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I     SUMMARY 
 
 Today, in order to gain competitive advantage, manufacturers around the world 

make a combined use of innovative production technologies and production 

processes and methods. Technologies like optimization and discrete-event 

simulation are used to test the effects of alternative policies, which help to organize 

manufacturing operations. However, an integrated platform for simulation and 

optimization algorithms within which the user could generate and control the effects 

of the alternative policies is missing. Alternative control policies become even more 

relevant today as there is a need to keep complex manufacturing systems stable on 

the occurrence of execution exceptions and at the same time meeting optimization 

goals. 

 The work discussed in this report complements the work in the areas of 

combination of simulation and optimization technologies. The system developed is 

a predictive-reactive system which combines both the technologies. The predictive 

part determines the feasible schedule to be used for a parallel machines flow shop 

(PMFS) – a flexible manufacturing system, in a predictive way and serves as a 

starting point for the analysis carried out later. It considers a mix of fixed and 

flexible part flows, delivery constraints, buffer constraints, part flow constraints, and 

optimization constraints during its computations. This schedule is generated using a 

combination of rule-based simulation and optimization: using first the optimization 

algorithm to compute a rough plan, followed by using a rule based simulation 

system to locally fine tune the plan, and obtain the final schedule. The schedule 

generated by this predictive system, when implemented in the real world system is 

adapted by the reactive part of the system by generating alternative policies on the 

occurrence of system exceptions. These new alternative policies constitute the 

significant processes in the real world for a corresponding exception. In the reactive 

phase, alternative policies too are generated using a combination of simulation and 

optimization. The optimization algorithm brings the deviation from the predictive 

schedule back to its original trajectory as much as possible. In other words, it tries 

to change as less as possible. It does this while considering and solving adaptation 

synchrony problems (the problem that computations and changes in the real-world 

take time, while the real-world continues to evolve leading to differing states being 

used at different times) that may occur on the shop floor due to the change (or the 

new schedule). The simulation based system also predicts if there will be problems 

in the near future due to the rescheduling action and tries to generate solutions 

based on rules, which make sure that the future execution of the schedule in the 

real-world will be problem free. The final rescheduling solution is evaluated by the 

simulation system and then implemented in the real-world.  

 The predictive system is tested using several test configurations for the 



                                                                                                                            
                                                                                      

effectiveness of the rule-based simulation system and the optimization algorithm to 

meet optimization criteria and goals. For the reactive system, a quantitative analysis 

is made considering system performance, the characteristics of the exceptions, and 

the ability to meet the rescheduling aims.  

 Results obtained show that the predictive scheduling method of combining rule-

based simulation and optimization is promising as it provides unique insights on 

further improvement of performance measures of job finishing times, makespan and 

delivery times. The simulation assisted rescheduling system also resulted in 

additional performance measures of controlling deviations, which are well 

researched in this thesis as well as evaluating the rescheduling solution and solving 

adaptation synchrony problems. Definite quantitative information on bringing the 

schedule back to its original trajectory as much as possible, its limits, and at the 

same time predicting effects of current changes and solving them before hand were 

obtained. It is seen that the methods developed are effective. The overall approach 

suggested in this report is based on the integration of technologies like optimization 

and discrete-event simulation, thus making it unique in the application of today’s 

industrial problems. 
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General notations: 

t         = Time 

Schpredictive = Predictive schedule 

Schreactive   = Reactive schedule 

jF        = Flow time or make-span 

F        = Mean flow time 
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tDur            = Duration of disturbance 

makespan
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Notations for stages and machines: 

J    = Number of stages in the flowshop 

jm    = Number of machines at stage – j 

jM    = {1,2,......, jm }: Set of machines at stage – j 

m
kja ,   = Ready / available time for machine – k at stage – j 

jj MM ⊆
´   = Set of machines at stage – j available at time t (that is m

kja , ≤  t) 

m
jk    = Machine k, with id m, maintained at stage j 

tStk   = Time when disturbance starts on machine k 

tEndk   = Time when disturbance ends on machine k 



                                                                                                                            
                                                                                      

i
tAv

tl   = Tool availability time for job i 

Numttl   = Number of tools for which availability is set 

ti    = Material availability time for job i 

cBf   = Buffer capacity 

ccBf   = Current\Remaining buffer capacity 

CNBf   = Current number of jobs in buffer 

m´   = Selected machine 

m
kBNa ,   = Ready time for machine k on critical stage 

si,BN  = Earliest start time for job i on the critical stage 

 

Notations for jobs: 

Spi    = Special job 

ci    = Job currently processed on a machine 

R    = Special job routing in system 

I    = {1,2,.....,n}: set of jobs to be scheduled 

II ⊆0    = Set of jobs already scheduled 

0III −=
´  = Set of jobs not scheduled yet 

jia ,   = Time when job – i becomes available at stage – j (“ready time”) 

jip ,   = Processing time for job – i at stage - j 

jiq ,   = Work remaining (“tail”) for job – i at stage – j 

jis ,        = Earliest start time for job – i at stage – j  

Bf

jip ,        = Processing time for job – i which is currently in buffer on stage – j  

db ′        = Set of jobs on machine k on stage j 

db ′′        = Set of jobs selected for rescheduling 

dt       = Delivery time 

I´´       = Jobs not yet scheduled from the list of standard jobs 

tm       = Time machine becomes free after processing its current job – i 
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Chapter 1   Introduction 
 
 

A major change in the 21st century has been the impact of globalization. 

Even small and medium-size enterprises have manufacturing facilities in countries 

other than their home country. In some instances, this is a complex network of 

facilities. In others it’s a single manufacturing subsidiary. Furthermore, non-core 

and core operations are being outsourced to countries with cheap labour. The 

implications of this are the diversity of environments within which the production 

planning and control system must operate has increased and will continue to do so. 

Organizations are also getting more complex these days. This complexity is due to 

several factors like complex production systems, product variety and uncertainty in 

business processes. The customer on the other hand still remains king in the 

competitive manufacturing environment. The capabilities of manufacturing plus 

expectations of customers has led to increased pressure for both speed and 

variety. Customers are demanding more tailoring in the products that they order 

and want them faster than ever. Part of this is derived from the expectation of 

shortened product life cycles, while part is derived from customers wanting more 

individualized treatment. These relationships must be incorporated in the production 

planning and control systems of the firms.  

Efficient techniques for planning and replanning the entire supply chains to 

cope with the complexity and business dynamics are more and more apparent. 

Within the manufacturing and distribution supply chain, manufacturing scheduling 

and re-scheduling is one area, which will be vital to the success of the 

manufacturing organization. Especially, the day-to-day operations and the 

execution problems arising out of uncertain characteristics of the system have to be 

handled efficiently. Besides this today´s ERP software products do not offer the 

possibility to model in a detailed way the underlying production system. There 

exists a gap between detailed scheduling and the execution of this schedule on the 

shop floor. There seldom exists a feedback mechanism to apprehend execution 

problems.  

Simulation and optimization assisted planning and replanning of such 

systems becomes important as they offer the possibility to interactively analyze the 

system by testing the effect of execution exceptions and the resulting solutions 

without implementing them on the actual production system. This thesis addresses 

some aspects of combining simulation and optimization for scheduling and 

rescheduling of flexible manufacturing systems subject to several optimization 

constraints as well as meeting customer demands, whilst still addressing the 

questions of execution exceptions. 

 



                                                                                                                            
                                                                                            

 

Chapter 2   Problem areas addressed 
 
 
2.1 Introduction 

 

In the following sections, we address the specific problems and the sub-

problems that are addressed in this thesis one by one. First problem areas and 

issues in predictive and then reactive scheduling system are described. The 

chapter concludes with optimization objectives of this study, assumptions and some 

important definitions. In the next chapter, we outline the state of the art in these 

areas.  

 

2.2 Scheduling and re-scheduling of flexible production systems 

subject to execution exceptions  

 

As one could imagine there are several configurations of production 

systems, each with its own characteristics. In this report, we seek to address 

schedulinga and re-schedulingb of one such flexible production system configuration 

– the flexible flow shop or more specifically the flow shop with identical, parallel 

machines at one or more stages. This problem is a combination of the classical flow 

shop-scheduling problem and the flow shop with multiple and identical machines at 

one or more stages problem.  

 

2.2.1 Predictive scheduling of flexible production systems subject to known 

and unknown execution exceptions 

Predictive scheduling consists of computing a production schedule prior to 

execution in the real world. The problem of predictive scheduling can be further 

divided into sub problems as follows: 

 

2.2.1.1 Approaches to predictive scheduling – combining simulation and 

optimization 

There are several approaches of scheduling manufacturing systems. 

Discrete event simulationc and optimizationd algorithms are increasingly used due to  
 

a 
Scheduling, is defined as “specific overall assignment of resources on orders and the timed arrangement of the 

orders” , translated from Ten Hompel (2005).
 
 

b 
Re-scheduling, is defined as “scheduling anew at a time later than the earlier scheduling time” , reference 

[53]. 
c 

Discrete event simulation, is “the operation of an imitating system represented as a chronological sequence of 
events. Each event occurs  at an instant in time and marks a change of state in the system”, Banks (1998). 
d 

Optimization, is defined as “the study of problems in which one seeks to minimize or maximize a real function by 
systematically choosing the values of real or integer variables from within an allowed set. “, reference [53]. 



                                                                                                                            
                                                                                            

 

their relative simplicity in use and implementation. However, using purely simulation 

or purely optimization does not today address the complexity of existing 

manufacturing installations. For instance, pure simulation does capture all the 

detailed elements of the bigger system such as buffere sizes, forkliftsf, etc, but with 

the result that simulation itself does not optimize the system performance on factors 

like delivery time constraintsg,  make-spanh of the schedule to be computed and 

other known events in a single run. On the other hand, optimization algorithms do 

not usually encompass all the details of the system, but can optimize and consider 

constraints on a system consisting of standard production system elements, and 

are relatively faster in their computations. An approach to manage the problem of 

considering details, optimization goals and constraints all together would be to 

combine optimization algorithms and simulation. How to combine simulation with 

optimization using eM-Plant i simulation software to consider some broader system 

elements (like buffers) and the above issues is partly addressed in this thesis. 

 

2.2.1.2 Fixed and flexible material flow routings with and without delivery 

time constraints 

Flexible manufacturing systems also have the ability to machine 

components and products with or without flexibility in routing due to machining 

constraints and at the same time with or without delivery time constraints. Clearly, 

this adds to the complexity of the system and problem which is addressed by the 

research in this thesis. 

 

2.2.1.3 Inclusion of known and unknown events and exceptions 

In the predictive planning phase itself, several known events can occur 

which influence how the production schedule is computed. Examples are tools, 

materials, maintenances, and resource availabilities. Additional complexity is added 

to the flexible manufacturing system configuration to consider such events. Further, 

it is important that the predictive schedule is problem free – that it is evaluated 

sufficiently in advance that no execution exceptions will occur due to the computed 

schedule. 

 

2.2.2 Rescheduling (or Reactive scheduling) of flexible production systems 

subject to  known and unknown execution exceptions 
 

e 
Buffer, or temporary storage which can be placed between two production machines for containing parts, 

translated from Ten Hompel (2005). 
f 
Forklift, is a material handling equipment which transports parts from one place to the other in the factory floor, 

translated from Ten Hompel (2005). 
g 

Constraint, is defined as “a condition that a solution to an optimization problem must satisfy in order to be 
acceptable, reference [53] 
h 

Make-span, or flow-time is defined in section 2.3. 
i 
eM-Plant simulation software initially developed as SIMPLE++, Dangelmaier (1988). 



                                                                                                                            
                                                                                            

 

Despite advances in preventive maintainence techniques, exceptions do 

occur rarely during the execution of a predictive schedule. Reactive scheduling 

refers to the adaptation of the schedule currently under execution on the shop floor 

due to exceptions such as part rejection in process, tool failure on the machine, 

machine breakdown, and buffers are empty or full (system blockage) or generic 

exceptions like energy not available at a work station. The problems addressed in 

this area include: 

 

2.2.2.1 Approach to rescheduling – combination of simulation and 

optimization 

The issue of what approach to use for rescheduling for a given exception 

and its frequency of occuring also becomes important. Given the requirement that a 

fast response is expected, using pure simulation can take excessive times to 

evaluate all alternative rescheduling rules or simulation runs but can consider the 

detail system elements. On the other hand, pure optimization can compute global 

rough solutions, and shorten the solution computation time, but cannot usually com- 

pute a detailed system. The problem addressed here is how to combine simulation 

and optimization for rescheduling a system which is subject to exceptions 

infrequently using eM-Plant simulation software. 

 

2.2.2.2 Approach to rescheduling – when to reschedule ? 

When exactly to reschedule in the physical production system is the 

problem addressed here. Especially which point in time to reschedule considering a 

graceful transition from a current system state of the real production process is 

considered. This has the following facets. 

 

2.2.2.2.1 Real-Time Control issues for rescheduling – Adaptation  

  Synchrony 

Real-Time Control (RTC) pertains to a system or mode of operation 

in which computation is performed during the actual time that an external process 

occurs, in order that the computation results can be used to control, monitor, or 

respond in a timely manner to the external process. The external process can be 

characterized as each significant change from presupposed data. It can endanger 

an efficient or even a feasible execution of an existing schedule. This schedule is to 

be rescheduled using efficient techniques. Adaptation Synchrony define how the 

actual process continues during its modification (Bock (2005)). Production systems 

gain a certain momemtum once they are operational. When changes to a schedule 

are made in response to exceptions, the system may never (or should not) be 

stopped entirely – parts of the system may proceed to another state (especially in 

the case of flexible and parallel machines), and a conflict may arise due to using 



                                                                                                                            
                                                                                            

 

information from different states at different times during the change management 

process. 

 

     Figure 2.1 Real-world state evolution and interaction with rescheduling 

 

The problem is shown in Figure 2.1. As seen in the figure when the 

rescheduling computation starts, the data at the time of the exception was 

considered for computation. When the rescheduling computations and 

implementations would be finished (assuming we can determine the times required 

for computations and the time needed to implement a change physically), the real 

system has evolved to a new state (corresponding to data 2). In this analysis, the 

problem of synchronizing the computations when dealing with such issues is 

undertaken. 

 

2.2.2.3 Rescheduling method 

The rescheduling methods are further classified as: 

 

2.2.2.3.1  Deviation match-up with predictive schedule 

    In situations where manufacturing systems may operate (supplies of 

tools, materials, fixtures) on a just in time or just in sequence basis, or in 

environments where important resources such as material, tooling and fixturing are 
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delivered to the machine based on the initial schedule, it is essential that operation 

start times on each machine be adhered to as much as possible.  This means 

deviations caused to the operation start times for each job on each machine due to 

the exceptions, should be brought back to their planned trajectory as much as 

possible. This method of rescheduling addresses this question. There are two 

factors associated with this namely reducing starting time deviations and reducing 

seqence deviations of the jobs as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 2.2 Starting time deviation (devSt) 

 

1. Starting time deviation (devSt) 

 This is a very useful measure of the effectiveness of the re-scheduling 

algorithm. In this work, starting time deviation is measured by summing the 

absolute value of the differences in operation starting times between new and initial 

schedules as shown in Figure 2.2. This measure comprises two components:  

 

delay = the sum of the absolute value of positive differences in starting times, and 

rush = the sum of the absolute value of negative differences in starting times. 

Starting time deviation = delay + rush 

 

2. Sequence deviation (devSq) 

 Sequence deviations are defined as the number of jobs re-scheduled (re-

positioned) from their positions in the original schedule (Figure 2.3). This measure 

is critical if set-ups are prepared in advance based on the initial operation sequence 

on the machines.  
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 For instance, jobs may wait on pallets in a sequence queue, and tooling and 

fixturing may be planned in advance according to the original sequence. Thus, a 

sequence change will incur efforts in resequencing the queue, reallocating the 

pallets, and replanning the tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 2.3 Sequence deviation (devSq) 

 

This can be formulated mathematically as follows: Let n be the total number of jobs 

on the candidate machine selected for rescheduling jobs. After re-scheduling, the 

number of jobs re located to other positions (from their original position in the initial 

schedule) from among these n jobs becomes nr. If nr = 0, then there is no sequence 

deviation. The percentage deviation from the original schedule can then be written 

as [ ] 100×
n

nr
.  

As can be imagined, both deviations can occur at the same time. If 

sequence deviation occurs (because of rescheduling), starting time deviation may 

or may not occur. If it does, it will have to be computed as per the description 

above. In addition to this, other measures of performance, like make-span and 

delivery times, may be affected due to the consideration of these factors. 

 

2.2.2.3.2  Rescheduling as late as possible  

Manufacturing systems may also work on the basis that rescheduling 

immediately after the exception may not be possible, as it may require immediate 

attention and resources. In such a case, an alternative method of rescheduling is to 

change as late as possible in the operating shift, without affecting the overall 

makespan too much. How to reschedule as late as possible is addressed here. It 
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uses the factor of sequence deviation to measure its effectiveness.  

 

2.2.2.4 Estimating the impact of the rescheduling step on future execution 

of predictive schedule 

Rescheduling might solve execution problems temporarily, but it may 

also affect future execution of a schedule. As an example, a rescheduling step at 1 

pm, may cause problems at 2 pm, which when solved, may cause further problems 

at 4 pm. The question addressed in this is, how to assess the impact of a 

rescheduling step, and if there is an adverse impact, how to ascertain that we 

consider this impact in our computations of rescheduling for the initial exception.  

 

2.3 Optimization objectives 

 

  Both the predictive and reactive scheduling systems described in this report 

are designed to achieve the following key performance indicators (KPI). Schedules 

are generally evaluated by aggregate quantities that involve information about all 

jobs, resulting in one dimensional performance measures or KPI as we call them 

here. Measures of schedule performance are usually functions of the set of 

completion times in a schedule. For example, suppose that n jobs are to be 

scheduled. Aggregate KPI that are defined include the following: 

 

1. Make-span or Flow time ( jF ):  

 The amount of time n jobs spend in the system, which is written as,  

1== −= jnjj rCF , where nC  is time the last job is complete and leaves the system 

while jr  is the time the first job arrived in the system. 

 

2. Equipment utilization (%): (Available machine hours\Scheduled machine 

hours) x100  

 Since production schedules are obtained for a limited period (a time window), if 

the make-span is lowered, then within the same planning period, one could 

machine more jobs. Hence, a reduced make-span also results in better equipment 

utilization.                             

               

3. Average in-process inventory levels ( J ):  

 Besides flow time, one objective of scheduling is to maintain low inventory 

levels. Minimizing the inventory levels can be interpreted as minimizing the mean 

number of jobs in the system. In particular, the job sequence that minimizes the 

mean flow time will also minimize average in-process inventory (Baker (1974)). 



                                                                                                                            
                                                                                            

 

Whether the vantage point is one of optimizing customer service or one of 

minimizing in-process inventory levels, the important problem is to find a sequence 

that minimizes the mean flow time F .  

 

5.  Lateness ( jL ):  

 The amount of time by which the completion time of job j exceeds the time it is 

due: jjj dCL - = , where jC  is the time at which the processing of job j is finished 

and jd  is the point in time at which the processing of job j is due to be completed. 

Delivering customer products according to the promised delivery dates is already a 

crucial factor in make to ordera manufacturing environments. The aim of the 

processes developed in this thesis is to minimize the lateness as much as possible, 

during both the predictive and reactive scheduling steps. 

 

2.4 Assumptions used in the study 

 

The following assumptions are used in the study: 

1. The system configuration considered is the flow shop with multiple, identical 

machines at each stages problem. 

2. The number of jobs is known and fixed. No job, if in actual machining 

(processing) may be stopped before completion, unless an execution problem 

happens.  

3. Jobs are classified as special jobs and standard jobs. Standard jobs are the 

ones which do not have constraints on delivery times and which machines they 

use in the production system. Special jobs are further classified as the ones 

which have only delivery times, the ones which have only routing constraints 

(use of specific machines on each stage) and the ones with both delivery times 

and routing constraints.  

4. No two special jobs with similar or different routing can have the same delivery 

times.  

5. In any configuration of the problem, standard and special jobs are roughly 

equally distributed to form the total number of jobs in the problem.  

6. The arrival time, or release time, of all the jobs is known, is fixed or can be 

calculated. 

7. The processing times of the jobs are known and constant.  

8. Set-up times are independent of the job sequence and therefore are considered 

a part of processing time. 

9. All jobs follow the same stage sequence, i.e. jobs flow from left to right. 

 
a
 Make to order environments where products are manufactured only when the customer places a firm order. 



                                                                                                                            
                                                                                            

 

10. Re-entrant flows within the manufacturing system are not considered. 

11. Each job in the system is a unique entity, even though the job is composed of 

distinct operations, no two operations of the same job may be processed 

simultaneously. 

12. Each stage has jM  ≥ 1 identical machines: j = 1, 2,...., m. 

13. The flow shop consists of m ≥ 2 stages or levels. 

14. All machines are available at the beginning of the planning window and the 

machines are continuously available, unless the machine maintenance times 

are pre-planned. 

15. Schedule adaptation frequency is based on a execution problem oriented 

concept or event oriented concepts. 

16. Execution problems do not occur every few minutes in the execution of the plan. 

When execution problems seldom happen, the plan is to be adapted according.  

17. If there is an execution problem, the duration that the problem will last is known 

or can be estimated.  

18. In-process inventory is allowed and is maintained in the buffer queues which 

have limited capacities. 

19. For the purposes of rescheduling, each job is given equal priority. In other 

words, differences between jobs types are not made for rescheduling.  

 

2.5 Real Time Control (RTC) terminology used in the report 

 

Some specific terminology has been developed to advance the techniques 

of RTC (Bock (2005)) used throughout the rest of this thesis, especially in the 

section of rescheduling system development. Adaptation handling defines: 

1. Adaptation frequency – defining when an adaptation is realized.  

2. Adaptation synchrony – defining how the actual real process continues during 

its modification.  

3. Adaptation duration – defining the duration of the adaptation process. This 

policy will define the extent to which the adaptation is to be carried out.  

4. Adaptation technique – defining how the adaptation is realized.  

 

2.6 Structure of the report 

 

In this report, we discuss the state of the art in these areas namely, 

scheduling and re-scheduling for real-time control using approaches like simulation 

and optimization, followed by results of the state of the art, concepts and results for 

the developed approaches. The aim of the algorithms will be to work automatically 

and seek to optimize on key performance indicators. In chapter 3, we provide the 



                                                                                                                            
                                                                                            

 

state of the art on these problem areas, namely scheduling, rescheduling and the 

use of simulation and optimization in these areas. In chapter 4, we state the result 

of the state of the art. In chapter 5, detailed solutions and methods are described to 

solve the problems addressed in this chapter, using small examples where 

possible, which are validated using the software application developed in chapter 7 

and 8. Chapter 6 describes the synthesis of the total solutions. Chapter 7 describes 

the prototype software for the entire system including the system flow diagrams, 

how to start up the system and is explained with the help of an example. Chapter 8 

assesses the optimization and simulation approaches quantitatively with the help of 

case studies, including validation of the approaches and algorithms used. Chapter 9 

provides a discussion on the contributions of this thesis, conclusions from this study 

and presents further areas of research followed by acknowledgements and 

references. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                            
                                                                                            

 

Chapter 3   State of the art 
 
 

3.1 Introduction 
 

In this section, state of the art on the problem areas addressed in the earlier 

chapter are discussed. We first discuss the various approaches of predictive 

scheduling. The various methods include the simulation based and optimization 

based approaches used in industry. Then various approaches of rescheduling 

production systems subject to execution problems are discussed. These 

approaches also include optimization and simulation based approaches. Real-time 

control aspects and definitions are then presented followed by conclusions. In the 

next chapter the conclusions of the state of the art are discussed.  

 

3.2   Predictive scheduling of flexible production systems 

 

3.2.1 Various approaches of predictive scheduling 

Several methods of scheduling exist for different types of problem domains. 

If all numeric quantities are known in advance, then the problem is termed as 

deterministic scheduling problem. The ready time or the job release time makes a 

considerable difference in the problem structure. If all the jobs are assumed to be 

available at time zero, then the problem is termed as static problem. A non zero 

release time for a set of job defines as dynamic behaviour (Banks, 1998). 

Scheduling criteria may be classified into three categories such as shop 

performance based, due date based and cost based (Banks, 1998). The two most 

relevant approaches are discussed next in some details namely the analytical-

optimal approaches and the simulation based approaches.  

 

3.2.1.1 Optimal-Analytical based approaches of scheduling the PMFS problem 

These approaches are also called as optimization based approaches. These 

approaches are designed to develop optimal schedules to minimize or maximize a 

scheduling criterion. The advantage of these approaches is that the scheduling 

criterion is explicitly considered during the development of a schedule. However, 

this requires that the quantifiable objectives be determined for the particular 

scheduling application. These approaches also require considerable amount of 

solution time to obtain an optimal solution if the number of alternative solutions is 

large. Therefore, some optimization-based approaches sacrifice from optimality in 

exchange for faster solutions. A fast solution may not consider all the possible 

alternatives explicitly but may choose from a subset of available alternatives and 

evaluate them before reaching a solution. These approaches are generally 



                                                                                                                            
                                                                                            

 

considered as heuristics.  

  A Flow Shop (FS) is defined by Pinedo (2001) as a group of machine set up 

in series through which a number of jobs are processed and the operations are 

performed on each job in the same order, in that the jobs follow the same route. In 

the flexible flow shop, any stage in the flow-shop has more than one machine in 

parallel. The PMFS (Parallel Machine Flow Shop) problem is the task of sequencing 

these jobs through the flexible flow shop with respect to a certain objective. 

Technically, this problem is a combination of the flow shop scheduling and the 

parallel machine-sequencing problem.  

  The problem of the flow shop with multiple machines can be described as 

follows. There is a main incoming queue of parts (jobs), where each part has a 

different processing time, and each part can advance to any of the Mj machines at 

stage 1. Each job requires different processing times on any one machine on each 

of the stages.  Theoretically all of the parts (except for special jobs) can be routed 

to any one of the machines at the next stage j. When the part has been processed 

through the last stage J, using one of the mM  machines, it is complete and can 

leave the system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 A disjunctive graph for the PMFS problem 
 

Figure 3.1 shows a disjunctive graph in more details. There are n jobs to be 

processed and J is the total number of stages in the flow shop. Node ni,j represents 

the processing of job i at stage j. The first node 0 represents the dummy node, 

indicating start of the operation. The last node (Jxn) +1 represents the completion of 
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processing of all the operations for the entire set of jobs. Each node is connected 

with the others using two sets of arcs, namely, directed arcs and disjunctive arcs. 

The directed arcs (bold lines with arrows) represent precedence constraints defined 

by the job routings and job sequences at various machines. Initially, every pair of 

jobs to be processed at a stage is connected by a pair of disjunctive arcs (dotted 

lines with arrows). As jobs are sequenced one by one, the disjunctive arcs between 

the jobs are replaced by directed arcs to represent sequence of jobs at different 

machined. All arcs from node 0 are directed arcs and have length equal to ai,1, 

which is the arrival time of job i at stage 1. Each arc starting from node (i,j) is of 

length pi,j, which represents the processing time for job i at stage j. All arcs ending 

at node (Jxn)+1 are of length qi,j, which is the processing time for job i at the last 

stage i.e. stage j.  

For such a system configuration, Gupta and Ruiz-torres (2000) have 

developed algorithms. The problem of scheduling n-jobs with release dates and due 

dates on parallel machines is shown to be NP-hard by Carlier (1987). Hence the 

problem of the parallel machine flow shop (PMFS) problem (combination of both 

problems – the Flow Shop (FS) scheduling and the parallel machine (PMS 

problems)) should be atleast equally hard. 

Relatively limited amount of work has been published in the area of the 

parallel machine flow-shop scheduling problem. Brah and Hunsucker (1991) have 

developed a branch and bound algorithm for the PMFS problem. Brockman and 

Dangelmaier (1997) also developed a branch and bound algorithm for the PMFS 

problem using parallel processors (computers) to solve the problem. These 

algorithms were noted to have worked consistently with a fair amount of 

computational speed for small to medium sized problems. For instance, Brockman 

and Dangelmaier report computation times of 15 seconds using 1024 parallel 

computers for 11 jobs, having 3 stages and 3 machines on each stage, and 15 

hours using 16 parallel computers. For large sized problems, further improvements 

were suggested. One of the relatively recent advances in this field of job shop 

scheduling comes from the shifting bottleneck procedure by Adams et al. (1988). 

This procedure takes advantage of a very efficient algorithm developed by Carlier 

(1982) for scheduling jobs with heads and tails on a single machine. The shifting 

bottleneck procedure identifies bottleneck stages (critical stages) in the job-shop 

using the Carlier algorithm and sequences the stages one by one. The procedure 

has been found to produce excellent results in very little computational time. 

However, the success of this procedure depends on exploiting the effectiveness of 

the Carlier´s algorithm. More recently, Cheng et al. (2001) developed a heuristic 

using a combination of a property of the PMFS problem and the shifting bottleneck 

procedure. Phadnis et al (2003) also developed such an algorithm for the PMFS 

problem using the shifting bottleneck procedure, and have compared their results 



                                                                                                                            
                                                                                            

 

with other algorithms, namely that of Cheng et al. and others. They developed such 

an algorithm in which they used the very efficient shifting bottleneck (of Adams et. 

al, 1988, applied for the job shop scheduling problem) procedure and applied to the 

Parallel Machine Flow Shop problem with the possibility of producing equally good 

results. As this procedure is used partly in the predictive part of the thesis, it is 

described here briefly. 

 

Step 1 Set Io = Φ. Get processing times (pi,j) at each stage and job ready times at 

stage-1 (ai,1) for all jobs to be scheduled (i).  

 

Step 2 Calculate tails for each job at each stage, using the formula ∑
+=

=
J

mj

jiji pq
1

,, . 

Tails are computed to find out the amount of work left at a certain stage.  

 

Step 3 Calculate the earliest start times (si,1) at stage – 1 for all jobs yet to be 

scheduled. The earliest start times for a job will depend on when one of the 

machines at stage 1 will become free and when the job arrived. This can be 

written as: 
m
kii aas ,11,1, {min),({max= І Iimk ′→∀= }},...,2,1 1 .  

In effect, a selection of the maximum of the job ready times and minimum of 

the machine ready times is done.  

 

Step 4 Calculate the earliest start times (si,1) at each downstream stage – 1 for all 

jobs yet to be scheduled using the formula: 
m

kjjijiji apss ,1,1,, {min),({max −− += І ,(}},...,2,1 Iimk j
′→∀= and )...,,3,2 Jj = . 

 

Step 5  Calculate the bottleneck or critical stage among all the stages. A critical 

stage is one, which calls for extra care to be taken to schedule a job. In 

other words, we find critical stage, and schedule a job such that the resulting 

make-span is as less as possible. In order to calculate the critical stage and 

to evaluate the result of the heuristic, the optimal makespan needs to be 

calculated (resulting from an optimal schedule). However, because the 

optimal schedule is unknown, the minimum possible make-span needs to be 

calculated. This minimum value is referred as lower bound of the problem. 

There are several techniques to compute the lower bounds for the single-

machine sequencing problem. In this case, the lower bound on the 

makespan for the single stage parallel machine problem is used to find the 

critical stage, instead of using optimal makespan for the one-machine 

sequencing problem (as is done for the job shop problem). In this heuristic, 



                                                                                                                            
                                                                                            

 

the lower bounds on makespan are calculated for all stages based on the 

jobs not sequenced yet. Then the stage that has the highest value of lower 

bound is chosen as the critical stage. Figure 3.2 shows the concept.  

The lower bounds are similar to the ones used by Carlier (1987) and 

Gupta and Ruiz-Torres (2000). Two lower bounds are computed and the 

bigger of the two is used to select the critical stage.  

Lower Bound 1j  = max )( ,,, jijiji qps ++  where, 0IIi −∈ , for each job i = 1 to n. 

Lower Bound 2j  = 
jm

1
((mj earliest job start times) + j

n

i

ji mp (
1

, +∑
=

shortest tails)) 

Lower Boundj = max {Lower Bound 1, Lower Bound 2} 

 

Lower bound 1 is computed with the assumption that the jobs will be 

processed one after the other on the stage (by assuming that there are 

more than n machines in the stage). This way, the highest value of the lower 

bound for each job, will be the lower bound for the stage. On the other hand, 

lower bound 2 is computed in such a way that there are less than n 

machines or that the other machines are so busy that all jobs have to be 

processed on one machine. The actual lower bound for the stage is the 

maximum of the two bounds. This procedure is carried out for each stage, 

and the critical stage is the one with the highest value of the lower bound. 

Hence, 

Lower bound = max (Lower Boundj | j = 1, 2,..., J) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Highest lower bound stage as critical stage 

 

Lower bound 

 Stage 1              Stage 2                   Stage 3 

Highest value of 
the lower bound. 

Bottleneck 
Stage 2 

The lower the 
highest lower 

bound, the 
shorter the 
makespan. 

Lower 
bound 

Stage 1 

Lower 
bound 

Stage 3 



                                                                                                                            
                                                                                            

 

Step 6  Find the job to be scheduled as follows: 

 a.  Set t = min { m
kBNa , І },...,2,1 BNmk =  

b.  Let I ′′ be the set of jobs not yet scheduled and available at time t. 

I ′′ I ′⊆ , where si,BN ≤ t 

c.   If Io = Φ, then set t = min {si,BN }, where I → I ′ . Go to step 6a. 

In this step, the clock is set to the earliest possible start time for a job at 

a critical stage. Then the heuristic, goes back to step 6a, since there 

could be more than one job. In the next step from all these jobs, an 

appropriate job is selected for scheduling. 

d.   From among the available select job i´ with the longest tail: 

Ii ′→′  and Iiqq BNiBNi
′′→∀≥′ ,, .  

In case of a tie, select the job with the longest processing time at the 

critical stage: 

pi’, BN  ≥ pi, BN  Ii ′′→∀  

Here, the job with the longest tail or the longest processing time (LPT) is 

selected to prioritize the job with maximum work remaining. LPT rule is 

proved to provide good results (Baker (1974)).  

 

Step 7 Schedule this job i´ depending on the result of the previous step, at all the 

stages:  

a.  At each stage (j), find the earliest available machine m´. 

}...,,2,1{(,,, jmj
m

mj
m

mj mkpaa =∀+= ′′′ and })...,,2,1{ Jj =  

Schedule job i´ at machine m´.  

b.  Update the ready time for machine m´ as  

ji
m

mj
m

mj paa ,,, += ′′ .  

At this stage, the selected job, is scheduled “horizontally” through all the 

stages, on the earliest available machine at each stage respectively. After 

scheduling this job, the ready times for the scheduled machines are 

updated. So the ready times for a particular machine on all stages will be 

used in the second iteration to schedule the second job.  

 

Step 8  Update the number of scheduled jobs as }{ iII oo ′+= .  

 

Step 9 If all jobs are scheduled, go to step 2, else, go to step 10. 

 

Step 10 End. 



                                                                                                                            
                                                                                            

 

This algorithm when compared to other algorithms for the PMFS problem generated 

better results for makespan as laid out in Table 3.1.  

 

Table 3.1: Comparison of heuristic with other approaches 

Dataset Makespan % Deviation from LB 

 Wittrock 

(1988) 

Cheng 

(2001) 

Algorithm Wittrock 

(1988) 

Cheng 

(2001) 

Algorithm 

1 784 764 760 7.54 % 4.80 % 4.25 % 

2 789 773 770 6.33 % 4.18 % 3.77 % 

3 785 764 770 5.94 % 3.10 % 3.91 % 

4 796 789 785 7.71 % 6.77 % 6.22 % 

5 964 963 961 0.31 % 0.21 % 0 % 

6 686 669 667 5.70 % 3.08 % 2.77 % 

 

The approach described above (and approaches of other researchers based on 

Branch and Bound, etc) considers only processing times for jobs, the number of 

machines and stages for computing a schedule to optimize on make-span and 

unlimited buffer capacities between two stages. Consider a system when additional 

system elements such as buffers with limited capacities, and delivery time 

constraints for some jobs, additional routing constraints for some jobs which are 

special, along with known events about resources, tool and materials availabilities, 

and solving problems which may occur when executing a schedule in the real world 

are added to the problem description. To solve the problem of computing a 

minimum make-span, and meeting the above goals, then becomes too complex for 

such algorithms to consider all by themselves.  

 

3.2.1.2 Simulation based approaches for predictive scheduling 

 Today there exists several simulation based planning and scheduling 

software on the market place. In the following discussion, characteristics of each in 

relation to the problems addressed in thesis are described.  

 

3.2.1.2.1 AutoSched: Simulation based scheduler 

Brooks Automation inc. offers AutoSched software as one of their product 

suites. Using AutoSched, planners can experiment and test ideas for improving fab, 

assembly, or test facility, such as new scheduling rules, product mixes, start rates, 

etc., without the expense and impact of trying ideas on the real factory. Once they 

have proven a new dispatching policy using simulation, they can implement the new 

policy in the real facility using a Real Time Dispatcher. AutoSched is used to make 

those difficult-to-answer planning decisions, such as: 

1. When do I start a lot?  



                                                                                                                            
                                                                                            

 

2. Is the lot behind schedule? When will the lot be completed?  

3. How do I match sales orders to WIP inventories? 

AutoSched uses the same dispatch rules as the Real Time Dispatcher, so 

the factory executes the same plan that was committed to customers. AutoSched is 

claimed to provide a flexible environment in which to implement any rule or policy 

needed, from the very simple to the very complex. Any policy that is based on data 

available from the MES and associated information systems can be implemented in 

the product. The dispatching rule engine is claimed to be extremely fast and can 

make even complicated "Which lot?" decisions in a fraction of a second. The 

AutoSched AP product is an object-oriented modeling tool, uses a Windows-based 

Excel spreadsheet interface and is integrated with the Real Time Dispatcher. 

A brief comment is made here regarding the capabilities of AutoSched 

software. There doesn’t seem to be a connection between optimization, conditions 

considering broader system elements, rules, and the result of applying such rules 

during the simulation run. As an example, there could be a condition like “if job is 

type x on machine z, then the tool t needs to be changed, which needs additional 

time of y”, which could be checked easily during the simulation run, but harder with 

an optimization algorithm especially if the optimization algorithm already does a lot 

of complex calculations. It seems that several simulation runs are required to be 

made with AutoSched to check the variation of one or more classical scheduling 

rules (classical scheduling rules such as FCFS, FIFO, etc) and constraints. Besides 

this, there is no mention how to enhance the performance of a system using rules.  

 

3.2.1.2.2 SIMUL8-Planner: Simulation based planning and scheduling 

       Recent literature also mentions about industrial attempts to develop 

simulation based production planning and scheduling software. Tremble et al. 

(2003) report the development of SIMUL8-Planner for simulation based planning 

and scheduling. There are different ways they apply SIMUL8-Planner. A typical 

approach is to use a pre-simulation planning routine followed by simulation based 

schedule generation. The following sections provide a brief summary of this 

method. 

 

1. Pre-simulation planning 

Traditional ERP systems plan work across a production facility using an 

aggregate, or timed-view of machine and resource capacity. Customer’s orders or 

products are offset against available finished goods inventory to produce time 

phased production requirements. These requirements are generated from the bill of 

materials, process sheets, and work-in-process inventory data. Where production 

capacities are exceeded, work orders are assigned to earlier periods. This master 

planning approach does not ensure that orders will be completed on time when 



                                                                                                                            
                                                                                            

 

executed on the shop floor. SIMUL8-Planner uses a similar approach, prior to 

running a simulation. The simulation considers the physical constraints within the 

system along with the softer management rules or preferences with regards to 

order priorities and production targets.  

 

2. The planning heuristic 

There are several different heuristics that can be applied during the planning 

portion of SIMUL8-Planner. However, the typical method of scheduling jobs or 

production using the software is to first create a plan using intelligent heuristics 

based on user defined objectives and dispatching rules. Creation of the plan is 

centered around identification of the critical process or bottleneck based on overall 

capacity, total planned usage, user-defined weightings for changeovers, due date 

conformance, and other decision rules that will impact upon the dispatch of jobs. A 

backward plan explosion through the bill-of materials is then used to allocate jobs 

within the plan. This process can be iteratively continued until all machines have 

been backward planned.  

 

3. Simulation schedule generation 

A key advantage of SIMUL8-Planner lies in its ability to quickly execute a 

production plan generating a feasible and efficient schedule. A production plan, on 

its own as described above, lacks the level of detail to ensure that it is both feasible 

and efficient. Executing a plan through a simulation of the plant processes results in 

a production schedule that includes job start and finish times by machine. It also 

provides service levels and manufacturing KPI. The production schedule is 

presented through interactive Gantt charts as described earlier with the facility for 

the end-user to manually change or re-sequence allocated work at the machine 

level. After inspection of the resultant schedule and plant KPI´s, the user may elect 

to adjust the scheduling rules that control the simulation’s execution of the plan. 

This may include order due-date conformance, the minimization of change-over, the 

level of work-in-process build-up, etc. These rules can be weighted to produce an 

overall schedule preference that is applied within the simulation of the plan.  

To conclude briefly here, products like SIMUL8-Planner consider constraint 

and “softer management rules” during the scheduling process using an intelligent 

heuristic. They then simulate the resultant plan and based on the result adjust the 

rules to again run the simulation. If the production system is more complex, then the 

adjustment of rules to produce a better result than the previous simulation runs 

would be quite difficult because of the complex interrelationships between broader 

system elements. Secondly, rules and constraints are embedded in the scheduling 

heuristic. If a production system is more complex, this can make design and 



                                                                                                                            
                                                                                            

 

evaluation (solving) of a heuristic quite hard due to the dynamic interrelationships 

that exist between broader production system elements.  

 

3.2.1.2.3 ISSOP simulation based scheduling system 

Krauth (2005), discuss industrial projects involving optimization and 

simulation in a combined way. They mention about a project of simulation based 

scheduling of an automotive painting process. They mention that today nearly every 

car in automotive production is different because of specific customer requirements. 

In the production step of painting, more than 100 different colors are possible. 

Combined with different car shapes like standard or station wagon, engine varieties 

and other options, the problem of finding the optimal product sequence is extremely 

difficult.  

 They mention that in contrast to the assembly process, where tools and 

process steps are very similar and uncritical in sequence, the painting process is 

critical for the following reasons: 

1. Each color change requires a cleaning operation consuming considerable extra   

time and cleaning supplies. 

2. The cleaning process is easier and faster if colors are changing all the time from 

a bright to a darker color. 

3. The buffers in front of and behind the painting station are limited in space. 

Therefore an optimized sequence of painting operations must be calculated, 

which meets the buffer restrictions and minimizes the consumption of resources 

and time due to color changes. An improved batch sequence can lead to major 

savings in costs and time. A graphical process model was developed. It was very 

helpful in internal discussions among the manufacturer’s staff, and in discussions 

with the external simulation experts. The validated model was integrated with other 

IT systems so that the model always reflects the actual state of the real process. To 

generate and optimize schedules which satisfy all constraints, an intelligent 

optimization toolkit ISSOP was then coupled with the simulation model as shown in 

Figure 3.3. 

 The optimizer ISSOP generates production sequences, the simulation tool 

uses them as input, it checks if all constraints are met and calculates costs and 

throughput times. ISSOP then compares the results and generates better 

sequence; the simulation model evaluates them again, and so on. After some 

iterations (the exact number is not mentioned), which take between 5 and 25 

minutes (again, the size of the system and model is not mentioned), they mention 

that an improved sequence can be found which is then used for controlling the real 

process. 

 This approach, according to the developers of this system, increases the 

reliability of planning, reduced material consumption, throughput times and work in 



                                                                                                                            
                                                                                            

 

progress. Additional advantages of the simulation model are the possibility of 

testing the schedule against execution problems such as technical problems or 

delivery delays. Although the production sequences were already calculated by 

software programs before, the results achieved by the new simulation and 

optimization approach were significantly better as recorded below: 

1. 8 % less changes of color in the painting station. 

2. Less color changes and more optimized batch sequence with 12 % higher  

output of the painting station.  

3. Less losses of coating material 

4. Less cleaning material needed and less critical situations because of less     

manual operations. 

To conclude this discussion, this system is primarily “driven” by an 

optimization system, and simulation is simply used to check the constraints. Fine 

tuning is always done by the optimization iterations. For complex and bigger system 

configurations, this would result in several optimization and simulation runs. It is 

unclear how the criteria are determined which form an input to the next optimization 

algorithm run. On the other hand, if the production sequences are previously 

calculated by the optimization software, then these sequences have to be already 

optimal if the overall good solution is to be ensured. Further, how simulation is used 

to fine tune the system especially if the simulation encounters problems like 

bottlenecks and constraints during run time is also unclear. 

 

ISSOP -

Optimization

Simulation 

model

Process 

parameters:

1. Order sequence

2. Colour changes

Objectives:

1. Costs

2. Utilization

3. Flow times

4. Dates of delivery

 

Figure 3.3 Interaction of simulation and optimization tool for car painting 

(Krauth, 2005) 

  

3.2.1.2.4 Preactor International case of simulation based scheduling 

Krauth (2005) further mention about a practical use of simulation and 

optimization in a combined way at another practical production set-up. They 



                                                                                                                            
                                                                                            

 

mention about the work of Preactor International for a medium sized company 

which supplies small pressed aluminum parts to a range of other consumer focused 

businesses. In this work, Preactor used its scheduling tool to generate an “optimal 

schedule” followed by using simulation to model a certain process of a plant in a 

detailed way to result in quantitative information about performance indicators. They 

further mention that they arrive at a final production schedule by simulating several 

scenarios offline, resulting in savings in production rates, and increased revenues.  

To conclude this discussion, this approach of simulating several scenarios 

does not guarantee the trouble free execution of the schedules. Fine tuning or 

improving the plan obtained from the optimization algorithm is not considered at all.  

 

3.3 Reactive scheduling of flexible production systems 

 

Over the last two decades, a significant volume of research on the issues of 

scheduling with executional exceptions has begun to emerge. A review of this 

research is presented here, starting with approaches of reactive scheduling, and 

associated nuances, and situation when they are used or are appropriate followed 

by describing when to reschedule, and real-time control issues.  

 

3.3.1 Various approaches to reactive scheduling 

In this section different approaches are discussed using simulation and 

other approaches.  

 

3.3.1.1    Simulation based completely reactive approaches 

This category of modeling approaches does not take any of the cause, 

and impact into consideration per se. These completely reactive approaches are 

characterized by least commitment strategies such as real-time dispatching that 

create partial schedules based on local information. Dispatching (Bhaskaran and 

Pinedo, 1991) examines the jobs currently available at the machine in question, and 

sometimes in its immediate vicinity. The next job to be processed is selected from 

among these by sorting and filtering them according to the pre-defined criteria, and 

selecting the job at the head of the resulting list. This approach has many practical 

advantages. Its computational burden is in general extremely low, and the rules are 

usually intuitive and easy to explain to users. A number of the more sophisticated 

dispatching procedures can invoke complex rules that allow them to consider the 

state of the system, at several different machines, and to take conditional actions 

based on this state. This type of policy has been extensively implemented in the 

semiconductor industry (Haldun, A et al. 2005). 

 An extension of the dispatching approach is to allow the system to select 

dispatching rules (a dispatching rule is a function f which assigns to each waiting 



                                                                                                                            
                                                                                            

 

job i a scalar value, the minimum of which, among waiting jobs in the system (i.e. in 

a machine queue, input queue or on a machine), determines the jobs to be selected 

over all others for sequencing) dynamically as the state of the shop changes. Early 

work in this area is that of Wu and Wysk (1989) (Figure 3.4), who examine the 

problem of dispatching rule selection in the flexible manufacturing system (FMS) 

environment. They divide the time horizon into shorter intervals dt. At the beginning 

of each interval a variety of dispatching rules are simulated (first level decisions 

shown by thick lines, and second level decisions shown by dotted lines), and the 

rule that yields the best performance is selected and implemented for the next time 

period. They also mention that decisions are made locally, and may not contribute 

to the global system performance. This means that if the system is highly dynamic 

or otherwise, they do not make sure global performance is considered.  

 

 

Figure 3.4 General scheme of simulation based reactive scheduling (Wu and 

Wysk, 1989) 

 

They also do not compute the impact of the exception on the global system 

performance. This is important to determine whether a rescheduling action is 

required. A number of other authors study how to estimate the impact of an 

exception at a particular point in the execution of a predefined schedule. Many of 

these papers use algorithms (not simulation) that can be inferred from the well-



                                                                                                                            
                                                                                            

 

known disjunctive graph representation. A number of researchers (notably 

Abumaizar and Svestka (1997) have used the principles of the graph to compute 

the effect on operation start and end times using longest path calculations in the 

graph, by updating the duration of the operation during whose processing the 

exception occurs. They perform any but simple calculations based on exceptions. 

For a flexible production system with complex job routings, it would indeed be very 

hard to update the operation start and end times accurately enough to further use 

the end result of the computation effectively.  

Wu and Wysk (1989) also mention in their paper on how time consuming 

their experiments are. They mention that if several combinations of rule simulations 

are made, it would require 18,720 simulation cycles. Most importantly, they mention 

that their work considers only one branch of the FMS configuration to avoid the 

overwhelming computation time to give some preliminary results for their 

conjectures. 

A number of authors have extended the approach of Wu and Wysk in 

various ways, e.g., Kim And Kim (1994) and Jeong and Kim (1998). Harmonosky et 

al. (1997) present their work in the areas of real-time selective re-routing and 

rescheduling algorithms based on simulation. They iteratively use simulation as a 

tool to find out the best policy from a set of alternative policies in real-time. Using 

simulation as a tool for real-time scheduling presents several benefits and 

drawbacks. The most important benefit is that simulation can provide accurate 

information about a certain policy. Secondly, simulation proves to be effective when 

the system behavior cannot be easily captured by analytic methods. The ability to 

provide accurate information about a certain policy becomes a drawback when it 

comes to modeling a complex manufacturing system. As a manufacturing system 

gets bigger and as the number of “control points” (location where a decision to 

handle a part has to be taken) increase with each point providing several 

alternatives (due also to part variety), the more difficult it is to employ simulation, 

especially in real-time to obtain information about the best alternative policy. An 

extension to this work has been in the areas of simulation and machine learning. 

Piramuthu et al. (1991), who first use a simulation model of the manufacturing 

system under study to develop a characterization of how different dispatching rules 

perform in the system under different operating conditions. They then apply an 

learning algorithm to this data to develop a decision tree that selects a dispatching 

rule whenever a significant chance in system state is identified.  

In a yet different way, Manivannan and Banks (1991) present a simulation 

and knowledge-based Real-Time Control system for flexible production systems.  

Manivannan and Banks (1991), mention that a Real-Time Control (RTC) 

system must be capable of the following: 

1. Reacting to the problem instantaneously. 



                                                                                                                            
                                                                                            

 

2. Evaluating several alternatives policies. 

3. Providing optimum or near optimal solutions. 

4. Learning from previous problems. 

5. Providing faster and more accurate solutions.  

They present a sophisticated control architecture of a knowledge based RTC 

system using simulation. The aim of the framework is to provide an integrated 

environment for the controller to evaluate various control policies using simulation. 

Data for simulation is collected from the manufacturing cell. The main issues they 

address and develop in their system is the synchronization of the events between 

the simulation system and the real-system as a means to provide instantaneous 

feedback\control instructions. A temporal knowledge base has been designed to 

synchronize the events and their times of occurrence in both the manufacturing cell 

and the simulation model. Also, a dynamic knowledge base has been implemented 

to store simulation results. They claim that this feature provides a faster response to 

a control problem by reducing the number of resimulations conducted for evaluating 

various alternative policies in real time. The focus is however purely on how to 

provide a feedback in the fastest possible way and not considering the fact that real 

world will nevertheless evolve and that the controlling mechanism needs to devise a 

method which effectively recognizes this evolution.  

 

3.3.1.2 Predictive – reactive scheduling 

In predictive-reactive scheduling, scheduling is presented as a two-step 

process. First, a predictive schedule representing the desired behavior of the shop 

floor over the time horizon considered is generated. This schedule is then modified 

during the execution in response to execution exceptions. The schedule that is 

actually executed on the shop floor after these modifications is called realized 

schedule. The two main questions are when to initiate a rescheduling action and 

assessing the impact of a given exception on existing schedule. Hence, our 

discussion in the section will begin by examining the issue of when to initiate a 

rescheduling activity.  

 

3.3.1.2.1. When to reschedule 

  Regarding this question, when to reschedule, the basic question that 

needs to be answered is when a disruption or an event has sufficient potential 

impact that a new schedule must be generated or some more localized remedial 

action taken. Church and Uzsoy (1992) provide a rough taxonomy of existing 

approaches beginning with two extremes. Continuous rescheduling approaches 

take rescheduling action each time an event that is recognized by the system, such 

as the arrival of a new job, occurs. Periodic rescheduling, on the other hand, 

defines a basic interval T between rescheduling actions during which rescheduling 



                                                                                                                            
                                                                                            

 

actions are not permitted. Rescheduling actions are taken at times kT, where k is 

an integer. These points in time where rescheduling may be performed are referred 

to as rescheduling points. Any events occurring between rescheduling points are 

ignored until the following rescheduling point. Finally, they define event-driven 

rescheduling, in which a rescheduling action can be initiated upon the recognition of 

an event with potential to cause significant disruption to the system. Both 

continuous and periodic rescheduling can be viewed as special cases of event-

driven rescheduling.  

 Cleary, continuous rescheduling runs the risk of initiating rescheduling 

activity in the face of events that do not cause significant disruption, expending 

computational resources and potentially causing unnecessary changes in the 

schedule with associated ill effects on the shop floor. The obvious drawback of 

periodic rescheduling is that it ignores events occurring between rescheduling 

points, which in an extreme case may render the current schedule impossible to 

execute, and in less serious situations runs the risk of yielding poor schedules. 

Hence they mention that a combination of the periodic and event driven approaches 

appears attractive, in which a periodic rescheduling approach is implemented, but 

rescheduling activity can be invoked between rescheduling points if a disruption 

that is deemed sufficiently serious is observed. This latter approach is more 

commonly observed where schedules are often developed for some base horizon, 

such as a day or a shift, but are modified as needed during that period.  

 A number of authors have adopted the periodic and event-driven view of 

rescheduling and analyzed different approaches in this area. Church and Uzsoy 

(1992) consider the problem of minimizing maximum lateness on single-stage 

production systems involving single and parallel machines, where the only source 

of uncertainly is random job arrivals. Their results indicate that schedule quality 

initially improves quite rapidly with more frequent rescheduling, but after a certain 

point yields almost no further gains. This is intuitive, since once the frequency of 

rescheduling activity exceeds the frequency of disruptions to the system the 

rescheduling activity is merely causing nervousness without improving the schedule 

quality. Another way of putting this is that a periodic response may well be sufficient 

to deal with the disruptions faced by the system, and that rescheduling with every 

system state change may be counter productive. These results have been 

supported by a number of subsequent researchers for a variety of shop floor 

environments, e.g. Sabuncuoglu and Karabuk (1998) for flexible manufacturing 

system with uncertain job processing times and machine breakdowns; Shafaei and 

Brunn (1999a) for open shops and others.  

  Most researchers have focussed on when to reschedule by using 

either periodic rescheduling, continous rescheduling, event oriented rescheduling, 

or a combination. None of them consider graceful transition of execution issues like 



                                                                                                                            
                                                                                            

 

the exact time when to reschedule in the real system considering its continuous 

evolution to another state.  

 

3.3.1.3 Predictive-reactive scheduling versus completely reactive 

approaches 

  A number of authors have examined the question of when a periodic 

or event-driven rescheduling policy based on a global view of the scheduling 

problem can perform better than a completely reactive dispatching approach. 

Yamamoto and Nof (1985) compare the effects of a fixed optimization based 

schedule, an event rescheduling approach and dispatching rules in an FMS 

environment. They find that in the systems under study, a fixed optimization-based 

schedule obtained from a branch and bound algorithm outperforms myopic 

dispatching rules in the face of machine failures, and is in turn outperformed by the 

event-driven rescheduling approach. Hutchison and Khumawala (1991) examine 

this question in a FMS environment where the only uncertainty is due to job arrivals 

at the start of the planning periods. They find that a periodic rescheduling policy 

based on their optimization formulation outperforms dispatching, especially when 

there is routing flexibility. Wan (1995) shows that when processing times are 

variable, a global scheduling algorithm may yield poorer solution than a dispatching 

policy. An important paper in this area is that of Lawrence and Sewell (1997), who 

compare the performance of global scheduling heuristic based on shifting 

bottleneck algorithm of Adams et al. (1988) with myopic, completely reactive 

dispatching rules in the presence of varying job processing times. They 

demonstrate that as processing time variability increases, the difference in 

performance between the global method and the dispatching rules becomes less 

significant. They conclude that in systems with high execution exception 

frequencies, completely reactive algorithms can be used with relative confidence, 

and question the benefits of global scheduling procedures in general. 

 Matsuura et al. (1993) provide an extensive study of a slightly different 

rescheduling policy. In their approach, called switching, a predictive schedule is 

developed on a periodic basis. However, if the realized schedule is deemed to have 

deviated sufficiently from the predictive one, the system switches to using a 

dispatching rule for the remaining period. This approach is contrasted with using the 

predictive schedule throughout the period (by right-shifting jobs when delays occur) 

and dispatching approaches. They focus three different types of disruptions: rush 

order arrival, specification changes (which cause new operations to be added to a 

job, or existing operations to be deleted), and machine failures. Their results are 

quite insightful: they show that when the frequency of execution problems is low, 

the predictive \ reactive approaches outperform the dispatching. Once the level of 

execution problems reaches a certain level, however, the dispatching begins to 



                                                                                                                            
                                                                                            

 

perform better than the predictive \ reactive approaches. 

 The answer to this debate lies in the results of Matsuura et al. (1993), 

Lawrence, and Sewell (1997), and is hinted at in the results of several other papers. 

In an environment with low frequency of exceptions, predictive \ reactive methods 

based on global information and optimization techniques is highly likely to yield 

better schedules than completely reactive dispatching procedures. However, once 

the variability in the system exceeds a certain level, which appears to be system 

dependant, global information on which the predictive \ reactive approaches are 

based becomes invalid, causing them to generate poor schedules due to solving 

the wrong problem: the problem data they use does not correspond to the problem 

encountered on the shop floor. 

 Having agreed with Lawrence and Sewell (1997), it may even be sensible to 

pursue further work on the predictive \ reactive scheduling methods. This is 

because, when a manufacturing system is subject to high frequencies of exceptions 

it might be advisable that managements time and resources would be better spent 

on working to reduce it, rather than developing sophisticated scheduling logic (such 

as those using completely reactive and other robust approaches). In addition, there 

are many manufacturing systems in which the difference in performance that can 

be obtained from a sophisticated scheduling procedure over a dispatching rule is 

simple not worth the amount of trouble that would be required to implement the 

global system. On the other hand, in capital-intensive environments, which requires 

hundreds of unit processes and complex machinery and product routings, 

improvements of even a few percentage points in performance measures such as 

the average lead-time may be worth millions. 

 It is interesting to note that a number of researchers have attempted to use 

global schedules as a complement to dispatching rather than to replace them. In 

the approach described in Haldun et al. (2005), in which a global schedule 

generated on a periodic basis is used as a priority index in a dispatching rule that 

outperforms myopic rules that do not use global information under a wide range of 

operating conditions. In these groupings of research results, the scope of execution 

problems considered are limited and they are mostly random. The cause of 

exceptions is often machine availability (breakdown and repair) or some stochastic 

aspect of processing time that makes the start and finish times variable.  

 

3.4     Conclusions  

  

 From the state of the art, the following inferences can be made about the 

predictive scheduling system for the problem areas discussed:  

1. The parallel machine flow shop problem is harder to be solved by an 

optimization algorithm alone when, 



                                                                                                                            
                                                                                            

 

a. Considering additional broader system details such as buffers 

with limited capacities, and at the same time,  

b. Considering demands on routing of special or standard jobs 

through the system, both with or without constraints on delivery 

times, and at the same time,  

c. Considering resource availabilities like tools, materials, and 

machine availability times set by maintenance plans in the 

planning horizon, and at the same time, 

d. A problem free schedule is to be generated. 

2. Simulation based planning and scheduling systems mostly work 

iteratively, using optimization algorithms first to generate a plan, and 

then using simulation to execute the plan to generate a schedule. The 

optimization algorithm mainly serve to drive the next iteration, while 

simulation simply simulates to compute starting and end times of the 

schedule. Fine tuning the schedule is not considered considering 

broader production system elements.  

 

From the state of the art the following inferences can be made about the 

reactive scheduling system for the problem areas addressed: 

 

1. Optimization algorithms are harder to be used alone to compute a 

rescheduling solution to a PMFS problem, especially to accurately 

compute the result of the exception.  

2. Simulation based methods when used alone for rescheduling are not 

completely efficient as regards to their longer computation times and 

inability to compute rescheduling solutions which are optimal.  

3. Rescheduling systems in literature do not consider Adaptation 

Synchrony part of RTC in their computations.  

4. Rescheduling systems do not consider matching up deviations to the 

planned trajectories.  

5. Rescheduling systems do not accurately estimate the impact of the 

rescheduling solution on future schedule execution in the real world. 

6. Predictive-reactive approaches are the most effective ones when 

exceptions occur with low frequencies. 

 

 

 

 

 

  



                                                                                                                            
                                                                                            

 

Chapter 4 Work program 
 
 

4.1 Introduction 
 
The work program described in this chapter concludes the state of the art of 

chapter 3. A combined simulation and optimization based system is to be 

developed using the predictive-reactive approrach as applicable for the PMFS 

problem. The work program of this thesis is divided in two parts: predictive 

scheduling and reactive scheduling. The next chapter describes the concepts and 

the work done in more details.  

 

4.2 Work program 
 

In the predictive system, in order of importance, the following components 

are to be developed: 

 

1. Develop a method to combine simulation and optimization for predictive 

scheduling, using the software package eM-Plant to serve as a starting 

point by considering some broader production system elements such as 

buffers.  

2. Develop a method to consider fixed and flexible job routings with 

constraints on delivery times, such that the lateness is as less as 

possible.  

3. Develop a method to consider machine maintainence times, tools, 

materials and resource availability times. 

4. Develop a method to make sure the predictive schedule can be 

executed in the real world without creating bottlenecks. 

5. Develop a method to consider fixed job routings without constraints on 

delivery times. 

6. Do the above to work in eM-Plant simulation software. 

 

In the reactive system, in order of importance, the following components are 

to be developed: 

 

1. Develop a method to combine simulation and optimization for reactive 

scheduling using the software package eM-Plant to include some 

broader system elements such as buffers with limited capacities. 

2. Develop a method to consider Adaptation Synchrony in the rescheduling 

computations. 

3. Develop a method to estimate the impact of rescheduling on future 



                                                                                                                            
                                                                                            

 

schedule execution in terms of problems such as bottlenecks, and if 

problems occur,  

a. Detect the problems, and solve them in the rescheduling step. 

4. Develop a method to bring back deviations to their planned trajectories 

on exceptions, resulting in additional benefits on performance indicators. 

5. Develop a method to reschedule as late as possible in the planning 

period resulting in additional benefits on performance indicators. 

6. Do all of the above to work simultaenously in eM-Plant simulation 

software. 

 

4.3 Conclusions 
 

 In this chapter we have discussed the detailed work program which is 

related to most of the conclusions of the state of the art chapter. In the next chapter, 

the concepts of each of the points mentioned in the work program are described in 

much details along with algorithm and system development. Especially in 

connection to the points mentioned here, from the predictive part, points 1 to 5 are 

described and developed in chapter 5, while the implementation of the predictive 

system is done in chapter 7. In the reactive part, points 1 to 5 are described and 

developed in the next chapter, while the implementation is shown in chapter 7. 

Chapter 6 shows how all the work fits in together as a black box.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                            
                                                                                            

 

Chapter 5 Concepts and solutions 
 

 

5.1 Introduction 

 

In this chapter, we describe the concepts and solutions development of the 

predictive and reactive systems. The configuration used is the parallel machine flow 

shop, with objectives and aims described in the earlier chapters. The predictive part 

of the algorithm is developed as a combination of optimization and simulation. The 

reactive algorithm is also based on combination of optimization and simulation. In 

the next chapter, a total integration of the system and the synthesis is described 

based on this chapter. 

  

5.2       Concept and solutions for simulation and optimization assisted  

predictive scheduling 

 

In the predictive part, a feasible production schedule for the next planning 

horizon (the next shift for instance) is generated. Figure 5.1 shows how the 

simulation and optimization system for predictive scheduling is organized. The first 

step is the 2D modeling phase, where the production system is modeled with the 

machines and stages, using eM-Plant simulation software along with data for the 

optimization. Then the user models and sets all the decision points (explained next) 

which are required for the rule-based simulation. The optimization algorithms are 

then run, which generate a rough plan. These algorithms consider details such as 

jobs routing and delivery time requirements along with details of tools, materials, 

and machine maintenance schedules. The algorithm runs by scheduling jobs 

through the flow shop one by one, by intermittently computing the bottleneck or 

critical stage (a stage which needs extra care when scheduling a job to reduce the 

make-span), and the delivery time optimizer, and considering the constraints, thus 

providing a rough plan. The algorithm is divided in two steps, the first one is to 

determine a critical stage for scheduling the standard jobs, then followed by 

determining which job needs to be scheduled when depending on the job type – 

which is standard job and special jobs. This second step is done by the delivery 

time optimizer. This way, standard jobs are scheduled according to the critical stage 

calculation, while special jobs are scheduled according to their required delivery 

times.  

This partial plan is fed to the simulation based Flow Analyzer Module (FAM) 

for a detailed analysis. Simulation offers a possibility to model all the detailed 

elements of the production system thus fine tuning the plan obtained by the 



                                                                                                                            
                                                                                            

 

optimization algorithm by checking and reacting to specific conditions set by the 

user. In addition it detects system blockages (bottlenecks) caused due to system  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Overall schema of the predictive scheduling system 
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constraints like buffer sizing. Besides this, simulating a system with all detailed 

elements can give us the actual performance measures. The FAM uses the 

decision points (a point where a routing decision is taken in the model by a job) and 

the rule generators (rule generators contain the code for analysing local situations 

to generate a rule) within them to analyze conditions locally during the run-time of 

the simulation for broader system elements such as buffers with limited capacities. 

The system works in two parts, the optimization algorithm obtains a rough plan and 

the second part further refines the solution by locally over-riding the results of the 

rough plan according to the criteria set by the user. In the next sections the 

optimization algorithm is described in details, followed by describing the simulation 

based FAM unit and how it is combined with the optimization system. 

 

5.2.1 Optimization algorithm 

 In Figure 5.2, the elements which are required as input to the predictive 

algorithm such as details like constraints on delivery times, tooling, material, 

equipment availability, are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Inputs and outputs to the predictive algorithm 
 

 

5.2.1.1 Initialization 

 An example is taken to explain the steps one by one. Table 5.1 shows the 

input data to the algorithm consisting of jobs, processing times on each stage, tool, 

material and delivery time requirements. The configuration is a 2 stage flexible flow 

shop with 2 machines on each stage and 10 jobs. Machine 1 on stage 2 is set for 
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maintenance from 1:30:00.0000 to 2:00:00.0000 (30 minute duration). The times 

are set with the eM-Plant time format H:M:S.MS (Hours: Minutes: Seconds. 

Milliseconds). In each step of the first iteration, the calculations are done by hand 

and are described. For each of the later iterations, details and results are given in 

Appendix 1 for the reader to refer to. 

 

Table 5.1 Example to explain algorithm 

Jobs Stage 1 Stage 2 Path Delivery  

time 

Material\ 

Tool 

availability 

Machine 

Maintenance 

1 25 20    

2 25 20    

3 25 25    

4 30 20    

5 15 15  2:30:00.000 1:00:00.000 

6 30 20 1,1  30:00.000 

7 10 20 2,1 2:00:00.000  

8 15 30 1,2   

9 30 15 2,1   

10 15 15 1,1   

∑ pi,j 220 200    M
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 t
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0
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Step 1 Derive predictive machine maintenance schedules.  

If schedule exists, 

a. Get all machines which are maintained, 
m
jk }...,,2,1{( jmkfor =∀ and )...,,3,2,1 Jj = . 

b. For each machine m
jk , get unavailable start and ending times as tStk  

and tEndk . In the current example, m
jk would be machine 1 on stage 2. 

So tStk = 1:30:00.0000 and tEndk = 2:00:00.0000. 

else, go to step 2.  

 

Step 2 Derive raw material availability schedule. 

 If schedule exists, 

a. Get all jobs I which have schedule ∀  (I→I´). 

b. For each such job in I, get the material available times as ti . 

Else, go to step 3. In the current example, for job 6, ti  = 30:00.0000. 

 



                                                                                                                            
                                                                                            

 

Step 3 Derive tool availability schedule. 

If schedule exists,  

  Get all tools tNumtl for which we have set availability for all   

  unscheduled  jobs, ∀  (I→I´). 

a. Get each tool available times as i
tAvtl for ∀ tNumtl . 

Else, go to step 4.  

Here it is assumed that the tools are placed in the respective machines, and 

that each job requires a number of tools from among the tools in the 

machine’s magazine. In this step, we set the fact if some tools will be 

available after some time for each of the jobs. In the current example, for job 

5, i
tAvtl = 1:00:00.0000.  

 

Step 4 Derive special job schedule. 

 If schedule exists, 

a. Get special jobs Spi for )( IiSp
′→∀ .  

b. Get special jobs each with job routing description )....,( 1
m

Jj
m
j kkR ===  

where k = one of }...,,2,1{ jm and j = }...,,3,2,1{ J , and with delivery 

times td . Arrange jobs in an increasing order of their delivery times. In 

the current example, this is shown as List 1 in Table 5.2. Note the job 

routings are shown as integers (2,1), meaning job 7 goes to machine 2 

on stage 1 and to machine 1 on stage 2. 

c. Get special jobs each with only delivery time td  and arrange jobs in 

increasing order of their delivery times. In the current example, this is 

shown as List 2 in Table 5.3. 

d. Get special jobs with only routing description .R In the current example 

job 6, 8, 9 and 10 are the jobs in this category. This is shown in Table 

5.4. 

Else, go to step 5.  

 

Table 5.2 List 1 (L = 1)of special unscheduled jobs with routing and delivery 

times 

Jobs Routing  

description R 

Processing 

time on 

Stage 1 

Processing 

time on 

Stage 2 

Delivery time 

7 2,1 10 20 2:00:00.0000 

 



                                                                                                                            
                                                                                            

 

Table 5.3 List 2 (L= 2) of special unscheduled jobs with only delivery times 

Jobs Processing 

time on Stage 1 

Processing 

time on Stage 2 

Delivery time 

5 15 15 2:30:00.0000 

 

Table 5.4 List 3 (L = 3) of special jobs with only routing description 

Jobs Routing description R Processing time  

on Stage 1 

Processing time  

on Stage 2 

6 1,1 30 20 

8 1,2 15 30 

9 2,1 30 15 

10 1,1 15 15 

 

Table 5.5 List 4 (L = 4) of standard unscheduled jobs 

Jobs Processing 

time on Stage 1 

Processing time 

on Stage 2 

1 25 20 

2 25 20 

3 25 25 

4 30 20 

  

In this step we only determine the jobs with special requirements on delivery 

time and job routing within the production network. For the purposes of 

scheduling, four lists are created as shown below with Table 5.5 showing 

List 4 with all standard jobs.    

 

Step 5 Set Io = Φ. Get processing times (pi,j) at each stage and job ready times at 

stage-1 (ai,1) for all jobs to be scheduled (I). Include the job ready times for 

jobs for which material is available later (step 2 = true), which will ultimately 

be allowed to start (be ready) at a later time. Include job ready times for jobs 

for which the tools will be available later (step 3 = true), which will ultimately 

be allowed to start at a later time. This is shown for the current example in 

Table 5.6. 

  

Table 5.6 Job ready times at stage – 1 (ai,1) 

 Jobs 

 1 2 3 4 5 6 7 8 9 10 

ai,1 0 0 0 0 1:00:00.0000 30:00.0000 0 0 0 0 

 



                                                                                                                            
                                                                                            

 

Step 6 Calculate tails for each job at each stage, using the formula ∑
+=

=
J

mj

jiji pq
1

,, . 

 Tails are computed to find out the amount of work left at a certain stage. 

 This is shown in Table 5.7 as tails for each job at each stage jiq , . 

 

Table 5.7 Tails for each job at each stage 

Tails Jobs 

at Stage 1 - jiq ,  at Stage 2 - jiq ,  

1 20 0 

2 20 0 

3 25 0 

4 20 0 

5 15 0 

6 20 0 

7 20 0 

8 30 0 

9 15 0 

10 15 0 

 

5.2.1.2 Detail procedure to handle deterministic events and delivery 

constraints 

Step 7 Calculate the earliest start times on all the stages as follows: 

a. Get the machine ready times m
kja , for all ),...,2,1{( Jj = , )},...,2,1( jmk =  

b. Set the earliest start times (si,1) at stage – 1 and downstream stages 

respectively for the jobs yet to be schedule as follows: 
m
kii aas ,11,1, {min),({max= І Iimk ′→∀= }},...,2,1 1 and 

m
kjjijiji apss ,1,1,, {min),({max −− += І ,(}},...,2,1 Iimk j

′→∀= and )...,,3,2 Jj = . 

This will depend on when the current jobs i´ on stages (si,1) and (si,J) are 

finished indicated by m
ka ,1 and m

kja , (machines). The maximum value is 

selected amongst the job available times and the earliest machine 

available times. Table 5.8 shows the earliest start times at stage 1 for all 

jobs and similarly table 5.9 shows the earliest start times at stage 2. 

 

Table 5.8 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

1 0 



                                                                                                                            
                                                                                            

 

2 0 

3 0 

4 0 

5 1:00:00.0000 

6 30:00.0000 

7 0 

8 0 

9 0 

10 0 

 

Table 5.9 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

1 25 

2 25 

3 25 

4 30 

5 75 

6 60 

7 10 

8 15 

9 30 

10 15 

 

Step 8 Calculate the critical stage among all the stages. A critical stage is one, 

which calls for extra care to be taken to schedule a job. So we find critical 

stage, and schedule a job such that the resulting make-span is as less as 

possible. The critical stage is found by determining the lower bounds similar 

to the ones used by Carlier (1987) and Gupta and Ruiz-Torres (2000) as 

used by Phadnis et. al (2001). Note that the critical stage computation will 

include the effects of the material, tools, machine unavailability’s, and the 

special jobs obtained through the job ready times and the machine ready 

times. Once we get the critical stage, we select a job to be scheduled in the 

next step. For a detailed description of how the critical stage is calculated, 

refer section 3.2.1.1. The results for this example are shown in Table 5.10 

(since Lower Bound 2 (LB2) remains the same for each job on each stage, it 

is written only once in the LB2 columns). As per the method, the critical 

stage is Stage 1 because of the highest lower bounds.  

 

Table 5.10 Lower bounds computed for both stages 



                                                                                                                            
                                                                                            

 

Stage 1 Stage 2 

Lower 

Bound 1 

Lower 

Bound 2 

Lower 

Bound 1 

Lower 

Bound 2 

45 125 45 112.5 

45  45  

50  50  

50  50  

90  90  

80  80  

30  30  

45  45  

45  45  

45  45  

 

Step 9  Find the job to be scheduled as follows: 

 Refer to Figure 5.3 for details of the scheduling procedure. From the list of 

special jobs with routing and delivery times (shown as List 1), or the list with 

special jobs with only delivery time (List 2), select a job i´ with the earliest 

delivery time. In the example here, L = 1, and job 7 is selected for 

scheduling because it is required the earliest.  

a. At each stage (j), find the earliest available machine m´ or the machine 

m´, if the job has a routing description.  

}...,,2,1{(,,, jmj
m

mj
m

mj mkpaa =∀+= ′′′ and })...,,2,1{ Jj =  

Schedule job i´ at each machine m´ horizontally. Since no jobs are 

scheduled yet, either Machine 1 or Machine 2 on Stage 1 can be used to 

schedule Job 7. Since Job 7 has routing requirements, it is routed 

according to its routing description of 2,1.  

b. Update the ready time for each machine m´ as ji
m

mj
m

mj paa ,,, += ′′ .  

If any of the machine contains predictive maintenance, and if the 

machine ready time falls between or is equal to tStk  and tEndk , or is 

greater than tEndk , accordingly add the duration of the maintenance to 

the machine ready times, as: ji
m

mj
m

mj paa ,,, += ′′ + ( tEndk  - tStk ) . 

 

Table 5.11 Updated machine ready times after scheduling Job 7 

Stage 1 Stage 2 

Machine 1 Machine 2 Machine 1 Machine 2 

0 10 30 0 



                                                                                                                            
                                                                                            

 

At this stage, the selected special job (job 7 in this example), is scheduled 

horizontally through all the stages, on the desired routing description or 

the earliest available machine at each stage. After scheduling this job, the 

ready times for the scheduled machines are updated as shown in Table 

5.11 for Job 7. 

 

Step 10  Update the number of scheduled jobs as }{ iII oo ′+= . Here I0  = Job 7. 

 

Step 11 Determine the job finishing times for job i´  from the machine ready time of  

the machine on the last stage. This is explained with the current example. 

a. If,  

  (Earliest time job 7 can start on stage 2 + processing time on stage 

  2) >= (Required delivery time – Tolerance), keep job 7 in the list of 

  already scheduled jobs.  

 Else, 

 Delete job i´ from the jobs already scheduled list as = oo II - {i´}, go 

to step 12. This deletion means that the job is too early to be 

scheduled in this step. So we keep the job i´ in its original list 1.  

 

    For the current example, this comes out as: 

 

   (10 + 20) >= 100 (or 120 – 20)  

   30 >= 100  

  

The result is false, meaning now is not the time for job 7 to be scheduled. 

The comparison is only made with the time job 7 is expected to exit the 

system after stage 2. Hence as seen the time 30 is compared to the 

required delivery time minus the tolerance. The earliest starting times for 

job 7 on stage 2 is bigger of the time when job 7 finishes on stage 1 which 

is 10, and the time when job 7 can actually start after one of the machines 

becomes ready earliest on the second stage which is 0 (see table 5.11 for 

machine ready times). So the job 7 is not scheduled and the control now 

considers job 5 for a scheduling try in the next step. 

 

Step 12 Determine the next job with the earlier delivery times from among List 1 

and List 2. This job may or may not contain routing constraint depending 

on whether it exists in List 1 or List 2.  

 If there exists a job in List 2,  

  set L = 2, go to step 9.  



                                                                                                                            
                                                                                            

 

 else, 

 If there exists a job in List 1,   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 5.3: Accommodating delivery constraint for special jobs 
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  set L = 1, go to step 9. 

 If no jobs exists in both lists 1 and 2,  

  set L = 4, go to step 13. 

 In this step, we determine the next job from List 1 or List 2 after trying 

scheduling the first special job, or if no more special jobs exist, we go on 

to step 13 for scheduling standard jobs. In the example, Job 5 is selected 

from List 2. After repeating iteration 9, 10 and 11, it is found that Job 5 too 

cannot be scheduled at this time point because it fails to meet the 

conditions set in step 11. Hence, step 13 is followed.  

 

Step 13 Compute new job to be scheduled from the standard jobs list as follows: 

 a.   Set t = min { m
kBNa , І },...,2,1 BNmk =  

Let I ′′ be the set of jobs not yet scheduled from the list 4 containing the 

standard jobs and available at time t. 

I ′′ I ′⊆ , where si,BN ≤ t 

b.   If Io = Φ, then set t = min {si,BN }, where i  → I ′′ . Go to step 13a. 

In this step, the clock is set to the earliest possible start time for a job at 

the calculated critical stage. Then the heuristic, goes back to step 13a, 

since there could be more than one job. Jobs which are unavailable due 

to material or tooling problems will automatically be considered when 

time t is greater than the start job start times (or in other words when the 

jobs and tools become available). Note that the earliest possible start 

time for the critical stage includes machine unavailability’s, if any.  

c.   Select job i´ with the longest tail on the critical stage: 

i →′ → I ′′  and iqq BNiBNi ∀≥′ ,, → I ′ .  

In the example, job 3 has the longest tail on the critical stage (Table 5.7). 

Hence this job is selected to be scheduled at this step. In case of a tie, 

select the job with the longest processing time at the bottleneck stage: 

pi’, BN  ≥ pi, BN  Ii ′′→∀ .  

If there is still a tie, select a job with a lower number from the maximum 

processing times check.  

 

Step 14 Schedule this new job i´ depending on the result of the previous step, at all 

the stages:  

a.  At each stage (j), find the earliest available machine m´. 

}...,,2,1{(,,, jmj
m

mj
m

mj mkpaa =∀+= ′′′ and })...,,2,1{ Jj =  

Schedule job i´ at each machine m´. Note that the earliest available 

machine is selected, which will ensure that the make-span is low and 



                                                                                                                            
                                                                                            

 

and the machine idle time as low as possible.  

b.  Update the ready time for each machine m´ as  

ji
m

mj
m

mj paa ,,, += ′′ . If any of the machine contains predictive maintenance, 

and if the machine ready time falls between or equals tStk  and tEndk , or is 

greater than tEndk , accordingly add the duration of the maintenance to 

the machine ready times.   

ji
m

mj
m

mj paa ,,, += ′′ + ( tEndk  - tStk ) . 

At this stage, the selected standard job, is scheduled through all the 

stages, on the earliest available machine at each stage respectively. 

After scheduling this job, the ready times for the scheduled machines 

are updated as shown in Table 5.12. Since in this case, the machine 

maintenances fall outside the processing times of this job, it does not 

affect the current calculation. Note that since this is the first job to be 

actually scheduled, and all machines have equal ready times, Machine 1 

on both Stage 1 and 2 are selected by breaking ties according to lower 

numbered machines. 

 

Table 5.12 Updated machine ready times after scheduling Job 3 

Stage 1 Stage 2 

Machine 1 Machine 2 Machine 1 Machine 2 

25 0 50 0 

 

Step 15 Update the number of scheduled jobs as }{ iII oo ′+= . Here the =oI Job 3. 

 

Step 16  Go to step 8 and calculate the critical stage and scheduling process for the 

remaining standard as well as special jobs as per the procedure 

described. For the example taken, refer to Appendix 1 for detailed 

description and results obtained in each iteration. A description is given 

about what happens in each iteration. At the beginning of each iteration, 

the system is updated and so are the tables. At the end of each iteration, 

the jobs in the jobs already scheduled list is shown, building on the results 

of previous iterations.  

 

Step 17 If any, schedule all the special jobs with no delivery time, but with only  

routing description. Since it is hard to determine when to insert these jobs 

in the scheduling process, these jobs are scheduled last after all standard 

jobs are scheduled. This is done to ensure that the overall makespan of 



                                                                                                                            
                                                                                            

 

the system is still low in the presence of such jobs. In the current example, 

it is job 6, 8, 9 and 10 which is scheduled in this way.  

 

Step 18 End.     

  In chapter 8, these approaches have been tested with more examples and 

variations and are found to produce good results.  

 

5.2.2 Simulation based Flow Analyzer Module (FAM) for assessing 

predictive schedule  

In this section, we describe how to combine optimization and simulation to 

arrive at a final schedule. This combination will result in the consideration of the 

detailed system and a production schedule which will perhaps be better than the 

one computed by the optimization algorithm and also be free of problems 

(bottlenecks). Figure 5.4 shows the flow chart of how this system works. The step 

wise working of the system is described as follows, and the details are also 

described in the next section: 

 

Step 1: Start and end simulation of the schedule computed by the predictive 

 optimization algorithm. 

 

Step 2: Record the data about job starting and ending times on each stage and 

 makespan values obtained from the simulation run. 

 

Step 3: Re-run the simulation with the Flow Analyzer Module (FAM) (explained in 

 the next section) activated.  

 

Step 4: During run-time, the FAM continuously analyze the situation at each 

 decision point for each job. The decision points are the points where the rule 

 generators are placed in the simulation model. The rule generators have the 

 piece of code which analyse the local conditions, in this case, for a particular 

 job for criteria such as avoiding bottlenecks, further optimization based on 

 waiting times for jobs and checking the effects of details (maintenance 

 schedules) considered by the optimization algorithm. The rule generators 

 generate a rule if local conditions are fulfilled, by locally over-riding the result 

 calculated by the optimization algorithm, only for a particular job. In the 

 future this system can be extended to include more details of a production 

 system such as pallets, material handling equipment, or other facts required 

 to process certain jobs. 

 

Step 5: Implement the new rule at the decision point by locally overriding the result 



                                                                                                                            
                                                                                            

 

 of the optimization algorithm, only for the job, machine and stage under  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Simulation based Flow Analyzer (FA) to achieve validity 

 
Start 

Run and end 

simulation 

Collect statistics about 

bottlenecks, parts and 

makespan 

Re-run simulation, with 

Flow Analyzer Module 

(FAM) activated 

Over-ride the predictive 
schedule locally based on 

input from FAM  

End simulation 
run, collect 
statistics 

Compare 

Generate 
final 

schedule  

End 

New rule 
generated by 

FAM? 

Yes 

No 

Continue 
simulation. 

End? 

Yes 

No 



                                                                                                                            
                                                                                            

 

 consideration. After executing the new rule, the jobs use the pre-calculated 

 predictive schedule generated by the optimization algorithm for the next 

 stage (before analyzing the situation on the next stage). 

 

Step 6: Continue simulation. If required, go to step 4, else stop simulation. This 

 way, all the jobs are analysed at the required decision points for criteria set 

 by the user one by one. Collect the statistics on job starting and ending 

 times on each stage and makespan. 

 

Step 7: Generate a final schedule by comparing the result of the second simulation 

 run (with FAM activated), and the schedule obtained by only simulating the 

 result of the optimization algorithm.  

 

5.2.2.1 The Flow Analyzer Module (FAM) 

There are two situations the FAM module can consider which the 

optimization did not consider during its computations. In the first situation, the user 

knows about events which need to be considered during the simulation run. For 

instance, “Job 1 needs to wait for a special processing step of 10 minutes if it uses 

machine 2 on stage 2, and it needs 15 minutes if it uses machine 1 on stage 2”. 

Such information can be put into the rule generator which can analyze the situation 

during the simulation run to determine a rule. In the second situation, he has an 

overall knowledge of all events that can happen in his system, but does not know       

 

 

     

 

 

 

 

 

 

 

 

 

 

  

 

 

          Figure 5.5 Concept of the simulation and rule based FAM 
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much about such events. For instance, he knows that a bottleneck can happen in 

the conveyor system, but may not be able to estimate its complete impact on the 

schedule. Such factual knowledge that the planner has obtained relevant to the 

problem can be realized as a database in the form of rule generators, conditions, 

and rules. This combination of simulation and optimization is a small step, which 

can be extended further. Figure 5.5 shows how the simulation based FAM works.  

 A general rule may be formulated as - if A then B, where A is a set of 

conditions on data and B is a set of instructions to be carried out if the rule is fired, 

using forward tracking principles. We use the forward tracking1 principles because 

of the relative ease of developing and implementing such a system for the current 

production system configuration, instead of using backward tracking2 principles 

where we can specify what conclusion we would like to reach, by specifying B. 

 Table 5.1 shows the interrelationships between decision points, conditions 

and rule generation. Section 5.2.2.1.1 describes rule generation for analyzing the 

flow for further optimality considering buffers and checking the impact of previous 

detail calculations of the optimization algorithm, while section 5.2.2.1.2 handles the 

condition of avoiding bottlenecks considering buffers and checking the impact of 

previous detail calculations of the optimization algorithm.   

 

Table 5.13: Interrelationships between decision points and rule generators 

Current condition / 

Rule generator 

Condition A Condition B Condition C 

Rule generator x Instruction a … … 

Rule generator y …. Instruction b …. 

Rule generator z …. …. Instruction c 

 

5.2.2.1.1  Rule generation for handling optimality 

   In this section a rule generation method for checking if the results and 

detail calculations of the optimization algorithm are optimal by handling buffers as 

production system elements is discussed. A small example is taken here to 

describe how this works in the simulation system in details. Table 5.14 shows the 

jobs and processing times on a 2 stage, 2 machine each production system 

configuration. Table 5.16 shows a sample rough schedule (paths for each job) 

obtained from the optimization algorithm described in the previous section, and 

Table 5.15 shows the buffer capacities for the case. A snap shot description of what 

exactly happens is seen in Figure 5.6, where job 1 is about to enter buffer 1 on its  

 
1 

In Artificial Intelligence (AI), a form of reasoning that starts with what is known about the data and works toward 

finding a solution, Russel (2003).  
2 
In AI, a form of reasoning that starts with what conclusion\goal is to be achieved and works backwards. The goal 

is broken into many sub-goals or sub-subgoals which can be solved more easily, Russel (2003).  



                                                                                                                            
                                                                                            

 

Table 5.14 Example jobs and system size 

Jobs Processing  

time 

on Stage 1 

Processing 

time 

on Stage 2 

Scheduled 

machine 

maintenance 

1 20 10 

2 35 20 

3 40 15 

4 15 15 

5 30 40 

6 30 35 

7 10 30 M
a
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Table 5.15 Buffer capacities on stage 2 

Machine Buffer capacity cBf  

1 3 

2 2 

3 3 

 

Table 5.16 Job routing according to optimization algorithm 

Jobs Machine  

on Stage 1 

Machine 

on Stage 2 

1 Machine 1 Machine 1 

2 Machine 2 Machine 2 

3 Machine 1 Machine 1 

4 Machine 2 Machine 1 

5 Machine 1 Machine 3 

6 Machine 2 Machine 3 

7 Machine 2 Machine 1 

 

way to machine 1 at stage 2. At this moment, we analyze the number of jobs which 

are currently being processed on the next stage on each machine, including the 

number of jobs currently held in each buffer on the next stage (Bf1, Bf2, etc). 

It will use the following steps: 

1.  Get job i which wants to enter the next stage j, via a buffer. In this case, say job 

1 is to enter stage 2 via buffer Bf1, and is originally scheduled to enter machine 

1 on stage 2 (see table 5.16 for the rough schedule).   

20. Get the number of jobs in each buffer on stage j. Get the jobs oc Ii ⊆ currently 

processed on machines jm  on stage j. For the current examples, job 3 and 4 



                                                                                                                            
                                                                                            

 

are contained in buffer Bf 1, job 2 is contained in buffer Bf 2, and job 5 and 6 are 

contained in buffer Bf 3. In addition, job 7 is being processed on machine 1 on 

stage 2.  

21. Compute the expected time tm when each of the jm  machines on stage j 

become free after processing the current jobs oc Ii ⊆ . For the current example, 

there is only job 7 being processed on machine 1 (see Figure 5.6), and no jobs 

on machine 2 and machine 3. Assuming job 7 is half way through its processing 

on machine 1, stage 2, so tm = 15 minutes for machine 1, and 0 for machine 2 

and machine 3.  

22. Compute the summation of processing times of all jobs on stage j in each buffer 

as∑
=

CNBf

i 1

( Bf
jip , ). In the current examples, the summation comes out as 30 minutes 

in buffer 1, 20 minutes in buffer 2 and 75 minutes in buffer 3. 

23. Sum up, for each of the alternative routes that job i can take on stage j 

(including the one which the optimization algorithm calculated), the machine 

free times, the processing times required for all jobs in each corresponding 

buffer and the processing time for job i on stage j as [ tm +∑
=

CNBf

i 1

(( Bf
jip , ) + jip , ].  

 

                                                        Bf 1                Original path for Job 1 

 

                     Job 1                                                                        Result x\Line 1 

 

                                                                   Current jobs in buffer      Current job 7    

                                            Bf 2       

 

       Result y\Line 2 

               

                                                       Bf 3 

 

         Result z\Line 3 

              Stage 1                               Stage 2 

Figure 5.6 Snap shot to describe events for optimality and\or validity rule 
generation 

 

Here we have calculated the amount of time required when the job will have 

finished processing on each machine. In the current example, this will result in a 

time, when job 1 will leave stage 2 after processing itself on each one of the 
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machine on stage 2, and after all jobs (in each buffer and corresponding 

machines) are completely processed. For the current example this would result 

in values 55, 30 and 85 if job is processed on machine 1, 2 or 3 respectively – 

the time when the machines would be free again completely. 

24. Compute if predictive machine maintenance has been scheduled at around the 

time the job i will possible finish on each of the machines on stage j, as follows:  

If the time the machines would be free again falls between or equals tStk  

and tEndk  or is greater than tEndk , accordingly add the duration of the 

maintenance to the machine free times as:   

The time required to process job i = [ tm +∑
=

CNBf

i 1

(( Bf
jip , ) + jip , ] + ( tEndk  - tStk ).  

Else,  

The time required to process job i = [ tm +∑
=

CNBf

i 1

(( Bf
jip , ) + jip , ].  

If the start of maintenance time is less than the time each machine becomes 

free again, then the maintenance duration is added to the time the job i is 

expected to finish. On the other hand if the start of maintenance time is more 

than the time each machine becomes free again, then this means the machine 

is maintained at a later point in time. Accordingly for each situation the time 

required to process job i is computed. In this example, machine 1 on stage 2 is 

maintained from time 30 to 40 minutes. Since this falls within the time machine 

1 will be free completely (if job 1 is processed on this machine), the 

maintenance duration is added to the machine free time as: 55 + 10 = 65.  

25. The result of step 6 will be in terms of a time unit, which will reflect the earliest 

time job i will finish after each of the machines (if processed on any). Let x be 

the result for the buffer Bf1\Machine 1 (Line 1), y be the result for Bf2\Machine 2 

(Line 2) and z be the result for Bf3\Machine 3 (Line 3) as seen in Figure 5.6 and 

in Table 5.17.  

Compute the differences with respect to x as follows: 

x – y  = a.  

For this example, this comes out as, a = 65 – 30 = 35. 

If a is positive, then this means job i could be processed faster by time a, if 

placed on Bf 2 (which had result y). 

If a is negative, then job i could be delayed by time a, if placed on Bf 2. 

Similarly, 

x – z = b. 

For this example, this comes out as, b = 65 – 85 = – 20. 

Similar logic is applied for b.  



                                                                                                                            
                                                                                            

 

26. Get buffer with maximum positive difference a or b, and get remaining capacity 

ccBf of this buffer. In this example, buffer 2 has remaining capacity of 1. When 

maximum positive value does not exist, solution cannot be more optimal than 

that of the optimization algorithm, go to step 9. 

If ccBf ≥ 1  

Fire rule and schedule job i on this buffer (line) by overriding 

the solution computed by the optimization algorithm. 

In this example, this condition is true, and hence job 1 is scheduled 

on buffer 2 to be processed on machine 2, by overriding the result of 

the optimization algorithm, according to which job 1 had to be 

processed on machine 1.  

Else,  

Select the buffer with the next lower maximum positive 

difference, and if one exists, repeat step 8, else go to step 9. 

27. End. 

 

Table 5.17 Earliest job i finishes on each stage 

Value 

 

Earliest time 

 

Difference with  

respect to  

original path 

x 65  

y 30 35 

z 85 -20  

 

Table 5.18 New job routing obtained after running simulation based FAM  

Jobs Machine  

on Stage 1 

Machine 

on Stage 2 

1 Machine 1 Machine 2 

 

 Table 5.18 shows the new job routing for the snap shot example taken here. 

After this procedure the simulation again proceeds to do the same analysis with 

other remaining jobs throughout the model, at each and every decision point. Note 

that at the end of the analysis, the predictive machine maintenance times, tools, 

material availabilities, special jobs will also be considered by the entire system, as 

the optimization algorithm calculated when the jobs which have such constraints 

should be released in the system at the input. Note that the simulation based FAM 

system considers standard and special jobs with delivery times only and tries to 

finish these jobs as early as possible, so it does not affect the delivery time 

calculations for special jobs with only delivery times. All other special jobs are not 



                                                                                                                            
                                                                                            

 

considered in these calculations because of their contrasting demands. Appendix 

1.1 describes similar detailed hand calculations (where the above also becomes 

clear) for the example (Table 5.1) taken to describe the optimization algorithm 

calculation. Each instantaenous event data in the simulation model is described 

with results and screenshots. In the next section, we describe the method of 

generating rules for the case of bottlenecks.  

 

5.2.2.1.2    Rule generation for handling schedule validity by avoiding  

       bottlenecks 

This rule generator will analyze local situations and avoid bottlenecks 

due to buffer sizing and check the detail calculations of the optimization algorithms. 

It is designed such that before a bottleneck is resolved during the simulation run, 

optimality is also considered. The way the rough schedule of the optimization 

algorithm is over-ridden for a bottleneck case is explained here using Figure 5.6, 

with data on processing times and buffer sizes shown in Table 5.19, Table 5.20, 

while Table 5.21 shows a sample schedule calculated by the optimization algorithm.  

 

Table 5.19 Example jobs and system size 

Jobs Processing  

time 

on Stage 1 

Processing 

time 

on Stage 2 

Scheduled 

machine 

maintenance 

1 20 10 

2 35 20 

3 40 15 

4 15 15 

5 30 40 

6 30 35 

7 10 30 M
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Table 5.20 Buffer capacities on stage 2 

Machine Buffer capacity cBf  

1 2 

2 1 

3 3 

 

Table 5.21 Job routing according to optimization algorithm 

Jobs Machine  

on Stage 1 

Machine 

on Stage 2 

1 Machine 1 Machine 1 



                                                                                                                            
                                                                                            

 

2 Machine 2 Machine 2 

3 Machine 1 Machine 1 

4 Machine 2 Machine 1 

5 Machine 1 Machine 3 

6 Machine 2 Machine 3 

7 Machine 2 Machine 1 

  

 As seen in Figure 5.6 if buffer Bf1 is full (see Table 5.20 for buffer capacities 

in this example) and job 1 has to travel to Machine 1 (on stage 2) according to the 

pre-calculated schedule, then obviously there is a bottleneck situation which needs 

to be resolved as much as possible. To resolve this situation, we first compute the 

time when each machine will be free from machining its current job by undertaking 

the following steps: 

1. Get job i which wants to enter the next stage j, via the blocked buffer. In this 

example, job 1 wants to enter stage 2 via buffer Bf1, and is originally scheduled 

to enter machine 1 on stage 2 (see Table 5.21 for the rough schedule). 

2. Get the number of jobs in each buffer on stage j. Get the jobs oc Ii ⊆ currently 

processed on machines jm  on stage j. For the current example, job 3 and 4 are 

contained in buffer Bf 1, job 2 is contained in buffer Bf 2, and job 5 and 6 are 

contained in buffer Bf 3. In addition, job 7 is being processed on machine 1 on 

stage 2.  

3. Compute the expected time tm when each of the jm  machines on stage j 

becomes free after processing the current jobs oc Ii ⊆ . For the current example, 

there is only job 7 being processed on machine 1 (see Figure 5.6), and no jobs 

on machine 2 and machine 3. Assuming job 7 is half way through its processing 

on machine 1, stage 2, so tm = 15 minutes for machine 1, and 0 minutes for 

machine 2 and machine 3.  

4. Compute the summation of processing times of all jobs on stage j in each buffer 

as∑
=

CNBf

i 1

( Bf
jip , ). In the current examples, the summation comes out as 30 minutes 

in buffer 1, 20 minutes in buffer 2 and 75 minutes in buffer 3. 

5. Sum up, for each of the alternative routes that job i can take on stage j 

(including the one which the optimization algorithm calculated), the machine 

free times, the processing times required for all jobs in each corresponding 

buffer and the processing time for job i on stage j as [ tm +∑
=

CNBf

i 1

(( Bf
jip , ) + jip , ]. 

Here we have calculated the amount of time required when the job will have 



                                                                                                                            
                                                                                            

 

finished processing on each machine. In the current example, this will result in a 

time, when job 1 will leave stage 2 after processing itself on each one of the 

machine on stage 2, and after all jobs (in each buffer and corresponding 

machines) are completely processed. For the current example, this would result 

in values 55, 30 and 85 if job is processed on machine 1, 2 or 3 respectively – 

the time time when the machines would be free again completely.  

6. Compute if predictive machine maintenance has been scheduled at around the 

time the job i will possibly finish on each of the machines on stage j, as follows:  

If the time the machines would be free again falls between or equals tStk  

and tEndk  or is greater than tEndk , accordingly add the duration of the 

maintenance to the machine free times as:   

The time required to process job i = [ tm +∑
=

CNBf

i 1

(( Bf
jip , ) + jip , ] + ( tEndk  - tStk ).  

Else,  

The time required to process job i = [ tm +∑
=

CNBf

i 1

(( Bf
jip , ) + jip , ].  

If the start of maintenance time is less than the time each machine becomes 

free again, then the maintenance duration is added to the time the job i is 

expected to finish. On the other hand if the start of maintenance time is more 

than the time each machine becomes free again, then this means the machine 

is maintained at a later point in time. Accordingly for each situation the time 

required to process job i is computed. In this example, machine 1 on stage 2 is 

maintained from time 30 to 40 minutes. Since this falls within the time machine 

1 will be free completely (if job 1 is processed on this machine), the 

maintenance duration is added to the machine free time as: 55 + 10 = 65.  

7. The result of step 6 will be in terms of a time unit, which will reflect the earliest 

time job i will finish after each of the machines (if processed on any). Let x be 

the result for the buffer Bf1\Machine 1 (Line 1), y be the result for Bf2\Machine 2 

(Line 2) and z be the result for Bf3\Machine 3 (Line 3) as seen in Figure 5.6 and 

in Table 5.22.  

Compute the differences with respect to x as follows: 

x – y  = a.  

For this example, this comes out as, a = 65 – 30 = 35. 

If a is positive, then this means job i could be processed faster by time a, if 

placed on Bf 2 (which had result y). 

If a is negative, then job i could be delayed by time a, if placed on Bf 2. 

Similarly, 

x – z = b. 



                                                                                                                            
                                                                                            

 

For this example, this comes out as, b = 65 – 85 = – 20. 

Similar logic is applied for b.  

8. Get buffer with maximum positive difference a or b, and get remaining capacity 

ccBf of this buffer. When maximum positive value does not exist, select buffer 

with minimum negative value from a or b. This is because if maximum positive 

difference exists, then a better makespan can also be achieved by scheduling 

on this buffer (besides resolving the bottleneck situation, by overriding the 

optimization result), while if buffer with minimum negative value is selected, then 

a worser makespan but a bottleneck free situation will result.  

If ccBf ≥ 1, 

Fire rule and schedule job i on buffer. Go to step 9.  

  Else,  

Select the buffer with the next lower maximum positive 

difference if it exists, or the one with minimum negative value 

if one exists and repeat step 8, else go to step 9. In this step 

it is checked if a bottleneck free situation can be created on 

other buffers. If not, this means, the solution cannot be 

improved by overriding the results of the optimization 

algorithm.  

In the present example, the buffer with maximum positive difference leads to 

buffer 2. Then it is checked if the balance capacity on buffer 2 is atleast 1. This 

check fails, and then the next buffer with minimum negative value is choosen, 

which is buffer 3 (note that if this check was successful, a better makespan by 

35 minutes as well as a bottleneck free situation would have resulted). It is 

checked if this buffer has balance capacity. This check is successful, and job 1 

is scheduled to buffer 3 to be processed on machine 3. This will result in a 

makespan longer by 20 minutes, but a bottleneck free situation – the goal of this 

rule generator.  

9. End procedure. 

 Table 5.23 shows the result of the FAM analysis for the snap shot example 

of Figure 5.6.  

 

Table 5.22 Earliest job i finishes on each stage 

Value 

 

Earliest time 

 

Difference with 

respect to 

original path 

x 65  

y 30 35 (a) 

z 85 -20 (b) 



                                                                                                                            
                                                                                            

 

Table 5.23 New job routing obtained after running simulation based FAM  

Jobs Machine  

on Stage 1 

Machine 

on Stage 2 

1 Machine 1 Machine 3 

 

As explained earlier, the simulation then continues and generates similar rules on 

the occurrence of another bottleneck elsewhere during the simulation run. This rule 

generator may result in some special jobs delivered later than that calculated by the 

optimization algorithm because of the fact that it allows jobs to finish later, but 

assures a bottleneck free situation, as was the case in the example.  

 

5.2.2.2      Sequential rule firing and its consequences 

     In this section, the detailed aspects of the interaction between the initial 

schedule and the schedule obtained after analysis using the FAM are discussed in 

terms of rules generated by the latter. It may happen as a result of the simulation 

based overriding system, that two rules are fired for two jobs sequentially directed 

towards one position in the model, may not be in the same sequence as calculated 

by the optimization algorithm.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Sequential rule generation 
 

This can happen due to the varying processing times of the jobs considered 

and the complex interactions between several jobs and positions. Figure 5.7 shows 

the phenomenon. As seen rule R1 is generated first to be implemented at position 1 

in the model as is shown by thick arrowed line. Rule 2 is generated after rule 1, 

hence shown in dotted line, and implemented at position 2. In the next step, rule 3 

is generated and implemented at position 3, but soon afterwards, rule 4 is 

generated and implemented at same position 3. However it was precalculated by 

the predictive system that a particular job should have gone to position 4 instead of 

 
Start 

    R4 R3,  P3 

R2, P2 R1, P1 

    R6 R5,  P4 



                                                                                                                            
                                                                                            

 

position 3. This is a conflict situation and as a result rule 4 will override rule 3 and 

continue with the simulation. No special handling is required for tackling such 

sequentially generated and implemented rules. This is because at the end of 

analyzing all the schedules generated by the system, the user can still select the 

best overall schedule.  

To demonstrate the effect, a sample result is shown in Figure 5.8 (more 

results and data used for such results and tests are described in the results 

chapter). The figure shows on the y-axis the percentage reduction of Job Finishing 

Times (JFT) and x-axis the number of jobs in the system. The percentage reduction 

is calculated by using the data on Job Finishing Times of the initial schedule 

(calculated by the optimization algorithm and then simulation), and the data on Job 

Finishing Times of the new schedule (obtained by the FAM). It can be seen that 

some jobs finish later than the initial schedule using the FAM analysis (shown by 

the circles). This is due to the phenomenon described earlier – the phenomenon 

that some jobs are overridden by other jobs in the flow analysis step when they are 

actually in a different sequence prior to starting the flow analysis.  
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Figure 5.8 Consequences of sequential rule generation 

 

5.3 Concepts and solutions for reactive scheduling 

 

  According to the overall concept explained earlier, after the user evaluates 

the predictive schedule in the previous shift, he executes a final schedule on the 

shop floor real world in the following shift. Note that the predictive schedule 

computed the period before considers broader elements of the  production system 

like buffers and details like materials, machine availability, delivery times etc and 

this schedule has already been evaluated and analyzed using the simulation based 



                                                                                                                            
                                                                                            

 

FAM in the earlier period. Exceptions occur rarely during the execution of the 

schedule on the shop floor, and when they do, the reactive system provides 

solutions using a combination of simulation and optimization. Figure 5.9 shows the 

overall concept of the system. The following are the components of the simulation 

and optimization assisted reactive system: 

 

1. Real-time monitoring and control 

This component receives events from the shop floor, and periodically 

monitors performance of the shop floor. It also sends all scheduling controller 

information to the shop floor and dispatches instructions accordingly. The sub-

component within the RTMC is the Exception and Performance Analysis. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        

         

 
 

Figure 5.9 Simulation and optimization assisted reactive scheduling 
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This checks all incoming events and invokes rescheduling on execution exceptions 

(criteria defined by users) with the remaining operations under the current shop 

floor conditions. 

 

2. Simulation evaluation 

The simulation system captures the entire model of the physical 

manufacturing system and receives events from the RTMC making it run parallel to 

the real manufacturing system. This component simulates the entire system atleast 

once. First, as soon as a reaction is desired, the simulation system simulates 

rapidly the effect of the deviation (simulation 1, Figure 5.9) and computes the upper 

bound (make-span) value y as seen in Figure 5.9 and Figure 5.10. The upper 

bound is the result of the total deviation from the original predictive schedule, if we 

choose not to do anything, until the end of the planning period. So the upper bound 

is essentially the worst-case scenario for the performance measure, which should 

not be exceeded (as much as possible) by the final solution of the reactive system. 

By simulating the entire system, we can be certain that the upper bound value y 

corresponds to the system that is modeled in a detailed way to consider some 

broader elements of a manufacturing system – something which is hard to do using 

a pure optimization algorithm. Second, the simulation evaluation component 

receives input about the better decision (options) computed by the optimization (re-

scheduling) algorithm considering adaptation synchrony problems (when exactly to 

reschedule in the real world considering its evolution). These inputs from the 

optimization algorithm are simulated to achieve the required performance indicators 

selected by the user. Upon selection of a final rescheduling solution, this is 

evaluated with the Flow Analyzer Module (FAM) activated (shown as simulation 

2,....n + Flow analyzer activated in Figure 5.9) to check the validity of the better 

solution – that the solution does not create problems in the future due to 

rescheduling. The result of the last simulation run (i.e. with the FAM activated) 

should ideally give the make-span value lower than the upper bound value y 

computed earlier. If the opposite were true, this would mean, that it would be best 

not to re-schedule the current system. The functioning of the optimization algorithm 

is explained in details next. 

  

3.  Optimization component (Re-scheduling algorithm) 

 After the simulation evaluation system computes the upper bound, the 

control is passed over to the optimization algorithm. This algorithm will compute the 

most probable rescheduling solutions alongwith guidelines on solving the 

Adaptation Synchrony problem and passes them back to the simulation evaluation 

system. The simulation system then evaluates each solution. The optimization 

algorithm basically further guides the simulation to a better solution considering 



                                                                                                                            
                                                                                            

 

Adaptation Synchrony. In the end, the system presents a final rescheduling solution 

obtained for the optimization of a particular performance indicator. The optimization 

algorithms take two forms: 

 

3.1 Match-up rescheduling algorithm 

 This algorithm tries to match up the schedule after deviation from its original 

trajectory. This is done by measuring each job starting time deviation and job 

sequence deviation, and accordingly developing a solution to bring back these 

deviations to much as possible to zero.  

 

3.2 Selective rescheduling algorithm 

 This algorithm reschedules only a selected few jobs. This algorithm aims to 

fit in the jobs in the planning horizon by rescheduling selected jobs without 

addressing each job starting time deviation. This algorithm results in a system 

where deviations are done later in the planning period.  

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Solution spaces and bounds 

 

Both these algorithms use some rough methods to generate good solutions shown 

as parameters a, b, c and d in Figure 5.10 (of the next decision to take). The 

optimization algorithm then gives these solutions to the simulation component 

which evaluates them in detail. It is necessary to use rough methods since with the 

pure algorithm it is hard to consider the all other details of the production system 

like buffers. Hence, we use simulation (combined with the Flow Analyzer) to 

simulate to evaluate the result of implementing the selected decisions (shown by a1 
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in Figure 5.10). This result is compared by the simulation system to the upper 

bound y obtained from simulating earlier as a feasibility check. In this way, the 

optimization algorithm does some rough calculations and reduces the solution 

space, while the simulation takes this space and determines the best solution. It 

should be noted that the optimization algorithm gives the most important solutions 

also considering Adaptation Synchrony, while the simulation system simulates to 

check if this solution can still fulfill the global upper bound needs, besides doing 

validity and synchrony checks.  

 

4. Scheduling controller 

 The scheduling controller gets input from the simulation evaluation after it 

obtains the results given to it by the optimization system. The scheduling controller 

passes on this result to the real time monitoring and analysis component, which 

further passes down this result to the real production system. Figure 5.11 shows the 

time line of the computations taking place in the system. The system functions as 

explained in the earlier section. On a time scale, as soon as an exception occurs at 

8:00 am, the simulation system is activated based on user settings. This calculates 

the upper bound y of the system, and perhaps if further problems (such as 

bottlenecks) will happen at 8:45 am due to the exception.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.11 Time line of computations 
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Then the optimization algorithm is activated which computes the better candidate 

solutions. The simulation system once again, simulates these solutions. When the 

final solution is computed, it is finally decided that the reactive solution is 

implemented at 8:15 am, depending again on the user selected preferences and 

results of the Adaptation Snychrony. 

 

5.3.1  Justifications for using these methods 

 The following are the justifications for using the proposed methods for 

reactive scheduling: 

1.  A pure optimization algorithm will make it hard to compute accurately the result 

of an exception in the form of the upper bound, especially considering a parallel 

machine flow shop problem and additional elements such as buffers. Simulation 

gracefully captures all these details, and provides inputs to the optimization 

algorithm for developing possible rescheduling solutions. 

2. A pure optimization algorithm will make it hard to compute the entire result of a 

rescheduling iteration, due to similar reasons mentioned in point 1. Using 

optimization to provide the better candidate solutions and rough solutions, and 

then using simulation cuts down computational efforts and increases accuracy 

than by using pure optimization.  

2. Simulation provides a better way to assess if the solution (obtained from the 

rough optimization algorithm) we implement is really worth the efforts in the 

global system. 

 

5.3.2 Matchup rescheduling for real-time control 

In this approach, the idea is to try as much as possible to come back to the 

original schedule upon the occurrence of an exception by making selective local 

changes to the schedule in such a way that performance indicators such as starting 

time deviations, sequence deviations for all jobs or the makespan are as close as 

possible to the original schedule. Figure 5.12 shows the rescheduling system.  

 As soon as an exception occurs, an upper bound is computed. The upper 

bound computation can be performed using an algorithm or a simulation system. In 

our case, since the system is quite complex (varying part processing times with 

multiple routings between stages and buffer elements), it is required to use 

simulation for the computation of the upper bound. The most important reason to 

use simulation is to be able to help in the accurate computation of the capacity that 

exists where rescheduling could possibly take place. Another reason to use 

simulation for the computation of the upper bound is due to the parallel machine 

system configuration – it is mostly the case that the upper bound is not equal to (but 

in fact is less than) the original predictive makespan plus the exception duration! 

This is due to the fact that with the exception some jobs can advance to the next  



                                                                                                                            
                                                                                            

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 5.12 Matchup rescheduling for real-time control  
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stage on the parallel machine configuration, thus reducing the upper bound 

makespan further. This upper bound represents the worst case scenario as a result 

of doing nothing, or in other words, the result of not re-scheduling. Then, on the 

same stage where the exception happened, we determine the amount of capacity 

that is available on all the alternative machines using a heuristic algorithm with input 

from the simulation run. A number of jobs are then created which are candidates for 

re-scheduling (the rescheduling set i´´). These jobs are the ones which should have 

started on the machine during the duration of the exception, according to the 

predictive schedule. For these candidate jobs, the total number of simulation 

iterations and the number of jobs within each iteration is computed and set. Jobs 

are rescheduled using an Updating Capacity Principle (UCP). In the first iteration, 

Job 1 is selected (from the set i´´) and is planned to be re-scheduled by the 

algorithm at a certain position P1 at time t1 on the alternative machine where 

maximum capacity exists (see Figure 5.13). An Adaptation Synchrony Analysis 

(ASA) is also conducted at this step, which attempts to solve co-ordination 

problems, which is described separately in the next section. 

 Since there is only one job in the first iteration, the system simulates this 

constellation and saves the results in a database. Following this, the algorithm 

updates the iteration number to the second iteration and gets the associated jobs 

with this iteration (jobs 1 and 2 from set i´´). From these two jobs, the one with 

maximum processing time on the stage where the exception occurred is selected. 

This job is then placed at a certain position at a machine with highest capacity. Note 

that at the beginning of each iteration, the inputs about the highest capacity are 

obtained from the upper bound simulation run. Again, just before conceptually 

rescheduling the ASA is conducted – explained in the next section. If there are 

more jobs in the iteration (true – second iteration has two jobs), the machine 

capacities are updated using a heuristic, new information on rough capacities are 

obtained and the second job is rescheduled on the newly calculated highest 

capacity machine (could be different than the one where job 1 was rescheduled). 

This is shown as an example in Figure 5.13. 

 At the end of this iteration, the jobs are placed at the calculated positions 

and a simulation run is carried out to save results on performance indicators on this 

run. If there are more iterations, the same process is repeated, where within each 

iteration, jobs are selected in the order of maximum processing times and machine 

capacities are updated intermittently. This method of updating capacity in our 

experience gives much better results than other methods we have developed and 

tested. A reason for this is that rescheduling jobs with maximum processing times 

first on machines with highest capacities seem to prioritize jobs which results in 

faster processing for jobs and balancing of loads on machines. This method of 

combining simulation and optimization results in fewer simulation runs (we do not 



                                                                                                                            
                                                                                            

 

simulate each and every constellation), whilst still providing good results (shown 

later). Simulation is used to compute the exact maximum capacity for a system that 

can contain anything from different processing times on machine, buffers and 

transportation elements – something that can be extended further. The optimization 

algorithm then takes this as an input at the start of each iteration to keep the 

number of simulation iterations to a bare minimum. 

As mentioned earlier, just before each sub-iteration and iteration, an 

Adaptation Synchrony Analysis (ASA) is conducted. This may alter the exact 

position (as calculated by the initial computations of the optimization algorithm) 

where a job may be rescheduled considering the future system state. This is 

explained in the next section.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Tree of the iterations for positions and job rescheduling 

 

5.3.2.1 Adaptation synchrony analysis (ASA) during rescheduling 
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computation. When the rescheduling computations and implementations would be 

finished (assuming we know or can determine how much time is needed to 

compute and implement a change), the real system state has evolved to a new 

state (corresponding to data 2). So the data used for the computation of a 

rescheduling solution corresponds to the wrong state of the system as marked by 

the solid grey arrow, with the specific result that the position where we wish to 
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reschedule a particular job may not be available, since a job around that position 

has already progressed ahead in time, making it infeasible to attempt the 

rescheduling step.  

 The following is the pseudo-code of the ASA system and the description of 

each point where necessary:  

1. Let i´´ = number of jobs selected for rescheduling, 

2. Let j be the machine selected for rescheduling, 

3. Let P1 at time t1 be the position calculated by the optimization algorithm for job i 

(see Figure 5.16 for the illustration). This position is the earliest possible time a 

job can be rescheduled, 

4. Get the job change\implementation time tch from the “change chart(s)” for job i. 

The idea of change charts is described next.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Real-world state evolution and interaction with rescheduling 
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times (iteration time using simulation) duration can be estimated to a high degree of 

accuracy as we have already carried out simulation runs earlier (the upper bound 

simulation for instance) from which we can determine the time required for a 

particular iteration or iterations. The times to actually reschedule a job from one 

machine to other on the shop floor can be estimated a priori (line operators can fill 

up a “change chart(s)” with relative ease for each job change on other machines on 

the same stage). The concept and the location where and how the change charts 

are to be filled and used is shown in Figure 5.15.   

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Change charts filled up in the previous shift used in the current 

shift adaptation process 
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6. Compute the time tfree machine j (the one where job i is going to be rescheduled) 

will become free earliest after machining each job cumulatively to take in the 

rescheduled job i. tfree = remaining processing times for the job currently being 

processed on machine j + processing times for one or more of the remaining 

jobs on previous buffer of machine j.  

7. If ttotal (for example b1 in Figure 5.16) > t1 (at P1), then 

8. Compute new position P1 new with t1new in such a way that t1new > ttotal (b1) and 

tfree but with P1 new (position between one of the jobs that machine j has to 

machine) just after a job that machine j will machine at a later time period. 

Decide to proceed with simulation iteration on the new position. 

 To help understand points 5 to 8, consider the situation in Figure 5.16. 

Assume that the rescheduled job is job 7, which is shown at its new possible 

position. tDur is shown as the exception duration in the figure, while “a” is shown as 

the time between the start of the exception and the start of position P1. Now let’s 

assume that the change time (total time for computation and change) for job i is b1, 

which is greater than the time “a”. If this is the situation, obviously the simulation 

iteration with job 7 at position P1, does not make sense because we will not be able 

to implement this solution (if we finally select it) in the real-world, because by the 

time we have a solution ready, job 6 would already have progressed into machining 

on the rescheduled machine according to its old schedule.  

 

 

 

 

 

 

 

 

 

 

  Figure 5.16 Adaptation synchrony analysis computations 
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the total times, a provision is made in the simulation model to account for such 

events by scheduling them at a later – appropriate time. An example is the set-in 

time which starts after actually putting the job at its new position, i.e. after the 

duration of the total time is finished.  

 To describe the ASA system more, a comparison is made between the time 

the machine on which potential rescheduling is to take place becomes free and the 

total change time. If the change time exceeds the potential rescheduling position 

(each position also has a time), then obviously, we may not reschedule the job at 

that position. This is because by the time we reschedule this job physically the real 

system is ahead in time, consequently meaning that the potential position 

calculated by the optimization algorithm is no longer available. In such a situation it 

is then determined if the next position is available. If it is available, the job is 

rescheduled at the new position, thus overriding the initial position calculated by the 

optimization algorithm. The simulation iteration is then performed with the new 

position at the end of the iteration with the new positions calculated.  

9 Else, decide to proceed with simulation iteration with position P1. 

10 If more jobs in set i´´, select next job i+1 and go to step 2, else, end iteration 

and simulate all jobs at the decided positions. 

 This way the system places a job at an appropriate position by computing in 

the future and by considering the scenario that the current (iterated) job(s) will be 

finally selected for rescheduling in the end after going through all iterations! After 

each iteration, the results on the starting times, make-span, sequence changes are 

saved in the database as explained earlier. After considering each iteration for re-

scheduling, comparison is made between the predictive schedule and the result of 

re-scheduling the jobs at various iterations. Some job iterations may result in values 

of makespan higher than the predictive schedule, but result in lower starting time 

deviations with some sequence deviations. As a result, the user is presented with 

these results, in a consolidated form. The user then selects a particular 

rescheduling solution and does the post rescheduling analysis using the simulation 

based Flow Analyser Module (FAM), which is described in the next section. This 

post rescheduling analysis will reveal if the rescheduling solution will have problems 

in the future execution when actually implemented in the real-world. In this analysis, 

the FAM system will solve the potential future problems by over-riding as less jobs 

as possible and present a final solution. The final solution deviations and 

performance data are recorded and presented to the user. The final rescheduling 

solution is compared to the upper bound simulation run to find out if its worth to 

implement this solution in the real-world or not. The final solution is then given back 

to the scheduling controller and on to the RTMC module as seen and explained in 

Figure 5.9. 

 



                                                                                                                            
                                                                                            

 

5.3.2.2 Detailed algorithm for match up rescheduling and the ASA system 

In this section, the detailed algorithm is described with the help of an 

example. A 2x2 model was taken (2 machines on each of the 2 stages). The 

exception was set to occur from 25 to 65 minutes on machine 2 on stage 1. Table 

5.24 shows the number of jobs used for explaining the example. The predictive 

schedule generated of this example is shown in Appendix 2, Figure A5 as a gantt 

chart. The exception would fall at the end of job 4 and continue until the middle of 

job 5, shown by solid dotted braces. The detailed steps in the system are 

mentioned as follows: 

 

Table 5.24 Example to explain algorithm 

Jobs Stage 1 

Processing times 

(minutes) 

Stage 2 

Processing times 

(minutes) 

1 25 20 

2 25 20 

3 25 25 

4 30 20 

5 15 15 

6 30 20 

7 10 20 

 

1. Get the predictive schedule Schpredictive. In this schedule all the jobs are                  

scheduled. 

2.  Get time tD = time when exception happened, and duration of exception as     

tDur. In this example tD = 25 minutes, and tDur = 40 minutes. 

3.  Compute the upper bounds using simulation as the worst-case situation by first 

determining the directly affected jobs, and the impact of these jobs on the 

indirectly affected jobs. In Schpredictive, put all jobs on machine k at stage j after 

time tD in set db ′ = {1, 2, 3, 4...., n}, where db ′ 0I⊆ . Note that 0I  contains all the 

scheduled jobs. In the current example, the directly affected jobs are job 4, 6 

and job 5. As a result of the directly affected jobs, there are other jobs which are 

indirectly affected in the schedule. In Schpredictive, for job i = 1 in db ′  on stage j, 

calculate the new time when this job will finish as (tDur + pi,j). For each job 

following (after) job 1 on stage j, update the job completion times using 

simulation. Because these jobs also exist on subsequent stages, j + 1,…J, 

during the run-time of the simulation, the jobs starting and ending times are 

updated accordingly. In the end the result is completely updated schedule which 

will result in the upper bound make-span value make-spanUB. Save this result in 



                                                                                                                            
                                                                                            

 

a database. 

4. Determine capacity on the exception stage by checking the earliest available 

time m
kja , for all the machines on this stage. The machine with the lowest earliest 

available time will have the highest capacity to absorb the exception, and will be 

the one where the job will be rescheduled to. Figure 5.17 shows the earliest 

available time m
kja , , on machines 2 and 3 for a generic example. In the current 

example, since there is only one machine on the exception stage, m
kja , = 85 

minutes (1:25:00.0000). This comes out as the time machine 1 on stage 1, 

becomes available earliest (can be calculated by adding up the processing 

times of all jobs on machine 1 on stage 1, and the idle times of the machine).   

 

 

 

 

 

 

 

 

 

      Figure 5.17 Earliest available machines on exception stage 

 

5. Create a new set of jobs db ′′ ⊂ db ′ . Jobs in set db ′′ are selected according to 

the principle shown in Figure 5.18. All jobs between the exception duration 

beyond the job on which exception happened and time when the job where the 

exception duration ends are selected. In the current example, job 6 and job 5 

are in the set db ′′ . 

 
 
 

 

 

 

 

 

                    

Figure 5.18 Determining jobs in the set of jobs to reschedule 

 

6. Determine the number of iterations it needed and numbers of jobs within each 
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iteration and save this data in a table, shown for this example in Table 5.25. Set 

the number of jobs in each iteration equal to the iteration number starting with 

the first job in set db ′′ . So, if set db ′′  has 3 jobs, iteration 1 will have the first 

job, iteration 2 will have job 1 and 2, and iteration 3 will have job 1, 2 and 3. In 

the current example, job 6 goes into first iteration, and job 6 and job 5 go into 

the second iteration.  

7.   Compute the time required for the change by computing the time simulation 

runs depending on the total number of iterations, and determine the change 

times from the change charts. In this example, the estimated simulation time is 

roughly 2 seconds, and the change values were set to 5 minutes each for set-

out, transportation, and set-in factors, so the total change time would be 15 

minutes and 2 seconds. This change time is an input to the ASA conducted in 

the next step. 

          

    Table 5.25 Iterations and jobs selected for rescheduling  

Iteration 

number 

Jobs in 

iteration 

1 Job 6 

2 Job 6, Job 5 

 

 Table 5.26 Capacities on earliest available alternative machines 

Iteration Earliest available 

machines time 

1 85 minutes 

2  

         …2.1 85 minutes  

         …2.2 115 minutes  

 

8.  Select the job i in iteration 1 from Table 5.25 and temporarily reschedule this job 

on a particular postion P1 as shown in Figure 5.16. Conduct the ASA. As 

explained in the ASA section, this will result in Job 6 completely rescheduled at 

time 40 minutes and 2 seconds. This comes out as, tD (25 minutes) + the 

change time (15 minutes and 2 seconds) = 40 minutes and 2 seconds. Note 

that job 1 on machine 1 will be over after 50 minutes (see Figure A5 in Appendix 

2), meaning that the ASA did not have to make changes to the most probable 

position.  

9. If there are no more jobs in this iteration (true – first iteration has only 1 job), 

update the job completion times using simulation. Save the data on make-span, 

starting times in a database.  

10. If number of iterations it > 1 (more than 1 iteration), update iteration number as 



                                                                                                                            
                                                                                            

 

it = it + 1, get the jobs for this iteration from the iterations table. In the second 

iteration, there is job 6 and job 5.  

11. Select the job with the maximum processing times from among these jobs and 

reschedule this job on a particular position P1. Job 6 has a processing time of 

30, higher than job 5 and hence is selected for rescheduling first. Conduct ASA. 

12. Update machine capacities after rescheduling this job by first updating the 

earliest available times on the machine where position P1 is located as: 
m

kja , = m
kja ,  + pi,j, where pi,j is the processing time for the rescheduled job on the 

new machine. After rescheduling job 2, m
kja , = 85 + 30 = 115 (1:55:00.0000).  

13. Determine new capacity on the exception stage by checking the earliest 

available time m
kja , for all the machines on this stage. If there are more machines 

on the exception stage, then the new capacity is selected according to the 

principle described in Figure 5.17. The lowest value of the earliest available 

machine is the one with maximum capacity. In this example, there is only one 

machine, and hence is selected for rescheduling other jobs in this iteration. 

Table 5.26 shows the capacities obtained for all iterations for this example.  

14. If there are more jobs in this iteration (true because it ≠ 1) select the next job 

with the next lower highest processing times go to step 11. In this step job 5 is 

selected for rescheduling, and in step 11 it is actually rescheduled by 

conducting the ASA. Job 5 is rescheduled at time 40 minutes and 2 seconds, as 

explained earlier as it had the same change times.  

15. Simulate this iteration and store results on job starting times and makespan in 

the database.  

16. If there exists more iterations, go to step 10. Else, go to step 17.  

17. Consolidate the results and derive final rescheduling solution to implement 

based on user choice of performance indicator. The results are consolidated by 

computing for all stages the average starting time deviation, the sequence 

deviations for all jobs rescheduled from their original starting times (predictive 

schedule) as follows: 

 

)(

321

jobsofnumbern

devStdevStdevSt
jStageondeviationtimestartingAverage

JobJobJob ++
=  

 

)( stagesofNumberJ

jStagedeviationtimestartingAverage
problemtotalthefordeviationtimestartingTotal =  

The results of these calculations are shown in Appendix 2, Table A63 and Table 

A64.  

18. From the selected solution, the FAM is used and a post rescheduling analysis is 



                                                                                                                            
                                                                                            

 

carried out. After this step, the final result is compared to the simulation upper 

bound, and the user is presented the final solution. 

19. End.  

 This small example is also solved with the developed system and the result 

is shown in Figure A6 and A7 in Appendix 2. The above system tries to minimize 

starting time deviations by trying to return to the original trajectory on the 

occurrence of the exception, whilst solving problem of Adaptation Synchrony 

Analysis. As seen in this particular example, the upper bounds and the selected 

rescheduling solution were the same, meaning that in this case, rescheduling does 

not improve the situation.  

 

5.3.2.3 Post rescheduling analysis using the simulation based FAM 

Once a solution has been computed using the system, the user can carry 

out post rescheduling solution analysis (See Figure 5.19 for overview). This 

analysis basically checks if the rescheduling solution will cause disruptions 

(bottlenecks) in the real-world if implemented as calculated. It may suggest further 

changes to the rescheduling solution to avoid problems in the real-world due to the 

rescheduling action calculated by the system (described in the previous sections). 

How this fits in the systems described earlier is shown in Figure 5.9. 

 If the user selected to do this analysis, the system proceeds with a 

simulation run, and analyses the directly and indirectly affected jobs. If required, it 

over-rides the jobs from the newly computed schedule. A Flow Analyser Module 

(FAM) is implemented to conduct this analysis. The FAM is the bottleneck rule 

generator – the same as that used for the predictive schedule generation. There are 

decision points within the model, and within them, rule generators are placed. 

These rule generators have the code which analyze the situation locally for 

problems such as bottlenecks, and provide an alternative rule if certain conditions 

are fulfilled during the run-time of the simulation. The user can decide between a 

rescheduled plan with his performance measures perhaps with problems which will 

occur in the future or a rescheduled plan with better performance measures without 

problems in the future. Both these alternatives have implications on make-span, 

and optimization criteria as will be seen in the results section of this thesis.   

In the next section one more method of rescheduling is presented which 

focusses on how to reschedule as late as possible using sequence deviation as a 

tool to measure the results.   

  

5.3.3 The selective re-routing approach for real-time control 

 In this selective re-routing approach, a number of jobs are selected for re-

scheduling with a view to make a local change to handle the exception in such a 

way that adaptation handling is carried out as late as possible in the planning 



                                                                                                                            
                                                                                            

 

horizon. In the next section the overall concept is described, and then the detailed 

algorithm is explained with the help of an example.  

 

Figure 5.19: Post rescheduling analysis using simulation based FAM 

 

5.3.3.1 Concept of selective re-routing 

 Figure 5.20 shows the flow chart of the selective re-routing algorithm. As 

soon as an exception happens, an upper bound is computed using simulation. This 
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upper bound represents the worst case scenario as a result of not re-scheduling at 

all. A set of jobs is then created which are candidates for re-scheduling. These jobs 

are the ones which are placed beyond the time the exception occurred on the 

machine in the original (predictive schedule). Then, on the same stage where the 

exception happened, we determine the amount of capacity that is available on other 

machines using an algorithm. These jobs are then listed in a descending order (last 

job first, etc) from the order on the exception machine, and are listed into groups of 

jobs and iterations. So the first iteration has 1 job (the last job), the second iteration 

has two (the last and the second last). From this list, the first job is selected and re-

scheduled on the machine with extra capacity on the exception stage. If there are 

multiple machines on the exception stage, the earliest machine available times on 

each machine would provide us with the information on where there is extra 

capacity. Since there are no more jobs in the 1st iteration, a simulation run is 

conducted to simulate this option, following which the results are stored in the 

database for analysis later. In the second iteration, there are two jobs (the last and 

second last) selected for rescheduling. From among these jobs, the second last job 

from the list is selected and rescheduled on the machine with the maximum 

capacity. Note that at the start of each iteration the same value on capacity is used 

initially. Following the rescheduling of the job, the capacity is updated again using 

the algorithm, and the last job is rescheduled at the machine with the next highest 

capacity on the exception stage. A simulation run is conducted at the end of the 

second iteration to compute exactly the result of performance measures 

(makespan, deviations) of rescheduling this specific constellation on the later 

stages, if any. Note that the second iteration will result in jobs rescheduled in the 

same sequence as they were in the predictive schedule. This is done to make sure, 

the makespan does not deviate too much due to sequence changes on the 

downstream stages. Note also that here, the job with the maximum processing time 

is not selected because the upperbound simulation considered in its calculation, the 

jobs in a particular sequence at the exception stage. Since when the calculations 

started upon the occurence of the exception, the candidate jobs are then upstream 

in the system. Due to this, the phenomenon of having incorrect capacities used up 

by wrong jobs (jobs with lower processing times, appearing first in the sequence, 

and using up lower capacities) is less. Hence this same sequence is maintained 

during rescheduling in this method to make sure, the jobs appearing in a particular 

sequence use the first available higher capacity machines, than the higher 

processing time jobs who appear later in the sequence. Hence, the jobs from the 

descending order list, are used in the same sequence as explained.  

This is followed by simulating these constellations and saving the results in 

the database. Depending on the number of iterations, this continues until all 

iterations have been considered. After considering jobs in the respective iterations  



                                                                                                                            
                                                                                            

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 5.20 Selective re-routing for reactive scheduling  
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for re-scheduling, comparison is made between the upper bound and the result of 

re-scheduling the jobs. Depending on which performance measure the user 

chooses to be optimized, the respective solution is presented to the user. At this 

point, we would have computed the minimum number of jobs re-scheduled for a 

particular sequence deviation which is computed during the iterations, and we may 

also result in a better makespan depending upon the exception duration, process 

parameters like processing times, and capacity on alternative machines. Note that 

the reactive FAM is not used here because it is less likely that problems will arise 

due to changing the job sequences of the last jobs in the planning horizon. The 

detail algorithm for the selective re-routing is described in the next section. 

 

5.3.3.2 Detailed algorithm for selective re-routing 

The following are the steps in the selective re-routing algorithm, explained 

with the help of an example shown in Table 5.27. A 2x2 model was taken (2 

machines on each of the 2 stages). The exception was set to occur from time 25 

minutes, for a duration of 50 minutes on machine 2 on stage 1. The predictive 

schedule generated of this example is shown in Appendix 3, Figure A8 as a gantt 

chart. The exception would fall at the end of job 4 and continue until the end of job 

5, shown by solid dotted braces. 

 

Table 5.27 Example to explain algorithm 

Jobs Stage 1 

Processing times 

(minutes) 

Stage 2 

Processing times 

(minutes) 

1 25 20 

2 25 20 

3 25 25 

4 30 20 

5 15 15 

6 30 20 

7 10 20 

 

1. Get the predictive schedule Schpredictive. In this schedule all the jobs are                   

scheduled. 

2.  Get time tD = time when exception happened, and duration of exception as tDur. 

In this example is tD = 25 minutes and tDur is = 50 minutes. 

3.  Compute the upper bounds to compute the effect of the exception on the 

schedule, as the worst-case situation using simulation. At the end of the 

simulation run is the completely updated schedule which will result in the upper 

bound make-span value make-spanUB. Save this result in a database. In this 



                                                                                                                            
                                                                                            

 

example, the simulation system calculates the upper bound value as 150 

minutes. Note that the simulation also considers other details of the production 

system (one reason to use simulation for upper bound calculations). 

4.  Determine the number of jobs to reschedule as set {i´´´} which will include jobs 

on the machine k (where exception occurred), beyond the other earliest 

available machine m
kja ,  on stage j and the earliest available time for machine k, 

after computing the upper bounds. Create a list of all jobs in the set, in the order 

in which they enter the machine. In this current example, job 6 and job 5 are the 

candidate jobs, put in the set in this order.  

5.  Determine capacity on the exception stage by checking the earliest available 

time m
kja , for all the machines on this stage. The machine with the lowest earliest 

available time will have the highest capacity to absorb the exception, and will be 

the one where the job will be rescheduled to. Figure 5.17 shows the earliest 

available time m
kja , , on machines 2 and 3 for a generic example. In the current 

example, since there is only one machine on the exception stage, m
kja , = 85 

minutes (1:25:00.0000). This comes out as the time machine 1 on stage 1, 

becomes available earliest (can be calculated by adding up the processing 

times of all jobs on machine 1 on stage 1, and the idle times of the machine). 

Table 5.29 shows the capacities obtained for each iteration.  

6.  Determine the number of iteration as equal to the number of jobs in set {i´´´}. 

Classify each iteration with cumulative jobs from the set {i´´´}. For e.g. iteration 1 

has job 1 from the set. Iteration 2 has job 1 and 2, iteration 3 has jobs 1, 2 and 

3, and so on. In the current example, iteration 1 has job 5, and iteration 2 has 

job 6 and job 5. Note the sequence is the same in the second iteration as it was 

originally planned. Refer to Table 5.28 for the iteration and the jobs.  

7.   Set iteration number it = 1, or use the iteration number set by previous 

iterations. 

8.  Select the job i for this iteration and reschedule this job on the machine with  

maximum capacity. In the current example, job 5 is rescheduled on machine 1 

on stage 1.  

9.  Run simulation with this change. Save results of makespan, starting time and 

sequence deviations in the database.  

10. Update iteration number it = it + 1.  

11. Select the jobs for this iteration. In this iteration job 6 and job 5 are selected.  

 

  Table 5.28 Iterations and jobs selected for rescheduling  

Iteration 

number 

Jobs in 

iteration 



                                                                                                                            
                                                                                            

 

1 Job 5 

2 Job 6, Job 5 

 

 Table 5.29 Capacities on earliest available alternative machines 

Iteration Earliest available 

machines time 

1 85 minutes 

2  

         …2.1 85 minutes  

         …2.2 115 minutes  

 

12. Reschedule the first job on the machines with biggest capacities. In this 

example reschedule job 6 on machine 1 on stage 1 which has capacity of 85 

minutes (since there was only one machine). Update capacity after this step, 

which then comes out as 115 minutes, or 85 minutes + 30 minutes. Reschedule 

the second job (in this case job 5 on machine 1 on stage 1).  

13. Simulate this change and save results in the database as earlier.  

14. If there exist more iterations, go to step 10 and repeat the steps, else depending 

on user settings, gather results from database and present to user.  

15. End. 

 The same example is solved with the developed application and result is 

shown in Figure 9, A10 and A11. Table A65 and Table A66 show the detailed 

results. The results shown are for the second selected iteration in this example.   

 

5.4 Conclusions  

 

In this research work, a simulation and optimization assisted scheduling and 

rescheduling system has been developed for a flexible production system 

configuration. The highlight of this system is the way simulation is combined with 

optimization. The optimization algorithm in the predictive phase uses the special 

property of the flow shop that the jobs flow in one direction only is taken advantage 

of in developing this procedure. The optimization algorithm considers other details 

like materials, tools and machine availabilities alongwith limited buffer capacities, 

alongwith demands on job delivery requirements and requirements of specific 

machines for some jobs, to compute a rough plan, which is further fine-tuned with 

the help of a rule-based simulation system. The simulation assisted rescheduling 

system also solves other issues not addressed by other research, in that it 

addresses the issues of when exactly to reschedule in the real production system, 

how to bring back the deviations to the planned trajectory as much as possible, how 



                                                                                                                            
                                                                                            

 

to reschedule as less as possible, and if at all rescheduling is done, how can 

problems due to the rescheduling step be recognized and solved before the 

problems occur in the real world. Most importantly the rescheduling system also 

solves the problem of adaptation synchrony – the problem that in the real world 

changes take time which was not incorporated in computational systems developed 

by any researchers to date. Here too a rule-based simulation system is combined 

with an optimization algorithm which seeks to reduce the possible constellations 

available as solutions to the simulation system while also addressing the specific 

co-ordination and execution problems that occur due to rescheduling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                            
                                                                                            

 

Chapter 6 Overall framework and integration 
 

 

6.1 Introduction 

 

 In this chapter we discuss an overall integrated framework for the 

scheduling and rescheduling of the production system configuration mentioned 

earlier. This framework is implemented in the next chapter. In this chapter, we also 

provide the building blocks of both the predictive and reactive systems on what 

each of them contain, and the capabilities of each block.  

 

6.2 Overall system framework 

 

Figure 6.1 shows the overall framework of our simulation assisted 

predictive-reactive approach for production scheduling and re-scheduling. In the 

predictive part, the planner can obtain one or more schedules which are generated 

with the help of the optimization algorithm and further fine tuned and analysed by 

the simulation system. In the reactive part, the execution is reacted by providing 

rescheduling solutions in real-time. The problem areas addressed at the beginning 

of the thesis are considered by this integration. In the next section, the building 

blocks used to perform the tasks shown in Figure 6.1 are described.  

 

6.3 Integration of the entire system 

 

Figure 6.2 shows the synthesis of the building blocks implemented as a 

black box using Technomatix eM-Plant (SIMPLE++ first developed at the 

Fraunhofer IPA). These blocks are implemented as object libraries in eM-Plant. In 

the predictive system, the shifting bottleneck heurtistic of Phadnis et. al. is used as 

a basic tool. This algorithm is extended further to include the delivery time and 

routing for standard as well as special jobs and other constraints for optimization. 

The simulation based FAM system with the rule generators are implemented as 

objects. The integration of simulation and optimization is achieved with the FAM 

system and these rule generators which control the simulation run execution. 

The reactive system contains the objects of the rescheduling algorithms 

namely the match-up rescheduling and the selective re-routing algorithms. The 

Adaptation Synchrony Analysis algorithm extends the match-up rescheduling 

algorithm. The simulation based FAM object always uses the validity rule generator 

to avoid future problems due to the rescheduling step.   
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Figure 6.2 Building blocks of the total scheduling and rescheduling system 
 
 

6.4      Conclusions 

  
 In this chapter, the blocks used for each of the systems developed in this 

thesis were described. In the next chapter, the implementation of these individual 

building blocks is explained alongwith details of each of them.  
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Chapter 7 Prototype software system 

realized 

 

7.1 Introduction 

 

In this chapter the predictive and reactive systems are implemented and 

details are discussed. Where required, necessary screen shots and the procedure 

to start-up and run the systems are described in details. This chapter starts with 

providing most important information about eM-Plant simulation software and its 

programming language SimTalk with necessary background information, to make 

the following sections more understandable. Then the structure of the developed 

system is described, followed by the application flow of the entire system, then 

followed by described in details the predictive and reactive systems.  

 

7.2      Simulation software eM-Plant 

 

As mentioned before, the simulation software eM-Plant is used as a platform 

for implementing the system. The software employs a graphical, object oriented 

approach for modelling and simulation per drag and drop. For this purpose it 

contains a library of generic objects that can be used to model a system. These 

objects can be placed per drag and drop into the basic modelling object called 

“Frames”. Frames function as a container for simulation models. They encapsulate 

models and can be placed into other frames, thereby making the objects they 

contain reusable in bigger models. This method of placing frames with the 

functionality they provide into another frame is called hierarchical modelling.  

Apart from frames, eM-Plant provides an object library that contains generic 

objects for modelling. These objects fall into four different categories, namely 

material flow objects, information flow objects, movable objects, and display and 

user interface objects. Material flow objects are used for modelling the physical 

outfit of the real-world system that is simulated. Information flow objects provide 

functions for storing and organizing data within the model, while the movable 

objects represent non-stationary entities within the model that can move through 

the material flow objects. Display and user interface objects handle the tasks of 

presenting data and interacting with the user. The most important objects from each 

of these categories that are also used within the system are described below: 

 

1. Material flow objects 



                                                                                                                            

a. Frame: As mentioned before, frames are the basic container for models 

in eM-Plant. All other objects are placed into them in order to form a 

simulation model. Frames can also be placed into other frames, thus 

reusing the model they contain in a bigger model.  

b. Connector: The connector is used for connecting two objects and 

establishing paths between them, that a movable object can be pushed 

along.  

c. Event controller: The event controller coordinates and synchronizes the 

events that occur during a simulation run. Since eM-Plant is a discrete 

event simulation system, events are inserted into the event list of the 

event controller at every time point where something happens within the 

simulation system that changes its state. One example is a movable 

objects entering a processing station. The station computed the time it 

takes to process the object. When this is done the event for the movable 

object to leave the processor is inserted into the event list at the correct 

time point. The event controller processes the different events in the 

event list sequentially, inserts new events that result from the analysed 

ones accordingly and advances the simulation time in the process.  

d. Source: The source is used for creating movable objects within the 

model, thus it is used as an entry place for movable objects into the 

model.  

e. Drain: The drain destroys movable objects that enter it. It is used as an 

exit from the system for the movable objects. 

f. SingleProc: The single processor is one of the different processor 

objects of eM-Plant. It is used to simulate some kind of processing 

station for the movable objects.  

g. Buffer: The buffer is used as a temporary storage for movable objects. 

They can simulate entry and exit buffers of machines, for example. 

h. FlowControl: The flow controller is used to diverge and converge the 

flow of materials in the system. It does not process the movable objects 

that pass through it, but distributes them among the objects that succeed 

the controller in the sequence of connected objects in the model.  

i. Track: The track is used to model paths for transporters within the 

system. The tracks are the only objects the transported objects can 

move on. 

 

2. Information flow objects 

a. Method: The method object can store programming logic written in the 

language SimTalk. Programs stored in a method can be used for almost 

every task within the system and are therefore very useful and powerful.  



                                                                                                                            

b. Variable: A variable is a small container that can be used to store a 

small amount of data, like a single integer, float or string. 

c. Table: Tables can be used to store and organize data in a matric like 

data structure. It consist of several rows, columns, each with its own 

index, thus making every cell of the table clearly addressable and 

accessible. 

 

3. Movable objects 

a. Entity: Entities are generic object for modelling anything within the model 

that is processed by the material flow objects. Entities can represent 

cars within a car factory, batches of cicuit board, cogwheels, and wires. 

Virtually anything that is used in some kind of production process.  

b. Container: Containers are used for modelling all objects, that are used 

for transporting movable objects, but do not need to be processed and 

cannot move by themselves. Examples for real-world objects that they 

can represent are palettes or boxes.  

c. Transporter: Transporters simulate real-world objects that are used for 

transporting movable objects and can move on their own, but do not 

need to be processed. Examples for these objects are forklifts or 

automated guided vehicles. 

 

4. Display and user interface objects 

a. Chart: Charts are used to present data in a graphical fashion. Normally 

this is data that eM-Plant collects during a simulation run. 

b. Dialog: Dialogs are used to communicate with the user of the simulation 

system. These objects provide text boxes, buttons, checkboxes, and all 

other elements that are common in modern computer dialogs.  

 

7.2.1 Programming language SimTalk 

 eM-Plant contains its own programming language called SimTalk. It can be 

used to implement custom logic and procedures within method object. The 

language is capable of changing the properties and behaviours of the different 

modelling objects, thus making it a very powerful tool. SimTalk features all the 

common control and data structures of model programming languages and can also 

use the methods that the different modelling objects provide. A SimTalk program is 

always structured in the following way: 

 

[arguments] 

[return value data type] 

Is 



                                                                                                                            

[local variables] 

Do 

[program code] 

end; 

 

Within the arguments section, input variables can be defined that need to be 

handed over when the program is started. They can then be used within the 

program code. After this section the data type of the return value is defined, if the 

problem has one. The following is seperates the former two sections from the area 

where the local variables are defined. These are only accessible within the program 

and are only existent as long as the program runs. The word do marks the start of 

the actual program, while end, marks the end of it. For more information about 

SimTalk see the webpage of Technomatix Corporation.  

 

7.2.2 Important concepts of eM-Plant 

 While it is not possible and not the focus of this work to describe in detail the 

whole functionality that eM-Plant offers, some important features that were used 

during the implementation in either the prediictive and the reactive part of the 

system are briefly described in the following: 

 

1. Call back methods: eM-Plant offers the possibility for designing custom 

dialogs to interact with the user. The reactions to the user interactions with 

the dialog need to be implemented in a so called callback method. This 

method has to be divided into different sections. A callback argument can be 

assigned to all interactive elements of the dialog. When the user interacts 

with a certain element of the dialog, the callback method is called and the 

callback argument of the specific element is passed to it. The argument then 

determines which section of the method has to be executed.  

2. Custom attributes: While all objects of eM-Plant have their standard 

attributes, it is possible to assign custom attributes to them. This is 

especially when a certain piece of data needs to be attached to an object. 

Within the system this is used for identifying the stage of the PMFS the 

object is located at or how many jobs are already waiting for capacity in a 

buffer. 

3. Delivery tables: Moving objects are normally created within eM-Plant by a 

source following a random distribution. However, for the course of this work 

it was necessary to create moving objects in a previously determined 

sequence and at certain time points. For this purpose the concept of 

delivery tables was used. This table can be assigned to a source object, 

thus giving it exact instructions when to create how many of a certain type of 



                                                                                                                            

moving objects. Each row of the delivery table therefore contains a time 

point, a class of a movable object and the number of objects to be created.  

4. Event trigerred controls: Several material flow objects offer the possibility of 

executing a method upon the occurrence of certain events. This feature is 

used during the development of the system for the events of a movable 

object entering or leaving a material flow object and the event of a failure of 

a single proc object. The methods assigned to the event of a job entering or 

leaving a material flow object are denoted entry and exit control in the rest of 

the work.  

5. Init and endsim methods: eM-Plant offers the possibility of automatically 

executing certain methods on the events of the initialization, the reset, and 

end of a simulation. In order for this to work, the methods must be named 

init, reset, autoexec, or endsim. When one of the before mentioned event 

occurs, eM-Plant automatically executes the corresponding methods. During 

the implementation of the system only the init and the endsim methods were 

used.  

6. Processing time tables: While the processing times of the material flow 

objects normally follow some kind of random distribution, for the course of 

this work it was necessary to assign predefined processing times to the 

processors. For the purpose the possibility of assigning a processing time 

table to the processors was used. This table defines processing times for 

different classes of movable objects. Every time an object enters the 

processor the corresponding processing time of its class is selected from 

the table and used.  

7. Suspending methods: eM-Plant offers the possibility to suspend the 

execution of a method and to wait for a particular event or a certain amount 

of time before the execution is continued. It is also possible to schedule a 

method call at some time point in the future. This is done by combining the 

call with a time value. The call is then executed after the defined amount of 

the time has elapsed.  

 

7.3  Structure of the implementation 

 

 The whole system is modelled into two frames, the top frame and the table 

frame. The table frame is inserted into the top frame. Therefore the user only needs 

to drag and drop the top frame into a PMFS model he wants to use for scheduling 

and rescheduling. A double click on the top frame of the system will not open the 

frame, but rather the predictive scheduling dialog, that is the user interface if the 

predictive part of the system. The whole analysis can be started from this dialog.  



                                                                                                                            

 The top frame of the system itself contains several methods, variables and 

dialog objects that provide the functionality to solve the problems discussed in this 

thesis. The most important methods are located at the left of the frame, while all the 

secondary methods are located in the middle in alphabetical order. All variables can 

be found on the right side in alphabetical order, while the dialog objects are located 

at the bottom of the frame. A screenshot of the contents of the top frame is given in 

Figure 7.1.  

 

 
Figure 7.1: Top frame of the developed system 

 

 Right next to the dialog objects, the table frame can be found. This one is 

inserted into the top frame for structuring issues. It contains the tables that are used 

for organizing and storing the data of the developed application. A screenshot of the 

contents of the table frame is given in Figure 7.2. Note that the screen shot does 

not show all tables that are used during the scheduling process, since some are 

generated automatically by the system, based on the number of stages and 

machines the PMFS model contains.  

 The reader can refer to Appendix 4 for the description of all methods, tables 

and variables, described next, also described using diagrams and figures. The entry 

point of the whole system is the InitializeNewRun – method within the top frame. It 

is started after a double click on the frame containing the system. The method 

initializes the whole system for a new analysis and calls the init – method 

afterwards, which controls the application flow of the system with the endsim – 

method.  



                                                                                                                            

 
Figure 7.2 Table frame which is part of top frame 

  

7.4  Application flow of the implemented system 

 

The whole system is developed to function according to states. The different 

states define, at which point in the analysis the system is currently in and which 

data has already been calculated. The variable State keeps track of the current 

state of the system, while two special methods, called init and Endsim handle the 

transitions between the different states. The init – method is always executed right 

after the end of a simulation run. This makes these two methods perfect for 

controlling the behavior of the system, since the whole analysis typically consists of 

several simulation runs.  

The application flow of the developed system can be seen in Figure 7.3. In 

the beginning the system is in state 0. A double click on the top frame of the system 

starts the InitializeNewRun – method which initializes the system for a new 

scheduling procedure by counting the stages of the PMFS model and the machines 

on each stage, creating new tables or deleting ones that are not needed anymore, 

adjusting the properties of the objects of the PMFS, deleting any data left from a 

previous analysis, and setting the variables of the system to their initial value. After 

this the init – method is called. This one evaluates the State – variable and opens 

the SchedDialog – Object, since the system is still in state 0 and the predictive FAM 

schedule has not yet been computed. The user has to generate the processing 

times and enter the number of jobs in this dialog, before he clicks the OK – button 

and starts the calculation of the heuristic – based schedule. The completion of this 

schedule will call the Endsim – method, which sets the state to 1, resets the 
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  Figure 7.3 Application flow of the system 

 

simulation software and calls the init – method again. This method evaluates the 

State – variable and opens the SchedDialog – object. Now the user can initiate the 

calculation of the predictive FAM schedule, by clicking the corresponding check box 

and the OK – button. After this calculation the endsim – method sets the state of the 

system to 2 and hands the control over to the init – method.  

 As soon as the predictive FAM scheduling is available, it is implemented in 

the real world production process. Its execution would then be monitored and the 

reactive part of the system would be started upon the occurrence of an exception. 

But since there was no real-world production system available during the course of 

this work, the simulation software was used to imitate the implementation of the 

predictive FAM schedule. Therefore in state 2 the init – method again opens the 

SchedDialog – object where the user gets a chance to activate the monitoring 

system, which checks for exceptions and activates the reactive system upon their 

occurrence. When an exception was found, the endsim – method sets the state of 



                                                                                                                            

the system to 3 and calls the init – method.  

 In state 3, the effects of the exception on the predictive FAM schedule are 

calculated, thus giving the upper bound performance measures for the reactive 

part. Also some other data is recorded, that is needed for the rescheduling 

algorithms. This step is executed automatically and sets the state of the system to 4 

with the help of the endsim – method.  

 State 4 marks the beginning of the reactive part of the system. The init – 

method opens the ReschedDialog – object, where the user gets information about 

the detected exception. He can then select which rescheduling algorithm he wants 

to use to calculate the rescheduling actions. If he picks up the match – up 

rescheduling algorithm, he can also choose the criterion for selecting the best 

alternative from the different rescheduling possibilities and decide, whether he 

wants to analyse the selected alternatives with the reactive FAM. A click on the OK 

– button starts the process that calculates the different rescheduling alternatives 

and their performance measures. This is done automatically and generally involves 

several simulation runs. After the calculation of the last alternative the system 

presents the results of the rescheduling analysis.  

 If the user chose to analyse the rescheduling solution with the reactive FAM 

in the rescheduling dialog, the endsim – method sets the State – variable to 5. The 

init – method then automatically initiates another run of the simulation software 

using the selected rescheduling solution combined with the reactive FAM. In the 

next sections, the predictive and reactive systems are described.  

 

7.5  Predictive scheduling system 

 

In the following sections, the prototype development for the predictive 

system is described. In the first section the issues with customization are presented 

followed by detailed description of the predictive system and its detailed 

components.   

7.5.1 Predictive system 

7.5.1.1 Customization of eM-Plant 

The first step in the customization was to find a way of how to enter the 

needed input data for the algorithm in eM-Plant and how to save the results of the 

algorithm in such a manner, that a simulation run afterwards takes heed to these 

results. The problem of entering and saving the input data was solved by tables, 

which could be edited by the user. To do this in a more convenient way, a dialog 

was implemented which offered functionality to enter the needed data for the 

algorithm, namely the number of jobs, stages, machines on the different stages and 



                                                                                                                            

the processing times. In order to save the results and cause the simulation model to 

pay attention to these results, a combination of flow control units and attributes of 

the moving units was used. The flow control unit offers the functionality of routing 

MU’s (Moving Units) according to the value of one of their attributes. Since the 

algorithm calculates a path for each job through the stages, which consists of the 

machines on each stage, this path can be written to each job as a set of attributes. 

This means that one attribute is needed for each stage, which should contain the 

number of the machine that processes the job at this stage. 

Since the jobs enter the simulation system through the source in a sequential 

manner and therefore do not become available to the flow control unit 

simultaneously, a way had to be found to push the jobs in the system in the correct 

sequence. This means that the job that had to be routed first also had to enter the 

system first, otherwise the wrong job would have been routed to the machine and 

by this blocking it. This problem was overcome by the possibility of giving the 

source a delivery table, which specifies the type and order of the MU’s it produces. 

This table could be filled by the algorithm thus generating the correct sequence. 

After this concept was proven to be viable, the needed classes were derived 

from the basic classes of the eM-Plant class library and placed in a new folder 

called “Scheduling_DSS”. In the following section, the more specific aspects are 

described. The reader is advised to look in Appendix 4 for description of each 

of the class objects (methods, tables and variables) developed, and their 

origin of derivation, to understand the descriptions.  

7.5.1.2 Workflow of the whole system 

Refer to Figure 7.4 for an overall view of the system. Before the system can 

start, some initialization are done as follows. The InitializeNewRun – method is the 

entry point into the system. It is called as the user double clicks the top frame of the 

system. The method itself calls some other methods that set the initial data of the 

systems. First the CountStagesAndMachines – method is started, that counts the 

number of stages  and the number of machines at each stage of the PMFS model 

the user has built and writes the values to the NumberOfStages – variable and the 

MachineCount – table. The method also creates some custom attributes within the 

objects of the PMFS model, which are needed for identification issues or during the 

process of shifting jobs between the machines. Next the MakeTable – method is 

called, which creates the needed amount of JobSetInTime – tables, JobSetOutTime 

– tables, JobTransportationTimes – tables, Times_Stages – tables, and Jobs_Sta-

ge_– tables. Some of these tables are required for the rescheduling, which are 

nevertheless created here, are used in case exceptions happen later. One of the 

first four types of tables has to exist per stage, while of the last type is needed for 

each machine. The InititalizeObjects – method which is activated next, assigns the 



                                                                                                                            

delivery table to the source object of the PMFS model, the JobExitRecorder – 

method as exit control to the drain, and the Router – method as selection method to 

the flow controller objects. It also instructs the processor objects of the PMFS to 

use the Times_Stage – table of their stage as source for their processing times and 

assigns them the StartTimeRecorder – method as entry control and the 

FailureHandler – method as failure control. After this the ClearTables – method and 

the ResetVariable – method delete any data, that might be left over from previous 

scheduling activities in the tables or variables of the system. Then the 

RandomTimes – method is executed which writes randomly generated processing 

times to the Times_Stage – tables. Finally the control is handed over to the init – 

method via the event controller.  

From this point on, the predictive scheduling dialog comes up. Refer Figure 

7.4 for how the system works. The predictive scheduling dialog is the main interface 

between the user and the system. The dialog is used to collect all needed data and 

to start the predictive scheduling process. For this purpose it uses different text 

boxes, check boxes, and buttons. The dialog also contains a so called callback – 

method, which implements the actual functionality of the dialog. This method is a 

piece of code implemented in SimTalk that reacts to the interactions of the user with 

the dialog. A click on the button, for example, activates a part of the callback – 

method that carries out the actions, the button is supposed to start. Therefore 

interactive elements of the dialog can be marked with a callback – argument, which 

tells the callback - method which piece of code should be executed. The different 

elements of the dialog are shown in the coming section 7.5.3.1.  

Using the dialog, the user enters the number of jobs, the processing times, 

the requirements on standard and special jobs with or without delivery constraints, 

and the various resources availability in the tables. The first step of the calculation 

of the heuristic – based algorithm to compute a predictive plan is started when the 

user clicks the OK – button of the scheduling dialog object (SchedDialog). The 

callback – method than starts the Scheduling_Algorithm – method. The method 

gets its input data from the variables NumberOfJobs, NumberOfStages, and the 

tables SpecialJobs, Times_Stage, MachineCount, ToolAvailability, 

MaterialAvailability, and MaintenanceTimes. Using this data it calculates a job 

sequence how the jobs should enter the PMFS and job routings for each job, i.e. on 

which machine the jobs should be processed on the different stages. The sequence 

is written to the table DeliveryTable, while the routings are stored in the table 

HeuristicRoutings and fills the standard data table of the standard Gantt chart 

object offered by eM-Plant.  

After the Scheduling_Algorithm – method has finished its calculations, a 

simulation run is started, which uses the data from the DeliveryTable – table for 

creating the jobs in the source – object of the PMFS model in the correct order. The 



                                                                                                                            

 

Figure 7.4: Data Flow Chart of the predictive system 

 

flow controllers of the model route the jobs with the help of the Router – method 

according to the data stored in the HeuristicRoutings – table, while the processor 

objects gets the processing times from the Times_Stage – tables. During the 

simulation run, the JobExitRecorder – method, which is assigned as entry control to 



                                                                                                                            

the sink – object of the model, records the time points, when the different jobs leave 

the system, in the JobExitTables – table, shown as “Schedule 1” in Figure 7.4. 

These times serve as a benchmark for the predictive FAM schedule, which is 

calculated in the next step. After the calculation is finished, the endsim – method is 

called, which sets the State – variable to 1, resets the simulation software and calls 

the init – method again.  

 

7.5.2 Simulation assisted FAM system for predictive scheduling 

 

7.5.2.1 Customization of eM-Plant 

 Several modifications have been done to customize eM-Plant for this 

problem. The needed classes were derived from the original ones and put into a 

folder called “Scheduling_DSS”. Methods needed to be developed in place for 

controlling how the rule generators will be placed, and how the parts over-ride the 

original schedule of the optimization algorithm. The next section describes this in 

details. The reader is advised to refer to Appendix 4 for a description of the 

methods, tables and variables discussed next.  

 

7.5.2.2 Workflow of the whole system 

Figure 7.5 shows the workflow which is linked to the workflow of the 

predictive scheduling work flow of Figure 7.4 via the init - method. The second step 

of the predictive scheduling process is the analysis of the plan computed by the 

algorithm. It first opens the scheduling dialog, where the user can edit the decision 

points in the DecisionPoints – table and enter the rule generators at each decision 

point. Then the analysis is started when the user selects the check box Activate 

simulation based flow analyser and clicks the OK – button. Then the callback – 

method of the dialog calls the InsertDecisionRules – method which determines and 

inserts the rule generator methods namely the FAM_Bottleneck_Rule – method or 

the FAM_Buffer_Rule – method as entry controls into the decision points according 

to the decisions the user has entered in the DecisionPoints – table. 

The FAM_PathCopier – method is inserted into every decision point, where 

the user did not define a rule generator. This is needed, since the rule generators 

calculate the routings for the predictive FAM schedule. If a decision point would not 

contain a rule generator, no routings for the stage following the decision point would 

be generated. The FAM_PathCopier – method handles this problem by simply 

copying the routings of the optimization – based plan to the predictive FAM 

schedule.  

After this, another simulation run (shown as simulation 2 in Figure 7.5) is run 

with the job sequence from the DeliveryTable – table and the processing times from 

the Times_Stage – tables is started. This time, the rule generators within the 



                                                                                                                            

decision points analyse the situation of the following stage and reroute the job if 

necessary according to the concepts of the FAM. These routings are stored in the 

PredFAMRoutings – table which is used by the Router – method in the flow 

controller objects in order to route the jobs correctly. The StartTimeRecorder – 

method, which is inserted as entry control in every processor object, records the job 

starting times and the sequence of jobs at every machine and stores them machine 

– wise in the Jobs_Stage_Machine – table as well as collected in the 

FAM_JobStartingTimes – table. These tables are shown as the database where the 

schedule 2 is stored in Figure 7.5. Again, the JobExitRecorder – method saves the 

time points when the jobs exit the system in the JobExitTimes – table. As soon as 

all jobs are processed and the simulation run completed, the endsim – method is 

called, which sets the State – variable to 2 and starts the init – method.  

 

 

 Figure 7.5 Data flow chart of the simulation assisted predictive FAM system 



                                                                                                                            

 At the end of the analysis the user can see both “Schedule 1” and “Schedule 

2” in a graphical format using the Gantt – chart functionality of eM-Plant. This is 

done by filling up the chart with job finishing times for different scheduling methods. 

This way the schedules are stored and the user can compare different schedules.  

 
7.5.3 Running the simulation and optimization based predictive scheduling 

system 

This section describes how to start the predictive system in eM-Plant and 

run the simulation and the algorithms. 

 

7.5.3.1 Starting the system 

After the model has been created, the system can be started. To get the 

initial state of the system the user has to do some tasks. At first he has to right click 

the InitializeNewRun – method. The system clears old table files from previous 

runs, if any and initializes other tables. After this the main starting dialog of the 

system comes up shown in Figure 7.6.  

 

 

Figure 7.6: Screenshot of the scheduling dialog 



                                                                                                                            

Here the number of desired jobs need to be entered in the text box. Next the 

processing times are to be entered in the corresponding processing times table – 

for experimental purposes, this is done by clicking the Randomize Processing 

Times - button. The processing time table can be seen by clicking it where it 

contains the job names in the first column, while the processing times are in the 

second column. If some of the jobs are special jobs with or without  fixed routings 

and with or without delivery time requirements within the factory, they are modelled 

by the user input by clicking the Edit delivery time requirements – button. A table 

will open up (Figure 7.8), with the names of the jobs in the first column. In order to 

mark a job as special, a path for it has to be entered in the second field of the 

according row.   

 

 
                            Figure 7.7: Editing job processing times 

 

   
            Figure 7.8 Editing job delivery time and routing constraints 



                                                                                                                            

The path consists of integers, representing the number of the machine on 

each stage, separated by commas. Attention: The path has to consist of exactly as 

many integers as there are stages in the model. Both standard and special jobs 

have the possibility to set delivery dates as seen in Figure 7.8. The user can also 

enter in the material, resource and tool availability as seen in Figure 7.9 and 7.10. 

Then the user can edit the equipment availability plan to consider preventive 

machine maintenance programs as shown in Figure 7.11.  

 

                 
                       Figure 7.9 Editing tool or resource availability 

 

           
        Figure 7.10 Editing material availability 



                                                                                                                            

After all this data has been entered the OK - button can be clicked shown in 

Figure 7.6, which will start the scheduling optimization algorithm and the predictive 

simulation run as shown and explained in previous sections. After the end of the 

simulation the dialog (Figure 7.6) re-appears where the user can click the Activate 

simulation based flow analyser - checkbox activated. Then the user enters the data 

for the simulation based flow analyser. By pressing the Edit decision points - button 

the corresponding table (Figure 7.12) will show up and the user can select the rule 

generators and conditions for each decision point. 

 

     
Figure 7.11 Editing equipment availability 

 
Once again, the user clicks the OK – button, and now the user can start the 

simulation again with the flow analyser activated. The scheduling dialog once again 

disappears as the simulation runs and re-appears in the end, where the user can 

select the Use random scheduling algorithm - checkbox and de-select the Activate 

simulation based flow analyser  - checkbox deactivated. This calculates a plan 

randomly and runs the plan to calculate a schedule. The simulation run with the 

random schedule doesn’t need any configuration. The user has just to click the OK 

- button one more time. After these three simulation runs (one with the schedule 

from optimization algorithm, one with the flow analyser activated and one with a 

random schedule) the user can analyse and select a schedule he likes to 

implement in the real world. At approproate times, the user can compare the Gantt 

– chart objects to display the schedules, or alternatively, to get the job finishing 



                                                                                                                            

times and the job finishing sequence the user needs to open the JobExitTimes - 

table. 

 

 

Figure 7.12 Editing the decision points, conditions and rule generators 

      

7.6  Reactive scheduling system 

 

In the following sections, two separate methods and their implementation 

issues and components are discussed.  

 

7.6.1 Match-up rescheduling system 

In the following sections the match-up rescheduling system is described. 

The first section gives an idea of issues existing to develop such a system within 

eM-Plant. Then the detailed workflow of the system is described which mentions 

how the system was actually implemented and integrated with eM-Plant. 

 

7.6.1.1 Customization of eM-Plant 

 Several modifications have been done to customize eM-Plant for this 

problem. Methods and tables had to be implemented for managing the data 

resulting from the algorithms and simulation runs. The result of the simulation runs 

needed to be recorded into tables which functions like a database to store the job 

finishing times, job starting time deviations, job sequence deviations and the make-

span.  

 To control the workflow of the reactive system and for the user to select 

appropriate actions for rescheduling, a graphical user interface has been developed 

which allows the user to run the simulations and algorithms for the type of methods 

selected. To make sure the rescheduling does not affect future performance, 



                                                                                                                            

methods have been implemented for inserting automatically validity rule generator 

into the decision points at appropriate points in the simulation model. The 

customization takes its origin from the basic classes of the class library of eM-Plant. 

The needed classes were derived from the original ones and put into a folder called 

“Scheduling_DSS”. The reader is advised to refer to Appendix 4 for the 

description of the methods, tables and variable objects, which are described 

to develop this system.  

 

7.6.1.2 Workflow of the system 

Figure 7.13 shows the overall workflow of the simulation assisted match-up 

rescheduling system. Normally the predictive FAM schedule would be implemented 

in a real-world production system. The execution of the schedule would be 

monitored by a real-time monitoring and control module that would detect any 

exceptions that arise. Since no real-world production system is used during the 

course of this work, the simulation software was used for implementing the 

predictive FAM schedule and detecting exceptions.  

For this purpose a feature of eM-Plant was used, that automatically 

activates a method when a failure in one of the processing objects arises. The 

functionality to handle an exception is implemented within the FailureHandler – 

method. This method saves information about the exception in the 

DisturbanceDuration – variable, the DisturbanceLocation – variable to true, in order 

to signal all other components of the system, that an exception was detected. The 

next time the endsim - method is called it evaluates the Disturbance-variable and 

sets the state of the system to 3, which initiates with a call of the init - method the 

calculation of the upper bound measures. Then the calculation of the upper bound 

performance measures is done by calculating the impact of the disturbance on the 

performance of the predictive FAM schedule. Therefore another run of the 

simulation software is automatically initiated as seen in Figure 7.13, shown after the 

init - method. The job sequence and the processing times remain unchanged and 

the job routings are determined by the PredFAMRoutings - table.  

During the simulation run the StartTimeRecorder - method records the time 

points, when the jobs start processing on the different machines and records them 

machine-wise in the Jobs_Stage_Machine - tables as well as collected in the 

Upper_bound_JobStartingTimes - table. After the run has finished, the endsim - 

method is activated which sets the state of the system to 4 and calls the 

CalculateUpperBound - method. This method uses the values from the 

FAM_JobStartingTimes - table and the Upper_bound_JobStartingTimes - table to 

calculate the starting time deviation the exception caused. This value is stored in 

the Upper_bound_starting_time_deviation - variable. The method also stores the 

time the predictive FAM schedule needs to be executed under the influence of the 



                                                                                                                            

 

Figure 7.13 Data flow chart of the optimization and simulation based match-

up rescheduling system  



                                                                                                                            

disturbance in the Upper_bound_lead_time - variable. These values serve as 

benchmarks for the following rescheduling actions, because they represent the 

option of not reacting to the exception at all. After this the init - method takes over 

again as seen in Figure 7.13, and opens the ReSchedDialog - object. 

The ReSchedDialog - object serves as the main interface between user and 

system during the reactive scheduling phase. Within this dialog the user can 

choose the rescheduling method (algorithm) he wants to use (in this case, he uses 

the match-up method) in order to react to the detected exception. For this purpose 

the dialog contains text fields showing the gathered information about the exception 

and check boxes for selecting the rescheduling algorithm. Like the SchedDialog - 

object this dialog also contains a callback - method that implements the functionality 

of the dialog elements.  

When the match-up rescheduling algorithm is selected and an OK – button 

is clicked, the system directly starts a simulation run with the job sequence from the 

DeliveryTable - table and the routings from the PredFAMRoutings - table. The 

simulation run is executed up to the point where the disturbance was detected. 

Then the FailureHandler - method calls, as seen in Figure 7.13, the 

MatchupReschedulingAlgorithm - method which implements the functionality 

desired. The method uses information from the DisturbanceLocation - variable, the 

Jobs_Stage_Machines - tables and the Times_Stage - tables to generate the set of 

candidate jobs for rescheduling and write in the correct order into the 

JobsForRescheduling - table. The number of jobs in this set also gives the number 

of rescheduling alternatives which will be calculated in the following way. This value 

is stored in the NumberOfReschedulingRuns - variable, which serves as a control 

variable to keep track of the already calculated alternatives. Finally the 

MatchupReschedulingAlgorithm - method schedules a job shift for every job that 

needs to be relocated in the current rescheduling alternative and writes the shifts to 

the ReschedulingMoves - table for alter use in the reactive FAM. The job shifts are 

scheduled by performing a delayed method call of the ShiftJob - method for every 

job that needs to be shifted. The data in the JobSetOutTimes_Stage - tables 

determines how long the method calls have to be delayed. This is part of the ASA 

(Adaptation Synchrony Analysis) system described in chapter 6, and is shown in 

Figure 7.15, how it interacts with the match-up rescheduling algorithm. The delay 

simulates the time needed to take a job out of its current buffer. The exact job shift 

procedure is described in the next paragraph, which incorporates the concept of the 

ASA.  

During the rescheduling process with the match-up rescheduling algorithm 

jobs need to be shifted from the buffer of one machine to another. The ShiftJob - 

method handles this task, and a schematic view of the entire process in shown in 

Figure 7.14. It is called by the MatchupReschedulingAlgorithm - method with a 



                                                                                                                            

delayed method call. This delay represents the time needed to take a job out of its 

current buffer. The first action of the ShiftJob - method is to delete the job from its 

current buffer. After this it waits for an amount of time, which represents the time 

needed to transport the job from its original buffer to the new one. The method gets 

this time value from the according JobTransportationTimes_Stage - table. When 

this time has elapsed, the job has virtually arrived at its new buffer and the process 

to insert it into its new destination can start.  

 

 

Figure 7.14 Detailed working of the job shifting procedure  

 

Therefore the ShiftJob - method checks whether the new destination buffer 

has enough capacity for the new job. This is the case if the remaining capacity of 

the buffer minus the number of currently running insertion processes of other jobs is 

at least 1. Note that more than one insertion process can be executed for a 

particular buffer simultaneously. The number of currently running insertion process 

is stored in a custom attribute of the buffer. If there is enough capacity, the number 

of currently executed insertions is increased by 1 and the EntrySemaphore - 

method and ExitSemaphore - method are inserted as entry and exit control 

respectively into the destination buffer. The reason for this is, that the insertion of 

the job takes an amount of time, specified in the corresponding 

JobSetInTimes_Stage - table, for which the execution of the JobShift - method is 

paused. During this time it has to be ensured that the buffer has a remaining 

capacity that is equal to the currently running insertions, in order for the insertion 

processes to work. The EntrySemaphore - method and the ExitSemaphore - 



                                                                                                                            

method handle this task, by only letting jobs enter the buffer if its remaining capacity 

is greater than the amount of running insertion processes. Otherwise they refuse 

jobs to enter the buffer. After the time needed for the insertion process has elapsed, 

the ShiftJob - method is reactivated. It inserts the job into the buffer, decreases the 

number of currently executed insertions, and deletes the entry and exit controls if 

no more insertions are currently executed at this buffer. 

If the ShiftJob - method finds that the buffer does not have enough capacity 

after the transportation time of the job has elapsed, the job is written to the 

JobQueue - table, which serves as a virtual queue. Then the InsertJobsFromQueue 

- method is inserted as exit control for the destination buffer. The ShiftJob - method 

terminates and leaves the rest of the task of inserting the job into the buffer to the 

just inserted exit control. The InsertJobsFromQueue - method waits for a job 

leaving the buffer, which should cause the buffer to have enough capacity for the 

job in the queue. The method then starts the normal insertion process described 

above and removes itself as exit control from the buffer, if no more jobs are waiting 

to be inserted into it. After the job shifts are calculated and initiated the simulation 

run continues. Again the JobStartimeRecorder - method records and saves the time 

points the jobs start processing on the machines in the Rescheduling-

JobStartingTimes - table, while the JobExitRecorder - method saves the time points 

the jobs leave the system in the ReschedulingJobExitTimes - table. 

 

 
 

Figure 7.15 Interaction of the ASA module with the rescheduling system 

 

After the simulation run is finished the CalculateReschedulingResults - 

method is called as seen in Figure 7.13, which computes the lead time, sequence 



                                                                                                                            

deviations, and starting time deviation of the current rescheduling alternative using 

the Jobs_Stage_Machine - tables, the FAM_JobStartingTimes - table, and the 

ReschedulingJobStartingTimes - table. The results are stored in the Rescheduling - 

table.  

 

                          

Figure 7.16 Continuation of the simulation to conduct reactive FAM analysis 

 

As seen in Figure 7.13, finally the endsim - method is started which checks 

whether all rescheduling alternatives have already been calculated. If not, the whole 

process is started anew by calling the init - method. Otherwise the ShowResults-

method is called, which opens the ResultsDialog - object, that presents the 

rescheduling results to the user using the ReschedulingResults - table, thus 

marking the end of the whole rescheduling process. After the simulation ends, and 

the rescheduling solution has been calculated, the system may continue further if 

the user selected to continue the reactive FAM analysis to solve future problems 

due to rescheduling, shown by rounded number 1 and 2 in Figure 7.13. Figure 7.16, 

shows the continuation. If yes, then the simulation model is initialized with the 

validity rule generator and inserted in the appropriate decision points, and the 



                                                                                                                            

simulation starts once again. The reactive FAM works very similar to the predictive 

one. However it only uses the FAM_Bottleneck_Rule - rule generator method as 

entry controls within the decision points. Also the analysis only starts after the 

occurrence of the exception, since before that time point the original predictive FAM 

schedule is executed, which has already been analysed by the predictive FAM. 

The simulation software therefore executes the routings of the 

PredFAMRoutings - table up to the point, where the exception occurred. Then the 

FailureHandler - method is called, which uses the SelectedReschedulingRun - 

variable and the ReschedulingMoves - table in order to look up the selected 

rescheduling solution and the job shifts that where executed in it. It then schedules 

a ShiftJob - method for every job shift that needs to be executed and also calls the 

InsertBottleneckRuleForFAMResched - method. This method inserts the 

FAM_Bottleneck_Rule - method as entry controls within the decision points. The job 

shifts are executed as described in the earlier sections. Of course the 

JobExitRecorder - method and the StartTimeRecorder - method record the time 

points when the jobs leave the system or start processing on the machines and 

store them within the ReschedulingJobExitTimes - table or the ReactiveFAM-

_JobStartingTimes respectively. The analysis ends with a call of the 

CalculateReschedulingResults - methods which calculates the lead time, the 

sequence deviation, and the starting time deviation compared to the performance 

measures of the predictive FAM schedule, using the Jobs_Stage_Machine - tables, 

the ReactiveFAM_JobStartingTimes - table, and the FAM_JobStartingTimes - table. 

Finally the results are presented to the user. In the end of the simulation run, the 

results are presented to the user, using data from the corresponding table files. 

 

7.6.1.3 Running the simulation and algorithms 

The user first right clicks the InitialiseNewRun – method which opens up the 

predictive system dialog as explained earlier. This is done to collect data on 

performance indices of the predictive run – this data is used later to generate 

results of the rescheduling system. In order to activate the rescheduling system, he 

has to activate the check boxes Energy not available to manage a generic 

exception, in the group box “Activate rescheduling on”. On clicking the OK - button, 

the predictive algorithm runs and the simulation starts. This simulation run is the 

predictive simulation until we have the predictive FAM schedule. As soon as the 

exception happens, the user is notified of the exception, and the information about 

the exception like time of exception and location of exception. This is shown in 

Figure 7.17.  

Note this is done to identify which system the user is in – the predictive 

system or the reactive system. So, for example, if no exception is inserted, then the 

system knows it is in the predictive phase, and vice versa, so that that the  



                                                                                                                            

 
Figure 7.17 Screen shot for user notification of exception 

 

developed application can take control of the future actions. On clicking the OK - 

button, the predictive simulation runs. Next, the rules for the decision points are 

inserted as the user has inserted them in the decision points table. This will result in 

the predictive FAM schedule. After this the predictive FAM with the exception 

simulation run will start and end which will compute the upper bounds. In the next 

simulation run, the rescheduling run is simulated. In this run, the user is presented 

with the rescheduling dialog as seen in Figure 7.18, where he can select his 

optimization options and criteria. Options are Match up rescheduling, with sub-opti-  

 

 
      Figure 7.18 Screenshot rescheduling dialog 

 



                                                                                                                            

ons with only one selection between Better make-span, Better starting time 

deviations or Better sequence deviations, and similarly for other options. At this 

point, the user can also select the check box Activate simulation based FAM for 

analysing the rescheduling solution is he wishes so. As soon as the user clicks the 

OK - button, the match-up rescheduling algorithm (or the respective algorithm) 

computes the solutions and the simulation iterations will start. Within these 

iterations, the system will compute the performance indices the user selected, and 

run the simulation once again with the FAM activated. At the end of the simulation 

the results will be presented to the user in the form of a pop-up window as seen in 

Figure 7.19 which can be expanded to show detailed results of each simulation run 

in Figure 7.20. Figure 7.21, 7.22 and Figure 7.23 show the change chart tables for 

the set-out, transportation, and set-in factors respectively.        

 

 
Figure 7.19 Screen shot final results window 

 

 
Figure 7.20 Screen shot for detailed rescheduling results 



                                                                                                                            

 
Figure 7.21 Screen shot for change chart – transportation factor 

 

 
Figure 7.22 Screen shot for change chart – job set out time factor 

 

 
Figure 7.23 Screen shot for change chart – job set in time factor 



                                                                                                                            

7.6.2 Selective re-routing system 

The selective rerouting system is implemented similarly as the match-up 

rescheduling system. As explained, the user has the possibility to select the method 

of change management. In the following sections, first some customization issues 

are discussed, and how they were solved. The specifics of the implementation are 

then given in the following sections.  

 

7.6.2.1       Customization of eM-Plant 

There were very few modifications done to customize eM-Plant for this 

problem. Most of the components of the methods, tables and variables remain the 

same for this system as that for the match-up rescheduling system. The same 

tables for instance serve to carry the data on bounds, starting times, etc for this 

method too. The only additions were the checkbox for selecting this method of 

change management shown as Selective Rerouting in Figure 7.18. Note that as 

compared to the Match-up Rescheduling system, the selective rerouting method 

does not have several options of optimizing Key Performance Indicators. This is 

because the system inherently optimizes on sequence deviations and not starting 

time deviations. Also the reactive FAM and ASA are not required to be implemented 

in this system because they are not required according to the principles of working 

of this method. The reader is advised to refer to Appendix 4 for the methods, 

tables and variables description during the reading of the next section.  

 

7.6.2.2 Workflow of the whole model 

The workflow of this system is structured in the same way as it was for 

the Match-up Rescheduling system and if hence not shown seperately. If the user 

chooses to calculate the rescheduling actions with the selective rerouting algorithm, 

the SelectiveReroutingAlgorithm - method, which implements the functionality 

described in earlier chapters, is started by the init - method. The selective rerouting 

algorithm uses the DisturbanceLocation - variable, the job starting times stored in 

the Jobs_Stage_Machine - tables and the processing times in the Times_Stage -

tables in order to calculate the time point the first machine becomes idle on the 

stage where the disturbance occurred. With this time point the algorithm generates 

the set of candidate jobs for rescheduling and stores them in the JobsForRerouting 

- table. The number of jobs in this set also gives the number of rescheduling 

alternatives which will be calculated in the following way. This value is stored in the 

NumberOfReschedulingRuns - variable, which serves as a control variable to keep 

track of the already calculated alternatives. Finally the SelectiveReroutingAlgorithm 

- method reroutes the last job of the candidate set to a new machine and writes the 

thereby changed routings to the ReschedulingRoutings – table. After the completion 

of the calculations a run of the simulation software is started using the job sequence 



                                                                                                                            

from the DeliveryTable - table and the routings from the ReschedulingRoutings - 

table. During the run the time points when the different jobs start processing on the 

machines is recorded by the StartTimeRecorder - method in the 

ReschedulingJobStartingTimes - table, while the JobExitRecorder - method stores 

the time points the jobs leave the system in the ReschedulingJobExitTimes - table. 

After the simulation run is finished the CalculateReschedulingResults - 

method is called, which computes the lead time, sequence stability, and starting 

time deviation of the current rescheduling alternative using the 

Jobs_Stage_Machine - tables, the FAM_JobStartingTimes - table, and the 

ReschedulingJobStartingTimes - table. The results are stored in the 

ReschedulingResults - table. Finally the endsim - method is started which checks 

whether all rescheduling alternatives have already been calculated. If not, the whole 

process is started anew by calling the init - method. Otherwise the ShowResults - 

method is called, which opens the ResultsDialog - object, that presents the 

rescheduling results to the user using the ReschedulingResults - table, thus 

marking the end of the whole rescheduling process. The only difference in the 

workflow of this system would be the replacement of the type of rescheduling 

algorithm as seen in Figure 7.13 and no use of the Adaptation Synchrony Analysis 

System and the Reactive FAM System.  

 

7.6.2.3 Running the simulation and the model 

The system also works using the similar Graphical User Interface (GUI) 

modules as the Match-up rescheduling system. This is obvious since both the 

Match-up and the Selective rerouting system have the same GUI control and are 

activated and worked upon using the same set of system components. The system 

can be run using the main GUI shown in Figure 7.18.  

 

7.7 Conclusions 
 

In this chapter we have discussed the integrated implementation of the 

optimization functions for scheduling and rescheduling within the simulation system. 

The predictive scheduling system was implemented to work as a two phased 

system capable of providing optimization as well as scheduling solutions to the 

complex production system configuration. The rescheduling system was 

implemented to provide performance indicators as well as to provide post 

rescheduling schedule analysis and the Adaptation Synchrony Analysis (ASA) - for 

the first time, though as a small contribution. In the next chapter, the detailed testing 

of the systems developed here is described.  

  

 



                                                                                                                            

Chapter 8 Quantitative assessment of 

approaches 
  

 

8.1 Introduction 

 

In this chapter, we discuss the tests conducted for verifying the validity of 

the developed approaches. Specifically, this chapter is divided into two sections. 

The first section discusses briefly the layout of the tests and test parameters for the 

evaluating the predictive system followed by results. The second section presents 

the same for the reactive system followed by results.  

 

8.2 Testing predictive scheduling system: Parameters and tests 

 

The aims of all the tests provided in this section is to test the behaviour of 

the system under a wide range of operating conditions, and to prove that the 

systems developed work reasonably well in these conditions. Several tests were 

carried out to test the effectiveness of the developed predictive scheduling 

approaches. Table 8.1 shows the test parameters and table 8.2 shows how these 

parameters were tested. As seen in the test plan, test comparisons are made to 

check the effect of varying parameters. Each test comparison is designed to give a 

conclusion for the next tests. Test 1 and 2 test the effect of system size on the 

computation times required. Here a conclusion about the effect of number of jobs 

and number of machines on computation times is sought. Test 3 and 4 test the 

ability of the system to meet delivery times and consider other details of the system 

altogether under some varying conditions. Test 5 and Test 6 test the effect of 

increasing job processing times variation with lesser constrained system in terms of 

buffer and machine configuration. Similarly, Test 7 and Test 8 test for the effect of 

job processing time variation, with tight buffer capacities and machine configuration. 

Test 5 and 6 conclude about the effect of processing times, while test 7 and 8 test 

the same in addition to testing the effect of system configuration in terms of buffer 

sizing and number of machines. Test 9 uses greater number of jobs with everything 

else held similar as test 7 – thus providing insight on the effect of number of jobs 

used in the system with tighter system constraints. Test 10 tests the effects of 

variation of processing times on a greater number of jobs and compares it with Test 

9. All the following tests were made on an Intel Celeron Processor, 1.06 GHz, and 

256 MB RAM machine run using WinXP operating system, and eM-Plant simulation 

software.  



                                                                                                                            

Table 8.1 Test parameters 

Parameters Description 

Parameter 1 System size (jobs x machines) 

Parameter 2 Delivery time for standard and\or special jobs 

Parameter 3 Processing times of jobs 

Parameter 4 Machine configuration 

Parameter 5 Buffer sizes 

Parameter 6 Number of jobs 

    

     Table 8.2 Test plan and relation to parameters   

Test 

comparison 

Testing the effect of 

parameter 

Relation ships with other 

tests 

Test 1, Test 2 System size 
Test 1 and 2 correspond to 

each other except system size 

Test 3, Test 4 Delivery times 

Test 3 and 4 correspond to 

each other except having more 

special jobs 

Test 5, Test 6 Processing times of jobs Test 5 and 6 correspond to 

each other except processing 

times 

Test 7, Test 8 Processing times of jobs Test 5 and 6 corresponds to 7 

and 8 in Number of jobs, Rule 

generators. Differences in 

Buffer sizes and Machine 

configuration 

Test 7, Test 9 Number of jobs Test 9 corresponds to test 7 in 

all parameters except number 

of jobs 

Test 9, Test 10 Processing times of jobs Test 9 corresponds to test 10 in 

all parameters except 

processing times of jobs 

 

8.2.1 Computational times using simulation and optimization based 

predictive scheduling system 

 

8.2.1.1 Test 1 data, results and discussions 

Table 8.3 shows the data used for this test. The aim of this test is to check 

the total amount of computational time the system needs (optimization plus 

simulation) with increasing system size which is represented by number of jobs x 



                                                                                                                            

number of machines. 

 

Table 8.3 Data for test case 1 

System size Nr. of 

jobs 

Nr. of 

machines 

Nr. of 

stages 

Job processing 

time variation 

50 x 25 50 25 5 5 - 240 

50 x 30 50 30 5 5 – 240 

50 x 40 50 40 6 5 – 240 

50 x 50 50 50 6 5 – 240 

 

Figure 8.1 shows the resulting computational times by using the system. 

Specifically worth noting is that computational times last only several seconds. As 

seen with the same number of jobs, and a higher number of machines, the increase 

in computation time is not proportionate. When the number of machines are 

doubled, the computation time increases only marginally. Using a pure simulation 

based method for deriving an appropriate schedule would certainly take much 

longer – that too without consider all the other details and constraints of the 

problem. The computational times shown in Figure 8.1 are obtained using the 

optimization algorithm plus 2 simulation runs, one for simulating the result of the 

optimization algorithm, and the second for analysing this result using the FAM.  
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Figure 8.1 Computational times for the predictive scheduling system 

 

8.2.1.2 Test data 2, results and discussions 

Table 8.4 shows the data used for the second test with even bigger problem 

sizes. The data is arranged in a similar way as for test 1. This time 100 jobs were 

used with increasing machine sizes. Figure 8.2 shows the results on computational 

times obtained for this test. It can be seen that here too we have a similar pattern of 



                                                                                                                            

the computation times required. Increasing number of jobs to 100 and increasing 

the machine sizes and stages for each setting, cause the times to increase only 

marginally. 

 

Table 8.4 Data for test case 2 

Problem size Nr. of 

jobs 

Nr. of 

machines 

Nr. of 

stages 

Job processing 

time variation 

100 x 25 100 25 5 5 - 240 

100 x 30 100 30 5 5 – 240 

100 x 40 100 40 6 5 – 240 

100 x 50 100 50 6 5 – 240 

 

When test 2 is compared to test 1, it can be seen that within these two tests, the 

trend is the same, but that the number of jobs (and not the number of machines) 

play a major role in determining computation times. In test 1, using a system size of 

50 x 25 resulted in a computation time of 9 seconds, while in test 2, a system size 

of 100 x 25 results in more than 2 fold increase in computation times. A further test 

was carried out to confirm the claims, with 20 stages, with 6 machines (total 120 

machines) each and 100 jobs. For this test configuration (100 x 120), the 

computation times were obtained as 5.5 minutes. So it seems that alongwith the 

number of jobs, if the number of machines are doubled, it also leads to a big 

increase in computation times. From the the results of all these tests, one may infer 

that a system size of 500 x 100 would result in computation times of approximately 

less than 30 minutes. Note that the times required for the simulation runs are with 

the animation of the simulation turned on. When animations are turned off, even 

shorter times for simulation can be obtained.  
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Figure 8.2 Computational times for the predictive scheduling system 



                                                                                                                            

8.2.2 Delivery time optimization results 

 

8.2.2.1 Test 3 data, results and discussions 

 Table 8.5 shows the data used for this test. Other data was also used on 

requirements for delivery and job routings within the system as seen in Figure 8.3. 

Three scenarios were tested namely jobs with special routes only, jobs with no 

special routes but with delivery times, and jobs with both delivery times and routing 

constraints. Similarly, unavailability of machines, materials and tools as shown in 

Figures 8.4 and 8.5 were also set. Each of them show the times when the machines 

or resources will be available. This test aims to test the effect of including all these 

constraints together alongwith buffers and testing the entire system for the 

effectiveness of the simulation based FAM and the optimization system. The 

tolerance value was kept to 20 minutes. Figure 8.6 shows the results of this test. 

Jobs 6 and 4, were completed as per the demanded completion time, in eM-Plant 

time format. Figure 8.7 shows the delivery time calculated by the optimization  

 

Table 8.5 Data used for test case 3 

Nr. of 
jobs 

Nr. of 
stages 

Nr. of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

50 4 Stage 1: 5 
Stage 2: 4  
Stage 3: 5 
Stage 4: 4  

Stage 1 to 4: 
Optimality rule 
generator for 
buffers 

Varying 
from 20 to 
40 minutes 

Varying 
from 5 to 8 
on stages 1 
to 4 

 

 

Figure 8.3: Setting delivery times for standard and special job flows 



                                                                                                                            

 

Figure 8.4: Setting machine maintenance times 

 

Figure 8.5: Setting material availability 

 



                                                                                                                            

 

Figure 8.6: Resulting plan and schedules obtained with both systems 

 

 

Figure 8.7: Job delivery table calculated by algorithm 



                                                                                                                            

 

Figure 8.8: Make span comparing pure optimization and optimization with 

FAM schedules 

 

algorithm, which shows the sequence in which jobs enter the system. As seen, jobs 

3 and 8 were started at the appropriate times due to delayed arrival of materials 

and supplies. When the FAM was used with the optimality rule for buffers, the 

schedule was better by about 5 % in make-span. Table 8.6 shows the comparison 

of the demanded delivery time (negative values indicate there was no lateness), 

with the delivery times obtained using the optimization and the optimization with 

simulation based FAM. 

 

Table 8.6 Lateness measurements jL for Test 3 

Jobs  jC  jd  jjj dCL - =  

 Optimization Simulation 

based FAM 

Delivery 

time 

Optimization Simulation 

based FAM 

Job 4 4:55.00.00 4:45.00.00 5:00.00.00 -5.00.00 -15.00.00 

Job 6 2:35.00.00 2:35.00.00 3:00.00.00 -25.00.00 -25.00.00 

 

8.2.2.2 Test 4 data, results and discussions 

Table 8.7 shows the data used for the test case 4 which aims at measuring 

the efficiency of the predictive scheduling system in terms of meeting delivery 

 



                                                                                                                            

deadlines for a greater number of jobs with special requirements and delivery time 

requirements. Figure 8.9 shows the routing and delivery time constraints. Job 5 is 

seen to have a special path shown by 3,4,4,1 (meaning job 1 travels to machine 3 

on stage 1, to machine 4 on stage 2, to machine 4 on stage 3 and to machine 1 on 

stage 4) due to constraints on manufacturing technologies that can be used to 

manufacture it. Similarly job 9 has routing constraints shown as path 1,2,2,4. All 

other jobs only have delivery time requirements with no restrictions on routing. Note 

that job 1 and job 10 have the same delivery time requirements.  

 

Table 8.7 Data used for test case 4 

Nr. of 
jobs 

Nr. Of 
stages 

Nr. of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

50 4 Stage 1: 5 
Stage 2: 5  
Stage 3: 5 
Stage 4: 5  

Stage 1 to 4: 
Optimality rule 
generator for buffers 

Varying 
from 10 to 
25 minutes 

8 at all 
stages 

 

 
Figure 8.9 Delivery constraints and job paths set by user for special jobs 

 

Figure 8.10a and 8.10b, show the delivery times and final results (for all 50 

jobs in 2 parts) after running the algorithm and system. These special jobs are 

marked as ellipses on these figures. As seen in the figures, all but Job 9 are 



                                                                                                                            

delivered earlier than their times. Job 9 is analyzed in Figure 8.10a, and it is seen 

that using the optimization algorithm, it is delivered on time at 3:20.00.00. However, 

due to the flow analyser system, it is delayed by 5 minutes seen as dotted ellipse in 

Figure 8.10b. This delay of 5 minutes is due to the overtakings of jobs in sequence 

during the flow analysis step using simulation. Refer to Table 8.8 for the lateness 

measurements for this test.  

 

 

Figure 8.10a Resulting schedule obtained with optimization and simulation 

based FAM: Part 1 

 

One can conclude from this that the heuristic (the optimization algorithm results 



                                                                                                                            

after 1 normal simulation run) delivers and schedules jobs according to their 

delivery times (with minimum or no lateness), but when the simulation based FAM 

is used, it is possible that one or a few jobs are delivered slightly late. Note in Table 

8.8, that jobs were finished at the same time or earlier than calculated by the 

algorithm, by the FAM in 8 cases, while in 2 cases, they were delivered at the same 

time or late. As earlier, the minus number for lateness in Table 8.8 indicate that the 

jobs finished earlier by that amount. When test 3 and 4 were compared to each 

other, it can be seen that when more jobs are considered to have special 

requirements, the developed application still works well. 

 

 
Figure 8.10b Resulting schedule obtained with optimization and simulation 

based FAM: Part 2 



                                                                                                                            

Table 8.8 Lateness measurements jL for Test 4 

Jobs  jC  jd  jjj dCL - =  

 Optimization Simulation 

based FAM 

Delivery 

time 

Optimization Simulation 

based FAM 

Job 1 1:20.00.00 1:05.00.00 2:00.00.00 -40.00.00 -55.00.00 

Job 2 1:35.00.00 1:35.00.00 2:15.00.00 -40.00.00 -40.00.00 

Job 3 2:00.00.00 1:45.00.00 2:30.00.00 -30.00.00 -45.00.00 

Job 4 2:10.00.00 2:05.00.00 2:45.00.00 -35.00.00 -40.00.00 

Job 5 2:30.00.00 2:35.00.00 3:00.00.00 -30.00.00 -25.00.00 

Job 6 2:35.00.00 2:25.00.00 3:15.00.00 -40.00.00 -50.00.00 

Job 7 2:50.00.00 2:45.00.00 3:30.00.00 -40.00.00 -45.00.00 

Job 8 3:03.00.00 2:50.00.00 3:45.00.00 -42.00.00 -55.00.00 

Job 9 3:20.00.00 4:05.00.00 4:00.00.00 -40.00.00 5.00.00 

Job 10 1:35.00.00 1:35.00.00 2:00.00.00 -25.00.00 -25.00.00 

  

8.2.3 Test 5 data, results and discussions 

Table 8.9 shows the data used for test 5. The aim of test 5 is to prove that 

the simulation based FAM system produces better results than the pure 

optimization algorithm, when the system is not subject to tighter buffer sizing 

constraints, using a combination of optimality and validity rule generators. The aim 

of test 5 (and test 6) is to check the effect of varying processing times while keeping 

the same number of machines at each stage and a higher level of buffer sizes.  

 

Table 8.9 Data for test case 5 

Nr. of 
jobs 

Nr. Of 
stages 

Nr. of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

Stage 1: Validity rule 
generator for buffers 

50 4 4  

Stage 2 to 4: 
Optimality rule 
generator for buffers 

Varying 
from 5 to 25 
minutes 

15 at all 
buffers 

 

 This means that there are no bottlenecks created due to uneven machine 

loading between stages and due to the lack of buffer capacities.  

 

8.2.3.1 Makespan comparison for various methods 

Figure 8.11 shows the results of the makespan and the times when each job 

leaves the system after completion. It is observed that random scheduling is much 

worser in the long run as compared to the optimization algorithm. It can also be 



                                                                                                                            

seen that in this test, no reduction in overall makespan was achieved using the 

simulation based FAM – although the results were not worser than the optimization 

algorithm.  

 

8.2.3.2 Performance benefits of the simulation based FAM system 

 Regardless of the makespan result, Figure 8.12 shows the percentage 

reduction in job finishing times (JFT) each job obtained as a result of using the 

simulation based FAM system.   

 

 

Figure 8.11 Makespan results for different methods of scheduling 
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Figure 8.12 Percentage reduction in JFT using simulation based FAM 



                                                                                                                            

About 54 % of the jobs finished earlier, while only 10 % finished later than the plan 

calculated by the optimization algorithm. Other jobs had no effect on their finishing 

times. Figure A9 in the appendix 5 shows the job finishing times of each of the jobs. 

To conclude, it seems that when there are no bottlenecks in the system due to 

different number of machines between stages, and due to the buffer sizing, the 

simulation based FAM does not improve the makespan – partly due to the effect of 

processing times and the validity rule generator used at one stage. However, it only 

improved the job finishing times for about half of the jobs in the system. 

 

8.2.4  Test 6 data, results and discussions 

 Table 8.10 shows the data used for test 6. The aim of this test was to check 

the influence of larger variation in job processing times using the same other data 

used for test 5. As for test 5, here also the effect of not constraining the system with 

limited buffers and machine configuration is checked.  

 

8.2.4.1 Makespan comparison for various methods 

Figure 8.13 shows the result of test 6, which is compared to test 5. As seen 

result, a much better makespan was achieved. The optimization algorithm provided 

a makespan of 900 minutes while the simulation based FAM further reduced the 

makespan to 816 minutes which is equivalent to 10 % lesser than the optimization 

algorithm. Comparison of the random scheduling process and the optimization 

suggests an improvement of more than 20 % using the methods developed. 

 

8.2.4.2 Performance benefits of the simulation based FAM system 

Figure 8.14 shows the percentage reduction in job finishing times using the 

simulation based FAM procedure. It can be seen as compared to Figure 8.12 of test 

5, that the results are better. Although the number of jobs finishing earlier is less, 

overall a higher reduction in JFT was obtained. The reason why some jobs have a 

negative reduction (or an increase) in JFT is because of the fact that some jobs 

overtake other jobs in the process of the flow analysis process. Figure A10 in the 

appendix 6 shows the job finish times for the test for all the three methods of 

scheduling.  

 

Table 8.10 Data for test case 6 

Nr. of 
jobs 

Nr. Of 
stages 

Nr. of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

Stage 1: Validity rule 
generator for buffers 

50 4 4  

Stage 2 to 4: Validity 
rule generator for 
buffers 

Varying 
from 5 to 
100 minutes 

15 at all 
buffers 



                                                                                                                            

 

Figure 8.13 Makespan results for different methods of scheduling 
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Figure 8.14 Percentage reduction in JFT using simulation based FAM 

 

From the above results, we can conclude that when the system is not subject to 

constraints of buffer sizing and when the processing time variation is higher, the 

system provides better results in terms of reduction of JFT and makespan.  

 

8.2.5 Test 7 data, results and discussions 

 Table 8.11 shows the data used for test 7. The aim of this test (and test 8) 

was to determine the influence of job processing times whilst keeping tighter 

constraints on the number of machines for all stages and the buffer sizing. When 

compared to test 5 and test 6, here we have lesser machines between stages and 



                                                                                                                            

we also have smaller buffer capacities. 

 

Table 8.11 Data for test case 7 

Nr. of 
jobs 

Nr. of 
stages 

Nr. of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

Stage 1: Validity rule 
generator for buffers 

50 4 Stage 1: 5 
Stage 2: 3  
Stage 3: 5 
Stage 4: 3  

Stage 2 to 4: 
Optimality rule 
generator for buffers 

Varying 
from 5 to 25 
minutes 

Varying 
fro 1 to 3 

 

8.2.5.1 Makespan comparison for different scheduling methods 

 Figure 8.15 shows the makespan comparison for the three methods. It is 

seen that again a 10 % reduction in makespan was achieved using the simulation 

based FAM, while the optimization proved again to provide as much as 20 percent 

reduction in flow times. When comparing this result to Figure 8.11, it can be seen 

that the simulation based FAM system provides reduced makespan figures when 

the system is subject to tighter constraints like buffer sizing and machine sizing for 

similar processing times. 

 

 

Figure 8.15: Makespan results for different methods of scheduling 
 
8.2.5.2 Performance benefits of the simulation based FAM system 

Figure 8.16 shows the percentage reduction in job finishing times using the 

simulation based FAM system. 15 jobs had increase in JFT while 19 jobs finished 

earlier (as compared to 27 jobs in test 5), while the others had no change in 

reducing the JFT. 
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Figure 8.16: Percentage reduction in JFT using simulation based FAM 

 

8.2.6  Test 8 data, results and discussions 

Table 8.12 shows the test data used for test 8. The aim of this test is to 

check the influence of a large variation of processing times, keeping all the other 

constraints the same as used for test 7.  

 

Table 8.12 Data for test case 8 

Nr. of 
jobs 

Nr. Of 
stages 

Nr. of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

Stage 1: Validity rule 
generator for buffers 

50 4 Stage 1: 5 
Stage 2: 3  
Stage 3: 5 
Stage 4: 3  

Stage 2 to 4: 
Optimality rule 
generator for buffers 

Varying 
from 5 to 
100 minutes 

Varying 
fro 1 to 3 

 

8.2.6.1 Makespan comparison using different methods 

Figure 8.17 shows the comparison of makespan for different methods of 

scheduling. It can be seen that the random scheduling method has more than 20 % 

increase in makespan values. There seems no improvement in the makespan using 

the simulation based FAM system. When this is compared to test 7, one can 

conclude that the system performs better (in terms of makespan) when the 

processing time variations are smaller, and when the system is subject to higher 

constraints in terms of the number of machines available and the buffer sizing.  

 

8.2.6.2 Performance benefits of the simulation based FAM system 

Figure 8.18 shows the percentage reduction in JFT using the simulation 

based FAM system. It can be seen as compared to Figure 8.16 that we have 



                                                                                                                            

worser results here too. 18 jobs resulted in higher job finishing times while fewer 

jobs resulted in reduction of finishing times. When this test is considered as a stand 

alone test, the simulation based FAM system does not provide worser results in 

makespan, but improves slightly the job finishing times for about 50 % of the jobs.  

 

 

Figure 8.17: Makespan results for different methods of scheduling 
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Figure 8.18: Percentage reduction of JFT using simulation based FAM 

 
8.2.7 Test 9 data, results and discussions 

 Table 8.13 shows the data used for test case 9. The aim of this test is to 

prove the applicability of the developed system for a bigger number of jobs and 

where each job has some variations in processing times, with additional constraints 



                                                                                                                            

on the system size. 

 

Table 8.13 Data for test case 9 

Nr. of 
jobs 

Nr. Of 
stages 

Nr. of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

Stage 1: Validity rule 
generator for buffers 

300 4 Stage 1: 5 
Stage 2: 3  
Stage 3: 5 
Stage 4: 3  

Stage 2 to 4: 
Optimality rule 
generator for buffers 

Varying 
from 5 to 25 
minutes 

Varying 
fro 1 to 3 

 

 

Figure 8.19 Makespan comparison using different approaches 

 
8.2.7.1 Makespan comparison using different methods 

Figure 8.19 shows the makespan obtained using different methods of 

scheduling. As seen in the long run, the simulation based FAM system provides 

reduction in makespan figures of about 10 %. This result proves that even for a 

great number of jobs, the simulation based system provides better overall results.  

 

8.2.7.2 Performance benefits of the simulation based FAM system 

Figure 8.20 shows the reduction in job finishing times (JFT) using the 

simulation based FAM system. More than 80 % of the jobs had reduced job 

finishing times as compared to the predictive schedule of the optimization algorithm. 

This result proves that the system also reduces the job finishing times for a greater 

number of jobs in the system.  
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Figure 8.20 Percentage reduction in JFT using simulation based FAM – Test 9 
 

8.2.8 Test 10 data, results and discussions 

 Table 8.14 shows the data used for test 10. The aim of test 10 is to prove 

the applicability of the system for a larger number of jobs with great variation in 

processing times. Rest of the parameters were the same as Test 9. Test 10 has the 

same aim as Test 9, the only difference being different job processing times. 

 

Table 8.14 Data for test case 10 

Nr. of 
jobs 

Nr. Of 
stages 

Nr. Of 
machines 

Decision points Processing 
times 

Buffer 
capacity 

Stage 1: Validity rule 
generator for buffers 

300 4 Stage 1: 5 
Stage 2: 3  
Stage 3: 5 
Stage 4: 3  

Stage 2 to 4: 
Optimality rule 
generator for buffers 

Varying 
from 5 to 
100 minutes 

Varying 
fro 1 to 3 

 

8.2.8.1 Makespan comparison using different methods 

Figure 8.21 shows the makespan obtained for different methods of 

scheduling. As compared to Figure 8.19, it is seen that lower reduction in 

makespan value was obtained using the simulation based FAM. This means that 

when there is a larger variation in processing times in a system with constraints and 

a larger number of jobs, the system provides improvements, but lesser than if the 

variation in job processing times are lower.  

 

8.2.8.2 Performance benefits of the simulation based FAM system 

Figure 8.22 shows the results of the reductions in JFT obtained using the 



                                                                                                                            

simulation based FAM. It is seen that here too about 80 % of the jobs finished 

earlier. This result is similar to Figure 8.20. To conclude, it seems that the system 

not only improves system performance for the case with smaller number of jobs, but 

it does so with bigger number of jobs too. 

 

 

Figure 8.21: Makespan comparison for various methods of scheduling 
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Figure 8.22: Percentage reduction in JFT using simulation based FAM 

 

8.3 Testing reactive scheduling system: Parameters and tests 

 

A series of tests were conducted after the development of the system. In the 

following sections, the test plans and parameters for the match-up rescheduling 



                                                                                                                            

system and the selective re-routing system are described. Most important results 

are shown, discussed and compared.  

 

8.3.1 Testing the simulation assisted match-up rescheduling system 

 Table 8.15 shows the overview of tests conducted to check the 

effectiveness of the developed approach. The above tests are categorized into 

groups. In the first test group (test 1), the ASA is tested as it was implemented in 

steps and results are shown with varying processing times. The second test group 

(test 2) is also done similarly but considers fixed processing times similar to that 

found in some serial production environments. Before proceeding with the tests, a 

test is carried out to validate the Adaptation Synchrony Analysis (ASA) for a bigger 

system than the one described in chapter 5.  

 

Table 8.15 Test plan for match-up rescheduling system 

Test number To test the effect of On parameters 

Test 1 

• Test 1a, 1b 

and 1 c  

Processing time variations 

without ASA, limited ASA, 

and full ASA. 

Reactive FAM and Starting 

time deviations, sequence 

deviations and make-span 

Test 2 

• Test 2a and 

2b 

Processing time variations 

with full ASA. 

Reactive FAM and Starting 

time deviations, sequence 

deviations and make-span.  

 

8.3.1.1 Validation of the detailed operation of the ASA 

 This section describes a test (using data in Table 8.16) that was performed 

in eM-Plant simulation software in order to check the functionality of the delayed 

method calls for shifting jobs within the implemented system. These delayed 

method calls are used with the match-up rescheduling algorithm in order to address 

the issues of adaption synchrony. The change charts shown in the implementation 

chapter are used to store the times needed to take jobs out of their predictively 

assigned buffer of a stage, transport it from there to another buffer and insert it 

there. The value of each of these change charts was kept in 5 minutes for this test. 

Therefore, if the executional exception occured after 30 minutes, like in this test, the 

jobs should not be inserted into their newly assigned buffer before 15 minutes plus 

the estimated or required calculation time that will have elapsed within the 

simulation system after the occurrence of the exception. Some may even be 

inserted later, because the capacity of their new buffers was exhausted when they 

arrived and they therefore had to wait for a job or jobs to leave the buffer. Figure 

8.23 shows the console output printing window of eM-Plant to which the executed 

job shifts during the calculation of the rescheduling solution are printed out. It can 

be seen that the required computation time using simulation was estimated to be 



                                                                                                                            

roughly 30 seconds.    

 

Table 8.16: Data for testing working of ASA 

Nr. of 
jobs 

Nr. of 
stages 

Nr. of 
machines 

Processing 
times 

Exception 
characteristics 

50 5 At all 
stages: 5 

5 to 45 
minutes 

Occurred after 30 
minutes, lasting for 

90 minutes 

 

 
 

Figure 8.23: Output console window of eM-Plant simulation software 
 

This was estimated according to the principles explained in the ASA description in 

chapter 5. The jobs that were inserted into a buffer that had sufficient capacity for 

them, finished their shift at the simulation time of 45 minutes and roughly 30 



                                                                                                                            

seconds. Which is exactly the amount of 30 minutes (time point, when the exeption 

occurred and the job shifting started) plus the estimated calculation time, plus the 

15 minutes that are needed to physically shift the job to its newly assigned buffer. 

The console print out also shows, that buffer 3 was full when the job shifts were 

carried out. Therefore the jobs that were assigned to this buffer had to wait for 

capacity and finished their shift only after 30 minutes had elapsed from the time 

point of the exception. This shows, that the system correctly considers ASA and 

works according to its described method. 

 

8.3.1.2 Test 1 with ASA implemented in steps, and with reactive FAM 
 
8.3.1.2.1 Test 1a without ASA and with reactive FAM 
       The first test is done without the ASA but with the FAM considering 

variation of job processing times on all stages. This implies that in the simulation 

model, as soon as there is an exception the reactive calculation starts immediately 

and reschedules jobs immediately (within the simulation model) without accounting 

for the fact that in the real world, these changes could take more time. The data for 

the first test is as follows: 

 

Table 8.17: Data for Test case 1 

Nr. of 

jobs 

Nr. of 

stages 

Nr. of 

machines 

Processing 

times 

Buffer capacity 

50 4 At all 

Stages 

1:4 

Varying 

from 15 to 

25 minutes 

Varying from 6 to 

8 at each stage 

 

The exception duration was set to randomly occur for a duration of 40 

minutes. The time required to obtain such information about the exception duration 

can be put into the change chart as explained in chapter 6. The aim of Test 1a was 

to test the effectiveness of the match-up rescheduling algorithm and the post 

rescheduling analysis using the simulation based FAM. Table 8.18 shows the 

overall results of the system. As seen in Table 8.18, the makespan of the best 

rescheduling iteration was close to that of the predictive schedule, while there was 

also significant reduction of the starting time deviations by this rescheduling 

iteration as compared the upper bound starting time deviations. The best 

rescheduling iteration rescheduled 4 jobs by itself. After post rescheduling analysis, 

it was seen that 1 job more was rescheduled by the FAM in order to solve 

bottleneck problems in the system which could occur in the future. In total out of the 

50 jobs, only 5 were rescheduled if the user decided to pursue this post 

rescheduling analysis. Interestingly, using this post analysis the makespan was the 

same as the best rescheduling iteration, but resulted in very slight increase in 



                                                                                                                            

starting time deviations. Figures 8.24 and 8.25 show the per job starting time 

deviation reduction on each stage.   

 

Table 8.18: Summary of results for Test 1 

Method Make-span 
(hr:min.sec) 

Starting time 
deviations 

(hr:min.sec) 

Best resched. iteration 4:55.00 14.18 

Upper bound 5:45.00 19.12 

Predictive schedule 4:25.00  

Post resched. Analysis 4:55.00 14.28 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

              Figure 8.24: Comparison of upper bounds and predictive schedule 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 8.25 Comparison of rescheduling result with predictive schedule 

 

It can be seen that as compared to the upper bound deviations, the 
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rescheduling system resulted in lower deviations, albeit not zero. In addition, since 

directly affected jobs are moved to other parallel machines, it increases the starting 

time deviations on that machine, though, in a small amount. Put together, it seems 

that the system does provide the user valuable inputs on what decisions he might 

take on system exceptions. He is given clear options with possibilities to select the 

rescheduling implementation scenario. 

 
8.3.1.2.2 Test 1b with limited ASA but with reactive FAM 

The aim of this test was to see the effect of gradually implementing the 

ASA into the system. Here an overall change time of 20 minutes was inserted into 

the system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 8.26 Comparison of rescheduling results with predictive schedule 
 
Data for the third test was the same as that for the first test case. Here however, the 

ASA was implemented in this test to check its impact on the final result. Table 8.19 

shows the results which need to be compared to Table 8.18 for the effects. As seen 

the starting time deviations and the make-span increased only slightly.  

 

Table 8.19: Summary of results for Test 1b 

Method Make-span 

(hr:min.sec) 

Starting time 

deviations 
(hr:min.sec) 

Best resched. 

iteration 

5:05.00 15.33 

Upper bound 5:45.00 19.12 

Predictive schedule 4:25.00  

Post resched. 

Analysis 

5:05.00 15.33 
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The reasons for this behaviour are described next. The most interesting 

result of using the ASA was that no jobs were selected for rescheduling using the 

FAM during post rescheduling analysis (as compared to test 1a – where 1 job was 

selected). Further, a different iteration was selected as a final rescheduling solution. 

The reason why this happened is because the ASA rescheduled the jobs at a later 

and appropriate point of time, thus, giving a rather realistic result – the result that by 

the time the changes would actually be ready on the shop floor, there would space 

to accommodate the changes in the buffers, thus needing no more rescheduling 

during the post rescheduling analysis phase. Figures 8.25 and 8.26 should be 

compared to starting time deviations between the test 1a and 1b. As seen, with the 

use of the ASA no significant differences in starting time deviations occur.  

 

8.3.1.2.3 Test 1c with full ASA and with reactive FAM 
In this test, a same configuration was kept as compared to test 1a and 

1b, but with slightly increased exception duration. The ASA factors set-out time, 

transportation time, and set-in times discussed in chapter 6 were set to 5, 10 and 5 

respectively. Table 8.20 show the data used while Table 8.21 shows the results 

obtained. Figure 8.27 shows the comparison of the Upper Bounds and the 

predictive plan. Figure 8.28 show the comparison of the rescheduling solution and 

the predictive plan. 

Figure 8.28 when compared to Figure 8.25 and 8.26 shows that the 

deviations are quite similar meaning ultimately that with increasing ASA inclusion in 

the system, the system proves to be at least as effective. Hence it can be 

concluded that with higher processing time variations, the system effectively 

reduces deviations from its predictive trajectory when the ASA and the reactive 

FAM are considered.  

 

         Table 8.20 Settings used for the test 
Variables Values 
Processing times 15 to 25 random 

Buffer sizes 8:7:7:8 
Exception duration 1 hour 30 minutes 
Exception occurrence  30 minutes into the planning horizon 

 

     Table 8.21 Summary of results for test 1c 
Methods Makespan 

(hr:min.sec) 
Starting time deviations 

(hr:min.sec) 
Predictive FAM 4:40  

Upper Bounds 5:25 18:04 

Best rescheduling iteration 5:10 15:33 
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Figure 8.27: Comparison of upper bounds and predictive schedule 
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Figure 8.28: Comparison of rescheduling result with predictive schedule 

 
8.3.1.3  Test 2 with ASA implemented in steps to test effectiveness of 
  the rescheduling system 
 
8.3.1.3.1 Test 2a without ASA but with reactive FAM 

 A second test was carried out to test the influence of setting the 

processing times to be the same across all stages for all jobs, in order to check 

applicability for wider range of production systems, and increasing the exception 

duration to 1.5 hours. Table 8.22 shows the data used. The processing times were 

set to 20 minutes, 25 minutes, 20 minutes and 25 minutes respectively for stages 1 

to 4. 

       

   Table 8.22: Data for Test case 2a 

Nr. 
of 

jobs 

Nr. of 
stages 

Nr. of 
machines 

Processing 
times 

Buffer 
capacity 

Stage 1:4 20 Minutes 

Stage 2:4 25 Minutes 

Stage 3:4 20 Minutes 

50 4 

Stage 4:4 25 Minutes 

Varying 

from 4 to 6 
at each 

stage 



                                                                                                                            

 

Table 8.23 shows the summary of the results obtained. It can be seen that even 

when the processing times were similar across stages, the system resulted in 

make-span and starting time deviations closer to the original\predictive schedule.  

 

Table 8.23: Summary of results for Test 2a 

Method Make-span 

(hr:min.sec) 

Starting time deviati-

ons (hr:min.sec) 

Best resched. iteration 5:25.00 3.16 

Upper bound 5:55 6.33 

Predictive schedule 5:15.00  

Post resched. Analysis 5:25.00 3.16 

                      
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 8.29 Comparison of rescheduling result with the predictive schedule 
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Figure 8.30 Comparison of upper bounds and predictive schedule 
 

On the other hand, the upper bounds resulted in significant increase in 

make-span and starting time deviations. On conducting post rescheduling analysis, 

it was seen that the FAM did not reschedule any more jobs, and consequently the 

results after this analysis remained the same as that obtained by the best 
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rescheduling iteration. Figure 8.29 and 8.30 shows the graphical comparison 

between the rescheduling solution and the upper bound seen against the predictive 

schedule. Once again, it is seen that we could match-up the original schedule to the 

new one as much as possible. 

 
8.3.1.3.2 Test 2b with ASA and with reactive FAM 
 

A second test was conducted within this group with similar processing 

times, and this time using the ASA with similar values as used in test group 1. Table 

8.24 shows the data used while Table 8.25 shows the results obtained. Figure 8.31 

shows the reduction in starting time deviations using the developed approach. Here 

it can be seen that although the makespan was better than the upper bounds, the 

starting time deviations were increased when compared to the result of Test 2a (or 

Figure 8.29). So it seems that with the ASA, when processing times are similar the 

system does not help in reducing deviations.  

 

     Table 8.24 Data used for testing system 
Variables Values 

Processing times 20:25:20:25 
Buffer sizes 8:7:7:8 
Exception duration 50 minutes 
Exception to occur at 1 hour into the planning horizon 

 
    Table 8.25 Summary of results for Test 2b 

Method Makespan 
(hr:min.sec) 

Starting time deviations 
(hr:min.sec) 

Predictive FAM 5:15  
Upper Bounds 5:55 6:33 

Best rescheduling iteration 5:45 5:09 
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      Figure 8.31 Comparison of rescheduling result with predictive schedule 
 



                                                                                                                            

The system seems to work best for varying processing times. The reason 

for the worser results here is the fashion the jobs are rescheduled on machines with 

the maximum capacity. Jobs move in round robin fashion thus not providing the 

expected results. 

 

8.3.2  Testing the selective re-routing system 

Table 8.26 shows the test plan for testing the selective re-routing system. 

The main aims of all the tests here was to prove that it is possible to change a plan 

under execution as late as possible in the planning horizon, and as less as 

possible. Changing as late as possible was not possible using the match-up 

rescheduling system because the aim was to bring back the deviations to their 

original trajectories.  

 
Table 8.26 Test plan for testing selective re-routing system 

Test number To test the effect of On parameters 
Test 1 and Test 2 Processing time 

variations 
Reactive FAM, Make-span, 
Sequence deviations and 
number of jobs 
rescheduled 

 
These tests are designed randomly to test the effect of randomly set processing 

times among a set of jobs. Several tests more were conducted, but not shown here 

to limit the amount of data presented.  

 

8.3.2.1 Test 1 to check late change criteria using the selective re-routing 

system  

 In this test 50 jobs were taken, with a system consisting of 4 stages each 

with 4 machines. The processing time varied randomly between 5 to 30 minutes. 

The exception was set to occur after 30 minutes for a duration of 90 minutes. It can 

be seen from Table 8.27 that a saving of 1 hour can be expected if changes are 

made using the developed approach. Figure 8.32 shows the finishing times of the 

jobs using the methods developed and incorporating the time of the exception and 

the time of the change in the figure. It can be seen that the actual changes are 

made much later in the schedule. As seen the exception duration was set to about 

35 % of the total make-span. Exceptions of more duration can be considered but in 

the author’s opinion, such long exceptions can be better handled by other methods 

available to management to manage changes. The methods developed here are 

expected to work best for exception durations less than 30 % of the total make-

span. This is because of the nature of the method of making changes from the last 

jobs of the stages.  
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Figure 8.32 Job finishing times and events in the reactive system 

 

Table 8.27 Summary of results for Test 1 

Method Makespan 

(hr:min.sec) 

Number of jobs 

changed 

Predictive FAM plan 04:00.00  

Upper bounds plan 05:30.00  

Reactive FAM plan 04:30.00 6 

 

 

8.3.2.2 Test 2 to check late change criteria using the selective re-routing  

system 

  For this test the same settings were used, except for the processing times. 

The processing times were randomly set between 5 to 30 minutes for all jobs. 50 

jobs were considered on 4 stages, each stage with 4 machines, and a exception of 

90 minutes set to occur after 30 minutes of schedule progress.  

 Once again, as seen in Table 8.28, a reduction in makespan of 40 minutes 

occurred. Figure 8.33 shows the comparison of the job finishing times for the 

different methods and the start and end of the exception process and the change 

process.  

 

Table 8.28 Summary of results for Test 2 

Method Makespan 

(hr:min.sec) 

Number of jobs 

changed 

Predictive FAM plan 03:40.00  

Upper bounds plan 05:05.00  

Reactive FAM plan 04:15.00 6 

Exception time             Changes made 



                                                                                                                            

Here again, the changes took place very late in the schedule. The planners 

of the system have time in hand to make changes that could still result in a better 

make-span. Note that in this system, it was not required to use the Adaptation 

Synchrony Analysis (ASA) system as was developed for the match-up rescheduling 

system. Also since the jobs are the ones changed late into the planning horizon, it 

is not required to use the reactive FAM as was used in the match-up rescheduling 

system.  
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Figure 8.33 Job finishing times and events in the reactive system 

 

8.4 Conclusions 

 

 In this chapter, we described the results of testing the systems developed in 

this thesis. The predictive system was thoroughly tested to result in definite 

quantitative benefits. Tests were carried out with parameters choosen 

systematically. A reason for this is the fact that the number of variables one could 

the test the system for are prohibitively large. Testing the system on these tests 

give an impression about the workability of the system to different scenarios. As 

noticed in most cases, the rule-based simulation resulted in better performance 

measures than the pure optimization algorithm. Although this may not be the case 

in systems where several more elements are added, the system developed proves 

its applicability to such systems which can be further extended. The predictive 

system developed is unique in the way that it considered extreme details that can 

exist in production systems, and is yet able to schedule jobs based on specific 

constraints and delivery dates. The most important criteria of makespan were met. 

For the delivery time or lateness criteria, the system schedules job in such a way 

that it achieves the delivery times, and still as much as possible tries to achieve the 

Exception time         Changes made 



                                                                                                                            

makespan criteria. The reactive system also resulted in several benefits. This 

system too was tested randomly on certain variables. As noticed, the system 

realistically considers the effect of including the actual change times on the overall 

change management solution. Specifically, we saw that the system rescheduled 

very few jobs and did tasks like post rescheduling analysis, which is also an 

important highlight of the system. Besides this the rescheduling system can also 

bring deviations back to their planning trajectory as much as possible. The 

approach in this thesis can be extended to consider other possibilities of 

rescheduling jobs like offloading work to suppliers, or compressing processing 

times of existing jobs by adding more resources and labor to the existing shop floor. 

The methods developed in this thesis have been developed as a decision support 

system, which can be extended further to include real-time information from a real 

production system and additional scheduling details and concerns.      

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                            

Chapter 9 Contributions, conclusions and 

further research 
 

9.1 Contributions of this thesis 

 

The specific contributions of this thesis to the state of the art research in 

scheduling and rescheduling are as follows: 

 

1.  A system was developed which resulted in knowledge on how a combination of 

simulation and optimization can be realized to result in additional benefits for 

scheduling a flexible production system configuration. This system resulted in 

definite improvements in system performance for the flexible production system 

as seen in results. Specific features about this system are: 

1.1 The optimization algorithm which extends and builds on top of an 

established algorithm is relatively trouble-free, yet produces fairly 

good results in terms of make-span and delivery time optimization. 

1.2  The optimization system considers special and standard job flows 

with or without due dates and with or without specific part flows 

within the same system alongwith constraints like limited buffer 

spaces, materials, tools and resource availability which makes the 

problem more complex and which none of the researchers have 

considered in their research. The result of this consideration is that 

the system becomes applicable to a wider range of manufacturing 

situations where part flow depends on technological (machining) 

restrictions imposed by the parts and the machines. A system which 

works has been developed as a starting point, and this system can 

be expanded to include more details in the future, resulting in a 

comprehensive planning and scheduling tool within eM-Plant.  

1.3 A first small step of combining simulation and optimization using eM-

Plant simulation software was taken in this thesis, which can be 

extended in the future. eM-Plant simulation software already offers 

the most powerful modeling environment with great flexibility in 

modeling complex sitations. The rule based simulation system can 

be applied in a general way to encompass the broader 

manufacturing organization elements and events. The rules 

developed in this system were developed for buffer elements and to 

handle bottleneck and optimality problems. Similarly, more general 

rules for other elements like transportation equipment, pallets, etc or 



                                                                                                                            

any other events, can be written in the form of these rules. The 

principles developed here are easy to apply, with the possibility to 

set, edit and write own rule generator logic for these elements to suit 

custom situations in the simulation. This way, complexity is handled, 

as well as ensuring that the final scheduling solution is as near to the 

optimal one or atleast a good one, which encompasses great details.  

2.  A system was developed for rescheduling which resulted in knowledge on how 

and if a combination of simulation and optimization can result in additional 

benefits. This system resulted in improvements in system performance for the 

flexible production system as seen in results. Specific features and 

contrubutions of this system are: 

2.1 The rescheduling system provided drastic reduction in solutions for 

rescheduling, whilst also considering and solving problems of 

adaptation synchrony analysis. 

2.2.1 This was done by the optimization algorithm, which provided 

  the simulation system with alternative solutions, alongwith  

  providing feedback on ASA. 

 2.2.2 The simulation system did not simulate each and every   

  constellation consisting of every job, but the overall iteration, 

  by using the updating capacity principle. 

2.2 The rule based Flow Analyser Module (FAM) simulation system was 

used to provide problem free execution of the rescheduling solution. 

It was seen that future problems can indeed be detected, and solved 

in the current rescheduling step. The number of jobs rescheduled 

were kept to a bare minimum by using the rule based FAM system, 

thus meaning, that the entire schedule need not be rescheduled, but 

only a few jobs further, for which problems are expected.  

2.3 Both the above points were considered, whilst bringing back 

deviation to the planned trajectory as much as possible. 

2.4 The selective re-routing system changed the schedule as late as 

possible in the planning horizon. It was seen that good results were 

obtained here too. The planners can neglect the exceptions, and yet 

be able to account for them at a later time point.  

Results show that these approaches indeed provide critical information and helps in 

improving the efficiency of the schedule before and after implementation in the real 

world by considering known and unknown events and exceptions.  

  

9.2       Conclusions 

 



                                                                                                                            

The predictive system has several practical applications. Many high volume 

production facilities have several separate flow shops. The process in such facilities 

is such that machines are flexible or interchangeable at each stage and therefore 

practically similar. Some production facilities also have special expertise in 

machining a family of parts, where each part follows the same sequence, but each 

machine is flexible to accommodate the slight variety in parts. Assembly lines, in 

which more than one type of product may be manufactured and each work station 

has multiple machines, is also an obvious application of this problem. Similarly, the 

situation where a parallel machine is added to ease pressure on a bottleneck 

facility, and\or to increase production capacities can be viewed as an application of 

the suggested problem. The reactive system could be used in situations where 

Just-In-Time or Just-In-Sequence production methods are used, where parts and 

supplies are delivered according to a precalculated plan, and deviations in 

production are not advisable.  

In this thesis, several test examples were taken, solved and simulated to 

provide a greater understanding of the underlying system. The solutions generated 

alternative policies in both the predictive and reactive areas, are in fact the 

significant processes which need to be handled in the predictive and reactive 

planning phases. Consequently, this means that significant processes can in fact be 

automatically detected, and handled efficiently using a combination of optimization 

algorithms and simulation. 

 

9.3 Further research 

 

During the course of this research work, the following observations were 

made which can be addressed by further research: 

1. In this work, scheduling of special jobs with routes only was limited to 

scheduling them last. These jobs could be clubbed with the standard jobs and a 

procedure could be developed, where such special jobs are scheduled 

according to the critical stage calculation. However, this may or may not yield 

better make-span, because of the fact that the selected special job may have 

co-incidently a routing on the latest available machines on all the stages. A 

method can be developed and tested to see if combining standard jobs with 

such special jobs and using the critical stage calculation as a guiding method, is 

possible and helpful at all.  

2. In this work, scheduling standard jobs was done by considering the earliest 

starting times, processing times and the tails of special jobs in the critical stage 

calculation. Though this method gave good results, the starting times of special 

jobs were not updated when calculating the critical stage. This was because, 



                                                                                                                            

the critical stage calculation was directed at the standard jobs, and not the 

special jobs which are not going to be scheduled anyway. Further research in 

this direction could be considering actual and updated starting times of the 

special jobs. This may lead improvement over the method used currently in this 

work.  

3. In this work, rescheduling was done by considering all jobs – standard and 

special on the same priority level. Special jobs with routings, were not 

considered. This was done to first prove that the rescheduling methods 

developed here work and are beneficial. Including jobs with special routing can 

be included in the future.  

4. The selective rerouting system did not use the reactive FAM and the ASA 

methods because jobs which are last in the planning horizon are rescheduled 

last, giving ample time to make changes in the real world. The reactive FAM 

and the ASA can be implemented for the selective rerouting algorithm, though 

which will be helpful only when the exception occurs close to the end of the 

planning horizon. 

5. One area where further improvement is possible is the detailing of the 

simulation model. For example, until now the PMFS model used in the sysem 

does not contain any transportation elements like forklifts or containers. Other 

examples include the modelling of workers, set-up times, or even very specific 

events etc. In order to make the model more detailed, these elements should be 

integrated into the model using the developed base of the Flow Analyser 

Module (FAM). eM-Plant also already models these elements as standard 

modelling objects within its object library. This makes a more detailed schedule 

analysis possible.  

6. The effects and costs of rescheduling a current production plan on other nodes 

of the bigger manufacturing organization and the supply chain could be 

developed. This could be of special interest to industry and research.  

7. In the match-up rescheduling area, it seems that the schedule cannot be fully 

brought back to its predictive level (though, better results are obtained against 

doing no rescheduling at all) due to the limited possibilities considered at the 

shop floor. Other possibilities for reduction of starting time deviations could be 

encompassing the wider manufacturing system, and alternative possibilities 

such as compressing processing times of jobs by adding more resources and 

manpower to the already present equipment. These other possibilities will have 

impact on costs, and this might prove an additional topic of further research.  

8. The rescheduling system can be developed to work with probabilistic exception 

durations, where the best and worst case exception durations can be taken to 

develop estimated on rescheduling efforts required. In cases where exception 

durations are hard to estimate, over estimating the duration slightly by making 



                                                                                                                            

approximations, can be tried to be used to estimate rescheduling efforts. 

Nevertheless, in such cases, the Adaptation Synchrony Analysis, and the 

reactive FAM should still work as developed.  
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VIII APPENDICES 

 

APPENDIX 1: Detail iterations for predictive scheduling algorithm and 
    validation 

 
Iteration 2 

 

At the beginning of this iteration, job 3 is already in the list of scheduled jobs. In this 

iteration it is checked if special jobs (especially job 5 and 7) can be scheduled since 

they have delivery times. The check fails in step 11, and hence the iteration 

proceeds with scheduling other standard jobs. Stage 1 is the critical stage and job 

1, 2, and 4 have common tails on the critical stage. Hence, maximum processing 

times for these jobs is checked. Then it is found that job 4 has the maximum 

processing time on the critical stage and is hence selected to be scheduled on 

earliest available machines on stage 1 and stage 2. The machine ready times are 

updated and shown in Table A7. Note here that during the calculation of the critical 

stage, special jobs are considered to act as standard jobs when considering their 

starting times. This is logical since, we know that special jobs are not going to be 

scheduled anyway. The idea is to only include the contribution of special jobs to the 

overall calculation of the critical stage, and then select a particular standard job.  

 

Table A1 Job ready times at stage - 1 (ai,1) 

 Jobs 

 1 2 4 5 6 7 8 9 10 

ai,1 0 0 0 1:00:00.0000 30:00.0000 0 0 0 0 

 

Table A2 Tails for each job at each stage 

Tails Jobs 

at Stage 1 - jiq ,  at Stage 2 - jiq ,  

1 20 0 

2 20 0 

4 20 0 

5 15 0 

6 20 0 

7 20 0 

8 30 0 

9 15 0 

10 15 0 



                                                                                                                            

 Table A3 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

1 0 

2 0 

3 0 

4 0 

5 1:00:00.0000 

6 30:00.0000 

7 0 

8 0 

9 0 

10 0 

 

Table A4 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

1 25 

2 25 

3 25 

4 30 

5 75  

6 60 

7 10 

8 15 

9 30 

10 15 

           

Table A5 Lower bounds computed for both stages 

Stage 1 Stage 2 

Lower 

Bound 1 

Lower 

Bound 2 

Lower 

Bound 1 

Lower 

Bound 2 

45 112.5 45 100 

45  45  

50  50  

90  90  

80  80  

30  30  

45  45  

45  45  

45  30  



                                                                                                                            

Table A6 Jobs scheduled list after this iteration 
Job 3 
Job 4  

 
Table A7 Updating machine ready times on stage 1 and stage 2 after  

iteration 2 
Stage 1 Stage 2 

Machine 1 Machine 2 Machine 1 Machine 2 

25 30 50 50 

 
Iteration 3 

 
At the beginning of this iteration, job 3 and 4 is already in the list of scheduled jobs. 

In this iteration it is checked if special jobs (especially job 5 and 7) can be 

scheduled since they have delivery times. The check fails in step 11, and hence the 

iteration proceeds with scheduling other standard jobs. In the third iteration, the 

critical stage is stage 2. Since both jobs 1 and 2 have the same tails on the critical 

stage, the maximum processing times are checked. Since they are also same, the 

tie is broken by selecting a job with a lower number. So job 1 is selected for 

scheduling and it is scheduled on the earliest available machines namely on 

machine 1 on stage 1 and on machine 1 on stage 2. The machine ready times are 

updated as shown in Table A14. Note the updated earliest starting times obtained 

from the job ready times and the updated machine ready times on both stages.  

 
Table A8 Job ready times at stage - 1 (ai,1) 

 Jobs 

 1 2 5 6 7 8 9 10 

ai,1 0 0 1:00:00.0000 30:00.0000 0 0 0 0 

 

Table A9 Tails for each job at each stage 

Tails Jobs 

at Stage 1 - jiq ,  at Stage 2 - jiq ,  

1 20 0 

2 20 0 

5 15 0 

6 20 0 

7 20 0 

8 30 0 

9 15 0 

10 15 0 



                                                                                                                            

 Table A10 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

1 25 

2 25 

5 1:00:00.000 

6 30:00.0000 

7 25 

8 25 

9 25 

10 25 

 

Table A11 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

1 50 

2 50 

5 75 

6 50 

7 50 

8 50 

9 55 

10 50 

 

Table A12 Lower bounds computed for both stages 

Stage 1 Stage 2 

Lower 

Bound 1 

Lower 

Bound 2 

Lower 

Bound 1 

Lower 

Bound 2 

70 122.5 70 127.5 

70  70  

90  90  

85  70  

55  70  

70  80  

55  70  

55  65  

 
Table A13 Jobs scheduled list after this iteration 

Job 3 
Job 4 
Job 1 

 



                                                                                                                            

Table A14 Updating machine ready times on stage 1 and stage 2 after 
iteration 3 

Stage 1 Stage 2 
Machine 1 Machine 2 Machine 1 Machine 2 

50 30 70 50 
 

 
 

Iteration 4 
 

At the beginning of this iteration, job 3, 4 and 1 is already in the list of scheduled 

jobs. In this iteration it is checked if special jobs (especially job 5 and 7) can be 

scheduled since they have delivery times. The check fails in step 11, and hence the 

iteration proceeds with scheduling other standard jobs. In this iteration, the critical 

stage was stage 2 because of the highest lower bounds, and from the available 

jobs, job 2 is selected and scheduled earliest on machine 2 on stage 1 and on 

machine 2 on stage 2. Note that to schedule jobs earliest, they also have to be 

available at that time. So the maximum of the job ready times and the machine 

ready times are taken on stage 1 to schedule a particular job earliest. The machine 

ready times are then updated. Refer to the table A17 on the updated machine ready 

times after this iteration. 

 
Table A15 Job ready times at stage - 1 (ai,1) 

 Jobs 

 2 5 6 7 8 9 10 

ai,1 0 1:00:00.0000 30:00.0000 0 0 0 0 

 

Table A16 Tails for each job at each stage 

Tails Jobs 

at Stage 1 - jiq ,  at Stage 2 - jiq ,  

2 20 0 

5 15 0 

6 20 0 

7 20 0 

8 30 0 

9 15 0 

10 15 0 

 

Table A17 Updating machine ready times on stage 1 and stage 2 after 
iteration 4 



                                                                                                                            

Stage 1 Stage 2 
Machine 1 Machine 2 Machine 1 Machine 2 

50 55 70 75 
 

    Table A18 Earliest start times at stage 1 for all jobs 
Jobs si,1 → Stage 1 

2 30 

5 1:00:00.000 

6 30:00.0000 

7 30 

8 30 

9 30 

10 30 

 

Table A19 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

2 55 

5 75 

6 60 

7 50 

8 50 

9 60 

10 50 

     

Table A20 Lower bounds computed for both stages 

Stage 1 Stage 2 

Lower 

Bound 1 

Lower 

Bound 2 

Lower 

Bound 1 

Lower 

Bound 2 

75 115 75 117.5 

90  90  

80  80  

60  70  

75  80  

75  75  

60  65  

 
Table A21 Jobs scheduled list after this iteration 

Job 3 

Job 4 
Job 1 



                                                                                                                            

Job 2 
 
 
 
 

Iteration 5 
 

At the beginning of this iteration, job 3, 4, 1 and 2 are already in the list of 

scheduled jobs. In this iteration, only special jobs 5, 6, 7, 8, 9 and 10 are left, and 

standard jobs are already scheduled. The special job scheduling system works by 

first looking at jobs with delivery time and routing and then jobs with only delivery 

times, followed by jobs with only routing. The jobs with only routings (job 6, 8, 9 and 

10 in this case) is considered for scheduling last. So in this iteration, job 7 is 

selected to checked to see if meets the scheduling criteria of delivery times. This 

calculation is performed by doing the following check: 

 

(Earliest time job 7 can start on stage 1 + processing time of job 7 on stage 1) + 

(Earliest time job 7 can start on stage 2 + processing time on stage 2) >= Required 

delivery time – Tolerance 

  

This comes out as: 

 

(55+10) + (70+20) >= 100 (or 120 – 20)  

90 >= 100  

 

Note that the comparison is only made with time the job 7 is expected to exit the 

system after stage 2. Hence as seen the time 90 is compared to the required 

delivery time minus the tolerance. The earliest start times for the first stage comes 

from the updated machine ready times from the previous iteration shown in table 

A19 of iteration 4, and the job ready times (which is zero in this case). The earliest 

starting times for job 7 on stage 2 is bigger of the time when job 7 finishes on stage 

1 which is 65, and the time when job 7 can actually start after one of the machines 

becomes ready earliest on the second stage which is 70 (see table A17 of iteration 

4 for machine ready times).  

 

The result is false, meaning now is not the time for job 7 to be scheduled. So the 

job is not scheduled and the control now considers job 5 for a scheduling try. The 

same calculations are performed as described above for job 5, which will translate 

as: 

 

(60+15) + (75 + 15) >= 130 (or 150 – 20) or 



                                                                                                                            

90 >= 130 

 

Note here that for earliest time job 5 can start on stage 1 is 60 because the tool for 

job 5 was available at 60, so it cannot start earlier than 60. On the second stage job 

5 can start at 75 at the earliest because it finished at that time on stage 1. Result of 

the check is false, meaning job 5 cannot be scheduled now. At this point, the 

system selects jobs for scheduling according to the earliest delivery times. This 

makes job 7 schedulable first. This may result in jobs getting scheduled earlier, but 

still not later than their required times. Job 7 is scheduled on the required machines 

on stage 1 and stage 2 – namely machine 2 stage 1 and machine 1 on stage 2, and 

the machine ready times are updated as seen in Table A26. Note that job 7 will exit 

at time 90 (or 1:30:00.0000), but machine 1 on stage 2 will be ready at 120 (or 

2:00.00.0000) because there is a maintenance scheduled on machine 1 from time 

1:30:00.0000 to 2:00:00.0000.    

 

Table A22 Jobs at this iteration 

Jobs Stage 1 Stage 2 Path Delivery  

time 

Material\ 

Tool 

availability 

5 15 15  2:30:00.000 1:00:00.000 

7 10 20 2,1 2:00:00.000  

 

Table A23 Job ready times at stage - 1 (ai,1) 

 Jobs 

 5 7 

ai,1 1:00:00.0000 0 

      
Table A24 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

5 1:00:00.000 

7 55 

 

Table A25 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

5 75 

7 70 

     

Table A26 Updating machine ready times on stage 1 and stage 2 after 
iteration 5 



                                                                                                                            

Stage 1 Stage 2 
Machine 1 Machine 2 Machine 1 Machine 2 

50 65 90 (+30) 75 
            

Table A27 Jobs scheduled list 
Job 3 
Job 4 
Job 1 
Job 2 
Job 7 

 
 
 
 
 

Iteration 6 
 

In this iteration, job 5 is selected for scheduling on machines depending on when it 

becomes available and the earliest available machines, on machine 1 on stage 1 

and machine 2 on stage 2. The machine ready times after scheduling job 5 are 

shown in Table A32.  

 

Table A28 Jobs in this iteration 

Jobs Stage 1 Stage 2 Path Delivery  

time 

Material\ 

Tool 

availability 

5 15 15  2:30:00.000 1:00:00.000 

 
Table A29 Job ready times at stage - 1 (ai,1) 

 Jobs 

 5 

ai,1 1:00:00.0000 

      
Table A30 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

5 1:00:00.000 

 

Table A31 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

5 75 



                                                                                                                            

Table A32 Updating machine ready times on stage 1 and stage 2 after 

iteration 6 

Stage 1 Stage 2 
Machine 1 Machine 2 Machine 1 Machine 2 

75 65 120 90 

            

Table A33 Jobs scheduled list after this iteration 

Job 3 
Job 4 
Job 1 

Job 2 
Job 7 

Job 5 
 
 
 

Iteration 7 
 

At the beginning of this iteration, all standard jobs and special jobs 7 and 5 with 

delivery times have been scheduled. The remaining special jobs 6, 8, 9 and 10 are 

left. In this iteration, job 6 is selected for scheduling on machines on its required 

path. Note that machine 1 on stage 2 is maintained from time 90 until time 120. The 

updated machine ready times are shown in Table A37. 

 
Table A34 Job ready times at stage - 1 (ai,1) 

 Jobs 

 6 8 9 10 

ai,1 30:00.0000 0 0 0 

      
Table A35 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

6 75 

8 75 

9 65 

10 75 

 

Table A36 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

6 120 

8 90 

9 120 



                                                                                                                            

10 120 

     

Table A37 Updating machine ready times on stage 1 and stage 2 after 
iteration 7 

Stage 1 Stage 2 
Machine 1 Machine 2 Machine 1 Machine 2 

105 65 140 90 

 

Table A38 Jobs scheduled list after this iteration 

Job 3 

Job 4 
Job 1 

Job 2 
Job 7 

Job 5 

Job 6 
 

 
 
 

Iteration 8 
 

In this iteration, job 8 is selected and scheduled on the required machine routing. 

The updated machine ready times are shown in Table A43. 

 
Table A39 Jobs for this iteration 

Jobs Stage 1 Stage 2 Path Delivery 

time 

Material\ 

Tool 

availability 

8 15 30 1,2   

9 30 15 2,1   

10 15 15 1,1   

 

Table A40 Job ready times at stage - 1 (ai,1) 

 Jobs 

 8 9 10 

ai,1 0 0 0 

      
Table A41 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

8 105 

9 65 



                                                                                                                            

10 105 

 

Table A42 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

8 120 

9 140 

10 140 

     

Table A43 Updating machine ready times on stage 1 and stage 2 after 
iteration 8 

Stage 1 Stage 2 
Machine 1 Machine 2 Machine 1 Machine 2 

120 65 140 150 
            

Table A44 Jobs scheduled list after this iteration 

Job 3 

Job 4 
Job 1 
Job 2 
Job 7 
Job 5 
Job 6 

Job 8 
 

 
 
 

Iteration 9 
 

In this iteration, job 9 is selected for scheduling on the required machines. The 

machine ready times are shown in table A49. 

 

Table A45 Jobs in this iteration 

Jobs Stage 1 Stage 2 Path Delivery 

time 

Material\ 

Tool 

availability 

9 30 15 2,1   

10 15 15 1,1   

 

Table A46 Job ready times at stage - 1 (ai,1) 

 Jobs 



                                                                                                                            

 9 10 

ai,1 0 0 

      
Table A47 Earliest start times at stage 1 for all jobs 

Jobs si,1 → Stage 1 

9 65  

10 120 

 

Table A48 Earliest start times at stage 2 for all jobs 

Jobs si,2 → Stage 2 

9 140 

10 140 

     

Table A49 Updating machine ready times on stage 1 and stage 2 after 
iteration 9 

Stage 1 Stage 2 
Machine 1 Machine 2 Machine 1 Machine 2 

120 95 155 150 

            

Table A50 Jobs scheduled list after this iteration 

Job 3 
Job 4 
Job 1 

Job 2 
Job 7 

Job 5 
Job 6 

Job 8 

Job 9 
 
After scheduling job 10 in the next iteration, the machine ready times are updated in 

Table A51. After all the iterations, the time when each job will exit the system is 

shown in Table A52. As seen the special jobs with delivery times are delivered in 

time. A screen shot of the bounds and selection of jobs in the software is shown in 

Figure A1. As seen the bounds and the job selections match with the hand 

calculations. 

 
Table A51 Updating machine ready times on stage 1 and stage 2 after 

iteration 10 
Stage 1 Stage 2 

Machine 1 Machine 2 Machine 1 Machine 2 



                                                                                                                            

135 105 170 150 
  

Table A52 Job exit times for all jobs 
Jobs 1 2 3 4 5 6 7 8 9 10 

Exit times 70 75 50 50 90 140 120 150 155 170 

 

 
           
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure A1 Results of bounds and selections in console of eM-Plant  
 
 

 
 

 
 
 
 
 
 
 
 



                                                                                                                            

APPENDIX 1.1: Detail events and  results for simulation based FAM and 
       validation 

 
The reader is advised to refer to terminology such “Line 1” and “Line 2” described in 

the predictive simulation based FAM system concepts in section 5.2.2.1.1, to 

understand the following results. The system is solved by hand and validated by the 

simulation run. Because the calculations are based on instantaenous data during 

the simulation run, a simulation run is conducted, and the data recorded and 

compared to the hand calculations using the data at that moment. Figure A2, A3 

and A4 show the screenshots of the results obtained by the simulation run. The 

detailed descriptions of the events and the calculations are shown as follows: 

 
Table A53 FAM analysis of Job 3 

 Summation 
of 

processing 
times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
3 on stage 

1 (c) 

Total sum  
(a+b+c) 

Jobs in 
buffer on 
this line 

Line 1 0 0 25 25 0 
Line 2 0 0 25 25 0 

FAM condition: FALSE 
 
In the FAM analysis, the optimality rule generator was used. In the analysis, the 

same sequence of jobs is used as generated by the optimization algorithm 

described in Appendix 1. The same system configuration and processing times data 

are used as shown in Table 5.1 to show the detailed results here. In the beginning, 

job 3 enters decision point 1 on stage 1. Refere table A53. Since this is the first job, 

there are no jobs on any machine on stage 1, and in the buffers, and hence the 

processing times are zero. The total sum of time on line 1 and line 2 are 25 minutes 

as seen in Table A53. Using the FAM rule logic, no rule is fired by the FAM, and the 

system keeps job 3 at its calculated position of going further to line 1.  

 
Table A54 FAM analysis of Job 4 

 Summation 
of 

processing 
times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
4 on stage 

1 (c) 

Total sum  
(a+b+c) 

Jobs in 
buffer on 
this line 

Line 1 25 0 30 55 Job 3 
Line 2 0 0 30 30 0 

FAM condition = FALSE 
 



                                                                                                                            

After job 3, job 4 enters stage 1 and at the decision point is selected for FAM 

analysis. Refer Table A54. At this point it finds job 3 in the buffer on line 1. After 

doing calculations for optimality (described in section 5.2.2.1.1), using the total sum 

in Table A54, it is found out that job 4 should go to line 2, but this was also the 

result calculated by the optimization algorithm. Hence no overriding takes place for 

job 4.  

 

  Table A55 FAM analysis of Job 1 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
1 on stage 

1 (c) 

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 0 25 25 50 0 

Line 2 30 0 25 55 Job 4 
FAM condition: FALSE 

 

After that job 1 entered stage 1, and selected for FAM analysis. Refer to Table A55. 

The total sum is used for FAM analysis according to the FAM concept, and it is 

found that line 1 is the best result for job 1. Hence, no rule was fired and job 1 

proceeds to line 1.  

 

  Table A56 FAM analysis of Job 2 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
2 on stage 

1 (c)  

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 25 25 25 75 Job 1 

Line 2 0 30 25 55 0 
FAM condition: FALSE 

 

Next, job 2 arrives at the decision point and is selected for FAM analysis. Refer to 

Table A56. Here job 1 is in buffer on line 1 and job 4 is being processed on the 

machine on line 2. Here too the FAM logic is used to determine if the condition is 

fulfilled using the total sum value. It is found out that it is not required to override the 

results of the optimization algorithm. Then, job 7 arrives in the system, but since job 

7 is special it is not selected for analysis. So job 7 proceeds to its pre-calculated 

path.  

 

   



                                                                                                                            

Table A57 FAM analysis of Job 3 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
3 on stage 

2 (c)  

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 0 0 25 25 0 
Line 2 0 0 25 25 0 

FAM condition: FALSE 
 

 Next job 3 finishes processing on stage 1 and prepares to go to stage 2, 

where it is again selected for FAM analysis. Refer Table A57 for the details. Here 

since there are no other jobs on stage 2, in the buffer and on the machines, the 

values of processing times are accordingly zero. Upon conducting the condition 

check, it is found that job 3 can stick to its original pre-calculated path.  

 

  Table A58 FAM analysis of Job 4 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
4 on stage 

2 (c)  

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 0 20 20 40 0 

Line 2 0 0 0 20 0 
FAM condition: FALSE 

 

Then, job 4 finished on stage 1 and beings to enter stage 2, where it is selected for 

FAM analysis. Refer Table A58, with all the instantaenous data filled in. Upon 

condition check, no rule is fired by the FAM and so job 4 proceeds to its original 

path.  

 

  Table A59 FAM analysis of Job 1 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
1 on stage 

2 (c)  

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 0 0 20 20 0 

Line 2 0 0 20 20 0 
FAM condition: FALSE 

 



                                                                                                                            

Next job 1 tries to enter stage 2 and is selected for FAM analysis. Refer Table A59 

for the detailed instantaenous data. There were no jobs on the second stage when 

job 1 came in for analysis, because job 4 and job 3 were already finished. Upon 

analysis it is found that job 1 can take its pre-calculated path from the optimization 

algorithm, or in other words the FAM condition was false. 

 

  Table A60 FAM analysis of Job 2 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
2 on stage 

2 (c)  

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 15 0 20 35 Job 1 

Line 2 0 0 20 20 0 
FAM condition: FALSE 

 

Then job 2 was finished on stage 1 and it prepares to go to stage 2. Refer Table 

A60 for the detailed instantaenous data used in the FAM analysis. Upon analysis, it 

is found that job 2 can take its pre-calculated path.  

 

  Table A61 FAM analysis of Job 5 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
5 on stage 

1 (c)  

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 0 0 15 15 0 
Line 2 0 5 15 20 0 

FAM condition: FALSE 
 

Then, job 5 enters stage 1 during the run-time clock of the simulation. At that time 

job 7 is being processed on machine 2 on stage 1. Refer Table A61. Note that job 5 

is a special job, with only delivery times !! Hence, this makes it possible to be 

considered “standard” for FAM analysis, since the FAM only tries to reduce the 

makespan of all the considered jobs – thus not affecting the delivery time results 

negatively. There were no jobs in the buffer on stage 1 at that instant. Refer Table 

A61 for analysis data. Upon analysis, it is found out that overriding is not required 

because the FAM condition was false.  

 

Then the next event was the incoming of job 6 in the system at the entrance. It 

enters the decision point and is selected for analysis. Since job 6 is special, it is not 



                                                                                                                            

analysed, and it goes on its pre-calculated path in the system.  

 

Then the next event was in the incoming of job 8 in the system at the entrance. It 

enters the decision point and is selected for analysis. Since job 8 is special, it is not 

analysed, and it goes on its pre-calculated path in the system. Then job 7 enters 

stage 2 after finishing on stage 1, and since it is a special job it is not selected for 

FAM analysis at the decision point for the second stage.  

 

  Table A62 FAM analysis of Job 5 
 Summation 

of 
processing 

times of 
jobs in 

buffer (a) 

Processing 
time left for 
current job 
on machine 

(b) 

Processing 
time for job 
5 on stage 

2 (c)  

Total sum 
(a+b+c)  

Jobs in 
buffer on 
this line 

Line 1 0 15 15 60 0 
Line 2 0 0 15 15 0 

FAM condition: FALSE 
 

Then job 5 enters stage 2 and is selected for FAM analysis. Refer Table A62. As 

mentioned earlier, job 5 is special according to the definition, but since it does not 

have routing constraints, it is considered “standard” during the FAM analysis. Note 

during this time, machine 1 on line 1 was maintained for a duration of 30 minutes 

which is added to the total sum during the FAM analysis. Again, upon analysis, it is 

found out that the FAM condition is false, which makes the rule unfirable. Job 5 

hence follows its pre-calculated path.  

 

Then job 6 arrives at the second stage and is selected for FAM analysis. Since job 

6 is special, nothing is done with it, and it proceeds to its pre-calculated path.  

 

Then job 8 arrives at the second stage and is selected for FAM analysis. Since job 

8 is special, nothing is done with it, and it proceeds to its pre-calculated path.  

 

Then job 9 arrives at the first stage and is selected for FAM analysis. Since job 9 is 

special, nothing is done with it, and it proceeds to its pre-calculated path.  

 

Then job 10 arrives at the first stage and is selected for FAM analysis. Since job 10 

is special, nothing is done with it, and it proceeds to its pre-calculated path.  

 

Then job 10 arrives at the second stage and is selected for FAM analysis. Since job 

10 is special, nothing is done with it, and it proceeds to its pre-calculated path.  



                                                                                                                            

 

Then job 9 arrives at the second stage and is selected for FAM analysis. Since job 

9 is special, nothing is done with it, and it proceeds to its pre-calculated path. 

 

 
Figure A2 Run-time results of the FAM in eM-Plant console: Part 1 



                                                                                                                            

 

 
Figure A3 Run-time results of the simulation based FAM in eM-Plant console: 

Part 2 
 



                                                                                                                            

 

 
Figure A4 Run-time results of the simulation based FAM in eM-Plant console: 

Part 3 
 

 
 
 

 
 
 
 



                                                                                                                            

APPENDIX 2: Detail iterations for the match-up rescheduling   
      algorithm and validation 
 

 

Figure A5 Predictive FAM schedule gantt chart 
 
 

 
Figure A6 Detailed iterations and selections in eM-Plant console 

 
 

Table A63 Detailed results on makespan 
Method Makespan 

Predictive schedule 110 
Upper bounds 135 

Rescheduling solution 135 
 



                                                                                                                            

Table A64 Results on performance indicators 
Method Starting time 

deviations 
Sequence 
deviations 

Selected rescheduling  
iteration 

16 33 % 

 
 

 
Figure A7 Results from the software run 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                            

APPENDIX 3: Detail iterations for the selective re-routing  
          algorithm and validation 
 
 

 
Figure A8 Predictive FAM gantt chart 

 

 
Figure A9 Detailed iterations and selections in eM-Plant console 

  
Table A65 Detailed results on makespan 

Method Makespan 
Predictive schedule 110 

Upper bounds 150 
Rescheduling solution 145 

 
Table A66 Results on performance indicators 

Method Starting time 
deviations 

Sequence 
deviations 

Selected rescheduling  
iteration 

23 66 % 

 
 



                                                                                                                            

 
Figure A10 Results from the software run 

 

 
Figure A11 Rescheduling solution gantt chart 

 

 

 

 

 

 

 

 

 



                                                                                                                            

APPENDIX 4: Methods, Tables and Variable objects used during 
     implementation 

 
 The following objects were used during the implementation of the system. 

The classes and the changes that were made compared to their ancestor classes 

are described below: 

 

Tables 

 

• SpecialJobs (derived from SpecialJobs) 

For every special job this table contains its path and its position in the entry 

sequence, i.e. the number of the row where it will be entered in the 

“DeliveryTable”. This table is edited by the user. 

 

• DeliveryTable (derived from DeliveryTable) 

This table is used by the source of the system in order to determine the 

sequence in which the jobs enter the system. This table is filled by the 

“Scheduling_Algorithm” method. 

 

• ToolAvailability (derived from ToolAvailability) 

For every job, this table constains the time when the tool will be available. This 

table is edited by the user.  

 

• MaintenanceTimes (derived from MaintenanceTimes) 

Using this table the user can set the starting time and the ending time of a 

scheduled maintenance on one or more of the machines in the system.  

 

• Material availability (derived from MaterialAvailability) 

This table contains the time, when the materials for certain jobs will be available 

in the planning horizon. 

 

• DecisionPoints (derived from DecisionPoints) 

This table contains the information which rule generators shall be used at which 

decision point. This table is edited by the user. 

 

• MachineCount (derived from MachineCount) 

This table contains information about the number of machines at each stage. 

This table is filled by the “CountStagesAndMachines” method. 

 



                                                                                                                            

• Times_StageX (derived from Times_Stage) 

One of these tables should exist for each stage. They contain the processing 

times of the jobs for each stage. These tables can be filled by the 

“RandomTimes” method and edited by the user. 

 

• JobSetOutTimes_StageX (derived from JobSetOutTime) 

One of these tables should exist for each stage. They contain information about 

how much time would be needed for the different jobs to take them out of the 

buffers of this stage. 

 

• JobTransportationTimes_StageX (derived from JobTransportationTime) 

One of these tables should exist for each stage. For every job they contain 

information about the amount of time that would be needed to transport it from 

its original machine to every other machine at this stage. 

 

• JobSetInTimes_StageX (derived from JobSetInTime) 

One of these tables should exist for each stage. They contain information about 

how much time would be needed for the different jobs to insert them into the 

buffers of this stage. 

 

• JobExitTimes (derived from JobExitTimes) 

This table saves the time points when the jobs left the system when the pure 

predictive, the predictive FAM or a random schedule is used. It also records the 

job exit times for the simulation run that simulates the predictive FAM schedule 

under the influence of an exception. This table is filled by the “JobExitRecorder” 

method. 

 

• ReschedulingJobExitTimes (derived from ReschedulingJobExitTimes) 

This table saves the time points when the jobs left the system during the 

rescheduling iterations and the simulation run that analyses the selected 

iteration with the reactive FAM. 

 

• Rescheduling_JobStartingTimes (derived from JobStartingTimes) 

This table saves the starting times for every job on every machine during a 

rescheduling iteration. It is filled by the “StartTimeRecorder” method. 

 

• Upper_bound_JobStartingTimes (derived from JobStartingTimes) 

This table saves the starting times for every job on every machine during the 

simulation of the predictive FAM under the influence of an exception. It is filled 

by the “StartTimeRecorder” method. 



                                                                                                                            

 

• TempResults (derived from TempResults) 

This table saves the exiting time of every job for a single rescheduling iteration. 

After the iteration has finished the contents of the table are written to the 

“ReschedulingJobExitTimes” table. The reason for this approach is as follows: 

In order to determine the column of the “ReschedulingJobExitTimes” table 

where the exiting times should be saved, the number of rescheduling runs that 

will be performed is needed. This number will be calculated by the 

“MatchupReschedulingAlgorithm” method. But since it is possible that jobs exit 

the system, before the method is called, the exiting times of the jobs will first be 

written to the “TempResults” table. 

 

• JobsToReschedule (derived from JobsToReschedule) 

During the first rescheduling iteration the “MatchupReschedulingAlgorithm” 

method saves the jobs that are candidates for rescheduling in this table. During 

the rescheduling iterations the jobs are selected from this table and do not have 

to be computed again.  

 

• JobQueue (derived from JobQueue) 

If a rescheduled job can not enter its destination buffer right away, it is written to 

this table by the “ShiftJob” method. The “InsertJobsFromQueue” method picks 

jobs from this table and inserts them into their destination buffer, as soon as 

they have capacity for an additional job. 

 

• ReschedulingResults (derived from ReschedulingResults) 

This table saves the make span, sequence deviation and starting time deviation 

for each rescheduling iteration and the reactive FAM run. 

 

• ReschedulingMoves (derived from ReschedulingMoves) 

This table saves the rescheduling moves that were made in the rescheduling 

iterations. This information is used by the failure handler during the reactive 

FAM run, so that the “MatchupReschedulingAlgorithm” does not have to be 

called again. 

 

• Re-routingMoves (derived from ReroutingMoves) 

This table saves the re-routing moves that were made in the rescheduling     

iterations using the selective re-routing algorithm. This information is used by 

the failure handler during the reactive FAM run, so that the algorithm does not 

have to be called again.  

 



                                                                                                                            

• ReactiveFAM_JobStartingTimes (derived from JobStartingTimes) 

This table saves the job starting times during the simulation run with the reactive 

FAM. It is filled by the “StartTimeRecorder” method.  

 

• ReschedSolution_JobStartingTimes (derived from JobStartingTimes) 

This table saves the job starting times during the simulation run of the selected 

rescheduling iteration. It is filled by the “StartTimeRecorder” method.  

 

• FAM_JobStartingTimes (derived from JobStartingTimes) 

This table saves the job starting times during the simulation run of the predictive 

FAM. It is filled by the “StartTimeRecorder” method.  

 

• HeuristicSchedule (derived from ScheduleTable) 

This table saves the paths for all jobs that are calculated by the 

“Scheduling_Algorithm” method.  

 

• PredFAMRoutings (derived from ScheduleTable) 

This table contains the paths for all jobs after the predictive FAM run has been 

completed. These paths consist of the calculations of the 

“Scheduling_Algorithm” method and the changes that the rule generators 

calculated during the predictive FAM run. 

 

• ReschedRoutings (derived from Schedule Table) 

This table contains the routings for the simulation run with the selective re-

routing algorithm.  

 

• RandomRoutings (derived from ScheduleTable) 

This table saves paths for all jobs that were calculated by the 

“RandomScheduling” method. 

 

• Jobs_StageX_MachineX (derived from Jobs_Stage_Machine) 

One of these tables should exist for each machine. For every machine they 

save the names of the jobs that are processed and time points when the jobs 

start on the machines. These tables are filled by the “StartTimeRecorder” 

method.  

 

Variables 

 

• NumberOfJobs 

This variable contains the number of jobs the user wishes to simulate. 



                                                                                                                            

 

• NumberOfStages 

This variable contains the number of stages the user has modelled. 

 

• NumberOfPredictiveFAMReschedulings 

This variable saves the number of changes to the pure predictive schedule the 

rule generators have made during the predictive FAM run. 

 

• NumberOfReactiveFAMReschedulings 

This variable saves the number of changes to the predictive FAM schedule the 

bottleneck rule has made during the reactive FAM run. 

 

• ExceptionType 

This variable saves the type of exception that happened. 

 

• ExceptionTime 

This variable saves the time point when an exception happened. 

 

• ExceptionDuration 

This variable saves the time span the exception will last. 

 

• ExceptionLocation 

This variable saves the location of the exception occurred.  

 

• Upper_bound_makespan 

This variable saves the makespan of the simulation of the predictive FAM 

schedule under the influence of the exception. 

 

• Upper_bound_starting_time_deviation 

This variable saves the starting time deviation of the simulation of the predictive 

FAM schedule under the influence of the exception. 

 

• Upper_bound_sequence_deviation 

This variable saves the sequence deviation of the simulation of the predictive 

FAM schedule under the influence of the exception. 

 

• Exception 

As soon as an exception occurs, this variable is set to true. This is needed to 

control the workflow of the whole system. 



                                                                                                                            

   

• ReschedulingRun 

This variable contains the number of the current rescheduling run. This is 

needed to control the workflow of the whole system. 

 

• SelectedReschedulingRun 

After all rescheduling iterations are finished, this variable will contain the 

number of the iteration which is best according to the criterion the user has 

selected. 

 

• NumberOfReschedulingRuns 

After the “MatchupReschedulingAlgorithm” method has been executed for the 

first time, this variable will contain the number of rescheduling iterations that will 

be carried out by the system. 

 

• State 

This variable contains information about the current state of the whole system. 

This information is encoded as an integer and is used to control the workflow of 

the whole system. 

 

Methods 

 

• InitializeNewRun (Derived from Method) 

Initializes the whole system for a new simulation. It calls the methods 

“CountStagesAndMachines”, “ClearTables”, “DeleteDecisionRules”, “InsertExc-

eption”, “ResetVariables” and “init”. 

 

• MatchupReschedulingAlgorithm (Derived from Method) 

This method implements the match up rescheduling algorithm and is called by 

the failure handler during each rescheduling iteration. It calculates the machines 

where to reschedule the jobs during the rescheduling iterations. It call the 

“ShiftJob” method. 

 

• SelectiveReroutingAlgorithm (Derived from Method) 

This method implements the Selective Rerouting Algorithm and is called by the 

failure handler during each rescheduling iteration. It calculates the machines 

where to reschedule the jobs during the rescheduling iterations. It calls the 

“ShiftJob” method.  

 

• SchedulingAlgorithm (Derived from Method) 



                                                                                                                            

This method implements the predictive heuristic and calculates the pure 

predictive schedule. It call the methods “DeleteOldJobs” and “MakeNewJobs”. 

 

• RandomScheduling (Derived from Method) 

This method calculates a random schedule. 

 

• StartTimeRecorder (Derived from Method) 

This method is used as an entry control on the machines in order to record the 

job starting times. 

 

• InsertBottleneckRuleForFAMResched (Derived from Method) 

This method inserts the bottleneck rule during the reactive FAM run, by setting 

the method „FAM_Bottleneck_Rule“ as an entry control for all decision points. 

 

• FAM_Buffer_Rule (Derived from Method) 

This method implements the buffer rule. It is used as an entry control of the 

decision points during the predictive FAM run. 

 

• FAM_Bottleneck_Rule (Derived from Method) 

This method implements the bottleneck rule. It is used as an entry control of the 

decision points during the predictive FAM run or the reactive FAM run. 

 

• FAM_PathCopier (Derived from Method) 

This method is needed during the predictive FAM run, if the user has not 

selected a rule generator for a decision point. Then this method is inserted as 

an entry control, in order to copy the pure predictive path of the job that 

triggered the entry control to the predictive FAM schedule. 

 

• EntranceSemaphore (Derived from Method) 

This method is inserted as an entry control of a buffer, where is job is about to 

be rescheduled. During the insertion process together with the exit semaphore it 

ensures, that the buffer will have a capacity of at least 1. 

 

• ExitSemaphore (Derived from Method) 

This method is inserted as an exit control of a buffer, where is job is about to be 

rescheduled. During the insertion process together with the entrance 

semaphore it ensures, that the buffer will have a capacity of at least 1. 

 

• ShiftJob (Derived from Method) 



                                                                                                                            

This method executes the actual job shift in the system. It is called by the 

“MatchupReschedulingAlgorithm” method. After the set out time of the 

rescheduled job it deletes the job from the system and then waits for an amount 

of time that is equal to the time needed to transport the job from its original to its 

new machine. If it finds the destination buffer full after this time, it inserts the 

method “InsertJobsFromQueue” as an exit control into the destination buffer. 

This control will insert the job as soon as the buffer has capacity again. 

Otherwise the entrance and exit semaphores are inserted and the process of 

inserting the job in the buffer is started. 

 

• DeleteOldJobs (Derived from Method) 

This method is called by the “Scheduling _Algorithm” method. It deletes all job 

objects from the class library. 

 

• MakeNewJobs (Derived from Method) 

This method is called by the “Scheduling_Algorithm” method. It creates as many 

new job objects in the class library as the user has defined in the scheduling 

dialog.  

 

• InsertDecisionRules (Derived from Method) 

This method is called by the “init” method before the predictive FAM run. It 

inserts the rule generators as entrance controls in the decision points according 

to the specifications the user has entered in the decision points table. 

 

• DeleteDecisionRules (Derived from Method) 

This method deletes all rule generators from the decision points.  

 

• Router (Derived from Method) 

This method is used by the flow controller objects. It looks up the path of the job 

that triggered the method in the correct schedule and returns the value. 

 

• RandomTimes (Derived from Method) 

This method fills the tables that contain the processing times with random 

values. These are generated by a uniform distribution. 

 

• CountStagesAndMachines (Derived from Method) 

This method counts the number of stages in the model and the number of 

machines on each stage. 

 

• InsertException (Derived from Method) 



                                                                                                                            

This method inserts the exception starting time and the exception duration in the 

machine specified in the variable “ExceptionLocation”. 

 

• DeleteException (Derived from Method) 

This method deletes any exception from the machine specified by the variable 

„ExceptionLocation“. 

 

• ClearTables (Derived from Method) 

This method initializes all tables for a new simulation.  

 

• FailureHandler (Derived from Method) 

This method is called as soon as a exception happens. During the rescheduling 

iterations it triggers the “MatchupReschedulingAlgorithm” method. During the 

reactive FAM run it looks up the calculated job shifts of the selected 

rescheduling iteration and performs the job shifts by calling the “ShiftJob” 

method. 

 

• ShowResults (Derived from Method) 

This method writes the results of the selected rescheduling run modified by the 

reactive FAM, if the user has selected this analysation, to the results dialog and 

displays it. 

 

• JobExitRecorder (Derived from Method) 

This method is used as an entrance control of the sink. It records the times 

when the jobs exit the system. 

 

• InsertJobsFromQueue (Derived from Method) 

This method is inserted as an exit control to a buffer where a job should be 

rescheduled and that was full as soon as the job arrived at the buffer. As soon 

as a job exits the buffer, this method inserts the entrance and exit semaphores 

and starts the insertion process of the job that could not be inserted before. 

 

• ResetVariables (Derived from Method) 

This method resets all variables to their initial values before a new simulation 

run. 

 

• CalculateReschedulingResults (Derived from Method) 

This method calculates and saves the make span, the starting time deviation 

and the sequence deviation of a rescheduling iteration. 

 



                                                                                                                            

• CalculateUpperBound (Derived from Method) 

This method calculates and saves the make span, starting time deviation and 

the sequence deviation of the exception run. 

 

• InsertMaintenance (Derived from Method) 

This method schedules the start and stop maintenance methods, i.e. this 

method determines when the methods are called.  

 

• InitializeObjects (Derived from Method) 

This method connects source to the delivery table, writes the failure handler to 

the failure control of the processing units, it connects the start time recorders as 

entry control for the single processing units. It also sets the job exit recorder as 

entry controller for the drain. It sets the router method as a selection method for 

the flow controllers.  

 

• MakeTables (Derived from Method) 

This method adjusts the number of tables required for job set in times, the job 

set out time, transportation time, the number of the processing time tables, and 

the Jobs_StageX_MachineX tables.  

 

• StartMaintenance (Derived from Method) 

This method sets the machine to pause when this method is called by the insert 

maintenance method. 

 

• StopMaintenance (Derived from Method) 

This method sets the machine to working again when this method is called by 

the insert maintenance method.  

 

• Init (Derived from Method) 

This method initializes the system for the next run of the whole simulation. For 

example it adjusts the state variable of the system.  

 

• Endsim (Derived from Method) 

This method triggers all the calculations that need to be done after a simulation 

run. Also it triggers a new simulation run if the whole simulation is not finished 

yet. 

 

Other generic objects 

 

• Source (Derived from Source) 



                                                                                                                            

The “Time of Creation” was changed to “Delivery Table”. The name of the 

according table, namely “DeliveryTable”, was already entered in the “Table”-

textbox. 

 

• Drain (Derived from Drain) 

The processing time was changed to 0. 

 

• Buffer (Derived from Buffer) 

The capacity was changed to 99 and the processing time set to 0. 

 

• FlowControl (Derived from FlowControl) 

The strategy was set to “Attribute” and the attribute type was defined as 

“Integer”. 

 

• Dialog (Derived from Dialog) 

This dialog was developed to give the user a convenient way to enter the 

needed input data for the algorithm. The callback-method of the dialog was 

edited to check whether the textboxes are filled when any of the buttons of the 

dialog is clicked, except the cancel button. The callback-method also starts the 

algorithm when the OK - button is clicked. 

 

• ReSchedDialog (Derived from Dialog) 

This dialog gives the user the possibility to select a rescheduling solution, and 

various options. 

 

• ResultsDialog (Derived from Dialog) 

This dialog displays the results of the rescheduling to the the user in a 

consolidated form. The user may investigate the results further using the results 

table which is implemented as table. 

 

• SingleProc (Derived from SingleProc) 

The processing time was set to “List (Type)”. 

 

• GanttChart (Derived from GanttChart) 

Eight entries for layers were added to the options table in order to give the 

visualized jobs different colours.  

 

 



                                                                                                                            

Appendix 5: Job finishing times – Test 5 
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Figure A12: Analysis of job finishing times for different methods 



                                                                                                                            

Appendix 6: Job finishing times – Test 6 
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  Figure A13 Analyzing job finishing times for different scheduling methods 


