ

))
(5.16)

and the subspace

M := span

((
b1
0

)
, . . . ,

(
bm
0

))
( span(L′), (5.17)
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where B = [b1, . . . , bm] ∈ Rn×m is a basis of the lattice L. Also, we consider the same
norm F on Rn+1 which is de�ned as F (x) = ‖x̄‖+ |x̂| for x = (x̄T , xT ) ∈ Rn+1. As we
have seen in Lemma 4.3.4, the norm F is tractable, since ‖ · ‖ is a tractable norm.

Now, the main part of the proof of Theorem 5.2.6 is to show that it follows from
µ(‖·‖)(t, L) ≤ c ·λ(‖·‖)

1 (L) that there do not exist too many lattice vectors in L′\M whose

length with respect to the norm F is at most (1 + ε)λ
(F )
M (L′), i.e., to show that there

exists a constant c1 ∈ R such that∣∣∣B̄(F )
n (0, (1 + ε)λ

(F )
M (L′)) ∩ (L′\M)

∣∣∣ ≤ 2c1n.

If we can show this, we can use the sampling procedure for optimal solutions to ob-
tain a shortest vector v ∈ L′\M with respect to the norm F with success probability
1− 2−Ω(n). As we have seen in the reduction from Cvp to Gsvp, such a vector is of the
form v = ±(z − t,−γ), where z ∈ L is a lattice vector in L that is closest to the target
vector t with respect to the norm ‖ · ‖, see Lemma 4.3.8 in Chapter 4.

We consider a parameter ρ satisfying ρ ≤ µ(‖·‖)(t, L). We have already seen that

under this assumption the subspace avoiding minimum λ
(F )
M (L′) of the lattice L′ and the

subspace M ( span(L′) in the norm F is less than 2γ,

λ
(F )
M (L′) <

2

1 + ε
γ < 2γ, (5.18)

see Claim 4.3.7 in Chapter 4. Hence, it follows from the de�nition of the norm F that
the minimum distance of the lattice L′ with respect to the norm F is the minimum
of the minimum distance of the lattice L with respect to the norm ‖ · ‖ and the value
µ(‖·‖)(t, L) + γ, i.e.,

λ
(F )
1 (L′) = min

{
λ

(‖·‖)
1 (L), µ(‖·‖)(t, L) + γ

}
.

By assumption, there exists some absolute constant c such that µ(‖·‖)(t, L) ≤ c ·λ(‖·‖)
1 (L).

If λ(F )
1 (L′) = λ

(‖·‖)
1 (L), we have µ(‖·‖)(t, L) ≤ c · λ(‖·‖)

1 (L) = c · λ(F )
1 (L′). Otherwise,

we obtain µ(‖·‖)(t, L) ≤ µ(‖·‖)(t, L) + γ = λ
(F )
1 (L′). This shows that in both cases the

parameter ρ satis�es

ρ ≤ µ(‖·‖)(t, L) ≤ c · λ(F )
1 (L′).

In the next lemma, we will see that this guarantees that there do not exist too many
lattice vectors in L′ with length 2γ in the norm F .

Lemma 5.2.7. Let L ⊆ Rn be a lattice and t ∈ span(L) be some target vector. For
α > 0 and 0 < ε < 3/2 de�ne the parameter γ and the lattice L′ ⊆ Rn+1 as above, see
(5.15) and (5.16).
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Assume furthermore that there exists a parameter ρ > 0 and some absolute constant c
such that

ρ < c · λ(F )
1 (L′).

Then, the number of lattice vectors in L′ with length of at most 2γ is upper bounded by∣∣∣B̄(F )
n (0, 2γ) ∩ L′

∣∣∣ ≤ 2c1n

for some constant c1 ∈ N.

Proof. Using Lemma 4.2.11 with the radius R = 2γ, we obtain that the number of lattice
vectors in L′ whose length with respect to the norm F is at most 2γ is upper bounded
by

∣∣∣B̄(F )
n (0, 2γ) ∩ L′

∣∣∣ ≤ (4γ + λ
(F )
1 (L′)

λ
(F )
1 (L′)

)n
.

By de�nition of γ and using that ρ ≤ c · λ(F )
1 (L′), we obtain

∣∣∣B̄(F )
n (0, 2γ) ∩ L′

∣∣∣ ≤ (41+ε
1−ε(1 + α)ρ+ λ

(F )
1 (L′)

λ
(F )
1 (L′)

)n

≤


(

41+ε
1−ε(1 + α)c+ 1

)
λ

(F )
1 (L′)

λ
(F )
1 (L′)

n

≤ 2c1n

for some constant c1 ∈ N.

As we have seen in (5.18), the subspace avoiding minimum of the lattice L′ and the

subspace M is less than λ(F )
M (L′) < (2/(1 + ε))γ. Thus, it follows from Lemma 5.2.7 that∣∣∣B̄(F )

n (0, (1 + ε)λ
(F )
M (L′)) ∩ L′

∣∣∣ ≤ ∣∣∣B̄(F )
n (0, 2γ) ∩ L′

∣∣∣ ≤ 2c1n.

In particular, the number of vectors v ∈ L′\M satisfying F (v) ≤ (1 + ε)λ
(F )
M (L′) is

bounded by 2c1n for some �xed constant c1 ∈ N. Hence, the assumptions of Theorem
5.0.3 are satis�ed, that means the lattice membership algorithm for optimal solutions
with input of the lattice L′ and the subspace M de�ned as in (5.16) and (5.17) using
a parameter ρ satisfying ρ < µ(‖·‖)(t, L) < (1 + α)ρ computes a shortest lattice vector
u ∈ L′\M with respect to the norm F with probability exponentially close to 1. As we
have seen in Lemma 4.3.8, the vector u is of the form u = ±(z − t,−γ), where z ∈ L is
a lattice vector that is closest to the target vector t with respect to the norm ‖ · ‖. This
proves Theorem 5.2.6.

125



5. A randomized algorithm for the generalized shortest vector problem

5.3. Discussion of the results

In this chapter, we presented a probabilistic single exponential time algorithm based on
the AKS-sampling technique that approximates the generalized shortest vector problem
with approximation factor 1+ε for arbitrary 0 < ε < 3/2. Unfortunately, we are not able
to use this technique to solve the generalized shortest vector problem exactly. Moreover,
it seems to be impossible to develop an algorithm based on the AKS-sampling technique
that solves one of the lattice problems Smp, Sivp, or Cvp exactly. If we want to use
the sampling technique to obtain exact solutions we need to �nd some kind of collisions.
That means, the number N of vectors which are chosen in the beginning of the sampling
procedure needs to be large enough to guarantee that at the end of the algorithm we have
two vectors of the form x and x+u, where u is an optimal solution of the corresponding
lattice problem and both x and x+ u are guaranteed to be approximate solutions. But
we have already seen in Chapter 4 that for the lattice problems Smp, Sivp, and Cvp,
the number of approximate solutions can be arbitrarily large.

In 2008, Arvind and Joglekar improved our approximation algorithm for Gsvp with
respect to the Euclidean norm such that the number of arithmetic operations of the
algorithm is (2n(1/ε)k log2(r))O(1), where n is the rank of the lattice, k is the dimension
of the subspace, and r is an upper bound on the size of the lattice and the subspace, see
[AJ08]. The improvement of the running time is achieved as follows: In their algorithm,
the number N of vectors chosen at the beginning of the sampling procedure needs to
be large enough such that after the iterations there exist enough pairs (xi, yi), (xj , yj)
with xi, xj ∈ C1 ∪ C2 satisfying ‖(xi − yi) − (xj − yj)‖ ≤ ε and (xi − yi) − (xj −
yj) ∈ M . To determine a corresponding parameter N they use a packing argument
in Rk, where k is the dimension of the subspace M . Thus, they use a bijective linear
transformation between the subspace M and the vector space Rk. Since this bijective
linear transformation is length preserving with respect to the Euclidean norm they can
use an argument like Lemma 4.2.11 in Chapter 4 to obtain an upper bound on the number
of di�erent lattice vectors in L ∩M of Euclidean length at most ε. This upper bound
depends only on the dimension k of the subspace and not on the dimension of span(L).
Unfortunately, we do not know how to construct a bijective linear transformation from
an arbitrary k-dimensional subspace to the vector space Rk which is length preserving
with respect to some arbitrary but �xed norm.
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lattice membership problem

In this chapter, we consider algorithmic solutions for the lattice membership problem.
To recall, in the lattice membership problem we are given a full-dimensional bounded
convex set together with a lattice. The goal is to compute a lattice vector in the convex
set or to decide that the convex set does not contain a lattice vector, see De�nition 4.3.12
in Chapter 4.

We show that there exists a deterministic algorithm that solves the lattice member-
ship problem in polynomial space for all `p-balls and polytopes. If we consider `p-
norms, 1 < p < ∞, we obtain an algorithm whose number of arithmetic operations
is p · log2(r)O(1)n(2+o(1))n, where r is an upper bound on the size of the coe�cients de�n-
ing the convex set and n is the dimension of the `p-ball. For all polyhedral norms, we
obtain an algorithm whose number of arithmetic operations is (s · log2(r))O(1)n(2+o(1))n,
where r and n are de�ned as above and s is the number of constraints de�ning the poly-
tope. In particular, for the `1-norm and the `∞-norm, we obtain an algorithm whose
number of arithmetic operations is log2(r)O(1)n(2+o(1))n.

In Chapter 4, we have seen that the lattice membership problem can be seen as a
geometric reformulation of the closest vector problem, i.e., that there exists a polynomial
time reduction from the closest vector problem to the lattice membership problem for
all `p-norms and all polyhedral norms. This leads to a deterministic polynomially space
bounded algorithm for the closest vector problem for all `p-norms and all polyhedral
norms.

As we have seen in Chapter 4, the lattice membership problem is a generalization of
the integer programming feasibility problem from polytopes to general bounded convex
sets. Hence, the existence of algorithmic solutions for the lattice membership problem
is closely related to the existence of algorithmic solutions for the integer programming
feasibility problem. Our algorithm is a variant of Lenstra's algorithm for integer pro-
gramming used together with a variant of the ellipsoid method, see [Len83]. To guarantee
that the algorithm runs in polynomial space, we use a preprocessing method from Frank
and Tardos developed for Lenstra's algorithm for integer programming, see [FT87].

To put our results in perspective, we shortly review the major results based on Lenstra's
technique in the following.
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Lenstra's algorithm for integer programming and related results

In 1979, Lenstra presented the �rst polynomial time algorithm that solves the integer
programming feasibility problem in �xed dimension, [Len83]. This algorithm was im-
proved by Kannan in 1987, [Kan87b]. Considering the dimension as a part of the input,
the number of arithmetic operations of this algorithm is O(n(5/2)n log2(r)), where r is an
upper bound on the size of the input polytope. Hence, our result improves the running
time of Lenstra's algorithm by the factor nn/2 while keeping polynomial space complexity.

In 2005, Heinz generalized Lenstra's algorithm to obtain an algorithm for integer op-
timization over quasiconvex polynomials, [Hei05]. To recall, a function f : Rn → R is
quasiconvex if all α-sublevel sets {x ∈ Rn|f(x) ≤ α}, α ∈ R, are convex sets, see De�-
nition 2.1.7 in Chapter 2. Heinz considered quasiconvex polynomials F1, . . . , Fm ∈ Z[x],
which de�ne a convex set Y := {x ∈ Rn|Fi(x) < 0 for all 1 ≤ i ≤ m}. His algorithm
either computes an integer vector in this set or shows that this set does not contain an
integer vector. Recently, this algorithm was improved by Hildebrand and Köppe, who
presented an algorithm for this problem using m · log2(r)O(1)dO(n)n(2+o(1))n arithmetic
operations, where d is an upper bound on the total degree of the m polynomials and r
is an upper bound on the size of the input, see [HK10].
In particular, their algorithm can be used to decide whether the set {x ∈ Rn|‖x−t‖pp−α <
0} with t ∈ Rn and α > 0 contains a lattice vector if p is an even number, since for even
p the function ‖ · ‖pp : Rn → R, x 7→ ‖x‖pp =

∑n
i=1 x

p
i is a quasiconvex polynomial and

obviously for a given vector t ∈ Rn and radius α > 0, we have

B(p)
n (t, α) = {x ∈ Rn|‖x− t‖p < α} = {x ∈ Rn|‖x− t‖pp − αp < 0}.

If p is not an even number, the function ‖ · ‖pp : Rn → R, x 7→ ‖x‖pp is not even a

polynomial. Although it is possible to represent B(p)
n (t, α) as the intersection of poly-

nomials, these polynomials are not quasiconvex. For example, B(3)
n (0, 1) can be repre-

sented using the sublevel sets {x ∈ R2|x3
1 + x3

2 − 1 < 0}, {x ∈ R2| − x3
1 + x3

2 − 1 < 0},
{x ∈ R2| − x3

1 − x3
2 − 1 < 0}, and {x ∈ R2|x3

1 − x3
2 − 1 < 0}, but we have already seen

that for example the function x 7→ x3
1 + x3

2 − 1 is not quasiconvex, see Figure 2.3 on
page 14 in Chapter 2. Thus, the result of Heinz cannot be applied directly to achieve
our results. Additionally, their algorithm has the disadvantage of not being polynomially
space bounded.

In 2010, Dadush, Peikert, and Vempala presented a randomized algorithm for the lat-
tice membership problem for well-bounded convex bodies given by a separation oracle,
see [DPV11] and [DPV10]. Their algorithm is also based on Lenstra's algorithm for
integer programming. The expected number of arithmetic operations of this algorithm
is O(n(4/3)n) log2(r)O(1). Their algorithm uses so-called M -ellipsoids. In [DPV11] they
present an algorithm that computes anM -ellipsoid for a well-bounded convex body in ex-
pected single exponential time. Recently, Dadush and Vempala described a deterministic
algorithm that computes an approximate M -ellipsoid for any well-bounded convex body
in time O(log2(n))n, see [DV12]. This yields a deterministic algorithm for the lattice
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membership problem for well-bounded convex bodies given by a separation oracle where
the number of arithmetic operations is O(n(4/3)n) log2(r)O(1). Of course, the number of
arithmetic operations of their algorithm is better than ours, but compared to our result,
their algorithm has the disadvantage of having exponential space complexity.

Main results of this chapter and its consequences for other lattice
problems

In this chapter, we present a deterministic algorithm that solves the lattice membership
problem in polynomial space for all `p-balls, 1 < p <∞, and polytopes.

Theorem 6.0.1. There exists a deterministic algorithm that solves the lattice member-
ship problem for all convex sets generated by an `p-norm, 1 < p < ∞, or a polyhedral
norm.

� If the convex set is an `p-ball with 1 < p <∞, the number of arithmetic operations
of the algorithm is at most p · log2(r)O(1)n(2+o(1))n. The algorithm runs in poly-
nomial space and each number computed by the algorithm has bit size of at most
p · nO(1) log2(r).

� If the convex set is a full-dimensional polytope symmetric about the origin given by s
constraints, the number of arithmetic operations is at most (s·log2(r))O(1)n(2+o(1))n.
The algorithm runs in polynomial space and each number computed by the algorithm
has bit size of at most nO(1) log2(r).

We present the algorithm as a general algorithmic framework. This framework works
for all full-dimensional bounded convex sets which are contained in some class K such
that there exists a so-called �atness algorithm for this class. Loosely speaking, a �atness
algorithm for such a class of bounded convex sets computes a bounded number of parallel
a�ne hyperplanes for a given convex set from this class such that the following holds:
The convex set contains a lattice vector if and only if the intersection of the convex set
with one of these a�ne hyperplanes contains a lattice vector. That means, the �atness
algorithm reduces the solution of the lattice membership problem for a bounded convex
set of dimension n to several solutions of the lattice membership problem of convex sets
of dimension n− 1.

To obtain an algorithm that solves the lattice membership problem for polytopes, we
consider the class of full-dimensional polytopes and show that for this class there exists
a �atness algorithm. If we want to obtain an algorithm that solves the lattice member-
ship problem for `p-balls with 1 < p < ∞ there arises the technical di�culty that we
are not able to develop a �atness algorithm for `p-balls since the class of `p-balls is not
closed under bijective a�ne transformation and intersection with hyperplanes. Due to
this reason, we consider a generalization of `p-balls, the class of so-called `p-bodies. For
this class, we show that there exists a �atness algorithm. This part is the main technical
contribution of our lattice membership algorithm.
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6. A deterministic algorithm for the lattice membership problem

In Section 4.3 of Chapter 4, we have seen that the lattice membership problem is a
geometric reformulation of the closest vector problem. Particularly, we have seen that
there exists a polynomial time reduction from the closest vector problem to the lattice
membership problem for all `p-norms and all polyhedral norms, see Proposition 4.3.13 in
Chapter 4. Combining this with Theorem 6.0.1, it implies a deterministic polynomially
space bounded algorithm that solves the closest vector problem with respect to an `p-
norm, 1 < p <∞, and a polyhedral norm, e.g. the `1-norm and the `∞-norm.

Theorem 6.0.2. There exists a deterministic polynomially space bounded algorithm that
solves the closest vector problem for all `p-norms, 1 < p <∞, and all polyhedral norms,
e.g. the `1-norm and the `∞-norm.

� For all `p-norms with 1 < p < ∞, the number of arithmetic operations of the
algorithm is p · log2(r)O(1)n(2+o(1))n.

� For all polyhedral norms, the number of arithmetic operations of the algorithm is
(s log2(r))O(1)n(2+o(1))n, where s is the number of constraints de�ning the polytope.
In particular, for the `1-norm and the `∞-norm we obtain an algorithm for Cvp,
where the number of arithmetic operations is log2(r)O(1)n(2+o(1))n.

Here, r is an upper bound on the size of the Cvp-instance and n is the dimension of the
vector space.

Organization This chapter is organized as follows: We start with a description of
Lenstra's algorithm as a general framework for algorithmic solutions of the lattice mem-
bership problem. This is done in Section 6.1. Here, we consider some unspeci�ed class
K of full-dimensional bounded convex sets, for which we assume the existence of a �at-
ness algorithm. Then, we adapt this framework to concrete classes of full-dimensional
bounded convex sets. In Section 6.2, we consider full-dimensional polytopes and in Sec-
tion 6.3 generalizations of `p-balls, where 1 < p <∞.
To complete the description of the lattice membership algorithm, we describe in Sec-
tion 6.4 how a �atness algorithm for these classes of convex sets can be realized. We
start with a description of a �atness algorithm for ellipsoids. Then we generalize this
result to general bounded convex sets, for which we are able to compute an approximate
Löwner-John ellipsoid. For polytopes and the generalization of `p-balls, we are able to
compute an approximate Löwner-John ellipsoid and we obtain a �atness algorithm for
these classes of convex sets. At the end of this chapter, we describe a slight modi�cation
of the replacement procedure due to Frank and Tardos, which can be used to guarantee
that our lattice membership algorithm runs in polynomial space.

6.1. A general algorithm for the lattice membership problem

In this section, we describe a general framework to solve the lattice membership problem
for full-dimensional bounded convex sets and full-dimensional lattices. Before we present
a concrete and detailed description of the lattice membership algorithm, we start with
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6.1. A general algorithm for the lattice membership problem

the description of the main geometric idea behind the algorithm.

The lattice membership algorithm is a recursive algorithm which works for classes of
bounded convex sets. Since we describe a general framework here, we do not specify how
the convex sets from the class K are given.

The class K need to satisfy certain properties. We will de�ne and explain these proper-
ties at a suitable place where they are necessary for the development of the membership
algorithm. First of all, we assume only that the class K is closed under bijective linear
transformation. Then it is enough to solve the lattice membership problem for those
instances where the corresponding lattice is the integer lattice Zn. Since every vector
from a lattice L = L(B) is an integer linear combination of the basis vectors of B, any
bounded convex set C ⊆ span(L) contains a lattice vector from L if and only if the
bounded convex set B−1C contains an integer vector.

Lemma 6.1.1. Let L ⊆ Rn be a full-dimensional lattice given by a basis B ∈ Rn×n and
C ⊆ Rn be a convex set. Then, the convex set C contains a lattice vector from L if and
only if the convex set B−1 · C = {B−1x|x ∈ C} contains an integer vector.

6.1.1. The main idea of the lattice membership algorithm

The lattice membership algorithm uses the concept of branch and bound. Given a
bounded convex set C from the class K we consider a family of a�ne hyperplanes given
by a vector d̃ ∈ Zn\{0},

⋃
k∈ZHk,d̃. Obviously, every integer vector v ∈ Zn, which is

contained in C, satis�es 〈d̃, v〉 = k for some integer value k ∈ Z and k is contained in the
interval

IC :=
[
inf{〈d̃, x〉|x ∈ C}, sup{〈d̃, x〉|x ∈ C}

]
.

Hence, to decide whether the bounded convex set C contains an integer vector, it is
su�cient to consider all integer values k which are contained in the interval IC and check
recursively whether the convex set C ∩ Hk,d̃ contains an integer vector. This idea is
illustrated in Figure 6.1. In the following, we will call an algorithm which realizes this
idea a lattice membership algorithm.

Since the convex set C can be arbitrarily large, we cannot generally assume that the
length of the interval IC is bounded. But we will show that we can restrict ourselves to
consider only a bounded number of a�ne hyperplanes. That means we can show that
there exists a non-decreasing function f : N → R such that for every bounded convex
set C ⊆ Rn ∩ K of dimension m there exists a vector d̃ ∈ Zn\{0} and an interval IC of
length at most f(m) such that the following holds: The convex set C contains an integer
vector if and only if there exists an integer k ∈ Z ∩ IC such that the convex set C ∩Hk,d̃
contains an integer vector.
We call a vector d̃ that satis�es this property a f(m)-�atness direction of the convex set
C.
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6. A deterministic algorithm for the lattice membership problem

C

Hk,d̃ with k = inf{〈d̃, x〉|x ∈ C}

Hk,d̃ with k = sup{〈d̃, x〉|x ∈ C}

Figure 6.1.: Main idea of the lattice membership algorithm. If d̃ is a non-zero
integer vector, every integer vector in the convex set C is contained in an a�ne
hyperplaneHk,d̃, where k ∈ Z with inf{〈d̃, x〉|x ∈ C} ≤ k ≤ sup{d̃, x〉|x ∈ C}.

De�nition 6.1.2. (γ-�atness direction)
Let C ⊆ Rn be a bounded convex set of dimension m. A vector d̃ ∈ Zn\{0} is called a
γ-�atness direction of C for some parameter γ > 0 if there exists an interval IC of length
at most γ such that the following holds: The convex set C contains an integer vector if
and only if there exists k ∈ Z ∩ IC such that C ∩Hk,d̃ contains an integer vector.

The parameter γ > 0 is arbitrary. It can be a constant or a function of any parameter
associated to the lattice. Often the parameter depends on the dimension of the convex set.

In the following, if we say that we compute a γ-�atness direction d̃ ∈ Zn\{0} of some
given convex set C together with a corresponding interval IC we mean that we compute a
vector d̃ ∈ Zn\{0} and an interval IC of length at most γ such that the following holds:
The convex set C contains an integer vector if and only if there exists k ∈ Z ∩ IC such
that C ∩Hk,d̃ contains an integer vector.

At the moment, we assume that such a γ-�atness direction of a convex set can be
found. Then we obtain a prototype of a lattice membership algorithm, which is described
in Algorithm 6.

6.1.2. Description of the lattice membership algorithm

If we realize this idea of a membership algorithm, we obtain a recursive algorithm, where
the recursive instances are given by a full-dimensional bounded convex set C and an a�ne
subspace H. At the beginning, i.e., if m = n, we set H := Rn. Later, the a�ne subspace
H is given by a set of a�ne hyperplanes Hki,di , m+1 ≤ i ≤ n for some parameter m ≤ n.
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Algorithm 6 Prototype of a lattice membership algorithm
Input: A full-dimensional bounded convex set C ⊆ Rn from the class K which is closed
under bijective linear transformation.

Output: An integer vector in C or the statement that C does not contain an integer
vector.

If n = 1, �nd an integer vector in C or decide that C does not contain an integer vector.

Otherwise,

1. compute an f(n)-�atness direction d̃ ∈ Zn\{0} and an interval IC .

2. For all k ∈ Z∩ IC , �nd an integer vector in C ∩Hk,d̃ or show that C ∩Hk,d̃
does not contain an integer vector.

3. If there exists an index k such that C ∩ Hk,d̃ contains an integer vector,
output this vector. Otherwise, output that C ∩ Hk,d̃ does not contain an
integer vector.

If m = 0, the a�ne subspace consists of a single vector. This vector can be computed
e�ciently using Gaussian elimination.

During the execution of the algorithm we need to be able to compute f(m)-�atness
directions for the recursive instances. These recursive instances consist of a bounded
convex set of dimension m given as the intersection C ∩H of the original input convex
set C from the class K and an a�ne subspace H of dimension m. Thus, we assume that
we have access to a so-called �atness algorithm AK,f .

Assumption 6.1.3. (Existence of �atness algorithm for the class K)
Let K be a class of bounded convex sets and f : N→ R>0 be some nondecreasing function.
We assume that there exists a deterministic �atness algorithm AK,f that on input of a
convex set C ∈ K of dimension n together with an a�ne subspace H of dimension m
computes an f(m)-�atness direction d̃ ∈ Zn\{0} of the convex set C ∩H together with a
corresponding interval IC∩H of length at most f(m).

In Section 6.4 we will show that for concrete classes of bounded convex sets, we can
realize a �atness algorithm, in particular for polytopes and generalizations of `p-balls.

Under the assumption that we have access to a �atness algorithm satisfying Assump-
tion 6.1.3, we are able to present a complete description of the algorithm, see Algorithm
7.

Theorem 6.1.4. Let K be a class of bounded convex sets closed under bijective linear
transformation. Assume that there exists a �atness algorithm AK,f satisfying Assump-
tion 6.1.3.
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Algorithm 7 Membership algorithm for bounded convex sets
Input:

� A full-dimensional bounded convex set C ⊆ Rn from the class K which is closed
under bijective linear transformation and satis�es Assumption 6.1.3, and

� an a�ne subspace H :=
⋂n
i=m+1Hki,di , where di ∈ Zn linearly independent and

ki ∈ Z for all m+ 1 ≤ i ≤ n; alternatively, H := Rn.

Used subroutine: Flatness algorithm AK,f satisfying Assumption 6.1.3.

Output: An integer vector in C ∩H or the statement that C ∩H does not contain an
integer vector.

If m = 0, compute a vector z ∈ Zn ∩H satisfying z ∈ C or decide that C ∩H does not
contain an integer vector.

Otherwise,

1. apply the �atness algorithm AK,f with input of the convex set C and the
a�ne subspace H. The result is a vector dm ∈ Zn together with an interval
IC∩H .

2. For all k ∈ Z∩ IC∩H , apply the membership algorithm to the convex set C
and the a�ne subspace H∩Hk,dm . Either the algorithm outputs an integer
vector or it outputs that C ∩H ∩Hk,dm does not contain an integer vector.

3. If there exists an index k ∈ Z ∩ IC∩H such that the algorithm outputs an
integer vector, output this vector. Otherwise, output that C ∩H does not
contain an integer vector.
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Given a full-dimensional bounded convex set C ⊆ Rn from the class K and an a�ne sub-
space H, the lattice membership algorithm for bounded convex sets, Algorithm 7, decides
correctly whether C ∩H contains an integer vector. If C ∩H contains an integer vector, it
outputs one. The number of recursive calls of the algorithm is at most (2f(m))m, where
m is the dimension of the subspace.

Given a full-dimensional bounded convex set C ⊆ Rn and the whole vector space Rn

as input, the algorithm solves the lattice membership problem correctly.

Proof. If m = 0, the a�ne subspace H consists of a single vector. Thus, the algorithm
can decide correctly whether this vector is an integer vector which is contained in C.
For m ≥ 1, the membership algorithm applies the �atness algorithm AK,f to the full-
dimensional bounded convex set C and the a�ne subspace H. By assumption, the al-
gorithm computes an f(m)-�atness direction of the convex set C ∩H given by a vector
dm ∈ Zn\{0} and an interval IC∩H . Since we assume that the �atness algorithm AK,f
veri�es Assumption 6.1.3, it is guaranteed that C ∩H contains an integer vector if and
only if there exists an index k ∈ Z ∩ IC∩H such that C ∩H ∩Hk,dm contains an integer
vector.
Hence, if there exists an index k ∈ Z∩ IC∩H such that the lattice membership algorithm
with input of the convex set C and the a�ne subspace H ∩ Hk,dm outputs an integer
vector v ∈ C ∩ H ∩ Hk,dm , then we have found an integer vector in C ∩ H. Otherwise,
i.e., if for all k ∈ Z ∩ IC∩H the set C ∩H ∩Hk,dm does not contain an integer vector, it
is guaranteed by Assumption 6.1.3 that C ∩H does not contain an integer vector.

If we are given a convex set in Rn together with an a�ne subspace of dimension m as
input, we need at most f(m) + 1 solutions of recursive instances where the dimension of
the subspace is m − 1, since the length of the interval Iτ(C∩H) is at most f(m). Hence,
the overall number of recursive calls is at most

m∏
i=1

(f(i) + 1) ≤ 2mf(m)m.

In the next proposition we show that our lattice membership algorithm runs in poly-
nomial space if the bit size of each number computed by the algorithm is polynomial in
the bit size of the input instance. So far we do not specify how the convex sets from the
class K are given. Hence, the notion of the size of a convex set C from the class K is not
clearly de�ned, but this does not matter in the following statement.

Proposition 6.1.5. Let K be a class of bounded convex sets closed under bijective linear
transformation. Assume that there exists a �atness algorithm AK,f satisfying Assumption
6.1.3. Let C ⊆ Rn be a full-dimensional convex set from the class K and let H ⊆ Rn be
an a�ne subspace of dimension m. Let r be an upper bound on the size of C and H. If
the �atness algorithm AK,f runs in polynomial space and if all numbers computed by the
lattice membership algorithm, Algorithm 7, with input of the convex set C ⊆ Rn and the
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a�ne subspace H have size at most rn
c
for some �xed constant c > 1, then the lattice

membership algorithm runs in polynomial space.

Proof. The lattice membership algorithm with input of an a�ne subspaceH of dimension
m is a recursive algorithm where the corresponding recursion tree has m levels. Each
level consists of all recursive instances with the corresponding a�ne subspaces having
the same dimension k.
Let s(k) be an upper bound on the space used by the lattice membership algorithm given
as input an a�ne subspace of dimension k. By assumption, the size of each number
computed in one reduction step is at most rn

c
. Since the �atness algorithm AK,f runs

in polynomial space, this shows that this reduction step runs in polynomial space, i.e.,
it needs space at most (rn

c
)O(1).

At each step in our lattice membership algorithm we need to consider exactly one path
in the recursion tree. Furthermore, the algorithm can terminate if it has found an integer
vector in C ∩H. The recursive instances are given by a vector dk ∈ Zn\{0} together with
an interval I = [kmin, kmax], which is given by its lower and upper bound. By assumption,
the size of all these numbers is at most rn

c
. This shows that the space complexity satis�es

the following recursion

s(k) ≤ O(rn
c
) + s(k − 1).

From this, it follows that the space complexity of the algorithm is upper bounded by∑m
k=0O(rn

c
) = rn

O(1)
, that means the algorithm runs in polynomial space.

Unfortunately, for the outline of our lattice membership algorithm presented so far we
cannot guarantee that the bit size of each number computed by the algorithm is polyno-
mial in the bit size of the input instance. In fact, the size of the new a�ne hyperplane
depends not only on the size of the convex set C but also on the size of the a�ne sub-
space. This problem occurs also in Lenstra's algorithm for integer programming and its
improvement by Kannan. To avoid this problem, we use a replacement procedure devel-
oped by Frank and Tardos in 1987, see [FT87]. In the next section, we will describe their
result and show how it can be used to obtain a polynomially space bounded algorithm
for the lattice membership problem.

6.1.3. A polynomially space bounded lattice membership algorithm

The replacement procedure from Frank and Tardos is a polynomial time algorithm that
on input of an a�ne subspace H ⊆ Rn and an additional hyperplane Hk,d computes a
set of new a�ne hyperplanes Hk̄i,d̄i

, i ∈ J for some index set J with small size.

If the a�ne subspace H and the a�ne hyperplane Hk,d are a�nely independent, the
a�ne subspace H and the new a�ne hyperplanes Hk̄i,d̄i

, i ∈ J are also a�nely indepen-
dent and we have dim(H) + |J | ≤ n. Furthermore, if we additionally consider a convex
set C and choose the parameters appropriately depending on the shape of the convex set,
it can be guaranteed that each integer vector in the convex set C is contained in the a�ne

136



6.1. A general algorithm for the lattice membership problem

subspace H ∩Hk,d if and only if it is contained in the intersection H ∩
⋂
i∈J Hk̄i,d̄i

. The
following result is a slight generalization of Lemma 5.1 in [FT87]. Its proof together with
a short description of the procedure appears in Section 6.5 at the end of this chapter.

Proposition 6.1.6. There exists a replacement procedure, which satis�es the following
properties: Given a parameter N ∈ N as input as well as an a�ne subspace H ⊆ Rn and
an additional a�ne hyperplane Hk,d which is a�nely independent of H, the replacement
procedure computes a set of a�nely independent hyperplanes Hk̄i,d̄i

, i ∈ J 6= ∅ such that
the following holds:

� Every integer vector z ∈ B̄
(1)
n (0, N − 1) ∩ H satis�es 〈d, z〉 = k if and only if it

satis�es 〈d̄i, z〉 = k̄i for all i ∈ J .

� The a�ne subspace H and the a�ne hyperplane Hk̄i,d̄i
, i ∈ J are a�nely indepen-

dent.

The size of the vectors d̄i ∈ Zn and the numbers k̄i ∈ Z is at most 2(n+2)2Nn. The number
of arithmetic operations of the replacement procedure is at most (n · log2(N))O(1).

If we use this replacement procedure in the lattice membership algorithm with a suit-
able computed parameter N directly before the recursive call of the lattice membership
algorithm, we can replace the newly constructed a�ne hyperplane Hk,dm with the inter-
section of several other a�ne hyperplanes whose size depend only on the shape of the
convex set C and not on the size of the a�ne subspace H. The parameter N depends only
on the shape of the convex set, that means in each recursion step of the lattice member-
ship algorithm we can use the same parameter N . Hence, if we describe our membership
algorithm and say that we compute in each recursion step a parameter N such that
C ⊆ B̄

(1)
n (0, N − 1) this is only for the simpli�cation of the representation. A complete

description of this algorithm, which is called the modi�ed membership algorithm, is given
in Algorithm 8.

Theorem 6.1.7. Let K be a class of bounded convex sets closed under bijective linear
transformation. Assume that there exists a �atness algorithm AK,f satisfying Assumption
6.1.3.
Given a full-dimensional bounded convex set C ⊆ Rn from the class K satisfying C ⊆
B̄

(1)
n (0, N − 1) and an a�ne subspace H, the modi�ed lattice membership algorithm,

Algorithm 8, satis�es the following properties: It decides correctly whether C∩H contains
an integer vector or not. If C ∩H contains an integer vector, it outputs one.
Each recursive instance consists of the original convex set C and an a�ne subspace of
size of at most

max
{

size(H), 2(n+2)2Nn
}
.

Proof. Since C ⊆ B̄(1)
n (0, N −1), for all k ∈ Z the convex set C contains an integer vector

from H ∩ Hk,dm , if and only if it contains an integer vector from H ∩
⋂
i∈Jk Hk̄i,d̄i

, see
Proposition 6.1.6. Hence, the correctness of the algorithm follows directly from Theorem
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Algorithm 8 A polynomially space bounded lattice membership algorithm for bounded
convex sets
Input:

� A full-dimensional bounded convex set C ⊆ Rn from the class K, which is closed
under bijective linear transformation and satis�es Assumption 6.1.3, and

� an a�ne subspace H :=
⋂n
i=m+1Hki,di , where di ∈ Zn linearly independent and

ki ∈ Z for all m+ 1 ≤ i ≤ n; alternatively, H := Rn.

Used subroutines: Flatness algorithm AK,f satisfying Assumption 6.1.3; replacement
procedure.

Output: An integer vector in C ∩H or the statement that C ∩H does not contain an
integer vector.

If m = 0, compute a vector z ∈ Zn ∩H satisfying z ∈ C or decide that C ∩H does not
contain an integer vector.

Otherwise,

1. apply the �atness algorithm AK,f with input of the convex set C and the
a�ne subspace H. The result is a vector dm ∈ Zn together with an interval
IC∩H .

2. Compute a parameter N ∈ N with C ⊆ B̄(1)
n (0, N − 1).

3. For all k ∈ Z ∩ IC ,
a) apply the replacement procedure to the a�ne subspace H, the hy-

perplane Hk,dm and the parameter N . The result is an index set Jk
and an a�ne subspace

⋂
i∈Jk Hk̄i,d̄i

.

b) Apply the membership algorithm to the convex set C and the a�ne
subspace H ∩

⋂
i∈Jk Hk̄i,d̄i

. Either the algorithm outputs an integer
vector or it outputs that C ∩ H ∩

⋂
i∈Jk Hk̄i,d̄i

does not contain an
integer vector.

4. If there exists an index k such that the algorithm outputs an integer vector,
output this vector. Otherwise, output that C∩H does not contain an integer
vector.
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6.1.4. Each recursive instance consists of the original convex set C and an a�ne subspace
of dimension m − 1. This subspace is given as the intersection of the original subspace
H and an a�ne hyperplane of size of at most 2(n+2)2Nn, see again Proposition 6.1.6.
Hence, the size of the recursive a�ne subspace is the maximum of the size of the a�ne
subspace H and 2(n+2)2Nn.

Obviously, we are able to adapt this general framework for all classes of bounded
convex sets for which there exists a �atness algorithm. In the following two sections, we
consider polytopes and generalizations of `p-balls. We will see that for these classes of
bounded convex sets, there exists a �atness algorithm.

6.2. A lattice membership algorithm for polytopes

In this section, we consider the class of full-dimensional polytopes. We will present a
deterministic algorithm that solves the lattice membership problem for these convex sets.
Given a full-dimensional polytope in Rn de�ned by s constraints as input, the running
time of this algorithm is (s · log2(r))O(1)n(2+o(1))n, where r is an upper bound on the size
of the input polytope.

In the following, we always assume that the polytopes are given by a matrix A ∈ Zs×n
and a vector β ∈ Zs. Obviously, the class of all full-dimensional polytopes is closed
under bijective linear transformation. Furthermore, there exists a �atness algorithm for
polytopes. The proof of the following result together with a description of the algorithm
appears in Section 6.4 at the end of this chapter.

Theorem 6.2.1. There exists a �atness algorithm that for all full-dimensional polytopes
P ⊆ Rn and a�ne subspaces H of dimension m outputs a 2m2-�atness direction dm ∈
Zn\{0} of P ∩H together with a corresponding interval IP∩H ⊆ R of length of at most
2m2. The number of arithmetic operations of the �atness algorithm is

(ns · log2(r))O(1)2O(m)mm/(2e),

where r is an upper bound on the size of the polytope, s is the number of constraints
de�ning the polytope, and e is Euler's constant. The algorithm runs in polynomial space
and each number computed by the algorithm has size of at most rn

O(1)
.

Using this result, we can adapt the algorithmic framework from Section 6.1 to solve the
lattice membership problem for polytopes. Essentially, the lattice membership algorithm
for polytopes works in the same way as the lattice membership algorithm for bounded
convex sets as presented in Algorithm 8. As input, the algorithm gets a full-dimensional
polytope in Rn given by integral constraints and an a�ne subspace H ⊆ Rn. Further-
more, we assume that the polytope is given together with an upper bound on its size
rP = size(P ).
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6. A deterministic algorithm for the lattice membership problem

Algorithm 9 Lattice membership algorithm for polytopes
Input:

� A full-dimensional polytope P given by A ∈ Zs×n and β ∈ Zs together with its
size rP and

� an a�ne subspace H :=
⋂n
i=m+1Hki,di given by di ∈ Zn linearly independent

and ki ∈ Z, m+ 1 ≤ i ≤ n; alternatively, H := Rn.

Used subroutines: Flatness algorithm, replacement procedure.

Output: An integer vector in P ∩H or the statement that P ∩H does not contain an
integer vector.

If m = 0, compute a vector z ∈ Zn ∩H satisfying z ∈ P or decide that P ∩H does
not contain an integer vector.

Otherwise,

1. apply the �atness algorithm to the polytope P and the a�ne subspace H.
The result is a vector dm ∈ Zn together with an interval IP∩H ⊆ R.

2. Set N ← n(n+3)/2rnP + 1.

3. For all k ∈ Z ∩ IP∩H ,
a) apply the replacement procedure to the a�ne subspace H, the hy-

perplane Hk,dm and the parameter N .
The result is an index set Jk and an a�ne subspace

⋂
i∈Jk Hk̄i,d̄i

.

b) Apply the membership algorithm to the polytope P and the a�ne
subspace H ∩

⋂
i∈Jk Hk̄i,d̄i

.
Either the algorithm outputs an integer vector or it outputs that
P ∩H ∩

⋂
i∈Jk Hk̄i,d̄i

does not contain any integer vector.

4. If there exists an index k such that the algorithm outputs an integer vector,
output this vector. Otherwise, output that P ∩ H does not contain an
integer vector.

In the �rst step, it applies the �atness algorithm to the full-dimensional polytope P
and the a�ne subspace H. As a result, we obtain a 2m2-�atness direction dm ∈ Zn\{0}
of P ∩H together with an interval IP∩H and we check recursively if there exists an integer
k ∈ IP∩H such that P ∩H ∩Hk,dm contains an integer vector.
For the computation of the parameter N , we use that the size of the vertices of every full-
dimensional polytope given by integral constraints are at most n(n+1)/2rnP (in absolute
value), where n is the dimension and rP is the size of the corresponding polytope. Hence,
we set N as n(n+3)/2rnP . A detailed description of the algorithm is given in Algorithm 9.

In the next theorem, we show that the lattice membership algorithm for polytopes
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6.2. A lattice membership algorithm for polytopes

can be used to solve the lattice membership problem. To prove this we use the result
for the lattice membership problem for bounded convex sets to show that on input of a
full-dimensional polytope P and an a�ne subspace H the lattice membership algorithm
for polytopes decides correctly whether the intersection of the polytope with the a�ne
subspace contains an integer vector.

Theorem 6.2.2. Let P ⊆ Rn be a full-dimensional polytope given by a matrix A ∈ Zs×n
and a vector β ∈ Zs. Let H ⊆ Rn be an a�ne subspace of dimension m ≤ n.
Given P and H as input, the lattice membership algorithm for polytopes, Algorithm 9,
�nds an integer vector in P ∩H if there exists one. Otherwise, it outputs that P ∩H does
not contain an integer vector. The number of arithmetic operations of the algorithm is

(n · s log2(r))O(1)m(2+o(1))m,

where r is an upper bound on the size of the polytope and the a�ne subspace. The
algorithm runs in polynomial space and each number computed by the algorithm has size
of at most rn

O(1)
.

Proof. Since P is a full-dimensional polytope given by integral constraints, P is contained
in an `∞-ball with radius n(n+1)/2rnP , where rP is an upper bound on the size of the
polytope, see Lemma 2.2.19 in Chapter 2. According to Hölder's inequality, it follows
that

P ⊆ B̄(1)
n (0, n(n+3)/2rnP ).

This shows that the parameter N computed by the algorithm satis�es P ⊆ B̄(1)
n (0, N−1).

Combining this with Theorem 6.1.7, it follows that the lattice membership algorithm for
polytopes decides correctly whether P ∩H contains an integer vector or not. If P ∩H
contains an integer vector, it outputs such a vector.

Now we consider the size of the numbers computed by the lattice membership algo-
rithm for polytopes. We assume that we are given as input a full-dimensional polytope
P of size rP and an a�ne subspace H ⊆ Rn of dimension m. The parameter r is an
upper bound on the size of both, i.e., r ≥ max{rP , size(H)}.

The primary observation is that each recursive instance of the lattice membership
algorithm for polytopes consists of the original input polytope P together with an a�ne
subspace H̃ of size of at most

max
{

size(H), 2(n+2)2Nn
}
, (6.1)

see Theorem 6.1.7. By de�nition, the parameter N is at most

N = n(n+3)/2rnP + 1 ≤ rnO(1)
. (6.2)

It is important that the parameter N depends only on the size of the polytope and not
on the size of the a�ne subspace. This shows that each recursive instance of the lattice
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6. A deterministic algorithm for the lattice membership problem

membership algorithm consists of an a�ne subspace of size of at most rn
O(1)

.

In the following, we consider an arbitrary recursive instance of the lattice membership
algorithm given by the polytope P and an a�ne subspace H̃ of dimension k ≤ m.
If we apply the �atness algorithm to the polytope P and the a�ne subspace H̃, each
number computed by the �atness algorithm, in particular the bounds of the interval
IP∩H̃ and the vector dk, has size of at most

max
{
rP , size(H̃)

}nO(1)

= rn
O(1)

,

see Theorem 6.2.1. Also, the other numbers computed by the membership algorithm in
one recursion step have size of at most rn

O(1)
.

Since the size of the a�ne subspace H̃ is at most rn
O(1)

, this shows that all numbers
computed by the lattice membership algorithm in one reduction step have size rn

O(1)
.

Overall, this shows that the size of each number computed by the lattice membership
algorithm is at most rn

O(1)
and that the algorithm runs in polynomial space, see Propo-

sition 6.1.5.

Finally, we give an upper bound on T (m,n, s, r), the number of arithmetic operations
of the lattice membership algorithm for polytopes with input of a full-dimensional poly-
tope in Rn given by a matrix A ∈ Zs×n and a vector β ∈ Zs and an a�ne subspace H
of dimension m. The parameter r is an upper bound on the size of the polytope and the
a�ne subspace.

As already said, the recursive instances of the algorithm consist of the original input
polytope P and an a�ne subspace H̃ of dimension k with 0 ≤ k ≤ m.
We start with the case k = 0, which means that the a�ne subspace H consists of a single
vector. This vector can be computed using Gaussian elimination in O(n3) arithmetic
operations. Using O(s) arithmetic operation, it can be checked if this vector is contained
in the polytope, i.e.,

T (0, n, s, r) = (s · n)O(1).

We now assume that the dimension of the a�ne subspace H̃ is k > 0. The number of
arithmetic operations of the �atness algorithm is at most

s · n · log2

(
max{size(P ), size(H̃)}

)
2O(k)kk/(2e),

see Theorem 6.2.1. As we have seen above, the size of the a�ne subspace H̃ is at most
rn
O(1)

, which shows that the number of arithmetic operations of the �atness algorithm
is at most

(s · n · log2(r))O(1)2O(k)kk/(2e).
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6.2. A lattice membership algorithm for polytopes

It is particularly important that the number of arithmetic operations depends only on the
size of the polytope and the input subspace H and not on the size of the a�ne subspace
H̃ of the recursive instance.
The number of arithmetic operations of the replacement procedure is polynomial in n
and log2(N), see Proposition 6.1.6. By our de�nition of N , we have log2(N) ≤ (n +
3) log2(n · r). This shows that the number of arithmetic operations of the replacement
procedure is at most (n · log2(r))O(1). Overall, this shows that in one recursive instance
the number of arithmetic operations is at most

(s · n · log2(r))O(1)2O(k)kk/(2e),

where k is the dimension of the a�ne subspace de�ning the recursive instance.

The number of recursive calls of the lattice membership algorithm is determined by
the length of the interval computed by the �atness algorithm. The length of this interval
is at most 2k2, see Theorem 6.2.1. Thus, there exist at most

2m2 · 2(m− 1)2 · . . . · 2(m− k + 1)2 = 2m−k
(
m!

k!

)2

di�erent recursive instances where the corresponding a�ne subspace has dimension k.
Hence, the number of arithmetic operations is upper bounded by

m∑
k=0

(s · n · log2(r))O(1) 2O(k)kk/(2e)2m−k
(
m!

k!

)2

.

That means there exist constants c1, c2 ≥ 1 such that the number of arithmetic operations
of the membership algorithm is at most

T (m,n, s, r) ≤
m∑
k=0

(s · n · log2(r))c1 2c2·kkk/(2e)2m−k
(
m!

k!

)2

≤ (s · n · log2(r))c1 2(c2+1)m
m∑
k=0

kk/(2e)
(
m!

k!

)2

Using Stirling's formula, we see that m! ≤ mm and that k! ≥ (k/e)k. Thus, the number
of arithmetic operations can be upper bounded by

T (m,n, s, r) ≤ (s · n · log2(r))c12(c2+1)m
m∑
k=0

kk/(2e)m2mk−2ke2k

≤ (s · n · log2(r))c12(c2+1)mm2me2m
m∑
k=0

k(1/(2e)−2)k

= (s · n · log2(r))O(1)2O(m)m2m.
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6. A deterministic algorithm for the lattice membership problem

If we apply the membership algorithm with input of a full-dimensional polytope and
the vector space we obtain an algorithm for the lattice membership problem.

Corollary 6.2.3. The lattice membership algorithm for polytopes, Algorithm 9, solves the
lattice membership problem for all full-dimensional polytopes given by a matrix A ∈ Zs×n
and a vector β ∈ Zs correctly. The number of arithmetic operations of the algorithm is
at most sO(1) log2(r)O(1)n(2+o(1))n, where r is an upper bound on the size of the polytope.
The algorithm runs in polynomial space and each number produced by the algorithm has
size of at most rn

O(1)
, that means bit size of at most nO(1) log2(r).

6.3. A lattice membership algorithm for `p-balls

In this section, we use the algorithmic framework presented in Section 6.1 to obtain an
algorithm that solves the lattice membership problem for `p-balls with 1 < p <∞.

Unfortunately, the class of `p-balls is not closed under linear a�ne transformation.
Hence, we consider generalizations of `p-balls, so called general `p-balls, in this section.
We will present a polynomially space bounded lattice membership algorithm for general
`p-balls. The number of arithmetic operations of this algorithm is p log2(r)O(1)n(2+o(1))n,
where r is an upper bound on the size of the general `p-ball and n is its dimension.
Obviously, we also obtain an algorithm which solves the lattice membership problem for
`p-balls. Before we describe this algorithm, we will de�ne the class of `p-balls.

6.3.1. The class of general `p-balls

General `p-balls are balls generated by the generalization of an `p-norm. The general-
ization of an `p-norm, 1 < p < ∞, is de�ned in the same way as the generalization of
the Euclidean norm, see Section 2.2.1. For the de�nition of general `p-balls we consider
generalizations of `p-norms. By the generalization of an `p-norm with 1 < p < ∞, we
understand the following: We consider norms, whose unit balls are transformations of
the `p-unit ball.

De�nition 6.3.1. Let 1 < p < ∞ and V ∈ Rn×n be nonsingular. For a vector x ∈ Rn

we de�ne

‖x‖Vp := ‖V −1x‖p.

Obviously, the mapping ‖ · ‖Vp de�nes a norm on Rn. If the matrix V is an orthogonal
matrix, the unit ball of this norm is just the rotation of the `p-unit ball by the orthogonal
matrix V . For an illustration of a generalized `p-ball see Figure 6.2.
Like all convex functions, the generalized `p-norms can be used to de�ne convex sets.

Given a nonsingular matrix V ∈ Rn×n together with a vector t ∈ Rn and a parameter
α > 0, we de�ne the set B(p,V )

n (t, α) as the set of all vectors in Rn whose distance to t
with respect to the norm ‖ · ‖Vp is at most α,

B(p,V )
n (t, α) := {x ∈ Rn|‖x− t‖Vp < α}.
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Figure 6.2.: General `p-balls. In this picture, we see the unit-ball of the `3-norm to-
gether with the unit ball of the norm ‖ · ‖V3 .

Analogously, B̄(p,V )
n (t, α) = {x ∈ Rn|‖x−t‖Vp ≤ α}. If we consider the standard `p-norm,

we omit the matrix In and write B(p)
n (t, α) instead.

Obviously, the class of all sets B(p,V )
n (t, α) is closed under bijective a�ne transforma-

tion. In the following, whenever we speak of a general `p-ball, we assume that we are
given a nonsingular matrix V ∈ Rn×n, a vector t ∈ Rn, and a parameter α > 0 and we
consider the convex set B(p,V )

n (t, α). The size of such a general `p-ball is the maximum
of n, α and the size of the coordinates of V −1 and t.

In the following, we will present a deterministic algorithm that solves the lattice mem-
bership problem for general `p-balls, 1 < p <∞.

6.3.2. Description and analysis of the algorithm

In Section 6.4.3, we will show that for all general `p-balls there exists a �atness algorithm.
The �atness algorithm for general `p-balls di�ers from the �atness algorithm for polytopes
in the point that it is possible that the �atness algorithm outputs that the general `p-ball
does not contain an integer vector. Obviously, this is not a problem in our setting.

Theorem 6.3.2. There exists a �atness algorithm that given a general `p-ball B
(p,V )
n (t, α)

with 1 < p < ∞ together with an a�ne subspace H of dimension m outputs one of the
following:

� Either it outputs that B(p,V )
n (t, α) ∩H does not contain an integer vector, or

� it outputs a 4m2-�atness direction dm ∈ Zn\{0} of B(p,V )
n (t, α) ∩H together with

a corresponding interval IB∩H of length at most 4m2.

The number of arithmetic operations of the algorithm is

p(n · log2(r))O(1)2O(m)mm/(2e),
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6. A deterministic algorithm for the lattice membership problem

where r is an upper bound on the size of the general `p-ball and e is Euler's constant.
The algorithm runs in polynomial space and each number computed by the algorithm has
size of at most rpn

O(1)
,

Using this algorithm, we are able to describe an algorithm that solves the lattice mem-
bership problem for the class of general `p-balls with 1 < p <∞. In particular, we obtain
an algorithm that solves the lattice membership problem for `p-balls.

Substantially, the algorithm works in the same way as the lattice membership algo-
rithm for bounded convex sets presented in Section 6.1. The algorithm gets as input
a full-dimensional general `p-ball B

(p,V )
n (t, α) together with an upper bound on its size

rB and an a�ne subspace H of dimension m. Either it outputs an integer vector in
B

(p,V )
n (t, α) ∩H or it outputs that B(p,V )

n (t, α) does not contain an integer vector.

As in the general lattice membership algorithm, the lattice membership algorithm for
general `p-balls applies the �atness algorithm with input of the general `p-ball B

(p,V )
n (t, α)

and the a�ne subspace H in the �rst step. If the �atness algorithm outputs that the set
B

(p,V )
n (t, α)∩H does not contain an integer vector, the membership algorithm outputs the

same. Otherwise, the �atness algorithm outputs a 4m2-�atness direction dm ∈ Zn\{0}
of B(p,V )

n (t, α) ∩H together with a corresponding interval IB∩H . In this case, the mem-
bership algorithm checks recursively whether there exists an integer k ∈ IB∩H such that
B

(p,V )
n (t, α) ∩H ∩Hk,dm contains an integer vector.

To apply the replacement procedure, we need to be able to compute the radius of a
circumscribed `1-ball for a given general `p-ball. For this, we use the following observa-
tion.

Lemma 6.3.3. Let B(p,V )
n (t, α) be a general `p-ball given by V ∈ Rn×n nonsingular,

t ∈ Rn, α > 0 and 1 < p < ∞. Then B(p,V )
n (t, α) is contained in a Euclidean ball with

radius α
√
n‖V ‖2, where ‖V ‖2 denotes the spectral norm of the matrix V .

Proof. Using Hölder's inequality, we obtain that the `p-body B
(p,V )
n (t, α) is contained in

the set {x ∈ Rn|‖V −1(x − t)‖2 ≤ α
√
n}, which is the ellipsoid α

√
n ? E(V V T , t). The

circumscribed radius of an ellipsoid is given by the square root of the largest eigenvalue
of the matrix de�ning it, see Lemma 2.2.10. The square root of the largest eigenvalue of
V V T is the spectral norm of the matrix V ,

‖V ‖2 = ‖V T ‖2 = max

{√
xTV V Tx

xTx

∣∣∣ x ∈ Rn\{0}

}
.

Hence, we obtain that

B(p,V )
n (t, α) ⊆ B̄(2)

n (t, α
√
n‖V ‖2).

146



6.3. A lattice membership algorithm for `p-balls

This shows that a general `p-ball B
(p,V )
n (t, α) is contained in an `1-ball with radius

2n · rB‖V ‖2, where rB is an upper bound on the size of the general `p-ball. That means,
we can de�ne the parameter N as n ·rB‖V ‖2 +1. A detailed description of the algorithm
is given in Algorithm 10.

Theorem 6.3.4. Let B(p,V )
n (t, α) be a general `p-ball given by V ∈ Qn×n nonsingular,

t ∈ Qn, α > 0 and 1 < p <∞ and let H be an a�ne subspace of dimension m ≤ n.
Given as input B(p,V )

n (t, α) and H, the membership algorithm for general `p-balls, Algo-

rithm 10, decides correctly whether B(p,V )
n (t, α) ∩H contains an integer vector. If there

exists an integer vector in B
(p,V )
n (t, α) ∩ H, the algorithm outputs such a vector. The

number of arithmetic operations of the algorithm is at most

p(n log2(r))O(1)m(2+o(1))m,

where r is an upper bound on the size of B(p,V )
n (t, α) and the size of H. The algorithm

runs in polynomial space and each number computed by the algorithm has size at most
rp·n

O(1)
.

Proof. Without loss of generality, we assume that the �atness algorithm with input of the
general `p-ball B

(p,V )
n (t, α) and the a�ne subspace H outputs a 4m2-�atness direction

dm ∈ Zn\{0} together with a corresponding interval IB∩H . We have seen in Lemma 6.3.3

that B(p,V )
n (t, α) is contained in a Euclidean ball with radius α

√
n‖V ‖2. Using Hölder's

inequality, this shows that

B(p,V )
n (t, α) ⊆ B̄(2)

n (t, α
√
n‖V ‖2) ⊆ B̄(1)

n (0, nrB‖V ‖2),

since rB is an upper bound on the size of the general `p-ball, i.e., rB ≥ α.
By de�nition of N this shows that B(p,V )

n (t, α) ⊆ B̄
(1)
n (0, N − 1). Hence, if the �at-

ness algorithm outputs a vector dm ∈ Zn\{0} together with an interval IB∩H , it follows
from Theorem 6.1.7 that the membership algorithm for general `p-balls decides correctly

whether B(p,V )
n (t, α)∩H contains an integer vector and outputs some if B(p,V )

n (t, α)∩H
contains an integer vector.

Now, we consider the size of each number computed by the algorithm given a general
`p-ball B

(p,V )
n (t, α) of size rB and an a�ne subspace H ⊆ Rn of dimension m as input.

The parameter r is an upper bound on the size of both, i.e., r ≥ max{rB, size(H)}.

The primary observation is that each recursive instance consists of the original input
`p-ball B

(p,V )
n (t, α) together with an a�ne subspace H̃ of size of at most

max{size(H), 2(n+2)2Nn}, (6.3)

see Theorem 6.1.7. Since the parameter N is at most n · rB‖V ‖2 + 1 ≤ 2nrB‖V ‖2, the
size of the a�ne subspace is upper bounded by

2(n+2)2Nn ≤ 2(n+2)22nnnrnB‖V ‖n2 ≤ 22(n+2)2(n · rB‖V ‖2)n ≤ rnO(1)

B . (6.4)
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Algorithm 10 Lattice membership algorithm for general `p-balls, 1 < p <∞
Input:

� A general `p-ball B
(p,V )
n (t, α) given by a nonsingular matrix V ∈ Qn×n, a vector

t ∈ Qn and a radius α > 0 together with its size rB and
� an a�ne subspace H :=

⋂n
i=m+1Hki,di given by di ∈ Zn linearly independent

and ki ∈ Z, m+ 1 ≤ i ≤ n; alternatively, H := Rn.

Used subroutines: Flatness algorithm, replacement procedure.

Output: An integer vector in B
(p,V )
n (t, α) ∩ H or the statement that B(p,V )

n (t, α) ∩ H
does not contain an integer vector.

If m = 0, compute a vector z ∈ Zn ∩ H satisfying z ∈ B
(p,V )
n (t, α) or decide that

B
(p,V )
n (t, α) ∩H does not contain an integer vector.

Otherwise, apply the �atness algorithm with input of the general `p-ball B
(p,V )
n (t, α)

and the a�ne subspace H.

If it outputs that B(p,V )
n (t, α)∩H does not contain an integer vector, then output

the same.

Otherwise, the result is a vector dm ∈ Zn\{0} together with an interval IB∩H .

1. Set N := n · rB · ‖V ‖2 + 1.

2. For all k ∈ Z ∩ IB∩H ,
a) apply the replacement procedure to the a�ne subspace H, the

hyperplane Hk,dm and the parameter N .
The result is an index set Ik and an a�ne subspace

⋂
i∈Jk Hk̄i,d̄i

.

b) Apply the membership algorithm to the `p-body B
(p,V )
n (t, α)

and the a�ne subspace H ∩
⋂
i∈Jk Hk̄i,d̄i

.
Either, the algorithm outputs an integer vector or it outputs
that B(p,V )

n (t, α)∩H∩
⋂
i∈Jk Hk̄i,d̄i

does not contain any integer
vector.

3. If there exists an index k ∈ Z ∩ IB∩H such that the algorithm out-
puts an integer vector, output this vector. Otherwise, output that
B

(p,V )
n (t, α) ∩H does not contain an integer vector.
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Here, the last inequality follows since each eigenvalue of the matrix V TV is at most
n·size(V TV ). Combining this with (6.3), this shows that every recursive instance consists

of the original input general `p-ball B
(p,V )
n (t, α) together with an a�ne subspace H̃ of

size of at most

max
{

size(H), rn
O(1)

B

}
= rn

O(1)
. (6.5)

In the following, we consider the size of each number computed by the algorithm in
one recursion step. The input of such a recursion step consists of the general `p-ball

B
(p,V )
n (t, α) together with an a�ne subspace H̃ of size of at most rn

c
for some �xed

constant c > 1. This constant c depends only on the size of the general `p-ball.

If we apply the �atness algorithm with input of the general `p-ball B
(p,V )
n (t, α) and

the a�ne subspace H̃, each number computed by the algorithm, particularly the vector
dm ∈ Zn and the bounds of the interval IB∩H have size of at most(

rn
O(1)
)p·nO(1)

= rp·n
O(1)

,

see Theorem 6.3.2. Also the other numbers computed by the membership algorithm in
one recursion step have size of at most rp·n

O(1)
. Overall, we obtain that in every recursion

step, the size of each number computed by the algorithm is at most rp·n
O(1)

.

Since the size of the a�ne subspace H̃ depends only on the size of the a�ne subspace
H and the general `p-ball, this shows also that the size of each number computed by the

lattice membership algorithm for general `p-balls has size of at most rn
O(1)

. Moreover,
this shows that the algorithm runs in polynomial space, see Proposition 6.1.5.

We now give an upper bound on the number of arithmetic operations of the algorithm.
Let T (m,n, p, r) be an upper bound on the number of arithmetic operations of the lattice

membership algorithm for general `p-balls with input of a general `p-ball B
(p,V )
n (t, α) and

an a�ne subspace H of dimension at most m, where r is an upper bound on the size of
the general `p-ball and the a�ne subspace.

As we have seen in (6.5), each recursive instance consists of an a�ne subspace H̃ of
size of at most rn

O(1)
.

If the dimension of the a�ne subspace H̃ is 0, the vector z ∈ H̃ can be computed
in O(n3) arithmetic operations using Gaussian elimination and it can be checked if z is

contained in B(p,V )
n (t, α). Hence,

T (0, n, p, rB, rH , r) = nO(1).

If the dimension of the a�ne subspace H̃ is k ≥ 1, the algorithm applies the �atness
algorithm with input of the general `p-ball B

(p,V )
n (t, α) and the a�ne subspace H̃. Since
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6. A deterministic algorithm for the lattice membership problem

the size of the a�ne subspace is at most rn
O(1)

, the number of arithmetic operations of
the �atness algorithm is at most

p(n · log2(r))O(1)2O(k) · kk/(2e) ≤ p(n · log2(r))O(1)2O(k)kk/(2e),

see Theorem 6.3.2. The number of arithmetic operations of the replacement procedure
is polynomial in the dimension n and log2(N). As we have seen above, see Inequality
(6.4), N is at most rn

O(1)
. Thus, the number of arithmetic operations of the replacement

procedure is at most (n · log2(r))O(1).
Overall, this shows that in one recursion step the number of arithmetic operations of the
lattice membership algorithm is at most

p(n · log2(r))O(1)2O(k)kk/(2e),

where k is the dimension of the a�ne subspace de�ning the recursive instance.

If we consider a recursive instance where the dimension of the a�ne subspace is k,
the number of recursive calls of the algorithm is determined by the length of the interval
IB∩H̃ , which is at most 4k2, see Theorem 6.3.2. Overall, there exist at most

4m2 · 4(m− 1)2 · . . . · 4(m− k + 1)2 = 22(m−k)

(
m!

k!

)2

di�erent recursive instances, where the corresponding a�ne subspace has dimension k.
This shows that the overall number of arithmetic operations of the lattice membership
algorithm can be upper bounded by

T (m,n, p, r) ≤
m∑
k=0

p(n · log2(r))O(1)2O(k)kk/(2e)22(m−k)

(
m!

k!

)2

.

Equivalently, there exist constants c1, c2 > 1 such that

T (m,n, p, r) ≤
m∑
k=0

p(n · log2(r))c12c2kkk/(2e)22m−k
(
m!

k!

)2

≤ p(n · log2(r))c12(c2+2)m
m∑
k=0

kk/(2e)
(
m!

k!

)2

.

Using Stirling's formula, we see that m! ≤ mm and that k! ≥ (k/e)k, see Section A.0.3
in the appendix. Thus, the number of arithmetic operations of the lattice membership
algorithm can be upper bounded by

T (m,n, s, r) ≤ p(n · log2(r))c12(c2+2)m
m∑
k=0

kk/(2e)m2mk−2ke2k

≤ p(n · log2(r))c12(c2+2)mm2me2m
m∑
k=0

k(1/(2e)−2)k

≤ p(n · log2(r))c12(c2+2)mm2me2mm

= p(n · log2(r))O(1)2O(m)m2m.
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6.4. An algorithm for computing a �atness direction

If we apply the lattice membership algorithm with input of a general `p-ball and
the whole vector space as subspace, the lattice membership algorithm solves the lattice
membership problem.

Corollary 6.3.5. The lattice membership algorithm for general `p-balls, Algorithm 10,

solves the lattice membership problem for all general `p-balls B
(p,V )
n (t, α) correctly. The

number of arithmetic operations is at most p · log2(r)O(1)n(2+o(1))n, where r is an upper
bound on the size of the `p-ball. The algorithm runs in polynomial space and each number

computed by the algorithm has size of at most rp·n
O(1)

, that means bit size of at most
p · nO(1) log2(r).

To complete the description of the lattice membership algorithm we need to describe
a �atness algorithm for polytopes and general `p-balls. Furthermore, we need to present
the replacement procedure. This will be done in the rest of this chapter. We start with
the description of the �atness algorithms.

6.4. An algorithm for computing a �atness direction

In this section, we show that for polytopes and general `p-balls there exist �atness al-
gorithms. The �atness algorithms are constructive versions of so-called �atness theorems.

We describe the �atness algorithm as a general algorithmic framework which works for
classes of bounded convex sets. Given a bounded convex set C from such a class together
with an a�ne subspace H of dimension m, the algorithm computes an f(m)-�atness di-
rection of the convex set C∩H, i.e., a vector dm ∈ Zn\{0} together with an interval IC∩H
of length of at most f(m) for some non-decreasing function f : N→ R≥0. To recall, an
f(m)-�atness direction of the set C ∩H is a vector dm ∈ Zn\{0} such that there exists
an interval IC∩H of length of at most f(m) and the set C ∩H contains an integer vector
if and only if there exists a hyperplane Hk,d̃, k ∈ Z∩ IC , such that C ∩H ∩Hk,d̃ contains
an integer vector, see De�nition 6.1.2. The interval is given through its upper and lower
bound.

This section is organized as follows: We start with a general description of a �atness
algorithm for bounded convex sets: First of all, we show that we can restrict ourselves
to full-dimensional bounded convex sets. Then we show how we can realize a �atness
algorithm for full-dimensional bounded convex sets. Here we start with special convex
sets and later generalize this result to general convex sets by approximating the convex
set with an approximate Löwner-John ellipsoid. Combining all this, we obtain a general
description of a �atness algorithm for bounded convex sets. Finally, we will adapt this
general framework to present concrete �atness algorithms for polytopes and general `p-
balls.
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6. A deterministic algorithm for the lattice membership problem

6.4.1. A �atness algorithm for bounded convex sets

In the description of a general �atness algorithm, we consider bounded convex sets from
some unspeci�ed class K. First of all, we show that we can restrict ourselves to full-
dimensional bounded convex sets. We assume that we are given a full-dimensional
bounded convex set C together with an a�ne subspace H which is given by a set of
a�ne hyperplanes Hki,di , m+ 1 ≤ i ≤ n for some parameter m ≤ n.

Since the convex set C∩H is not full-dimensional, we construct a bijective a�ne trans-
formation which maps the convex set C ∩H to a convex set in Rn ∩

⋂n
i=m+1H0,ei . Such

a convex set can be identi�ed with a full-dimensional convex set in Rm. The important
property of this transformation is that it is constructed in a way such that it maps every
integer vector to an integer vector and vice versa. This guarantees that C∩H contains an
integer vector if and only if the corresponding convex set in Rn ∩

⋂n
i=m+1H0,ei contains

an integer vector. The construction of such a transformation is described in the following.

First of all, we use an integer vector v ∈ H to map the a�ne subspaceH to the subspace
H − v which is given as the intersection of the a�ne hyperplanes H0,di , m+ 1 ≤ i ≤ n.
Since the normal vectors di of this subspace are linearly independent, they can be ex-
tended to a basis of the whole space Rn, B = [b1, . . . , bm, dm+1, . . . , dn]. Obviously,
every vector x ∈ (H − v) satis�es BTx = (x̄T , 0n−m)T , where x̄ ∈ Rm. That means,
the function x 7→ BTx maps the subspace (H − v) =

⋂n
i=m+1H0,di to the subspace⋂n

i=m+1H0,ei . To guarantee that we obtain a bijection between the integer vectors in
H − v and

⋂n
i=m+1H0,ei , we construct a basis of the lattice L(BT ) ∩

⋂n
i=m+1H0,ei and

map every vector in this lattice to its corresponding integer coe�cient vector.

We observe that such a transformation can be constructed e�ciently: Using the Her-
mite normal form, we can decide in polynomial time if there exists an integer vector in
the a�ne subspace H and if so, compute one. This was shown by Frumkin, and von
zur Gathen and Sieveking, see [Fru76b], [Fru76a], [vzGS76]. The basis D̄ of the lattice
L(BT ) ∩

⋂n
i=m+1H0,ei can be constructed e�ciently by a polynomial time algorithm

using the Smith normal form. Such an algorithm is presented by Micciancio in [Mic08].

Claim 6.4.1. Let C ⊆ Rn be a full-dimensional bounded convex set. For m ∈ N, m < n,
let H :=

⋂n
i=m+1Hki,di be an a�ne subspace given by di ∈ Zn linearly independent and

ki ∈ Z. Let v ∈ Z ∩ H and B = [b1, . . . , bm, dm+1, . . . , dn] ∈ Zn×n be a basis of Rn

which contains the vectors di, m + 1 ≤ i ≤ n. Let D̄ ∈ Zn×m be a basis of the lattice
L(BT ) ∩

⋂n
i=m+1H0,ei and D̂ := [D̄, em+1, . . . , en] ∈ Zn×n.

Then, the bijective a�ne transformation

τ : Rn → Rn, x 7→ D̂−1BT (x− v)

satis�es the following properties:

� The transformation τ is a bijective transformation between the a�ne subspace H
and the subspace

⋂n
i=m+1H0,ei , τ(H) =

⋂n
i=m+1H0,ei .
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6.4. An algorithm for computing a �atness direction

� The transformation τ is a bijective mapping between Zn∩H and Zn∩
⋂n
i=m+1H0,ei .

Proof. Obviously, the transformation τ is well-de�ned.
We start with the proof of the �rst statement. By de�nition of τ , for all x ∈ Rn and
m+ 1 ≤ i ≤ n we have that

〈τ(x), ei〉 = 〈D̂−1BT (x− v), ei〉 = 〈BT (x− v), (D̂T )−1ei〉. (6.6)

Since the columns of D̄ are vectors in Rn ∩
⋂n
j=m+1H0,ej , we have D̄T ei = 0 for all

m + 1 ≤ i ≤ n. Furthermore, D̂T ei = ei for all m + 1 ≤ i ≤ n. Combining this with
(6.6), it follows that

〈τ(x), ei〉 = 〈BT (x− v), ei〉 = 〈x− v,B · ei〉 = 〈x− v, di〉.

Since v ∈ H =
⋂n
j=m+1Hkj ,dj , we have

〈τ(x), ei〉 = 〈x, di〉 − 〈v, di〉 = ki − ki = 0

for all m + 1 ≤ i ≤ n and x ∈ H. This shows that τ(x) ∈
⋂n
j=m+1H0,ej . Since τ is

bijective and the (a�ne) subspaces H and
⋂n
j=m+1H0,ej have the same dimension, it

follows that τ(H) =
⋂n
j=m+1H0,ej . This proves the �rst statement.

We show the second statement in two steps. First, we show that τ maps every integer
vector in H to an integer vector in Rn ∩

⋂n
i=m+1H0,ei . Furthermore, we show that the

inverse transformation τ−1 maps every integer vector in Rn∩
⋂n
i=m+1H0,ei to an integer

vector in H.

For every integer vector x ∈ Zn, we have x−v ∈ Zn and BT (x−v) ∈ L(BT ). As both
x and v are contained in H, it follows that

〈BT (x− v), ei〉 = 〈x− v,Bei〉 = 〈x− v, di〉 = 0

for all m + 1 ≤ i ≤ n. This shows that BT (x − v) is a vector in the lattice L(BT ) ∩⋂n
j=m+1H0,ej . Since D̄ ∈ Zn×m is a basis of this lattice, there exists an integer vector

z ∈ Zm such that

D̄z = BT (x− v).

Obviously, the vector z′ = (zT , 0n−m)T ∈ Zn satis�es

D̂z′ = BT (x− v).

From this, it follows that D̂−1BT (x− z) ∈ Zn.

The inverse of the bijective a�ne transformation τ is given by

τ−1 : Rn → Rn, y 7→ (BT )−1D̂y + v.
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6. A deterministic algorithm for the lattice membership problem

To show that τ−1(y) ∈ Zn for all integer vectors y ∈ Zn ∩
⋂n
j=m+1H0,ej , it is enough to

show that (BT )−1D̂y ∈ Zn.
Every integer vector y′ ∈ Zn∩

⋂n
j=m+1H0,ej is of the form y′ = (yT , 0n−m)T with y ∈ Zm.

Obviously, we have D̂y′ = D̄y. Since D̄ is a basis of the lattice L(BT ) ∩
⋂n
j=m+1H0,ej ,

it follows that

D̄y ∈ L(BT ) ∩
n⋂

j=m+1

H0,ej ⊆ L(BT ).

Hence, there exists an integer vector w ∈ Zn such that

D̄y = BTw.

We can now show that the transformation τ de�ned in Claim 6.4.1 can be used to
obtain a γ-�atness direction of the convex set C ∩ H from a γ-�atness direction of the
full-dimensional convex set τ(C ∩H).

Lemma 6.4.2. Let C ⊆ Rn be a full-dimensional bounded convex set. For m ∈ N, m <
n, let H :=

⋂n
i=m+1Hki,di be an a�ne subspace given by di ∈ Zn linearly independent

and ki ∈ Z. Let τ : Rn → Rn be the bijective a�ne transformation de�ned as in Claim
6.4.1. If d̃ ∈ Zm\{0} is a γ-�atness direction of τ(C ∩ H) for some parameter γ > 0,
then dm := (D̂−1BT )T (d̃T , 0n−m)T ∈ Zn\{0} is a γ-�atness direction of C ∩H.

Proof. To prove this statement, we show that for all d̃ ∈ Zm\{0} and k ∈ Z the set
τ(C ∩ H) ∩ Hk,d̃ contains an integer vector if and only if the set C ∩ H ∩ Hk+〈v,dm〉,dm
contains an integer vector.

Obviously, for all k ∈ R, the statement that τ(C ∩H)∩Hk,d̃ contains an integer vector
is equivalent to the statement that τ(C ∩H) ∩Hk,(d̃T ,0n−m)T contains an integer vector
from Zn ∩

⋂n
i=m+1H0,ei if we interpret τ(C ∩H) as a convex set in Rn ∩

⋂n
i=m+1H0,ei .

Since τ is a bijective mapping between Zn ∩H and Zn ∩
⋂n
i=m+1H0,ei , the set τ(C ∩

H) ∩Hk,(d̃T ,0n−m)T contains an integer vector if and only if C ∩H ∩ τ−1(Hk,(d̃T ,0n−m)T )
contains an integer vector. Since

τ−1
(
Hk,(d̃T ,0n−m)T

)
= Hk+〈v,dm〉,dm ,

it follows that τ(C∩H)∩Hk,d̃ contains an integer vector if and only if C∩H∩Hk+〈v,dm〉,dm
contains an integer vector.

This result shows how we obtain an f(m)-�atness direction of the set C∩H, where C is
a full-dimensional convex set from some class K and H is an a�ne subspace of dimension
m. Still, we have to keep in mind that the class K needs to be closed under bijective
a�ne transformation and intersection with hyperplanes. In the following, we consider
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6.4. An algorithm for computing a �atness direction

Figure 6.3.: Idea behind the �atness theorems. Full-dimensional convex sets which
do not contain an integer vector are squeezed between parallel a�ne hyper-
planes Hk,d, where k ∈ Z, d ∈ Zn\{0}.

such a class K.

First of all, we show that we are able to realize a �atness algorithm for all full-
dimensional bounded convex sets in this class K. This �atness algorithm is an algo-
rithmic realization of so-called �atness theorems. The basis of the �atness theorems is
the following observation: If a full-dimensional convex set does not contain an integer
vector, then it lies squeezed between the integer vectors. In other words: There exists
a direction in which the convex set is �at. This observation is illustrated in Figure 6.3.
Formally, this means that there exists a vector d̃ ∈ Zn such that only a bounded number
of a�ne hyperplanes Hk,d̃, k ∈ Z intersect C. The �rst result in this area was due to
Khinchin, see [Khi48]. For an overview about the existing variants see [Bar02].

To formalize the idea how many hyperplanes intersect a bounded convex set, we use the
notion of the width of a convex set C ⊆ Rn along a vector d̃ ∈ Rn\{0}, which is de�ned
as the di�erence between the supremum and the in�mum of the objective function 〈d̃, x〉,
where x ∈ C. Then, the width of C is de�ned as the minimal value of the width of C
along a vector d̃, where d̃ ∈ Zn\{0}. A vector d̃ which achieves this minimum is called a
�atness direction of C.

De�nition 6.4.3. (Width of a convex set, �atness direction)
Let C ⊆ Rn be a convex set. For a vector d̃ ∈ Rn\{0} the width of C along d̃ is de�ned
as the number

wd̃(C) := sup{〈d̃, x〉|x ∈ C} − inf{〈d̃, x〉|x ∈ C}.

The width of C is de�ned as

w(C) := min{wd̃(C)|d̃ ∈ Z
n\{0}}.

A vector d̃ ∈ Zn\{0} with wd̃(C) = w(C) is called a �atness direction of C.
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If the convex set C is closed, the objective function 〈d̃, x〉 achieves its extrema over
C, i.e., wd̃(C) := max{〈d̃, x〉|x ∈ C} − min{〈d̃, x〉|x ∈ C}. Using this notation, we can
formulate the �atness theorems as follows: The width of every full-dimensional bounded
convex body, which does not contain an integer vector, is less than a number which de-
pends only on the dimension.

For certain classes of convex sets we are able to compute its width, for example for
ellipsoids. Given an ellipsoid E ⊆ Rn we are able to compute its width together with a
�atness direction since we are able to compute for a given vector d̃ ∈ Rn the maximal
and minimal value of 〈d̃, x〉, where x ∈ E.

Lemma 6.4.4. Let E = E(D, c) ⊆ Rn be an ellipsoid and d ∈ Rn\{0}. Then

max{〈d, x〉|x ∈ E} = 〈c, x〉+
√
dTDd and

min{〈d, x〉|x ∈ E} = 〈c, x〉 −
√
dTDd.

For r > 0 we have

max{〈d, x〉|x ∈ r ? E} = 〈c, x〉+ r ·
√
dTDd and

min{〈d, x〉|x ∈ r ? E} = 〈c, x〉 − r ·
√
dTDd.

As a consequence, the width of an ellipsoid along d is

wd(E) = 2
√
dTDd and wd(r ? E) = 2r

√
dTDd.

Proof. We start with the proof of the corresponding results for the Euclidean unit ball
B̄

(2)
n (0, 1). Using the Cauchy-Schwarz-inequality, we get that the value of the objective

function 〈d, x〉, where x ∈ B̄(2)
n (0, 1), is at most

max
{
〈d, x〉|x ∈ B̄(2)

n (0, 1)
}
≤ max

{
‖d‖2 · ‖x‖2|x ∈ B̄(2)

n (0, 1)
}
≤ ‖d‖2.

If x = d/‖d‖2, the Cauchy-Schwarz-inequality is ful�lled with equality, since

〈d, x〉 =
〈d, d〉
‖d‖2

= ‖d‖2.

Hence, max{〈d, x〉|x ∈ B̄(2)
n (0, 1)} = ‖d‖2. With the same argumentation, we see that

min{〈d, x〉|x ∈ B(2)
n (0, 1)} = −‖d‖2.

The corresponding bounds for ellipsoids follow by straightforward computation: If
D = QT ·Q is a decomposition of the matrix D de�ning the ellipsoid, then the ellipsoid
E is the image of the unit ball under the transformation x 7→ QTx+ c, see Lemma 2.2.7.
This shows that

{〈d, x〉|x ∈ E} =
{
〈d,QT y + c〉 | y ∈ B̄(2)

n (0, 1)
}

= 〈d, c〉+
{
〈Qd, y〉 | y ∈ B̄(2)

n (0, 1)
}
.
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Now it follows directly from the observation above that the function 〈d, x〉 achieves
its maximum/minimum over E if and only if the function 〈Qd, y〉 achieves is maxi-

mum/minimum over B̄(2)
n (0, 1). Hence,

max{〈d, x〉|x ∈ E} = 〈d, c〉+ ‖Qd‖2
= 〈d, c〉+

√
dTQTQd

= 〈d, c〉+
√
dTDd.

The corresponding statement for the scaled ellipsoid r ? E follows directly from the
observation we made before together with the fact that r ? E(D, c) = E(r2D, c), see
Lemma 2.2.11,

max{〈d, x〉|x ∈ E(r2D, c)} = 〈d, c〉+
√
dT r2Dd

= 〈d, c〉+ r ·
√
dTDd.

In the same way, we get the corresponding statements for the minimum.

Now, we are able to show how a �atness direction of an ellipsoid can be computed.
Additionally, we are able to show which hyperplanes of a family of hyperplanes have a
non-empty intersection with an ellipsoid.

Proposition 6.4.5. Let E = E(D, c) ⊆ Rn be an ellipsoid and D = QTQ be an arbitrary
decomposition of the matrix D. Then a vector d̃ ∈ Zn is a �atness direction of the
ellipsoid if and only if Qd̃ is a shortest non-zero vector in the lattice L(Q). That means,
we have

w(E) = wd̃(E) = 2λ
(2)
1 (L(Q))

and for d = Qd̃ ∈ L(Q) we obtain

max{〈d̃, x〉|x ∈ E} = 〈d̃, c〉+ ‖d‖2 and

min{〈d̃, x〉|x ∈ E} = 〈d̃, c〉 − ‖d‖2.

Proof. As we have seen in Lemma 6.4.4, the width of an ellipsoid along a vector d̃ ∈
Zn\{0} is given by wd̃(E) = 2

√
d̃TDd̃. Hence, for every decomposition D = QTQ of the

matrix D, we have √
d̃TDd̃ =

√
(Qd̃)T (Qd̃) = ‖Qd̃‖2 (6.7)

which shows that the width wd̃(E) is minimized for d̃ ∈ Zn\{0} if Qd̃ is a shortest
non-zero vector in the lattice L(Q) generated by the matrix Q. This proves the �rst
statement. The proof of the other statements follows directly from (6.7).

We observe that it follows from this proposition that the width of an ellipsoid can be
computed using an arbitrary decomposition of the matrix de�ning the ellipsoid.
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Remark 6.4.6. The width of an ellipsoid E(D, c) is independent from the chosen de-
composition D = QT ·Q.

With the results of Proposition 6.4.5, we are able to prove the �atness theorem for
ellipsoids using the well-known transference bound for lattices due to Banaszczyk, see
Theorem 3.3.6 in Chapter 3.

Theorem 6.4.7. (Flatness Theorem for Ellipsoids)
Let E ⊆ Rn be an ellipsoid. If the width of the ellipsoid is at least n, w(E) ≥ n, then
the ellipsoid contains an integer vector.

Proof. If the ellipsoid is given by the symmetric positive de�nite matrix D ∈ Rn×n

with D = QTQ and the vector c ∈ Rn, the ellipsoid E is the image of the Euclidean
ball B̄(2)

n (c, 1) under the bijective linear transformation x 7→ QTx, see Lemma 2.2.7.
Hence, the ellipsoid E does not contain an integer vector if and only if the Euclidean
ball B̄(2)

n ((QT )−1c, 1) does not contain a vector from the lattice L((QT )−1). This shows
that the covering radius of the lattice L((QT )−1) with respect to the Euclidean norm is
greater than 1, since the distance from (QT )−1c to the lattice L((QT )−1) is greater than
1. Since L((QT )−1)∗ = L(Q), it follows from the transference bound, Theorem 3.3.6 in
Chapter 3, that

λ
(2)
1 (L(Q)) < µ(2)(L(L(QT )−1)) · λ(2)

1 (L(Q)) ≤ n

2
.

Using that the width of E is exactly 2λ
(2)
1 (L(Q)), this shows the statement.

Proposition 6.4.5 together with the �atness theorem for ellipsoids provide a �rst idea
of the realization of a �atness algorithm for ellipsoids: Given an ellipsoid, we compute
its width and a corresponding �atness direction d̃ ∈ Zn by computing a shortest non-
zero lattice vector. If the width is smaller than n, the interval IE = [min{〈d̃, x〉|x ∈
E},max{〈d̃, x〉|x ∈ E}] has length at most n. This interval together with the �atness
direction d̃ has the property that E contains an integer vector if and only if there exists
an integer k ∈ Z∩ I such that E ∩Hk,d̃ contains an integer vector, i.e., d̃ is an n-�atness
direction of E.
The �atness direction can be computed using Kannan's algorithm for Svp which we men-
tioned in Section 4.1 of Chapter 4, see Theorem 4.1.14. Even though this algorithm is
not the fastest algorithm for Svp, it has the property that it runs in polynomial space, in
contrast to the Svp-algorithm based on the computation of Voronoi cells from Micciancio
and Voulgaris, see Theorem 4.1.13. A more formal description of the idea of a �atness
algorithm for ellipsoids is presented in Algorithm 11.

The disadvantage of this approach is that it does not lead to a constructive algorithm:
If the width of the ellipsoid E is larger than n, the �atness theorem for ellipsoids guar-
antees that E contains an integer vector, but we do not obtain an n-�atness direction.
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Algorithm 11 Prototype of a �atness algorithm for ellipsoids
Input: Ellipsoid E = E(D, c).

Used subroutine: Kannan's algorithm for Svp.

Output: A vector d̃ ∈ Zn together with an interval IE given by its upper and lower
bound kmin, kmax ∈ Z.

1. Compute a decomposition D = QTQ of the matrix D.

2. Compute a shortest non-zero lattice vector d ∈ L(Q).

Let d̃← Q−1d ∈ Zn.

3. Set w ← 2‖d‖2.
If w ≥ n, output that E contains an integer vector.

Otherwise, output d̃ ∈ Zn together with

kmin ← 〈d̃, c〉 − ‖d‖2 and

kmax ← 〈d̃, c〉+ ‖d‖2.

To obtain a constructive algorithm, we use an idea of Dadush, Peikert, and Vempala,
see [DPV11]. If the width w of the ellipsoid E along its �atness direction is strictly larger
than the dimension n, we shrink the ellipsoid by the factor n/w(E) < 1, i.e., we consider
the ellipsoid E′ := (n/w(E)) ? E. This ellipsoid is completely contained in the original
ellipsoid and its width is exactly n, see Lemma 6.4.4. Thus, if we �nd an integer vector
in this ellipsoid, we have already found an integer vector in the original ellipsoid E. Since
the width of the ellipsoid E′ is exactly n, we obtain an interval IE′ of length exactly n
and there exists an integer k ∈ Z ∩ IE′ such that E′ ∩Hk,d̃ contains an integer vector.
The complete algorithm is described in Algorithm 12.
In the next proposition, we show the correctness of the algorithm.

Proposition 6.4.8. Given an ellipsoid E ⊆ Rn, the �atness algorithm for ellipsoids,
Algorithm 12, outputs an n-�atness direction d̃ ∈ Zn\{0} of the ellipsoid E together with
a corresponding interval IE of length at most n.

Proof. The value w computed by the algorithm is the width of the ellipsoid E. The
algorithm distinguishes between two cases:

� If w ≤ n, the algorithm outputs the vector d̃ ∈ Zn\{0} together with the values

kmin = dmin{〈d̃, x〉|x ∈ E}e and
kmax = bmax{〈d̃, x〉|x ∈ E}c,

see Proposition 6.4.5. Since d̃ ∈ Zn\{0}, it holds in this case that E contains an
integer vector if and only if there exists an integer k ∈ Z with kmin ≤ k ≤ kmax,
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Algorithm 12 Flatness algorithm for ellipsoids

Input: Ellipsoid E := E(D, c) with D ∈ Qn×n symmetric positive de�nite and c ∈ Qn.

Used subroutine: Kannan's algorithm for Svp.

Output: A vector d̃ ∈ Zn together with an interval IE given by its upper and lower
bound kmin, kmax ∈ Z.

1. Compute a decomposition D = QTQ of the matrix D.

2. Compute a shortest non-zero lattice vector d ∈ L(Q).

Let d̃ := Q−1d ∈ Zn.

3. Set w := 2‖d‖2.
If w ≤ n, output d̃ ∈ Zn together with

kmin ← d〈d̃, c〉 − ‖d‖2e and
kmax ← b〈d̃, c〉+ ‖d‖2c.

Otherwise, output d̃ ∈ Zn together with

kmin ← d〈d̃, c〉 − n
2 e and

kmax ← b〈d̃, c〉+ n
2 c.

such that E ∩Hk,d̃ contains an integer vector. Obviously, kmin and kmax de�ne an
interval of length at most n.

� If the width of E is greater than n, the width of the scaled ellipsoid (n/w) ? E
is exactly n, see Lemma 6.4.4. Thus it follows from the �atness theorem, that
(n/w) ? E contains an integer vector, see Theorem 6.4.7. Since d̃ ∈ Zn\{0}, every
integer vector in this ellipsoid is contained in one of the a�ne hyperplanes Hk,d̃,
where k ∈ Z with⌈

min
{〈
d̃, x
〉∣∣ x ∈ (n/w) ? E

}⌉
≤ k ≤

⌊
max

{〈
d̃, x
〉∣∣ x ∈ (n/w) ? E

}⌋
.

We have

min{〈d̃, x〉|x ∈ (n/w) ? E} = 〈d̃, c〉 − n

w
·
√
d̃TDd̃

= 〈d̃, c〉 − n

w
· w

2

= 〈d̃, c〉 − n

2

and

max{〈d̃, x〉|x ∈ n

w
? E} = 〈d̃, c〉+

n

2
.
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Combining this with the fact that (n/w) ? E ⊆ E, this shows that there exists an
index k ∈ Z with

d〈d̃, c〉 − n

2
e ≤ k ≤ b〈d̃, c〉+

n

2
c

such that E ∩Hk,d̃ contains an integer vector.

This result shows that the �atness algorithm for ellipsoids really computes an n-�atness
direction of a given ellipsoid. It remains to show that the algorithm is polynomially space
bounded. For this, we need to give an upper bound on the length of the �atness direction
of the ellipsoid.

Lemma 6.4.9. Let D ∈ Qn×n be a symmetric positive de�nite matrix. Let d̃ ∈ Zn\{0}
be the �atness direction of the ellipsoid de�ned by the matrix D. Then

‖d̃‖2 ≤ n(n+2)/2 · size(D)(n+1)/2.

Proof. To prove an upper bound on the length of the vector d̃, we observe that d̃ = Q−1d,
where v is a shortest non-zero lattice vector in L(Q), as we have seen in Proposition 6.4.5.
Since the spectral norm and the Euclidean norm are compatible, this yields to the upper
bound

‖d̃‖2 = ‖Q−1d‖2 ≤ ‖Q−1‖2 · ‖d‖2.

The length of the vector d is the same as the length of a shortest vector in the lattice
L(D1/2),

λ
(2)
1 (L(Q)) = λ

(2)
1 (D1/2),

as we observed in Remark 6.4.6. This shows that the length of the vector d̃ ∈ Zn is at
most

‖d̃‖2 ≤ ‖Q−1‖ · λ(2)
1 (D1/2). (6.8)

Using Minkowski's �rst theorem, the Euclidean minimum distance of the lattice L(D1/2)
is at most

λ
(2)
1 (D1/2) ≤

√
n det(D1/2)1/n =

√
n det(D)1/2n, (6.9)

see Corollary 3.2.5. We can now give an upper bound on the spectral norm of the matrix
Q−1. Since the decomposition of a symmetric positive de�nite matrix in D = QTQ
is unique up to multiplication with an orthogonal matrix, there exists an orthogonal
matrix O ∈ Rn×n such that O · Q = D1/2. From this, one can show that the matrices
Q−1 = D−1/2 ·O and D−1/2 have the same spectral norm:

‖Q−1‖2 =
√
ηn(OTD−1O) =

√
ηn(D−1) =

√
ηn((D−1/2)TD−1/2) = ‖D−1/2‖2,
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where ηn denotes the largest eigenvalue of the matrix. The spectral norm of the matrix
‖D−1/2‖2 is given by the square root of the spectral norm of D−1,

‖D−1/2‖2 =
√
ηn(D−1) = ‖D−1‖1/22 ,

where the spectral norm of D−1 is the inverse of an eigenvalue of D. It is easy to see,
that each eigenvalue of the symmetric positive de�nite matrix is at least 1/ size(D), see
for example [Ye92]. Hence, we obtain that

‖D−1‖1/22 ≤ size(D)1/2.

Combining this with (6.8) and (6.9), we obtain the following upper bound for the length
of the vector d̃,

‖d̃‖2 ≤
√
n det(D)

1
2

(1+ 1
n

).

We have seen in Claim 2.2.18 in Chapter 2 that the determinant of a matrix D can be
bounded by det(D) ≤ (n · size(D))n. Hence, the length of the vector d̃ is at most

‖d̃‖2 ≤
√
n(n · size(D))

n
2

(1+ 1
n

) =
√
n(n · size(D))(n+1)/2.

Now we can give an upper bound on the size of each number computed by the �atness
algorithm. Furthermore, we give an upper bound on the number of arithmetic operations
of the �atness algorithm for ellipsoids in the next proposition.

Proposition 6.4.10. Given an ellipsoid E = E(D, c) ⊆ Rn, where D ∈ Qn×n sym-
metric positive de�nite and c ∈ Qn, the number of arithmetic operations of the �atness
algorithm for ellipsoids, Algorithm 12, is 2O(n)nn/(2e). The algorithm is polynomially
space bounded and each number computed by the algorithm has size of at most rn

O(1)
,

where r is an upper bound on the size of E and e is Euler's constant.

Proof. Obviously, the algorithm runs in polynomial space if we can show that the size
of each number computed by the �atness algorithm is at most polynomial in the size of
the ellipsoid. This follows since Kannan's algorithm for Svp runs in polynomial space.

We have seen in Lemma 6.4.9 that the length of the �atness direction is at most

‖d̃‖2 ≤ n(n+2)/2 size(D)(n+1)/2 ≤ n(n+2)/2r(n+1)/2. (6.10)

Since d̃ is an integer vector, this shows that size(d̃) ≤ n(n+2)/2r(n+1)/2. Hence, the only
thing we need to take care of is that the numbers kmin, kmax ∈ Z are not getting too
large. By de�nition, they are at most

〈d̃, c〉+ min
{n

2
, ‖d‖2

}
≤ 〈d̃, c〉+

n

2
.
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Combining the Cauchy-Schwarz inequality with (6.10), we obtain that

k ≤ ‖d̃‖2 · ‖c‖2 +
n

2
≤ n(n+2)/2r(n+1)/2‖c‖2 +

n

2
.

Since r is an upper bound on the size of the ellipsoid E with center c ∈ Qn, we have
‖c‖2 ≤ ‖c‖1 ≤ n · r and we obtain that k ≤ rnO(1)

.

The number of arithmetic operations is dominated by the number of arithmetic op-
erations needed to compute a shortest non-zero lattice vector in L(Q) using Kannan's
algorithm for Svp, see Theorem 4.1.14 in Chapter 4. This is at most 2O(n)nn/(2e).

To generalize this result to arbitrary bounded convex sets, we approximate the convex
set by an approximate Löwner-John ellipsoid. To recall, for 0 < γ < 1/n, a (1/γ)-
approximate Löwner-John ellipsoid of an n-dimensional bounded convex set is an ellip-
soid E with E ⊆ C ⊆ (1/γ) ? E, see De�nition 2.2.12 in Chapter 2.

Obviously, if we are able to compute approximate Löwner-John ellipsoids for a class
of full-dimensional bounded convex sets, there exists a �atness algorithm for this class:
Given an approximate Löwner-John ellipsoid E of a full-dimensional bounded convex
set C, we can compute the width and a corresponding �atness direction d̃ ∈ Zn\{0} of
the ellipsoid. If this width is larger than n, the ellipsoid and therefore the convex set
C contains an integer vector. In this case, in the same way as in the case of ellipsoids
we obtain an interval IC of length at most n, such that there exists an integer vector in
(n/w) ? E ∩Hk,d̃ ⊆ C ∩Hk,d̃ for some integer k ∈ Z ∩ IC .
Otherwise, we observe that the width of the circumscribed ellipsoid (1/γ) ? E is at most
(1/γ) · w(E) ≤ n/γ and that d̃ ∈ Zn is also a �atness direction of the circumscribed
ellipsoid. Hence, the vector d̃ ∈ Zn satis�es that∣∣∣⌊max

{
〈d̃, x〉|x ∈ (1/γ) ? E

}⌋
−
⌈
min

{
〈d̃, x〉|x ∈ (1/γ) ? E

}⌉∣∣∣ ≤ n

γ
.

Since the convex set C is contained in (1/γ) ? E, the vector d̃ also satis�es that every
hyperplane Hk,d̃ which has a non-empty intersection with C satis�es

min
{
〈d̃, x〉|x ∈ (1/γ) ? E

}
≤ k ≤ max

{
〈d̃, x〉|x ∈ (1/γ) ? E

}
.

Overall, this shows that for all full-dimensional bounded convex sets given together
with a (1/γ)-approximate Löwner-John ellipsoid, we obtain a vector d̃ ∈ Zn\{0} together
with an interval IC of length of at most n/γ such that the following holds: The convex
set C contains an integer vector if and only if there exists a k ∈ Z∩ IC such that C ∩Hk,d̃
contains an integer vector. Combining this with the observation made in Claim 6.4.1 we
obtain a �atness algorithm for general bounded convex sets. A complete description of
this approach is given in Algorithm 13.

Theorem 6.4.11. Let K be a class of bounded convex sets closed under bijective a�ne
transformation and intersection with hyperplanes orthogonal to the unit vectors and let
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Algorithm 13 Flatness algorithm for bounded convex sets
Input:

� A full-dimensional bounded convex set C ⊆ Rn from the class K which is closed
under bijective a�ne transformation and intersection with hyperplanes orthogo-
nal to the unit vectors and

� an a�ne subspace H :=
⋂n
i=m+1Hki,di , where di ∈ Zn linearly independent and

ki ∈ Z for all m+ 1 ≤ i ≤ n; alternatively H = Rn.

Used subroutines:

� Rounding method for the class K which for a given full-dimensional convex set
C ∈ K computes a (1/γ)-approximate Löwner-John ellipsoid for some parameter
0 < γ ≤ 1 and

� Kannan's algorithm for Svp.

Output: A vector dm ∈ Zn\{0} together with an interval IC given by its upper and
lower bound kmin, kmax ∈ Z.

1. If m = n, set v = 0 and V̄ = In.

Otherwise, compute v ∈ Z ∩H, a basis B = [b1, . . . , bm, dm+1, . . . , dn] ∈ Zn×n
of Rn. Compute a lattice basis D̄ ∈ Zn×m of L(BT ) ∩

⋂n
i=m+1H0,ei .

Set D̂ := [D̄, em+1, . . . , en] ∈ Zn and V̄ = D̂−1BT .

De�ne the bijective mapping τ : Rn → Rn, x 7→ V̄ (x− v).

2. Apply the rounding method with input of the convex set τ(C ∩H).
The result is an ellipsoid E(D, c) ⊆ Rm.

3. Compute a decomposition D = QTQ of the matrix D.
Compute a shortest non-zero lattice vector d ∈ L(Q).
Let d̃← Q−1d ∈ Zm.

4. Set w ← 2‖d‖2.
If w ≤ m, set

k̃min := d〈d̃, c〉 − (1/γ) · ‖d‖2e and
k̃max := b〈d̃, c〉+ (1/γ) · ‖d‖2c.

Otherwise, set

k̃min ← d〈d̃, c〉 −m/2e and
k̃max ← b〈d̃, c〉+m/2c.

5. Output the vector dm ← V̄ T (d̃T , 0n−m)T together with

kmin ← k̃min + 〈v, dm〉 and
kmax ← k̃max + 〈v, dm〉.

164



6.4. An algorithm for computing a �atness direction

f : N→ R>0 be some non-decreasing function.
Assume that there exists a rounding method for this class, i.e., an algorithm which for
a given full-dimensional convex set C ∈ K computes a (1/γ)-approximate Löwner-John
ellipsoid for some parameter 0 < γ ≤ 1.
Given a full-dimensional bounded convex set C ⊆ Rn from this class K and an a�ne
subspace H of dimension m, the �atness algorithm for bounded convex sets, Algorithm 13,
computes an (m/γ)-�atness direction dm ∈ Zn\{0} of C∩H together with a corresponding
interval IC∩H of length at most m/γ.

Proof. If the a�ne subspace H is not the whole space Rn, the �atness algorithm com-
putes the bijective a�ne transformation τ as described in Claim 6.4.1 which maps C ∩H
to a full-dimensional bounded convex set in Rn. Otherwise, we set τ as the identity.
Since K is closed under bijective a�ne transformation and intersection with hyperplanes
orthogonal to the unit vectors, we have τ(C ∩H) ∈ K.

For this full-dimensional convex set τ(C ∩H) in Rm, the rounding method computes a
(1/γ)-approximate Löwner-John ellipsoid E. For this ellipsoid, we compute its width w
and a corresponding �atness direction d̃ ∈ Zm\{0}, see Lemma 6.4.5. Now, the algorithm
distinguishes between two cases:

� If w ≤ m, the algorithm computes an interval [k̃min, k̃max], where

k̃min =
⌈
min

{
〈d̃, x〉 | x ∈ (1/γ) ? E(D, c)

}⌉
and

k̃max =
⌊
max

{
〈d̃, x〉 | x ∈ (1/γ) ? E(D, c)

}⌋
,

see Lemma 6.4.4. Thus, this interval contains all integers k ∈ Z such that the a�ne
hyperplane Hk,d̃ intersects τ(C∩H) and it follows that τ(C∩H) contains an integer

vector if and only if there exists k ∈ Z, k̃min ≤ k ≤ k̃max such that τ(C ∩H)∩Hk,d̃
contains an integer vector.
The length of the interval de�ned by kmin and kmax is at most the width of the
ellipsoid (1/γ) ? E,

w((1/γ) ? E) = max
{
〈d̃, x〉 | x ∈ (1/γ) ? E

}
−min

{
〈d̃, x〉 | x ∈ (1/γ) ? E

}
.

Since the width of the ellipsoid E(D, c) along the vector d̃ is at most m, the width
of the ellipsoid (1/γ) ? E(D, c) along d̃ is at most m/γ, i.e., kmax − kmin ≤ m/γ.

� If w > m, we have (m/w) ? E ⊆ E ⊆ τ(C ∩H).
The width of the ellipsoid (m/w) ? E is exactly m. Hence, it is guaranteed by the
�atness theorem that (m/w) ? E ⊆ E ⊆ τ(C ∩H) contains an integer vector, see
Theorem 6.4.7. This integer vector is contained in the intersection (m/w)?E∩Hk,d̃,
where k ∈ Z satis�es⌈

min
{
〈d̃, x〉 | x ∈ (m/w) ? E

}⌉
≤ k ≤

⌊
max

{
〈d̃, x〉 | x ∈ (m/w) ? E

}⌋
.
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Since

min
{
〈d̃, x〉 | x ∈ (m/w) ? E

}
= 〈d̃, c〉 −m/2 and

max
{
〈d̃, x〉 | x ∈ (m/w) ? E

}
= 〈d̃, c〉+m/2,

the interval de�ned by k̃min and k̃max guarantees that there exists an integer k ∈ Z,
k̃min ≤ k ≤ k̃max such that τ(C ∩H) ∩Hk,d̃ contains an integer vector. Obviously,

k̃max − k̃min ≤ m.

This shows that in both cases, the algorithm computes an (m/γ)-�atness direction d̃ ∈
Zm\{0} of the convex set τ(C ∩H) together with a corresponding interval [k̃min, k̃max].
As we have seen in Lemma 6.4.2, this shows that the vector dm ∈ Zn\{0} is an (m/γ)-
�atness direction of C ∩H. Additionally, we see that the numbers kmin and kmax de�ned
as in the �atness algorithm de�ne a corresponding interval.

In Chapter 7, we will show that for polytopes and general `p-balls there exist deter-
ministic algorithms that compute approximate Löwner-John ellipsoids. They are based
on the famous ellipsoid method. At the moment, we use these results as black-boxes to
obtain �atness algorithms for polytopes and general `p-balls.

6.4.2. A �atness algorithm for polytopes

Obviously, the class of polytopes is closed under bijective a�ne transformation and in-
tersection with hyperplanes.

We will describe in Chapter 7 a rounding method for polytopes originally presented by
Go�n in 1984. This rounding method is a polynomial time algorithm which computes
for a full-dimensional polytope in Rn a (1/γ)-approximate Löwner-John ellipsoid, where
0 < γ < 1/n. The proof of the following theorem together with a complete description
of the algorithm appears in Chapter 7, Section 7.3.

Theorem 6.4.12. Let P = {x ∈ Rn|〈ai, x〉 ≤ βi for all 1 ≤ i ≤ s} with ai ∈ Zn, βi ∈ Z
be a full-dimensional polytope. There exists a rounding method for polytopes that given
such a polytope P together with a parameter γ with 0 < γ < 1/n computes a 1/γ-
approximate Löwner-John ellipsoid, i.e., a positive de�nite matrix D ∈ Qn×n and a
vector c ∈ Qn de�ning the ellipsoid E(D, c) such that

E(D, c) ⊆ P ⊆ 1

γ
? E(D, c).

The number of arithmetic operations of the algorithm is

(ns · log2(r))O(1),

where r is the size of the polytope. The algorithm runs in polynomial space and the size
of the approximate Löwner-John ellipsoid is at most

2O(n4)rO(n).
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Using this result, we can adapt the �atness algorithm for bounded convex sets and
obtain a �atness algorithm for polytopes. A complete description of the algorithm is
given in Algorithm 14.

Theorem 6.4.13. (Theorem 6.2.1 restated.)
Given a full-dimensional polytope P ⊆ Rn together with an a�ne subspace H ⊆ Rn of
dimension m, the �atness algorithm for polytopes, Algorithm 14, computes a 2m2-�atness
direction dm ∈ Zn\{0} of P ∩ H together with a corresponding interval IP∩H ⊆ R of
length of at most 2m2 . The number of arithmetic operations of the algorithm is

(ns · log2(r))O(1)2O(m)mm/(2e),

where r is an upper bound on the size of the polytope, s is the number of constraints
de�ning the polytope and e is Euler's constant. The algorithm runs in polynomial space
and each number computed by the algorithm has size of at most rn

O(1)
.

Proof. The transformation τ : x 7→ V̄ (x−v) maps the intersection P ∩H to the polytope
{x ∈ Rn|AV̄ −1x ≤ β − Av} ∩

⋂n
i=m+1H0,ei which can be identi�ed with the polytope

{x ∈ Rm|Ãx ≤ β − Av}, where Ã ∈ Zs×m consists of the �rst m columns of the matrix
AV̄ −1. Combining this result with Theorem 6.4.11, it follows that the �atness algorithm
for polytopes computes a 2m2-�atness direction dm ∈ Zn\{0} of P ∩H together with a
corresponding interval IP∩H of length of at most 2m2.

Obviously, the �atness algorithm for polytopes is polynomially space bounded if each
number computed by the algorithm has size of at most rn

O(1)
, where r is an upper bound

on the size of the polytope P and the a�ne subspace H.
The size of the polytope P̃ computed using the transformation τ in step 1 of the algorithm
is of size of at most rn

O(1)
. According to Theorem 6.4.12, the size of the approximate

Löwner-John ellipsoid of the polytope P̃ computed by the rounding method is at most

2O(n4) size(P̃ )O(n) ≤ 2O(n4)rn
O(1)

.

In fact, the �atness algorithm for polytopes combines the �atness algorithm for ellipsoids
for the ellipsoid E(D, c) and the ellipsoid 2m?E(D, c). Hence, it follows from Proposition
6.4.10 that the size of each number computed by the algorithm is at most(

2O(n4)rn
O(1)
)nO(1)

= rn
O(1)

.

Finally, we give an upper bound on the number of arithmetic operations of the �atness
algorithm. Given a full-dimensional polytope in Rn together with an a�ne subspace
of dimension m > 0, the computation of the a�ne bijective transformation in step 1
of the algorithm can be done using at most nO(1) arithmetic operations. We apply the
rounding method for polytopes with input of the polytope P̃ of size of at most rn

O(1)
.

Hence, it follows from Theorem 6.4.12 that the number of arithmetic operations of the
rounding method is at most (m·s log2(r))O(1). For the computation of a shortest non-zero
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Algorithm 14 Flatness algorithm for polytopes
Input:

� A full-dimensional polytope P ⊆ Rn given by A ∈ Zs×n and β ∈ Zs and
� an a�ne subspace H :=

⋂n
i=m+1Hki,di where ki ∈ Zn linearly independent and

ki ∈ Z for all m+ 1 ≤ i ≤ n; alternatively H := Rn.

Used subroutines: Kannan's algorithm for Svp, rounding method for polytopes.

Output: A vector dm ∈ Zn together with an interval IP∩H given by its lower and upper
bound kmin, kmax ∈ Z.

1. If m = n, set v = 0 and V̄ = In.

Otherwise, compute v ∈ Z ∩H, a basis B = [b1, . . . , bm, dm+1, . . . , dn] ∈ Zn×n
of Rn.
Compute a lattice basis D̄ ∈ Zn×m of L(BT ) ∩

⋂n
i=m+1H0,ei .

Set D̂ ← [D̄, em+1, . . . , en] ∈ Zn and V̄ ← D̂−1BT .

Let P̃ be the polytope given by Ã ∈ Zs×m and β − Av ∈ Zs, where Ã is the
matrix which consists of the �rst m columns of the matrix AV̄ −1.

2. Apply the rounding method for polytopes with input of the polytope P̃ and the
parameter γ = 1/(2m).
The result is D ∈ Qm×m symmetric positive de�nite and c ∈ Qm.
Compute a decomposition D = QTQ of the matrix D.

3. Compute a shortest non-zero lattice vector d ∈ L(Q).
Let d̃← Q−1d ∈ Zm.

4. Set w := 2‖d‖2.
If w ≤ m, set

k̃min ← d〈d̃, c〉 − 2m‖d‖2e and
k̃max ← b〈d̃, c〉+ 2m‖d‖2c.

Otherwise, set

k̃min ← d〈d̃, c〉 −m/2e and
k̃max ← b〈d̃, c〉+m/2c.

5. Output the vector dm ← V̄ T (d̃T , 0n−m)T ∈ Zn together with

kmin ← k̃min + 〈v, dm〉 and
kmax ← k̃max + 〈v, dm〉.
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vector using Kannan's algorithm we need at most 2O(m)mm/(2e) arithmetic operations,
see Theorem 4.1.14 in Chapter 4. This shows that the number of arithmetic operations
of the rounding method is at most

nO(1) + (ns · log2(r))O(1) + 2O(m)mm/(2e) = (ns · log2(r))O(1) 2O(m)mm/(2e).

6.4.3. A �atness algorithm for `p-bodies

Unfortunately, the class of general `p-balls as de�ned in De�nition 6.3.1 is not closed
under intersection with hyperplanes. Due to this reason, we consider a further general-
ization of `p-balls, the class of so-called `p-bodies.

For the construction of full-dimensional convex sets using the transformation de�ned
in Claim 6.4.1, we need to consider the intersection of general `p-balls with hyperplanes

orthogonal to the unit vectors, for example B(p,V )
n (t, α)∩H0,en . For simplicity, we denote

this by B(p,V )
n−1,n(t, α). To be precise, for m ∈ N, m ≤ n, we de�ne

B(p,V )
m,n (t, α) := B(p,V )

n (t, α) ∩
n⋂

i=m+1

H0,ei .

We will call these convex sets `p-bodies1.

In the following, whenever we speak of an `p-body, we assume that we are given a
nonsingular matrix V ∈ Rn×n, a vector t ∈ Rn, parameters m ∈ N, m ≤ n, and α > 0,
and we consider the convex set B(p,V )

m,n (t, α). The size of such an `p-body is the maximum
of n, m, α and the size of the coordinates of V −1 and t.

We will interpret B(p,V )
m,n (t, α) as a full-dimensional bounded convex set in the vector

space Rm. Then, we say that a vector x ∈ Rm is contained in B(p,V )
m,n (t, α) if and only if

(xT , 0n−m)T ∈ B(p,V )
n (t, α).

To obtain a �atness algorithm for `p-bodies we need to be able to compute approximate
Löwner-John ellipsoids for `p-bodies. In Chapter 7, we will present an algorithm which
computes for a given `p-body an approximate Löwner-John ellipsoid with approximation
factor 2/γ for 0 < γ < 1/n. The algorithm is based on a variant of the ellipsoid method
developed from Grötschel, Lovász and Schrijver in [GLS93]. The proof of the following
theorem together with a complete description of the algorithm appears in Chapter 7,
Section 7.2 of this thesis.

Theorem 6.4.14. Let B(p,V )
m,n (t, α) ⊆ Rm be an `p-body given by V ∈ Qn×n nonsingular,

t ∈ Qn, α > 0 and 1 < p <∞. There exists a rounding method that given such a convex
set together with a parameter γ with 0 < γ < 1/m satis�es the following properties:

1Obviously, `p-bodies are not convex bodies but bounded convex sets.
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� Either it outputs that B(p,V )
m,n (t, α) does not contain an integer vector, or

� it outputs a 2/γ-approximate Löwner-John ellipsoid, i.e., a positive de�nite matrix
D ∈ Qm×m and a vector c ∈ Qm de�ning the ellipsoid E(D, c) such that

E(D, c) ⊆ B(p,V )
m,n (t, α) ⊆ 2

γ
? E(D, c).

In this case, the size of the ellipsoid is at most 2O(n4)rO(n2p).

The algorithm runs in polynomial space and its number of arithmetic operations is at
most

p

(1−mγ)2
(n · log2(r))O(1)2O(m).

Here, r is an upper bound on the size of the `p-body.

Using this result, we obtain a �atness algorithm for `p-bodies in the same way as we
obtain the �atness algorithm for polytopes. For a detailed description of the algorithm
see Algorithm 15.

Theorem 6.4.15. (Theorem 6.3.2 restated.)

Given a general `p-ball B
(p,V )
n (t, α) with 1 < p < ∞ together with an a�ne subspace H

of dimension m, the �atness algorithm for `p-bodies, Algorithm 15, outputs one of the
following:

� Either it outputs that B(p,V )
n (t, α) ∩H does not contain an integer vector or

� it outputs a 4m2-�atness direction dm ∈ Zn\{0} of B(p,V )
n (t, α) ∩H together with

a corresponding interval IB∩H ⊆ R of length at most 4m2.

The number of arithmetic operations of the algorithm is

p · (n · log2(r))O(1)2O(m)mm/(2e),

where r is an upper bound on the size of the general `p-ball and e is Euler's constant.
The algorithm runs in polynomial space and each number computed by the algorithm has
size of at most rpn

O(1)
.

Proof. The transformation τ : x 7→ V̄ (x − v) constructed in step 1 of the algorithm

maps the intersection B
(p,V )
n (t, α) ∩ H to the `p-body B

(p,V̄ V )
m,n (V̄ (t − v), α). By con-

struction, it is guaranteed that B(p,V )
n (t, α) ∩H contains an integer vector if and only if

B
(p,V̄ V )
m,n (V̄ (t− v), α) contains an integer vector, see Claim 6.4.1.

Hence, if we apply the rounding method to the `p-body B
(p,V̄ V )
m,n (V̄ (t − v), α) and it

outputs that B(p,V̄ V )
m,n (V̄ (t − v), α) does not contain an integer vector, the intersection

B
(p,V )
n (t, α) ∩H does not contain an integer vector.
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Algorithm 15 Flatness algorithm for `p-bodies
Input:

� An `p-body B
(p,V )
n (t, α), where V ∈ Qn×n nonsingular, t ∈ Qn, α > 0, 1 < p <

∞, and
� an a�ne subspace H =

⋂n
i=m+1Hki,di , where di ∈ Zn linearly independent and

ki ∈ Z for all m+ 1 ≤ i ≤ n; alternatively H = Rn.

Used subroutines: Kannan's algorithm for Svp, rounding method for `p-bodies.

Output: A vector dm ∈ Zn together with an interval IB given by its lower and upper
bound kmin, kmax ∈ Z or the statement that B(p,V )

n (t, α)∩H does not contain an integer
vector.

1. If m = 0, set v = 0 and V̄ = In.

Otherwise, compute v ∈ Z ∩H, a basis B = [b1, . . . , bm, dm+1, . . . , dn] ∈ Zn×n
of Rn. Compute a lattice basis D̄ ∈ Zn×m of L(BT ) ∩

⋂n
i=m+1H0,ei .

Set D̂ := [D̄, em+1, . . . , en] ∈ Zn and V̄ = D̂−1BT .

2. Apply the rounding method with input of the `p-body B
(p,V̄ V )
m,n (V̄ (t− v), α) and

the parameter γ = 1/(2m).

3. If it outputs that B(p,V̄ V )
m,n (V̄ (t− v), α) does not contain an integer vector, then

output that B(p,V )
n (t, α) ∩H does not contain an integer vector.

Otherwise, the result is D ∈ Qm×m symmetric positive de�nite and c ∈ Qm.

a) Compute a decomposition D = QTQ of the matrix D.

b) Compute a shortest non-zero lattice vector d ∈ L(Q).
Let d̃ := Q−1d ∈ Zm.

c) Set w := 2‖d‖2.
If w ≤ m, set

k̃min := d〈d̃, c〉 − 4m‖d‖2e and
k̃max := b〈d̃, c〉+ 4m‖d‖2c.

Otherwise, set

k̃min ← d〈d̃, c〉 −m/2e and
k̃max ← b〈d̃, c〉+m/2c.

d) Output the vector dm ← V̄ T (d̃T , 0n−m)T ∈ Zn together with

kmin ← k̃min + 〈v, dm〉 and
kmax ← k̃max + 〈v, dm〉.
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Otherwise, it follows from Theorem 6.4.11 that the �atness algorithm for `p-bodies com-

putes a 4m2-�atness direction dm ∈ Zn\{0} of B(p,V )
n (t, α) ∩ H together with a corre-

sponding interval IB∩H of length at most 4m2.

Obviously, the �atness algorithm for `p-bodies is polynomially space bounded, if each

number computed by the algorithm has size at most rn
O(1)

, where r is an upper bound
on the size of the general `p-ball B

(p,V )
n (t, α) and the a�ne subspace H. Especially, we

use here that Kannan's algorithm for Svp is polynomially space bounded, see Theorem
4.1.14 in Chapter 4.
The bijective a�ne transformation constructed in step 1 of the algorithm is given by a
matrix and a vector whose size is at most size(H)n

O(1)
= rn

O(1)
. It follows that the size

of the `p-body B
(p,V̄ V )
m,n (V̄ (t− v), α) is at most rn

O(1)
.

According to Theorem 6.4.14, the size of an approximate Löwner-John ellipsoid com-
puted by the rounding method with γ = 1/(2m) is at most 2O(n4)rO(n2p). Since the
�atness algorithm is a combination of the �atness algorithm for ellipsoids applied with
the inscribed ellipsoid E(D, c) and the circumscribed ellipsoid 4m ? E(D, c), it follows
from Proposition 6.4.10 that the size of each number computed by the algorithm is at
most (

2O(n4)rO(n2p)
)nO(1)

= rp·n
O(1)

.

Finally, we give an upper bound on the number of arithmetic operations of the �atness
algorithm. Given a general `p-ball in Rn together with an a�ne subspace of dimension
m > 0, the computation of the bijective a�ne transformation in step 1 of the algorithm
can be done using at most nO(1) arithmetic operations. We apply the rounding method
for `p-bodies with input of an `p-body of size of at most rn

O(1)
. Hence, it follows from

Theorem 6.4.14 that the number of arithmetic operations of the rounding method is at
most p(n·log2(r))O(1)2O(m). The number of arithmetic operations of Kannan's algorithm
for Svp is upper bounded by 2O(m)mm/(2e), see Theorem 4.1.14 in Chapter 4. This shows
that the number of arithmetic operations of the rounding method is upper bounded by

nO(1) + p(n · log2(r))O(1)2O(m) + 2O(m)mm/(2e) = p(n · log2(r))O(1)2O(m)mm/(2e).

6.5. Replacement procedure

In our algorithm for the lattice membership problem we assumed that we have access to
a so-called replacement procedure. The replacement procedure gets an a�ne subspace
H ⊆ Rn, an additional hyperplane Hk,d, and some parameter N ∈ N as input and
computes a set of new hyperplanes Hk̄i,d̄i

, i ∈ J for some index set J , with small size
in polynomial time. For each integer vector which is contained in an `1-ball with radius
less than N it can be guaranteed that it is contained in the a�ne subspace H ∩Hk,d̃ if

172



6.5. Replacement procedure

and only if it is contained in the intersection H ∩
⋂
i∈J Hk̄i,d̄i

. This means, that if the
parameter N is chosen appropriately depending on the shape of some convex set C, it
can be guaranteed that each integer vector from C is contained in the a�ne subspace
H ∩Hk,d if and only if it is contained in the intersection H ∩

⋂
i∈J Hk̄i,d̄i

. Furthermore, if
the a�ne subspace H and the a�ne hyperplane Hk,d are a�nely independent, then the
a�ne subspace

⋂
i∈J Hk̄i,d̄i

are a�nely independent.
This replacement procedure was used in the lattice membership algorithm to make the
algorithm run in polynomial space. In this section, we will describe this replacement
procedure and we will prove Theorem 6.1.6.

Originally, the replacement procedure was developed by Frank and Tardos in 1987 as
a preprocessing technique to make certain polynomial time algorithms for linear pro-
gramming strongly polynomial time2. For an overview about this application of the
replacement procedure see [Eis10].
Kannan observed that the preprocessing technique could also be used to make Lenstra's
algorithm for integer programming [Len83] or its improvement by Kannan [Kan87b] run
in polynomial space.
The replacement procedure described in the following is a slight generalization of the
replacement procedure developed by Frank and Tardos adapted to our context. It can
be used to make the lattice membership algorithm as we presented in Section 6.1 run in
polynomial space.

The main idea of the replacement procedure as follows: For a given hyperplane
Hk,d ⊆ Rn, a vector b ∈ Rn is contained in the hyperplane Hk,d if and only if the vector
(bT ,−1)T ∈ Rn+1 is contained in the hyperplane H0,w, where w = (dT , k)T ∈ Rn+1.
Now, we can show that there exists a decomposition procedure that computes a rep-
resentation for the vector w as a linear combination of integer vectors with small size.
Additionally, the coe�cients of this representation build a rapidly decreasing sequence.

The decomposition procedure used to compute such a representation is a kind of mul-
tidimensional continued fraction expansion. The techniques used in this replacement
procedure are completely independent from the techniques presented so far. The main
tool is simultaneous Diophantine approximation.

Simultaneous Diophantine approximation

Simultaneous Diophantine approximation deals with the topic of considering n real num-
bers α1, . . . , αn ∈ R in order to approximate them simultaneously by rational numbers.
Here, simultaneously means, that the rational numbers have the same denominator. A
fundamental result due to Dirichlet shows that for all N ∈ N there exists a simultaneous
approximation for arbitrary numbers α1, . . . , αn, where the common denominator q is at
most Nn.
2Loosely speaking, a polynomial time algorithm is strongly polynomial time if the number of arithmetic
operations depends not on the binary encoding length of the input.
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Theorem 6.5.1. (Dirichlet's Theorem about simultaneous approximation)
Let N ∈ N and α1, . . . , αn ∈ R. Then, there exists p1, . . . , pn ∈ Z and q ∈ Z such that

1 ≤ q ≤ Nn and |q · αi − pi| <
1

N
for all 1 ≤ i ≤ n.

Dirichlet's Theorem guarantees the existence of a simultaneous approximation with
approximation factor at most q · Nn ≤ Nn+1, since we have |αi − pi/q| < (q · N)−1 for
all 1 ≤ i ≤ n. A proof of this result can for example be found in [Sch91].

We observe that for N ≥ 2, the numbers pi are uniquely characterized as the integers
which are next to q ·αi, 1 ≤ i ≤ n. Hence, if there exists an index i such that αi = 0, for
all q ∈ N pi = 0 is the only number which satis�es |q · αi − pi| < 1/N ≤ 1.
As a consequence, if αi ∈ Z, then pi = αi · q ∈ Z is the only number which satis�es
|q · αi − pi| < 1/N ≤ 1.

Dirichlet's result itself is not constructive but the LLL-algorithm from 1982, see The-
orem 4.1.10 in Chapter 4, can be used to compute a simultaneous Diophantine approx-
imation for given rational numbers in polynomial time. Since this application of the
LLL-algorithm was observed by Lovász, the algorithm is named Lovász's approximation
algorithm. The common denominator computed by the algorithm is at most 2n

2
Nn+1.

Theorem 6.5.2. (Lovász's approximation algorithm, [LLL82])
There exists an algorithm, which computes for N ∈ N and α1, . . . , αn ∈ Q integers
p1, . . . , pn ∈ Z and q ∈ N such that

1 ≤ q ≤ 2n
2
Nn and |q · αi − pi| <

1

N
for all 1 ≤ i ≤ n.

The algorithm is called Lovász's approximation algorithm. The number of arithmetic
operations of this algorithm is at most n6 log2(B), where B is an upper bound on the size
of the values αi, 1 ≤ i ≤ n, and N . Each number computed by the algorithm has size at
most O(Bn3

).

A description of Lovász's approximation algorithm can be found in [LLL82] or for ex-
ample in [vzGG03]. The disadvantage of this algorithm is that the number of arithmetic
operations depends on the size of the input. Yet, if we restrict the input to rationals with
absolute value of at most 1, we can construct an algorithm for simultaneous Diophantine
approximation whose number of arithmetic operations depends only on the parameter
N ∈ N and on the number n of rationals. Conversely, the upper bound on the common
denominator q gets worse than the upper bound of the common denominator computed
by Lovász's algorithm by the factor 2n to 2n

2+nNn+1.

The algorithm is called the revised simultaneous approximation algorithm. As input,
it gets an integer N ∈ N and rationals α1, . . . , αn ∈ Q from the interval between −1 and
1. In the �rst step, it computes an individual rational approximation α′i for each rational
number αi whose size depends only on n and N , i.e., is independent of the size of αi itself.
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Algorithm 16 Revised simultaneous approximation algorithm
Input:

� A parameter N ∈ N,
� numbers α1, . . . , αn ∈ Q satisfying |αi| ≤ 1 for all 1 ≤ i ≤ n.

Used subroutine: Lovász's approximation algorithm.

Output: Numbers p1, . . . , pn ∈ Z, q ∈ N

1. For 1 ≤ i ≤ n, set

α′i := −bαi2
n2+n+1Nn+1c

2n2+n+1Nn+1
and N ′ := 2N.

2. Apply Lovász's approximation algorithm with input of the parameter N ′ and the
numbers α′1, . . . , α

′
n. We obtain p1, . . . , pn ∈ Z and q ∈ N.

3. Output p1, . . . , pn and q.

Hence, if we apply Lovász's approximation algorithm to these rationals α′i, 1 ≤ i ≤ n, the
number of arithmetic operations depends only on n and N . Using the triangle inequality,
it can be shown that the rational approximations computed by Lovász's approximation
algorithm are also good (enough) approximations for the input numbers αi, 1 ≤ i ≤ n.
A detailed description of the algorithm is given in Algorithm 16.

Lemma 6.5.3. Given N ∈ N, α1, . . . , αn ∈ Q with |αi| ≤ 1 for 1 ≤ i ≤ n, the revised
simultaneous approximation algorithm computes numbers p1, . . . , pn ∈ Z and q ∈ N such
that

1 ≤ q ≤ 2n
2+nNn and |qαi − pi| <

1

N
for all 1 ≤ i ≤ n.

The number of arithmetic operations of the revised simultaneous approximation algorithm
is polynomial in n and log2(N), i.e., (n · log2(N))O(1). Each number computed by the
algorithm has size of at most max{2nO(1)

NO(n), B}, where B is an upper bound on the
size of the value αi, 1 ≤ i ≤ n, and N .

Proof. For each index i, 1 ≤ i ≤ n, the number α′i approximates the number αi with a
factor 2n

2+n+1Nn+1 since by de�nition they satisfy |2n2+n+1Nn+1(αi − α′i)| ≤ 1. That
means, the di�erence between αi and α′i is at most

|αi − α′i| ≤ 2−(n2+n+1)N−(n+1). (6.11)

Lovász's approximation algorithm with input of the numbers α′1, . . . , α
′
n and N ′ = 2N

computes a number q ∈ N satisfying

q ≤ 2n
2
N ′n = 2n

2+nNn. (6.12)
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Additionally, for each index i, 1 ≤ i ≤ n, it computes a number pi ∈ N that approximates
α′i with the factor q ·N ′, i.e.,

|q · α′i − pi| <
1

N ′
, (6.13)

see Theorem 6.5.2. Using the triangle inequality, it follows that pi also approximates αi,

|q · αi − pi| ≤ q · |αi − α′i|+ |qα′i − pi|.

Combining (6.11), (6.12) and (6.13), we see that this is less than

2n
2+nNn · 2−(n2+n+1)N−(n+1) + (2N)−1 = N−1

which shows that the revised simultaneous approximation algorithm computes an ap-
proximation with approximation factor 2n

2+nNn+1.

The revised simultaneous approximation algorithm applies Lovász's approximation al-
gorithm with input numbers of size of at most 2n

O(1)
NO(n). Hence, the size of each num-

ber computed by the revised simultaneous approximation algorithm is upper bounded by
max{2nO(1)

, B}, where B is an upper bound on the size of the values αi, 1 ≤ i ≤ n, andN .

The number of arithmetic operations of Lovász's approximation algorithm is at most
n6 log2(B), where B is an upper bound on the size of the numbers α′i, 1 ≤ i ≤ n, and N ′.
Since αi is at most 1, the size of the numbers α′i is at most 2n

2+n+1Nn+1. This shows
that the number of arithmetic operations of Lovász's approximation algorithm applied
in the revised approximation algorithm is at most

n6 log2(2n
2+n+1Nn+1) = nO(1) log2(N).

For the computation of the numbers α′i, we need to compute the greatest integer smaller
than αi2n

2+n+1Nn+1. This can be done using binary search. Since the absolute value
of the numbers αi is at most 1, the number of elements on which we perform the binary
search is at most

O(log2(2n
2+n+1Nn+1)) = O(n2 log2(N)).

Since we need to do this only for numbers whose absolute value is at most 2n
2+n+1Nn+1,

the number of arithmetic operations to do this is at most polynomial in n and log2(N).
Hence, the number of arithmetic operations of the revised simultaneous approximation
algorithm is polynomial in n and log2(N).

Decomposition algorithm

We now show that the revised simultaneous approximation algorithm can be used to rep-
resent an arbitrary vector w ∈ Qn as a positive linear combination of at most n integer
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Algorithm 17 Decomposition Algorithm
Input:

� A parameter N ∈ N and
� a vector w ∈ Qn\{0}.

Used subroutine: Revised simultaneous approximation algorithm

Output: Integer vectors v1, . . . , vk ∈ Zn together with χ1, . . . , χk ∈ Q

1. Set w0 ← w and k ← −1.

2. For wk+1 6= 0,

a) set k ← k + 1 and w′k ← wk/‖wk‖∞.
b) Apply the revised simultaneous approximation algorithm with input of the

parameter N and the coordinates wk(1), . . . , wk(n) of the vector w′k.
We obtain vk+1(1), . . . , vk+1(n) ∈ Z and qk+1 ∈ N.

c) Set

vk+1 ← (vk+1(1), . . . , vk+1(n))T ,

χk+1 ←
‖wk‖∞
qk+1

, and

wk+1 ← wk − χk+1 · vk+1.

d) Output v1, . . . , vk+1 ∈ Zn and χ1, . . . , χk+1 ∈ Q.

vectors v1, . . . , vn ∈ Zn, whose components are relatively small. Additionally, this rep-
resentation has the property that the coe�cients of this representation decrease very fast.

The idea of this algorithm is easy. By scaling a vector w with its largest coe�cient
‖w‖∞, we achieve a vector whose coe�cients have absolute value at most 1. Hence, the
revised simultaneous approximation algorithm can be used to compute a simultaneous
approximation of these coe�cients in form of integers v1(1), . . . , v1(n) ∈ Z and a common
denominator q1 ∈ N.
We set v1 ∈ Zn as the vector with the coe�cients v1(i), 1 ≤ i ≤ n. Now, we want to
represent the vector w− (‖w0‖∞/q1)v1 as a positive linear combination of integer vectors
with small coe�cients. This can be done recursively in the same way as for the vector
w. The algorithm terminates if we obtain the vector 0. A detailed description of the
algorithm is given in Algorithm 17.

Theorem 6.5.4. The decomposition algorithm with input of the vector w ∈ Qn and
the parameter N ∈ N, N ≥ 2, computes vectors v1, . . . , vk ∈ Zn, k ≤ n, and numbers
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χ1, . . . , χk > 0 such that the following holds:

� The vector w is a linear combination of the vectors v1, . . . vk with the coe�cients
χi, i.e., we have w =

∑k
i=1 χivi.

� The size of the vectors vi is at most 2n
2+nNn, i.e.,

‖vi‖∞ ≤ 2n
2+nNn for all 1 ≤ i ≤ k.

� The components of this linear representation decrease, i.e. for 2 ≤ j ≤ k,

∥∥ n∑
i=j

χivi
∥∥
∞ <

χj−1

N
.

Especially, we have

χj <
1

N‖vj‖∞
χj−1.

The number of arithmetic operations of the decomposition algorithm is polynomial in n
and log2(N), i.e., (n · log2(N))O(1).

Proof. To show that the algorithm terminates after at most n steps of iteration, we show
that in each iteration step the number of non-zero coordinates decreases: For all i ≥ 1,
the number of non-zero components of the vector wi is strictly smaller than the number
of non-zero components of the vector wi−1.

� First, we show that every component wi−1(j) which is zero, remains zero, i.e.,
wi(j) = 0. This follows since the corresponding approximation vi(j) computed by
the revised simultaneous approximation algorithm is 0. Hence,

wi(j) = wi−1(j)− χi · vi(j) = 0.

This shows that the number of non-zero coordinates of the vector wi is not greater
than the number of non-zero coordinates of the vector wi−1.

� Now, we show that the coordinates of wi−1 with maximal value become zero. Let
1 ≤ j ≤ n be an index with |wi−1(j)| = ‖wi−1‖∞. Then, we have

w′i−1(j) = sign(wi−1(j)) ∈ Z.

Since the number vi(j) computed by the revised simultaneous approximation algo-
rithm is the closest integer to qi · w′i−1(j), the corresponding approximation vi(j)
is sign(wi−1(j)) · qi. This means that the j-th coe�cient of the vector wi is

wi(j) = wi−1(j)− ‖wi−1(j)‖∞
qi

pi(j)

= wi−1(j)− |wi−1(j)|
qi

· sign(wi−1(j)) · qi = 0.
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6.5. Replacement procedure

Hence, the number of non-zero components of wi is strictly smaller than the number of
non-zero components of wi−1 and there exists an index k ≤ n such that wk+1 = 0.

It remains to show that for all 1 ≤ i ≤ k the vectors vi together with the scalars
χi satisfy the three claimed properties. Obviously, w =

∑k
i=1 χivi and χi > 0 for all

1 ≤ i ≤ k.

Now, we show that the vectors vi, 1 ≤ i ≤ k, are of small size. To be precise, we will
show that for all 1 ≤ j ≤ n, we have |vi(j)| ≤ qi. Since the number qi computed by the
revised simultaneous approximation algorithm satis�es qi ≤ 2n

2+nNn and vi(j) ∈ N, it
follows that size(vi) ≤ 2n

2+nNn.
Since the numbers vi(j) computed by the revised simultaneous approximation algorithm
satisfy |qi − w′i−1(j) − vi(j)| ≤ 1/N < 1, they are uniquely determined as the integers
which are closest to qi · w′i−1(j).

� If |w′i−1(j)| = 1, it follows from vi(j) = w′i−1(j) · qi that |vi(j)| = |qi|.

� If |w′i−1(j)| < 1, then |qiw′i−1(j)| < qi, where qi ∈ N. Hence, pi(j) as the integer
closest to qi · w′i−1(j) is at most qi.

For all 1 ≤ j ≤ k, the revised simultaneous approximation algorithm with input of the
vector w′j−1 ∈ Qn and the parameter N ∈ N computes an integer qj ∈ N and an integer
vector vj ∈ Zn such that

‖qj · w′j−1 − vj‖∞ <
1

N
,

see Lemma 6.5.3. Since w′j−1 is de�ned by wj−1/‖wj−1‖∞ and χj = ‖wj−1‖∞/qj , it
follows that ∥∥ 1

χj
wj−1 − vj

∥∥
∞ <

1

N
.

It is easy to see that wj−1 = w −
∑j−1

i=1 χjvj =
∑k

i=j χivi, which yields

1

N
>
∥∥ 1

χj
wj−1 − vj

∥∥
∞ =

∥∥ 1

χj

k∑
i=j

χivi − vj
∥∥
∞ =

∥∥ k∑
i=j+1

χi
χj
vi
∥∥
∞

or equivalently

∥∥ k∑
i=j+1

χivi
∥∥
∞ <

χj
N
. (6.14)

By de�nition of the coe�cient χj , we have for 1 ≤ j ≤ k

χj+1 =
‖wj‖∞
qj+1

=
‖
∑k

i=j+1 χivi‖∞
qj+1

.
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6. A deterministic algorithm for the lattice membership problem

Hence, it follows from (6.14) that

χj+1

χj
=

1

χj
· ‖wj‖∞
qj+1

=
1

χj
·
‖
∑k

i=j+1 χivi‖∞
qj+1

<
1

χj
· χj
N · qj+1

=
1

N · qj+1
.

Since the coe�cients of the vector vj are at most qj+1, we obtain

χj+1

χj
≤ 1

N‖vj+1‖∞
.

Obviously, if we use Dirichlet's theorem, we can argue in the same way and we obtain
that for each vector w ∈ Qn, there exists a linear combination of integer vectors with
the same properties as in Theorem 6.5.4 except that the size of the integer vectors is at
most Nn.

Now, we show that any integer vector whose sum of its coe�cients is not too large,
is contained in the hyperplane orthogonal to the vector w if and only if it is contained
in the hyperplanes orthogonal to the integer vectors vi, 1 ≤ i ≤ k, computed by the
decomposition algorithm.

Lemma 6.5.5. Let w ∈ Qn\{0} and N ∈ N, N ≥ 2. Let v1, . . . , vk ∈ Zn, k ≤ n,
and χ1, . . . , χk > 0 be computed by the decomposition algorithm, see Algorithm 17, with
input w and N . Thus, they satisfy w =

∑k
i=1 χivi and for all 2 ≤ j ≤ k we have

‖
∑k

i=j χivi‖∞ < χj−1/N .
Then, the following holds: For b ∈ Zn with ‖b‖1 ≤ N it holds that b ∈ H0,w if and only
if b ∈

⋂k
i=1H0,vi .

Proof. Obviously, every vector b ∈ Rn which satis�es 〈b, vi〉 = 0 for all 1 ≤ i ≤ k is
contained in the hyperplane H0,w, since 〈b, w〉 =

∑k
i=1 χi〈b, vi〉.

Now, we assume that b ∈ Zn ∩ B̄(1)
n (0, N) is contained in the hyperplane H0,w. Let

1 ≤ j ≤ k be the smallest index such that b 6∈ H0,vj , i.e., 0 = 〈w, b〉 = 〈
∑n

i=j χivi, b〉.
Obviously, we have

〈
k∑
i=j

χjvj , b〉 = χj〈vj , b〉+
k∑

i=j+1

χivi, b〉 = χj

〈vj , b〉+
1

χj
〈

k∑
i=j+1

χivi, b〉

 .

Hence, it follows from Hölder's inequality that∣∣∣∣∣∣〈vj , b〉 − 1

χj
〈
k∑
i=j

χivi, b〉

∣∣∣∣∣∣ =
1

χj

∣∣∣∣∣∣〈
n∑

i=j+1

χivi, b〉

∣∣∣∣∣∣ ≤ 1

χj
‖

n∑
i=j+1

χivi‖∞ · ‖b‖1.
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6.5. Replacement procedure

By assumption, we have ‖
∑n

i=j+1 χivi‖∞ < χj/N and ‖b‖1 ≤ N , see Theorem 6.5.4.
Thus, we obtain that ∣∣∣∣∣∣〈 1

χj

k∑
i=j

χivi, b
〉
− 〈vj , b〉

∣∣∣∣∣∣ < 1. (6.15)

Since b, vj ∈ Zn, it follows from 〈b, vj〉 > 0 that 〈b, vj〉 ≥ 1. Combining this observation
with (6.15), we obtain that (1/χj)〈

∑k
i=j vi, b〉 > 0 or equivalently that 〈

∑k
i=j χivi, b〉 > 0,

which yields a contradiction.

Replacement procedure

We now present the replacement procedure that replaces a hyperplane Hk,d by hyper-
planes Hk̄i,d̄i

, i ∈ J , with small size. Additionally, the replacement procedure gets an
a�ne subspace H as input. The goal is to secure that any vector from this subspace
which is contained in the hyperplane Hk,d is also contained in the hyperplanes Hk̄i,d̄i

,
i ∈ J . Obviously, we cannot guarantee this for all vectors in the a�ne subspace H but
for all integer vectors whose sum of coe�cients is not too large, that means for all vectors
contained in an `1-ball with some speci�c radius.

The idea of the replacement procedure is simple. The algorithm gets an a�ne subspace
H, an additional hyperplane Hk,d and a parameter N ∈ N as input. The hyperplane is
given by a vector d ∈ Qn and a number k ∈ Q. The algorithm applies the decomposition
algorithm to the (n+1)-dimensional vector (dT , k)T ∈ Qn+1 and obtains a representation
of this vector as a linear combination of integer vectors with small size. These vectors
de�ne a set of a�ne hyperplanes. Using the result from the last section, we can show that
all integer vectors with small coe�cients which are contained in the original hyperplane
are also contained in all new hyperplanes. A concrete description of the algorithm is
presented in Algorithm 18.
In the following proposition, we state the main properties of the replacement procedure.

Proposition 6.5.6. (Proposition 6.1.6 restated.)
Let H ⊆ Rn be an a�ne subspace given by a�ne hyperplanes Hki,di , m+ 1 ≤ i ≤ n, and
let Hk,d be an a�ne hyperplane such that d, dm+1, . . . , dn are linearly independent.
Given as input a parameter N ∈ N, N ≥ 2, the a�ne subspace H and the addi-
tional a�ne hyperplane Hk,d, the replacement procedure, Algorithm 18, computes a set
of a�nely independent hyperplanes Hk̄i,d̄i

, i ∈ J 6= ∅ such that the following holds:

� Every integer vector z ∈ B̄
(1)
n (0, N − 1) ∩ H satis�es 〈d, z〉 = k if and only if it

satis�es 〈d̄i, z〉 = k̄i for all i ∈ J .

� The a�ne subspace H and the a�ne hyperplanes Hk̄i,d̄i
, i ∈ J are a�nely inde-

pendent.

The size of the vectors d̄i ∈ Zn and the numbers k̄i ∈ Z is at most 2(n+2)2Nn. The number
of arithmetic operations of the replacement procedure is at most (n · log2(N))O(1).
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6. A deterministic algorithm for the lattice membership problem

Algorithm 18 Replacement procedure
Input:

� A parameter N ∈ N,
� an a�ne subspace H :=

⋂n
i=m+1Hki,di , and

� an additional hyperplane Hk,d, such that d, dm+1, . . . , dn are linearly indepen-
dent.

Used subroutine: Decomposition algorithm.

Output: A collection of hyperplanes Hk̄i,d̄i
, i ∈ J .

1. Apply the decomposition algorithm to the vector w = (dT , k)T ∈ Rn+1 and the
parameter N .
We obtain vectors (d̄Ti , k̄i)

T ∈ Zn+1 where 1 ≤ i ≤ j(m) ≤ n + 1, together with
parameters χi, 1 ≤ i ≤ j(m).

2. Let J ⊆ {1, . . . , j(m)} be the maximal set of indices such that the vectors di,
m+ 1 ≤ i ≤ n and d̄i, i ∈ J , are linearly independent.

3. Output the a�ne hyperplanes Hk̄i,d̄i
with i ∈ J .

Proof. First, we show that J 6= ∅. The decomposition algorithm with input of the vector
(dT , k)T computes a set of vectors (d̄Ti , k̄i)

T , 1 ≤ i ≤ j(m). These vectors provide a
linear combination of (dT , k)T ,

(
d
k

)
=

j(m)∑
i=1

χi

(
d̄i
k̄i

)

Thus, the vector d is a linear combination of the vectors d̄i. By assumption, the vec-
tors dm+1, . . . , dn, d are linearly independent. Hence, there exists at least one vector d̄i,
1 ≤ i ≤ j(m), such that the vectors dm+1, . . . , dn, d̄i are linearly independent. This
guarantees that the subspace H and the a�ne hyperplanes Hk̄i,d̄i

, i ∈ J are a�nely
independent.

The upper bound on the size follows directly from Theorem 6.5.4, since each vector
computed by the decomposition algorithm is an integer vector whose coe�cients are at
most 2(n+1)(n+2)Nn, ‖(d̄Ti , k̄i)T ‖∞ ≤ 2(n+1)(n+2)Nn.

Since every integer vector in z ∈ B̄
(1)
n (0, N − 1) satis�es ‖z‖1 ≤ N − 1, the vector

z′ = (zT ,−1)T ∈ Zn+1 satis�es ‖z′‖1 = ‖z‖1 + 1 ≤ N . Hence, it follows from Lemma
6.5.5 that z′ is contained in the hyperplane orthogonal to the vector (dT , k)T if and only
if it is contained in the hyperplanes orthogonal to the vectors (d̄Ti , k̄i)

T , 1 ≤ i ≤ j(m).
This means that the vector z is contained in the hyperplane Hk,d if and only if it is
contained in the intersection of the hyperplanes Hk̄i,d̄i

, 1 ≤ i ≤ j(m), and it shows that

182
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z ∈ B̄(1)
n (0, N−1) is contained inH∩Hk,d if and only if it is contained inH∩

⋂j(m)
i=1 Hk̄i,d̄i

.
The set I is maximal with the property that the vectors dm+1, . . . , dn and d̄i, i ∈ I, are
linearly independent. Hence, a vector z ∈ B̄

(1)
n (0, N − 1) is contained in the a�ne

subspace H∩Hk,d if and only if it is contained in the a�ne subspace H∩
⋂
i∈I Hk̄i,d̄i

.

This result completes the description of the replacement procedure. Hence, our as-
sumptions made in Section 6.1.3 are satis�ed and our lattice membership algorithms
presented before are polynomially space bounded.

6.6. Discussion of the results

Overall, we have seen that all assumptions made in the lattice membership algorithm are
satis�ed. The only thing that remains to be proven is the existence of rounding methods
for polytopes and `p-bodies with 1 < p <∞. This will be done in the next chapter.
Except for this aspect we have shown that there exists a polynomially space bounded

algorithm that solves the lattice membership problem for all `p-balls and polytopes ex-
actly. Furthermore, our algorithmic framework can easily be adapted to all classes of
full-dimensional bounded convex sets which are closed under bijective a�ne transforma-
tion and intersection with a�ne hyperplanes if we are able to compute an approximate
Löwner-John ellipsoid for each convex set from this class.

The number of arithmetic operations of our lattice membership algorithm is mainly
in�uenced by the factor n(2+o(1))n. A substantial improvement of this factor does not
seem to be possible. The factor n2n is caused by the fact that in each recursion step, the
�atness algorithm computes at most c · n2 a�ne hyperplanes where we need to search
recursively. Here c ≥ 1 is some �xed constant. The factor c · n2 is comprised of the ap-
proximation factor of the computed Löwner-John ellipsoid, which is c ·n, and the bound
n given by the �atness theorem. As we have seen, both results are optimal up to some
constant factor.

Dadush, Peikert and Vempala presented an algorithm for the lattice membership prob-
lem for well-bounded convex bodies where the number of arithmetic operations is mainly
in�uenced by the factor n(4/3)n, where n is the dimension of the convex body, see [DPV11]
and [DV12].
The running time of their algorithm is better than ours since they do not approximate

the convex body by an ellipsoid as we do. Instead of the Euclidean version of the �atness
theorem, they use a general version of the �atness theorem which holds for general convex
bodies.

Theorem 6.6.1. Let K ⊆ Rn be a convex body and L ⊆ Rn. If K does not contain a
lattice vector, there exists at most O(n4/3 log(n)c) a�ne hyperplanes Hk,d such that K
contains a lattice vector from L if and only if there exist one of these hyperplanes such
that K ∩Hk,d contains a lattice vector from L. Here, c > 0 is some �xed constant and
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6. A deterministic algorithm for the lattice membership problem

the vector d is a shortest vector in L∗ with respect to the norm de�ned by the convex body
(K −K)∗.

The convex body K −K is the symmetrization of the convex body K, i.e., K −K =
{x − y|x, y ∈ K}. The dual of a convex body C ⊆ Rn, denoted by C∗ is the set
C∗ = {x ∈ Rn|〈x, y〉 ≤ 1 for all y ∈ C}. For a proof of Theorem 6.6.1 see [BLPS99],
[Rud00], and [DPV11].

To compute a vector d ∈ L∗ as characterized in Theorem 6.6.1, Dadush, Peikert and
Vempala use their single exponential time Svp-algorithm for general norms, which uses
single exponential space. Thus they obtain an algorithm for the lattice membership
problem which uses single exponential space.

That means, if there exists a polynomially space bounded algorithm that solves the
shortest vector problem for some class of norms, one can improve the number of arith-
metic operations of the lattice membership algorithm for the class of convex bodies gen-
erated by this norm. Of course, the number of arithmetic operations of this algorithm
should be at most n(4/3+o(1))n log2(r)O(1), where n is the rank of the lattice and r is an
upper bound on its size.

A candidate for such an algorithm is Kannan's algorithm for the shortest vector prob-
lem, which we used in our �atness algorithm, see Theorem 4.1.14. As already observed
by Kannan, see Remark 2.17 in [Kan87b], this algorithm can easily be generalized to the
`1-norm and the `∞-norm. Then, the number of arithmetic operations is O(3nnn log2(r)).
If one can generalize this algorithm to the class of all polyhedral norms, one can compute
a �atness direction d ∈ L∗ in polynomial space as needed in Theorem 6.6.1. This would
lead to a polynomially space bounded algorithm for the lattice membership problem for
all polytopes. Particularly, this would yield a polynomially space bounded algorithm
for the closest vector problem for the `∞-norm and the `1-norm where the number of
arithmetic operations is mainly in�uenced by the factor n(4/3)n, where n is the dimension
of the polytope.
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Löwner-John ellipsoids

The ellipsoid method is an iterative geometric algorithm with polynomial running time
that was originally developed by Shor, Yudin and Nemirovskii in the 1970s for the mini-
mization of convex functions, see [Sho77], [YN76a], [YN76b]. In 1979, Khachiyan adapted
this method and developed a polynomial time algorithm for linear programming. This
was a breakthrough result since linear programming is in NP∩ coNP and at that time it
was one of the candidates to prove that P 6= NP ∩ coNP.

Today, the main impact of the ellipsoid method is not in practice for example for
solving linear programming in polynomial time but for its theoretical applications. The
ellipsoid method can be used to show the existence of polynomial time algorithms for
many geometric and combinatorial optimization problems.

Geometrically, the ellipsoid method can be characterized as a central cut algorithm:
In every iteration step we are given an ellipsoid and we have to decide whether one has
already found a solution. If this is not the case, we intersect the ellipsoid with an a�ne
hyperplane through the center of the ellipsoid. Already in 1976, Yudin and Nemirovskii
remarked that the ellipsoid method does not make full use of the geometric idea behind
it. They observed that the number of arithmetic operations of the method remains poly-
nomial if we do not cut the ellipsoid through its center but take more of the original
ellipsoid, that means we take a shallow cut. These two types of cuts are illustrated in
Figure 7.1.

This modi�cation of the original ellipsoid method, called shallow cut ellipsoid method,
allows a number of additional applications. For example, the shallow cut ellipsoid method
can be used to compute an approximate Löwner-John ellipsoid of a full-dimensional
bounded convex set. To recall, for a parameter 0 < γ ≤ 1, a 1/γ-approximate Löwner-
John ellipsoid E of a full-dimensional bounded convex set C is an ellipsoid which is
contained in the convex set C, whereas the convex set C itself is contained in the ellipsoid
(1/γ) ? E, i.e., E ⊆ C ⊆ (1/γ) ? E, see De�nition 2.2.12 in Chapter 2. John proved that
for every full-dimensional bounded convex set there exists an approximate Löwner-John
ellipsoid with approximation factor 1/n, see Theorem 2.2.13 in Chapter 2.

The �rst algorithm in this area was an algorithm that computes an approximate
Löwner-John ellipsoid for polytopes. It was �rst described by Go�n and extends a
method from Lenstra, see [Gof84], [Len83]. More precisely, they present a polyno-
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E E

Figure 7.1.: Two types of cuts of an ellipsoid. We consider the ellipsoid E centered
at the origin with the main axes (2, 0)T ∈ R2 and (0, 1)T ∈ R2. On the
left side, we use the vector (−2, 1)T to cut the ellipsoid through its center.
The shadowed region is the intersection E ∩ {x ∈ R2|〈x, (−2, 1)T 〉 ≤ 0}, a
central cut. On the right side, we use the same vector but cut the ellipsoid
through the point (−0.5, 0)T . Here, the shadowed area is the intersection
E ∩ {x ∈ R2|〈x, (−2, 1)T 〉 ≤ 1}.

mial time algorithm that computes a 2n-approximate Löwner-John ellipsoid for full-
dimensional polytopes, where n is the dimension of the corresponding vector space. This
method is also described by Schrijver in [Sch86]. We can use this algorithm to complete
the description of the lattice membership algorithm for polytopes presented in Chapter 6
and the description of a deterministic polynomially space bounded algorithm that solves
the closest vector problem for all polyhedral norms, in particular for the `1-norm and the
`∞-norm.
Based on the algorithm of Go�n, Grötschel, Lovász, and Schrijver developed a general

algorithmic framework which computes in polynomial time a
√
n(n + 1)-approximate

Löwner-John ellipsoid. This framework works for all full-dimensional well-bounded con-
vex bodies given by a separation oracle, see [Lov86], [GLS93]. This means, they assume
that the algorithm has access to an oracle that decides for a given vector whether it is
contained in the convex set or not. If the vector is not contained in the convex set, it
provides an a�ne hyperplane that strictly separates this vector from the convex body.

To use this general framework for concrete convex bodies, one needs to show that
these convex bodies are well-bounded, i.e., one needs to compute a circumscribed and an
inscribed Euclidean ball for them. Additionally, one need to show that there exists an
e�cient algorithm that realizes a separation oracle for the given convex bodies.
This work was done by Heinz for convex bodies given by quasiconvex polynomials. He

described an algorithm that computes O(n3/2)-approximate Löwner-John ellipsoids for
convex bodies of the form Y := {x ∈ Rn|Fi(x) < 0 for 0 ≤ i ≤ s}, where the functions
Fi ∈ Z[X] are quasiconvex polynomials, see [Hei05]. Hildebrand and Köppe improved his
algorithm and presented an algorithm that computes for these convex bodies an O(n)-
approximate Löwner-John ellipsoid. To improve the approximation factor, they accept
that the number of arithmetic operations becomes single exponential in the dimension,
see [HK10]. For the improvement, they used an idea of Kochol, who described how an
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approximate Löwner-John ellipsoid can be computed using the approximation of the Eu-
clidean unit sphere by polytopes, see [Koc94].

In this chapter, we present a general framework that computes a 2/γ-approximate
Löwner-John ellipsoid for bounded convex sets which are given by a separation oracle
together with a circumscribed Euclidean ball and a lower bound on its volume. The
parameter γ needs to satisfy 0 < γ < 1/n. The number of arithmetic operations of this
algorithm is polynomial in 1/γ, but single exponential in the dimension n. However, the
procedure needs only polynomial space.

Then, we adapt this general framework to the class of `p-bodies, which we de�ned in
Section 6.4.3 in Chapter 6. The main part here is to show that `p-bodies are bounded
convex sets for which there exists an e�cient realization of a separation oracle. Addi-
tionally, we need to determine a circumscribed Euclidean ball and a lower bound on the
volume. Overall, we achieve an algorithm which computes a 2/γ-approximate Löwner-
John ellipsoid for all `p-bodies with 1 < p < ∞. This completes the description of the
lattice membership algorithm for `p-bodies presented in Chapter 6 and the description
of a deterministic polynomially space bounded algorithm that solves the closest vector
problem for all `p-norms with 1 < p <∞.

This chapter is organized as follows. We start with an informal description of the
geometric idea behind the ellipsoid method by considering a special case where we are
given a bounded convex set by a separation oracle. Additionally, we are given a Euclidean
ball which contains the convex set and a lower bound on the volume of the set if it is not
empty. The goal is to decide whether the convex set is empty or not.

In Section 7.1, we describe the shallow cut ellipsoid method as a rounding method
to compute a 2/γ-approximate Löwner-John ellipsoid for some parameter 0 < γ < 1/n.
This method works for all full-dimensional bounded convex sets given by a separation
oracle under the assumption that we know a circumscribed Euclidean ball for the convex
set and a lower bound on its volume. The number of arithmetic operations of the shallow
cut ellipsoid method is single exponential in the dimension, but polynomial in 1/γ.

In the second part of this chapter, we adapt this method to concrete classes of convex
sets. In Section 7.2, we consider the class of `p-bodies. For this class, we show how for
a given `p-body we can compute a circumscribed Euclidean ball, a lower bound on its
volume and how we can realize a separation oracle. Unfortunately, we can only guarantee
a lower bound on the volume of an `p-body if the `p-body contains an integer vector.
But this does not matter in our setting.

For the lattice membership algorithm presented in Chapter 6, we also need a rounding
method for polytopes. Thus, we also describe the variant of the rounding method which
computes for a given full-dimensional polytope 1/γ-approximate Löwner-John ellipsoid
for some parameter 0 < γ < 1/n in polynomial time. Here, our description is based on
[Sch86].
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The ellipsoid method: an overview

Before we describe the algorithm that computes an approximate Löwner-John ellipsoid,
we illustrate the main geometric idea behind the ellipsoid method. To do this, we consider
a bounded convex set given by a separation oracle as it is described in De�nition 2.1.18
in Chapter 2. The goal is to decide if this convex set is empty or not. If it is non-empty,
we want to �nd a vector in it.
In the following, we will assume that the bounded convex set C ⊆ Rn is given by a

separation oracle together with a parameter vin > 0. The parameter vin provides a lower
bound on the volume of C if C is non-empty: If C is non-empty, then voln(C) ≥ vin.
Additionally, we assume that we are given an ellipsoid E0 with center c0 which contains
the convex set, C ⊆ E0 if C is non-empty. We can distinguish between two cases:

� Either, the center c0 is contained in the convex body C, c0 ∈ C. Then c0 is a witness
for the fact that C is non-empty. Whether c0 is contained in C can be decided using
the separation oracle.

� Or, the center c0 is not contained in the convex body C. In this case, the idea is to
construct a new smaller ellipsoid E1 which satis�es the following two properties:

1. the ellipsoid contains the convex body, C ⊆ E1, and

2. the volume of the ellipsoid is strictly smaller than the volume of the origi-
nal ellipsoid E0 by a factor single exponential in the dimension, that means
voln(E1) < e−1/(c·n) voln(E0), where c > 0 is a constant.

Such an ellipsoid can be computed in the following way: Since the center c0 of
the original ellipsoid is not contained in the convex set C, there exists an a�ne
hyperplane that separates c0 from C. Such a hyperplane is given by the separation
oracle queried with input of the vector c0. If this a�ne hyperplane is given by a
vector a ∈ Rn we have 〈a, x〉 ≤ 〈a, c0〉 for all x ∈ C. That means, the convex set is
contained in the halfspace {

x ∈ Rn|〈a, x〉 ≤ 〈a, c0〉
}
.

Together with the assumption that C ⊆ E0, we get that the convex body is con-
tained in the intersection of the ellipsoid E0 with this halfspace,

C ⊆
{
x ∈ Rn|〈a, x〉 ≤ 〈a, c0〉

}
∩ E0.

Now, we can construct a new ellipsoid E1 as the smallest ellipsoid that contains
this intersection.

Then, the algorithm continues iteratively. Obviously, it outputs the correct answer if it
terminates. To guarantee that the algorithm terminates we observe that in each iteration
step the volume of the constructed ellipsoid decreases by a single exponential factor
e−1/(c·n) for some constant c > 0. At the same time, we guarantee that each constructed
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ellipsoid contains the convex set. This shows that for C 6= ∅, the ellipsoid method �nds
an element x ∈ C after at most

c · n · ln
(

voln(E0)

voln(C)

)
steps of iteration. Together with the fact that we know a lower bound of the volume of C
if C is not empty, it is easy to see that we can ensure that the ellipsoid method terminates
after O(n2) · (log2(voln(E0))− log2(vin)) steps of iteration.
A more detailed description of the ellipsoid method is given for example in [Sch86], [PS98]
or [GLS93].

7.1. The shallow cut ellipsoid method as a method to

compute approximate Löwner-John ellipsoids

The basic ellipsoid method always cuts the ellipsoid with an a�ne hyperplane through
the center of the ellipsoid. This divides the ellipsoid into two parts with equal volume.
Instead, we consider the intersection of the ellipsoid with a halfspace which contains more
than half of the ellipsoid, a shallow cut. We present the shallow cut ellipsoid method as a
rounding algorithm in a way such that it computes an approximate Löwner-John ellipsoid.

From now on, we will assume that the convex set C ⊆ Rn is full-dimensional and
bounded. Additionally, we assume that we have access to a separation oracle SEPC for
the convex set C that on input of a vector x decides whether the vector is contained
in C or not. If the vector x is not contained in C, it outputs a vector a ∈ Rn. This
vector de�nes an a�ne hyperplane that separates x from C, that means we have 〈a, x〉 ≥
〈a, y〉 for all y ∈ C. Additionally, we assume that the convex set is given together with
some parameters Rout, rin ∈ R>0 and a vector c0 ∈ Rn such that

C ⊆ B̄(2)
n (cout, Rout) and voln(C) ≥ rnin · voln(B(2)

n (0, 1)).

The parameter rin provides a lower bound on the volume of the convex body. Later, we
will see that it makes sense to parameterize the lower bound in this way. In the rest of
this section, whenever we speak of a convex set, we implicitly assume that it is given in
this form.

To illustrate the main idea of the rounding method, we consider the situation that we
are given a full-dimensional bounded convex set C together with an ellipsoid E such that
C ⊆ E, see Figure 7.2. We have found a 1/γ-approximate Löwner-John ellipsoid of C for
some parameter 0 < γ < 1 if the scaled ellipsoid γ ?E is contained in C, γ ?E ⊆ C. Thus,
the key problem is to check if this is the case. For this, we consider an a�ne bijective
transformation τ , which maps the Euclidean unit ball B̄(2)

n (0, 1) to the ellipsoid E. Then,

γ ? E ⊆ C if and only if B̄(2)
n (0, γ) ⊆ τ−1(C). Suppose we are given a �nite set N of

vectors such that the convex hull of these vectors contains a Euclidean ball with radius
γ, B̄(2)

n (0, γ) ⊆ conv(N ). Then we can distinguish between two cases:
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τ−1(C)

C

0

B̄
(2)
2 (0,γ)

B̄
(2)
2 (0,1)

E

γ?E

c

τ−1

Figure 7.2.: The main idea of the rounding method. If the convex set τ−1(C)
contains the set N = {±γ

√
2ei|i = 1, 2}, then it contains conv(N ) =

B̄
(1)
2 (0, γ

√
2). Since B̄(2)

2 (0, γ) ⊆ B̄
(1)
2 (0, γ

√
2), τ−1(C) contains B̄(2)

2 (0, γ)
and it follows that γ ? E ⊆ C.

� If all vectors in N are contained in τ−1(C), then it follows from the convexity of

τ−1(C), that also B̄(2)
n (0, γ) is contained in τ−1(C). The decision if N is contained

in τ−1(C) can be made using the separation oracle for C.

� If there exists a vector in N which is not contained in τ−1(C), we use this vector to
obtain a halfspace such that the intersection of the halfspace with the ellipsoid E
contains the convex set C. Then, we construct a new ellipsoid which contains this
intersection and has a smaller volume, and we continue iteratively.

In practice, the proceeding is a little bit di�erent, since we are not able to construct
a new ellipsoid with smaller volume if the intersection of the ellipsoid with the halfspace
is too large. On this account, we choose a parameter γ with 0 < γ < 1/n and consider

a �nite set N of vectors on the surface of B̄(2)
n (0, γ), that means on the sphere Sn−1(γ).

For these vectors, we check if they are contained in τ−1(C) or equivalently if their image
under the transformation τ is contained in the convex body C, i.e., if τ(x) ∈ C for all
x ∈ N . Then, we distinguish between two cases:

1. If the images of all these elements under the transformation τ are contained in the
convex body C,

τ(x) ∈ C for all x ∈ N ,

we can show that we have found an approximate Löwner-John ellipsoid. The ap-
proximation factor depends on the shape of the convex hull of N . If conv(N )
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contains a ball with radius ρ ≤ γ centered at the origin, we can show that we have
found a ρ-approximate Löwner-John ellipsoid of C.

2. Otherwise, there exists an element x ∈ N whose image under τ is not contained
in C, that means, τ(x) 6∈ C. In this case, the separation oracle gives us an a�ne
hyperplane that separates the vector τ(x) from the set C. Thus, we get a vector
a ∈ Rn such that

〈a, τ(x)〉 ≥ 〈a, y〉 for all y ∈ C.

Hence, the convex body C is fully contained in the intersection of the ellipsoid
E with the halfspace {x ∈ Rn|〈a, x〉 ≤ 〈a, τ(γ · x)〉}. Since the parameter γ
lies in a certain interval, we can construct a new ellipsoid E1 which contains this
intersection. The new ellipsoid E1 satis�es two important properties:

� It contains the convex body C since it contains the intersection of the halfspace
with the ellipsoid which itself contains C.

� The volume of E1 is smaller than the volume of E by a factor single exponential
in the dimension n.

We continue iteratively until we �nd an approximate Löwner-John ellipsoid.

To realize this idea, we need to show two things. Firstly, we need to show how we
can construct a set N ⊆ Sn−1(γ) such that conv(N ) contains a ball with large radius
ρ ≤ γ. We do this in Section 7.1.1. Secondly, we need to show how such an ellipsoid E1

satisfying the properties described in 2. can be constructed. This will be done in Section
7.1.2. Then, in Section 7.1.3, we will use these results to give a detailed description and
analysis of the algorithm.

7.1.1. Su�cient condition for an approximate Löwner-John ellipsoid

In this section, we consider an ellipsoid E ⊆ Rn together with an a�ne bijective trans-
formation τ : Rn → Rn which maps the Euclidean unit ball to the ellipsoid E. First of
all, we show the following: Let N be a �nite set of vectors such that conv(N ) contains
a Euclidean ball with radius α centered at the origin. If the images of all elements of
N under the transformation τ are contained in C, then C contains the shrinked ellipsoid
α ? E.

Lemma 7.1.1. Let E(D, c) ⊆ Rn be an ellipsoid given by a symmetric positive de�nite
matrix D = QTQ ∈ Rn×n and a vector c ∈ Rn. Let C ⊆ Rn be a convex set. We consider
the bijective a�ne transformation τ : Rn → Rn, x 7→ QTx + c, i.e., τ(B̄

(2)
n (0, 1)) =

E(D, c). Let N ⊆ Rn be a �nite set with B̄(2)
n (0, α) ⊆ conv(N ) for some α > 0. If

τ(x) ∈ C for all x ∈ N ,

the ellipsoid E(D, c) scaled by the factor α is contained in C,

α ? E(D, c) ⊆ C.
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Proof. Since the images of the vectors x ∈ N under the transformation τ are contained
in C, the vectors x itself are contained in the convex set τ−1(C), where τ−1 is the inverse
of the transformation τ , i.e.,

x ∈ τ−1(C) for all x ∈ N .

Since τ−1(C) is convex, it also contains the convex hull of these vectors, conv(N ) ⊆
τ−1(C). By assumption, conv(N ) contains a Euclidean ball with radius α. Thus it
follows that

α · B̄(2)
n (0, 1) ⊆ τ−1(C).

Applying the transformation τ again it follows that

α ? E(D, c) ⊆ C.

In the rest of this section we will present a concrete construction for the set N such
that the set conv(N ) contains a ball with radius (1/2− ε)γ for some ε > 0 arbitrary.
First, however we present as a motivation the construction of a set N of size 2n which
consists of vectors of length γ > 0 and where the convex hull of N contains a Euclidean
ball with radius γ/

√
n.

Corollary 7.1.2. Let E(D, c) ⊆ Rn be an ellipsoid given by a symmetric positive de�nite
matrix D = QTQ ∈ Rn×n and a vector c ∈ Rn. Let C ⊆ Rn be a convex set. We consider
the bijective a�ne transformation τ : Rn → Rn, x 7→ QTx+c. Let γ > 0 and en+i := −ei
for 1 ≤ i ≤ n. If

τ(γ · ei) = c+ γQT ei ∈ C for all 1 ≤ i ≤ 2n,

then the ellipsoid E(D, c) scaled by the factor γ/
√
n is contained in C,

γ√
n
? E(D, c) ⊆ C.

Proof. The proof follows directly, if we apply Lemma 7.1.1 with the set N = {γ · ei|1 ≤
i ≤ 2n}. The convex hull of N is an `1-ball with radius γ,

conv({γ · ei|1 ≤ i ≤ 2n}) = B̄(1)
n (0, γ).

It follows from Hölder's inequality that B̄(1)
n (0, γ) contains the Euclidean ball (1/

√
n) ·

B̄
(2)
n (0, γ) = (γ/

√
n) · B̄(2)

n (0, 1).

If we would use this result in our algorithm, we would obtain a polynomial time
algorithm that computes a

√
n/γ-approximate Löwner-John ellipsoid. It is an idea due

to Hildebrand and Köppe that the approximation factor can be improved if we consider
the convex hull of more than 2n vectors from B̄

(2)
n (0, γ), as it is illustrated in Figure 7.3.
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0

B̄
(2)
2 (0,γ)

conv(±γe1,±γe2)

Figure 7.3.: Improvement of the approximation factor. The square is the convex
hull of the main axes ofR2 scaled by the factor γ. The radius of the Euclidean
ball contained in this polytope is smaller than the radius of the ball contained
in the outer polytope, which is an octagon.

Of course, this mainly in�uences the number of arithmetic operations of our rounding
algorithm. We will obtain an algorithm where the number of arithmetic operations is
single exponential in the dimension. But in our context, this does not matter.
The question is, how can we construct the set N such that it contains a ball with large

radius compared with the length of the vectors in N ? The idea is to consider a net of
Sn−1(δ), the surface of the ball B̄(2)

n (0, δ). A δ-net of Sn−1(δ) is a set N ⊆ Sn−1(δ), which
provides a covering of the sphere by Euclidean balls with radius δ.

De�nition 7.1.3. (Net of a sphere)
Let δ1, δ2 > 0. A δ1-net of Sn−1(δ2) = {x ∈ Rn | ‖x‖2 = δ2} is a set N ⊆ Sn−1(δ2) such
that for every vector x ∈ Sn−1(δ2) there exists a vector v ∈ N with Euclidean distance of
at most δ1, i.e., ‖v − x‖2 ≤ δ1.

Kochol observed in [Koc94] that the convex hull of every 1-net of the unit sphere
Sn−1 = Sn−1(1) contains a Euclidean ball with radius 1/2.

In practice, we are often not able to construct a 1-net of the sphere Sn−1 exactly,
since we are not able to perform all computations exactly over R. This leads to the
approximation of 1-nets. By the ε-approximation of a 1-net N , we understand a set Ñ
such that for all x ∈ N there exists a vector x̃ ∈ Ñ with distance of at most ε, i.e.,
‖x − x̃‖2 ≤ ε. Using the approximation of a 1-net instead of the 1-net itself enables us
to use square roots in the construction of a 1-net. Hildebrand and Köppe generalized
Kochol's result to ε-approximation of 1-nets. The next lemma presents a modi�ed variant
of their result, see Lemma 3.2 in [HK10].

193



7. Computation of approximate Löwner-John ellipsoids

conv(Ñ )

0

B̄
(2)
2 (0,1)

1/2−ε Hz

t

tv

tH

v

Figure 7.4.: Illustration of the proof of Lemma 7.1.4. The a�ne hyperplane H
separates the vector z from conv(Ñ ). The intersection of H with the unit-
ball de�nes a cap with top t.

Lemma 7.1.4. Let N be a 1-net of Sn−1 and let 0 ≤ ε < 1/2. Suppose that Ñ is an
ε-approximation of N , i.e., for all v ∈ N there exists ṽ ∈ Ñ such that ‖v − ṽ‖2 ≤ ε.
Then, we have

B̄(2)
n

(
0,

1

2
− ε
)
⊆ conv(Ñ ).

Proof. The proof of this lemma is illustrated in Figure 7.4. We assume that there exists
a vector z ∈ B̄(2)

n (0, 1/2−ε) which is not contained in the convex hull of Ñ , z 6∈ conv(Ñ ).
Since conv(Ñ ) is convex, there exists an a�ne hyperplane that strictly separates z from
conv(Ñ ), i.e., there exists a vector pz ∈ Rn such that

〈pz, x〉 < 〈pz, z〉 for all x ∈ conv(Ñ ).

Thus, conv(Ñ ) is completely contained in the halfspace {x ∈ Rn|〈pz, x〉 < 〈pz, z〉}.
Now, we consider the cap B̄(2)

n (0, 1) ∩ {x ∈ Rn|〈pz, x〉 ≥ 〈pz, z〉}, which is disjoint from
conv(Ñ ). Let t ∈ Sn−1 be the top of this cap, i.e., t is perpendicular to the a�ne
hyperplane

H := {x ∈ Rn|〈pz, x〉 = 〈pz, z〉}.

Since N is a 1-net of Sn−1, there exists a vector v ∈ N with ‖v − t‖2 ≤ 1. We will show
that the distance between v and the a�ne hyperplane H is at least ε, which yields a
contradiction to the fact that Ñ approximates N .
Let tv be the orthogonal projection of v on span(t). Since the distance between t and v
is at most 1, we have

‖t− tv‖22 + ‖tv − v‖22 ≤ 1. (7.1)
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Since v ∈ Sn−1, we have

‖tv‖22 + ‖tv − v‖22 = 1. (7.2)

Combining (7.1) and (7.2), we obtain

‖t− tv‖22 ≤ 1− ‖tv − v‖22 = ‖tv‖22.

Since ‖tv‖2 = 1−‖t− tv‖2, we obtain ‖t− tv‖2 = 1−‖tv‖2 < 1−‖t− tv‖2 or equivalently

‖t− tv‖2 ≤
1

2
.

Let tH be the orthogonal projection of t onto H. Since t is perpendicular to H, the vector
tH is also perpendicular to H and it is the point on the a�ne hyperplane H with minimal
distance to the origin. Since z ∈ H and ‖z‖2 ≤ 1/2− ε, this shows that ‖tH‖2 ≤ 1/2− ε.
The distance between v and the hyperplane H is ‖tv − tH‖2, which is at least

‖tv − tH‖2 = 1− ‖t− tv‖2 − ‖tH‖2 ≥ 1− 1

2
− 1

2
+ ε = ε.

Combining this with the fact that 〈pz, v〉 > 〈pz, z〉 and that conv(Ñ ) ⊆ {x ∈ Rn|〈pz, x〉 <
〈pz, z〉}, this shows that the distance from v to conv(Ñ ) is greater than ε. This is a
contradiction to the fact that Ñ approximates N .

Using this result, we can re�ne the result of Lemma 7.1.1. Given an ε-approximation
Ñ of a 1-net of Sn−1 the scaled ellipsoid (1/2− ε)γ ? E(D, c) is contained in the convex
set C if the convex hull of γ ? Ñ under the transformation τ is contained in the convex
set C.

Corollary 7.1.5. Let E(D, c) ⊆ Rn be an ellipsoid given by a symmetric positive de�nite
matrix D = QTQ ∈ Rn×n and a vector c ∈ Rn. Let C ⊆ Rn be a convex set. We
consider the bijective a�ne transformation τ : Rn → Rn, x 7→ QTx+ c. Let γ > 0 and
0 ≤ ε < 1/2. Let Ñ ⊆ Qn be an ε-approximation of a 1-net of Sn−1 with Ñ ⊆ B̄(2)

n (0, 1).
If

τ(γ · x) ∈ C for all x ∈ Ñ ,

the ellipsoid E(D, c) scaled by the factor (1/2− ε)γ is contained in C,(
1

2
− ε
)
γ ? E(D, c) ⊆ C.

Proof. The set {γ · x|x ∈ Ñ} is a �nite set in the ball B̄(2)
n (0, γ). As we have seen in

Lemma 7.1.4 the convex hull of Ñ contains the Euclidean ball B̄(2)
n (0, 1/2 − ε). Thus,

B̄
(2)
n (0, (1/2−ε)γ) ⊆ conv(γ·Ñ) and the statement follows directly from Lemma 7.1.1.
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If we want to use this result to compute an approximate Löwner-John ellipsoid, we
need an explicit construction of a 1-net of the sphere Sn−1. Unfortunately, this is not
possible with a set whose cardinality is polynomial in the dimension. The size of a 1-net
of the unit sphere is at least single exponential in the dimension. In the next lemma,
we present an explicit construction of a 1-net of the sphere Sn−1. This construction is a
slight modi�cation of a construction of Kochol presented in [Koc94]. The size of this net
is at most 24n.

Lemma 7.1.6. For n ∈ N, the set

Nn :=

{
x

‖x‖2

∣∣∣∣ x ∈ Zn ∩ B̄(2)
n

(
0, 2
√
n
)
\{0}

}
is a 1-net on Sn−1 with |Nn| ≤ 24n.

Of course, we are not able to compute this 1-net exactly. But, since we have seen in
Lemma 7.1.4 that it is also possible to work with the approximation of a 1-net, we will
neglect this aspect in the following and we will assume that we are able to compute the
1-net Nn according to this construction exactly and e�ciently1. The set of all integer
vectors in the Euclidean ball B̄(2)

n (0, 2
√
n) can be computed using a graph-traversal ap-

proach like in [MV10a] (see also Proposition 4.2 in [DPV10]). The number of arithmetic
operations to do this is 2O(n).

Proof. First we show that Nn is a 1-net of the sphere Sn−1, that means that for every
vector x ∈ Sn−1 there exists a vector v ∈ Nn whose distance to x is at most 1. For a
vector x ∈ Sn−1, we consider the vector u ∈ Zn whose coordinates ui, 1 ≤ i ≤ n, are
integers which satisfy

2
√
n|xi| − 1 < |ui| ≤ 2

√
n|xi| and sign(ui) = sign(xi). (7.3)

For every xi ∈ R such an integer exists since the interval (2
√
n|xi| − 1, 2

√
n|xi|] is a half

open interval of length 1, which contains exactly one positive integer. The vector u ∈ Zn
constructed in this way is unequal to 0. If u = 0, we would have 2

√
n|xi| < 1 for all

1 ≤ i ≤ n, which yields the contradiction that ‖x‖22 =
∑n

i=1 |xi|2 <
∑n

i=1 1/(4n) = 1/4,
i.e., ‖x‖2 < 1/2. Hence, we have u 6= 0.
Since u is de�ned such that we have |ui| ≤ 2

√
n|xi| for all 1 ≤ i ≤ n, see (7.3), we have

‖u‖22 =
n∑
i=1

u2
i ≤

n∑
i=1

4nx2
i = 4n. (7.4)

This shows that u ∈ B̄(2)
n (0, 2

√
n). Hence, the vector

v := u/‖u‖2 ∈ Nn.

1Of course, e�ciently means in time single exponential in the dimension n
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Now, we show that the distance between x and v is at most 1. The squared Euclidean
distance between these two vectors is

‖x− v‖22 =
n∑
i=1

(xi − vi)2 =
n∑
i=1

x2
i − 2

n∑
i=1

xi · vi +
n∑
i=1

v2
i = ‖x‖22 − 2

n∑
i=1

xi · vi + ‖v‖22.

Since x, v ∈ Sn−1, this is

‖x− v‖22 = 2

(
1−

n∑
i=1

xi · vi

)
.

Thus, to show that ‖x − v‖22 ≤ 1, it su�ces to show that 1 −
∑n

i=1 xi · vi ≤ 1/2 or
respectively that

∑n
i=1 xi · vi ≥ 1/2. By de�nition of v, we have

n∑
i=1

xi · vi =
1

‖u‖2

n∑
i=1

xi · ui =
1

‖u‖2

n∑
i=1

|xi| · |ui|,

since sign(xi) = sign(ui) for all 1 ≤ i ≤ n. The coe�cients |ui| are greater than 2
√
n|xi|−

1, see (7.3). Hence, we obtain

1

‖u‖2

n∑
i=1

|xi| · |ui| >
1

‖u‖2

n∑
i=1

|xi| · (2
√
n|xi| − 1)

=
1

‖u‖2

n∑
i=1

(
2
√
nx2

i − |xi|
)

=
1

‖u‖2
(2
√
n−

n∑
i=1

|xi|),

where the last equality is due to the fact that x ∈ Sn−1. Furthermore, we have
∑n

i=1 |xi| ≤√
n and it follows that

n∑
i=1

xi · vi >
1

‖u‖2
(2
√
n−
√
n) =

√
n

‖u‖2
.

We have seen that ‖u‖2 ≤ 2
√
n or respectively that 1/‖u‖2 ≥ 1/(2 ·

√
n), that means

n∑
i=1

xi · vi >
√
n

2
√
n

=
1

2
.

This shows that Nn is a 1-net on the sphere Sn−1.

Finally, we show that the net contains at most 24n elements. Since |Nn| ≤ |Zn ∩
B̄

(2)
n (0, 2

√
n)|, we need an upper bound on the number of integer vectors in the ball

B̄
(2)
n (0, 2

√
n). We could use the standard volume argumentation for lattices here of
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course, which we presented in Lemma 4.2.11 in Chapter 4. By this, we would obtain an
upper bound of (4

√
n + 1)n but this is too imprecise. We obtain a better result if we

consider the special structure of the lattice Zn. We observe that if we put around each
integer vector x ∈ B̄(2)

n (0, 2
√
n) an open `∞-ball with radius 1/2, these balls are disjoint,

B(∞)
n

(
x,

1

2

)
∩B(∞)

n

(
y,

1

2

)
= ∅ for x, y ∈ Z, x 6= y.

Now we show that B(∞)
n (x, 1/2) ⊆ B̄

(2)
n (0, (5/2) ·

√
n) for all x ∈ B̄

(2)
n (0, 2

√
n). It

follows from Hölder's inequality that B(∞)
n (x, 1/2) ⊆ B

(2)
n (x,

√
n/2) for all x ∈ Rn.

For x ∈ B̄(2)
n (0, 2

√
n), we have

B(∞)
n

(
x,

1

2

)
⊆ B̄(2)

n

(
0, 2
√
n+

√
n

2

)
= B̄(2)

n

(
0,

5

2

√
n

)
.

Hence, the number of integer vectors in the ball B̄(2)
n (0, 2

√
n) is upper bounded by

voln
(
B̄

(2)
n (0, 5

2

√
n)
)

voln
(
B

(∞)
n (0, 1

2)
) =

(
5

2

√
n

)n
voln(B̄(2)

n (0, 1)),

using that voln(B
(∞)
n (0, 1/2)) = 1. We have voln(B

(2)
n (0, 1)) = πn/2 (Γ(1 + n/2))−1,

where Γ(·) denotes the Gamma function, i.e.,

|Nn| =
(

5

2

√
n

)n
πn/2 (Γ(1 + n/2))−1 . (7.5)

Due to Stirling's formula, see Section A.0.3 in the Appendix, we obtain

Γ(1 +
n

2
) =

n

2
· Γ(

n

2
) =

n

2

√
2π
(n

2

)(n−1)/2
e−n/2+ν(n/2),

where ν is a function that satis�es 1 < ν(n/2) < 6/n. Obviously, it follows that

Γ(1 +
n

2
) >

n√
2

√
π
√
n
n−1√

2
1−n

e−n/2+1 =
√
π
√

2
−n
n ·
√
n
n−1

e1−n/2.

Combining this with (7.5), we obtain

|Nn| ≤
(

5

2

√
n

)n
πn/2

(√
π
√

2
−n
n ·
√
n
n−1

e1−n/2
)−1

=

(
5√
2

)n√
nn−1π(n−1)/2en/2−1

≤
(

5√
2

√
π · e

)n
≤ 16n = 24n.
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7.1.2. Construction of a circumscribed ellipsoid

In this section we are given an ellipsoid E = E(D, c) ⊆ Rn together with a halfspace H−.
The halfspace H− := {x ∈ Rn|〈a, x〉 ≤ δ} is given by a vector a ∈ Rn and a parameter
δ ∈ R. We consider the intersection

E− := E ∩H− = E ∩ {x ∈ Rn|〈a, x〉 ≤ δ}

of the ellipsoid and the halfspace. Our goal is to construct a new ellipsoid E′ which
satis�es two properties: For one thing, the ellipsoid E′ contains the intersection E−,
E− ⊆ E′. Furthermore, the volume of the ellipsoid E′ is smaller than the volume of the
ellipsoid E by a single exponential factor.

Before we describe the concrete construction, we consider the halfspace H− and deter-
mine the interval for the parameter δ such that the intersection E− of the ellipsoid with
the halfspace is non-trivial, i.e., neither E− = E nor E− = ∅. The a�ne hyperplane

H := {x ∈ Rn|〈a, x〉 = δ}

has a non-empty intersection with the ellipsoid if and only if

min{〈a, x〉|x ∈ E} ≤ δ ≤ max{〈a, x〉|x ∈ E}.

As we have seen in Lemma 6.4.4 in Chapter 6,

max{〈a, x〉|x ∈ E} = 〈a, c〉+
√
aTDa and

min{〈a, x〉|x ∈ E} = 〈a, c〉 −
√
aTDa,

which shows that the a�ne hyperplane H and the ellipsoid E have a non-empty inter-
section if and only if

〈a, c〉 −
√
aTDa ≤ δ ≤ 〈a, c〉+

√
aTDa.

This condition can be reformulated using an additional parameter ζ. If we consider the
following representation of δ as

δ = 〈a, c〉+ ζ
√
aTDa, where ζ ∈ R,

then the a�ne hyperplane H and the ellipsoid E have a nontrivial intersection if and
only if −1 ≤ ζ < 1. With regard to the intersection E− of the halfspace H− with the
ellipsoid E, this means that E− is non-empty if the parameter ζ is at least −1. If this
intersection is not too large, i.e., if −1 < ζ < 1/n, we call it a shallow cut.

De�nition 7.1.7. (Shallow Cut)
Let E(D, c) ⊆ Rn be an ellipsoid, a ∈ Rn\{0}, and ζ ∈ R. If −1 ≤ ζ < 1, the
intersection

E(D, c) ∩ {x ∈ Rn|〈a, x〉 ≤ 〈a, c〉+ ζ
√
aTDa}

is called a shallow cut.
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H−

c

c′

y

E

E′

H
1

n

E−

Figure 7.5.: Construction of an enclosing ellipsoid. This �gure is based on Figure
1.9 in [Sme10].

Given a shallow cut we are able to construct an ellipsoid E′ which contains the inter-
section of the ellipsoid E with the halfspace H− and whose volume is single exponentially
smaller than the volume of E.

To illustrate the main idea behind the construction we assume that we have a central
cut, i.e., ζ = 0, see Figure 7.5. Since we consider a central cut, the a�ne hyperplane
H contains the center c of the ellipsoid E and intersects the ellipsoid through its center.
The halfspace H− contains one half of E. Thus there exists an a�ne hyperplane in H−

parallel to H which supports E, that means the intersection of this a�ne hyperplane
with the ellipsoid consists of a single vector. Let y be this vector. Then, the center c′ of
the new ellipsoid lies on the segment between c and y and divides this segment into two
parts in ratio 1 : n. Now, the ellipsoid E′ is the (unique) ellipsoid with minimal volume
centered at c′ whose boundary contains y and the intersection E ∩ H of the original
ellipsoid with the hyperplane H, see [GL81].

Theorem 7.1.8. Let E = E(D, c) be an ellipsoid in Rn and a ∈ Rn\{0}. Let −1 < ζ <
1/n. Consider E− := E ∩ {x ∈ Rn|〈a, x〉 ≤ δ}, where δ := 〈a, c〉 + ζ

√
aTDa. Then the

ellipsoid E′ = E(D′, c′) with

c′ := c−
(

1− nζ
n+ 1

· 1√
aTDa

)
Da

and

D′ :=
n2(1− ζ2)

n2 − 1

(
D −

(
2

n+ 1
· 1− nζ

1− ζ
1

aTDa

)
Da(Da)T

)
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satis�es the following properties

1. E− ⊆ E′ and

2.
voln(E′)

voln(E)
< e
− (1−nζ)2

2(n+1) < 1.

We will prove this result in two steps. First, we will consider the special case where
the ellipsoid is the Euclidean unit ball B̄(2)

n (0, 1) and the halfspace is given by the �rst
unit vector e1 ∈ Rn. Then we will use the observation that each ellipsoid is the image of
the Euclidean unit ball under an a�ne transformation to show the corresponding result
for general ellipsoids. The main part of the proof consists of pure recalculation.
But �rst of all, we prove a technical statement, where showing how the inverse of the
matrix D′ de�ned in Theorem 7.1.8 can be computed.

Lemma 7.1.9. Let D ∈ Rn×n be a symmetric positive de�nite matrix, a ∈ Rn\{0} and
−1 < ζ < 1/n. Set

D′ :=
n2(1− ζ2)

n2 − 1

(
D − 2(1− nζ)

(n+ 1)(1− ζ)aTDa
Da(Da)T

)
.

The inverse matrix is

D′−1 =
n2 − 1

n2(1− ζ2)

(
D−1 +

2(1− nζ)

(n− 1)(1 + ζ)aTDa
aaT

)
.

Proof. We show that D′ ·D′−1 = In. We have

D′ ·D′−1

=

(
D − 2(1− nζ)

(n+ 1)(1− ζ)aTDa
Da(Da)T

)
·
(
D−1 +

2(1− nζ)

(n− 1)(1 + ζ)aTDa
aaT

)
= D ·D−1 +

2(1− nζ)

(n− 1)(1 + ζ)

DaaT

aTDa
− 2(1− nζ)

(n+ 1)(1− ζ)

Da(Da)TD−1

aTDa

− 2(1− nζ)

(n+ 1)(1− ζ)
· 2(1− nζ)

(n− 1)(1 + ζ)

Da(Da)TaaT

(aTDa)2
.

Hence, it is su�cient to show that the sum of the last three summands is zero,

2(1− nζ)

(n− 1)(1 + ζ)

DaaT

aTDa
− 2(1− nζ)

(n+ 1)(1− ζ)

Da(Da)TD−1

aTDa

− 2(1− nζ)

(n+ 1)(1− ζ)
· 2(1− nζ)

(n− 1)(1 + ζ)

Da(Da)TaaT

(aTDa)2

=
1

aTDa

(
2(1− nζ)

(n− 1)(1 + ζ)
DaaT − 2(1− nζ)

(n+ 1)(1− ζ)
DaaTDD−1

− 4(1− nζ)2

(n+ 1)(n− 1)(1− ζ)(1 + ζ)
Da · a

TDa

aTDa
· aT

)
=

2(1− nζ)

aTDa · (n+ 1)(n− 1)

(
n+ 1

1 + ζ
− n− 1

1− ζ
− 2(1− nζ)

(1− ζ)(1 + ζ)

)
DaaT .
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It is easy to see that (n + 1)(1 − ζ) − (n − 1)(1 + ζ) = 2(1 − nζ). From this, it follows
that

n+ 1

1 + ζ
− n− 1

1− ζ
− 2(1− nζ)

(1− ζ)(1 + ζ)
= 0,

which shows that the statement is correct.

Now we prove Theorem 7.1.8 in the special case where the ellipsoid is the Euclidean
unit ball B̄(2)

n (0, 1) and the a�ne hyperplane is given by the vector a = e1.

Lemma 7.1.10. Let −1 < ζ < 1/n. Consider the intersection B− := B̄
(2)
n (0, 1) ∩ {x ∈

Rn|x1 ≤ ζ}. Then the ellipsoid EB := E(DB, cB) with

cB := −1− nζ
n+ 1

· e1

and

DB :=
n2(1− ζ2)

n2 − 1
·
(
In −

2

n+ 1
· 1− nζ

1− ζ
· e1e

T
1

)
,

satis�es the following properties

1. B− ⊆ EB and

2.
voln(EB)

voln
(
B̄

(2)
n (0, 1)

) < e
− (1−nζ)2

2(n+1) .

Proof. The proof is achieved by technical calculation.
To prove the �rst statement, we need to show that every vector from the intersection
B− satis�es (x − cB)TD−1

B (x − cB) ≤ 1. For this, we observe that the ellipsoid EB is
characterized by the matrix DB, which is a diagonal matrix of the form

DB =
n2

n2 − 1
(1− ζ2)

(
In −

2

n+ 1
· 1− nζ

1− ζ
e1e

T
1

)
=

n2

n2 − 1
(1− ζ2) diag

(
1− 2

n+ 1
· 1− nζ

1− ζ
, 1, . . . , 1

)
.

Obviously, DB is symmetric positive de�nite. Since

n2

n2 − 1
(1− ζ2) ·

(
1− 2(1− nζ)

(n+ 1)(1− ζ)

)
=

n2

n2 − 1
(1− ζ2) · (n− 1) · (1 + ζ)

(n+ 1)(1− ζ)

=
n2

(n+ 1)2
(1 + ζ)2,

the inverse matrix of the matrix DB is

D−1
B = diag

(
(n+ 1)2

n2(1 + ζ)2
,

n2 − 1

n2(1− ζ2)
, . . . ,

n2 − 1

n2(1− ζ2)

)
.

202



7.1. The shallow cut ellipsoid method as a method to compute approximate Löwner-John ellipsoids

We can show that for all x ∈ Rn, we have

(x− cB)TD−1
B (x− cB)

=
n2 − 1

n2(1− ζ2)

(
‖x‖22 − 1

)
+ 2

(n+ 1)(1− ζn)

n2(1 + ζ)2(1− ζ)
(x1 − ζ)(x1 + 1) + 1. (7.6)

The proof of this statement is very technical and can be found at the end of this section,
see Claim 7.1.12. To show that the term (7.6) is at most 1, we consider the �rst two
summands and show that they are not positive if x ∈ B̄(2)(0, 1) ∩ {x ∈ Rn|x1 ≤ ζ}.

� Since |ζ| < 1, we get that (n2− 1)/n2(1− ζ2) > 0. As x is contained in the `2-unit
ball, we have ‖x‖22 − 1 ≤ 0. Combining these two observations, we obtain

n2 − 1

n2(1− ζ2)
(‖x‖22 − 1) < 0.

� Since ζ < 1/n, we have 1 − ζn ≥ 0 and (n + 1)(1 − ζn)/(n2(1 + ζ)2(1 − ζ)) > 0.
From −1 ≤ x1 ≤ ζ, it follows that x1 − ζ ≤ 0 and x1 + 1 ≥ 0. Hence, we get that

2
(n+ 1)(1− ζn)

n2(1 + ζ)2(1− ζ)
(x1 − ζ)(x1 + 1) ≤ 0.

This shows that the �rst two summands in (7.6) are at most 0 and we obtain (x −
c′)TD′−1(x− c′) ≤ 1. It remains to show that the volume of the ellipsoid EB is smaller
than the volume of the unit ball by a single exponential factor. Since

voln(EB) =
√

det(DB) · voln(B(2)
n (0, 1)),

see Lemma 2.2.8 in Chapter 2, the ratio of the volume of the ellipsoid EB and the volume
of the ball B̄(2)

n (0, 1) is(
n2(1 + ζ)2

(n+ 1)2
·
n−1∏
i=1

n2(1− ζ2)

n2 − 1

)1/2

=
n(1 + ζ)

n+ 1
·
(
n2(1− ζ2)

n2 − 1

)(n−1)/2

=

(
1− 1− n · ζ

n+ 1

)
·
(

1 +
1− n2ζ2

n2 − 1

)(n−1)/2

.

Using that 1 + x ≤ ex for all x ∈ R, we get

voln(EB)

voln
(
B̄

(2)
n (0, 1)

) ≤ e− 1−n·ζ
n+1 · e

1−n2ζ2

n2−1
·n−1

2

= e
− (1−nζ)2

2(n+1) .
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To prove Theorem 7.1.8 we need to transfer this result to arbitrary ellipsoids. Thereby
it is not enough to consider any bijective a�ne transformation which maps the Euclidean
unit ball to the ellipsoid E(D, c). We need a transformation with the additional property
that it maps the constructed ellipsoid EB to the ellipsoid E′ and B− to E−. The existence
of such a transformation is proven in the following lemma.

Lemma 7.1.11. Let E = E(D, c) ⊆ Rn be an ellipsoid and a ∈ Rn\{0}. Let −1 < ζ <
1/n. We consider the ellipsoid E′ and the set E− de�ned as in Theorem 7.1.8 and the
ellipsoid EB and the set E− de�ned as in Lemma 7.1.10. Then there exists a bijective
a�ne transformation τ̄ : Rn → Rn which maps the Euclidean unit ball to the ellipsoid
E(D, c) and satis�es the following properties:

� The transformation maps the intersection from the unit ball with the halfspace
{x ∈ Rn|〈e1, x〉 ≤ ζ} to the intersection of the ellipsoid with the halfspace {x ∈
Rn|〈a, x〉 ≤ δ}, with δ = 〈a, x〉+ ζ

√
aTDa, i.e., τ̄(B−) = E−, and

� the transformation maps the circumscribed ellipsoid EB to the ellipsoid E′, that
means τ̄(EB) = E′.

Proof. The transformation is characterized such that it maps the center of the ellipsoid
EB to the center of the ellipsoid E′. The center of the ellipsoid EB is the vector

cB = −1− nζ
n+ 1

e1.

Since −1 < ζ < 1/n, we have |(1− nζ)/(n+ 1)| < 1 and cB ∈ B̄(2)
n (0, 1). The center of

the ellipsoid E′ is de�ned as

c′ = c− 1− nζ
n+ 1

Da√
aTDa

.

In Lemma 2.2.9 in Chapter 2, we have seen that there exists a bijective a�ne transfor-
mation from the Euclidean unit ball to the ellipsoid E which maps cB to c′ if cTBcB =
(c′ − c)TD−1(c′ − c). Since

(c− 1− nζ
n+ 1

Da√
aTDa

− c)TD−1(c− 1− nζ
n+ 1

Da√
aTDa

− c)

= (
1− nζ
n+ 1

)2 1

aTDa
(Da)TD−1Da

= (
1− nζ
n+ 1

)2 1

aTDa
aTDa = (

1− nζ
n+ 1

)2 < 1,

the vector c′ is contained in the ellipsoid E(D, c) and it holds that

(c′ − c)TD−1(c′ − c) = cTB · cB.

Hence, we are able to de�ne a bijective a�ne transformation τ̄ : x 7→ QTx + c where
D = QTQ such that τ̄(B̄

(2)
n (0, 1)) = E(D, c) and

τ̄(cB) = c′. (7.7)
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It remains to show that this transformation satis�es the stated properties. To do this,
we observe that the property (7.7) can be rewritten as follows

QT (−1− nζ
n+ 1

e1) + c = c′ = c− 1− nζ
n+ 1

Da√
aTDa

or equivalently that

a =
√
aTDa ·D−1QT e1 =

√
aTDa ·Q−1e1. (7.8)

With this observation, the rest of the proof are merely technical computations.

� To prove that τ̄(B−) = E−, we consider an arbitrary vector x ∈ B− = B̄
(2)
n (0, 1)∩

{x ∈ Rn|x1 ≤ ζ}. Since τ̄ maps the Euclidean unit ball to the ellipsoid E, it follows

from x ∈ B̄(2)
n (0, 1) that τ̄(x) ∈ E(D, c). To show that τ̄(x) ∈ {x ∈ Rn|〈a, x〉 ≤ δ},

we observe that it follows from (7.8) that

〈τ̄(x), a〉 = 〈QTx+ c, a〉 = 〈c, a〉+
√
aTDa · 〈QTx,Q−1e1〉

= 〈c, a〉+
√
aTDa · 〈x, e1〉.

Since x ∈ {y ∈ Rn|〈y, e1〉 ≤ ζ}, this is at most

〈τ̄(x), a〉 ≤ 〈c, a〉+
√
aTDa〈x, e1〉 ≤ 〈c, a〉+ ζ

√
aTDa

which means that

τ̄(x) ∈ E− = E(D, c) ∩ {x ∈ Rn|〈a, x〉 ≤ δ}

with δ = 〈a, x〉+ ζ
√
aTDa.

� To show that τ̄(EB) = E′, we consider a vector x ∈ EB. Our goal is to show that
τ̄(x) ∈ E′, i.e., (QTx+ c− c′)TD′−1(QTx+ c− c′) ≤ 1.
Since the transformation τ̄ is de�ned such that τ̄(cB) = QT cB + c = c′, we obtain
that

c′ − c = QT cB. (7.9)

If we can show that QD′−1QT = D−1
B , then we obtain that

(QTx+ c− c′)TD′−1(QTx+ c− c′) = (QTx−QT cB)TD′−1(QTx−QT cB)

= (x− cB)TQD′−1QT (x− cB)

= (x− cB)TD−1
B (x− cB) ≤ 1,

where the last inequality follows from the assumption that x ∈ E(DB, cB). Hence,
it remains to show that D−1

B = QD′−1QT . According to Lemma 7.1.9, we have

QD′−1QT =
n2 − 1

n2(1− ζ2)

(
QD−1QT +

2(1− nζ)

(n− 1)(1 + ζ)

1

aTDa
QaaTQT

)

205



7. Computation of approximate Löwner-John ellipsoids

and

D−1
B =

n2 − 1

n2(1− ζ2)
(In +

2(1− nζ)

(n− 1)(1 + ζ)
e1e

T
1 ).

So, we need to show that QD′−1QT = In and that (1/aTDa)·QaaTQT = e1e
T
1 . The

�rst statement is obvious since Q is a decomposition of D. The second statement
follows from Qa/

√
aTDa = e1, see Equation (7.8).

Using this result, the proof of Theorem 7.1.8 follows directly from Lemma 7.1.11,
together with the fact that the relation between the volumes of two ellipsoids is invariant
under a�ne bijective transformation see Equation (2.2) on page 27 in Chapter 2.
The only thing that remains to be proven is the following statement.

Claim 7.1.12. For −1 < ζ < 1/n, let

D−1
B = diag

(
(n+ 1)2

n2(1 + ζ)2
,

n2 − 1

n2(1− ζ2)
, . . . ,

n2 − 1

n2(1− ζ2)

)
and

cB = −1− nζ
n+ 1

e1.

For all x ∈ Rn we have that

(x− cB)TD−1
B (x− cB)

=
n2 − 1

n2(1− ζ2)

(
‖x‖22 − 1

)
+ 2

(n+ 1)(1− ζn)

n2(1 + ζ)2(1− ζ)
(x1 − ζ)(x1 + 1) + 1.

Proof. For x ∈ Rn we have

x− cB =

(
x1 +

1− nζ
n+ 1

)
e1 +

n∑
i=2

xiei.

Since D−1
B is a diagonal matrix, it follows that

(x− cB)TD−1
B (x− cB) =

(
x1 +

1− nζ
n+ 1

)2 (n+ 1)2

n2(1 + ζ)2
+

n∑
i=2

x2
i

n2 − 1

n2(1− ζ2)

with(
x1 +

1− nζ
n+ 1

)2 (n+ 1)2

n2(1 + ζ)2

= x2
1

(n+ 1)2

n2(1 + ζ)2
+ 2x1

1− nζ
n+ 1

· (n+ 1)2

n2(1 + ζ)2
+

(1− nζ)2

(n+ 1)2
· (n+ 1)2

n2(1 + ζ)2

= x2
1

n2 − 1

n2(1− ζ2)
+ x2

1

(
(n+ 1)2

n2(1 + ζ)2
− n2 − 1

n2(1− ζ2)

)
+ 2x1

(1− nζ)(n+ 1)

n2(1 + ζ)2
+

(1− nζ)2

n2(1 + ζ)2

= x2
1

n2 − 1

n2(1− ζ2)
+ x2

1

(
2(n+ 1)(1− nζ)

n2(1 + ζ)2(1− ζ)

)
+ 2x1

(1− nζ)(n+ 1)

n2(1 + ζ)2
+

(1− nζ)2

n2(1 + ζ)2
.
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This shows that

(x− cB)TD−1
B (x− cB)

=
n2 − 1

n2(1− ζ2)
‖x‖22 + x2

1

(
2(n+ 1)(1− nζ)

n2(1 + ζ)2(1− ζ)

)
+ 2x1

(1− nζ)(n+ 1)

n2(1 + ζ)2
+

(1− nζ)2

n2(1 + ζ)2
.

Furthermore, we have

(1− nζ)2

n2(1 + ζ)2
= − n2 − 1

n2(1− ζ2)
+

(1− nζ)2

n2(1 + ζ)2
+

n2 − 1

n2(1− ζ2)

= − n2 − 1

n2(1− ζ2)
+
−2nζ + n2ζ2 − 2ζ + 2nζ2 − n2ζ3 + n2 + n2ζ

n2(1 + ζ)(1− ζ2)
,

that means

(x− cB)TD−1
B (x− cB)

=
n2 − 1

n2(1− ζ2)

(
‖x‖22 − 1

)
+ x2

1

(
2(n+ 1)(1− nζ)

n2(1 + ζ)2(1− ζ)

)
+ 2x1

(1− nζ)(n+ 1)

n2(1 + ζ)2

+
−2nζ + n2ζ2 − 2ζ + 2nζ2 − n2ζ3 + n2 + n2ζ

n2(1 + ζ)(1− ζ2)
.

It holds that

−2nζ + n2ζ2 − 2ζ + 2nζ2 − n2ζ3 + n2 + n2ζ

n2(1 + ζ)(1− ζ2)

=
−2nζ + n2ζ2 − 2ζ + 2nζ2 − n2ζ3 + n2 + n2ζ − n2(1 + ζ)(1− ζ2)

n2(1 + ζ)(1− ζ2)
+ 1

= 2ζ
−n+ n2ζ − 1 + nζ

n2(1 + ζ)(1− ζ2)
+ 1

= − 2ζ
(n+ 1)(1− nζ)

n2(1 + ζ)(1− ζ2)
+ 1.

Combing all this, we obtain

(x− cB)TD−1
B (x− cB)

=
n2 − 1

n2(1− ζ2)

(
‖x‖22 − 1

)
+ x2

1

(
2(n+ 1)(1− nζ)

n2(1 + ζ)2(1− ζ)

)
+ 2x1

(1− nζ)(n+ 1)

n2(1 + ζ)2

− 2ζ
(n+ 1)(1− nζ)

n2(1 + ζ)(1− ζ2)
+ 1

=
n2 − 1

n2(1− ζ2)

(
‖x‖22 − 1

)
+

2(n+ 1)(1− nζ)

n2(1 + ζ)(1− ζ2)

(
x2

1 + 2x1(1− ζ) + 1
)

+ 1

=
n2 − 1

n2(1− ζ2)

(
‖x‖22 − 1

)
+

2(n+ 1)(1− nζ)

n2(1 + ζ)(1− ζ2)
(x1 + 1)(x1 − ζ) + 1.
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7. Computation of approximate Löwner-John ellipsoids

7.1.3. Description and analysis of the rounding procedure for bounded
convex sets

Using the previous results, we are able to present a method that computes approximate
Löwner-John ellipsoids for full-dimensional bounded convex sets given by a separation
oracle. We call this procedure a rounding algorithm for convex sets.

The input of the algorithm is a full-dimensional bounded convex set C ⊆ Rn given
by a separation oracle SEPC . Additionally, we get a vector cout ∈ Rn and a parameter
Rout > 0 such that C ⊆ B̄

(2)
n (cout, Rout). This ball is used as the initial ellipsoid. Fur-

thermore, the input is a parameter rin > 0, which provides a lower bound on the volume
of the convex set C, voln(C) ≥ rnin voln(B

(2)
n (0, 1)).

After the initialization, the algorithm works iteratively. Given an ellipsoid E(Dk, ck),
it computes a decomposition Dk = QTkQk of the matrix Dk. This decomposition de�nes a
bijective a�ne transformation τk from the Euclidean unit ball to the ellipsoid E(Dk, ck),
τk : x 7→ QTk x+ ck.
Then, we consider a 1-net N of the sphere Sn−1. We construct this net N according

to the construction presented in Lemma 7.1.6. For each element γ · x with x ∈ N , we
consider its image under the transformation τk. That means, the algorithm checks if the
vectors τk(γ · x), x ∈ N , are contained in the convex body C. If all these vectors are
contained in C then the ellipsoid (γ/2) ? E(Dk, ck) is contained in C, as we have seen in
Lemma 7.1.5 and the algorithm outputs the ellipsoid (γ/2) ? E(Dk, ck).
Otherwise, there exists an element x ∈ N such that τ(γ ·x) is not contained in the convex
set C. In this case, the separation oracle queried with input of the vector τk(γ · x) gives
a separating hyperplane. That means, it outputs a vector a ∈ Qn such that

〈a, τk(x)〉 ≥ 〈a, x〉 for all x ∈ C.

Now, the algorithm considers the intersection of the ellipsoid Ek with the halfspace
{x ∈ Rn|〈a, x〉 ≤ 〈a, τk(x)〉} and constructs an ellipsoid Ek+1 which contains this inter-
section. Since we have scaled the unit ball by a factor γ < 1/n, we have a shallow cut and
are able to construct the ellipsoid Ek+1 according to the construction in Section 7.1.2.
The algorithm terminates after at most N iterations, the parameter N will be de�ned
later. Of course, we use the same net N in each iteration-step but we need to compute
it explicitly in each step if we want to guarantee that the algorithm runs in polynomial
space. A complete description of the algorithm is given in Algorithm 19.

Now, we will analyze the algorithm. During its execution, the algorithm computes a
number of ellipsoids Ek = E(Dk, ck). The number of computed ellipsoids depends on the
moment of termination of the algorithm, but it is upper bounded by N . In the follow-
ing, if we speak of a constructed ellipsoid Ek, we assume that the algorithm is running
through at least k iterations and Step 2(b)ii is executed at least k-times.
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7.1. The shallow cut ellipsoid method as a method to compute approximate Löwner-John ellipsoids

Algorithm 19 Rounding algorithm for convex sets
Input:

� A full-dimensional bounded convex set C ⊆ Rn given by a separation oracle
SEPC ,

� parameters rin, Rout > 0, a vector cout ∈ Rn, and
� a parameter γ with 0 < γ < 1/n.

Output: an ellipsoid E ⊆ Rn given by a symmetric positive de�nite matrix D and a
center c.

1. (Initialization)
Set

� N ←
⌈
2 (n+1)n

(1−nγ)2
(log2(R0)− log2(rin))

⌉
,

� D0 ← R2
out · In, and c0 ← cout.

2. For 0 ≤ k ≤ N ,

a) compute a decomposition of the matrix Dk = QTkQk.

b) Check if there exists an element x ∈ {x/‖x‖2|x ∈ Zn ∩ B̄(2)
n (0, 2

√
n)\{0}}

such that

ck + γQTk x 6∈ C.

i. If no such element exists, output E((γ2/4) ·Dk, ck).

ii. Otherwise, query SEPC with input of the vector ck + γQTk x. The
result is a vector a ∈ Rn\{0}. Set

ck+1 ← ck −
1− nγ
n+ 1

· Dka√
aTDka

and

Dk+1 ←
n2(1− γ2)

n2 − 1

(
Dk −

2(1− nγ)

(n+ 1)(1− γ)
· Dka(Dka)T

aTDka

)
.
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7. Computation of approximate Löwner-John ellipsoids

In the next lemma, we state the main properties of the rounding method for convex sets.
We will show that each ellipsoid constructed by the algorithm satis�es the property that
it contains the convex set. Additionally, we will show that the output of the algorithm
is an approximate Löwner-John ellipsoid.

Lemma 7.1.13. Let C ⊆ Rn be a full-dimensional bounded convex set given by a sep-
aration oracle SEPC. Let Rout > 0 and cout ∈ Rn such that C ⊆ B̄

(2)
n (cout, Rout) and

0 < γ < 1/n. Then the rounding algorithm for convex sets, Algorithm 19, satis�es the
following properties:

� Each ellipsoid Ek constructed by the algorithm contains the convex set, C ⊆ Ek for
all k ≥ 0.

� The output of the algorithm is a 2/γ-approximate Löwner-John ellipsoid, that means
an ellipsoid E satisfying

E ⊆ C ⊆ 2

γ
? E.

Proof. First, we show inductively that the convex body is contained in every constructed
ellipsoid. By assumption, we have C ⊆ B̄

(2)
n (c0, Rout) = E(D0, c0). Now, we assume

that k ≥ 0 is an index such that C ⊆ Ek = E(Dk, ck). The algorithm constructs the
ellipsoid Ek+1 only if there exists an element x ∈ N such that ck + γQTk x 6∈ C. Since
C is convex, there exists an a�ne hyperplane that separates ck + γQTk x from C. Such a
hyperplane is given by the separation oracle, which provides a vector a ∈ Rn\{0} such
that 〈a, ck + γQTk x〉 ≥ 〈a, x〉 for all x ∈ C. Hence, the convex set C lies in the halfspace
{x ∈ Rn|〈a, x〉 ≤ 〈a, ck〉+ 〈a, γQTk x〉}, that means

C ⊆ Ek ∩ {x ∈ Rn|〈a, x〉 ≤ 〈a, ck〉+ 〈a, γQTk x〉}. (7.10)

Using the generalized Cauchy-Schwarz inequality, see Lemma 2.2.5 in Chapter 2, we
obtain that

〈a, γQTk x〉 ≤ γ
√
aTDka ·

√
(QTk x)TD−1

k (QTk x)

= γ
√
aTDka ·

√
xTQk(Q

T
kQk)

−1QTk x

= γ
√
aTDka · ‖x‖2.

Since x ∈ N ⊆ Sn−1 and γ < 1/n, we have

〈a, γQTk x〉 <
1

n

√
aTDka.

Hence, the a�ne hyperplane de�ned by the vector a provides a shallow cut of the ellipsoid
Ek, see De�nition 7.1.7. According to the conditions of Theorem 7.1.8 with parameter
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7.1. The shallow cut ellipsoid method as a method to compute approximate Löwner-John ellipsoids

ζ = γ, the ellipsoid Ek+1 is de�ned such that it contains the intersection Ek ∩ {x ∈
Rn|〈a, x〉 ≤ 〈a, ck〉+ ζ

√
aTDa} and it follows together with (7.10) that

C ⊆ Ek+1.

The algorithm terminates after k iterations if all vectors ck+γQTk x, x ∈ N , are contained
in the convex set C. Since the set N is a 1-net of Sn−1, it is guaranteed that the set C
contains the ellipsoid Ek scaled by the factor γ/2,

γ

2
? Ek ⊆ C,

see Corollary 7.1.5. Altogether, the ellipsoid Ek satis�es

γ

2
? Ek ⊆ C ⊆ Ek.

The algorithm outputs the symmetric positive de�nite matrix D = (γ2/4)Dk and the
vector ck. The ellipsoid de�ned by this matrix D and this vector c satis�es

E(D, c) = E

(
γ2

4
Dk, ck

)
⊆ C ⊆ E(Dk, ck) =

2

γ
? E

(
γ2

4
Dk, ck

)
=

2

γ
? E(D, c),

which shows that the ellipsoid E(D, c) is a 2/γ-approximate Löwner-John ellipsoid of the
convex set C.

It remains to show that the algorithm really terminates and outputs an ellipsoid.
This can be guaranteed since in each iteration the volume of the constructed ellipsoid
decreases by a single exponential factor. In the next lemma, we show that the volume of
the ellipsoid which would be constructed in the N -th iteration is smaller than the volume
of the convex set C.

Lemma 7.1.14. Let C ⊆ Rn be a full-dimensional bounded convex set with voln(C) ≥
rnin voln(B

(2)
n (0, 1)) for some rin > 0. If the ellipsoid E0 = B̄

(2)
n (cout, Rout) de�ned in the

initialization step of the rounding algorithm for convex sets, Algorithm 19, contains the
convex set C and Step 2(b)ii of the algorithm is executed at least N -times, where

N = 2
(n+ 1)n

(1− nγ)2
(log2(Rout)− log2(rin)),

then

voln(EN ) < voln(C).

Proof. According to Theorem 7.1.8 with ζ = γ, in each iteration of step 2 in the algo-
rithm, the volume of the constructed ellipsoid decreases by the factor

e
− (1−nγ)2

2(n+1) .
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Hence, the volume of the ellipsoid EN is bounded by

voln(EN ) <

(
e
− (1−nγ)2

2(n+1)

)N
· voln(E0)

< 2
−N(1−nγ)2

2(n+1) · voln(E0).

Since E0 = B̄
(2)
n (cout, Rout), the volume of the initial ellipsoid is

voln(E0) = Rnout · voln(B(2)
n (0, 1)) = 2n log2(Rout) · voln(B(2)

n (0, 1))

and we obtain by our de�nition of N that the volume of the ellipsoid EN is smaller than
the volume of C,

voln(EN ) < 2
−N(1−nγ)

2(n+1)
+n log2(Rout) · voln(B(2)

n (0, 1))

= 2n·log2(rin) · voln(B(2)
n (0, 1))

≤ voln(C).

Combining Lemma 7.1.13 and Lemma 7.1.14, we are able to prove the correctness of
the algorithm.

Theorem 7.1.15. Given a full-dimensional bounded convex set C ⊆ Rn by a separation
oracle SEPC together with parameters rin, Rout > 0 and a vector cout ∈ Rn such that

C ⊆ B̄(2)
n (cout, Rout) and vol(C) ≥ rnin · voln(B(2)

n (0, 1)),

and a parameter γ with 0 < γ < 1/n, the rounding algorithm for convex sets, Algorithm
19, computes a 2/γ-approximate Löwner-John ellipsoid, i.e., a positive de�nite matrix
D ∈ Rn×n and a vector c ∈ Rn. The ellipsoid E(D, c) satis�es

E(D, c) ⊆ C ⊆ 2

γ
? E(D, c).

If we assume that we are able to perform all computations exactly over R, then the number
of arithmetic operations and the number of calls to the oracle are at most

1

(1− nγ)2
(log2(Rout)− log2(rin))2O(n).

Proof. Each ellipsoid E, which is output by the algorithm satis�es E ⊆ C ⊆ (2/γ)?E, as
we have seen in Lemma 7.1.13. Thus, we need to guarantee that the algorithm outputs
something. Hence, we assume that the algorithm constructs all N ellipsoids, which is the
only case, for which the algorithm does not output anything. The parameter N de�ned
in the initialization step of the algorithm is at most

N = d2 (n+ 1)n

(1− nγ)2
(log2(R0)− log2(rin))e ≥ 2

(n+ 1)n

(1− nγ)2
(log2(R0)− log2(rin)).
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Using Lemma 7.1.14 together with the assumption that voln(C) ≥ rnin · voln(B
(2)
n (0, 1)),

we see that after N iterations, the volume of the ellipsoid constructed in the N -th iter-
ation is smaller than the volume of the convex body C, voln(EN ) < voln(C). This is a
contradiction to the fact that each ellipsoid constructed by the algorithm contains the
convex body as we have proven in Lemma 7.1.13.
Hence, there exists an iteration-step k ≤ N where the algorithm does not construct a
new ellipsoid. In this step, the algorithm outputs an approximate Löwner-John ellipsoid.

The number of iteration-steps is at mostN ≤ 2(n+1)n/(1−nγ)2·(log2(R0)− log2(rin))+
1. Since the set N can be constructed using at most 2O(n) arithmetic operations, it is
easy to see that the number of arithmetic operations is at most

1

(1− nγ)2
(log2(Rout)− log2(rin)) 2O(n).

It is easy to see that the rounding method runs in polynomial space if we can guarantee
that the representation size of each constructed ellipsoid is polynomial in the dimension
and in log2(Rout ·r−1

in ). Thus we need to take care of the size of the constructed ellipsoids.
First, we prove that the coe�cients of the matrices Dk and the vectors ck do not become
too large.

Lemma 7.1.16. Let C ⊆ Rn be a full-dimensional bounded convex set, n ≥ 2. Let
Rout > 0 and cout ∈ Rn such that C ⊆ B̄(2)

n (cout, Rout). If the parameter γ satis�es −1 <
γ < 1/n, the rounding algorithm for convex sets, Algorithm 19, satis�es the following
properties: For each ellipsoid Ek = E(Dk, ck), k ≥ 0, constructed by the algorithm we
have

1. ‖ck‖2 ≤ Rout · 2k,

2. ‖Dk‖2 ≤ R2
out · 2k, and

3. ‖D−1
k ‖2 ≤ R

−2
out · 9k,

where ‖Dk‖2 denotes the spectral norm of the matrix Dk.

Proof. We will prove this by induction.
For k = 0, all statements are true since c0 = 0 and D0 = R2

outIn, with Rout 6= 0. For
k > 0, we start with the proof of the second statement. By de�nition, the spectral norm
of the matrix Dk+1 is

‖Dk+1‖2 =
n2(1− γ2)

n2 − 1

∥∥∥∥Dk −
2

n+ 1
· 1− nγ

1− γ
· Dka(Dka)T

aTDka

∥∥∥∥
2

for some vector a ∈ Rn.
It is easy to see that for symmetric positive de�nite matrices A,B ∈ Rn×n we have
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7. Computation of approximate Löwner-John ellipsoids

‖A‖2 ≤ ‖A+B‖2, see [MN99]. Since the matrices Dk+1 and −Dka(Dka)T are symmetric
positive de�nite, it follows that

‖Dk+1‖2 ≤
n2(1− γ2)

n2 − 1
‖Dk‖2.

Now, using the induction hypothesis, we obtain the following upper bound for the spectral
norm of Dk+1,

‖Dk+1‖2 ≤
n2(1− γ2)

n2 − 1
R2
out · 2k ≤

4

3
R2
out · 2k < R2

out · 2k+1,

where the second inequality is due to the fact that 1 − γ2 ≤ 1. To prove the third
statement, we observe that the inverse of the matrix Dk+1 is

D−1
k+1 =

n2 − 1

n2(1− γ2)

(
D−1
k +

2

n− 1
· 1 + nγ

1− γ
a · aT

aTDka

)
,

see Lemma 7.1.9. Using the triangle inequality, the spectral norm of this matrix is at
most

‖D−1
k+1‖2 ≤

n2 − 1

n2(1− γ2)

(
‖D−1

k ‖2 +
2

n− 1
· 1 + nγ

1− γ
· ‖aa

T ‖2
aTDka

)
.

Since the spectral norm of the matrix aaT is aTa, we have

‖aaT ‖2
aTDka

=
aTa

aTDka
≤ max

x 6=0

∣∣∣∣ xTx

xTDkx

∣∣∣∣ ,
which is exactly the spectral norm of D−1

k , ‖D−1
k ‖2. Hence, we obtain that

‖D−1
k+1‖2 ≤

n2 − 1

n2(1− γ2)

(
‖D−1

k ‖2 +
2

n− 1
· 1 + nγ

1− γ
‖D−1

k ‖2
)

=
n2 − 1

n2(1− γ2)

(
1 +

2

n− 1
· 1 + nγ

1− γ

)
‖D−1

k ‖2

=
(n+ 1)2

n2(1− γ)2
‖D−1

k ‖2.

Now, it follows by the induction hypothesis that

‖D−1
k+1‖2 ≤

(n+ 1)2

n2(1− γ)2
·R−2

out · 9k

≤ 9

4
· 4 ·R−2

out · 9k

≤ 9 · 9k ·R−2
out = 9k+1 ·R−2

out.
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To prove the corresponding statement for the vector ck+1, we consider the di�erence
between this vector and the vector ck. The Euclidean norm of this di�erence vector is at
most

‖ck+1 − ck‖2 =
1

n+ 1
(1− nγ)

‖Dka‖2√
aTDka

=
1

n+ 1
(1− nγ)

√
aTDT

kDka√
aTDka

=
1

n+ 1
(1− nγ)

√
aTD2

ka

aTDka

=
1

n+ 1
(1− nγ)

√√√√(D
1/2
k a)T (D

1/2
k )TD

1/2
k (D

1/2
k a)

(D
1/2
k a)T (D

1/2
k a)

≤ 1

n+ 1
(1− nγ)‖D1/2

k ‖2.

Since the eigenvalues of the square root of a positive de�nite matrix are the square root
of the eigenvalues of the matrix, we are able to apply the induction hypothesis and we
get

‖ck+1 − ck‖2 ≤
1

n+ 1
(1− nγ)

√
‖Dk‖2 ≤

1

n+ 1
(1− nγ)Rout2

k/2.

Hence, we obtain the following upper bound for the norm of the vector ck+1:

‖ck+1‖2 ≤ ‖ck+1 − ck‖2 + ‖ck‖2

≤ 1

n+ 1
(1− nγ)Rout · 2k/2 +Rout · 2k

= Rout ·
(

1

n+ 1
(1− nγ)2k/2 + 2k

)
= 2k ·Rout ·

(
1

n+ 1
(1− nγ)2k/2 + 1

)
≤ 2k+1 ·Rout.

Now, it follows directly that the coordinates of each ellipsoid constructed by the algo-
rithm do not grow too fast.

Corollary 7.1.17. Let C ⊆ Rn be a full-dimensional convex body. Let Rout > 0 and
cout ∈ Rn such that C ⊆ B̄

(2)
n (cout, Rout). If the parameter γ satis�es 0 < γ < 1/n, then

each ellipsoid Ek = E(Dk, ck), k ≥ 0, constructed by the rounding algorithm for convex
sets, Algorithm 19, satis�es the following properties:
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� Each coe�cient d of the matrix Dk satis�es |d| < R2
out · 2k and |d| > R2

out9
−k if

d 6= 0.

� Each coe�cient c of the vector ck satis�es |c| < Rout · 2k and |c| > (1 − nγ)/(n +
1)R · 9−k if c 6= 0.

Obviously, this statement does not guarantee that the size of each instance constructed
by the algorithm does not grow too fast. The other problem is that we are not able to
compute the centers ck of the ellipsoids Ek exactly, since we are not able to compute the
square root over Q. Thus, rounding is unavoidable. It is done as follows: We consider
the binary representation of each coe�cient and cut it after d digits behind the binary
point for some parameter d ∈ N. So we approximate each coe�cient with a rational
number whose denominator is at most 2d. If we round the coe�cients of the matrix Dk,
we need to be careful, since we need to guarantee that we obtain a symmetric positive
de�nite matrix.
For the constructed ellipsoids, rounding has the following e�ect on the algorithm: The
rounding of the center ck leads to a transformation of the ellipsoid, whereas rounding of
the matrix Dk changes the shape of the ellipsoid. For the correctness of the algorithm,
we need to guarantee that C is contained in the rounded ellipsoid which can be done
using a careful scaling. In Chapter 3 of [GLS93] it is shown that it is enough to round
to at most 8 · N digits in the shallow cut ellipsoid method, where N is the number
of iterations, and that the algorithm nevertheless outputs an approximate Löwner-John
ellipsoid. Considering this together with Corollary 7.1.17 leads to the following upper
bound on the size of the ellipsoids Ek,

size(Ek) ≤ 2NR2
out,

where N is the number of iterations. Since

N ≤ (1− nγ)−2O(n2) (log2(Rout)− log2(rin)) ,

the size of the ellipsoid Ek is upper bounded by

2(1−nγ)−2·O(n2)R3
out · r−1

in .

In the following, we will ignore this di�culty and we will assume that all instances
have polynomial encoding length and that all arithmetic operations can be carried out
in polynomial time. We summarize this in the following.

Theorem 7.1.18. Given a full-dimensional bounded convex set C ⊆ Rn by a separation
oracle together with parameters rin, Rout > 0 and a vector cout ∈ Rn such that

C ⊂ B̄(2)
n (cout, Rout) and voln(C) ≥ rnin voln(B(2)

n (0, 1)),

the rounding algorithm for convex sets, Algorithm 19, satis�es the following properties:
The number of arithmetic operations of the algorithm and the number of calls to the
oracle is at most

1

(1− nγ)2

(
log2(Rout · r−1

in )
)O(1)

2O(n).
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In each iteration, it computes an instance (Dk, ck), where Dk ∈ Qn×n is a symmetric
positive de�nite matrix and ck ∈ Qn. The rounding algorithm runs in polynomial space
and the size of each instance is at most

2O(n4)(Rout · r−1
in )O(1).

The output of the algorithm is a 2/γ-approximate Löwner-John ellipsoid, i.e., an ellipsoid
E ⊆ Rn with E ⊆ C ⊆ 2/γ ? E.

7.2. A rounding method for `p-bodies

In this section, we use the algorithmic framework presented in Section 7.1 to obtain an
algorithm that computes an approximate Löwner-John ellipsoid for `p-bodies B

(p,V )
m,n (t, α)

with 1 < p < ∞, which we de�ned in Section 6.4.3 in Chapter 6. If the corresponding
`p-body contains an integer vector, we can guarantee that the algorithm outputs an
approximate Löwner-John ellipsoid. Otherwise, there are two possibilities: Either the
algorithm outputs an approximate Löwner-John ellipsoid or it outputs that the `p-body
does not contain an integer vector. We call this algorithm the rounding method for `p-
bodies.

To apply the rounding method for bounded convex sets to the class of `p-bodies, we

need to realize a separation oracle for `p-bodies. Given an `p-body B
(p,V )
m,n (t, α) together

with a vector y ∈ Rm we need to decide whether y is contained in the `p-body. If this is
not the case, we need to be able to compute an a�ne hyperplane that separates the vector
y ∈ Rm from the `p-body B

(p,V )
m,n (t, α). Additionally, we need to determine parameters

Rout, rin > 0 and a vector cout ∈ Rm such that

B(p,V )
m,n (t, α) ⊆ B̄(2)

m (cout, Rout) and volm(B(p,V )
m,n (t, α)) ≥ rmin · volm(B(2)

m (0, 1)).

The assumption that the `p-body contains an integer vector is only needed for the com-
putation of a corresponding parameter rin. In the next section, we will consider these
aspects in detail, see Section 7.2.1. Then we will present a detailed description of the
rounding algorithm for `p-bodies. This is done in Section 7.2.2.

7.2.1. Properties of `p-bodies

Computation of a circumscribed Euclidean ball

We have already seen in Lemma 6.3.3 in Chapter 6 that a general `p-ball B
(p,V )
n (t, α)

is contained in an n-dimensional Euclidean ball with radius α
√
n‖V ‖2, where ‖V ‖2

denotes the spectral norm of the matrix V . By intersecting this ball with the sub-
space

⋂n
i=m+1H0,ei we can construct a circumscribed Euclidean ball for the `p-body

B
(p,V )
m,n (t, α).
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Lemma 7.2.1. Let B(p,V )
m,n (t, α) be an `p-body given by V ∈ Rn×n nonsingular, t ∈ Rn,

α > 0, and 1 < p < ∞. Then B(p,V )
m,n (t, α) is contained in an m-dimensional Euclidean

ball with radius α
√
n‖V ‖2. The center of this ball is given by the orthogonal projection

of t onto span(e1, . . . , em).

Proof. The general `p-ballB
(p,V )
n (t, α) is contained in a Euclidean ball with radius α

√
n‖V ‖2

centered at the vector t, see Lemma 6.3.3 in Chapter 6. Obviously, it follows that the `p-

body B(p,V )
m,n (t, α) is contained in the intersection of the Euclidean ball B̄(2)

n (t, α
√
n‖V ‖2)

with the subspace
⋂n
i=m+1H0,ei , which is the m-dimensional Euclidean ball with ra-

dius α
√
n‖V ‖2. The center of this ball is given by the orthogonal projection of t onto

span(e1, . . . , em).

Next, we will prove a lower bound on the volume of an `p-body provided that it contains
an integer vector.

Computation of a lower bound for the volume of an `p-body

The lower bound on the volume of an `p-body depends on the shape of the convex set,
that means on the parameters de�ning it, and on the radius of a circumscribed Euclidean
ball. For the proof of the lower bound, we consider a special representation of the `p-
body. If we use that α = αn/αd with αn, αd ∈ N and consider the following convex
function,

F : Rm → R, x 7→ αpd‖V
−1((xT , 0n−m)T − t)‖pp − αpn, (7.11)

then B(p,V )
m,n (t, α) = {x ∈ Rm|F (x) < 0}.

To illustrate the main idea of the proof which is due to Heinz [Hei05], we imagine
that the function F is in addition di�erentiable and that we know an upper bound M
on the length of its gradients ∇F (x), x ∈ Rm, i. e., ‖∇F (x)‖2 ≤ M for all x ∈ Rm.
Furthermore, we assume that we know some parameter ε > 0 such that there exists a
vector x̂ ∈ Rm with F (x̂) ≤ −ε < 0.

Since for every convex function the �rst-order Taylor approximation is a global under-
estimator of the function (�rst-order convexity condition), see Lemma 2.1.8 in Chapter
2, we obtain for all x ∈ Rm that

F (x̂) ≥ F (x) +∇F (x)T (x̂− x).

Using the Cauchy-Schwarz inequality, this yields the upper bound

F (x) ≤ F (x̂) +∇F (x)T (x− x̂) ≤ −ε+M‖x− x̂‖2.

Hence, if a vector x ∈ Rm satis�es ‖x − x̂‖2 ≤ ε/M , then F (x) < 0 and it is con-

tained in the set B(p,V )
m,n (t, α). This shows that B(p,V )

m,n (t, α) contains a Euclidean ball
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with radius ε/M centered around x̂ and that the volume of B(p,V )
m,n (t, α) is at least

(ε/M)m volm(B
(2)
m (0, 1)).

For the function F de�ned in (7.11) we can compute such a parameter ε since we
can show that F is enumerable. Revisiting De�nition 4.3.14 in Chapter 4 we see that
a function f : Rm → R is enumerable if there exists an integer K ∈ N such that
K ·F (x) ∈ Z for all x ∈ Zm. So, F (x) is a rational number with denominator at most K

for every integer vector x ∈ Zn. Hence, if B(p,V )
m,n (t, α) contains an integer vector x̂ ∈ Zm,

then F (x̂) ≤ −1/K < 0. In the following claim, we give an upper bound on the number
K.

Claim 7.2.2. Let F : Rm → R be a function de�ned as in (7.11) given by a nonsingular
matrix V ∈ Qn×n, a vector t ∈ Qn and αn, αd ∈ N. Let S be an upper bound on the size
of V −1, t, αn and αd.
Then, there exists an integer K ≤ S2n2p such that K · F (x) ∈ Z for all x ∈ Zm.

Proof. Since αn, αd ∈ N, we observe that F (x) ∈ Z if all coe�cients of the matrix V −1

and the vector t are integers. If V −1 = (vij) ∈ Qn×n and t = (ti) ∈ Qn the coe�cients
of the vector V −1t are rationals of the form

∑n
j=1 vijtj . That means, each coe�cient is

the sum of n rational numbers whose denominators are at most S2.
Hence, the multiplication of this vector with the product of these denominators yields an
integer vector. The multiplication of V −1 with the same number yields an integer matrix.
Hence, there exists a number which is at most (S2)n

2
= S2n2

such that V −1((xT , 0n−m)T−
t) becomes an integer if multiplied with this number. Since F consists of the p-th power
of an `p-norm, there exists a number which is at most (S2n2

)p = S2n2p such that F (x)
becomes an integer if multiplied with this number.

Now, the main remaining problem is that the function F is not di�erentiable. Hence,
we need to modify the idea described above and work with the subgradient instead of
the gradient. We start with a short overview about subgradients.

De�nition 7.2.3. Let f : Rn → R be a convex function and x ∈ Rn. A vector g ∈ Rn

is called a subgradient of f at x if the following holds,

f(z) ≥ f(x) + 〈g, z − x〉 for all z ∈ Rn. (7.12)

The inequality (7.12) is called subgradient inequality. Geometrically, this inequality
means that the graph of the a�ne function z 7→ f(x)+〈g, z−x〉 is a supporting hyperplane
of the epigraph of f at (x, f(x)) as it is shown in Figure 7.6. The subgradient inequality
is the corresponding equivalent to the �rst-order convexity condition for di�erentiable
convex functions. If f is di�erentiable, then the subgradient is unique and it is simply
the gradient of f at x. For a more detailed introduction into subgradients see [Roc70]
and [Pol87].

Now we can prove a lower bound on the volume of the set B(p,V )
m,n (t, α) under the as-

sumption that for all R > 0 and y ∈ B̄(2)
m (0, R) the length of a corresponding subgradient

is bounded.
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x

f(x)

0

f

f(x) + 〈g, y − x〉

(x, f(x))

Figure 7.6.: Subgradient of a convex function. The subgradient g de�nes a support-
ing hyperplane of the epigraph of the function f at the point (x, f(x)).

Lemma 7.2.4. Let B(p,V )
m,n (t, α) be an `p-body given by V ∈ Qn×n nonsingular, t ∈ Qn,

α = αn/αd > 0 and 1 < p < ∞. Let F : Rm → R be a function de�ned as in

(7.11). Let S be an upper bound on the size of B(p,V )
m,n (t, α). Let R > 0 such that

B
(p,V )
m,n (t, α) is contained in a Euclidean ball with radius R centered at the origin. Assume

that there exists M ∈ R such that the following holds: For all y ∈ B̄(2)
m (0, R) there exists

a subgradient g ∈ Rm of F at y which satis�es ‖g‖2 ≤ M . If B(p,V )
m,n (t, α) contains an

integer vector x̂ ∈ Zm, then

volm(B(p,V )
m,n (t, α)) > (S2n2pM)−m · volm(B(2)

m (0, 1)).

Proof. Let g ∈ Rm be a subgradient of F at the vector y ∈ B̄
(2)
m (0, R) which satis�es

‖g‖2 ≤M . Then it follows from the subgradient inequality (7.12) for x̂ ∈ Zm that

F (x̂) ≥ F (y) + 〈g, x̂− y〉.

As we have seen in Claim 7.2.2, F (x̂) is a rational number with denominator at most
S2n2p. Since F (x̂) < 0 and using the Cauchy-Schwarz inequality, we obtain

F (y) ≤ F (x̂) + 〈g, y − x̂〉 ≤ −S−2n2p + ‖g‖2 · ‖y − x̂‖2 ≤ −S−2n2p +M‖y − x̂‖2

which shows that every vector y ∈ B̄(2)
m (0, R) with ‖y−x̂‖2 ≤ S−2n2p/M satis�es F (y) < 0

and is contained in B(p,V )
m,n (t, α).

Hence, the `p-body B
(p,V )
m,n (t, α) contains a ball with radius (S2n2pM)−1 centered at x̂

and the claimed lower bound for the volume follows directly.
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This result shows that we need to compute for every vector y ∈ B̄(2)
m (0, R) an upper

bound on the length of a corresponding subgradient of F depends only on the parameter
R if we want to obtain a lower bound on the volume of the `p-body B

(p,V )
m,n (t, α). To do

this, we develop an explicit expression of a subgradient of F in the following. We start
with the computation of a subgradient of the following simple function.

Lemma 7.2.5. Let y ∈ Rn and 1 < p <∞. Then a subgradient g ∈ Rn of the function

Fp : Rn → R, x 7→
n∑
i=1

|xi|p

at the vector y is given by g = (g1, . . . , gn)T , where

gi := sign(yi) · |yi|p−1.

Proof. The proof consists of showing that the vector g satis�es the subgradient inequality
(7.12). Since Fp is a nonnegative combination of the functions x 7→ |xi|p, 1 ≤ i ≤ n, it is
enough to consider the case where n = 1.
For all z ∈ R and 0 < λ ≤ 1 it follows from the convexity of the function Fp that

Fp(y + λ(z − y)) ≤ (1− λ)Fp(y) + λFp(z)

or equivalently that

Fp(z) ≥
1

λ
(Fp(y + λ(z − y))− (1− λ)Fp(y)) = Fp(y) +

1

λ
(Fp(y + λ(z − y))− Fp(y)) .

Hence, the vector g ∈ R satis�es Fp(z) ≥ Fp(y) + g · (z − y) if we can show that

Fp(y + λ(z − y))− Fp(y) ≥ λ · g · (z − y) = λ sign(y) · |y|p−1(z − y).

By de�nition of Fp, we have Fp(y + λ(z − y))− Fp(y) = |y + λ(z − y)|p − |y|p. Since for
all a, b ∈ R, m ∈ N, it holds that bm − am = (b− a) ·

∑m−1
i=0 bm−1−iai, we see that

|y + λ(z − y)|p − |y|p = (|y + λ(z − y)| − |y|) ·
p−1∑
i=0

|y + λ(z − y)|p−1−i · |y|i

≥ (|y + λ(z − y)| − |y|) |y|p−1.

Since for all a, b ∈ R, |a|−|b| ≥ sign(b)·(a−b), this is at least λ·sign(y)(z−y)·|y|p−1.

To compute a subgradient of the function F de�ned as in (7.11), we combine this
result with the following lemma, which shows how a subgradient changes if we consider
an a�ne transformation of the variables or the function.

Lemma 7.2.6. Let f : Rn → R be a convex function.

� Let h1 : Rn → R be de�ned by h1(x) := f(Ax+ β), where A ∈ Rn×n is a nonsin-
gular matrix and β ∈ Rn. Let g1 ∈ Rn be a subgradient of f at the vector Ay + β.
Then, the vector AT g1 is a subgradient of h1 at the vector y.
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� Let h2 : Rn → R be de�ned by h2(x) := a · f(x) + b, where a ∈ R\{0} and b ∈ R.
Let g2 ∈ Rn be a subgradient of f at the vector y ∈ Rn. Then a ·g2 is a subgradient
of h2 at the vector y.

Proof. Let g1 ∈ Rn be a subgradient of f at the vector Ay+ β, i.e., f(z) ≥ f(Ay+ β) +
〈g, z − (Ay + β)〉 for all z ∈ Rn. Thus, for all z ∈ Rn it holds that

h1(z) = f(Az + β)

≥ f(Ay + β) + 〈g1, Az + β − (Ay + β)〉
= f(Ay + β) + 〈g1, A(z − y)〉
= h(y) + 〈AT g1, z − y〉,

which shows that AT g1 ∈ Rn is a subgradient of h1 at the vector y.
Let g2 ∈ Rn be a subgradient of f at the vector y ∈ Rn, i.e., f(z) ≥ f(y) + 〈g2, z − y〉
for all z ∈ Rn. Thus, for all z ∈ Rn it holds that

h2(z) = a · f(z) + b

≥ a(f(y) + 〈g2, z − y〉) + b

= af(y) + b+ 〈a · g2, z − y〉
= h2(y) + 〈a · g2, z − y〉.

If we apply this result with A = V −1, β = −V −1t and a = αpd, b = αpn, and restrict
the subgradient to its �rst m coordinates we are able to give an explicit expression of a
subgradient of the function F .

Lemma 7.2.7. For m,n ∈ N, m ≤ n, a subgradient at the vector y ∈ Rm of the function

F : Rm → R, x 7→ αpd‖V
−1((xT , 0n−m)T − t)‖pp − αpn,

where V ∈ Rn×n is nonsingular, t ∈ Rn, αn, αd ∈ N and 1 < p < ∞, is given by the
vector αpdg ∈ R

m de�ned by

g = ((V −1)T ḡ){1,...,m},

where ḡ ∈ Rn is de�ned by

ḡi = sign([V −1(y − t)]i) · |[V −1(y − t)]i|p.

Using this explicit expression of the subgradient, we are able to give an upper bound
on its length. In the following we denote by x{1,...,m} ∈ Rm the vector in Rm which
consists of the �rst m coordinates of the vector x ∈ Rn.
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Lemma 7.2.8. Let y ∈ B̄(2)
m (0, R) ⊆ Rm. Let V ∈ Qn×n be nonsingular, t ∈ Qn, αn,

αd ∈ N, 1 < p <∞. Let g ∈ Rm de�ned by g = [(V −1)T ḡ]{1,...,m} where ḡ ∈ Rn is given
as ḡi := sign([V −1(y − t)]i)|[V −1(y − t)]i|p, 1 ≤ i ≤ n. Then

‖αpdg‖2 ≤ m ·
(
αdnS

2R
)p+1

where S is an upper bound on the size of V −1 and t.

Proof. Since ‖g‖2 ≤ m ·max{|gi||1 ≤ i ≤ m}, it is enough to compute an upper bound
on the coe�cient of the vector g.
If V −1 = (vij)i,j ∈ Qn×n and t = (ti)i ∈ Qn, the k-th coe�cient, 1 ≤ k ≤ n, of the
vector V −1(y − t) is given by

|[V −1(y − t)]k| ≤
n∑
j=1

|vkj · (yj − tj)|.

Since the coe�cients of V −1 and t are at most S and since each coe�cient of y is at most
R (in absolute values), we obtain

|[V −1(y − t)]k| ≤ n · S(R+ S) ≤ nRS2.

Hence, each coe�cient of the vector ḡ is at most

|gi| ≤ (nRS2)p.

With the same argumentation, we obtain that each coe�cient of the vector g is at most

|gi| ≤ n · S(nRS2)p ≤ (nS2R)p+1.

Using this upper bound together with Lemma 7.2.4 and the upper bound of a radius
of a circumscribed Euclidean ball, we get the following lower bound on the volume of
B

(p,V )
m,n (t, α).

Lemma 7.2.9. Let B(p,V )
m,n (t, α) be an `p-body where t ∈ Rn, V ∈ Qn×n is nonsingular,

α ∈ Q+ and 1 < p <∞.
If B(p,V )

m,n (t, α) contains an integral vector, its volume is at least

volm(B(p,V )
m,n (t, α)) ≥

(
S2(n2+2)m2n2‖V ‖2

)−m(p+1)
· volm(B(2)

m (0, 1)),

where S is an upper bound on the size of V −1 and t.

Proof. It follows from Lemma 7.2.1 that the convex body B(p,V )
m,n (t, α) is contained in a

Euclidean ball centered at the origin, whose radius is at most α
√
n‖V ‖2 + mS. Hence,

if we choose R := α
√
nm‖V ‖2 · S, the Euclidean ball B(2)

m (0, R) contains B(p,V )
m,n (t, α).
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Combining this with the result from Lemma 7.2.8, we obtain from Lemma 7.2.4 that
the volume of B(p,V )

m,n (t, α) is at least the volume of the Euclidean unit ball B(2)
m (0, 1)

multiplied with the factor(
S2n2p ·m(αdnS

2α
√
nm‖V ‖2 · S)p+1

)−m
≥
(
S2n2

mnS3αdα
√
nm‖V ‖2

)−m(p+1)
.

Since αd · α = αn ≤ S, the statement follows.

Realization of a separation oracle

Now we show that we are able to realize a separation oracle for `p-bodies. Again, we

use here that B(p,V )
m,n (t, α) can be characterized as {x ∈ Rm|F (x) < 0} if the function

F is de�ned as in (7.11). Since we are able to compute a subgradient of this function
e�ciently, we are able to compute a separating hyperplane e�ciently.

Lemma 7.2.10. Let f : Rn → R be a convex function and Cα := {x ∈ Rn|f(x) < α}
be the corresponding convex set for some α > 0. Let y ∈ Rn with y 6∈ Cα. Then, any
subgradient g ∈ Rn of f at y de�nes a hyperplane that strictly separates y from Cα, i.e.,
〈g, x〉 ≤ 〈g, y〉 for all x ∈ Cα.

The proof of this lemma follows directly from the subgradient inequality (7.12).

Proof. Let g ∈ Rn be a subgradient of f at y. Then for all x ∈ Rn we have

f(x) ≥ f(y) + 〈g, x− y〉

or equivalently

〈g, x〉 ≤ f(x)− f(y) + 〈g, y〉.

If x ∈ Cα we have f(x) < α and since y 6∈ Cα, we have f(y) > α. Hence, f(x)− f(y) <
0.

Thus, Lemma 7.2.7 leads to an e�cient realization of a separation oracle for an `p-
body.
Together with the results from Lemma 7.2.1 and Lemma 7.2.9, this shows how we can
realize the general rounding method for convex sets presented in Section 7.1 to obtain
an algorithm that computes an approximate Löwner-John ellipsoid for `p-bodies.

7.2.2. Description and analysis of the algorithm

Using the results from Section 7.2.1, we are able to present a concrete realization of
the rounding method for bounded convex sets presented in Section 7.1.3 that computes
approximate Löwner-John ellipsoids for `p-bodies B

(p,V )
m,n (t, α) which contain an integer

vector. Essentially, the rounding algorithm for `p-bodies is a strict realization of the
rounding algorithm for bounded convex sets presented in Algorithm 19.
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The input of the algorithm is an `p-body B
(p,V )
m,n (t, α) ⊆ Rm given by a nonsingular

matrix V ∈ Qn×n, a vector t ∈ Qn and parameters α > 0 and 1 < p <∞. In the initial-
ization, the algorithm computes a vector c0 ∈ Rm and a parameter Rout > 0 such that
B

(p,V )
m,n (t, α) ⊆ B̄

(2)
m (cout, Rout). This is done according to Lemma 7.2.1. The parameter

Rout together with a parameter rin, which is determined according to Lemma 7.2.9, are
used to determine an upper bound for the number of iterations.
After the initialization, the algorithm continues iteratively in the same way as the round-
ing method for bounded convex sets. The only di�erence is in step 3(b)ii), where the
algorithm computes a separating hyperplane directly according to Lemma 7.2.10 instead
of using a separation oracle. A detailed description of the algorithm is presented in
Algorithm 20.
The correctness of the algorithm follows directly from the previous statements.

Theorem 7.2.11. (Theorem 6.4.14 restated.)

Let B(p,V )
m,n (t, α) ⊆ Rm be an `p-body given by V ∈ Qn×n nonsingular, t ∈ Qn, α > 0 and

1 < p <∞. Given such a convex set together with a parameter γ with 0 < γ < 1/m, the
rounding method for `p-bodies, Algorithm 20, satis�es the following properties:

� The output of the algorithm is one of the following:

� Either it outputs that B(p,V )
m,n (t, α) does not contain an integer vector, or

� it outputs a 2/γ-approximate Löwner-John ellipsoid, i.e., a positive de�nite
matrix D ∈ Qm×m and a vector c ∈ Qm de�ning the ellipsoid E(D, c) such
that

E(D, c) ⊆ B(p,V )
m,n (t, α) ⊆ 2

γ
? E(D, c).

In this case, the size of the ellipsoid is at most 2O(n4)rO(n2p).

� The algorithm runs in polynomial space and the number of arithmetic operations is
at most

p

(1−mγ)2
(n · log2(r))O(1)2O(m).

Here, r is an upper bound on the size of the `p-body.

Proof. The correctness of the algorithm follows directly from Theorem 7.1.15 in combi-
nation with Lemma 7.2.1 and Lemma 7.2.9.

The number of arithmetic operations of the rounding method is mainly determined
by the size of the set N and the number of iterations. The number of iterations is
mainly in�uenced by the radius Rout of the circumscribed Euclidean ball and the lower
bound on the volume of the polytope rin. The circumscribed Euclidean ball has radius
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Algorithm 20 Rounding method for `p-bodies
Input:

� An `p-body B
(p,V )
m,n (t, α) given by V ∈ Qn×n nonsingular, a vector t ∈ Qn and a

parameter α ∈ Q, α = αn/αd > 0, and
� a parameter γ with 0 < γ < 1/m.

Output: An ellipsoid E ⊆ Rn given by a symmetric positive de�nite matrix D and a
center c, or the statement that B(p,V )

m,n (t, α) does not contain an integer vector.

1. Set

a) r ← max{size(V −1), size(t)},
b) Rout ← α

√
n‖V ‖2, and

c) rin ← (r2(n2+2)m2n2‖V ‖2)−m(p+1).

2. Set

a) N ← d2 (m+1)m
(1−mγ)2

(log2(Rout)− log2(rin)e,

b) D0 ← R2
out · Im, and c0 ←

∑m
i=1〈t, ei〉ei.

3. For 0 ≤ k ≤ N ,

a) compute a decomposition of the matrix Dk, Dk = QTkQk.

b) Check if there exists x ∈ {x/‖x‖2| x ∈ Zm ∩ B̄(2)
m (0, 2

√
m)\{0}} such that

c̃k ← ck + γQTk x 6∈ B(p,V )
m,n (t, α).

i. If no such element exists, output E((γ2/4) ·Dk, ck).

ii. Otherwise, compute

a← ((V −1)T g){1,...,m} ∈ Rm,

where gi ← sign([V −1((0n−m, c̃Tk )T − t)]i) ·
∣∣[V −1((0n−m, c̃Tk )T − t)]i

∣∣p
for 1 ≤ i ≤ n and set

ck+1 ← ck −
1−mγ
m+ 1

· Dka√
aTDka

and

Dk+1 ←
m2(1− γ2)

m2 − 1

(
Dk −

2

m+ 1
· 1−mγ

1− γ
· Dka(Dka)T

aTDka

)
.

4. Output that B(p,V )
m,n (t, α) does not contain an integer vector.
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Rout = α
√
n‖V ‖2. Since the spectral norm of a matrix is smaller than ‖V ‖2 ≤ n ·

max{|vi,j ||1 ≤ i, j ≤ n} and we obtain

Rout ≤ αn3/2 size(V ).

The size of the matrix V is at most

nn/2 size(V −1)n(n−1) ≤ nn/2rn(n−1),

since r is an upper bound on the size of V −1. Since r is also an upper bound on the
parameter α, we obtain

Rout ≤ n(n+3)/2rn(n−1)+1 ≤ r4n2
. (7.13)

The lower bound on the volume of the `p-body is given by the parameter

r−1
in =

(
r2(n2+2)m2n2‖V ‖2

)(p+1)m
.

With the same argumentation as above, we obtain

r−1
in ≤

(
r2(n2+2)m2n2nn/2 · rn(n−1)

)(p+1)m
(7.14)

≤
(
r2(n2+2)+4+n+n2

)(p+1)m

≤
(
r10n2

)(p+1)m
.

This shows that the number of iterations is at most

N ≤ 2
m(m+ 1)

(1−mγ)2
log2(Rout · r−1

in ) + 1

≤ 2
m(m+ 1)

(1−mγ)2
· log2(r4n2 · r10n2m(p+1)) + 1

≤ 2
m(m+ 1)

(1−mγ)2
· log2(r11n2m(p+1)) + 1

≤ (p+ 1)
nO(1)

(1−mγ)2
log2(r).

In each iteration we need to check for each element x from the set N , whether the
vector ck + γQTk x γ · x is contained in the `p-body B

(p,V )
m,n (t, α). Since |N | ≤ 24m, as we

have shown in Lemma 7.1.6, this can be done using nO(1)2O(m) arithmetic operations.
The other operations are standard matrix operations. Hence, we obtain the following
upper bound for the number of arithmetic operations used by the algorithm

p+ 1

(1−mγ)2
(n · log2(r))O(1)2O(m).
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7. Computation of approximate Löwner-John ellipsoids

According to Theorem 7.1.18 we can assume that the algorithm runs in polynomial space
and that the size of each computed instance Ek is at most 2O(n4)(Rout · r−1

in )O(1). Using
(7.13) and (7.14), we obtain

2O(n4)
(
r4n2 · r10n2m(p+1)

)O(1)
= 2O(n4)rO(n3p).

7.3. A rounding method for polytopes

The general rounding method for bounded convex sets can also be used to compute a
2/γ-approximate Löwner-John ellipsoid for full-dimensional polytopes for some param-
eter 0 < γ < 1/n. As polytopes can be characterized as the intersection of �nitely
many halfspaces, we are even able to improve the general rounding method in this spe-
cial case. This leads to an algorithm originally developed from Go�n and Lenstra,
see [Gof84], [Len83]. In this section, we will describe this algorithm that computes a
1/γ-approximate Löwner-John ellipsoid and whose number of arithmetic operations is
polynomial in the dimension, in the number of constraints and logarithmic in the size of
the polytope. In contrast to the class of `p-bodies, we can guarantee that the algorithm
computes an approximate Löwner-John ellipsoid.

We observe that it is important that the number of arithmetic operations is poly-
nomial in the number of constraints de�ning the polytope. For example, if we con-
sider the unit ball of the `1-norm, then this ball can be described as the polytope
{x ∈ Rn|〈x, e〉 ≤ 1 and 〈x, e〉 ≥ −1 for all e ∈ {1,−1}n} using 2n+1 constraints. Hence,
in this case we obtain an algorithm which is single exponential in the dimension.

Before we describe how we modify the rounding method, we �rst describe how we
realize a separation oracle for polytopes. Furthermore we show how for a given polytope
we can compute a circumscribed Euclidean ball and a lower bound on its volume.

7.3.1. Properties of polytopes

In the following we always assume that we are given a full-dimensional polytope P ⊆ Rn

given by a set of integral constraints ai ∈ Rn, 1 ≤ i ≤ s, together with a set of parameters
{β1, . . . , βs} ⊆ N,

P = {x ∈ Rn|〈ai, x〉 ≤ βi for 1 ≤ i ≤ s}.

Separating hyperplanes for polytopes

Since we assume that the polytope is given by a set of constraints described as above,
the computation of separating hyperplanes is trivial. Every vector y ∈ Rn which is not
contained in the polytope violates at least one constraint, i.e., there exists an index i0,

228



7.3. A rounding method for polytopes

1 ≤ i0 ≤ s, such that 〈ai0 , y〉 > βi0 . This constraint de�nes a hyperplane that separates
y from the polytope P .

In Section 2.2.3 of Chapter 2, we considered some properties of polytopes. We can use
these results obtained there to determine the corresponding parameters for the rounding
method.

Properties of polytopes

In Lemma 2.2.20 in Chapter 2, we have seen that a full-dimensional polytope given by
integral constraints is contained in a Euclidean ball with radius Rout = n(n+1)/2rn cen-
tered at the origin, where r is an upper bound on the size of the polytope.

Furthermore, we have shown in Chapter 2 a lower bound for the volume of symmetric
full-dimensional polyhedra, see Lemma 2.2.17. Since we want to construct an algo-
rithm that computes an approximate Löwner-John ellipsoid also for a non-symmetric
full-dimensional polytope, we need to generalize this result. To compute a lower bound
for the volume of a non-symmetric full-dimensional polytope, the idea is to construct
a simplex which is fully contained in the polytope. Then, the volume of this simplex
provides a lower bound on the volume of the polytope.

Lemma 7.3.1. Let P ⊆ Rn be a full-dimensional polytope given by s integral inequalities
〈ai, x〉 ≤ βi, where ai ∈ Zn, βi ∈ Z for 1 ≤ i ≤ s, i.e.,

P = {x ∈ Rn|〈ai, x〉 ≤ βi for 1 ≤ i ≤ s} = {x ∈ Rn|ATx ≤ b},

where A is the matrix which consists of the columns ai and β := (β1, . . . , βs)
T ∈ Zs.

Then the volume of the polytope P is at least

voln(P ) ≥ 2−n
2
n−n(n+1)/2 · r−n(n+1),

where r is the size of the polytope.

Proof. Since P is a full-dimensional polytope, it contains n+1 a�ne independent vertices
{v0, . . . , vn}. The convex hull of these vertices is a simplex, which is completely contained
in P , that means

voln(P ) ≥ voln(conv(v0, v1, . . . , vn)).

The volume of this simplex is given by

1

n!

∣∣∣∣det

(
1 . . . 1
v0 . . . vn

)∣∣∣∣ .
For each vertex vi, 0 ≤ i ≤ n, there exists a submatrix Ai of AT such that Aivi = di,
where di is the vector which consists of the corresponding coe�cients of the vector b.
Using Cramer's Rule, the j-th coe�cient of vi is of the form

vij =
det(Aij)

det(Ai)
,
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7. Computation of approximate Löwner-John ellipsoids

where Aij is the matrix Ai where the j-th column is replaced by di. Using this, we get(
1 . . . 1
v0 . . . vn

)
=

1∏n
i=1 det(Ai)

(
det(A0) . . . det(An)

det(A0) · v0 . . . det(An) · vn

)
.

The matrix on the right has integral coe�cients. Hence, the determinant of this matrix
is at least 1,∣∣∣∣det

(
1 . . . 1
v0 . . . vn

)∣∣∣∣ =
1∏n

i=1 | det(Ai)|

∣∣∣∣det

(
det(A0) . . . det(An)

det(A0) · v0 . . . det(An) · vn

)∣∣∣∣
≥ 1∏n

i=1 | det(Ai)|
.

Using the upper bound for the determinant from Claim 2.2.18 in Chapter 2, we get

|det(Ai)| ≤ nn/2 size(Ai)
n ≤ nn/2rn

and

1

n!

∣∣∣∣det

(
1 . . . 1
v0 . . . vn

)∣∣∣∣ ≥ 1

n!

(
n∏
i=0

nn/2rn

)−1

≥ 1

n!

(
nn/2rn

)−(n+1)
.

Using n! ≤ 2n
2
, see Section A.0.3 in the Appendix, we get the following lower bound for

the volume of the polytope

voln(P ) ≥ 2−n
2 · n−n(n+1)/2 · r−n(n+1).

7.3.2. Description and analysis of the algorithm

Obviously, it is possible to perform the algorithm that computes approximate Löwner-
John ellipsoids for polytopes in the same way as the algorithm that computes approximate
Löwner-John ellipsoids for `p-bodies. For polytopes, it is even possible to improve the
approximation factor of the computed approximate Löwner-John ellipsoid. With these
improvements, we are able to compute an approximate Löwner-John ellipsoid with ap-
proximation factor 1/γ in polynomial time instead of computing an approximate Löwner-
John ellipsoid with approximation factor 2/γ in single exponential time.

Since a polytope is the intersection of �nitely many halfspaces, we are able to check
e�ciently whether the shrinked ellipsoid γ ? E is contained in the polytope P . Suppose
the polytope P is given by s integral inequalities 〈ai, x〉 ≤ βi, where ai ∈ Zn, βi ∈ Z
for 1 ≤ i ≤ s. Then, the ellipsoid γ ? E is contained in P if it is contained in all the
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7.3. A rounding method for polytopes

halfspaces {x ∈ Rn|〈x, ai〉 ≤ βi}. That means, for all 1 ≤ i ≤ s, it is su�cient and
necessary that max{〈ai, x〉|x ∈ γ ? E} ≤ βi, that means

γ ? E ⊆ P if and only if max{〈ai, x〉|x ∈ γ ? E} ≤ βi for all 1 ≤ i ≤ s.

The linear function 〈ai, x〉 has the maximum value 〈ai, x〉+ γ
√
aTi Dai over γ ? E, as we

have seen in Lemma 6.4.4 in Chapter 6. Hence, the ellipsoid γ ? E is contained in the

polytope E if and only if 〈ai, x〉+ γ
√
aTi Dai ≤ βi for all 1 ≤ i ≤ s, or equivalently if

〈ai, x〉 ≤ βi − γ
√
aTi Dai for all 1 ≤ i ≤ s.

Geometrically, this condition can be interpreted as follows: The ellipsoid γ?E is contained
in the polytope if and only if the vector c is contained in the shrinked polytope

P ′ =

{
x ∈ Rn

∣∣∣∣〈ai, x〉 ≤ βi − γ√aTi Dai for all 1 ≤ i ≤ s
}
.

We will prove this result formally in the following lemma.

Lemma 7.3.2. Let P ⊂ Rn be a full-dimensional polytope given by s integral inequalities
〈ai, x〉 < βi, where ai ∈ Zn, βi ∈ Z for 1 ≤ i ≤ s, i.e., P = {x ∈ Rn|〈ai, x〉 ≤
βi for all 1 ≤ i ≤ s}. Let 0 < γ < 1/n. Let E = E(D, c) be an ellipsoid in Rn. If the
center of this ellipsoid is contained in the shrinked polytope

P ′ := {x ∈ Rn|〈ai, x〉 ≤ βi − γ
√
aTi Dai for all 1 ≤ i ≤ s} (7.15)

the ellipsoid γ ? E is contained in the polytope, γ ? E ⊆ P .

To prove the lemma, we can obviously argument as above, but we can also prove it
directly using the generalized Cauchy-Schwarz inequality.

Proof. We consider a vector x ∈ γ ? E = E(γ2D, c), i.e.,

(x− c)T (γ2D)−1(x− c) ≤ 1 or (x− c)TD−1(x− c) ≤ γ2. (7.16)

We will show that such a vector x satis�es all s constraints de�ning the polytope P .
Let 1 ≤ i ≤ s. Using the generalized Cauchy-Schwarz-inequality for symmetric positive
de�nite matrices, see Lemma 2.2.5 in Chapter 2, we obtain

〈x, ai〉 = 〈x− c, ai〉+ 〈c, ai〉 ≤
√

(x− c)TD−1(x− c) ·
√
aTi Dai + 〈c, ai〉.

Since x is an element from the ellipsoid γ ?E, (7.16), and since the vector c is contained
in the polytope P ′ de�ned in (7.15), this is at most

〈x, ai〉 ≤
√
γ2 ·

√
aTi Dai + βi − γ

√
aTi Dai = βi.
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7. Computation of approximate Löwner-John ellipsoids

Now, we are able to present a detailed description of the algorithm that computes
an approximate Löwner-John ellipsoid for full-dimensional polytopes. As in the general
rounding method for convex sets, the algorithm computes in the initialization step a
radius Rout such that P ⊆ B̄

(2)
n (0, Rout) according to Lemma 2.2.20 in Chapter 2. This

ball is chosen as the initial ellipsoid. After this, the algorithm works iteratively. Given
an ellipsoid E(Dk, ck), the algorithm considers a shrinked polytope

P ′ = {x ∈ Rn|〈x, ai〉 ≤ βi − γ
√
aTi Dkai for all 1 ≤ i ≤ s}

and it checks if the center ck of the ellipsoid is contained in this polytope. If this is the
case the ellipsoid γ ? E(Dk, ck) is contained in the polytope as we have seen in Lemma
7.3.2.
Otherwise, there exists an index i0 such that the condition is violated, i.e., 〈ck, ai0〉 >

βi0 − γ
√
aTi0Dk, ai0 . For such an index, the algorithm considers the intersection of the

ellipsoid Ek and the halfspace {x ∈ Rn|〈ai0 , x〉 ≤ 〈ck, ai0〉+γ
√
aTi0Dkai0} and constructs

an ellipsoid Ek+1 which contains this intersection according to the construction in Sec-
tion 7.1.2. A detailed description of the algorithm is given in Algorithm 21.

The rounding method for polytopes is a variant of the rounding method for bounded
convex sets, but we are not able to transfer the results directly since we use another
criterion to decide whether we have already found an approximate Löwner-John ellipsoid.
Especially, we need to show that we can construct a shallow cut if we have not found an
approximate Löwner-John ellipsoid.
In the next lemma, we state the main properties of the algorithm. We show that each
ellipsoid constructed by the algorithm satis�es the property that it contains the polytope.
Additionally, we show that the output of the algorithm is an approximate Löwner-John
ellipsoid.

Lemma 7.3.3. Let 0 < γ ≤ 1/n. Let P ⊆ Rn be a full-dimensional polytope given
by s integral inequalities 〈ai, x〉 ≤ βi, where ai ∈ Zn, βi ∈ Z for 1 ≤ i ≤ s, i.e.,
P = {x ∈ Rn|〈ai, x〉 ≤ βi for all 1 ≤ i ≤ s}. Then, the rounding algorithm for polytopes,
Algorithm 21, satis�es the following properties:

� Each ellipsoid Ek constructed by the algorithm contains the polytope, P ⊆ E(Dk, ck)
for all k ≥ 0.

� The output of the algorithm is a 1/γ-approximate Löwner-John ellipsoid E of P ,
that means

E ⊆ P ⊆ (1/γ) ? E.

Proof. First, we show that every ellipsoid which is constructed by the algorithm contains
the polytope P . We do this by induction in the same way as in the proof of Lemma
7.1.13 in Section 7.1.
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Algorithm 21 Rounding method for polytopes
Input:

� A full-dimensional polytope de�ned by s constraints 〈ai, x〉 ≤ βi, where ai ∈
Zn, βi ∈ Z, 1 ≤ i ≤ s, and

� a parameter γ with 0 < γ < 1/n.

Output: An ellipsoid E ⊆ Rn given by a symmetric positive de�nite matrix D and a
center c.

1. Set r ← max{size(ai), size(βi)|1 ≤ i ≤ s}.

2. (Initialization)
Set

a) Rout ← n(n+1)/2rn,

b) N ← d2(n+ 1)3n (log2(Rout) + (n+ 1) log2(2nr))e and
c) D0 ← R2 · In and c0 ← 0.

3. For 0 ≤ k ≤ N , check if there exists an index i0, 1 ≤ i0 ≤ s such that

〈ck, ai0〉 > βi0 − γ
√
aTi0Dkai0 .

a) If no such inequality exists, output E(γ2Dk, ck).

b) Otherwise, set

ck+1 ← ck −
1− nγ
n+ 1

Dkai0√
aTi0Dkai0

and

Dk+1 ←
n2(1− γ2)

n2 − 1

(
Dk −

2(1− nγ)

(n+ 1)(1− γ)

Dkai0(Dkai0)T

aTi0Dkai0

)
.

In the initialization, the algorithm computes the parameter Rout as a radius of a circum-
scribed Euclidean ball, P ⊆ B̄(2)

n (0, Rout) = E(R2
outIn, 0), see Lemma 2.2.20.

If we consider an index k > 0 such that P ⊆ E(Dk, ck), the algorithm constructs the
ellipsoid Ek+1 = E(Dk+1, ck+1) only if there exists an index i0, 1 ≤ i0 ≤ m, such that

〈ck, ai0〉 > βi0 − γ
√
aTi0Dkai0 .

In this case, every element x ∈ P satis�es

〈ai0 , x〉 ≤ βi0 < 〈ck, ai0〉+ γ
√
aTi0Dkai0 .
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That means P is contained in the halfspace{
x ∈ Rn|〈ai0 , x〉 ≤ 〈ck, ai0〉+ γ

√
aTi0Dkai0

}
.

Since we assume that P is also contained in the ellipsoid E(Dk, ck), we have

P ⊆ E(Dk, ck) ∩
{
x ∈ Rn|〈ai0 , x〉 ≤ 〈ck, ai0〉+ γ

√
aTi0Dkai0

}
.

According to Theorem 7.1.8 with the parameter ζ = γ, the ellipsoid E(Dk+1, ck+1) is
de�ned such that it contains the intersection of the ellipsoid Ek with the halfspace,

Ek ∩ {x ∈ Rn|〈ai0 , x〉 ≤ 〈ck, ai0〉+ γ
√
aTi0Dkai0} ⊆ Ek+1,

which shows that P ⊆ Ek+1. The algorithm terminates after k iterations if the center ck
of the ellipsoid Ek is contained in the shrinked polytope P ′, that means if

〈ck, ai〉 ≤ βi − γ
√
aTi Dkai for all 1 ≤ i ≤ s. (7.17)

As we have seen in Lemma 7.3.2, this guarantees that γ ? Ek ⊆ P . Altogether, the
ellipsoid Ek satis�es

γ ? Ek ⊆ P ⊆ Ek.

The algorithm outputs the symmetric positive de�nite matrix D = γ2Dk and the vector
c = ck. The ellipsoid E(D, c) de�ned by this matrix D and this vector c satis�es

E(D, c) = E(γ2Dk, ck) ⊆ P ⊆ E(Dk, ck) =
1

γ
? E(γ2Dk, ck) =

1

γ
? E(D, c).

Hence, the ellipsoid E(D, c) is a 1/γ-approximate Löwner-John ellipsoid.

It remains to show that the algorithm really outputs an ellipsoid. This can be done
analogously to the general rounding method for bounded convex sets using that the
volume of each constructed ellipsoid decreases by a single exponential factor. In Lemma
7.3.1, we have seen that the volume of the polytope P is at least

voln(P ) ≥ 2−n
2
n−n(n+1)/2r−n(n+1) (7.18)

≥ 2−n
2
n−n(n+1)/2r−n(n+1) voln(B

(2)
n (0, 1))

voln(B
(∞)
n (0, 1))

= 2−n(n+1)n−n(n+1)/2r−n(n+1) voln(B(2)
n (0, 1))

≥ (2nr)−n(n+1) voln(B(2)
n (0, 1)).

Hence, rin = (2nr)−(n+1) provides a lower bound on the volume of the polytope P .
Consequently, in the initialization step of the algorithm, the upper bound for the number
of iterations is chosen as

N = 2(n+ 1)3n (log2(Rout) + (n+ 1) log2(2nr)) ,
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where Rout is the radius of the circumscribed Euclidean ball, which de�nes the initial
ellipsoid.
Combining these results, we obtain the following theorem.

Theorem 7.3.4. (Theorem 6.4.12 restated.)
Given a full-dimensional, bounded polytope P = {x ∈ Rn|〈ai, x〉 ≤ βi for all 1 ≤ i ≤ s}
with ai ∈ Zn, βi ∈ Z, and a parameter γ with 0 < γ < 1/n, the rounding method
for polytopes, Algorithm 21, computes a 1/γ-approximate Löwner-John ellipsoid, i.e., a
positive de�nite matrix D ∈ Qn×n and a vector c ∈ Qn de�ning the ellipsoid E(D, c)
such that

E(D, c) ⊆ P ⊆ 1

γ
? E(D, c).

The algorithm runs in polynomial space and the number of arithmetic operations of the
algorithm is

(ns · log2(r))O(1)

where r is the size of the polytope. The size of the approximate Löwner-John ellipsoid is
at most

2O(n4)rO(n).

Proof. As we have seen in Lemma 7.3.3, if the algorithm outputs an ellipsoid E(D, c)
then this ellipsoid satis�es

E(D, c) ⊆ P ⊂ 1

γ
? E(D, c).

So far, we have not shown that it is guaranteed that the algorithm outputs something.
Hence, we assume that the algorithm constructs all N ellipsoids EN . In this case the
algorithm would not output anything. The number of iterations of the algorithm is N ,
where

N ≥ 2n(n+ 1)3(log2(Rout) + (n+ 1) log2(2nr)).

We have seen in (7.18) that

voln(P ) ≥ (2nr)−n(n+1) voln(B(2)
n (0, 1)).

Hence, it follows from Lemma 7.1.14 that after N iterations the volume of the ellipsoid
constructed in the N -th iteration is less than the volume of the polytope,

voln(EN ) < voln(P ).

This is a contradiction to the fact that each ellipsoid constructed by the algorithm con-
tains the polytope as we have proven in Lemma 7.3.3.
The number of arithmetic operations of the algorithm is dominated by the number of
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iterations, which is at most N . In each iteration, we need to check s constraints. This
can be done using at most nO(1) arithmetic operations. Also the rest of the computa-
tions can be done using at most (n · s)O(1) arithmetic operations. Hence, we obtain the
following upper bound for the number of arithmetic operations of the rounding method
for polytopes (

2n(n+ 1)3(log2(Rout) + (n+ 1) log2(2nr))
)

(sn)O(1)

=
(

2n(n+ 1)3(log2(
√
nnn/2rn) + (n+ 1) log2(2nr))

)
· (sn)O(1)

≤ (ns log2(r))O(1).

As we have seen in Theorem 7.1.18, we can assume that the algorithm runs in polynomial
space and that the size of each constructed instance Ek = E(Dk, ck) is at most

2O(n4)(Routr
−1
in )O(1).

Since Rout = n(n+1)/2rn and r−1
in = (2nr)n+1, this is upper bounded by

2O(n4)(n(n+1)/2rn(2nr)n+1)O(1) = 2O(n4)rO(n).

7.4. Discussion of the results

In this chapter, we have described algorithms that compute approximate Löwner-John
ellipsoids for the class of `p-bodies with 1 < p < ∞ and for polytopes. Hence, our as-
sumptions made in Chapter 6 are satis�ed and there exists a deterministic polynomially
space bounded algorithm that solves the lattice membership problem for `p-balls and
polytopes. As we have seen in Theorem 4.3.13 in Chapter 4 this leads to a deterministic
polynomially space bounded algorithm that solves the closest vector problem with re-
spect to an `p-norm, 1 < p <∞, or a polyhedral norm, e.g. the `1-norm or the `∞-norm.

We presented the algorithms by using a general framework which computes for a
bounded convex set given by a separation oracle a 2/γ-approximate Löwner-John el-
lipsoid for some parameter 0 < γ < 1/n. The number of arithmetic operations and the
number of calls to the oracle are polynomial in 1/γ, but single exponential in the di-
mension n. This general framework could be adapted to the class of `p-bodies such that
we obtain an algorithm which computes a 2/γ-approximate Löwner-John ellipsoid for a
given `p-body, where the number of arithmetic operations of the algorithm is polynomial
in 1/γ, logarithmic in the size of the `p-body, and single exponential in the dimension.

With regard to the approximation factor, this result is almost optimal, since for every
full-dimensional bounded convex set, there exists a n-approximate Löwner-John ellipsoid
as it is proven in John's lemma. On the other hand, an improvement of the running time
would be desirable but seems to be impossible using the techniques presented in Section
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7.1. For our applications, the single exponential running time is negligible, since the run-
ning time of the lattice membership algorithm is mainly in�uenced by the approximation
factor of the computed Löwner-John ellipsoid.

That it is possible to improve our result for concrete classes of bounded convex sets
show the results of Go�n and Lenstra, which we presented in Section 7.3. They showed
that for the class of polytopes, there exists a polynomial time algorithm that computes
for a given polytope in Rn an approximate Löwner-John ellipsoid with approximation
factor O(n).
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A. Appendix

A.0.1. Hadamard's inequality

Let B = [b1, . . . , bm] ∈ Rn×m with b1, . . . , bm linearly independent. Then we have

√
BT ·B ≤

m∏
i=1

‖bi‖2

where equality holds if and only if the vectors b1, . . . , bm are orthogonal. In particular,
if B ∈ Rn×n, then

|det(B)| ≤
n∏
i=1

‖bi‖2.

A.0.2. Chebyshev's inequality

Theorem A.0.1. (Chebyshev's inequality)
Let X be a random variable of �nite expectation and δ > 0 �xed. Then

Pr[|X − E(X)| ≥ δ] ≤ Var(X)

δ2
.

For a proof of this inequality see for example [CA06].

A.0.3. The Gamma function and Stirling's formula

For x ∈ R, x > 0, the Gamma Function is de�ned as

Γ(x) :=

∫ ∞
0

e−ttx−1 dt .

For n ∈ N, we have γ(n) = (n − 1)! and one can show that for all x ∈ R we have
Γ(x+ 1) = x · Γ(x).
Using Stirling's formula, we obtain that

Γ(x) =

√
2π

x

(x
e

)x
eν(x),

where ν is a function satisfying 0 < ν(x) < 1/(12x) for all x ∈ R.
√

2πn
(n
e

)n
< n! < e1/(12n)

√
2πn

(n
e

)n
.
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