

A Combined Simulation and Optimization Based Method for
Predictive - Reactive Scheduling of Flexible Production

Systems Subject to Execution Exceptions

Dissertation

for the partial fulfillment of the requirements of the degree

DOCTOR OF BUSINESS ECONOMICS

(Dr. rer. pol.)

of the Heinz Nixdorf Institute, University of Paderborn, Germany

Submitted by

M.Sc. Kiran R Mahajan

33102 Paderborn

Paderborn, March 2007

Rector: Prof. Dr. Peter F. E. Sloane
Referee: Prof. Dr. –Ing. habil. Wilhelm Dangelmaier
Co-Referee: Prof. Dr. rer. nat. Leena Suhl
Co-Referee: Prof. Dr. math. Friedhelm Meyer auf der Heide

 I dedicate this thesis to aayi, papa,
asawari, pitu and saylee

I SUMMARY

 Today, in order to gain competitive advantage, manufacturers around the world

make a combined use of innovative production technologies and production

processes and methods. Technologies like optimization and discrete-event

simulation are used to test the effects of alternative policies, which help to organize

manufacturing operations. However, an integrated platform for simulation and

optimization algorithms within which the user could generate and control the effects

of the alternative policies is missing. Alternative control policies become even more

relevant today as there is a need to keep complex manufacturing systems stable on

the occurrence of execution exceptions and at the same time meeting optimization

goals.

 The work discussed in this report complements the work in the areas of

combination of simulation and optimization technologies. The system developed is

a predictive-reactive system which combines both the technologies. The predictive

part determines the feasible schedule to be used for a parallel machines flow shop

(PMFS) – a flexible manufacturing system, in a predictive way and serves as a

starting point for the analysis carried out later. It considers a mix of fixed and

flexible part flows, delivery constraints, buffer constraints, part flow constraints, and

optimization constraints during its computations. This schedule is generated using a

combination of rule-based simulation and optimization: using first the optimization

algorithm to compute a rough plan, followed by using a rule based simulation

system to locally fine tune the plan, and obtain the final schedule. The schedule

generated by this predictive system, when implemented in the real world system is

adapted by the reactive part of the system by generating alternative policies on the

occurrence of system exceptions. These new alternative policies constitute the

significant processes in the real world for a corresponding exception. In the reactive

phase, alternative policies too are generated using a combination of simulation and

optimization. The optimization algorithm brings the deviation from the predictive

schedule back to its original trajectory as much as possible. In other words, it tries

to change as less as possible. It does this while considering and solving adaptation

synchrony problems (the problem that computations and changes in the real-world

take time, while the real-world continues to evolve leading to differing states being

used at different times) that may occur on the shop floor due to the change (or the

new schedule). The simulation based system also predicts if there will be problems

in the near future due to the rescheduling action and tries to generate solutions

based on rules, which make sure that the future execution of the schedule in the

real-world will be problem free. The final rescheduling solution is evaluated by the

simulation system and then implemented in the real-world.

 The predictive system is tested using several test configurations for the

effectiveness of the rule-based simulation system and the optimization algorithm to

meet optimization criteria and goals. For the reactive system, a quantitative analysis

is made considering system performance, the characteristics of the exceptions, and

the ability to meet the rescheduling aims.

 Results obtained show that the predictive scheduling method of combining rule-

based simulation and optimization is promising as it provides unique insights on

further improvement of performance measures of job finishing times, makespan and

delivery times. The simulation assisted rescheduling system also resulted in

additional performance measures of controlling deviations, which are well

researched in this thesis as well as evaluating the rescheduling solution and solving

adaptation synchrony problems. Definite quantitative information on bringing the

schedule back to its original trajectory as much as possible, its limits, and at the

same time predicting effects of current changes and solving them before hand were

obtained. It is seen that the methods developed are effective. The overall approach

suggested in this report is based on the integration of technologies like optimization

and discrete-event simulation, thus making it unique in the application of today’s

industrial problems.

II CONTENTS

Summary...i

Contents..ii

Notations..iii

Figures..iv

Tables...v

1. Introduction…..…………………………………………………...…….......1

2. Problem areas addressed…………………………………………….…..2

2.1 Introduction………………...2
2.2 Scheduling and re-scheduling of flexible production systems subject to

execution exceptions...2

2.2.1 Predictive scheduling of flexible production systems subject to

known and unknown exceptions………………………………….…..2

2.2.1.1 Approaches to predictive scheduling – combining

simulation and optimization………………………………..….2

2.2.1.2 Fixed and flexible material flow routings with

and without delivery time constraints…………………….….3

2.2.1.3 Inclusion of known and unknown events and exceptions…3

2.2.2 Reactive scheduling of flexible production systems subject to

known and unknown exceptions………………………………….…..3

2.2.2.1 Approach to rescheduling – combination of simulation and

optimization..4

2.2.2.2 Approach to rescheduling – when to reschedule…………..4

2.2.2.2.1 Real-time control issues in rescheduling –

Adaptation Synchrony……………………………...4

2.2.2.3 Rescheduling method…………………………………………5

2.2.2.3.1 Deviation match-up with predictive schedule……5

2.2.2.3.2 Rescheduling as late as possible…………………7

2.2.2.4 Estimating the impact of the rescheduling step on

predictive schedule……………………………………….……8

2.3 Optimization objectives……...8

2.4 Assumptions used in the study………………………………………………9

2.5 Real Time Control terms used in the study……………………………..…10

 2.6 Structure of the report...10

3. State of the art…...12
3.1 Introduction...12

3.2 Predictive scheduling of flexible production systems……………………12

3.2.1 Various approaches of predictive scheduling................................12

3.2.1.1 Optimal-Analytical approaches of scheduling the PMFS

problem………………………………………………………..12

3.2.1.2 Simulation based approaches of scheduling.....................18

 3.2.1.2.1 AutoSched: Simulation based scheduler.........18

3.2.1.2.2 SIMUL8-Planner: Simulation based planning

and scheduling………………………...........................19

 3.2.1.2.3 ISSOP Simulation based scheduling……….…21

3.2.1.2.4 Preactor International case of simulation

based scheduling...22

3.3 Reactive scheduling of flexible production systems.…………….….…...23

 3.3.1 Various approaches of reactive scheduling…………………..……23

3.3.1.1 Simulation based completely reactive approaches............23

 3.3.1.2 Predictive – reactive scheduling..26

 3.3.1.2.1 When to re-schedule?......................................26

3.3.1.3 Predictive-reactive scheduling versus completely reactive

approaches……………………………………………………28

 3.4 Conclusions………………………………………………………….............29

4. Work program and objectives...31
4.1 Introduction..31

4.2 Work program..31

4.3 Conclusions..32

5. Concepts and solutions……………………………………….…………33
5.1 Introduction..33

5.2 Concept and solutions for predictive scheduling…………………………33

5.2.1 Optimization algorithm...35

5.2.1.1 Initialization…...35

5.2.1.2 Detailed procedure to handle deterministic events

and delivery constraints...……………………………...………..39

5.2.2 Simulation based Flow Analyzer Module (FAM) for assessing

predictive schedule……………………………………………………46

5.2.2.1 Flow Analyzer Module (FAM)....…………………...............48

5.2.2.1.1 Rule generation for handling optimality…...…...49

5.2.2.1.2 Rule generation for handling validity by

 avoiding bottlenecks…….…………………..…....54

5.2.2.2 Sequential rule firing and its consequences……….….......58

5.3 Concept and solutions for reactive scheduling.......................................59

5.3.1 Justifications for using these methods………………………….…..64

5.3.2 Matchup rescheduling approach for real-time control...................64

5.3.2.1 Adaptation Synchrony Analysis (ASA) during

rescheduling………………………………………………..…67

5.3.2.2 Detail algorithm for match-up rescheduling and the

Adaptation Synchrony Analysis (ASA)…….......................72

5.3.2.3 Post rescheduling analysis using the simulation

based Flow Analyzer Module (FAM)..................................76

5.3.3 The selective re-routing approach for real-time control.................76

5.3.3.1 Concept of selective re-routing..77

5.3.3.2 Detail algorithm for selective re-routing.............................80

5.4 Conclusions...82

6. Integration and overall framework..84

6.1 Introduction..84

6.2 Overall system framework…...84

 6.3 Integration of the entire system…………………......................................84

6.4 Conclusions...86

7. Prototype software realized.…………………………………...............87
7.1 Introduction...87

7.2 Simulation software eM-Plant………………………………………………87

7.2.1 Programming language SimTalk…………………………..………..89

7.2.2 Important concepts of eM-Plant…………………………..…………90

7.3 Structure of the implementation……………………………………………91

7.4 Application flow of the implemented system……………………………...93

7.5 Predictive scheduling system...95

7.5.1 Optimization algorithm based predictive scheduling.....................95

7.5.1.1 Customization of eM-Plant...95

7.5.1.2 Workflow of the whole system...96

7.5.2 Simulation assisted FAM for predictive scheduling………………..99

7.5.2.1 Customization of eM-Plant...99

7.5.2.2 Workflow of the whole system...99

7.5.3 Running the simulation and optimization based predictive

scheduling system...101

7.5.3.1 Starting the system...101

7.6 Reactive scheduling system……………...105

7.6.1 Match-up rescheduling system…………………………………….105

7.6.1.1 Customization of eM-Plant...105

7.6.1.2 Workflow of the whole system...106

7.6.1.3 Running the simulation and optimization based reactive

scheduling system……………...112

7.6.2 Selective re-routing system….………………………………..…....116

7.6.2.1 Customization of eM-Plant……..………….......……….…116

7.6.2.2 Workflow of the whole system…………………………......116

7.6.2.3 Running the simulation and the system…………….……117

7.7 Conclusions..117

8. Quantitative assessment of approaches..118
8.1 Introduction..118

8.2 Testing predictive scheduling system: Parameters and test results....118

8.2.1 Computational times of the predictive scheduling system….…...119

8.2.1.1 Test 1 data, results and discussions...............................119

 8.2.1.2 Test 2 data, results and discussions................................120

8.2.2 Delivery time optimization results…..122

8.2.2.1 Test 3 data, results and discussions................................122

8.2.2.2 Test 4 data, results and discussions...............................125

 8.2.3 Test 5 data, results and discussions...129

 8.2.3.1 Makespan comparison for various methods....................129

8.2.3.2 Performance benefits of the simulation based

 FAM system...130

 8.2.4 Test 6 data, results and discussions..131

 8.2.4.1 Makespan comparison for various methods....................131

8.2.4.2 Performance benefits of the simulation based

 FAM system...131

 8.2.5 Test 7 data, results and discussions..132

 8.2.5.1 Makespan comparison for various methods....................133

8.2.5.2 Performance benefits of the simulation based FAM

system..133

 8.2.6 Test 8 data, results and discussions..134

 8.2.6.1 Makespan comparison for various methods....................134

8.2.6.2 Performance benefits of the simulation based FAM

system..134

 8.2.7 Test 9 data, results and discussions..135

 8.2.7.1 Makespan comparison for various methods....................136

8.2.7.2 Performance benefits of the simulation based FAM

system..136

 8.2.8 Test 10 data, results and discussions…………….......................137

 8.2.8.1 Makespan comparison for various methods....................137

8.2.8.2 Performance benefits of the simulation based FAM

system………………………………………..………………137

8.3 Testing reactive scheduling system: Parameters and test results……138

8.3.1 Testing the simulation assisted match-up rescheduling system..139

8.3.1.1 Validating the detailed working of the ASA………………139

8.3.1.2 Test 1 with ASA implemented in steps and with reactive

FAM……………………………………………….………….141

8.3.1.2.1 Test 1a without ASA and with reactive FAM…..141

8.3.1.2.2 Test 1b with limited ASA but with reactive

FAM………………………………………………..143

8.3.1.2.3 Test 1c with full ASA and with reactive FAM….144

8.3.1.3 Test 2 with ASA implemented in steps to test

 effectiveness of the rescheduling system…………….….145

8.3.1.3.1 Test 2a without ASA but with reactive FAM…..145

8.3.1.3.2 Test 2b with ASA and with reactive FAM……...147

8.3.2 Testing the selective re-routing system……………………..…….148

8.3.2.1 Test 1 to check late change criteria using the selective

 re-routing system……………………………………..…….148

8.3.2.2 Test 2 to check late change criteria using the selective

 re-routing system….……………………………………......149

8.4 Conclusions..150

9. Contributions, conclusions and future research...........................152

 9.1 Contributions……………..152

9.2 Conclusions..153

9.3 Future research..154

VI ACKOWLEDGMENTS...157

VII REFERENCES...158

VIII APPENDICES..162

Appendix 1: Detail iterations for predictive scheduling algorithm and

 validation……………………………………………………….…162

Appendix 1.1: Detail events and results for simulation based FAM and

 validation………………………………………………….…….176

Appendix 2: Detail iteration for matchup rescheduling algorithm and

 validation……………………………………………………….…184

Appendix 3: Detail iteration for selective rerouting rescheduling

 Algorithm and validation..…………………………………….…186

Appendix 4: Methods, Tables and Variable objects used during

 implementation…………………………………………………..188

Appendix 5: Job finishing times for Test 5..199

Appendix 6: Job finishing times for Test 6..200

III NOTATIONS

General notations:

t = Time

Schpredictive = Predictive schedule

Schreactive = Reactive schedule

jF = Flow time or make-span

F = Mean flow time

J = Average in-process inventory levels

jC = Completion time for job j

jr = Time job j arrived in the system

tD = Time when disturbance happened

tDur = Duration of disturbance

makespan
UB = Makespan upper bound

devSq = Sequence deviation

devSt = Starting time deviation

it = Iteration number

Notations for stages and machines:

J = Number of stages in the flowshop

jm = Number of machines at stage – j

jM = {1,2,......, jm }: Set of machines at stage – j

m
kja , = Ready / available time for machine – k at stage – j

jj MM ⊆
´ = Set of machines at stage – j available at time t (that is m

kja , ≤ t)

m
jk = Machine k, with id m, maintained at stage j

tStk = Time when disturbance starts on machine k

tEndk = Time when disturbance ends on machine k

i
tAv

tl = Tool availability time for job i

Numttl = Number of tools for which availability is set

ti = Material availability time for job i

cBf = Buffer capacity

ccBf = Current\Remaining buffer capacity

CNBf = Current number of jobs in buffer

m´ = Selected machine

m
kBNa , = Ready time for machine k on critical stage

si,BN = Earliest start time for job i on the critical stage

Notations for jobs:

Spi = Special job

ci = Job currently processed on a machine

R = Special job routing in system

I = {1,2,.....,n}: set of jobs to be scheduled

II ⊆0 = Set of jobs already scheduled

0III −=
´ = Set of jobs not scheduled yet

jia , = Time when job – i becomes available at stage – j (“ready time”)

jip , = Processing time for job – i at stage - j

jiq , = Work remaining (“tail”) for job – i at stage – j

jis , = Earliest start time for job – i at stage – j

Bf

jip , = Processing time for job – i which is currently in buffer on stage – j

db ′ = Set of jobs on machine k on stage j

db ′′ = Set of jobs selected for rescheduling

dt = Delivery time

I´´ = Jobs not yet scheduled from the list of standard jobs

tm = Time machine becomes free after processing its current job – i

IV FIGURES

Figure 2.1 Real-world state evolution and interaction with the rescheduling

 system...5

Figure 2.2 Starting time deviation (devSt)..6

Figure 2.3 Sequence deviation (devSq)...7

Figure 3.1 A disjunctive graph formation for the PMFS problem...........................13

Figure 3.2 Highest lower bound stage selected as critical stage...........................16

Figure 3.3 Interaction of simulation and optimization tool for car painting.............22

Figure 3.4 General scheme of simulation based reactive scheduling...................24

Figure 5.1 Overview of the predictive scheduling system......................................34

Figure 5.2 Inputs and outputs to the predictive algorithm......................................35

Figure 5.3 Accommodating delivery constraints for special jobs………..……...…43

Figure 5.4 Simulation based Flow Analyzer (FA) to achieve validity..…………….47

Figure 5.5 Concept of the simulation and rule based Flow Analyzer....................48

Figure 5.6 Dynamics of optimality and validity rule generation………......................51

Figure 5.7 Sequential rule generation..58

Figure 5.8 Consequences of sequential rule generation.......................................59

Figure 5.9 Simulation and Optimization assisted reactive scheduling…...………..60

Figure 5.10 Solution spaces and bounds...62

Figure 5.11 Time line of computations for simulation assisted reactive

 scheduling…………………………………………………………………..63

Figure 5.12 Matchup rescheduling for real-time control...65

Figure 5.13 Tree of iterations for positions and job rescheduling............................67

Figure 5.14 Real-world state evolution and interaction with the rescheduling

 system..68

Figure 5.15 Change charts filled up in the previous shift used in the current shift

 adaptation process…………………………………………………………69

Figure 5.16 Adaptation synchrony analysis computation……………….……………70

Figure 5.17 Earliest available machine on exception occurred stage......................73

Figure 5.18 Determining the set of jobs to reschedule..73

Figure 5.19 Post rescheduling analysis using simulation based FAM……………...77

Figure 5.20 Selective rerouting for reactive scheduling (one iteration)……………..79

Figure 6.1 Overview of the simulation assisted production scheduling and

 rescheduling system.……………………………………………………….85

Figure 6.2 Building block of the total scheduling and rescheduling system………86

Figure 7.1 Top frame of the developed system………………….............................92

Figure 7.2 Table frame which part of top frame……………………………………...93

Figure 7.3 Application flow of the system…………………………………………….94

Figure 7.4 Data flow chart of the predictive system…………………………….……98

Figure 7.5 Data flow chart of the simulation assisted FAM for predictive

 scheduling..100

Figure 7.6 Screenshot scheduling dialog..101

Figure 7.7 Screenshot editing job processing times..102

Figure 7.8 Screenshot editing job delivery times and routing constraints………..102

Figure 7.9 Screenshot editing tool or resource availability....................................103

Figure 7.10 Screenshot editing material availability..103

Figure 7.11 Screenshot editing equipment availability…………………………..…104

Figure 7.12 Screenshot editing decision points, rule generators and conditions...105

Figure 7.13 Data flow chart of the optimization and simulation based match-up

 rescheduling system..107

Figure 7.14 Detail working of the job shifting procedure…………………………....109

Figure 7.15 Interaction of the ASA module with the rescheduling system………..110

Figure 7.16 Continuation of the simulation to conduct reactive FAM analysis.......111

Figure 7.17 Screenshot user notification of exception...113

Figure 7.18 Screenshot rescheduling dialog………...113

Figure 7.19 Screenshot final results window…………………………………………114

Figure 7.20 Screenshot of the detailed rescheduling results………......................114

Figure 7.21 Screenshot for change chart – transportation factor………………….115

Figure 7.22 Screenshot for change chart – job set out time factor………………...115

Figure 7.23 Screenshot for change chart – job set in time factor………………….115

Figure 8.1 Computational times using the predictive scheduling system: Test 1..120

Figure 8.2 Computational times using the predictive scheduling system: Test 2..121

Figure 8.3 Setting delivery times and standard and special job flows……………122

Figure 8.4 Setting machine maintenance times…………………………………….123

Figure 8.5 Setting material availability……………………………………………….123

Figure 8.6 Resulting plan and schedules obtained with both systems…………...124

Figure 8.7 Job delivery table calculated by algorithm…….……………………………124

Figure 8.8 Makespan comparing pure optimization and optimization with FAM

 schedules…………………………………………………………………...125

Figure 8.9 Delivery constraints and job paths set up by user for special jobs……126

Figure 8.10a Resulting schedule obtained with optimization and simulation based

 FAM: Part 1……………………………………………………………….127

Figure 8.10b Resulting schedule obtained with optimization and simulation based

 FAM: Part 2……………………………………………………………….128

Figure 8.11 Makespan results for different methods of scheduling: Test 5..........130

Figure 8.12 Percentage reduction in JFT using simulation based FAM: Test 5…130

Figure 8.13 Makespan results for different methods of scheduling: Test 6………132

Figure 8.14 Percentage reduction in JFT using simulation based FAM: Test 6….132

Figure 8.15 Makespan results for different methods of scheduling: Test 7...........133

Figure 8.16 Percentage reduction in JFT using simulation based FAM: Test 7….134

Figure 8.17 Makespan results for different methods of scheduling: Test 8...........135

Figure 8.18 Percentage reduction in JFT using simulation based FAM: Test 8….135

Figure 8.19 Makespan results for different methods of scheduling: Test 9...........136

Figure 8.20 Percentage reduction in JFT using simulation based FAM: Test 9....137

Figure 8.21 Makespan results for different methods of scheduling: Test 10.........138

Figure 8.22 Percentage reduction in JFT using simulation based FAM: Test 10..138

Figure 8.23 Ouput console window of eM-Plant simulation software……………..140

Figure 8.24 Comparison of upper bounds and predictive schedule……………….142

Figure 8.25 Comparison of rescheduling result with predictive schedule…………142

Figure 8.26 Comparison of the rescheduling result with predictive schedule........143

Figure 8.27 Comparison of upper bounds with predictive schedule……………….145

Figure 8.28 Comparison of rescheduling system with predictive schedule……….145

Figure 8.29 Comparison of the rescheduling result with the predictive schedule..146

Figure 8.30 Comparison of the upper bounds with predictive schedule…….........146

Figure 8.31 Comparison of rescheduling result with predictive shedule…………147

Figure 8.32 Job finishing times and events in the reactive system……….............149

Figure 8.33 Job finishing times and events in the reactive system…….................150

Figure A1 Screen shot of eM-Plant showing selections and lower bound

 Calculations…………………………………………………………………175

Figure A2 Run-time results of the simulation based FAM in eM-Plant

 console: Part 1……………………………………………………………...181

Figure A3 Run-time results of the simulation based FAM in eM-Plant

 console: Part 2……………………………………………………………....182

Figure A4 Run-time results of the simulation based FAM in eM-Plant

 console: Part 3……………………………………………………………....183

Figure A5 Predictive FAM schedule gantt chart.……………………………………..184

Figure A6 Detailed iterations and selections in eM-Plant console.…………….…..184

Figure A7 Results from the software run……………………………………….…….185

Figure A8 Predictive FAM schedule gantt chart……..………………………………186

Figure A9 Detailed iterations and selections in eM-Plant console…………………186

Figure A10 Results from the software run……………………………………………187

Figure A11 Gantt chart of rescheduling solution…………………………………….187

Figure A12 Analysis of job finishing times for different methods of scheduling:

 Test 5..………………………………………………………………………199

Figure A13 Analyzing job finishing times for different scheduling methods:

 Test 6……………………………………………………………………..…200

V TABLES

Table 3.1 Comparison of heuristic with other approaches………………………….18

Table 5.1 Example data to explain algorithm…………………………………………36

Table 5.2 List 1 of special unscheduled jobs with routing and delivery times…….37

Table 5.3 List 2 of special unscheduled jobs with only delivery times……………..38

Table 5.4 List 3 of special jobs with routings only……………………………………38

Table 5.5 List 4 of standard jobs only…………………………………………………38

Table 5.6 Job ready times at stage 1………………………………………………….38

Table 5.7 Tails for each job at each stage……………………………………………39

Table 5.8 Earliest start times at stage 1 for all jobs………………………………….39

Table 5.9 Earliest start times at stage 2 for all jobs………………………………….40

Table 5.10 Lower bounds computed for both stages…………………………………40

Table 5.11 Updated machine ready times after scheduling job 7……………………41

Table 5.12 Updated machine ready times after scheduling job 3…………………...45

Table 5.13 Interrelationships between decision points and rule generator.............49.

Table 5.14 Example jobs and system size…………………………………………….50

Table 5.15 Buffer capacities on stage 2………………………………………………..50

Table 5.16 Job routing according to optimization algorithm………………………….50

Table 5.17 Earliest time job i will finish on stage……………………………………...53

Table 5.18 Job routing obtained after running simulation based FAM……………...53

Table 5.19 Example jobs and system size ……………………………………………54

Table 5.20 Buffer capacities on stage 2………………………………………………..54

Table 5.21 Job routing according to optimization algorithm………………………….54

Table 5.22 Earliest time job i will finish on stage……………………………………...57

Table 5.23 Job routing obtained after running simulation based FAM……………...58

Table 5.24 Example jobs and system size…………………………………………….72

Table 5.25 Iterations and jobs selected for rescheduling…………………………….74

Table 5.26 Capacities on earliest available alternative machine…………………….74

Table 5.27 Example to explain rescheduling system…………………………………80

Table 5.28 Iterations and jobs selected for rescheduling…………………………….81

Table 5.29 Capacities on earliest available alternative machine…………………....82

Table 8.1 Test parameters...119

Table 8.2 Test plan and relation to parameters..119

Table 8.3 Data for test case 1..120

Table 8.4 Data for test case 2..121

Table 8.5 Data for test case 3..122

Table 8.6 Lateness measurements Lj for Test 3……………………………………125

Table 8.7 Data for test case 4..126

Table 8.8 Lateness measurements Lj for Test 4……………………………………129

Table 8.9 Data for test case 5..129

Table 8.10 Data for test case 6..131

Table 8.11 Data for test case 7..133

Table 8.12 Data for test case 8..134

Table 8.13 Data for test case 9………………………………………………………..136

Table 8.14 Data for test case 10……………………………………………………….137

Table 8.15 Test plan for match-up rescheduling system……………………………139

Table 8.16 Data for testing working of ASA……………………………………….....140

Table 8.17 Data for test case 1………………………………………………………..141

Table 8.18 Summary of results for Test 1…………………………………………….142

Table 8.19 Summary of results for Test 1b…………………………………………..143

Table 8.20 Settings used for Test 1c………………………………………………….144

Table 8.21 Summary of results for Test 1c…………………………………………..144

Table 8.22 Data used for Test case 2a……………………………………………….145

Table 8.23 Summary of results for Test 2a…………………………………………..146

Table 8.24 Data used for testing system……………………………………………..147

Table 8.25 Summary of results for Test 2b…………………………………………. 147

Table 8.26 Test plan for testing selective re-routing system……………………….148

Table 8.27 Summary of results for Test 1…………………………………………….149

Table 8.28 Summary of results of Test 2……………………………………………..149

Table A1 Job ready times at stage - 1 (ai,1)…………………………………………162

Table A2 Tails for each job at each stage…………………………………………..162

Table A3 Earliest start times at stage 1 for all jobs………………………………..162

Table A4 Earliest start times at stage 2 for all jobs………………………………..163

Table A5 Lower bounds computed for both stages………………………………..163

Table A6 Jobs scheduled list after this iteration……………………………………163

Table A7 Updating machine ready times on stage 1 and stage 2 after
 iteration 2……………………………………………………………………164
Table A8 Job ready times at stage - 1 (ai,1)…………………………………………164

Table A9 Tails for each job at each stage…………………………………………..164

Table A10 Earliest start times at stage 1 for all jobs………………………………...165

Table A11 Earliest start times at stage 2 for all jobs………………………………...165

Table A12 Lower bounds computed for both stages………………………………..165

Table A13 Jobs scheduled list after this iteration……………………………………165

Table A14 Updating machine ready times on stage 1 and stage 2 after

 iteration 3……………………………………………………………………166

Table A15 Job ready times at stage - 1 (ai,1)…………………………………………166

Table A16 Tails for each job at each stage…………………………………………..166

Table A17 Updating machine ready times on stage 1 and stage 2 after

 iteration 4……………………………………………………………………166

Table A18 Earliest start times at stage 1 for all jobs………………………………...167

Table A19 Earliest start times at stage 2 for all jobs………………………………...167

Table A20 Lower bounds computed for both stages………………………………..167

Table A21 Jobs scheduled list after this iteration……………………………………167

Table A22 Jobs at this iteration………………………………………………………..169

Table A23 Job ready times at stage - 1 (ai,1)…………………………………………169

Table A24 Earliest start times at stage 1 for all jobs………………………………...169

Table A25 Earliest start times at stage 2 for all jobs………………………………...169

Table A26 Updating machine ready times on stage 1 and stage 2 after

 iteration 5……………………………………………………………………169

Table A27 Jobs scheduled list…………………………………………………………170

Table A28 Jobs in this iteration………………………………………………………..170

Table A29 Job ready times at stage - 1 (ai,1)…………………………………………170

Table A30 Earliest start times at stage 1 for all jobs………………………………...170

Table A31 Earliest start times at stage 2 for all jobs………………………………..170

Table A32 Updating machine ready times on stage 1 and stage 2 after

 iteration 6……………………………………………………………………171

Table A33 Jobs scheduled list after this iteration……………………………………171

Table A34 Job ready times at stage - 1 (ai,1)…………………………………………171

Table A35 Earliest start times at stage 1 for all jobs………………………………...171

Table A36 Earliest start times at stage 2 for all jobs………………………………...171

Table A37 Updating machine ready times on stage 1 and stage 2 after

 iteration 7……………………………………………………………………172

Table A38 Jobs scheduled list after this iteration……………………………………172

Table A39 Jobs for this iteration……………………………………………………….172

Table A40 Job ready times at stage - 1 (ai,1)…………………………………………172

Table A41 Earliest start times at stage 1 for all jobs………………………………...172

Table A42 Earliest start times at stage 2 for all jobs………………………………...173

Table A43 Updating machine ready times on stage 1 and stage 2 after

 iteration 8……………………………………………………………………173

Table A44 Jobs scheduled list after this iteration……………………………………173

Table A45 Jobs in this iteration………………………………………………………..173

Table A46 Job ready times at stage - 1 (ai,1)……………………………………..….173

Table A47 Earliest start times at stage 1 for all jobs……………………………...…174

Table A48 Earliest start times at stage 2 for all jobs……………………………...…174

Table A49 Updating machine ready times on stage 1 and stage 2 after

 iteration 9……………………………………………………………………174

Table A50 Jobs scheduled list after this iteration……………………………………174

Table A51 Updating machine ready times on stage 1 and stage 2 after

 iteration 10………………………………………………………………..…174

Table A52 Job exit times for all jobs………………………………………………..…175

Table A53 FAM analysis of job 3…………………………………………………..….176

Table A54 FAM analysis of job 4…………………………………………………...…176

Table A55 FAM analysis of job 1…………………………………………………...…177

Table A56 FAM analysis of job 2………………………………………………...……177

Table A57 FAM analysis of job 3………………………………………………..…….178

Table A58 FAM analysis of job 4………………………………………………….…..178

Table A59 FAM analysis of job 1……………………………………………...………178

Table A60 FAM analysis of job 2……………………………………………………...179

Table A61 FAM analysis of job 5…………………………………………………...…179

Table A62 FAM analysis of job 5………………………………………………….…..180

Table A63 Detailed iterations on makespan…………………………………………184

Table A64 Results on performance indicators…………………………….…………185

Table A65 Detailed results on makespan…………………………………….………186

Table A66 Results on performance indicators………………………….……………186

Chapter 1 Introduction

A major change in the 21st century has been the impact of globalization.

Even small and medium-size enterprises have manufacturing facilities in countries

other than their home country. In some instances, this is a complex network of

facilities. In others it’s a single manufacturing subsidiary. Furthermore, non-core

and core operations are being outsourced to countries with cheap labour. The

implications of this are the diversity of environments within which the production

planning and control system must operate has increased and will continue to do so.

Organizations are also getting more complex these days. This complexity is due to

several factors like complex production systems, product variety and uncertainty in

business processes. The customer on the other hand still remains king in the

competitive manufacturing environment. The capabilities of manufacturing plus

expectations of customers has led to increased pressure for both speed and

variety. Customers are demanding more tailoring in the products that they order

and want them faster than ever. Part of this is derived from the expectation of

shortened product life cycles, while part is derived from customers wanting more

individualized treatment. These relationships must be incorporated in the production

planning and control systems of the firms.

Efficient techniques for planning and replanning the entire supply chains to

cope with the complexity and business dynamics are more and more apparent.

Within the manufacturing and distribution supply chain, manufacturing scheduling

and re-scheduling is one area, which will be vital to the success of the

manufacturing organization. Especially, the day-to-day operations and the

execution problems arising out of uncertain characteristics of the system have to be

handled efficiently. Besides this today´s ERP software products do not offer the

possibility to model in a detailed way the underlying production system. There

exists a gap between detailed scheduling and the execution of this schedule on the

shop floor. There seldom exists a feedback mechanism to apprehend execution

problems.

Simulation and optimization assisted planning and replanning of such

systems becomes important as they offer the possibility to interactively analyze the

system by testing the effect of execution exceptions and the resulting solutions

without implementing them on the actual production system. This thesis addresses

some aspects of combining simulation and optimization for scheduling and

rescheduling of flexible manufacturing systems subject to several optimization

constraints as well as meeting customer demands, whilst still addressing the

questions of execution exceptions.

Chapter 2 Problem areas addressed

2.1 Introduction

In the following sections, we address the specific problems and the sub-

problems that are addressed in this thesis one by one. First problem areas and

issues in predictive and then reactive scheduling system are described. The

chapter concludes with optimization objectives of this study, assumptions and some

important definitions. In the next chapter, we outline the state of the art in these

areas.

2.2 Scheduling and re-scheduling of flexible production systems

subject to execution exceptions

As one could imagine there are several configurations of production

systems, each with its own characteristics. In this report, we seek to address

schedulinga and re-schedulingb of one such flexible production system configuration

– the flexible flow shop or more specifically the flow shop with identical, parallel

machines at one or more stages. This problem is a combination of the classical flow

shop-scheduling problem and the flow shop with multiple and identical machines at

one or more stages problem.

2.2.1 Predictive scheduling of flexible production systems subject to known

and unknown execution exceptions

Predictive scheduling consists of computing a production schedule prior to

execution in the real world. The problem of predictive scheduling can be further

divided into sub problems as follows:

2.2.1.1 Approaches to predictive scheduling – combining simulation and

optimization

There are several approaches of scheduling manufacturing systems.

Discrete event simulationc and optimizationd algorithms are increasingly used due to

a
Scheduling, is defined as “specific overall assignment of resources on orders and the timed arrangement of the

orders” , translated from Ten Hompel (2005).

b
Re-scheduling, is defined as “scheduling anew at a time later than the earlier scheduling time” , reference

[53].
c

Discrete event simulation, is “the operation of an imitating system represented as a chronological sequence of
events. Each event occurs at an instant in time and marks a change of state in the system”, Banks (1998).
d

Optimization, is defined as “the study of problems in which one seeks to minimize or maximize a real function by
systematically choosing the values of real or integer variables from within an allowed set. “, reference [53].

their relative simplicity in use and implementation. However, using purely simulation

or purely optimization does not today address the complexity of existing

manufacturing installations. For instance, pure simulation does capture all the

detailed elements of the bigger system such as buffere sizes, forkliftsf, etc, but with

the result that simulation itself does not optimize the system performance on factors

like delivery time constraintsg, make-spanh of the schedule to be computed and

other known events in a single run. On the other hand, optimization algorithms do

not usually encompass all the details of the system, but can optimize and consider

constraints on a system consisting of standard production system elements, and

are relatively faster in their computations. An approach to manage the problem of

considering details, optimization goals and constraints all together would be to

combine optimization algorithms and simulation. How to combine simulation with

optimization using eM-Plant i simulation software to consider some broader system

elements (like buffers) and the above issues is partly addressed in this thesis.

2.2.1.2 Fixed and flexible material flow routings with and without delivery

time constraints

Flexible manufacturing systems also have the ability to machine

components and products with or without flexibility in routing due to machining

constraints and at the same time with or without delivery time constraints. Clearly,

this adds to the complexity of the system and problem which is addressed by the

research in this thesis.

2.2.1.3 Inclusion of known and unknown events and exceptions

In the predictive planning phase itself, several known events can occur

which influence how the production schedule is computed. Examples are tools,

materials, maintenances, and resource availabilities. Additional complexity is added

to the flexible manufacturing system configuration to consider such events. Further,

it is important that the predictive schedule is problem free – that it is evaluated

sufficiently in advance that no execution exceptions will occur due to the computed

schedule.

2.2.2 Rescheduling (or Reactive scheduling) of flexible production systems

subject to known and unknown execution exceptions

e
Buffer, or temporary storage which can be placed between two production machines for containing parts,

translated from Ten Hompel (2005).
f
Forklift, is a material handling equipment which transports parts from one place to the other in the factory floor,

translated from Ten Hompel (2005).
g

Constraint, is defined as “a condition that a solution to an optimization problem must satisfy in order to be
acceptable, reference [53]
h

Make-span, or flow-time is defined in section 2.3.
i
eM-Plant simulation software initially developed as SIMPLE++, Dangelmaier (1988).

Despite advances in preventive maintainence techniques, exceptions do

occur rarely during the execution of a predictive schedule. Reactive scheduling

refers to the adaptation of the schedule currently under execution on the shop floor

due to exceptions such as part rejection in process, tool failure on the machine,

machine breakdown, and buffers are empty or full (system blockage) or generic

exceptions like energy not available at a work station. The problems addressed in

this area include:

2.2.2.1 Approach to rescheduling – combination of simulation and

optimization

The issue of what approach to use for rescheduling for a given exception

and its frequency of occuring also becomes important. Given the requirement that a

fast response is expected, using pure simulation can take excessive times to

evaluate all alternative rescheduling rules or simulation runs but can consider the

detail system elements. On the other hand, pure optimization can compute global

rough solutions, and shorten the solution computation time, but cannot usually com-

pute a detailed system. The problem addressed here is how to combine simulation

and optimization for rescheduling a system which is subject to exceptions

infrequently using eM-Plant simulation software.

2.2.2.2 Approach to rescheduling – when to reschedule ?

When exactly to reschedule in the physical production system is the

problem addressed here. Especially which point in time to reschedule considering a

graceful transition from a current system state of the real production process is

considered. This has the following facets.

2.2.2.2.1 Real-Time Control issues for rescheduling – Adaptation

 Synchrony

Real-Time Control (RTC) pertains to a system or mode of operation

in which computation is performed during the actual time that an external process

occurs, in order that the computation results can be used to control, monitor, or

respond in a timely manner to the external process. The external process can be

characterized as each significant change from presupposed data. It can endanger

an efficient or even a feasible execution of an existing schedule. This schedule is to

be rescheduled using efficient techniques. Adaptation Synchrony define how the

actual process continues during its modification (Bock (2005)). Production systems

gain a certain momemtum once they are operational. When changes to a schedule

are made in response to exceptions, the system may never (or should not) be

stopped entirely – parts of the system may proceed to another state (especially in

the case of flexible and parallel machines), and a conflict may arise due to using

information from different states at different times during the change management

process.

 Figure 2.1 Real-world state evolution and interaction with rescheduling

The problem is shown in Figure 2.1. As seen in the figure when the

rescheduling computation starts, the data at the time of the exception was

considered for computation. When the rescheduling computations and

implementations would be finished (assuming we can determine the times required

for computations and the time needed to implement a change physically), the real

system has evolved to a new state (corresponding to data 2). In this analysis, the

problem of synchronizing the computations when dealing with such issues is

undertaken.

2.2.2.3 Rescheduling method

The rescheduling methods are further classified as:

2.2.2.3.1 Deviation match-up with predictive schedule

 In situations where manufacturing systems may operate (supplies of

tools, materials, fixtures) on a just in time or just in sequence basis, or in

environments where important resources such as material, tooling and fixturing are

Disturbance occurs
state (Data 1)

Rescheduling
computation

starts

New system
state (Data 2)

Rescheduling
computation

time + time to
implement a

change ends

Time

Events

Real-world Computational world

Exception occurs
State (Data 1)

delivered to the machine based on the initial schedule, it is essential that operation

start times on each machine be adhered to as much as possible. This means

deviations caused to the operation start times for each job on each machine due to

the exceptions, should be brought back to their planned trajectory as much as

possible. This method of rescheduling addresses this question. There are two

factors associated with this namely reducing starting time deviations and reducing

seqence deviations of the jobs as follows:

 Figure 2.2 Starting time deviation (devSt)

1. Starting time deviation (devSt)

 This is a very useful measure of the effectiveness of the re-scheduling

algorithm. In this work, starting time deviation is measured by summing the

absolute value of the differences in operation starting times between new and initial

schedules as shown in Figure 2.2. This measure comprises two components:

delay = the sum of the absolute value of positive differences in starting times, and

rush = the sum of the absolute value of negative differences in starting times.

Starting time deviation = delay + rush

2. Sequence deviation (devSq)

 Sequence deviations are defined as the number of jobs re-scheduled (re-

positioned) from their positions in the original schedule (Figure 2.3). This measure

is critical if set-ups are prepared in advance based on the initial operation sequence

on the machines.

Original position of job in schedule

New job position, Case 1

New job position, Case 2

Operation
start times

Operation
ending times

Rush

Delay

Time

Machine x

 For instance, jobs may wait on pallets in a sequence queue, and tooling and

fixturing may be planned in advance according to the original sequence. Thus, a

sequence change will incur efforts in resequencing the queue, reallocating the

pallets, and replanning the tools.

 Figure 2.3 Sequence deviation (devSq)

This can be formulated mathematically as follows: Let n be the total number of jobs

on the candidate machine selected for rescheduling jobs. After re-scheduling, the

number of jobs re located to other positions (from their original position in the initial

schedule) from among these n jobs becomes nr. If nr = 0, then there is no sequence

deviation. The percentage deviation from the original schedule can then be written

as [] 100×
n

nr
.

As can be imagined, both deviations can occur at the same time. If

sequence deviation occurs (because of rescheduling), starting time deviation may

or may not occur. If it does, it will have to be computed as per the description

above. In addition to this, other measures of performance, like make-span and

delivery times, may be affected due to the consideration of these factors.

2.2.2.3.2 Rescheduling as late as possible

Manufacturing systems may also work on the basis that rescheduling

immediately after the exception may not be possible, as it may require immediate

attention and resources. In such a case, an alternative method of rescheduling is to

change as late as possible in the operating shift, without affecting the overall

makespan too much. How to reschedule as late as possible is addressed here. It

Job 2 Job 1

Job 4

Disturbance
duration

Initial position
of job 3 in
schedule

Time

Machine x Job 1 Job 3

Machine y Job 3
New

position of
job 3

uses the factor of sequence deviation to measure its effectiveness.

2.2.2.4 Estimating the impact of the rescheduling step on future execution

of predictive schedule

Rescheduling might solve execution problems temporarily, but it may

also affect future execution of a schedule. As an example, a rescheduling step at 1

pm, may cause problems at 2 pm, which when solved, may cause further problems

at 4 pm. The question addressed in this is, how to assess the impact of a

rescheduling step, and if there is an adverse impact, how to ascertain that we

consider this impact in our computations of rescheduling for the initial exception.

2.3 Optimization objectives

 Both the predictive and reactive scheduling systems described in this report

are designed to achieve the following key performance indicators (KPI). Schedules

are generally evaluated by aggregate quantities that involve information about all

jobs, resulting in one dimensional performance measures or KPI as we call them

here. Measures of schedule performance are usually functions of the set of

completion times in a schedule. For example, suppose that n jobs are to be

scheduled. Aggregate KPI that are defined include the following:

1. Make-span or Flow time (jF):

 The amount of time n jobs spend in the system, which is written as,

1== −= jnjj rCF , where nC is time the last job is complete and leaves the system

while jr is the time the first job arrived in the system.

2. Equipment utilization (%): (Available machine hours\Scheduled machine

hours) x100

 Since production schedules are obtained for a limited period (a time window), if

the make-span is lowered, then within the same planning period, one could

machine more jobs. Hence, a reduced make-span also results in better equipment

utilization.

3. Average in-process inventory levels (J):

 Besides flow time, one objective of scheduling is to maintain low inventory

levels. Minimizing the inventory levels can be interpreted as minimizing the mean

number of jobs in the system. In particular, the job sequence that minimizes the

mean flow time will also minimize average in-process inventory (Baker (1974)).

Whether the vantage point is one of optimizing customer service or one of

minimizing in-process inventory levels, the important problem is to find a sequence

that minimizes the mean flow time F .

5. Lateness (jL):

 The amount of time by which the completion time of job j exceeds the time it is

due: jjj dCL - = , where jC is the time at which the processing of job j is finished

and jd is the point in time at which the processing of job j is due to be completed.

Delivering customer products according to the promised delivery dates is already a

crucial factor in make to ordera manufacturing environments. The aim of the

processes developed in this thesis is to minimize the lateness as much as possible,

during both the predictive and reactive scheduling steps.

2.4 Assumptions used in the study

The following assumptions are used in the study:

1. The system configuration considered is the flow shop with multiple, identical

machines at each stages problem.

2. The number of jobs is known and fixed. No job, if in actual machining

(processing) may be stopped before completion, unless an execution problem

happens.

3. Jobs are classified as special jobs and standard jobs. Standard jobs are the

ones which do not have constraints on delivery times and which machines they

use in the production system. Special jobs are further classified as the ones

which have only delivery times, the ones which have only routing constraints

(use of specific machines on each stage) and the ones with both delivery times

and routing constraints.

4. No two special jobs with similar or different routing can have the same delivery

times.

5. In any configuration of the problem, standard and special jobs are roughly

equally distributed to form the total number of jobs in the problem.

6. The arrival time, or release time, of all the jobs is known, is fixed or can be

calculated.

7. The processing times of the jobs are known and constant.

8. Set-up times are independent of the job sequence and therefore are considered

a part of processing time.

9. All jobs follow the same stage sequence, i.e. jobs flow from left to right.

a
 Make to order environments where products are manufactured only when the customer places a firm order.

10. Re-entrant flows within the manufacturing system are not considered.

11. Each job in the system is a unique entity, even though the job is composed of

distinct operations, no two operations of the same job may be processed

simultaneously.

12. Each stage has jM ≥ 1 identical machines: j = 1, 2,...., m.

13. The flow shop consists of m ≥ 2 stages or levels.

14. All machines are available at the beginning of the planning window and the

machines are continuously available, unless the machine maintenance times

are pre-planned.

15. Schedule adaptation frequency is based on a execution problem oriented

concept or event oriented concepts.

16. Execution problems do not occur every few minutes in the execution of the plan.

When execution problems seldom happen, the plan is to be adapted according.

17. If there is an execution problem, the duration that the problem will last is known

or can be estimated.

18. In-process inventory is allowed and is maintained in the buffer queues which

have limited capacities.

19. For the purposes of rescheduling, each job is given equal priority. In other

words, differences between jobs types are not made for rescheduling.

2.5 Real Time Control (RTC) terminology used in the report

Some specific terminology has been developed to advance the techniques

of RTC (Bock (2005)) used throughout the rest of this thesis, especially in the

section of rescheduling system development. Adaptation handling defines:

1. Adaptation frequency – defining when an adaptation is realized.

2. Adaptation synchrony – defining how the actual real process continues during

its modification.

3. Adaptation duration – defining the duration of the adaptation process. This

policy will define the extent to which the adaptation is to be carried out.

4. Adaptation technique – defining how the adaptation is realized.

2.6 Structure of the report

In this report, we discuss the state of the art in these areas namely,

scheduling and re-scheduling for real-time control using approaches like simulation

and optimization, followed by results of the state of the art, concepts and results for

the developed approaches. The aim of the algorithms will be to work automatically

and seek to optimize on key performance indicators. In chapter 3, we provide the

state of the art on these problem areas, namely scheduling, rescheduling and the

use of simulation and optimization in these areas. In chapter 4, we state the result

of the state of the art. In chapter 5, detailed solutions and methods are described to

solve the problems addressed in this chapter, using small examples where

possible, which are validated using the software application developed in chapter 7

and 8. Chapter 6 describes the synthesis of the total solutions. Chapter 7 describes

the prototype software for the entire system including the system flow diagrams,

how to start up the system and is explained with the help of an example. Chapter 8

assesses the optimization and simulation approaches quantitatively with the help of

case studies, including validation of the approaches and algorithms used. Chapter 9

provides a discussion on the contributions of this thesis, conclusions from this study

and presents further areas of research followed by acknowledgements and

references.

Chapter 3 State of the art

3.1 Introduction

In this section, state of the art on the problem areas addressed in the earlier

chapter are discussed. We first discuss the various approaches of predictive

scheduling. The various methods include the simulation based and optimization

based approaches used in industry. Then various approaches of rescheduling

production systems subject to execution problems are discussed. These

approaches also include optimization and simulation based approaches. Real-time

control aspects and definitions are then presented followed by conclusions. In the

next chapter the conclusions of the state of the art are discussed.

3.2 Predictive scheduling of flexible production systems

3.2.1 Various approaches of predictive scheduling

Several methods of scheduling exist for different types of problem domains.

If all numeric quantities are known in advance, then the problem is termed as

deterministic scheduling problem. The ready time or the job release time makes a

considerable difference in the problem structure. If all the jobs are assumed to be

available at time zero, then the problem is termed as static problem. A non zero

release time for a set of job defines as dynamic behaviour (Banks, 1998).

Scheduling criteria may be classified into three categories such as shop

performance based, due date based and cost based (Banks, 1998). The two most

relevant approaches are discussed next in some details namely the analytical-

optimal approaches and the simulation based approaches.

3.2.1.1 Optimal-Analytical based approaches of scheduling the PMFS problem

These approaches are also called as optimization based approaches. These

approaches are designed to develop optimal schedules to minimize or maximize a

scheduling criterion. The advantage of these approaches is that the scheduling

criterion is explicitly considered during the development of a schedule. However,

this requires that the quantifiable objectives be determined for the particular

scheduling application. These approaches also require considerable amount of

solution time to obtain an optimal solution if the number of alternative solutions is

large. Therefore, some optimization-based approaches sacrifice from optimality in

exchange for faster solutions. A fast solution may not consider all the possible

alternatives explicitly but may choose from a subset of available alternatives and

evaluate them before reaching a solution. These approaches are generally

considered as heuristics.

 A Flow Shop (FS) is defined by Pinedo (2001) as a group of machine set up

in series through which a number of jobs are processed and the operations are

performed on each job in the same order, in that the jobs follow the same route. In

the flexible flow shop, any stage in the flow-shop has more than one machine in

parallel. The PMFS (Parallel Machine Flow Shop) problem is the task of sequencing

these jobs through the flexible flow shop with respect to a certain objective.

Technically, this problem is a combination of the flow shop scheduling and the

parallel machine-sequencing problem.

 The problem of the flow shop with multiple machines can be described as

follows. There is a main incoming queue of parts (jobs), where each part has a

different processing time, and each part can advance to any of the Mj machines at

stage 1. Each job requires different processing times on any one machine on each

of the stages. Theoretically all of the parts (except for special jobs) can be routed

to any one of the machines at the next stage j. When the part has been processed

through the last stage J, using one of the mM machines, it is complete and can

leave the system.

Figure 3.1 A disjunctive graph for the PMFS problem

Figure 3.1 shows a disjunctive graph in more details. There are n jobs to be

processed and J is the total number of stages in the flow shop. Node ni,j represents

the processing of job i at stage j. The first node 0 represents the dummy node,

indicating start of the operation. The last node (Jxn) +1 represents the completion of

n1,1

n2,1

nn,1

0

n1,2

n2,2

nn,2

nn-1,2

.....

.....

.....

(Jxn)+1

Stage 1: 3 machines Stage 2: 2 machines Stage J

ai,1

processing of all the operations for the entire set of jobs. Each node is connected

with the others using two sets of arcs, namely, directed arcs and disjunctive arcs.

The directed arcs (bold lines with arrows) represent precedence constraints defined

by the job routings and job sequences at various machines. Initially, every pair of

jobs to be processed at a stage is connected by a pair of disjunctive arcs (dotted

lines with arrows). As jobs are sequenced one by one, the disjunctive arcs between

the jobs are replaced by directed arcs to represent sequence of jobs at different

machined. All arcs from node 0 are directed arcs and have length equal to ai,1,

which is the arrival time of job i at stage 1. Each arc starting from node (i,j) is of

length pi,j, which represents the processing time for job i at stage j. All arcs ending

at node (Jxn)+1 are of length qi,j, which is the processing time for job i at the last

stage i.e. stage j.

For such a system configuration, Gupta and Ruiz-torres (2000) have

developed algorithms. The problem of scheduling n-jobs with release dates and due

dates on parallel machines is shown to be NP-hard by Carlier (1987). Hence the

problem of the parallel machine flow shop (PMFS) problem (combination of both

problems – the Flow Shop (FS) scheduling and the parallel machine (PMS

problems)) should be atleast equally hard.

Relatively limited amount of work has been published in the area of the

parallel machine flow-shop scheduling problem. Brah and Hunsucker (1991) have

developed a branch and bound algorithm for the PMFS problem. Brockman and

Dangelmaier (1997) also developed a branch and bound algorithm for the PMFS

problem using parallel processors (computers) to solve the problem. These

algorithms were noted to have worked consistently with a fair amount of

computational speed for small to medium sized problems. For instance, Brockman

and Dangelmaier report computation times of 15 seconds using 1024 parallel

computers for 11 jobs, having 3 stages and 3 machines on each stage, and 15

hours using 16 parallel computers. For large sized problems, further improvements

were suggested. One of the relatively recent advances in this field of job shop

scheduling comes from the shifting bottleneck procedure by Adams et al. (1988).

This procedure takes advantage of a very efficient algorithm developed by Carlier

(1982) for scheduling jobs with heads and tails on a single machine. The shifting

bottleneck procedure identifies bottleneck stages (critical stages) in the job-shop

using the Carlier algorithm and sequences the stages one by one. The procedure

has been found to produce excellent results in very little computational time.

However, the success of this procedure depends on exploiting the effectiveness of

the Carlier´s algorithm. More recently, Cheng et al. (2001) developed a heuristic

using a combination of a property of the PMFS problem and the shifting bottleneck

procedure. Phadnis et al (2003) also developed such an algorithm for the PMFS

problem using the shifting bottleneck procedure, and have compared their results

with other algorithms, namely that of Cheng et al. and others. They developed such

an algorithm in which they used the very efficient shifting bottleneck (of Adams et.

al, 1988, applied for the job shop scheduling problem) procedure and applied to the

Parallel Machine Flow Shop problem with the possibility of producing equally good

results. As this procedure is used partly in the predictive part of the thesis, it is

described here briefly.

Step 1 Set Io = Φ. Get processing times (pi,j) at each stage and job ready times at

stage-1 (ai,1) for all jobs to be scheduled (i).

Step 2 Calculate tails for each job at each stage, using the formula ∑
+=

=
J

mj

jiji pq
1

,, .

Tails are computed to find out the amount of work left at a certain stage.

Step 3 Calculate the earliest start times (si,1) at stage – 1 for all jobs yet to be

scheduled. The earliest start times for a job will depend on when one of the

machines at stage 1 will become free and when the job arrived. This can be

written as:
m
kii aas ,11,1, {min),({max= І Iimk ′→∀= }},...,2,1 1 .

In effect, a selection of the maximum of the job ready times and minimum of

the machine ready times is done.

Step 4 Calculate the earliest start times (si,1) at each downstream stage – 1 for all

jobs yet to be scheduled using the formula:
m

kjjijiji apss ,1,1,, {min),({max −− += І ,(}},...,2,1 Iimk j
′→∀= and)...,,3,2 Jj = .

Step 5 Calculate the bottleneck or critical stage among all the stages. A critical

stage is one, which calls for extra care to be taken to schedule a job. In

other words, we find critical stage, and schedule a job such that the resulting

make-span is as less as possible. In order to calculate the critical stage and

to evaluate the result of the heuristic, the optimal makespan needs to be

calculated (resulting from an optimal schedule). However, because the

optimal schedule is unknown, the minimum possible make-span needs to be

calculated. This minimum value is referred as lower bound of the problem.

There are several techniques to compute the lower bounds for the single-

machine sequencing problem. In this case, the lower bound on the

makespan for the single stage parallel machine problem is used to find the

critical stage, instead of using optimal makespan for the one-machine

sequencing problem (as is done for the job shop problem). In this heuristic,

the lower bounds on makespan are calculated for all stages based on the

jobs not sequenced yet. Then the stage that has the highest value of lower

bound is chosen as the critical stage. Figure 3.2 shows the concept.

The lower bounds are similar to the ones used by Carlier (1987) and

Gupta and Ruiz-Torres (2000). Two lower bounds are computed and the

bigger of the two is used to select the critical stage.

Lower Bound 1j = max)(,,, jijiji qps ++ where, 0IIi −∈ , for each job i = 1 to n.

Lower Bound 2j =
jm

1
((mj earliest job start times) + j

n

i

ji mp (
1

, +∑
=

shortest tails))

Lower Boundj = max {Lower Bound 1, Lower Bound 2}

Lower bound 1 is computed with the assumption that the jobs will be

processed one after the other on the stage (by assuming that there are

more than n machines in the stage). This way, the highest value of the lower

bound for each job, will be the lower bound for the stage. On the other hand,

lower bound 2 is computed in such a way that there are less than n

machines or that the other machines are so busy that all jobs have to be

processed on one machine. The actual lower bound for the stage is the

maximum of the two bounds. This procedure is carried out for each stage,

and the critical stage is the one with the highest value of the lower bound.

Hence,

Lower bound = max (Lower Boundj | j = 1, 2,..., J)

Figure 3.2 Highest lower bound stage as critical stage

Lower bound

 Stage 1 Stage 2 Stage 3

Highest value of
the lower bound.

Bottleneck
Stage 2

The lower the
highest lower

bound, the
shorter the
makespan.

Lower
bound

Stage 1

Lower
bound

Stage 3

Step 6 Find the job to be scheduled as follows:

 a. Set t = min { m
kBNa , І },...,2,1 BNmk =

b. Let I ′′ be the set of jobs not yet scheduled and available at time t.

I ′′ I ′⊆ , where si,BN ≤ t

c. If Io = Φ, then set t = min {si,BN }, where I → I ′ . Go to step 6a.

In this step, the clock is set to the earliest possible start time for a job at

a critical stage. Then the heuristic, goes back to step 6a, since there

could be more than one job. In the next step from all these jobs, an

appropriate job is selected for scheduling.

d. From among the available select job i´ with the longest tail:

Ii ′→′ and Iiqq BNiBNi
′′→∀≥′ ,, .

In case of a tie, select the job with the longest processing time at the

critical stage:

pi’, BN ≥ pi, BN Ii ′′→∀

Here, the job with the longest tail or the longest processing time (LPT) is

selected to prioritize the job with maximum work remaining. LPT rule is

proved to provide good results (Baker (1974)).

Step 7 Schedule this job i´ depending on the result of the previous step, at all the

stages:

a. At each stage (j), find the earliest available machine m´.

}...,,2,1{(,,, jmj
m

mj
m

mj mkpaa =∀+= ′′′ and })...,,2,1{ Jj =

Schedule job i´ at machine m´.

b. Update the ready time for machine m´ as

ji
m

mj
m

mj paa ,,, += ′′ .

At this stage, the selected job, is scheduled “horizontally” through all the

stages, on the earliest available machine at each stage respectively. After

scheduling this job, the ready times for the scheduled machines are

updated. So the ready times for a particular machine on all stages will be

used in the second iteration to schedule the second job.

Step 8 Update the number of scheduled jobs as }{ iII oo ′+= .

Step 9 If all jobs are scheduled, go to step 2, else, go to step 10.

Step 10 End.

This algorithm when compared to other algorithms for the PMFS problem generated

better results for makespan as laid out in Table 3.1.

Table 3.1: Comparison of heuristic with other approaches

Dataset Makespan % Deviation from LB

 Wittrock

(1988)

Cheng

(2001)

Algorithm Wittrock

(1988)

Cheng

(2001)

Algorithm

1 784 764 760 7.54 % 4.80 % 4.25 %

2 789 773 770 6.33 % 4.18 % 3.77 %

3 785 764 770 5.94 % 3.10 % 3.91 %

4 796 789 785 7.71 % 6.77 % 6.22 %

5 964 963 961 0.31 % 0.21 % 0 %

6 686 669 667 5.70 % 3.08 % 2.77 %

The approach described above (and approaches of other researchers based on

Branch and Bound, etc) considers only processing times for jobs, the number of

machines and stages for computing a schedule to optimize on make-span and

unlimited buffer capacities between two stages. Consider a system when additional

system elements such as buffers with limited capacities, and delivery time

constraints for some jobs, additional routing constraints for some jobs which are

special, along with known events about resources, tool and materials availabilities,

and solving problems which may occur when executing a schedule in the real world

are added to the problem description. To solve the problem of computing a

minimum make-span, and meeting the above goals, then becomes too complex for

such algorithms to consider all by themselves.

3.2.1.2 Simulation based approaches for predictive scheduling

 Today there exists several simulation based planning and scheduling

software on the market place. In the following discussion, characteristics of each in

relation to the problems addressed in thesis are described.

3.2.1.2.1 AutoSched: Simulation based scheduler

Brooks Automation inc. offers AutoSched software as one of their product

suites. Using AutoSched, planners can experiment and test ideas for improving fab,

assembly, or test facility, such as new scheduling rules, product mixes, start rates,

etc., without the expense and impact of trying ideas on the real factory. Once they

have proven a new dispatching policy using simulation, they can implement the new

policy in the real facility using a Real Time Dispatcher. AutoSched is used to make

those difficult-to-answer planning decisions, such as:

1. When do I start a lot?

2. Is the lot behind schedule? When will the lot be completed?

3. How do I match sales orders to WIP inventories?

AutoSched uses the same dispatch rules as the Real Time Dispatcher, so

the factory executes the same plan that was committed to customers. AutoSched is

claimed to provide a flexible environment in which to implement any rule or policy

needed, from the very simple to the very complex. Any policy that is based on data

available from the MES and associated information systems can be implemented in

the product. The dispatching rule engine is claimed to be extremely fast and can

make even complicated "Which lot?" decisions in a fraction of a second. The

AutoSched AP product is an object-oriented modeling tool, uses a Windows-based

Excel spreadsheet interface and is integrated with the Real Time Dispatcher.

A brief comment is made here regarding the capabilities of AutoSched

software. There doesn’t seem to be a connection between optimization, conditions

considering broader system elements, rules, and the result of applying such rules

during the simulation run. As an example, there could be a condition like “if job is

type x on machine z, then the tool t needs to be changed, which needs additional

time of y”, which could be checked easily during the simulation run, but harder with

an optimization algorithm especially if the optimization algorithm already does a lot

of complex calculations. It seems that several simulation runs are required to be

made with AutoSched to check the variation of one or more classical scheduling

rules (classical scheduling rules such as FCFS, FIFO, etc) and constraints. Besides

this, there is no mention how to enhance the performance of a system using rules.

3.2.1.2.2 SIMUL8-Planner: Simulation based planning and scheduling

 Recent literature also mentions about industrial attempts to develop

simulation based production planning and scheduling software. Tremble et al.

(2003) report the development of SIMUL8-Planner for simulation based planning

and scheduling. There are different ways they apply SIMUL8-Planner. A typical

approach is to use a pre-simulation planning routine followed by simulation based

schedule generation. The following sections provide a brief summary of this

method.

1. Pre-simulation planning

Traditional ERP systems plan work across a production facility using an

aggregate, or timed-view of machine and resource capacity. Customer’s orders or

products are offset against available finished goods inventory to produce time

phased production requirements. These requirements are generated from the bill of

materials, process sheets, and work-in-process inventory data. Where production

capacities are exceeded, work orders are assigned to earlier periods. This master

planning approach does not ensure that orders will be completed on time when

executed on the shop floor. SIMUL8-Planner uses a similar approach, prior to

running a simulation. The simulation considers the physical constraints within the

system along with the softer management rules or preferences with regards to

order priorities and production targets.

2. The planning heuristic

There are several different heuristics that can be applied during the planning

portion of SIMUL8-Planner. However, the typical method of scheduling jobs or

production using the software is to first create a plan using intelligent heuristics

based on user defined objectives and dispatching rules. Creation of the plan is

centered around identification of the critical process or bottleneck based on overall

capacity, total planned usage, user-defined weightings for changeovers, due date

conformance, and other decision rules that will impact upon the dispatch of jobs. A

backward plan explosion through the bill-of materials is then used to allocate jobs

within the plan. This process can be iteratively continued until all machines have

been backward planned.

3. Simulation schedule generation

A key advantage of SIMUL8-Planner lies in its ability to quickly execute a

production plan generating a feasible and efficient schedule. A production plan, on

its own as described above, lacks the level of detail to ensure that it is both feasible

and efficient. Executing a plan through a simulation of the plant processes results in

a production schedule that includes job start and finish times by machine. It also

provides service levels and manufacturing KPI. The production schedule is

presented through interactive Gantt charts as described earlier with the facility for

the end-user to manually change or re-sequence allocated work at the machine

level. After inspection of the resultant schedule and plant KPI´s, the user may elect

to adjust the scheduling rules that control the simulation’s execution of the plan.

This may include order due-date conformance, the minimization of change-over, the

level of work-in-process build-up, etc. These rules can be weighted to produce an

overall schedule preference that is applied within the simulation of the plan.

To conclude briefly here, products like SIMUL8-Planner consider constraint

and “softer management rules” during the scheduling process using an intelligent

heuristic. They then simulate the resultant plan and based on the result adjust the

rules to again run the simulation. If the production system is more complex, then the

adjustment of rules to produce a better result than the previous simulation runs

would be quite difficult because of the complex interrelationships between broader

system elements. Secondly, rules and constraints are embedded in the scheduling

heuristic. If a production system is more complex, this can make design and

evaluation (solving) of a heuristic quite hard due to the dynamic interrelationships

that exist between broader production system elements.

3.2.1.2.3 ISSOP simulation based scheduling system

Krauth (2005), discuss industrial projects involving optimization and

simulation in a combined way. They mention about a project of simulation based

scheduling of an automotive painting process. They mention that today nearly every

car in automotive production is different because of specific customer requirements.

In the production step of painting, more than 100 different colors are possible.

Combined with different car shapes like standard or station wagon, engine varieties

and other options, the problem of finding the optimal product sequence is extremely

difficult.

 They mention that in contrast to the assembly process, where tools and

process steps are very similar and uncritical in sequence, the painting process is

critical for the following reasons:

1. Each color change requires a cleaning operation consuming considerable extra

time and cleaning supplies.

2. The cleaning process is easier and faster if colors are changing all the time from

a bright to a darker color.

3. The buffers in front of and behind the painting station are limited in space.

Therefore an optimized sequence of painting operations must be calculated,

which meets the buffer restrictions and minimizes the consumption of resources

and time due to color changes. An improved batch sequence can lead to major

savings in costs and time. A graphical process model was developed. It was very

helpful in internal discussions among the manufacturer’s staff, and in discussions

with the external simulation experts. The validated model was integrated with other

IT systems so that the model always reflects the actual state of the real process. To

generate and optimize schedules which satisfy all constraints, an intelligent

optimization toolkit ISSOP was then coupled with the simulation model as shown in

Figure 3.3.

 The optimizer ISSOP generates production sequences, the simulation tool

uses them as input, it checks if all constraints are met and calculates costs and

throughput times. ISSOP then compares the results and generates better

sequence; the simulation model evaluates them again, and so on. After some

iterations (the exact number is not mentioned), which take between 5 and 25

minutes (again, the size of the system and model is not mentioned), they mention

that an improved sequence can be found which is then used for controlling the real

process.

 This approach, according to the developers of this system, increases the

reliability of planning, reduced material consumption, throughput times and work in

progress. Additional advantages of the simulation model are the possibility of

testing the schedule against execution problems such as technical problems or

delivery delays. Although the production sequences were already calculated by

software programs before, the results achieved by the new simulation and

optimization approach were significantly better as recorded below:

1. 8 % less changes of color in the painting station.

2. Less color changes and more optimized batch sequence with 12 % higher

output of the painting station.

3. Less losses of coating material

4. Less cleaning material needed and less critical situations because of less

manual operations.

To conclude this discussion, this system is primarily “driven” by an

optimization system, and simulation is simply used to check the constraints. Fine

tuning is always done by the optimization iterations. For complex and bigger system

configurations, this would result in several optimization and simulation runs. It is

unclear how the criteria are determined which form an input to the next optimization

algorithm run. On the other hand, if the production sequences are previously

calculated by the optimization software, then these sequences have to be already

optimal if the overall good solution is to be ensured. Further, how simulation is used

to fine tune the system especially if the simulation encounters problems like

bottlenecks and constraints during run time is also unclear.

ISSOP -

Optimization

Simulation

model

Process

parameters:

1. Order sequence

2. Colour changes

Objectives:

1. Costs

2. Utilization

3. Flow times

4. Dates of delivery

Figure 3.3 Interaction of simulation and optimization tool for car painting

(Krauth, 2005)

3.2.1.2.4 Preactor International case of simulation based scheduling

Krauth (2005) further mention about a practical use of simulation and

optimization in a combined way at another practical production set-up. They

mention about the work of Preactor International for a medium sized company

which supplies small pressed aluminum parts to a range of other consumer focused

businesses. In this work, Preactor used its scheduling tool to generate an “optimal

schedule” followed by using simulation to model a certain process of a plant in a

detailed way to result in quantitative information about performance indicators. They

further mention that they arrive at a final production schedule by simulating several

scenarios offline, resulting in savings in production rates, and increased revenues.

To conclude this discussion, this approach of simulating several scenarios

does not guarantee the trouble free execution of the schedules. Fine tuning or

improving the plan obtained from the optimization algorithm is not considered at all.

3.3 Reactive scheduling of flexible production systems

Over the last two decades, a significant volume of research on the issues of

scheduling with executional exceptions has begun to emerge. A review of this

research is presented here, starting with approaches of reactive scheduling, and

associated nuances, and situation when they are used or are appropriate followed

by describing when to reschedule, and real-time control issues.

3.3.1 Various approaches to reactive scheduling

In this section different approaches are discussed using simulation and

other approaches.

3.3.1.1 Simulation based completely reactive approaches

This category of modeling approaches does not take any of the cause,

and impact into consideration per se. These completely reactive approaches are

characterized by least commitment strategies such as real-time dispatching that

create partial schedules based on local information. Dispatching (Bhaskaran and

Pinedo, 1991) examines the jobs currently available at the machine in question, and

sometimes in its immediate vicinity. The next job to be processed is selected from

among these by sorting and filtering them according to the pre-defined criteria, and

selecting the job at the head of the resulting list. This approach has many practical

advantages. Its computational burden is in general extremely low, and the rules are

usually intuitive and easy to explain to users. A number of the more sophisticated

dispatching procedures can invoke complex rules that allow them to consider the

state of the system, at several different machines, and to take conditional actions

based on this state. This type of policy has been extensively implemented in the

semiconductor industry (Haldun, A et al. 2005).

 An extension of the dispatching approach is to allow the system to select

dispatching rules (a dispatching rule is a function f which assigns to each waiting

job i a scalar value, the minimum of which, among waiting jobs in the system (i.e. in

a machine queue, input queue or on a machine), determines the jobs to be selected

over all others for sequencing) dynamically as the state of the shop changes. Early

work in this area is that of Wu and Wysk (1989) (Figure 3.4), who examine the

problem of dispatching rule selection in the flexible manufacturing system (FMS)

environment. They divide the time horizon into shorter intervals dt. At the beginning

of each interval a variety of dispatching rules are simulated (first level decisions

shown by thick lines, and second level decisions shown by dotted lines), and the

rule that yields the best performance is selected and implemented for the next time

period. They also mention that decisions are made locally, and may not contribute

to the global system performance. This means that if the system is highly dynamic

or otherwise, they do not make sure global performance is considered.

Figure 3.4 General scheme of simulation based reactive scheduling (Wu and

Wysk, 1989)

They also do not compute the impact of the exception on the global system

performance. This is important to determine whether a rescheduling action is

required. A number of other authors study how to estimate the impact of an

exception at a particular point in the execution of a predefined schedule. Many of

these papers use algorithms (not simulation) that can be inferred from the well-

known disjunctive graph representation. A number of researchers (notably

Abumaizar and Svestka (1997) have used the principles of the graph to compute

the effect on operation start and end times using longest path calculations in the

graph, by updating the duration of the operation during whose processing the

exception occurs. They perform any but simple calculations based on exceptions.

For a flexible production system with complex job routings, it would indeed be very

hard to update the operation start and end times accurately enough to further use

the end result of the computation effectively.

Wu and Wysk (1989) also mention in their paper on how time consuming

their experiments are. They mention that if several combinations of rule simulations

are made, it would require 18,720 simulation cycles. Most importantly, they mention

that their work considers only one branch of the FMS configuration to avoid the

overwhelming computation time to give some preliminary results for their

conjectures.

A number of authors have extended the approach of Wu and Wysk in

various ways, e.g., Kim And Kim (1994) and Jeong and Kim (1998). Harmonosky et

al. (1997) present their work in the areas of real-time selective re-routing and

rescheduling algorithms based on simulation. They iteratively use simulation as a

tool to find out the best policy from a set of alternative policies in real-time. Using

simulation as a tool for real-time scheduling presents several benefits and

drawbacks. The most important benefit is that simulation can provide accurate

information about a certain policy. Secondly, simulation proves to be effective when

the system behavior cannot be easily captured by analytic methods. The ability to

provide accurate information about a certain policy becomes a drawback when it

comes to modeling a complex manufacturing system. As a manufacturing system

gets bigger and as the number of “control points” (location where a decision to

handle a part has to be taken) increase with each point providing several

alternatives (due also to part variety), the more difficult it is to employ simulation,

especially in real-time to obtain information about the best alternative policy. An

extension to this work has been in the areas of simulation and machine learning.

Piramuthu et al. (1991), who first use a simulation model of the manufacturing

system under study to develop a characterization of how different dispatching rules

perform in the system under different operating conditions. They then apply an

learning algorithm to this data to develop a decision tree that selects a dispatching

rule whenever a significant chance in system state is identified.

In a yet different way, Manivannan and Banks (1991) present a simulation

and knowledge-based Real-Time Control system for flexible production systems.

Manivannan and Banks (1991), mention that a Real-Time Control (RTC)

system must be capable of the following:

1. Reacting to the problem instantaneously.

2. Evaluating several alternatives policies.

3. Providing optimum or near optimal solutions.

4. Learning from previous problems.

5. Providing faster and more accurate solutions.

They present a sophisticated control architecture of a knowledge based RTC

system using simulation. The aim of the framework is to provide an integrated

environment for the controller to evaluate various control policies using simulation.

Data for simulation is collected from the manufacturing cell. The main issues they

address and develop in their system is the synchronization of the events between

the simulation system and the real-system as a means to provide instantaneous

feedback\control instructions. A temporal knowledge base has been designed to

synchronize the events and their times of occurrence in both the manufacturing cell

and the simulation model. Also, a dynamic knowledge base has been implemented

to store simulation results. They claim that this feature provides a faster response to

a control problem by reducing the number of resimulations conducted for evaluating

various alternative policies in real time. The focus is however purely on how to

provide a feedback in the fastest possible way and not considering the fact that real

world will nevertheless evolve and that the controlling mechanism needs to devise a

method which effectively recognizes this evolution.

3.3.1.2 Predictive – reactive scheduling

In predictive-reactive scheduling, scheduling is presented as a two-step

process. First, a predictive schedule representing the desired behavior of the shop

floor over the time horizon considered is generated. This schedule is then modified

during the execution in response to execution exceptions. The schedule that is

actually executed on the shop floor after these modifications is called realized

schedule. The two main questions are when to initiate a rescheduling action and

assessing the impact of a given exception on existing schedule. Hence, our

discussion in the section will begin by examining the issue of when to initiate a

rescheduling activity.

3.3.1.2.1. When to reschedule

 Regarding this question, when to reschedule, the basic question that

needs to be answered is when a disruption or an event has sufficient potential

impact that a new schedule must be generated or some more localized remedial

action taken. Church and Uzsoy (1992) provide a rough taxonomy of existing

approaches beginning with two extremes. Continuous rescheduling approaches

take rescheduling action each time an event that is recognized by the system, such

as the arrival of a new job, occurs. Periodic rescheduling, on the other hand,

defines a basic interval T between rescheduling actions during which rescheduling

actions are not permitted. Rescheduling actions are taken at times kT, where k is

an integer. These points in time where rescheduling may be performed are referred

to as rescheduling points. Any events occurring between rescheduling points are

ignored until the following rescheduling point. Finally, they define event-driven

rescheduling, in which a rescheduling action can be initiated upon the recognition of

an event with potential to cause significant disruption to the system. Both

continuous and periodic rescheduling can be viewed as special cases of event-

driven rescheduling.

 Cleary, continuous rescheduling runs the risk of initiating rescheduling

activity in the face of events that do not cause significant disruption, expending

computational resources and potentially causing unnecessary changes in the

schedule with associated ill effects on the shop floor. The obvious drawback of

periodic rescheduling is that it ignores events occurring between rescheduling

points, which in an extreme case may render the current schedule impossible to

execute, and in less serious situations runs the risk of yielding poor schedules.

Hence they mention that a combination of the periodic and event driven approaches

appears attractive, in which a periodic rescheduling approach is implemented, but

rescheduling activity can be invoked between rescheduling points if a disruption

that is deemed sufficiently serious is observed. This latter approach is more

commonly observed where schedules are often developed for some base horizon,

such as a day or a shift, but are modified as needed during that period.

 A number of authors have adopted the periodic and event-driven view of

rescheduling and analyzed different approaches in this area. Church and Uzsoy

(1992) consider the problem of minimizing maximum lateness on single-stage

production systems involving single and parallel machines, where the only source

of uncertainly is random job arrivals. Their results indicate that schedule quality

initially improves quite rapidly with more frequent rescheduling, but after a certain

point yields almost no further gains. This is intuitive, since once the frequency of

rescheduling activity exceeds the frequency of disruptions to the system the

rescheduling activity is merely causing nervousness without improving the schedule

quality. Another way of putting this is that a periodic response may well be sufficient

to deal with the disruptions faced by the system, and that rescheduling with every

system state change may be counter productive. These results have been

supported by a number of subsequent researchers for a variety of shop floor

environments, e.g. Sabuncuoglu and Karabuk (1998) for flexible manufacturing

system with uncertain job processing times and machine breakdowns; Shafaei and

Brunn (1999a) for open shops and others.

 Most researchers have focussed on when to reschedule by using

either periodic rescheduling, continous rescheduling, event oriented rescheduling,

or a combination. None of them consider graceful transition of execution issues like

the exact time when to reschedule in the real system considering its continuous

evolution to another state.

3.3.1.3 Predictive-reactive scheduling versus completely reactive

approaches

 A number of authors have examined the question of when a periodic

or event-driven rescheduling policy based on a global view of the scheduling

problem can perform better than a completely reactive dispatching approach.

Yamamoto and Nof (1985) compare the effects of a fixed optimization based

schedule, an event rescheduling approach and dispatching rules in an FMS

environment. They find that in the systems under study, a fixed optimization-based

schedule obtained from a branch and bound algorithm outperforms myopic

dispatching rules in the face of machine failures, and is in turn outperformed by the

event-driven rescheduling approach. Hutchison and Khumawala (1991) examine

this question in a FMS environment where the only uncertainty is due to job arrivals

at the start of the planning periods. They find that a periodic rescheduling policy

based on their optimization formulation outperforms dispatching, especially when

there is routing flexibility. Wan (1995) shows that when processing times are

variable, a global scheduling algorithm may yield poorer solution than a dispatching

policy. An important paper in this area is that of Lawrence and Sewell (1997), who

compare the performance of global scheduling heuristic based on shifting

bottleneck algorithm of Adams et al. (1988) with myopic, completely reactive

dispatching rules in the presence of varying job processing times. They

demonstrate that as processing time variability increases, the difference in

performance between the global method and the dispatching rules becomes less

significant. They conclude that in systems with high execution exception

frequencies, completely reactive algorithms can be used with relative confidence,

and question the benefits of global scheduling procedures in general.

 Matsuura et al. (1993) provide an extensive study of a slightly different

rescheduling policy. In their approach, called switching, a predictive schedule is

developed on a periodic basis. However, if the realized schedule is deemed to have

deviated sufficiently from the predictive one, the system switches to using a

dispatching rule for the remaining period. This approach is contrasted with using the

predictive schedule throughout the period (by right-shifting jobs when delays occur)

and dispatching approaches. They focus three different types of disruptions: rush

order arrival, specification changes (which cause new operations to be added to a

job, or existing operations to be deleted), and machine failures. Their results are

quite insightful: they show that when the frequency of execution problems is low,

the predictive \ reactive approaches outperform the dispatching. Once the level of

execution problems reaches a certain level, however, the dispatching begins to

perform better than the predictive \ reactive approaches.

 The answer to this debate lies in the results of Matsuura et al. (1993),

Lawrence, and Sewell (1997), and is hinted at in the results of several other papers.

In an environment with low frequency of exceptions, predictive \ reactive methods

based on global information and optimization techniques is highly likely to yield

better schedules than completely reactive dispatching procedures. However, once

the variability in the system exceeds a certain level, which appears to be system

dependant, global information on which the predictive \ reactive approaches are

based becomes invalid, causing them to generate poor schedules due to solving

the wrong problem: the problem data they use does not correspond to the problem

encountered on the shop floor.

 Having agreed with Lawrence and Sewell (1997), it may even be sensible to

pursue further work on the predictive \ reactive scheduling methods. This is

because, when a manufacturing system is subject to high frequencies of exceptions

it might be advisable that managements time and resources would be better spent

on working to reduce it, rather than developing sophisticated scheduling logic (such

as those using completely reactive and other robust approaches). In addition, there

are many manufacturing systems in which the difference in performance that can

be obtained from a sophisticated scheduling procedure over a dispatching rule is

simple not worth the amount of trouble that would be required to implement the

global system. On the other hand, in capital-intensive environments, which requires

hundreds of unit processes and complex machinery and product routings,

improvements of even a few percentage points in performance measures such as

the average lead-time may be worth millions.

 It is interesting to note that a number of researchers have attempted to use

global schedules as a complement to dispatching rather than to replace them. In

the approach described in Haldun et al. (2005), in which a global schedule

generated on a periodic basis is used as a priority index in a dispatching rule that

outperforms myopic rules that do not use global information under a wide range of

operating conditions. In these groupings of research results, the scope of execution

problems considered are limited and they are mostly random. The cause of

exceptions is often machine availability (breakdown and repair) or some stochastic

aspect of processing time that makes the start and finish times variable.

3.4 Conclusions

 From the state of the art, the following inferences can be made about the

predictive scheduling system for the problem areas discussed:

1. The parallel machine flow shop problem is harder to be solved by an

optimization algorithm alone when,

a. Considering additional broader system details such as buffers

with limited capacities, and at the same time,

b. Considering demands on routing of special or standard jobs

through the system, both with or without constraints on delivery

times, and at the same time,

c. Considering resource availabilities like tools, materials, and

machine availability times set by maintenance plans in the

planning horizon, and at the same time,

d. A problem free schedule is to be generated.

2. Simulation based planning and scheduling systems mostly work

iteratively, using optimization algorithms first to generate a plan, and

then using simulation to execute the plan to generate a schedule. The

optimization algorithm mainly serve to drive the next iteration, while

simulation simply simulates to compute starting and end times of the

schedule. Fine tuning the schedule is not considered considering

broader production system elements.

From the state of the art the following inferences can be made about the

reactive scheduling system for the problem areas addressed:

1. Optimization algorithms are harder to be used alone to compute a

rescheduling solution to a PMFS problem, especially to accurately

compute the result of the exception.

2. Simulation based methods when used alone for rescheduling are not

completely efficient as regards to their longer computation times and

inability to compute rescheduling solutions which are optimal.

3. Rescheduling systems in literature do not consider Adaptation

Synchrony part of RTC in their computations.

4. Rescheduling systems do not consider matching up deviations to the

planned trajectories.

5. Rescheduling systems do not accurately estimate the impact of the

rescheduling solution on future schedule execution in the real world.

6. Predictive-reactive approaches are the most effective ones when

exceptions occur with low frequencies.

Chapter 4 Work program

4.1 Introduction

The work program described in this chapter concludes the state of the art of

chapter 3. A combined simulation and optimization based system is to be

developed using the predictive-reactive approrach as applicable for the PMFS

problem. The work program of this thesis is divided in two parts: predictive

scheduling and reactive scheduling. The next chapter describes the concepts and

the work done in more details.

4.2 Work program

In the predictive system, in order of importance, the following components

are to be developed:

1. Develop a method to combine simulation and optimization for predictive

scheduling, using the software package eM-Plant to serve as a starting

point by considering some broader production system elements such as

buffers.

2. Develop a method to consider fixed and flexible job routings with

constraints on delivery times, such that the lateness is as less as

possible.

3. Develop a method to consider machine maintainence times, tools,

materials and resource availability times.

4. Develop a method to make sure the predictive schedule can be

executed in the real world without creating bottlenecks.

5. Develop a method to consider fixed job routings without constraints on

delivery times.

6. Do the above to work in eM-Plant simulation software.

In the reactive system, in order of importance, the following components are

to be developed:

1. Develop a method to combine simulation and optimization for reactive

scheduling using the software package eM-Plant to include some

broader system elements such as buffers with limited capacities.

2. Develop a method to consider Adaptation Synchrony in the rescheduling

computations.

3. Develop a method to estimate the impact of rescheduling on future

schedule execution in terms of problems such as bottlenecks, and if

problems occur,

a. Detect the problems, and solve them in the rescheduling step.

4. Develop a method to bring back deviations to their planned trajectories

on exceptions, resulting in additional benefits on performance indicators.

5. Develop a method to reschedule as late as possible in the planning

period resulting in additional benefits on performance indicators.

6. Do all of the above to work simultaenously in eM-Plant simulation

software.

4.3 Conclusions

 In this chapter we have discussed the detailed work program which is

related to most of the conclusions of the state of the art chapter. In the next chapter,

the concepts of each of the points mentioned in the work program are described in

much details along with algorithm and system development. Especially in

connection to the points mentioned here, from the predictive part, points 1 to 5 are

described and developed in chapter 5, while the implementation of the predictive

system is done in chapter 7. In the reactive part, points 1 to 5 are described and

developed in the next chapter, while the implementation is shown in chapter 7.

Chapter 6 shows how all the work fits in together as a black box.

Chapter 5 Concepts and solutions

5.1 Introduction

In this chapter, we describe the concepts and solutions development of the

predictive and reactive systems. The configuration used is the parallel machine flow

shop, with objectives and aims described in the earlier chapters. The predictive part

of the algorithm is developed as a combination of optimization and simulation. The

reactive algorithm is also based on combination of optimization and simulation. In

the next chapter, a total integration of the system and the synthesis is described

based on this chapter.

5.2 Concept and solutions for simulation and optimization assisted

predictive scheduling

In the predictive part, a feasible production schedule for the next planning

horizon (the next shift for instance) is generated. Figure 5.1 shows how the

simulation and optimization system for predictive scheduling is organized. The first

step is the 2D modeling phase, where the production system is modeled with the

machines and stages, using eM-Plant simulation software along with data for the

optimization. Then the user models and sets all the decision points (explained next)

which are required for the rule-based simulation. The optimization algorithms are

then run, which generate a rough plan. These algorithms consider details such as

jobs routing and delivery time requirements along with details of tools, materials,

and machine maintenance schedules. The algorithm runs by scheduling jobs

through the flow shop one by one, by intermittently computing the bottleneck or

critical stage (a stage which needs extra care when scheduling a job to reduce the

make-span), and the delivery time optimizer, and considering the constraints, thus

providing a rough plan. The algorithm is divided in two steps, the first one is to

determine a critical stage for scheduling the standard jobs, then followed by

determining which job needs to be scheduled when depending on the job type –

which is standard job and special jobs. This second step is done by the delivery

time optimizer. This way, standard jobs are scheduled according to the critical stage

calculation, while special jobs are scheduled according to their required delivery

times.

This partial plan is fed to the simulation based Flow Analyzer Module (FAM)

for a detailed analysis. Simulation offers a possibility to model all the detailed

elements of the production system thus fine tuning the plan obtained by the

optimization algorithm by checking and reacting to specific conditions set by the

user. In addition it detects system blockages (bottlenecks) caused due to system

Figure 5.1 Overall schema of the predictive scheduling system

Initialization

Find a critical stage and run
delivery time optimizer

Find job i to be scheduled and
run delivery time optimizer

Schedule job i
through all the

stages

Jobs over ?

Send partial schedule to simulation
based flow analyzer module (FAM)

(Section 6.2.2)

Final
schedule

Update the
number of jobs

scheduled

Current shop floor
status,
Job definition
including processing
times, special or
standard
Performance
indicators,
Predictive
information

2D Simulation
modeling

Set and edit decision points
and rule generators

Yes

No

(Section 5.2.2)

constraints like buffer sizing. Besides this, simulating a system with all detailed

elements can give us the actual performance measures. The FAM uses the

decision points (a point where a routing decision is taken in the model by a job) and

the rule generators (rule generators contain the code for analysing local situations

to generate a rule) within them to analyze conditions locally during the run-time of

the simulation for broader system elements such as buffers with limited capacities.

The system works in two parts, the optimization algorithm obtains a rough plan and

the second part further refines the solution by locally over-riding the results of the

rough plan according to the criteria set by the user. In the next sections the

optimization algorithm is described in details, followed by describing the simulation

based FAM unit and how it is combined with the optimization system.

5.2.1 Optimization algorithm

 In Figure 5.2, the elements which are required as input to the predictive

algorithm such as details like constraints on delivery times, tooling, material,

equipment availability, are shown.

Figure 5.2 Inputs and outputs to the predictive algorithm

5.2.1.1 Initialization

 An example is taken to explain the steps one by one. Table 5.1 shows the

input data to the algorithm consisting of jobs, processing times on each stage, tool,

material and delivery time requirements. The configuration is a 2 stage flexible flow

shop with 2 machines on each stage and 10 jobs. Machine 1 on stage 2 is set for

Predictive
algorithm

Machine maintainence program

Material\tool availability

Delivery times

Number of jobs

Number of stages

Job processing times

Key performance indicators

Partial schedule

Limited buffer capacities Job routing constraints

maintenance from 1:30:00.0000 to 2:00:00.0000 (30 minute duration). The times

are set with the eM-Plant time format H:M:S.MS (Hours: Minutes: Seconds.

Milliseconds). In each step of the first iteration, the calculations are done by hand

and are described. For each of the later iterations, details and results are given in

Appendix 1 for the reader to refer to.

Table 5.1 Example to explain algorithm

Jobs Stage 1 Stage 2 Path Delivery

time

Material\

Tool

availability

Machine

Maintenance

1 25 20

2 25 20

3 25 25

4 30 20

5 15 15 2:30:00.000 1:00:00.000

6 30 20 1,1 30:00.000

7 10 20 2,1 2:00:00.000

8 15 30 1,2

9 30 15 2,1

10 15 15 1,1

∑ pi,j 220 200 M
a
c
h
in

e
 1

 s
ta

g
e
 2

 n
o
t
a

v
a
ila

b
le

fr
o
m

 1
:3

0
:0

0
.0

0
0
0

 t
o
 2

:0
0
:0

0
.0

0
-

0
0

Step 1 Derive predictive machine maintenance schedules.

If schedule exists,

a. Get all machines which are maintained,
m
jk }...,,2,1{(jmkfor =∀ and)...,,3,2,1 Jj = .

b. For each machine m
jk , get unavailable start and ending times as tStk

and tEndk . In the current example, m
jk would be machine 1 on stage 2.

So tStk = 1:30:00.0000 and tEndk = 2:00:00.0000.

else, go to step 2.

Step 2 Derive raw material availability schedule.

 If schedule exists,

a. Get all jobs I which have schedule ∀ (I→I´).

b. For each such job in I, get the material available times as ti .

Else, go to step 3. In the current example, for job 6, ti = 30:00.0000.

Step 3 Derive tool availability schedule.

If schedule exists,

 Get all tools tNumtl for which we have set availability for all

 unscheduled jobs, ∀ (I→I´).

a. Get each tool available times as i
tAvtl for ∀ tNumtl .

Else, go to step 4.

Here it is assumed that the tools are placed in the respective machines, and

that each job requires a number of tools from among the tools in the

machine’s magazine. In this step, we set the fact if some tools will be

available after some time for each of the jobs. In the current example, for job

5, i
tAvtl = 1:00:00.0000.

Step 4 Derive special job schedule.

 If schedule exists,

a. Get special jobs Spi for)(IiSp
′→∀ .

b. Get special jobs each with job routing description)....,(1
m

Jj
m
j kkR ===

where k = one of }...,,2,1{ jm and j = }...,,3,2,1{ J , and with delivery

times td . Arrange jobs in an increasing order of their delivery times. In

the current example, this is shown as List 1 in Table 5.2. Note the job

routings are shown as integers (2,1), meaning job 7 goes to machine 2

on stage 1 and to machine 1 on stage 2.

c. Get special jobs each with only delivery time td and arrange jobs in

increasing order of their delivery times. In the current example, this is

shown as List 2 in Table 5.3.

d. Get special jobs with only routing description .R In the current example

job 6, 8, 9 and 10 are the jobs in this category. This is shown in Table

5.4.

Else, go to step 5.

Table 5.2 List 1 (L = 1)of special unscheduled jobs with routing and delivery

times

Jobs Routing

description R

Processing

time on

Stage 1

Processing

time on

Stage 2

Delivery time

7 2,1 10 20 2:00:00.0000

Table 5.3 List 2 (L= 2) of special unscheduled jobs with only delivery times

Jobs Processing

time on Stage 1

Processing

time on Stage 2

Delivery time

5 15 15 2:30:00.0000

Table 5.4 List 3 (L = 3) of special jobs with only routing description

Jobs Routing description R Processing time

on Stage 1

Processing time

on Stage 2

6 1,1 30 20

8 1,2 15 30

9 2,1 30 15

10 1,1 15 15

Table 5.5 List 4 (L = 4) of standard unscheduled jobs

Jobs Processing

time on Stage 1

Processing time

on Stage 2

1 25 20

2 25 20

3 25 25

4 30 20

In this step we only determine the jobs with special requirements on delivery

time and job routing within the production network. For the purposes of

scheduling, four lists are created as shown below with Table 5.5 showing

List 4 with all standard jobs.

Step 5 Set Io = Φ. Get processing times (pi,j) at each stage and job ready times at

stage-1 (ai,1) for all jobs to be scheduled (I). Include the job ready times for

jobs for which material is available later (step 2 = true), which will ultimately

be allowed to start (be ready) at a later time. Include job ready times for jobs

for which the tools will be available later (step 3 = true), which will ultimately

be allowed to start at a later time. This is shown for the current example in

Table 5.6.

Table 5.6 Job ready times at stage – 1 (ai,1)

 Jobs

 1 2 3 4 5 6 7 8 9 10

ai,1 0 0 0 0 1:00:00.0000 30:00.0000 0 0 0 0

Step 6 Calculate tails for each job at each stage, using the formula ∑
+=

=
J

mj

jiji pq
1

,, .

 Tails are computed to find out the amount of work left at a certain stage.

 This is shown in Table 5.7 as tails for each job at each stage jiq , .

Table 5.7 Tails for each job at each stage

Tails Jobs

at Stage 1 - jiq , at Stage 2 - jiq ,

1 20 0

2 20 0

3 25 0

4 20 0

5 15 0

6 20 0

7 20 0

8 30 0

9 15 0

10 15 0

5.2.1.2 Detail procedure to handle deterministic events and delivery

constraints

Step 7 Calculate the earliest start times on all the stages as follows:

a. Get the machine ready times m
kja , for all),...,2,1{(Jj = ,)},...,2,1(jmk =

b. Set the earliest start times (si,1) at stage – 1 and downstream stages

respectively for the jobs yet to be schedule as follows:
m
kii aas ,11,1, {min),({max= І Iimk ′→∀= }},...,2,1 1 and

m
kjjijiji apss ,1,1,, {min),({max −− += І ,(}},...,2,1 Iimk j

′→∀= and)...,,3,2 Jj = .

This will depend on when the current jobs i´ on stages (si,1) and (si,J) are

finished indicated by m
ka ,1 and m

kja , (machines). The maximum value is

selected amongst the job available times and the earliest machine

available times. Table 5.8 shows the earliest start times at stage 1 for all

jobs and similarly table 5.9 shows the earliest start times at stage 2.

Table 5.8 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

1 0

2 0

3 0

4 0

5 1:00:00.0000

6 30:00.0000

7 0

8 0

9 0

10 0

Table 5.9 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

1 25

2 25

3 25

4 30

5 75

6 60

7 10

8 15

9 30

10 15

Step 8 Calculate the critical stage among all the stages. A critical stage is one,

which calls for extra care to be taken to schedule a job. So we find critical

stage, and schedule a job such that the resulting make-span is as less as

possible. The critical stage is found by determining the lower bounds similar

to the ones used by Carlier (1987) and Gupta and Ruiz-Torres (2000) as

used by Phadnis et. al (2001). Note that the critical stage computation will

include the effects of the material, tools, machine unavailability’s, and the

special jobs obtained through the job ready times and the machine ready

times. Once we get the critical stage, we select a job to be scheduled in the

next step. For a detailed description of how the critical stage is calculated,

refer section 3.2.1.1. The results for this example are shown in Table 5.10

(since Lower Bound 2 (LB2) remains the same for each job on each stage, it

is written only once in the LB2 columns). As per the method, the critical

stage is Stage 1 because of the highest lower bounds.

Table 5.10 Lower bounds computed for both stages

Stage 1 Stage 2

Lower

Bound 1

Lower

Bound 2

Lower

Bound 1

Lower

Bound 2

45 125 45 112.5

45 45

50 50

50 50

90 90

80 80

30 30

45 45

45 45

45 45

Step 9 Find the job to be scheduled as follows:

 Refer to Figure 5.3 for details of the scheduling procedure. From the list of

special jobs with routing and delivery times (shown as List 1), or the list with

special jobs with only delivery time (List 2), select a job i´ with the earliest

delivery time. In the example here, L = 1, and job 7 is selected for

scheduling because it is required the earliest.

a. At each stage (j), find the earliest available machine m´ or the machine

m´, if the job has a routing description.

}...,,2,1{(,,, jmj
m

mj
m

mj mkpaa =∀+= ′′′ and })...,,2,1{ Jj =

Schedule job i´ at each machine m´ horizontally. Since no jobs are

scheduled yet, either Machine 1 or Machine 2 on Stage 1 can be used to

schedule Job 7. Since Job 7 has routing requirements, it is routed

according to its routing description of 2,1.

b. Update the ready time for each machine m´ as ji
m

mj
m

mj paa ,,, += ′′ .

If any of the machine contains predictive maintenance, and if the

machine ready time falls between or is equal to tStk and tEndk , or is

greater than tEndk , accordingly add the duration of the maintenance to

the machine ready times, as: ji
m

mj
m

mj paa ,,, += ′′ + (tEndk - tStk) .

Table 5.11 Updated machine ready times after scheduling Job 7

Stage 1 Stage 2

Machine 1 Machine 2 Machine 1 Machine 2

0 10 30 0

At this stage, the selected special job (job 7 in this example), is scheduled

horizontally through all the stages, on the desired routing description or

the earliest available machine at each stage. After scheduling this job, the

ready times for the scheduled machines are updated as shown in Table

5.11 for Job 7.

Step 10 Update the number of scheduled jobs as }{ iII oo ′+= . Here I0 = Job 7.

Step 11 Determine the job finishing times for job i´ from the machine ready time of

the machine on the last stage. This is explained with the current example.

a. If,

 (Earliest time job 7 can start on stage 2 + processing time on stage

 2) >= (Required delivery time – Tolerance), keep job 7 in the list of

 already scheduled jobs.

 Else,

 Delete job i´ from the jobs already scheduled list as = oo II - {i´}, go

to step 12. This deletion means that the job is too early to be

scheduled in this step. So we keep the job i´ in its original list 1.

 For the current example, this comes out as:

 (10 + 20) >= 100 (or 120 – 20)

 30 >= 100

The result is false, meaning now is not the time for job 7 to be scheduled.

The comparison is only made with the time job 7 is expected to exit the

system after stage 2. Hence as seen the time 30 is compared to the

required delivery time minus the tolerance. The earliest starting times for

job 7 on stage 2 is bigger of the time when job 7 finishes on stage 1 which

is 10, and the time when job 7 can actually start after one of the machines

becomes ready earliest on the second stage which is 0 (see table 5.11 for

machine ready times). So the job 7 is not scheduled and the control now

considers job 5 for a scheduling try in the next step.

Step 12 Determine the next job with the earlier delivery times from among List 1

and List 2. This job may or may not contain routing constraint depending

on whether it exists in List 1 or List 2.

 If there exists a job in List 2,

 set L = 2, go to step 9.

 else,

 If there exists a job in List 1,

Figure 5.3: Accommodating delivery constraint for special jobs

Schedule job
horizontally depending

on earliest available
machines

List 3 of
special jobs

with only
routing

List 2 of special
unscheduled

jobs, with
delivery times

List 1 of special
unscheduled

jobs with routing
and delivery

times

Keep job in the
list L, delete the
scheduling step

Insert job in the
list of scheduled

jobs

Update machine ready
times

Job finishing time
 >=

(Delivery time –
Tol)?

Select a job
from list L

No

Yes

Update the list
selection L

Update the list
selection L

List 4 of
standard

jobs

 set L = 1, go to step 9.

 If no jobs exists in both lists 1 and 2,

 set L = 4, go to step 13.

 In this step, we determine the next job from List 1 or List 2 after trying

scheduling the first special job, or if no more special jobs exist, we go on

to step 13 for scheduling standard jobs. In the example, Job 5 is selected

from List 2. After repeating iteration 9, 10 and 11, it is found that Job 5 too

cannot be scheduled at this time point because it fails to meet the

conditions set in step 11. Hence, step 13 is followed.

Step 13 Compute new job to be scheduled from the standard jobs list as follows:

 a. Set t = min { m
kBNa , І },...,2,1 BNmk =

Let I ′′ be the set of jobs not yet scheduled from the list 4 containing the

standard jobs and available at time t.

I ′′ I ′⊆ , where si,BN ≤ t

b. If Io = Φ, then set t = min {si,BN }, where i → I ′′ . Go to step 13a.

In this step, the clock is set to the earliest possible start time for a job at

the calculated critical stage. Then the heuristic, goes back to step 13a,

since there could be more than one job. Jobs which are unavailable due

to material or tooling problems will automatically be considered when

time t is greater than the start job start times (or in other words when the

jobs and tools become available). Note that the earliest possible start

time for the critical stage includes machine unavailability’s, if any.

c. Select job i´ with the longest tail on the critical stage:

i →′ → I ′′ and iqq BNiBNi ∀≥′ ,, → I ′ .

In the example, job 3 has the longest tail on the critical stage (Table 5.7).

Hence this job is selected to be scheduled at this step. In case of a tie,

select the job with the longest processing time at the bottleneck stage:

pi’, BN ≥ pi, BN Ii ′′→∀ .

If there is still a tie, select a job with a lower number from the maximum

processing times check.

Step 14 Schedule this new job i´ depending on the result of the previous step, at all

the stages:

a. At each stage (j), find the earliest available machine m´.

}...,,2,1{(,,, jmj
m

mj
m

mj mkpaa =∀+= ′′′ and })...,,2,1{ Jj =

Schedule job i´ at each machine m´. Note that the earliest available

machine is selected, which will ensure that the make-span is low and

and the machine idle time as low as possible.

b. Update the ready time for each machine m´ as

ji
m

mj
m

mj paa ,,, += ′′ . If any of the machine contains predictive maintenance,

and if the machine ready time falls between or equals tStk and tEndk , or is

greater than tEndk , accordingly add the duration of the maintenance to

the machine ready times.

ji
m

mj
m

mj paa ,,, += ′′ + (tEndk - tStk) .

At this stage, the selected standard job, is scheduled through all the

stages, on the earliest available machine at each stage respectively.

After scheduling this job, the ready times for the scheduled machines

are updated as shown in Table 5.12. Since in this case, the machine

maintenances fall outside the processing times of this job, it does not

affect the current calculation. Note that since this is the first job to be

actually scheduled, and all machines have equal ready times, Machine 1

on both Stage 1 and 2 are selected by breaking ties according to lower

numbered machines.

Table 5.12 Updated machine ready times after scheduling Job 3

Stage 1 Stage 2

Machine 1 Machine 2 Machine 1 Machine 2

25 0 50 0

Step 15 Update the number of scheduled jobs as }{ iII oo ′+= . Here the =oI Job 3.

Step 16 Go to step 8 and calculate the critical stage and scheduling process for the

remaining standard as well as special jobs as per the procedure

described. For the example taken, refer to Appendix 1 for detailed

description and results obtained in each iteration. A description is given

about what happens in each iteration. At the beginning of each iteration,

the system is updated and so are the tables. At the end of each iteration,

the jobs in the jobs already scheduled list is shown, building on the results

of previous iterations.

Step 17 If any, schedule all the special jobs with no delivery time, but with only

routing description. Since it is hard to determine when to insert these jobs

in the scheduling process, these jobs are scheduled last after all standard

jobs are scheduled. This is done to ensure that the overall makespan of

the system is still low in the presence of such jobs. In the current example,

it is job 6, 8, 9 and 10 which is scheduled in this way.

Step 18 End.

 In chapter 8, these approaches have been tested with more examples and

variations and are found to produce good results.

5.2.2 Simulation based Flow Analyzer Module (FAM) for assessing

predictive schedule

In this section, we describe how to combine optimization and simulation to

arrive at a final schedule. This combination will result in the consideration of the

detailed system and a production schedule which will perhaps be better than the

one computed by the optimization algorithm and also be free of problems

(bottlenecks). Figure 5.4 shows the flow chart of how this system works. The step

wise working of the system is described as follows, and the details are also

described in the next section:

Step 1: Start and end simulation of the schedule computed by the predictive

 optimization algorithm.

Step 2: Record the data about job starting and ending times on each stage and

 makespan values obtained from the simulation run.

Step 3: Re-run the simulation with the Flow Analyzer Module (FAM) (explained in

 the next section) activated.

Step 4: During run-time, the FAM continuously analyze the situation at each

 decision point for each job. The decision points are the points where the rule

 generators are placed in the simulation model. The rule generators have the

 piece of code which analyse the local conditions, in this case, for a particular

 job for criteria such as avoiding bottlenecks, further optimization based on

 waiting times for jobs and checking the effects of details (maintenance

 schedules) considered by the optimization algorithm. The rule generators

 generate a rule if local conditions are fulfilled, by locally over-riding the result

 calculated by the optimization algorithm, only for a particular job. In the

 future this system can be extended to include more details of a production

 system such as pallets, material handling equipment, or other facts required

 to process certain jobs.

Step 5: Implement the new rule at the decision point by locally overriding the result

 of the optimization algorithm, only for the job, machine and stage under

Figure 5.4 Simulation based Flow Analyzer (FA) to achieve validity

Start

Run and end

simulation

Collect statistics about

bottlenecks, parts and

makespan

Re-run simulation, with

Flow Analyzer Module

(FAM) activated

Over-ride the predictive
schedule locally based on

input from FAM

End simulation
run, collect
statistics

Compare

Generate
final

schedule

End

New rule
generated by

FAM?

Yes

No

Continue
simulation.

End?

Yes

No

 consideration. After executing the new rule, the jobs use the pre-calculated

 predictive schedule generated by the optimization algorithm for the next

 stage (before analyzing the situation on the next stage).

Step 6: Continue simulation. If required, go to step 4, else stop simulation. This

 way, all the jobs are analysed at the required decision points for criteria set

 by the user one by one. Collect the statistics on job starting and ending

 times on each stage and makespan.

Step 7: Generate a final schedule by comparing the result of the second simulation

 run (with FAM activated), and the schedule obtained by only simulating the

 result of the optimization algorithm.

5.2.2.1 The Flow Analyzer Module (FAM)

There are two situations the FAM module can consider which the

optimization did not consider during its computations. In the first situation, the user

knows about events which need to be considered during the simulation run. For

instance, “Job 1 needs to wait for a special processing step of 10 minutes if it uses

machine 2 on stage 2, and it needs 15 minutes if it uses machine 1 on stage 2”.

Such information can be put into the rule generator which can analyze the situation

during the simulation run to determine a rule. In the second situation, he has an

overall knowledge of all events that can happen in his system, but does not know

 Figure 5.5 Concept of the simulation and rule based FAM

Event in
simulation

system

Continue
simulation run

Condition
satisfied ?

Rule generator
and condition

base

 Fire rule a,
implement

Yes

No

Rule based FAM

much about such events. For instance, he knows that a bottleneck can happen in

the conveyor system, but may not be able to estimate its complete impact on the

schedule. Such factual knowledge that the planner has obtained relevant to the

problem can be realized as a database in the form of rule generators, conditions,

and rules. This combination of simulation and optimization is a small step, which

can be extended further. Figure 5.5 shows how the simulation based FAM works.

 A general rule may be formulated as - if A then B, where A is a set of

conditions on data and B is a set of instructions to be carried out if the rule is fired,

using forward tracking principles. We use the forward tracking1 principles because

of the relative ease of developing and implementing such a system for the current

production system configuration, instead of using backward tracking2 principles

where we can specify what conclusion we would like to reach, by specifying B.

 Table 5.1 shows the interrelationships between decision points, conditions

and rule generation. Section 5.2.2.1.1 describes rule generation for analyzing the

flow for further optimality considering buffers and checking the impact of previous

detail calculations of the optimization algorithm, while section 5.2.2.1.2 handles the

condition of avoiding bottlenecks considering buffers and checking the impact of

previous detail calculations of the optimization algorithm.

Table 5.13: Interrelationships between decision points and rule generators

Current condition /

Rule generator

Condition A Condition B Condition C

Rule generator x Instruction a … …

Rule generator y …. Instruction b ….

Rule generator z …. …. Instruction c

5.2.2.1.1 Rule generation for handling optimality

 In this section a rule generation method for checking if the results and

detail calculations of the optimization algorithm are optimal by handling buffers as

production system elements is discussed. A small example is taken here to

describe how this works in the simulation system in details. Table 5.14 shows the

jobs and processing times on a 2 stage, 2 machine each production system

configuration. Table 5.16 shows a sample rough schedule (paths for each job)

obtained from the optimization algorithm described in the previous section, and

Table 5.15 shows the buffer capacities for the case. A snap shot description of what

exactly happens is seen in Figure 5.6, where job 1 is about to enter buffer 1 on its

1

In Artificial Intelligence (AI), a form of reasoning that starts with what is known about the data and works toward

finding a solution, Russel (2003).
2
In AI, a form of reasoning that starts with what conclusion\goal is to be achieved and works backwards. The goal

is broken into many sub-goals or sub-subgoals which can be solved more easily, Russel (2003).

Table 5.14 Example jobs and system size

Jobs Processing

time

on Stage 1

Processing

time

on Stage 2

Scheduled

machine

maintenance

1 20 10

2 35 20

3 40 15

4 15 15

5 30 40

6 30 35

7 10 30 M
a
c
h
in

e
 1

 o
n

 s
ta

g
e

2
 n

o
t
a

v
a

ila
b

le
 f
ro

m

ti
m

e
 3

0
 t
o
 4

0

Table 5.15 Buffer capacities on stage 2

Machine Buffer capacity cBf

1 3

2 2

3 3

Table 5.16 Job routing according to optimization algorithm

Jobs Machine

on Stage 1

Machine

on Stage 2

1 Machine 1 Machine 1

2 Machine 2 Machine 2

3 Machine 1 Machine 1

4 Machine 2 Machine 1

5 Machine 1 Machine 3

6 Machine 2 Machine 3

7 Machine 2 Machine 1

way to machine 1 at stage 2. At this moment, we analyze the number of jobs which

are currently being processed on the next stage on each machine, including the

number of jobs currently held in each buffer on the next stage (Bf1, Bf2, etc).

It will use the following steps:

1. Get job i which wants to enter the next stage j, via a buffer. In this case, say job

1 is to enter stage 2 via buffer Bf1, and is originally scheduled to enter machine

1 on stage 2 (see table 5.16 for the rough schedule).

20. Get the number of jobs in each buffer on stage j. Get the jobs oc Ii ⊆ currently

processed on machines jm on stage j. For the current examples, job 3 and 4

are contained in buffer Bf 1, job 2 is contained in buffer Bf 2, and job 5 and 6 are

contained in buffer Bf 3. In addition, job 7 is being processed on machine 1 on

stage 2.

21. Compute the expected time tm when each of the jm machines on stage j

become free after processing the current jobs oc Ii ⊆ . For the current example,

there is only job 7 being processed on machine 1 (see Figure 5.6), and no jobs

on machine 2 and machine 3. Assuming job 7 is half way through its processing

on machine 1, stage 2, so tm = 15 minutes for machine 1, and 0 for machine 2

and machine 3.

22. Compute the summation of processing times of all jobs on stage j in each buffer

as∑
=

CNBf

i 1

(Bf
jip ,). In the current examples, the summation comes out as 30 minutes

in buffer 1, 20 minutes in buffer 2 and 75 minutes in buffer 3.

23. Sum up, for each of the alternative routes that job i can take on stage j

(including the one which the optimization algorithm calculated), the machine

free times, the processing times required for all jobs in each corresponding

buffer and the processing time for job i on stage j as [tm +∑
=

CNBf

i 1

((Bf
jip ,) + jip ,].

 Bf 1 Original path for Job 1

 Job 1 Result x\Line 1

 Current jobs in buffer Current job 7

 Bf 2

 Result y\Line 2

 Bf 3

 Result z\Line 3

 Stage 1 Stage 2

Figure 5.6 Snap shot to describe events for optimality and\or validity rule
generation

Here we have calculated the amount of time required when the job will have

finished processing on each machine. In the current example, this will result in a

time, when job 1 will leave stage 2 after processing itself on each one of the

Machine 1

Machine 2

Machine 1

Machine 2

Machine 3

machine on stage 2, and after all jobs (in each buffer and corresponding

machines) are completely processed. For the current example this would result

in values 55, 30 and 85 if job is processed on machine 1, 2 or 3 respectively –

the time when the machines would be free again completely.

24. Compute if predictive machine maintenance has been scheduled at around the

time the job i will possible finish on each of the machines on stage j, as follows:

If the time the machines would be free again falls between or equals tStk

and tEndk or is greater than tEndk , accordingly add the duration of the

maintenance to the machine free times as:

The time required to process job i = [tm +∑
=

CNBf

i 1

((Bf
jip ,) + jip ,] + (tEndk - tStk).

Else,

The time required to process job i = [tm +∑
=

CNBf

i 1

((Bf
jip ,) + jip ,].

If the start of maintenance time is less than the time each machine becomes

free again, then the maintenance duration is added to the time the job i is

expected to finish. On the other hand if the start of maintenance time is more

than the time each machine becomes free again, then this means the machine

is maintained at a later point in time. Accordingly for each situation the time

required to process job i is computed. In this example, machine 1 on stage 2 is

maintained from time 30 to 40 minutes. Since this falls within the time machine

1 will be free completely (if job 1 is processed on this machine), the

maintenance duration is added to the machine free time as: 55 + 10 = 65.

25. The result of step 6 will be in terms of a time unit, which will reflect the earliest

time job i will finish after each of the machines (if processed on any). Let x be

the result for the buffer Bf1\Machine 1 (Line 1), y be the result for Bf2\Machine 2

(Line 2) and z be the result for Bf3\Machine 3 (Line 3) as seen in Figure 5.6 and

in Table 5.17.

Compute the differences with respect to x as follows:

x – y = a.

For this example, this comes out as, a = 65 – 30 = 35.

If a is positive, then this means job i could be processed faster by time a, if

placed on Bf 2 (which had result y).

If a is negative, then job i could be delayed by time a, if placed on Bf 2.

Similarly,

x – z = b.

For this example, this comes out as, b = 65 – 85 = – 20.

Similar logic is applied for b.

26. Get buffer with maximum positive difference a or b, and get remaining capacity

ccBf of this buffer. In this example, buffer 2 has remaining capacity of 1. When

maximum positive value does not exist, solution cannot be more optimal than

that of the optimization algorithm, go to step 9.

If ccBf ≥ 1

Fire rule and schedule job i on this buffer (line) by overriding

the solution computed by the optimization algorithm.

In this example, this condition is true, and hence job 1 is scheduled

on buffer 2 to be processed on machine 2, by overriding the result of

the optimization algorithm, according to which job 1 had to be

processed on machine 1.

Else,

Select the buffer with the next lower maximum positive

difference, and if one exists, repeat step 8, else go to step 9.

27. End.

Table 5.17 Earliest job i finishes on each stage

Value

Earliest time

Difference with

respect to

original path

x 65

y 30 35

z 85 -20

Table 5.18 New job routing obtained after running simulation based FAM

Jobs Machine

on Stage 1

Machine

on Stage 2

1 Machine 1 Machine 2

 Table 5.18 shows the new job routing for the snap shot example taken here.

After this procedure the simulation again proceeds to do the same analysis with

other remaining jobs throughout the model, at each and every decision point. Note

that at the end of the analysis, the predictive machine maintenance times, tools,

material availabilities, special jobs will also be considered by the entire system, as

the optimization algorithm calculated when the jobs which have such constraints

should be released in the system at the input. Note that the simulation based FAM

system considers standard and special jobs with delivery times only and tries to

finish these jobs as early as possible, so it does not affect the delivery time

calculations for special jobs with only delivery times. All other special jobs are not

considered in these calculations because of their contrasting demands. Appendix

1.1 describes similar detailed hand calculations (where the above also becomes

clear) for the example (Table 5.1) taken to describe the optimization algorithm

calculation. Each instantaenous event data in the simulation model is described

with results and screenshots. In the next section, we describe the method of

generating rules for the case of bottlenecks.

5.2.2.1.2 Rule generation for handling schedule validity by avoiding

 bottlenecks

This rule generator will analyze local situations and avoid bottlenecks

due to buffer sizing and check the detail calculations of the optimization algorithms.

It is designed such that before a bottleneck is resolved during the simulation run,

optimality is also considered. The way the rough schedule of the optimization

algorithm is over-ridden for a bottleneck case is explained here using Figure 5.6,

with data on processing times and buffer sizes shown in Table 5.19, Table 5.20,

while Table 5.21 shows a sample schedule calculated by the optimization algorithm.

Table 5.19 Example jobs and system size

Jobs Processing

time

on Stage 1

Processing

time

on Stage 2

Scheduled

machine

maintenance

1 20 10

2 35 20

3 40 15

4 15 15

5 30 40

6 30 35

7 10 30 M
a
c
h
in

e
 1

 o
n

 s
ta

g
e

2
 n

o
t
a
v
a

ila
b
le

 f
ro

m

ti
m

e
 3

0
 t

o
 4

0

Table 5.20 Buffer capacities on stage 2

Machine Buffer capacity cBf

1 2

2 1

3 3

Table 5.21 Job routing according to optimization algorithm

Jobs Machine

on Stage 1

Machine

on Stage 2

1 Machine 1 Machine 1

2 Machine 2 Machine 2

3 Machine 1 Machine 1

4 Machine 2 Machine 1

5 Machine 1 Machine 3

6 Machine 2 Machine 3

7 Machine 2 Machine 1

 As seen in Figure 5.6 if buffer Bf1 is full (see Table 5.20 for buffer capacities

in this example) and job 1 has to travel to Machine 1 (on stage 2) according to the

pre-calculated schedule, then obviously there is a bottleneck situation which needs

to be resolved as much as possible. To resolve this situation, we first compute the

time when each machine will be free from machining its current job by undertaking

the following steps:

1. Get job i which wants to enter the next stage j, via the blocked buffer. In this

example, job 1 wants to enter stage 2 via buffer Bf1, and is originally scheduled

to enter machine 1 on stage 2 (see Table 5.21 for the rough schedule).

2. Get the number of jobs in each buffer on stage j. Get the jobs oc Ii ⊆ currently

processed on machines jm on stage j. For the current example, job 3 and 4 are

contained in buffer Bf 1, job 2 is contained in buffer Bf 2, and job 5 and 6 are

contained in buffer Bf 3. In addition, job 7 is being processed on machine 1 on

stage 2.

3. Compute the expected time tm when each of the jm machines on stage j

becomes free after processing the current jobs oc Ii ⊆ . For the current example,

there is only job 7 being processed on machine 1 (see Figure 5.6), and no jobs

on machine 2 and machine 3. Assuming job 7 is half way through its processing

on machine 1, stage 2, so tm = 15 minutes for machine 1, and 0 minutes for

machine 2 and machine 3.

4. Compute the summation of processing times of all jobs on stage j in each buffer

as∑
=

CNBf

i 1

(Bf
jip ,). In the current examples, the summation comes out as 30 minutes

in buffer 1, 20 minutes in buffer 2 and 75 minutes in buffer 3.

5. Sum up, for each of the alternative routes that job i can take on stage j

(including the one which the optimization algorithm calculated), the machine

free times, the processing times required for all jobs in each corresponding

buffer and the processing time for job i on stage j as [tm +∑
=

CNBf

i 1

((Bf
jip ,) + jip ,].

Here we have calculated the amount of time required when the job will have

finished processing on each machine. In the current example, this will result in a

time, when job 1 will leave stage 2 after processing itself on each one of the

machine on stage 2, and after all jobs (in each buffer and corresponding

machines) are completely processed. For the current example, this would result

in values 55, 30 and 85 if job is processed on machine 1, 2 or 3 respectively –

the time time when the machines would be free again completely.

6. Compute if predictive machine maintenance has been scheduled at around the

time the job i will possibly finish on each of the machines on stage j, as follows:

If the time the machines would be free again falls between or equals tStk

and tEndk or is greater than tEndk , accordingly add the duration of the

maintenance to the machine free times as:

The time required to process job i = [tm +∑
=

CNBf

i 1

((Bf
jip ,) + jip ,] + (tEndk - tStk).

Else,

The time required to process job i = [tm +∑
=

CNBf

i 1

((Bf
jip ,) + jip ,].

If the start of maintenance time is less than the time each machine becomes

free again, then the maintenance duration is added to the time the job i is

expected to finish. On the other hand if the start of maintenance time is more

than the time each machine becomes free again, then this means the machine

is maintained at a later point in time. Accordingly for each situation the time

required to process job i is computed. In this example, machine 1 on stage 2 is

maintained from time 30 to 40 minutes. Since this falls within the time machine

1 will be free completely (if job 1 is processed on this machine), the

maintenance duration is added to the machine free time as: 55 + 10 = 65.

7. The result of step 6 will be in terms of a time unit, which will reflect the earliest

time job i will finish after each of the machines (if processed on any). Let x be

the result for the buffer Bf1\Machine 1 (Line 1), y be the result for Bf2\Machine 2

(Line 2) and z be the result for Bf3\Machine 3 (Line 3) as seen in Figure 5.6 and

in Table 5.22.

Compute the differences with respect to x as follows:

x – y = a.

For this example, this comes out as, a = 65 – 30 = 35.

If a is positive, then this means job i could be processed faster by time a, if

placed on Bf 2 (which had result y).

If a is negative, then job i could be delayed by time a, if placed on Bf 2.

Similarly,

x – z = b.

For this example, this comes out as, b = 65 – 85 = – 20.

Similar logic is applied for b.

8. Get buffer with maximum positive difference a or b, and get remaining capacity

ccBf of this buffer. When maximum positive value does not exist, select buffer

with minimum negative value from a or b. This is because if maximum positive

difference exists, then a better makespan can also be achieved by scheduling

on this buffer (besides resolving the bottleneck situation, by overriding the

optimization result), while if buffer with minimum negative value is selected, then

a worser makespan but a bottleneck free situation will result.

If ccBf ≥ 1,

Fire rule and schedule job i on buffer. Go to step 9.

 Else,

Select the buffer with the next lower maximum positive

difference if it exists, or the one with minimum negative value

if one exists and repeat step 8, else go to step 9. In this step

it is checked if a bottleneck free situation can be created on

other buffers. If not, this means, the solution cannot be

improved by overriding the results of the optimization

algorithm.

In the present example, the buffer with maximum positive difference leads to

buffer 2. Then it is checked if the balance capacity on buffer 2 is atleast 1. This

check fails, and then the next buffer with minimum negative value is choosen,

which is buffer 3 (note that if this check was successful, a better makespan by

35 minutes as well as a bottleneck free situation would have resulted). It is

checked if this buffer has balance capacity. This check is successful, and job 1

is scheduled to buffer 3 to be processed on machine 3. This will result in a

makespan longer by 20 minutes, but a bottleneck free situation – the goal of this

rule generator.

9. End procedure.

 Table 5.23 shows the result of the FAM analysis for the snap shot example

of Figure 5.6.

Table 5.22 Earliest job i finishes on each stage

Value

Earliest time

Difference with

respect to

original path

x 65

y 30 35 (a)

z 85 -20 (b)

Table 5.23 New job routing obtained after running simulation based FAM

Jobs Machine

on Stage 1

Machine

on Stage 2

1 Machine 1 Machine 3

As explained earlier, the simulation then continues and generates similar rules on

the occurrence of another bottleneck elsewhere during the simulation run. This rule

generator may result in some special jobs delivered later than that calculated by the

optimization algorithm because of the fact that it allows jobs to finish later, but

assures a bottleneck free situation, as was the case in the example.

5.2.2.2 Sequential rule firing and its consequences

 In this section, the detailed aspects of the interaction between the initial

schedule and the schedule obtained after analysis using the FAM are discussed in

terms of rules generated by the latter. It may happen as a result of the simulation

based overriding system, that two rules are fired for two jobs sequentially directed

towards one position in the model, may not be in the same sequence as calculated

by the optimization algorithm.

Figure 5.7 Sequential rule generation

This can happen due to the varying processing times of the jobs considered

and the complex interactions between several jobs and positions. Figure 5.7 shows

the phenomenon. As seen rule R1 is generated first to be implemented at position 1

in the model as is shown by thick arrowed line. Rule 2 is generated after rule 1,

hence shown in dotted line, and implemented at position 2. In the next step, rule 3

is generated and implemented at position 3, but soon afterwards, rule 4 is

generated and implemented at same position 3. However it was precalculated by

the predictive system that a particular job should have gone to position 4 instead of

Start

 R4 R3, P3

R2, P2 R1, P1

 R6 R5, P4

position 3. This is a conflict situation and as a result rule 4 will override rule 3 and

continue with the simulation. No special handling is required for tackling such

sequentially generated and implemented rules. This is because at the end of

analyzing all the schedules generated by the system, the user can still select the

best overall schedule.

To demonstrate the effect, a sample result is shown in Figure 5.8 (more

results and data used for such results and tests are described in the results

chapter). The figure shows on the y-axis the percentage reduction of Job Finishing

Times (JFT) and x-axis the number of jobs in the system. The percentage reduction

is calculated by using the data on Job Finishing Times of the initial schedule

(calculated by the optimization algorithm and then simulation), and the data on Job

Finishing Times of the new schedule (obtained by the FAM). It can be seen that

some jobs finish later than the initial schedule using the FAM analysis (shown by

the circles). This is due to the phenomenon described earlier – the phenomenon

that some jobs are overridden by other jobs in the flow analysis step when they are

actually in a different sequence prior to starting the flow analysis.

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Jobs (1 to 50)

%
 R

e
d

u
c
ti

o
n

 i
n

 J
F

T

% Reduction in JFT using simulation based FAM

Figure 5.8 Consequences of sequential rule generation

5.3 Concepts and solutions for reactive scheduling

 According to the overall concept explained earlier, after the user evaluates

the predictive schedule in the previous shift, he executes a final schedule on the

shop floor real world in the following shift. Note that the predictive schedule

computed the period before considers broader elements of the production system

like buffers and details like materials, machine availability, delivery times etc and

this schedule has already been evaluated and analyzed using the simulation based

FAM in the earlier period. Exceptions occur rarely during the execution of the

schedule on the shop floor, and when they do, the reactive system provides

solutions using a combination of simulation and optimization. Figure 5.9 shows the

overall concept of the system. The following are the components of the simulation

and optimization assisted reactive system:

1. Real-time monitoring and control

This component receives events from the shop floor, and periodically

monitors performance of the shop floor. It also sends all scheduling controller

information to the shop floor and dispatches instructions accordingly. The sub-

component within the RTMC is the Exception and Performance Analysis.

Figure 5.9 Simulation and optimization assisted reactive scheduling

Optimization algorithm

Reactive
scheduling

Manufacturing floor
Predictive schedule in execution

Real-time monitoring
and control (RTMC)

Exception and
performance analysis

Scheduling
controller

Schedule rule
selection

Simulation evaluation

Simulation
model

Simulation 1
(Upper bound y)

System status
and events

Rule
implementation

Raw material Finished goods

Simulation 2, ...n
(Reactive solution) +

Flow Analyzer
activated

Possible
options

Adaptation
synchrony
Analysis

This checks all incoming events and invokes rescheduling on execution exceptions

(criteria defined by users) with the remaining operations under the current shop

floor conditions.

2. Simulation evaluation

The simulation system captures the entire model of the physical

manufacturing system and receives events from the RTMC making it run parallel to

the real manufacturing system. This component simulates the entire system atleast

once. First, as soon as a reaction is desired, the simulation system simulates

rapidly the effect of the deviation (simulation 1, Figure 5.9) and computes the upper

bound (make-span) value y as seen in Figure 5.9 and Figure 5.10. The upper

bound is the result of the total deviation from the original predictive schedule, if we

choose not to do anything, until the end of the planning period. So the upper bound

is essentially the worst-case scenario for the performance measure, which should

not be exceeded (as much as possible) by the final solution of the reactive system.

By simulating the entire system, we can be certain that the upper bound value y

corresponds to the system that is modeled in a detailed way to consider some

broader elements of a manufacturing system – something which is hard to do using

a pure optimization algorithm. Second, the simulation evaluation component

receives input about the better decision (options) computed by the optimization (re-

scheduling) algorithm considering adaptation synchrony problems (when exactly to

reschedule in the real world considering its evolution). These inputs from the

optimization algorithm are simulated to achieve the required performance indicators

selected by the user. Upon selection of a final rescheduling solution, this is

evaluated with the Flow Analyzer Module (FAM) activated (shown as simulation

2,....n + Flow analyzer activated in Figure 5.9) to check the validity of the better

solution – that the solution does not create problems in the future due to

rescheduling. The result of the last simulation run (i.e. with the FAM activated)

should ideally give the make-span value lower than the upper bound value y

computed earlier. If the opposite were true, this would mean, that it would be best

not to re-schedule the current system. The functioning of the optimization algorithm

is explained in details next.

3. Optimization component (Re-scheduling algorithm)

 After the simulation evaluation system computes the upper bound, the

control is passed over to the optimization algorithm. This algorithm will compute the

most probable rescheduling solutions alongwith guidelines on solving the

Adaptation Synchrony problem and passes them back to the simulation evaluation

system. The simulation system then evaluates each solution. The optimization

algorithm basically further guides the simulation to a better solution considering

Adaptation Synchrony. In the end, the system presents a final rescheduling solution

obtained for the optimization of a particular performance indicator. The optimization

algorithms take two forms:

3.1 Match-up rescheduling algorithm

 This algorithm tries to match up the schedule after deviation from its original

trajectory. This is done by measuring each job starting time deviation and job

sequence deviation, and accordingly developing a solution to bring back these

deviations to much as possible to zero.

3.2 Selective rescheduling algorithm

 This algorithm reschedules only a selected few jobs. This algorithm aims to

fit in the jobs in the planning horizon by rescheduling selected jobs without

addressing each job starting time deviation. This algorithm results in a system

where deviations are done later in the planning period.

Figure 5.10 Solution spaces and bounds

Both these algorithms use some rough methods to generate good solutions shown

as parameters a, b, c and d in Figure 5.10 (of the next decision to take). The

optimization algorithm then gives these solutions to the simulation component

which evaluates them in detail. It is necessary to use rough methods since with the

pure algorithm it is hard to consider the all other details of the production system

like buffers. Hence, we use simulation (combined with the Flow Analyzer) to

simulate to evaluate the result of implementing the selected decisions (shown by a1

Upper bound y

c

d

b

a1

a Best solution

Discarded
solution

Values of
parameters

Solution spaces

Results from the
simulation system

Results from the
optimization
algorithm

in Figure 5.10). This result is compared by the simulation system to the upper

bound y obtained from simulating earlier as a feasibility check. In this way, the

optimization algorithm does some rough calculations and reduces the solution

space, while the simulation takes this space and determines the best solution. It

should be noted that the optimization algorithm gives the most important solutions

also considering Adaptation Synchrony, while the simulation system simulates to

check if this solution can still fulfill the global upper bound needs, besides doing

validity and synchrony checks.

4. Scheduling controller

 The scheduling controller gets input from the simulation evaluation after it

obtains the results given to it by the optimization system. The scheduling controller

passes on this result to the real time monitoring and analysis component, which

further passes down this result to the real production system. Figure 5.11 shows the

time line of the computations taking place in the system. The system functions as

explained in the earlier section. On a time scale, as soon as an exception occurs at

8:00 am, the simulation system is activated based on user settings. This calculates

the upper bound y of the system, and perhaps if further problems (such as

bottlenecks) will happen at 8:45 am due to the exception.

Figure 5.11 Time line of computations

 (Predictive schedule)

Time

Computing the
result of the

exception (upper
bound y)

Time when simulation
evaluation is activated,
Time when optimization
algorithm is activated to
computed best action,
Time when simulation
evaluates best action.

Time when the
reactive solution
is implemented

(8:15 am)
Exception
 (8:00 am)

Time when
further problems

may happen
(8:45 am)

Reactive
computation

Reactive
schedule

Planning period

Then the optimization algorithm is activated which computes the better candidate

solutions. The simulation system once again, simulates these solutions. When the

final solution is computed, it is finally decided that the reactive solution is

implemented at 8:15 am, depending again on the user selected preferences and

results of the Adaptation Snychrony.

5.3.1 Justifications for using these methods

 The following are the justifications for using the proposed methods for

reactive scheduling:

1. A pure optimization algorithm will make it hard to compute accurately the result

of an exception in the form of the upper bound, especially considering a parallel

machine flow shop problem and additional elements such as buffers. Simulation

gracefully captures all these details, and provides inputs to the optimization

algorithm for developing possible rescheduling solutions.

2. A pure optimization algorithm will make it hard to compute the entire result of a

rescheduling iteration, due to similar reasons mentioned in point 1. Using

optimization to provide the better candidate solutions and rough solutions, and

then using simulation cuts down computational efforts and increases accuracy

than by using pure optimization.

2. Simulation provides a better way to assess if the solution (obtained from the

rough optimization algorithm) we implement is really worth the efforts in the

global system.

5.3.2 Matchup rescheduling for real-time control

In this approach, the idea is to try as much as possible to come back to the

original schedule upon the occurrence of an exception by making selective local

changes to the schedule in such a way that performance indicators such as starting

time deviations, sequence deviations for all jobs or the makespan are as close as

possible to the original schedule. Figure 5.12 shows the rescheduling system.

 As soon as an exception occurs, an upper bound is computed. The upper

bound computation can be performed using an algorithm or a simulation system. In

our case, since the system is quite complex (varying part processing times with

multiple routings between stages and buffer elements), it is required to use

simulation for the computation of the upper bound. The most important reason to

use simulation is to be able to help in the accurate computation of the capacity that

exists where rescheduling could possibly take place. Another reason to use

simulation for the computation of the upper bound is due to the parallel machine

system configuration – it is mostly the case that the upper bound is not equal to (but

in fact is less than) the original predictive makespan plus the exception duration!

This is due to the fact that with the exception some jobs can advance to the next

 Figure 5.12 Matchup rescheduling for real-time control

Schedule

after
exception

Compute upper bounds
due to exception using

simulation

Determine all capacities
on exception stage

Determine set of jobs
{i´´} for rescheduling

Conduct ASA, re-schedule job
i on alternative machine
position x with maximum

capacity

Update job completion
times using simulation

Yes

Results on
deviations, makespan

Select the next
job from set {i´´}
and club with i

Analyze and
select job (s)

End
algorithm

Iterations over
?

Predictive
schedule

Determine iterations needed
and jobs in each iteration.
Set iteration number j = 1

No

Update
machine

capacities

Determine job i
with maximum

processing time

Jobs over in
this iteration

?

Update iteration
number j = j + 1

Yes

No Update
machine

capacities

stage on the parallel machine configuration, thus reducing the upper bound

makespan further. This upper bound represents the worst case scenario as a result

of doing nothing, or in other words, the result of not re-scheduling. Then, on the

same stage where the exception happened, we determine the amount of capacity

that is available on all the alternative machines using a heuristic algorithm with input

from the simulation run. A number of jobs are then created which are candidates for

re-scheduling (the rescheduling set i´´). These jobs are the ones which should have

started on the machine during the duration of the exception, according to the

predictive schedule. For these candidate jobs, the total number of simulation

iterations and the number of jobs within each iteration is computed and set. Jobs

are rescheduled using an Updating Capacity Principle (UCP). In the first iteration,

Job 1 is selected (from the set i´´) and is planned to be re-scheduled by the

algorithm at a certain position P1 at time t1 on the alternative machine where

maximum capacity exists (see Figure 5.13). An Adaptation Synchrony Analysis

(ASA) is also conducted at this step, which attempts to solve co-ordination

problems, which is described separately in the next section.

 Since there is only one job in the first iteration, the system simulates this

constellation and saves the results in a database. Following this, the algorithm

updates the iteration number to the second iteration and gets the associated jobs

with this iteration (jobs 1 and 2 from set i´´). From these two jobs, the one with

maximum processing time on the stage where the exception occurred is selected.

This job is then placed at a certain position at a machine with highest capacity. Note

that at the beginning of each iteration, the inputs about the highest capacity are

obtained from the upper bound simulation run. Again, just before conceptually

rescheduling the ASA is conducted – explained in the next section. If there are

more jobs in the iteration (true – second iteration has two jobs), the machine

capacities are updated using a heuristic, new information on rough capacities are

obtained and the second job is rescheduled on the newly calculated highest

capacity machine (could be different than the one where job 1 was rescheduled).

This is shown as an example in Figure 5.13.

 At the end of this iteration, the jobs are placed at the calculated positions

and a simulation run is carried out to save results on performance indicators on this

run. If there are more iterations, the same process is repeated, where within each

iteration, jobs are selected in the order of maximum processing times and machine

capacities are updated intermittently. This method of updating capacity in our

experience gives much better results than other methods we have developed and

tested. A reason for this is that rescheduling jobs with maximum processing times

first on machines with highest capacities seem to prioritize jobs which results in

faster processing for jobs and balancing of loads on machines. This method of

combining simulation and optimization results in fewer simulation runs (we do not

simulate each and every constellation), whilst still providing good results (shown

later). Simulation is used to compute the exact maximum capacity for a system that

can contain anything from different processing times on machine, buffers and

transportation elements – something that can be extended further. The optimization

algorithm then takes this as an input at the start of each iteration to keep the

number of simulation iterations to a bare minimum.

As mentioned earlier, just before each sub-iteration and iteration, an

Adaptation Synchrony Analysis (ASA) is conducted. This may alter the exact

position (as calculated by the initial computations of the optimization algorithm)

where a job may be rescheduled considering the future system state. This is

explained in the next section.

Figure 5.13 Tree of the iterations for positions and job rescheduling

5.3.2.1 Adaptation synchrony analysis (ASA) during rescheduling

 Adaptation synchrony defines how the actual process continues during its

computation and modification. As seen in Figure 5.14, when the rescheduling

computation starts, the data at the time of the exception was considered for

computation. When the rescheduling computations and implementations would be

finished (assuming we know or can determine how much time is needed to

compute and implement a change), the real system state has evolved to a new

state (corresponding to data 2). So the data used for the computation of a

rescheduling solution corresponds to the wrong state of the system as marked by

the solid grey arrow, with the specific result that the position where we wish to

Job 2

P2

P1 P2 Machine 1 (Iteration 1)

t
5
 t

6

t
1
 t

2

Job 1

P1 Machine 2 (Iteration 2)

reschedule a particular job may not be available, since a job around that position

has already progressed ahead in time, making it infeasible to attempt the

rescheduling step.

 The following is the pseudo-code of the ASA system and the description of

each point where necessary:

1. Let i´´ = number of jobs selected for rescheduling,

2. Let j be the machine selected for rescheduling,

3. Let P1 at time t1 be the position calculated by the optimization algorithm for job i

(see Figure 5.16 for the illustration). This position is the earliest possible time a

job can be rescheduled,

4. Get the job change\implementation time tch from the “change chart(s)” for job i.

The idea of change charts is described next.

Figure 5.14 Real-world state evolution and interaction with rescheduling

 The idea here is to include the computational times for the simulation runs,

the computational times of the optimization algorithm, and most importantly the time

required to actually make actual changes on the shop floor which would include

times required for taking jobs out of their current position, times required for

transportation and times required for setting the jobs in their new positions. Other

actual times required for changes can be included in the system. The computation

Disturbance occurs
state (Data 1)

Rescheduling
computation

starts

New system
state (Data 2)

Rescheduling
computation

time + time to
implement a

change ends

Time

Events

Real-world Computational world

Exception occurs
State (Data 1)

times (iteration time using simulation) duration can be estimated to a high degree of

accuracy as we have already carried out simulation runs earlier (the upper bound

simulation for instance) from which we can determine the time required for a

particular iteration or iterations. The times to actually reschedule a job from one

machine to other on the shop floor can be estimated a priori (line operators can fill

up a “change chart(s)” with relative ease for each job change on other machines on

the same stage). The concept and the location where and how the change charts

are to be filled and used is shown in Figure 5.15.

Figure 5.15 Change charts filled up in the previous shift used in the current

shift adaptation process

This time will include additional times like set-up times, transportation times, etc in

particular the following factors:

1. The time required by the system to first detect the exception and report it to

 the computer system (considered as zero-time factor during implementation

 because this has the same effect as the following factors).

2. The time required to dismantle the job, machine, or operator from the

 exception machine or resource (modeled as set-out times factor during

 implementation).

3. The time required to transport the job, machine and resources on alternative

 machines (modeled as transportation times factor during implementation).

4. The time required the job may have to wait until it can be set up on the new

 alternate machine (modeled as set-in times factor during implementation).

5. The time required to set-up the job on the new alternate machine.

All these times are added to result in a total time to be considered in this analysis.

5. Get the times required for the future simulation iterations as tSim and compute

total time as ttotal = tch + tSim. This ttotal is shown as two example cases b and b1 in

Figure 5.16. Note that tSim is the time estimated for the entire solution, while tch

is the time required to actually change 1 particular job to its new position.

 Previous shift Current shift

Predictive
schedule

Change
charts

Schedule
adaptation

process

6. Compute the time tfree machine j (the one where job i is going to be rescheduled)

will become free earliest after machining each job cumulatively to take in the

rescheduled job i. tfree = remaining processing times for the job currently being

processed on machine j + processing times for one or more of the remaining

jobs on previous buffer of machine j.

7. If ttotal (for example b1 in Figure 5.16) > t1 (at P1), then

8. Compute new position P1 new with t1new in such a way that t1new > ttotal (b1) and

tfree but with P1 new (position between one of the jobs that machine j has to

machine) just after a job that machine j will machine at a later time period.

Decide to proceed with simulation iteration on the new position.

 To help understand points 5 to 8, consider the situation in Figure 5.16.

Assume that the rescheduled job is job 7, which is shown at its new possible

position. tDur is shown as the exception duration in the figure, while “a” is shown as

the time between the start of the exception and the start of position P1. Now let’s

assume that the change time (total time for computation and change) for job i is b1,

which is greater than the time “a”. If this is the situation, obviously the simulation

iteration with job 7 at position P1, does not make sense because we will not be able

to implement this solution (if we finally select it) in the real-world, because by the

time we have a solution ready, job 6 would already have progressed into machining

on the rescheduled machine according to its old schedule.

 Figure 5.16 Adaptation synchrony analysis computations

In this situation, the next position P2 (through the computation of tfree) is tried for

rescheduling until the condition that the computational time for change is less than

the subsequent positions of rescheduling. Note that job 6 is to originally start after

job 5, before rescheduling.

 On the other hand, if the change time for job i is b (<”a”), then obviously, we

will have a possibility to implement this solution in the real world, as job 6 would not

have started by then. When there are events where factors cannot be considered in

b1

Time

Stage 1
(j)

2

4

tDur

5

7

6

8 1

7

a

b

P1 P2

the total times, a provision is made in the simulation model to account for such

events by scheduling them at a later – appropriate time. An example is the set-in

time which starts after actually putting the job at its new position, i.e. after the

duration of the total time is finished.

 To describe the ASA system more, a comparison is made between the time

the machine on which potential rescheduling is to take place becomes free and the

total change time. If the change time exceeds the potential rescheduling position

(each position also has a time), then obviously, we may not reschedule the job at

that position. This is because by the time we reschedule this job physically the real

system is ahead in time, consequently meaning that the potential position

calculated by the optimization algorithm is no longer available. In such a situation it

is then determined if the next position is available. If it is available, the job is

rescheduled at the new position, thus overriding the initial position calculated by the

optimization algorithm. The simulation iteration is then performed with the new

position at the end of the iteration with the new positions calculated.

9 Else, decide to proceed with simulation iteration with position P1.

10 If more jobs in set i´´, select next job i+1 and go to step 2, else, end iteration

and simulate all jobs at the decided positions.

 This way the system places a job at an appropriate position by computing in

the future and by considering the scenario that the current (iterated) job(s) will be

finally selected for rescheduling in the end after going through all iterations! After

each iteration, the results on the starting times, make-span, sequence changes are

saved in the database as explained earlier. After considering each iteration for re-

scheduling, comparison is made between the predictive schedule and the result of

re-scheduling the jobs at various iterations. Some job iterations may result in values

of makespan higher than the predictive schedule, but result in lower starting time

deviations with some sequence deviations. As a result, the user is presented with

these results, in a consolidated form. The user then selects a particular

rescheduling solution and does the post rescheduling analysis using the simulation

based Flow Analyser Module (FAM), which is described in the next section. This

post rescheduling analysis will reveal if the rescheduling solution will have problems

in the future execution when actually implemented in the real-world. In this analysis,

the FAM system will solve the potential future problems by over-riding as less jobs

as possible and present a final solution. The final solution deviations and

performance data are recorded and presented to the user. The final rescheduling

solution is compared to the upper bound simulation run to find out if its worth to

implement this solution in the real-world or not. The final solution is then given back

to the scheduling controller and on to the RTMC module as seen and explained in

Figure 5.9.

5.3.2.2 Detailed algorithm for match up rescheduling and the ASA system

In this section, the detailed algorithm is described with the help of an

example. A 2x2 model was taken (2 machines on each of the 2 stages). The

exception was set to occur from 25 to 65 minutes on machine 2 on stage 1. Table

5.24 shows the number of jobs used for explaining the example. The predictive

schedule generated of this example is shown in Appendix 2, Figure A5 as a gantt

chart. The exception would fall at the end of job 4 and continue until the middle of

job 5, shown by solid dotted braces. The detailed steps in the system are

mentioned as follows:

Table 5.24 Example to explain algorithm

Jobs Stage 1

Processing times

(minutes)

Stage 2

Processing times

(minutes)

1 25 20

2 25 20

3 25 25

4 30 20

5 15 15

6 30 20

7 10 20

1. Get the predictive schedule Schpredictive. In this schedule all the jobs are

scheduled.

2. Get time tD = time when exception happened, and duration of exception as

tDur. In this example tD = 25 minutes, and tDur = 40 minutes.

3. Compute the upper bounds using simulation as the worst-case situation by first

determining the directly affected jobs, and the impact of these jobs on the

indirectly affected jobs. In Schpredictive, put all jobs on machine k at stage j after

time tD in set db ′ = {1, 2, 3, 4...., n}, where db ′ 0I⊆ . Note that 0I contains all the

scheduled jobs. In the current example, the directly affected jobs are job 4, 6

and job 5. As a result of the directly affected jobs, there are other jobs which are

indirectly affected in the schedule. In Schpredictive, for job i = 1 in db ′ on stage j,

calculate the new time when this job will finish as (tDur + pi,j). For each job

following (after) job 1 on stage j, update the job completion times using

simulation. Because these jobs also exist on subsequent stages, j + 1,…J,

during the run-time of the simulation, the jobs starting and ending times are

updated accordingly. In the end the result is completely updated schedule which

will result in the upper bound make-span value make-spanUB. Save this result in

a database.

4. Determine capacity on the exception stage by checking the earliest available

time m
kja , for all the machines on this stage. The machine with the lowest earliest

available time will have the highest capacity to absorb the exception, and will be

the one where the job will be rescheduled to. Figure 5.17 shows the earliest

available time m
kja , , on machines 2 and 3 for a generic example. In the current

example, since there is only one machine on the exception stage, m
kja , = 85

minutes (1:25:00.0000). This comes out as the time machine 1 on stage 1,

becomes available earliest (can be calculated by adding up the processing

times of all jobs on machine 1 on stage 1, and the idle times of the machine).

 Figure 5.17 Earliest available machines on exception stage

5. Create a new set of jobs db ′′ ⊂ db ′ . Jobs in set db ′′ are selected according to

the principle shown in Figure 5.18. All jobs between the exception duration

beyond the job on which exception happened and time when the job where the

exception duration ends are selected. In the current example, job 6 and job 5

are in the set db ′′ .

Figure 5.18 Determining jobs in the set of jobs to reschedule

6. Determine the number of iterations it needed and numbers of jobs within each

Machine 2

Machine 3

Time

Stage 1
(j)

2

4

tDur

5

m
kja ,

7

6

8

10

11 3 9

1

Time

Stage j
(machine k)

1 2 3

Bd’’

4 5

 tDur

iteration and save this data in a table, shown for this example in Table 5.25. Set

the number of jobs in each iteration equal to the iteration number starting with

the first job in set db ′′ . So, if set db ′′ has 3 jobs, iteration 1 will have the first

job, iteration 2 will have job 1 and 2, and iteration 3 will have job 1, 2 and 3. In

the current example, job 6 goes into first iteration, and job 6 and job 5 go into

the second iteration.

7. Compute the time required for the change by computing the time simulation

runs depending on the total number of iterations, and determine the change

times from the change charts. In this example, the estimated simulation time is

roughly 2 seconds, and the change values were set to 5 minutes each for set-

out, transportation, and set-in factors, so the total change time would be 15

minutes and 2 seconds. This change time is an input to the ASA conducted in

the next step.

 Table 5.25 Iterations and jobs selected for rescheduling

Iteration

number

Jobs in

iteration

1 Job 6

2 Job 6, Job 5

 Table 5.26 Capacities on earliest available alternative machines

Iteration Earliest available

machines time

1 85 minutes

2

 …2.1 85 minutes

 …2.2 115 minutes

8. Select the job i in iteration 1 from Table 5.25 and temporarily reschedule this job

on a particular postion P1 as shown in Figure 5.16. Conduct the ASA. As

explained in the ASA section, this will result in Job 6 completely rescheduled at

time 40 minutes and 2 seconds. This comes out as, tD (25 minutes) + the

change time (15 minutes and 2 seconds) = 40 minutes and 2 seconds. Note

that job 1 on machine 1 will be over after 50 minutes (see Figure A5 in Appendix

2), meaning that the ASA did not have to make changes to the most probable

position.

9. If there are no more jobs in this iteration (true – first iteration has only 1 job),

update the job completion times using simulation. Save the data on make-span,

starting times in a database.

10. If number of iterations it > 1 (more than 1 iteration), update iteration number as

it = it + 1, get the jobs for this iteration from the iterations table. In the second

iteration, there is job 6 and job 5.

11. Select the job with the maximum processing times from among these jobs and

reschedule this job on a particular position P1. Job 6 has a processing time of

30, higher than job 5 and hence is selected for rescheduling first. Conduct ASA.

12. Update machine capacities after rescheduling this job by first updating the

earliest available times on the machine where position P1 is located as:
m

kja , = m
kja , + pi,j, where pi,j is the processing time for the rescheduled job on the

new machine. After rescheduling job 2, m
kja , = 85 + 30 = 115 (1:55:00.0000).

13. Determine new capacity on the exception stage by checking the earliest

available time m
kja , for all the machines on this stage. If there are more machines

on the exception stage, then the new capacity is selected according to the

principle described in Figure 5.17. The lowest value of the earliest available

machine is the one with maximum capacity. In this example, there is only one

machine, and hence is selected for rescheduling other jobs in this iteration.

Table 5.26 shows the capacities obtained for all iterations for this example.

14. If there are more jobs in this iteration (true because it ≠ 1) select the next job

with the next lower highest processing times go to step 11. In this step job 5 is

selected for rescheduling, and in step 11 it is actually rescheduled by

conducting the ASA. Job 5 is rescheduled at time 40 minutes and 2 seconds, as

explained earlier as it had the same change times.

15. Simulate this iteration and store results on job starting times and makespan in

the database.

16. If there exists more iterations, go to step 10. Else, go to step 17.

17. Consolidate the results and derive final rescheduling solution to implement

based on user choice of performance indicator. The results are consolidated by

computing for all stages the average starting time deviation, the sequence

deviations for all jobs rescheduled from their original starting times (predictive

schedule) as follows:

)(

321

jobsofnumbern

devStdevStdevSt
jStageondeviationtimestartingAverage

JobJobJob ++
=

)(stagesofNumberJ

jStagedeviationtimestartingAverage
problemtotalthefordeviationtimestartingTotal =

The results of these calculations are shown in Appendix 2, Table A63 and Table

A64.

18. From the selected solution, the FAM is used and a post rescheduling analysis is

carried out. After this step, the final result is compared to the simulation upper

bound, and the user is presented the final solution.

19. End.

 This small example is also solved with the developed system and the result

is shown in Figure A6 and A7 in Appendix 2. The above system tries to minimize

starting time deviations by trying to return to the original trajectory on the

occurrence of the exception, whilst solving problem of Adaptation Synchrony

Analysis. As seen in this particular example, the upper bounds and the selected

rescheduling solution were the same, meaning that in this case, rescheduling does

not improve the situation.

5.3.2.3 Post rescheduling analysis using the simulation based FAM

Once a solution has been computed using the system, the user can carry

out post rescheduling solution analysis (See Figure 5.19 for overview). This

analysis basically checks if the rescheduling solution will cause disruptions

(bottlenecks) in the real-world if implemented as calculated. It may suggest further

changes to the rescheduling solution to avoid problems in the real-world due to the

rescheduling action calculated by the system (described in the previous sections).

How this fits in the systems described earlier is shown in Figure 5.9.

 If the user selected to do this analysis, the system proceeds with a

simulation run, and analyses the directly and indirectly affected jobs. If required, it

over-rides the jobs from the newly computed schedule. A Flow Analyser Module

(FAM) is implemented to conduct this analysis. The FAM is the bottleneck rule

generator – the same as that used for the predictive schedule generation. There are

decision points within the model, and within them, rule generators are placed.

These rule generators have the code which analyze the situation locally for

problems such as bottlenecks, and provide an alternative rule if certain conditions

are fulfilled during the run-time of the simulation. The user can decide between a

rescheduled plan with his performance measures perhaps with problems which will

occur in the future or a rescheduled plan with better performance measures without

problems in the future. Both these alternatives have implications on make-span,

and optimization criteria as will be seen in the results section of this thesis.

In the next section one more method of rescheduling is presented which

focusses on how to reschedule as late as possible using sequence deviation as a

tool to measure the results.

5.3.3 The selective re-routing approach for real-time control

 In this selective re-routing approach, a number of jobs are selected for re-

scheduling with a view to make a local change to handle the exception in such a

way that adaptation handling is carried out as late as possible in the planning

horizon. In the next section the overall concept is described, and then the detailed

algorithm is explained with the help of an example.

Figure 5.19: Post rescheduling analysis using simulation based FAM

5.3.3.1 Concept of selective re-routing

 Figure 5.20 shows the flow chart of the selective re-routing algorithm. As

soon as an exception happens, an upper bound is computed using simulation. This

Disturbance

Rescheduling
algorithm and

solution

Simulate solution with
(FAM) activated

Over-ride the predictive
schedule locally based on

input from FAM

End simulation
run, collect
statistics

Compare

Implement
final

solution

New rule
generated by

FAM?

Yes

No

Continue
simulation.

End?

Yes

No

Run and end
simulation Collect statistics about

performance measures
Exception

reactive

upper bound represents the worst case scenario as a result of not re-scheduling at

all. A set of jobs is then created which are candidates for re-scheduling. These jobs

are the ones which are placed beyond the time the exception occurred on the

machine in the original (predictive schedule). Then, on the same stage where the

exception happened, we determine the amount of capacity that is available on other

machines using an algorithm. These jobs are then listed in a descending order (last

job first, etc) from the order on the exception machine, and are listed into groups of

jobs and iterations. So the first iteration has 1 job (the last job), the second iteration

has two (the last and the second last). From this list, the first job is selected and re-

scheduled on the machine with extra capacity on the exception stage. If there are

multiple machines on the exception stage, the earliest machine available times on

each machine would provide us with the information on where there is extra

capacity. Since there are no more jobs in the 1st iteration, a simulation run is

conducted to simulate this option, following which the results are stored in the

database for analysis later. In the second iteration, there are two jobs (the last and

second last) selected for rescheduling. From among these jobs, the second last job

from the list is selected and rescheduled on the machine with the maximum

capacity. Note that at the start of each iteration the same value on capacity is used

initially. Following the rescheduling of the job, the capacity is updated again using

the algorithm, and the last job is rescheduled at the machine with the next highest

capacity on the exception stage. A simulation run is conducted at the end of the

second iteration to compute exactly the result of performance measures

(makespan, deviations) of rescheduling this specific constellation on the later

stages, if any. Note that the second iteration will result in jobs rescheduled in the

same sequence as they were in the predictive schedule. This is done to make sure,

the makespan does not deviate too much due to sequence changes on the

downstream stages. Note also that here, the job with the maximum processing time

is not selected because the upperbound simulation considered in its calculation, the

jobs in a particular sequence at the exception stage. Since when the calculations

started upon the occurence of the exception, the candidate jobs are then upstream

in the system. Due to this, the phenomenon of having incorrect capacities used up

by wrong jobs (jobs with lower processing times, appearing first in the sequence,

and using up lower capacities) is less. Hence this same sequence is maintained

during rescheduling in this method to make sure, the jobs appearing in a particular

sequence use the first available higher capacity machines, than the higher

processing time jobs who appear later in the sequence. Hence, the jobs from the

descending order list, are used in the same sequence as explained.

This is followed by simulating these constellations and saving the results in

the database. Depending on the number of iterations, this continues until all

iterations have been considered. After considering jobs in the respective iterations

 Figure 5.20 Selective re-routing for reactive scheduling

Schedule

after
exception

Compute upper bounds
due to exception using

simulation

Determine all capacities
on exception stage

Determine set of jobs
{i´´} for rescheduling

Re-schedule job i last on
alternative machine with

maximum capacity

Update job completion
times using simulation

Yes

Results on deviation,
makespan

Select the next
job from set {i´´}
and club with i

Analyze and
select job (s)

End
algorithm

Iterations over
?

Determine iterations needed
and jobs in each iteration.
Set iteration number j = 1

No

Jobs over in
this iteration ?

Update iteration
number j = j + 1

Yes

No Update
machine

capacities

for re-scheduling, comparison is made between the upper bound and the result of

re-scheduling the jobs. Depending on which performance measure the user

chooses to be optimized, the respective solution is presented to the user. At this

point, we would have computed the minimum number of jobs re-scheduled for a

particular sequence deviation which is computed during the iterations, and we may

also result in a better makespan depending upon the exception duration, process

parameters like processing times, and capacity on alternative machines. Note that

the reactive FAM is not used here because it is less likely that problems will arise

due to changing the job sequences of the last jobs in the planning horizon. The

detail algorithm for the selective re-routing is described in the next section.

5.3.3.2 Detailed algorithm for selective re-routing

The following are the steps in the selective re-routing algorithm, explained

with the help of an example shown in Table 5.27. A 2x2 model was taken (2

machines on each of the 2 stages). The exception was set to occur from time 25

minutes, for a duration of 50 minutes on machine 2 on stage 1. The predictive

schedule generated of this example is shown in Appendix 3, Figure A8 as a gantt

chart. The exception would fall at the end of job 4 and continue until the end of job

5, shown by solid dotted braces.

Table 5.27 Example to explain algorithm

Jobs Stage 1

Processing times

(minutes)

Stage 2

Processing times

(minutes)

1 25 20

2 25 20

3 25 25

4 30 20

5 15 15

6 30 20

7 10 20

1. Get the predictive schedule Schpredictive. In this schedule all the jobs are

scheduled.

2. Get time tD = time when exception happened, and duration of exception as tDur.

In this example is tD = 25 minutes and tDur is = 50 minutes.

3. Compute the upper bounds to compute the effect of the exception on the

schedule, as the worst-case situation using simulation. At the end of the

simulation run is the completely updated schedule which will result in the upper

bound make-span value make-spanUB. Save this result in a database. In this

example, the simulation system calculates the upper bound value as 150

minutes. Note that the simulation also considers other details of the production

system (one reason to use simulation for upper bound calculations).

4. Determine the number of jobs to reschedule as set {i´´´} which will include jobs

on the machine k (where exception occurred), beyond the other earliest

available machine m
kja , on stage j and the earliest available time for machine k,

after computing the upper bounds. Create a list of all jobs in the set, in the order

in which they enter the machine. In this current example, job 6 and job 5 are the

candidate jobs, put in the set in this order.

5. Determine capacity on the exception stage by checking the earliest available

time m
kja , for all the machines on this stage. The machine with the lowest earliest

available time will have the highest capacity to absorb the exception, and will be

the one where the job will be rescheduled to. Figure 5.17 shows the earliest

available time m
kja , , on machines 2 and 3 for a generic example. In the current

example, since there is only one machine on the exception stage, m
kja , = 85

minutes (1:25:00.0000). This comes out as the time machine 1 on stage 1,

becomes available earliest (can be calculated by adding up the processing

times of all jobs on machine 1 on stage 1, and the idle times of the machine).

Table 5.29 shows the capacities obtained for each iteration.

6. Determine the number of iteration as equal to the number of jobs in set {i´´´}.

Classify each iteration with cumulative jobs from the set {i´´´}. For e.g. iteration 1

has job 1 from the set. Iteration 2 has job 1 and 2, iteration 3 has jobs 1, 2 and

3, and so on. In the current example, iteration 1 has job 5, and iteration 2 has

job 6 and job 5. Note the sequence is the same in the second iteration as it was

originally planned. Refer to Table 5.28 for the iteration and the jobs.

7. Set iteration number it = 1, or use the iteration number set by previous

iterations.

8. Select the job i for this iteration and reschedule this job on the machine with

maximum capacity. In the current example, job 5 is rescheduled on machine 1

on stage 1.

9. Run simulation with this change. Save results of makespan, starting time and

sequence deviations in the database.

10. Update iteration number it = it + 1.

11. Select the jobs for this iteration. In this iteration job 6 and job 5 are selected.

 Table 5.28 Iterations and jobs selected for rescheduling

Iteration

number

Jobs in

iteration

1 Job 5

2 Job 6, Job 5

 Table 5.29 Capacities on earliest available alternative machines

Iteration Earliest available

machines time

1 85 minutes

2

 …2.1 85 minutes

 …2.2 115 minutes

12. Reschedule the first job on the machines with biggest capacities. In this

example reschedule job 6 on machine 1 on stage 1 which has capacity of 85

minutes (since there was only one machine). Update capacity after this step,

which then comes out as 115 minutes, or 85 minutes + 30 minutes. Reschedule

the second job (in this case job 5 on machine 1 on stage 1).

13. Simulate this change and save results in the database as earlier.

14. If there exist more iterations, go to step 10 and repeat the steps, else depending

on user settings, gather results from database and present to user.

15. End.

 The same example is solved with the developed application and result is

shown in Figure 9, A10 and A11. Table A65 and Table A66 show the detailed

results. The results shown are for the second selected iteration in this example.

5.4 Conclusions

In this research work, a simulation and optimization assisted scheduling and

rescheduling system has been developed for a flexible production system

configuration. The highlight of this system is the way simulation is combined with

optimization. The optimization algorithm in the predictive phase uses the special

property of the flow shop that the jobs flow in one direction only is taken advantage

of in developing this procedure. The optimization algorithm considers other details

like materials, tools and machine availabilities alongwith limited buffer capacities,

alongwith demands on job delivery requirements and requirements of specific

machines for some jobs, to compute a rough plan, which is further fine-tuned with

the help of a rule-based simulation system. The simulation assisted rescheduling

system also solves other issues not addressed by other research, in that it

addresses the issues of when exactly to reschedule in the real production system,

how to bring back the deviations to the planned trajectory as much as possible, how

to reschedule as less as possible, and if at all rescheduling is done, how can

problems due to the rescheduling step be recognized and solved before the

problems occur in the real world. Most importantly the rescheduling system also

solves the problem of adaptation synchrony – the problem that in the real world

changes take time which was not incorporated in computational systems developed

by any researchers to date. Here too a rule-based simulation system is combined

with an optimization algorithm which seeks to reduce the possible constellations

available as solutions to the simulation system while also addressing the specific

co-ordination and execution problems that occur due to rescheduling.

Chapter 6 Overall framework and integration

6.1 Introduction

 In this chapter we discuss an overall integrated framework for the

scheduling and rescheduling of the production system configuration mentioned

earlier. This framework is implemented in the next chapter. In this chapter, we also

provide the building blocks of both the predictive and reactive systems on what

each of them contain, and the capabilities of each block.

6.2 Overall system framework

Figure 6.1 shows the overall framework of our simulation assisted

predictive-reactive approach for production scheduling and re-scheduling. In the

predictive part, the planner can obtain one or more schedules which are generated

with the help of the optimization algorithm and further fine tuned and analysed by

the simulation system. In the reactive part, the execution is reacted by providing

rescheduling solutions in real-time. The problem areas addressed at the beginning

of the thesis are considered by this integration. In the next section, the building

blocks used to perform the tasks shown in Figure 6.1 are described.

6.3 Integration of the entire system

Figure 6.2 shows the synthesis of the building blocks implemented as a

black box using Technomatix eM-Plant (SIMPLE++ first developed at the

Fraunhofer IPA). These blocks are implemented as object libraries in eM-Plant. In

the predictive system, the shifting bottleneck heurtistic of Phadnis et. al. is used as

a basic tool. This algorithm is extended further to include the delivery time and

routing for standard as well as special jobs and other constraints for optimization.

The simulation based FAM system with the rule generators are implemented as

objects. The integration of simulation and optimization is achieved with the FAM

system and these rule generators which control the simulation run execution.

The reactive system contains the objects of the rescheduling algorithms

namely the match-up rescheduling and the selective re-routing algorithms. The

Adaptation Synchrony Analysis algorithm extends the match-up rescheduling

algorithm. The simulation based FAM object always uses the validity rule generator

to avoid future problems due to the rescheduling step.

Predictive
scheduling
algorithm

Real-time
monitoring

and analysis

Simulation
analysis

Real
production

system

Schedules

Performance
metrics

Simulation
based

analysis

Reactive
scheduling
mechanism

Better
schedule

Order
data

Machine
maintainence

schedules

Expected
events

Material
number

Tool
number

Predictive scheduling Reactive scheduling

Figure 6.1: Overview of the simulation assisted production scheduling and re-scheduling system

Delivery
times

Figure 6.2 Building blocks of the total scheduling and rescheduling system

6.4 Conclusions

 In this chapter, the blocks used for each of the systems developed in this

thesis were described. In the next chapter, the implementation of these individual

building blocks is explained alongwith details of each of them.

Total scheduling and rescheduling system in

eM-Plant

 Total predictive scheduling system

Simulation based FAM, Rule
generators

Delivery time optimizer and other
constraint algorithm

Shifting bottleneck
heuristic used by

Phadnis et al

 Total reactive scheduling system

Selective
re-routing
algorithm

Simulation based FAM, Rule generators

Adaptation
Synchrony

Analysis algorithm

Match-up
rescheduling

algorithm

Chapter 7 Prototype software system

realized

7.1 Introduction

In this chapter the predictive and reactive systems are implemented and

details are discussed. Where required, necessary screen shots and the procedure

to start-up and run the systems are described in details. This chapter starts with

providing most important information about eM-Plant simulation software and its

programming language SimTalk with necessary background information, to make

the following sections more understandable. Then the structure of the developed

system is described, followed by the application flow of the entire system, then

followed by described in details the predictive and reactive systems.

7.2 Simulation software eM-Plant

As mentioned before, the simulation software eM-Plant is used as a platform

for implementing the system. The software employs a graphical, object oriented

approach for modelling and simulation per drag and drop. For this purpose it

contains a library of generic objects that can be used to model a system. These

objects can be placed per drag and drop into the basic modelling object called

“Frames”. Frames function as a container for simulation models. They encapsulate

models and can be placed into other frames, thereby making the objects they

contain reusable in bigger models. This method of placing frames with the

functionality they provide into another frame is called hierarchical modelling.

Apart from frames, eM-Plant provides an object library that contains generic

objects for modelling. These objects fall into four different categories, namely

material flow objects, information flow objects, movable objects, and display and

user interface objects. Material flow objects are used for modelling the physical

outfit of the real-world system that is simulated. Information flow objects provide

functions for storing and organizing data within the model, while the movable

objects represent non-stationary entities within the model that can move through

the material flow objects. Display and user interface objects handle the tasks of

presenting data and interacting with the user. The most important objects from each

of these categories that are also used within the system are described below:

1. Material flow objects

a. Frame: As mentioned before, frames are the basic container for models

in eM-Plant. All other objects are placed into them in order to form a

simulation model. Frames can also be placed into other frames, thus

reusing the model they contain in a bigger model.

b. Connector: The connector is used for connecting two objects and

establishing paths between them, that a movable object can be pushed

along.

c. Event controller: The event controller coordinates and synchronizes the

events that occur during a simulation run. Since eM-Plant is a discrete

event simulation system, events are inserted into the event list of the

event controller at every time point where something happens within the

simulation system that changes its state. One example is a movable

objects entering a processing station. The station computed the time it

takes to process the object. When this is done the event for the movable

object to leave the processor is inserted into the event list at the correct

time point. The event controller processes the different events in the

event list sequentially, inserts new events that result from the analysed

ones accordingly and advances the simulation time in the process.

d. Source: The source is used for creating movable objects within the

model, thus it is used as an entry place for movable objects into the

model.

e. Drain: The drain destroys movable objects that enter it. It is used as an

exit from the system for the movable objects.

f. SingleProc: The single processor is one of the different processor

objects of eM-Plant. It is used to simulate some kind of processing

station for the movable objects.

g. Buffer: The buffer is used as a temporary storage for movable objects.

They can simulate entry and exit buffers of machines, for example.

h. FlowControl: The flow controller is used to diverge and converge the

flow of materials in the system. It does not process the movable objects

that pass through it, but distributes them among the objects that succeed

the controller in the sequence of connected objects in the model.

i. Track: The track is used to model paths for transporters within the

system. The tracks are the only objects the transported objects can

move on.

2. Information flow objects

a. Method: The method object can store programming logic written in the

language SimTalk. Programs stored in a method can be used for almost

every task within the system and are therefore very useful and powerful.

b. Variable: A variable is a small container that can be used to store a

small amount of data, like a single integer, float or string.

c. Table: Tables can be used to store and organize data in a matric like

data structure. It consist of several rows, columns, each with its own

index, thus making every cell of the table clearly addressable and

accessible.

3. Movable objects

a. Entity: Entities are generic object for modelling anything within the model

that is processed by the material flow objects. Entities can represent

cars within a car factory, batches of cicuit board, cogwheels, and wires.

Virtually anything that is used in some kind of production process.

b. Container: Containers are used for modelling all objects, that are used

for transporting movable objects, but do not need to be processed and

cannot move by themselves. Examples for real-world objects that they

can represent are palettes or boxes.

c. Transporter: Transporters simulate real-world objects that are used for

transporting movable objects and can move on their own, but do not

need to be processed. Examples for these objects are forklifts or

automated guided vehicles.

4. Display and user interface objects

a. Chart: Charts are used to present data in a graphical fashion. Normally

this is data that eM-Plant collects during a simulation run.

b. Dialog: Dialogs are used to communicate with the user of the simulation

system. These objects provide text boxes, buttons, checkboxes, and all

other elements that are common in modern computer dialogs.

7.2.1 Programming language SimTalk

 eM-Plant contains its own programming language called SimTalk. It can be

used to implement custom logic and procedures within method object. The

language is capable of changing the properties and behaviours of the different

modelling objects, thus making it a very powerful tool. SimTalk features all the

common control and data structures of model programming languages and can also

use the methods that the different modelling objects provide. A SimTalk program is

always structured in the following way:

[arguments]

[return value data type]

Is

[local variables]

Do

[program code]

end;

Within the arguments section, input variables can be defined that need to be

handed over when the program is started. They can then be used within the

program code. After this section the data type of the return value is defined, if the

problem has one. The following is seperates the former two sections from the area

where the local variables are defined. These are only accessible within the program

and are only existent as long as the program runs. The word do marks the start of

the actual program, while end, marks the end of it. For more information about

SimTalk see the webpage of Technomatix Corporation.

7.2.2 Important concepts of eM-Plant

 While it is not possible and not the focus of this work to describe in detail the

whole functionality that eM-Plant offers, some important features that were used

during the implementation in either the prediictive and the reactive part of the

system are briefly described in the following:

1. Call back methods: eM-Plant offers the possibility for designing custom

dialogs to interact with the user. The reactions to the user interactions with

the dialog need to be implemented in a so called callback method. This

method has to be divided into different sections. A callback argument can be

assigned to all interactive elements of the dialog. When the user interacts

with a certain element of the dialog, the callback method is called and the

callback argument of the specific element is passed to it. The argument then

determines which section of the method has to be executed.

2. Custom attributes: While all objects of eM-Plant have their standard

attributes, it is possible to assign custom attributes to them. This is

especially when a certain piece of data needs to be attached to an object.

Within the system this is used for identifying the stage of the PMFS the

object is located at or how many jobs are already waiting for capacity in a

buffer.

3. Delivery tables: Moving objects are normally created within eM-Plant by a

source following a random distribution. However, for the course of this work

it was necessary to create moving objects in a previously determined

sequence and at certain time points. For this purpose the concept of

delivery tables was used. This table can be assigned to a source object,

thus giving it exact instructions when to create how many of a certain type of

moving objects. Each row of the delivery table therefore contains a time

point, a class of a movable object and the number of objects to be created.

4. Event trigerred controls: Several material flow objects offer the possibility of

executing a method upon the occurrence of certain events. This feature is

used during the development of the system for the events of a movable

object entering or leaving a material flow object and the event of a failure of

a single proc object. The methods assigned to the event of a job entering or

leaving a material flow object are denoted entry and exit control in the rest of

the work.

5. Init and endsim methods: eM-Plant offers the possibility of automatically

executing certain methods on the events of the initialization, the reset, and

end of a simulation. In order for this to work, the methods must be named

init, reset, autoexec, or endsim. When one of the before mentioned event

occurs, eM-Plant automatically executes the corresponding methods. During

the implementation of the system only the init and the endsim methods were

used.

6. Processing time tables: While the processing times of the material flow

objects normally follow some kind of random distribution, for the course of

this work it was necessary to assign predefined processing times to the

processors. For the purpose the possibility of assigning a processing time

table to the processors was used. This table defines processing times for

different classes of movable objects. Every time an object enters the

processor the corresponding processing time of its class is selected from

the table and used.

7. Suspending methods: eM-Plant offers the possibility to suspend the

execution of a method and to wait for a particular event or a certain amount

of time before the execution is continued. It is also possible to schedule a

method call at some time point in the future. This is done by combining the

call with a time value. The call is then executed after the defined amount of

the time has elapsed.

7.3 Structure of the implementation

 The whole system is modelled into two frames, the top frame and the table

frame. The table frame is inserted into the top frame. Therefore the user only needs

to drag and drop the top frame into a PMFS model he wants to use for scheduling

and rescheduling. A double click on the top frame of the system will not open the

frame, but rather the predictive scheduling dialog, that is the user interface if the

predictive part of the system. The whole analysis can be started from this dialog.

 The top frame of the system itself contains several methods, variables and

dialog objects that provide the functionality to solve the problems discussed in this

thesis. The most important methods are located at the left of the frame, while all the

secondary methods are located in the middle in alphabetical order. All variables can

be found on the right side in alphabetical order, while the dialog objects are located

at the bottom of the frame. A screenshot of the contents of the top frame is given in

Figure 7.1.

Figure 7.1: Top frame of the developed system

 Right next to the dialog objects, the table frame can be found. This one is

inserted into the top frame for structuring issues. It contains the tables that are used

for organizing and storing the data of the developed application. A screenshot of the

contents of the table frame is given in Figure 7.2. Note that the screen shot does

not show all tables that are used during the scheduling process, since some are

generated automatically by the system, based on the number of stages and

machines the PMFS model contains.

 The reader can refer to Appendix 4 for the description of all methods, tables

and variables, described next, also described using diagrams and figures. The entry

point of the whole system is the InitializeNewRun – method within the top frame. It

is started after a double click on the frame containing the system. The method

initializes the whole system for a new analysis and calls the init – method

afterwards, which controls the application flow of the system with the endsim –

method.

Figure 7.2 Table frame which is part of top frame

7.4 Application flow of the implemented system

The whole system is developed to function according to states. The different

states define, at which point in the analysis the system is currently in and which

data has already been calculated. The variable State keeps track of the current

state of the system, while two special methods, called init and Endsim handle the

transitions between the different states. The init – method is always executed right

after the end of a simulation run. This makes these two methods perfect for

controlling the behavior of the system, since the whole analysis typically consists of

several simulation runs.

The application flow of the developed system can be seen in Figure 7.3. In

the beginning the system is in state 0. A double click on the top frame of the system

starts the InitializeNewRun – method which initializes the system for a new

scheduling procedure by counting the stages of the PMFS model and the machines

on each stage, creating new tables or deleting ones that are not needed anymore,

adjusting the properties of the objects of the PMFS, deleting any data left from a

previous analysis, and setting the variables of the system to their initial value. After

this the init – method is called. This one evaluates the State – variable and opens

the SchedDialog – Object, since the system is still in state 0 and the predictive FAM

schedule has not yet been computed. The user has to generate the processing

times and enter the number of jobs in this dialog, before he clicks the OK – button

and starts the calculation of the heuristic – based schedule. The completion of this

schedule will call the Endsim – method, which sets the state to 1, resets the

State 2

Simulation run

imitating

implementation of

predictive FAM

schedule in real-world

system

init

endsim

State 0

endsim

init

SchedDialog

Calculation of

heuristic-

based

schedule

InitializeNewRun

Results are

shown

State 3

Calculation of

upper bound

performance

measures

init

endsim

State 4

init

ReschedDialog

Calculation of

rescheduling

actions

endsim

State 5

endsim

init

Calculation of

reactive FAM

schedule

Predictive system Reactive system

Optional state, only

entered when matchup

rescheduling was used

Exception detection

SchedDialog

State 1

init

SchedDialog

Calculation of

predictive

FAM

schedule

endsim

 Figure 7.3 Application flow of the system

simulation software and calls the init – method again. This method evaluates the

State – variable and opens the SchedDialog – object. Now the user can initiate the

calculation of the predictive FAM schedule, by clicking the corresponding check box

and the OK – button. After this calculation the endsim – method sets the state of the

system to 2 and hands the control over to the init – method.

 As soon as the predictive FAM scheduling is available, it is implemented in

the real world production process. Its execution would then be monitored and the

reactive part of the system would be started upon the occurrence of an exception.

But since there was no real-world production system available during the course of

this work, the simulation software was used to imitate the implementation of the

predictive FAM schedule. Therefore in state 2 the init – method again opens the

SchedDialog – object where the user gets a chance to activate the monitoring

system, which checks for exceptions and activates the reactive system upon their

occurrence. When an exception was found, the endsim – method sets the state of

the system to 3 and calls the init – method.

 In state 3, the effects of the exception on the predictive FAM schedule are

calculated, thus giving the upper bound performance measures for the reactive

part. Also some other data is recorded, that is needed for the rescheduling

algorithms. This step is executed automatically and sets the state of the system to 4

with the help of the endsim – method.

 State 4 marks the beginning of the reactive part of the system. The init –

method opens the ReschedDialog – object, where the user gets information about

the detected exception. He can then select which rescheduling algorithm he wants

to use to calculate the rescheduling actions. If he picks up the match – up

rescheduling algorithm, he can also choose the criterion for selecting the best

alternative from the different rescheduling possibilities and decide, whether he

wants to analyse the selected alternatives with the reactive FAM. A click on the OK

– button starts the process that calculates the different rescheduling alternatives

and their performance measures. This is done automatically and generally involves

several simulation runs. After the calculation of the last alternative the system

presents the results of the rescheduling analysis.

 If the user chose to analyse the rescheduling solution with the reactive FAM

in the rescheduling dialog, the endsim – method sets the State – variable to 5. The

init – method then automatically initiates another run of the simulation software

using the selected rescheduling solution combined with the reactive FAM. In the

next sections, the predictive and reactive systems are described.

7.5 Predictive scheduling system

In the following sections, the prototype development for the predictive

system is described. In the first section the issues with customization are presented

followed by detailed description of the predictive system and its detailed

components.

7.5.1 Predictive system

7.5.1.1 Customization of eM-Plant

The first step in the customization was to find a way of how to enter the

needed input data for the algorithm in eM-Plant and how to save the results of the

algorithm in such a manner, that a simulation run afterwards takes heed to these

results. The problem of entering and saving the input data was solved by tables,

which could be edited by the user. To do this in a more convenient way, a dialog

was implemented which offered functionality to enter the needed data for the

algorithm, namely the number of jobs, stages, machines on the different stages and

the processing times. In order to save the results and cause the simulation model to

pay attention to these results, a combination of flow control units and attributes of

the moving units was used. The flow control unit offers the functionality of routing

MU’s (Moving Units) according to the value of one of their attributes. Since the

algorithm calculates a path for each job through the stages, which consists of the

machines on each stage, this path can be written to each job as a set of attributes.

This means that one attribute is needed for each stage, which should contain the

number of the machine that processes the job at this stage.

Since the jobs enter the simulation system through the source in a sequential

manner and therefore do not become available to the flow control unit

simultaneously, a way had to be found to push the jobs in the system in the correct

sequence. This means that the job that had to be routed first also had to enter the

system first, otherwise the wrong job would have been routed to the machine and

by this blocking it. This problem was overcome by the possibility of giving the

source a delivery table, which specifies the type and order of the MU’s it produces.

This table could be filled by the algorithm thus generating the correct sequence.

After this concept was proven to be viable, the needed classes were derived

from the basic classes of the eM-Plant class library and placed in a new folder

called “Scheduling_DSS”. In the following section, the more specific aspects are

described. The reader is advised to look in Appendix 4 for description of each

of the class objects (methods, tables and variables) developed, and their

origin of derivation, to understand the descriptions.

7.5.1.2 Workflow of the whole system

Refer to Figure 7.4 for an overall view of the system. Before the system can

start, some initialization are done as follows. The InitializeNewRun – method is the

entry point into the system. It is called as the user double clicks the top frame of the

system. The method itself calls some other methods that set the initial data of the

systems. First the CountStagesAndMachines – method is started, that counts the

number of stages and the number of machines at each stage of the PMFS model

the user has built and writes the values to the NumberOfStages – variable and the

MachineCount – table. The method also creates some custom attributes within the

objects of the PMFS model, which are needed for identification issues or during the

process of shifting jobs between the machines. Next the MakeTable – method is

called, which creates the needed amount of JobSetInTime – tables, JobSetOutTime

– tables, JobTransportationTimes – tables, Times_Stages – tables, and Jobs_Sta-

ge_– tables. Some of these tables are required for the rescheduling, which are

nevertheless created here, are used in case exceptions happen later. One of the

first four types of tables has to exist per stage, while of the last type is needed for

each machine. The InititalizeObjects – method which is activated next, assigns the

delivery table to the source object of the PMFS model, the JobExitRecorder –

method as exit control to the drain, and the Router – method as selection method to

the flow controller objects. It also instructs the processor objects of the PMFS to

use the Times_Stage – table of their stage as source for their processing times and

assigns them the StartTimeRecorder – method as entry control and the

FailureHandler – method as failure control. After this the ClearTables – method and

the ResetVariable – method delete any data, that might be left over from previous

scheduling activities in the tables or variables of the system. Then the

RandomTimes – method is executed which writes randomly generated processing

times to the Times_Stage – tables. Finally the control is handed over to the init –

method via the event controller.

From this point on, the predictive scheduling dialog comes up. Refer Figure

7.4 for how the system works. The predictive scheduling dialog is the main interface

between the user and the system. The dialog is used to collect all needed data and

to start the predictive scheduling process. For this purpose it uses different text

boxes, check boxes, and buttons. The dialog also contains a so called callback –

method, which implements the actual functionality of the dialog. This method is a

piece of code implemented in SimTalk that reacts to the interactions of the user with

the dialog. A click on the button, for example, activates a part of the callback –

method that carries out the actions, the button is supposed to start. Therefore

interactive elements of the dialog can be marked with a callback – argument, which

tells the callback - method which piece of code should be executed. The different

elements of the dialog are shown in the coming section 7.5.3.1.

Using the dialog, the user enters the number of jobs, the processing times,

the requirements on standard and special jobs with or without delivery constraints,

and the various resources availability in the tables. The first step of the calculation

of the heuristic – based algorithm to compute a predictive plan is started when the

user clicks the OK – button of the scheduling dialog object (SchedDialog). The

callback – method than starts the Scheduling_Algorithm – method. The method

gets its input data from the variables NumberOfJobs, NumberOfStages, and the

tables SpecialJobs, Times_Stage, MachineCount, ToolAvailability,

MaterialAvailability, and MaintenanceTimes. Using this data it calculates a job

sequence how the jobs should enter the PMFS and job routings for each job, i.e. on

which machine the jobs should be processed on the different stages. The sequence

is written to the table DeliveryTable, while the routings are stored in the table

HeuristicRoutings and fills the standard data table of the standard Gantt chart

object offered by eM-Plant.

After the Scheduling_Algorithm – method has finished its calculations, a

simulation run is started, which uses the data from the DeliveryTable – table for

creating the jobs in the source – object of the PMFS model in the correct order. The

Figure 7.4: Data Flow Chart of the predictive system

flow controllers of the model route the jobs with the help of the Router – method

according to the data stored in the HeuristicRoutings – table, while the processor

objects gets the processing times from the Times_Stage – tables. During the

simulation run, the JobExitRecorder – method, which is assigned as entry control to

the sink – object of the model, records the time points, when the different jobs leave

the system, in the JobExitTables – table, shown as “Schedule 1” in Figure 7.4.

These times serve as a benchmark for the predictive FAM schedule, which is

calculated in the next step. After the calculation is finished, the endsim – method is

called, which sets the State – variable to 1, resets the simulation software and calls

the init – method again.

7.5.2 Simulation assisted FAM system for predictive scheduling

7.5.2.1 Customization of eM-Plant

 Several modifications have been done to customize eM-Plant for this

problem. The needed classes were derived from the original ones and put into a

folder called “Scheduling_DSS”. Methods needed to be developed in place for

controlling how the rule generators will be placed, and how the parts over-ride the

original schedule of the optimization algorithm. The next section describes this in

details. The reader is advised to refer to Appendix 4 for a description of the

methods, tables and variables discussed next.

7.5.2.2 Workflow of the whole system

Figure 7.5 shows the workflow which is linked to the workflow of the

predictive scheduling work flow of Figure 7.4 via the init - method. The second step

of the predictive scheduling process is the analysis of the plan computed by the

algorithm. It first opens the scheduling dialog, where the user can edit the decision

points in the DecisionPoints – table and enter the rule generators at each decision

point. Then the analysis is started when the user selects the check box Activate

simulation based flow analyser and clicks the OK – button. Then the callback –

method of the dialog calls the InsertDecisionRules – method which determines and

inserts the rule generator methods namely the FAM_Bottleneck_Rule – method or

the FAM_Buffer_Rule – method as entry controls into the decision points according

to the decisions the user has entered in the DecisionPoints – table.

The FAM_PathCopier – method is inserted into every decision point, where

the user did not define a rule generator. This is needed, since the rule generators

calculate the routings for the predictive FAM schedule. If a decision point would not

contain a rule generator, no routings for the stage following the decision point would

be generated. The FAM_PathCopier – method handles this problem by simply

copying the routings of the optimization – based plan to the predictive FAM

schedule.

After this, another simulation run (shown as simulation 2 in Figure 7.5) is run

with the job sequence from the DeliveryTable – table and the processing times from

the Times_Stage – tables is started. This time, the rule generators within the

decision points analyse the situation of the following stage and reroute the job if

necessary according to the concepts of the FAM. These routings are stored in the

PredFAMRoutings – table which is used by the Router – method in the flow

controller objects in order to route the jobs correctly. The StartTimeRecorder –

method, which is inserted as entry control in every processor object, records the job

starting times and the sequence of jobs at every machine and stores them machine

– wise in the Jobs_Stage_Machine – table as well as collected in the

FAM_JobStartingTimes – table. These tables are shown as the database where the

schedule 2 is stored in Figure 7.5. Again, the JobExitRecorder – method saves the

time points when the jobs exit the system in the JobExitTimes – table. As soon as

all jobs are processed and the simulation run completed, the endsim – method is

called, which sets the State – variable to 2 and starts the init – method.

 Figure 7.5 Data flow chart of the simulation assisted predictive FAM system

 At the end of the analysis the user can see both “Schedule 1” and “Schedule

2” in a graphical format using the Gantt – chart functionality of eM-Plant. This is

done by filling up the chart with job finishing times for different scheduling methods.

This way the schedules are stored and the user can compare different schedules.

7.5.3 Running the simulation and optimization based predictive scheduling

system

This section describes how to start the predictive system in eM-Plant and

run the simulation and the algorithms.

7.5.3.1 Starting the system

After the model has been created, the system can be started. To get the

initial state of the system the user has to do some tasks. At first he has to right click

the InitializeNewRun – method. The system clears old table files from previous

runs, if any and initializes other tables. After this the main starting dialog of the

system comes up shown in Figure 7.6.

Figure 7.6: Screenshot of the scheduling dialog

Here the number of desired jobs need to be entered in the text box. Next the

processing times are to be entered in the corresponding processing times table –

for experimental purposes, this is done by clicking the Randomize Processing

Times - button. The processing time table can be seen by clicking it where it

contains the job names in the first column, while the processing times are in the

second column. If some of the jobs are special jobs with or without fixed routings

and with or without delivery time requirements within the factory, they are modelled

by the user input by clicking the Edit delivery time requirements – button. A table

will open up (Figure 7.8), with the names of the jobs in the first column. In order to

mark a job as special, a path for it has to be entered in the second field of the

according row.

 Figure 7.7: Editing job processing times

 Figure 7.8 Editing job delivery time and routing constraints

The path consists of integers, representing the number of the machine on

each stage, separated by commas. Attention: The path has to consist of exactly as

many integers as there are stages in the model. Both standard and special jobs

have the possibility to set delivery dates as seen in Figure 7.8. The user can also

enter in the material, resource and tool availability as seen in Figure 7.9 and 7.10.

Then the user can edit the equipment availability plan to consider preventive

machine maintenance programs as shown in Figure 7.11.

 Figure 7.9 Editing tool or resource availability

 Figure 7.10 Editing material availability

After all this data has been entered the OK - button can be clicked shown in

Figure 7.6, which will start the scheduling optimization algorithm and the predictive

simulation run as shown and explained in previous sections. After the end of the

simulation the dialog (Figure 7.6) re-appears where the user can click the Activate

simulation based flow analyser - checkbox activated. Then the user enters the data

for the simulation based flow analyser. By pressing the Edit decision points - button

the corresponding table (Figure 7.12) will show up and the user can select the rule

generators and conditions for each decision point.

Figure 7.11 Editing equipment availability

Once again, the user clicks the OK – button, and now the user can start the

simulation again with the flow analyser activated. The scheduling dialog once again

disappears as the simulation runs and re-appears in the end, where the user can

select the Use random scheduling algorithm - checkbox and de-select the Activate

simulation based flow analyser - checkbox deactivated. This calculates a plan

randomly and runs the plan to calculate a schedule. The simulation run with the

random schedule doesn’t need any configuration. The user has just to click the OK

- button one more time. After these three simulation runs (one with the schedule

from optimization algorithm, one with the flow analyser activated and one with a

random schedule) the user can analyse and select a schedule he likes to

implement in the real world. At approproate times, the user can compare the Gantt

– chart objects to display the schedules, or alternatively, to get the job finishing

times and the job finishing sequence the user needs to open the JobExitTimes -

table.

Figure 7.12 Editing the decision points, conditions and rule generators

7.6 Reactive scheduling system

In the following sections, two separate methods and their implementation

issues and components are discussed.

7.6.1 Match-up rescheduling system

In the following sections the match-up rescheduling system is described.

The first section gives an idea of issues existing to develop such a system within

eM-Plant. Then the detailed workflow of the system is described which mentions

how the system was actually implemented and integrated with eM-Plant.

7.6.1.1 Customization of eM-Plant

 Several modifications have been done to customize eM-Plant for this

problem. Methods and tables had to be implemented for managing the data

resulting from the algorithms and simulation runs. The result of the simulation runs

needed to be recorded into tables which functions like a database to store the job

finishing times, job starting time deviations, job sequence deviations and the make-

span.

 To control the workflow of the reactive system and for the user to select

appropriate actions for rescheduling, a graphical user interface has been developed

which allows the user to run the simulations and algorithms for the type of methods

selected. To make sure the rescheduling does not affect future performance,

methods have been implemented for inserting automatically validity rule generator

into the decision points at appropriate points in the simulation model. The

customization takes its origin from the basic classes of the class library of eM-Plant.

The needed classes were derived from the original ones and put into a folder called

“Scheduling_DSS”. The reader is advised to refer to Appendix 4 for the

description of the methods, tables and variable objects, which are described

to develop this system.

7.6.1.2 Workflow of the system

Figure 7.13 shows the overall workflow of the simulation assisted match-up

rescheduling system. Normally the predictive FAM schedule would be implemented

in a real-world production system. The execution of the schedule would be

monitored by a real-time monitoring and control module that would detect any

exceptions that arise. Since no real-world production system is used during the

course of this work, the simulation software was used for implementing the

predictive FAM schedule and detecting exceptions.

For this purpose a feature of eM-Plant was used, that automatically

activates a method when a failure in one of the processing objects arises. The

functionality to handle an exception is implemented within the FailureHandler –

method. This method saves information about the exception in the

DisturbanceDuration – variable, the DisturbanceLocation – variable to true, in order

to signal all other components of the system, that an exception was detected. The

next time the endsim - method is called it evaluates the Disturbance-variable and

sets the state of the system to 3, which initiates with a call of the init - method the

calculation of the upper bound measures. Then the calculation of the upper bound

performance measures is done by calculating the impact of the disturbance on the

performance of the predictive FAM schedule. Therefore another run of the

simulation software is automatically initiated as seen in Figure 7.13, shown after the

init - method. The job sequence and the processing times remain unchanged and

the job routings are determined by the PredFAMRoutings - table.

During the simulation run the StartTimeRecorder - method records the time

points, when the jobs start processing on the different machines and records them

machine-wise in the Jobs_Stage_Machine - tables as well as collected in the

Upper_bound_JobStartingTimes - table. After the run has finished, the endsim -

method is activated which sets the state of the system to 4 and calls the

CalculateUpperBound - method. This method uses the values from the

FAM_JobStartingTimes - table and the Upper_bound_JobStartingTimes - table to

calculate the starting time deviation the exception caused. This value is stored in

the Upper_bound_starting_time_deviation - variable. The method also stores the

time the predictive FAM schedule needs to be executed under the influence of the

Figure 7.13 Data flow chart of the optimization and simulation based match-

up rescheduling system

disturbance in the Upper_bound_lead_time - variable. These values serve as

benchmarks for the following rescheduling actions, because they represent the

option of not reacting to the exception at all. After this the init - method takes over

again as seen in Figure 7.13, and opens the ReSchedDialog - object.

The ReSchedDialog - object serves as the main interface between user and

system during the reactive scheduling phase. Within this dialog the user can

choose the rescheduling method (algorithm) he wants to use (in this case, he uses

the match-up method) in order to react to the detected exception. For this purpose

the dialog contains text fields showing the gathered information about the exception

and check boxes for selecting the rescheduling algorithm. Like the SchedDialog -

object this dialog also contains a callback - method that implements the functionality

of the dialog elements.

When the match-up rescheduling algorithm is selected and an OK – button

is clicked, the system directly starts a simulation run with the job sequence from the

DeliveryTable - table and the routings from the PredFAMRoutings - table. The

simulation run is executed up to the point where the disturbance was detected.

Then the FailureHandler - method calls, as seen in Figure 7.13, the

MatchupReschedulingAlgorithm - method which implements the functionality

desired. The method uses information from the DisturbanceLocation - variable, the

Jobs_Stage_Machines - tables and the Times_Stage - tables to generate the set of

candidate jobs for rescheduling and write in the correct order into the

JobsForRescheduling - table. The number of jobs in this set also gives the number

of rescheduling alternatives which will be calculated in the following way. This value

is stored in the NumberOfReschedulingRuns - variable, which serves as a control

variable to keep track of the already calculated alternatives. Finally the

MatchupReschedulingAlgorithm - method schedules a job shift for every job that

needs to be relocated in the current rescheduling alternative and writes the shifts to

the ReschedulingMoves - table for alter use in the reactive FAM. The job shifts are

scheduled by performing a delayed method call of the ShiftJob - method for every

job that needs to be shifted. The data in the JobSetOutTimes_Stage - tables

determines how long the method calls have to be delayed. This is part of the ASA

(Adaptation Synchrony Analysis) system described in chapter 6, and is shown in

Figure 7.15, how it interacts with the match-up rescheduling algorithm. The delay

simulates the time needed to take a job out of its current buffer. The exact job shift

procedure is described in the next paragraph, which incorporates the concept of the

ASA.

During the rescheduling process with the match-up rescheduling algorithm

jobs need to be shifted from the buffer of one machine to another. The ShiftJob -

method handles this task, and a schematic view of the entire process in shown in

Figure 7.14. It is called by the MatchupReschedulingAlgorithm - method with a

delayed method call. This delay represents the time needed to take a job out of its

current buffer. The first action of the ShiftJob - method is to delete the job from its

current buffer. After this it waits for an amount of time, which represents the time

needed to transport the job from its original buffer to the new one. The method gets

this time value from the according JobTransportationTimes_Stage - table. When

this time has elapsed, the job has virtually arrived at its new buffer and the process

to insert it into its new destination can start.

Figure 7.14 Detailed working of the job shifting procedure

Therefore the ShiftJob - method checks whether the new destination buffer

has enough capacity for the new job. This is the case if the remaining capacity of

the buffer minus the number of currently running insertion processes of other jobs is

at least 1. Note that more than one insertion process can be executed for a

particular buffer simultaneously. The number of currently running insertion process

is stored in a custom attribute of the buffer. If there is enough capacity, the number

of currently executed insertions is increased by 1 and the EntrySemaphore -

method and ExitSemaphore - method are inserted as entry and exit control

respectively into the destination buffer. The reason for this is, that the insertion of

the job takes an amount of time, specified in the corresponding

JobSetInTimes_Stage - table, for which the execution of the JobShift - method is

paused. During this time it has to be ensured that the buffer has a remaining

capacity that is equal to the currently running insertions, in order for the insertion

processes to work. The EntrySemaphore - method and the ExitSemaphore -

method handle this task, by only letting jobs enter the buffer if its remaining capacity

is greater than the amount of running insertion processes. Otherwise they refuse

jobs to enter the buffer. After the time needed for the insertion process has elapsed,

the ShiftJob - method is reactivated. It inserts the job into the buffer, decreases the

number of currently executed insertions, and deletes the entry and exit controls if

no more insertions are currently executed at this buffer.

If the ShiftJob - method finds that the buffer does not have enough capacity

after the transportation time of the job has elapsed, the job is written to the

JobQueue - table, which serves as a virtual queue. Then the InsertJobsFromQueue

- method is inserted as exit control for the destination buffer. The ShiftJob - method

terminates and leaves the rest of the task of inserting the job into the buffer to the

just inserted exit control. The InsertJobsFromQueue - method waits for a job

leaving the buffer, which should cause the buffer to have enough capacity for the

job in the queue. The method then starts the normal insertion process described

above and removes itself as exit control from the buffer, if no more jobs are waiting

to be inserted into it. After the job shifts are calculated and initiated the simulation

run continues. Again the JobStartimeRecorder - method records and saves the time

points the jobs start processing on the machines in the Rescheduling-

JobStartingTimes - table, while the JobExitRecorder - method saves the time points

the jobs leave the system in the ReschedulingJobExitTimes - table.

Figure 7.15 Interaction of the ASA module with the rescheduling system

After the simulation run is finished the CalculateReschedulingResults -

method is called as seen in Figure 7.13, which computes the lead time, sequence

deviations, and starting time deviation of the current rescheduling alternative using

the Jobs_Stage_Machine - tables, the FAM_JobStartingTimes - table, and the

ReschedulingJobStartingTimes - table. The results are stored in the Rescheduling -

table.

Figure 7.16 Continuation of the simulation to conduct reactive FAM analysis

As seen in Figure 7.13, finally the endsim - method is started which checks

whether all rescheduling alternatives have already been calculated. If not, the whole

process is started anew by calling the init - method. Otherwise the ShowResults-

method is called, which opens the ResultsDialog - object, that presents the

rescheduling results to the user using the ReschedulingResults - table, thus

marking the end of the whole rescheduling process. After the simulation ends, and

the rescheduling solution has been calculated, the system may continue further if

the user selected to continue the reactive FAM analysis to solve future problems

due to rescheduling, shown by rounded number 1 and 2 in Figure 7.13. Figure 7.16,

shows the continuation. If yes, then the simulation model is initialized with the

validity rule generator and inserted in the appropriate decision points, and the

simulation starts once again. The reactive FAM works very similar to the predictive

one. However it only uses the FAM_Bottleneck_Rule - rule generator method as

entry controls within the decision points. Also the analysis only starts after the

occurrence of the exception, since before that time point the original predictive FAM

schedule is executed, which has already been analysed by the predictive FAM.

The simulation software therefore executes the routings of the

PredFAMRoutings - table up to the point, where the exception occurred. Then the

FailureHandler - method is called, which uses the SelectedReschedulingRun -

variable and the ReschedulingMoves - table in order to look up the selected

rescheduling solution and the job shifts that where executed in it. It then schedules

a ShiftJob - method for every job shift that needs to be executed and also calls the

InsertBottleneckRuleForFAMResched - method. This method inserts the

FAM_Bottleneck_Rule - method as entry controls within the decision points. The job

shifts are executed as described in the earlier sections. Of course the

JobExitRecorder - method and the StartTimeRecorder - method record the time

points when the jobs leave the system or start processing on the machines and

store them within the ReschedulingJobExitTimes - table or the ReactiveFAM-

_JobStartingTimes respectively. The analysis ends with a call of the

CalculateReschedulingResults - methods which calculates the lead time, the

sequence deviation, and the starting time deviation compared to the performance

measures of the predictive FAM schedule, using the Jobs_Stage_Machine - tables,

the ReactiveFAM_JobStartingTimes - table, and the FAM_JobStartingTimes - table.

Finally the results are presented to the user. In the end of the simulation run, the

results are presented to the user, using data from the corresponding table files.

7.6.1.3 Running the simulation and algorithms

The user first right clicks the InitialiseNewRun – method which opens up the

predictive system dialog as explained earlier. This is done to collect data on

performance indices of the predictive run – this data is used later to generate

results of the rescheduling system. In order to activate the rescheduling system, he

has to activate the check boxes Energy not available to manage a generic

exception, in the group box “Activate rescheduling on”. On clicking the OK - button,

the predictive algorithm runs and the simulation starts. This simulation run is the

predictive simulation until we have the predictive FAM schedule. As soon as the

exception happens, the user is notified of the exception, and the information about

the exception like time of exception and location of exception. This is shown in

Figure 7.17.

Note this is done to identify which system the user is in – the predictive

system or the reactive system. So, for example, if no exception is inserted, then the

system knows it is in the predictive phase, and vice versa, so that that the

Figure 7.17 Screen shot for user notification of exception

developed application can take control of the future actions. On clicking the OK -

button, the predictive simulation runs. Next, the rules for the decision points are

inserted as the user has inserted them in the decision points table. This will result in

the predictive FAM schedule. After this the predictive FAM with the exception

simulation run will start and end which will compute the upper bounds. In the next

simulation run, the rescheduling run is simulated. In this run, the user is presented

with the rescheduling dialog as seen in Figure 7.18, where he can select his

optimization options and criteria. Options are Match up rescheduling, with sub-opti-

 Figure 7.18 Screenshot rescheduling dialog

ons with only one selection between Better make-span, Better starting time

deviations or Better sequence deviations, and similarly for other options. At this

point, the user can also select the check box Activate simulation based FAM for

analysing the rescheduling solution is he wishes so. As soon as the user clicks the

OK - button, the match-up rescheduling algorithm (or the respective algorithm)

computes the solutions and the simulation iterations will start. Within these

iterations, the system will compute the performance indices the user selected, and

run the simulation once again with the FAM activated. At the end of the simulation

the results will be presented to the user in the form of a pop-up window as seen in

Figure 7.19 which can be expanded to show detailed results of each simulation run

in Figure 7.20. Figure 7.21, 7.22 and Figure 7.23 show the change chart tables for

the set-out, transportation, and set-in factors respectively.

Figure 7.19 Screen shot final results window

Figure 7.20 Screen shot for detailed rescheduling results

Figure 7.21 Screen shot for change chart – transportation factor

Figure 7.22 Screen shot for change chart – job set out time factor

Figure 7.23 Screen shot for change chart – job set in time factor

7.6.2 Selective re-routing system

The selective rerouting system is implemented similarly as the match-up

rescheduling system. As explained, the user has the possibility to select the method

of change management. In the following sections, first some customization issues

are discussed, and how they were solved. The specifics of the implementation are

then given in the following sections.

7.6.2.1 Customization of eM-Plant

There were very few modifications done to customize eM-Plant for this

problem. Most of the components of the methods, tables and variables remain the

same for this system as that for the match-up rescheduling system. The same

tables for instance serve to carry the data on bounds, starting times, etc for this

method too. The only additions were the checkbox for selecting this method of

change management shown as Selective Rerouting in Figure 7.18. Note that as

compared to the Match-up Rescheduling system, the selective rerouting method

does not have several options of optimizing Key Performance Indicators. This is

because the system inherently optimizes on sequence deviations and not starting

time deviations. Also the reactive FAM and ASA are not required to be implemented

in this system because they are not required according to the principles of working

of this method. The reader is advised to refer to Appendix 4 for the methods,

tables and variables description during the reading of the next section.

7.6.2.2 Workflow of the whole model

The workflow of this system is structured in the same way as it was for

the Match-up Rescheduling system and if hence not shown seperately. If the user

chooses to calculate the rescheduling actions with the selective rerouting algorithm,

the SelectiveReroutingAlgorithm - method, which implements the functionality

described in earlier chapters, is started by the init - method. The selective rerouting

algorithm uses the DisturbanceLocation - variable, the job starting times stored in

the Jobs_Stage_Machine - tables and the processing times in the Times_Stage -

tables in order to calculate the time point the first machine becomes idle on the

stage where the disturbance occurred. With this time point the algorithm generates

the set of candidate jobs for rescheduling and stores them in the JobsForRerouting

- table. The number of jobs in this set also gives the number of rescheduling

alternatives which will be calculated in the following way. This value is stored in the

NumberOfReschedulingRuns - variable, which serves as a control variable to keep

track of the already calculated alternatives. Finally the SelectiveReroutingAlgorithm

- method reroutes the last job of the candidate set to a new machine and writes the

thereby changed routings to the ReschedulingRoutings – table. After the completion

of the calculations a run of the simulation software is started using the job sequence

from the DeliveryTable - table and the routings from the ReschedulingRoutings -

table. During the run the time points when the different jobs start processing on the

machines is recorded by the StartTimeRecorder - method in the

ReschedulingJobStartingTimes - table, while the JobExitRecorder - method stores

the time points the jobs leave the system in the ReschedulingJobExitTimes - table.

After the simulation run is finished the CalculateReschedulingResults -

method is called, which computes the lead time, sequence stability, and starting

time deviation of the current rescheduling alternative using the

Jobs_Stage_Machine - tables, the FAM_JobStartingTimes - table, and the

ReschedulingJobStartingTimes - table. The results are stored in the

ReschedulingResults - table. Finally the endsim - method is started which checks

whether all rescheduling alternatives have already been calculated. If not, the whole

process is started anew by calling the init - method. Otherwise the ShowResults -

method is called, which opens the ResultsDialog - object, that presents the

rescheduling results to the user using the ReschedulingResults - table, thus

marking the end of the whole rescheduling process. The only difference in the

workflow of this system would be the replacement of the type of rescheduling

algorithm as seen in Figure 7.13 and no use of the Adaptation Synchrony Analysis

System and the Reactive FAM System.

7.6.2.3 Running the simulation and the model

The system also works using the similar Graphical User Interface (GUI)

modules as the Match-up rescheduling system. This is obvious since both the

Match-up and the Selective rerouting system have the same GUI control and are

activated and worked upon using the same set of system components. The system

can be run using the main GUI shown in Figure 7.18.

7.7 Conclusions

In this chapter we have discussed the integrated implementation of the

optimization functions for scheduling and rescheduling within the simulation system.

The predictive scheduling system was implemented to work as a two phased

system capable of providing optimization as well as scheduling solutions to the

complex production system configuration. The rescheduling system was

implemented to provide performance indicators as well as to provide post

rescheduling schedule analysis and the Adaptation Synchrony Analysis (ASA) - for

the first time, though as a small contribution. In the next chapter, the detailed testing

of the systems developed here is described.

Chapter 8 Quantitative assessment of

approaches

8.1 Introduction

In this chapter, we discuss the tests conducted for verifying the validity of

the developed approaches. Specifically, this chapter is divided into two sections.

The first section discusses briefly the layout of the tests and test parameters for the

evaluating the predictive system followed by results. The second section presents

the same for the reactive system followed by results.

8.2 Testing predictive scheduling system: Parameters and tests

The aims of all the tests provided in this section is to test the behaviour of

the system under a wide range of operating conditions, and to prove that the

systems developed work reasonably well in these conditions. Several tests were

carried out to test the effectiveness of the developed predictive scheduling

approaches. Table 8.1 shows the test parameters and table 8.2 shows how these

parameters were tested. As seen in the test plan, test comparisons are made to

check the effect of varying parameters. Each test comparison is designed to give a

conclusion for the next tests. Test 1 and 2 test the effect of system size on the

computation times required. Here a conclusion about the effect of number of jobs

and number of machines on computation times is sought. Test 3 and 4 test the

ability of the system to meet delivery times and consider other details of the system

altogether under some varying conditions. Test 5 and Test 6 test the effect of

increasing job processing times variation with lesser constrained system in terms of

buffer and machine configuration. Similarly, Test 7 and Test 8 test for the effect of

job processing time variation, with tight buffer capacities and machine configuration.

Test 5 and 6 conclude about the effect of processing times, while test 7 and 8 test

the same in addition to testing the effect of system configuration in terms of buffer

sizing and number of machines. Test 9 uses greater number of jobs with everything

else held similar as test 7 – thus providing insight on the effect of number of jobs

used in the system with tighter system constraints. Test 10 tests the effects of

variation of processing times on a greater number of jobs and compares it with Test

9. All the following tests were made on an Intel Celeron Processor, 1.06 GHz, and

256 MB RAM machine run using WinXP operating system, and eM-Plant simulation

software.

Table 8.1 Test parameters

Parameters Description

Parameter 1 System size (jobs x machines)

Parameter 2 Delivery time for standard and\or special jobs

Parameter 3 Processing times of jobs

Parameter 4 Machine configuration

Parameter 5 Buffer sizes

Parameter 6 Number of jobs

 Table 8.2 Test plan and relation to parameters

Test

comparison

Testing the effect of

parameter

Relation ships with other

tests

Test 1, Test 2 System size
Test 1 and 2 correspond to

each other except system size

Test 3, Test 4 Delivery times

Test 3 and 4 correspond to

each other except having more

special jobs

Test 5, Test 6 Processing times of jobs Test 5 and 6 correspond to

each other except processing

times

Test 7, Test 8 Processing times of jobs Test 5 and 6 corresponds to 7

and 8 in Number of jobs, Rule

generators. Differences in

Buffer sizes and Machine

configuration

Test 7, Test 9 Number of jobs Test 9 corresponds to test 7 in

all parameters except number

of jobs

Test 9, Test 10 Processing times of jobs Test 9 corresponds to test 10 in

all parameters except

processing times of jobs

8.2.1 Computational times using simulation and optimization based

predictive scheduling system

8.2.1.1 Test 1 data, results and discussions

Table 8.3 shows the data used for this test. The aim of this test is to check

the total amount of computational time the system needs (optimization plus

simulation) with increasing system size which is represented by number of jobs x

number of machines.

Table 8.3 Data for test case 1

System size Nr. of

jobs

Nr. of

machines

Nr. of

stages

Job processing

time variation

50 x 25 50 25 5 5 - 240

50 x 30 50 30 5 5 – 240

50 x 40 50 40 6 5 – 240

50 x 50 50 50 6 5 – 240

Figure 8.1 shows the resulting computational times by using the system.

Specifically worth noting is that computational times last only several seconds. As

seen with the same number of jobs, and a higher number of machines, the increase

in computation time is not proportionate. When the number of machines are

doubled, the computation time increases only marginally. Using a pure simulation

based method for deriving an appropriate schedule would certainly take much

longer – that too without consider all the other details and constraints of the

problem. The computational times shown in Figure 8.1 are obtained using the

optimization algorithm plus 2 simulation runs, one for simulating the result of the

optimization algorithm, and the second for analysing this result using the FAM.

0

2

4

6

8

10

12

14

50 x 25 50 x 30 50 x 40 50 x 50

Problem size

C
o

m
p

u
ta

ti
o

n
a
l

ti
m

e
s
 (

S
e
c
o

n
d

s
)

Figure 8.1 Computational times for the predictive scheduling system

8.2.1.2 Test data 2, results and discussions

Table 8.4 shows the data used for the second test with even bigger problem

sizes. The data is arranged in a similar way as for test 1. This time 100 jobs were

used with increasing machine sizes. Figure 8.2 shows the results on computational

times obtained for this test. It can be seen that here too we have a similar pattern of

the computation times required. Increasing number of jobs to 100 and increasing

the machine sizes and stages for each setting, cause the times to increase only

marginally.

Table 8.4 Data for test case 2

Problem size Nr. of

jobs

Nr. of

machines

Nr. of

stages

Job processing

time variation

100 x 25 100 25 5 5 - 240

100 x 30 100 30 5 5 – 240

100 x 40 100 40 6 5 – 240

100 x 50 100 50 6 5 – 240

When test 2 is compared to test 1, it can be seen that within these two tests, the

trend is the same, but that the number of jobs (and not the number of machines)

play a major role in determining computation times. In test 1, using a system size of

50 x 25 resulted in a computation time of 9 seconds, while in test 2, a system size

of 100 x 25 results in more than 2 fold increase in computation times. A further test

was carried out to confirm the claims, with 20 stages, with 6 machines (total 120

machines) each and 100 jobs. For this test configuration (100 x 120), the

computation times were obtained as 5.5 minutes. So it seems that alongwith the

number of jobs, if the number of machines are doubled, it also leads to a big

increase in computation times. From the the results of all these tests, one may infer

that a system size of 500 x 100 would result in computation times of approximately

less than 30 minutes. Note that the times required for the simulation runs are with

the animation of the simulation turned on. When animations are turned off, even

shorter times for simulation can be obtained.

0

5

10

15

20

25

30

35

100 x 25 100 x 30 100 x 40 100 x 50

Problem size

C
o

m
p

u
ta

ti
o

n
a
l

ti
m

e
s
 (

S
e
c
o

n
d

s
)

Figure 8.2 Computational times for the predictive scheduling system

8.2.2 Delivery time optimization results

8.2.2.1 Test 3 data, results and discussions

 Table 8.5 shows the data used for this test. Other data was also used on

requirements for delivery and job routings within the system as seen in Figure 8.3.

Three scenarios were tested namely jobs with special routes only, jobs with no

special routes but with delivery times, and jobs with both delivery times and routing

constraints. Similarly, unavailability of machines, materials and tools as shown in

Figures 8.4 and 8.5 were also set. Each of them show the times when the machines

or resources will be available. This test aims to test the effect of including all these

constraints together alongwith buffers and testing the entire system for the

effectiveness of the simulation based FAM and the optimization system. The

tolerance value was kept to 20 minutes. Figure 8.6 shows the results of this test.

Jobs 6 and 4, were completed as per the demanded completion time, in eM-Plant

time format. Figure 8.7 shows the delivery time calculated by the optimization

Table 8.5 Data used for test case 3

Nr. of
jobs

Nr. of
stages

Nr. of
machines

Decision points Processing
times

Buffer
capacity

50 4 Stage 1: 5
Stage 2: 4
Stage 3: 5
Stage 4: 4

Stage 1 to 4:
Optimality rule
generator for
buffers

Varying
from 20 to
40 minutes

Varying
from 5 to 8
on stages 1
to 4

Figure 8.3: Setting delivery times for standard and special job flows

Figure 8.4: Setting machine maintenance times

Figure 8.5: Setting material availability

Figure 8.6: Resulting plan and schedules obtained with both systems

Figure 8.7: Job delivery table calculated by algorithm

Figure 8.8: Make span comparing pure optimization and optimization with

FAM schedules

algorithm, which shows the sequence in which jobs enter the system. As seen, jobs

3 and 8 were started at the appropriate times due to delayed arrival of materials

and supplies. When the FAM was used with the optimality rule for buffers, the

schedule was better by about 5 % in make-span. Table 8.6 shows the comparison

of the demanded delivery time (negative values indicate there was no lateness),

with the delivery times obtained using the optimization and the optimization with

simulation based FAM.

Table 8.6 Lateness measurements jL for Test 3

Jobs jC jd jjj dCL - =

 Optimization Simulation

based FAM

Delivery

time

Optimization Simulation

based FAM

Job 4 4:55.00.00 4:45.00.00 5:00.00.00 -5.00.00 -15.00.00

Job 6 2:35.00.00 2:35.00.00 3:00.00.00 -25.00.00 -25.00.00

8.2.2.2 Test 4 data, results and discussions

Table 8.7 shows the data used for the test case 4 which aims at measuring

the efficiency of the predictive scheduling system in terms of meeting delivery

deadlines for a greater number of jobs with special requirements and delivery time

requirements. Figure 8.9 shows the routing and delivery time constraints. Job 5 is

seen to have a special path shown by 3,4,4,1 (meaning job 1 travels to machine 3

on stage 1, to machine 4 on stage 2, to machine 4 on stage 3 and to machine 1 on

stage 4) due to constraints on manufacturing technologies that can be used to

manufacture it. Similarly job 9 has routing constraints shown as path 1,2,2,4. All

other jobs only have delivery time requirements with no restrictions on routing. Note

that job 1 and job 10 have the same delivery time requirements.

Table 8.7 Data used for test case 4

Nr. of
jobs

Nr. Of
stages

Nr. of
machines

Decision points Processing
times

Buffer
capacity

50 4 Stage 1: 5
Stage 2: 5
Stage 3: 5
Stage 4: 5

Stage 1 to 4:
Optimality rule
generator for buffers

Varying
from 10 to
25 minutes

8 at all
stages

Figure 8.9 Delivery constraints and job paths set by user for special jobs

Figure 8.10a and 8.10b, show the delivery times and final results (for all 50

jobs in 2 parts) after running the algorithm and system. These special jobs are

marked as ellipses on these figures. As seen in the figures, all but Job 9 are

delivered earlier than their times. Job 9 is analyzed in Figure 8.10a, and it is seen

that using the optimization algorithm, it is delivered on time at 3:20.00.00. However,

due to the flow analyser system, it is delayed by 5 minutes seen as dotted ellipse in

Figure 8.10b. This delay of 5 minutes is due to the overtakings of jobs in sequence

during the flow analysis step using simulation. Refer to Table 8.8 for the lateness

measurements for this test.

Figure 8.10a Resulting schedule obtained with optimization and simulation

based FAM: Part 1

One can conclude from this that the heuristic (the optimization algorithm results

after 1 normal simulation run) delivers and schedules jobs according to their

delivery times (with minimum or no lateness), but when the simulation based FAM

is used, it is possible that one or a few jobs are delivered slightly late. Note in Table

8.8, that jobs were finished at the same time or earlier than calculated by the

algorithm, by the FAM in 8 cases, while in 2 cases, they were delivered at the same

time or late. As earlier, the minus number for lateness in Table 8.8 indicate that the

jobs finished earlier by that amount. When test 3 and 4 were compared to each

other, it can be seen that when more jobs are considered to have special

requirements, the developed application still works well.

Figure 8.10b Resulting schedule obtained with optimization and simulation

based FAM: Part 2

Table 8.8 Lateness measurements jL for Test 4

Jobs jC jd jjj dCL - =

 Optimization Simulation

based FAM

Delivery

time

Optimization Simulation

based FAM

Job 1 1:20.00.00 1:05.00.00 2:00.00.00 -40.00.00 -55.00.00

Job 2 1:35.00.00 1:35.00.00 2:15.00.00 -40.00.00 -40.00.00

Job 3 2:00.00.00 1:45.00.00 2:30.00.00 -30.00.00 -45.00.00

Job 4 2:10.00.00 2:05.00.00 2:45.00.00 -35.00.00 -40.00.00

Job 5 2:30.00.00 2:35.00.00 3:00.00.00 -30.00.00 -25.00.00

Job 6 2:35.00.00 2:25.00.00 3:15.00.00 -40.00.00 -50.00.00

Job 7 2:50.00.00 2:45.00.00 3:30.00.00 -40.00.00 -45.00.00

Job 8 3:03.00.00 2:50.00.00 3:45.00.00 -42.00.00 -55.00.00

Job 9 3:20.00.00 4:05.00.00 4:00.00.00 -40.00.00 5.00.00

Job 10 1:35.00.00 1:35.00.00 2:00.00.00 -25.00.00 -25.00.00

8.2.3 Test 5 data, results and discussions

Table 8.9 shows the data used for test 5. The aim of test 5 is to prove that

the simulation based FAM system produces better results than the pure

optimization algorithm, when the system is not subject to tighter buffer sizing

constraints, using a combination of optimality and validity rule generators. The aim

of test 5 (and test 6) is to check the effect of varying processing times while keeping

the same number of machines at each stage and a higher level of buffer sizes.

Table 8.9 Data for test case 5

Nr. of
jobs

Nr. Of
stages

Nr. of
machines

Decision points Processing
times

Buffer
capacity

Stage 1: Validity rule
generator for buffers

50 4 4

Stage 2 to 4:
Optimality rule
generator for buffers

Varying
from 5 to 25
minutes

15 at all
buffers

 This means that there are no bottlenecks created due to uneven machine

loading between stages and due to the lack of buffer capacities.

8.2.3.1 Makespan comparison for various methods

Figure 8.11 shows the results of the makespan and the times when each job

leaves the system after completion. It is observed that random scheduling is much

worser in the long run as compared to the optimization algorithm. It can also be

seen that in this test, no reduction in overall makespan was achieved using the

simulation based FAM – although the results were not worser than the optimization

algorithm.

8.2.3.2 Performance benefits of the simulation based FAM system

 Regardless of the makespan result, Figure 8.12 shows the percentage

reduction in job finishing times (JFT) each job obtained as a result of using the

simulation based FAM system.

Figure 8.11 Makespan results for different methods of scheduling

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Jobs (1 to 50)

%
 R

e
d

u
c
ti

o
n

 i
n

 J
F

T

% Reduction in JFT using simulation based FAM

Figure 8.12 Percentage reduction in JFT using simulation based FAM

About 54 % of the jobs finished earlier, while only 10 % finished later than the plan

calculated by the optimization algorithm. Other jobs had no effect on their finishing

times. Figure A9 in the appendix 5 shows the job finishing times of each of the jobs.

To conclude, it seems that when there are no bottlenecks in the system due to

different number of machines between stages, and due to the buffer sizing, the

simulation based FAM does not improve the makespan – partly due to the effect of

processing times and the validity rule generator used at one stage. However, it only

improved the job finishing times for about half of the jobs in the system.

8.2.4 Test 6 data, results and discussions

 Table 8.10 shows the data used for test 6. The aim of this test was to check

the influence of larger variation in job processing times using the same other data

used for test 5. As for test 5, here also the effect of not constraining the system with

limited buffers and machine configuration is checked.

8.2.4.1 Makespan comparison for various methods

Figure 8.13 shows the result of test 6, which is compared to test 5. As seen

result, a much better makespan was achieved. The optimization algorithm provided

a makespan of 900 minutes while the simulation based FAM further reduced the

makespan to 816 minutes which is equivalent to 10 % lesser than the optimization

algorithm. Comparison of the random scheduling process and the optimization

suggests an improvement of more than 20 % using the methods developed.

8.2.4.2 Performance benefits of the simulation based FAM system

Figure 8.14 shows the percentage reduction in job finishing times using the

simulation based FAM procedure. It can be seen as compared to Figure 8.12 of test

5, that the results are better. Although the number of jobs finishing earlier is less,

overall a higher reduction in JFT was obtained. The reason why some jobs have a

negative reduction (or an increase) in JFT is because of the fact that some jobs

overtake other jobs in the process of the flow analysis process. Figure A10 in the

appendix 6 shows the job finish times for the test for all the three methods of

scheduling.

Table 8.10 Data for test case 6

Nr. of
jobs

Nr. Of
stages

Nr. of
machines

Decision points Processing
times

Buffer
capacity

Stage 1: Validity rule
generator for buffers

50 4 4

Stage 2 to 4: Validity
rule generator for
buffers

Varying
from 5 to
100 minutes

15 at all
buffers

Figure 8.13 Makespan results for different methods of scheduling

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Jobs (1 to 50)

%
 R

e
d

u
c

ti
o

n
 i

n
 J

F
T

% Reduction in JFT using simulation based FAM

Figure 8.14 Percentage reduction in JFT using simulation based FAM

From the above results, we can conclude that when the system is not subject to

constraints of buffer sizing and when the processing time variation is higher, the

system provides better results in terms of reduction of JFT and makespan.

8.2.5 Test 7 data, results and discussions

 Table 8.11 shows the data used for test 7. The aim of this test (and test 8)

was to determine the influence of job processing times whilst keeping tighter

constraints on the number of machines for all stages and the buffer sizing. When

compared to test 5 and test 6, here we have lesser machines between stages and

we also have smaller buffer capacities.

Table 8.11 Data for test case 7

Nr. of
jobs

Nr. of
stages

Nr. of
machines

Decision points Processing
times

Buffer
capacity

Stage 1: Validity rule
generator for buffers

50 4 Stage 1: 5
Stage 2: 3
Stage 3: 5
Stage 4: 3

Stage 2 to 4:
Optimality rule
generator for buffers

Varying
from 5 to 25
minutes

Varying
fro 1 to 3

8.2.5.1 Makespan comparison for different scheduling methods

 Figure 8.15 shows the makespan comparison for the three methods. It is

seen that again a 10 % reduction in makespan was achieved using the simulation

based FAM, while the optimization proved again to provide as much as 20 percent

reduction in flow times. When comparing this result to Figure 8.11, it can be seen

that the simulation based FAM system provides reduced makespan figures when

the system is subject to tighter constraints like buffer sizing and machine sizing for

similar processing times.

Figure 8.15: Makespan results for different methods of scheduling

8.2.5.2 Performance benefits of the simulation based FAM system

Figure 8.16 shows the percentage reduction in job finishing times using the

simulation based FAM system. 15 jobs had increase in JFT while 19 jobs finished

earlier (as compared to 27 jobs in test 5), while the others had no change in

reducing the JFT.

-60.0

-40.0

-20.0

0.0

20.0

40.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Jobs (1 to 50)

%
 R

e
d

u
c
ti

o
n

 i
n

 J
F

T

% Reduction in JFT with Simulation based FAM

Figure 8.16: Percentage reduction in JFT using simulation based FAM

8.2.6 Test 8 data, results and discussions

Table 8.12 shows the test data used for test 8. The aim of this test is to

check the influence of a large variation of processing times, keeping all the other

constraints the same as used for test 7.

Table 8.12 Data for test case 8

Nr. of
jobs

Nr. Of
stages

Nr. of
machines

Decision points Processing
times

Buffer
capacity

Stage 1: Validity rule
generator for buffers

50 4 Stage 1: 5
Stage 2: 3
Stage 3: 5
Stage 4: 3

Stage 2 to 4:
Optimality rule
generator for buffers

Varying
from 5 to
100 minutes

Varying
fro 1 to 3

8.2.6.1 Makespan comparison using different methods

Figure 8.17 shows the comparison of makespan for different methods of

scheduling. It can be seen that the random scheduling method has more than 20 %

increase in makespan values. There seems no improvement in the makespan using

the simulation based FAM system. When this is compared to test 7, one can

conclude that the system performs better (in terms of makespan) when the

processing time variations are smaller, and when the system is subject to higher

constraints in terms of the number of machines available and the buffer sizing.

8.2.6.2 Performance benefits of the simulation based FAM system

Figure 8.18 shows the percentage reduction in JFT using the simulation

based FAM system. It can be seen as compared to Figure 8.16 that we have

worser results here too. 18 jobs resulted in higher job finishing times while fewer

jobs resulted in reduction of finishing times. When this test is considered as a stand

alone test, the simulation based FAM system does not provide worser results in

makespan, but improves slightly the job finishing times for about 50 % of the jobs.

Figure 8.17: Makespan results for different methods of scheduling

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Jobs (1 to 50)

%
 R

e
d

u
c
ti

o
n

 i
n

 J
F

T

% Reduction in JFT using simulation based FAM

Figure 8.18: Percentage reduction of JFT using simulation based FAM

8.2.7 Test 9 data, results and discussions

 Table 8.13 shows the data used for test case 9. The aim of this test is to

prove the applicability of the developed system for a bigger number of jobs and

where each job has some variations in processing times, with additional constraints

on the system size.

Table 8.13 Data for test case 9

Nr. of
jobs

Nr. Of
stages

Nr. of
machines

Decision points Processing
times

Buffer
capacity

Stage 1: Validity rule
generator for buffers

300 4 Stage 1: 5
Stage 2: 3
Stage 3: 5
Stage 4: 3

Stage 2 to 4:
Optimality rule
generator for buffers

Varying
from 5 to 25
minutes

Varying
fro 1 to 3

Figure 8.19 Makespan comparison using different approaches

8.2.7.1 Makespan comparison using different methods

Figure 8.19 shows the makespan obtained using different methods of

scheduling. As seen in the long run, the simulation based FAM system provides

reduction in makespan figures of about 10 %. This result proves that even for a

great number of jobs, the simulation based system provides better overall results.

8.2.7.2 Performance benefits of the simulation based FAM system

Figure 8.20 shows the reduction in job finishing times (JFT) using the

simulation based FAM system. More than 80 % of the jobs had reduced job

finishing times as compared to the predictive schedule of the optimization algorithm.

This result proves that the system also reduces the job finishing times for a greater

number of jobs in the system.

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290

Jobs (1 to 300)

%
 R

e
d

u
c
ti

o
n

 i
n

 J
F

T
% Reduction in JFT using simulation based FAM

Figure 8.20 Percentage reduction in JFT using simulation based FAM – Test 9

8.2.8 Test 10 data, results and discussions

 Table 8.14 shows the data used for test 10. The aim of test 10 is to prove

the applicability of the system for a larger number of jobs with great variation in

processing times. Rest of the parameters were the same as Test 9. Test 10 has the

same aim as Test 9, the only difference being different job processing times.

Table 8.14 Data for test case 10

Nr. of
jobs

Nr. Of
stages

Nr. Of
machines

Decision points Processing
times

Buffer
capacity

Stage 1: Validity rule
generator for buffers

300 4 Stage 1: 5
Stage 2: 3
Stage 3: 5
Stage 4: 3

Stage 2 to 4:
Optimality rule
generator for buffers

Varying
from 5 to
100 minutes

Varying
fro 1 to 3

8.2.8.1 Makespan comparison using different methods

Figure 8.21 shows the makespan obtained for different methods of

scheduling. As compared to Figure 8.19, it is seen that lower reduction in

makespan value was obtained using the simulation based FAM. This means that

when there is a larger variation in processing times in a system with constraints and

a larger number of jobs, the system provides improvements, but lesser than if the

variation in job processing times are lower.

8.2.8.2 Performance benefits of the simulation based FAM system

Figure 8.22 shows the results of the reductions in JFT obtained using the

simulation based FAM. It is seen that here too about 80 % of the jobs finished

earlier. This result is similar to Figure 8.20. To conclude, it seems that the system

not only improves system performance for the case with smaller number of jobs, but

it does so with bigger number of jobs too.

Figure 8.21: Makespan comparison for various methods of scheduling

-50

-40

-30

-20

-10

0

10

20

30

40

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286

Jobs (1 to 300)

%
 R

e
d

u
c

ti
o

n
 i
n

 J
F

T

% Reduction of JFT

Figure 8.22: Percentage reduction in JFT using simulation based FAM

8.3 Testing reactive scheduling system: Parameters and tests

A series of tests were conducted after the development of the system. In the

following sections, the test plans and parameters for the match-up rescheduling

system and the selective re-routing system are described. Most important results

are shown, discussed and compared.

8.3.1 Testing the simulation assisted match-up rescheduling system

 Table 8.15 shows the overview of tests conducted to check the

effectiveness of the developed approach. The above tests are categorized into

groups. In the first test group (test 1), the ASA is tested as it was implemented in

steps and results are shown with varying processing times. The second test group

(test 2) is also done similarly but considers fixed processing times similar to that

found in some serial production environments. Before proceeding with the tests, a

test is carried out to validate the Adaptation Synchrony Analysis (ASA) for a bigger

system than the one described in chapter 5.

Table 8.15 Test plan for match-up rescheduling system

Test number To test the effect of On parameters

Test 1

• Test 1a, 1b

and 1 c

Processing time variations

without ASA, limited ASA,

and full ASA.

Reactive FAM and Starting

time deviations, sequence

deviations and make-span

Test 2

• Test 2a and

2b

Processing time variations

with full ASA.

Reactive FAM and Starting

time deviations, sequence

deviations and make-span.

8.3.1.1 Validation of the detailed operation of the ASA

 This section describes a test (using data in Table 8.16) that was performed

in eM-Plant simulation software in order to check the functionality of the delayed

method calls for shifting jobs within the implemented system. These delayed

method calls are used with the match-up rescheduling algorithm in order to address

the issues of adaption synchrony. The change charts shown in the implementation

chapter are used to store the times needed to take jobs out of their predictively

assigned buffer of a stage, transport it from there to another buffer and insert it

there. The value of each of these change charts was kept in 5 minutes for this test.

Therefore, if the executional exception occured after 30 minutes, like in this test, the

jobs should not be inserted into their newly assigned buffer before 15 minutes plus

the estimated or required calculation time that will have elapsed within the

simulation system after the occurrence of the exception. Some may even be

inserted later, because the capacity of their new buffers was exhausted when they

arrived and they therefore had to wait for a job or jobs to leave the buffer. Figure

8.23 shows the console output printing window of eM-Plant to which the executed

job shifts during the calculation of the rescheduling solution are printed out. It can

be seen that the required computation time using simulation was estimated to be

roughly 30 seconds.

Table 8.16: Data for testing working of ASA

Nr. of
jobs

Nr. of
stages

Nr. of
machines

Processing
times

Exception
characteristics

50 5 At all
stages: 5

5 to 45
minutes

Occurred after 30
minutes, lasting for

90 minutes

Figure 8.23: Output console window of eM-Plant simulation software

This was estimated according to the principles explained in the ASA description in

chapter 5. The jobs that were inserted into a buffer that had sufficient capacity for

them, finished their shift at the simulation time of 45 minutes and roughly 30

seconds. Which is exactly the amount of 30 minutes (time point, when the exeption

occurred and the job shifting started) plus the estimated calculation time, plus the

15 minutes that are needed to physically shift the job to its newly assigned buffer.

The console print out also shows, that buffer 3 was full when the job shifts were

carried out. Therefore the jobs that were assigned to this buffer had to wait for

capacity and finished their shift only after 30 minutes had elapsed from the time

point of the exception. This shows, that the system correctly considers ASA and

works according to its described method.

8.3.1.2 Test 1 with ASA implemented in steps, and with reactive FAM

8.3.1.2.1 Test 1a without ASA and with reactive FAM
 The first test is done without the ASA but with the FAM considering

variation of job processing times on all stages. This implies that in the simulation

model, as soon as there is an exception the reactive calculation starts immediately

and reschedules jobs immediately (within the simulation model) without accounting

for the fact that in the real world, these changes could take more time. The data for

the first test is as follows:

Table 8.17: Data for Test case 1

Nr. of

jobs

Nr. of

stages

Nr. of

machines

Processing

times

Buffer capacity

50 4 At all

Stages

1:4

Varying

from 15 to

25 minutes

Varying from 6 to

8 at each stage

The exception duration was set to randomly occur for a duration of 40

minutes. The time required to obtain such information about the exception duration

can be put into the change chart as explained in chapter 6. The aim of Test 1a was

to test the effectiveness of the match-up rescheduling algorithm and the post

rescheduling analysis using the simulation based FAM. Table 8.18 shows the

overall results of the system. As seen in Table 8.18, the makespan of the best

rescheduling iteration was close to that of the predictive schedule, while there was

also significant reduction of the starting time deviations by this rescheduling

iteration as compared the upper bound starting time deviations. The best

rescheduling iteration rescheduled 4 jobs by itself. After post rescheduling analysis,

it was seen that 1 job more was rescheduled by the FAM in order to solve

bottleneck problems in the system which could occur in the future. In total out of the

50 jobs, only 5 were rescheduled if the user decided to pursue this post

rescheduling analysis. Interestingly, using this post analysis the makespan was the

same as the best rescheduling iteration, but resulted in very slight increase in

starting time deviations. Figures 8.24 and 8.25 show the per job starting time

deviation reduction on each stage.

Table 8.18: Summary of results for Test 1

Method Make-span
(hr:min.sec)

Starting time
deviations

(hr:min.sec)

Best resched. iteration 4:55.00 14.18

Upper bound 5:45.00 19.12

Predictive schedule 4:25.00

Post resched. Analysis 4:55.00 14.28

 Figure 8.24: Comparison of upper bounds and predictive schedule

 Figure 8.25 Comparison of rescheduling result with predictive schedule

It can be seen that as compared to the upper bound deviations, the

-40

-20

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on Stages 1 to 4

S
ta

rt
in

g
 t

im
e

 d
e

v
ia

ti
o

n
s

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

-60

-40

-20

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on Stages 1 to 4

S
ta

rt
in

g
 t

im
e

 d
e

v
ia

ti
o

n

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

rescheduling system resulted in lower deviations, albeit not zero. In addition, since

directly affected jobs are moved to other parallel machines, it increases the starting

time deviations on that machine, though, in a small amount. Put together, it seems

that the system does provide the user valuable inputs on what decisions he might

take on system exceptions. He is given clear options with possibilities to select the

rescheduling implementation scenario.

8.3.1.2.2 Test 1b with limited ASA but with reactive FAM

The aim of this test was to see the effect of gradually implementing the

ASA into the system. Here an overall change time of 20 minutes was inserted into

the system.

 Figure 8.26 Comparison of rescheduling results with predictive schedule

Data for the third test was the same as that for the first test case. Here however, the

ASA was implemented in this test to check its impact on the final result. Table 8.19

shows the results which need to be compared to Table 8.18 for the effects. As seen

the starting time deviations and the make-span increased only slightly.

Table 8.19: Summary of results for Test 1b

Method Make-span

(hr:min.sec)

Starting time

deviations
(hr:min.sec)

Best resched.

iteration

5:05.00 15.33

Upper bound 5:45.00 19.12

Predictive schedule 4:25.00

Post resched.

Analysis

5:05.00 15.33

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on Stages 1 to 4

S
ta

rt
in

g
 t

im
e

 d
e

v
ia

ti
o

n

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

The reasons for this behaviour are described next. The most interesting

result of using the ASA was that no jobs were selected for rescheduling using the

FAM during post rescheduling analysis (as compared to test 1a – where 1 job was

selected). Further, a different iteration was selected as a final rescheduling solution.

The reason why this happened is because the ASA rescheduled the jobs at a later

and appropriate point of time, thus, giving a rather realistic result – the result that by

the time the changes would actually be ready on the shop floor, there would space

to accommodate the changes in the buffers, thus needing no more rescheduling

during the post rescheduling analysis phase. Figures 8.25 and 8.26 should be

compared to starting time deviations between the test 1a and 1b. As seen, with the

use of the ASA no significant differences in starting time deviations occur.

8.3.1.2.3 Test 1c with full ASA and with reactive FAM
In this test, a same configuration was kept as compared to test 1a and

1b, but with slightly increased exception duration. The ASA factors set-out time,

transportation time, and set-in times discussed in chapter 6 were set to 5, 10 and 5

respectively. Table 8.20 show the data used while Table 8.21 shows the results

obtained. Figure 8.27 shows the comparison of the Upper Bounds and the

predictive plan. Figure 8.28 show the comparison of the rescheduling solution and

the predictive plan.

Figure 8.28 when compared to Figure 8.25 and 8.26 shows that the

deviations are quite similar meaning ultimately that with increasing ASA inclusion in

the system, the system proves to be at least as effective. Hence it can be

concluded that with higher processing time variations, the system effectively

reduces deviations from its predictive trajectory when the ASA and the reactive

FAM are considered.

 Table 8.20 Settings used for the test
Variables Values
Processing times 15 to 25 random

Buffer sizes 8:7:7:8
Exception duration 1 hour 30 minutes
Exception occurrence 30 minutes into the planning horizon

 Table 8.21 Summary of results for test 1c
Methods Makespan

(hr:min.sec)
Starting time deviations

(hr:min.sec)
Predictive FAM 4:40

Upper Bounds 5:25 18:04

Best rescheduling iteration 5:10 15:33

-40

-20

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on stage 1 to 4

S
ta

rt
in

g
 t

im
e

 d
e

v
ia

ti
o

n
s

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

Figure 8.27: Comparison of upper bounds and predictive schedule

-40

-20

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on Stages 1 to 4

S
ta

rt
in

g
 t

im
e

 d
e

v
ia

ti
o

n
s

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

Figure 8.28: Comparison of rescheduling result with predictive schedule

8.3.1.3 Test 2 with ASA implemented in steps to test effectiveness of
 the rescheduling system

8.3.1.3.1 Test 2a without ASA but with reactive FAM

 A second test was carried out to test the influence of setting the

processing times to be the same across all stages for all jobs, in order to check

applicability for wider range of production systems, and increasing the exception

duration to 1.5 hours. Table 8.22 shows the data used. The processing times were

set to 20 minutes, 25 minutes, 20 minutes and 25 minutes respectively for stages 1

to 4.

 Table 8.22: Data for Test case 2a

Nr.
of

jobs

Nr. of
stages

Nr. of
machines

Processing
times

Buffer
capacity

Stage 1:4 20 Minutes

Stage 2:4 25 Minutes

Stage 3:4 20 Minutes

50 4

Stage 4:4 25 Minutes

Varying

from 4 to 6
at each

stage

Table 8.23 shows the summary of the results obtained. It can be seen that even

when the processing times were similar across stages, the system resulted in

make-span and starting time deviations closer to the original\predictive schedule.

Table 8.23: Summary of results for Test 2a

Method Make-span

(hr:min.sec)

Starting time deviati-

ons (hr:min.sec)

Best resched. iteration 5:25.00 3.16

Upper bound 5:55 6.33

Predictive schedule 5:15.00

Post resched. Analysis 5:25.00 3.16

 Figure 8.29 Comparison of rescheduling result with the predictive schedule

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on Stages 1 to 4

S
ta

rt
in

g
 t

im
e

 d
e

v
ia

ti
o

n
s

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

Figure 8.30 Comparison of upper bounds and predictive schedule

On the other hand, the upper bounds resulted in significant increase in

make-span and starting time deviations. On conducting post rescheduling analysis,

it was seen that the FAM did not reschedule any more jobs, and consequently the

results after this analysis remained the same as that obtained by the best

-60

-40

-20

0

20

40

60

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on Stages 1 to 4

S
ta

rt
in

g
 t

im
e
 d

e
v

ia
ti

o
n

s

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

rescheduling iteration. Figure 8.29 and 8.30 shows the graphical comparison

between the rescheduling solution and the upper bound seen against the predictive

schedule. Once again, it is seen that we could match-up the original schedule to the

new one as much as possible.

8.3.1.3.2 Test 2b with ASA and with reactive FAM

A second test was conducted within this group with similar processing

times, and this time using the ASA with similar values as used in test group 1. Table

8.24 shows the data used while Table 8.25 shows the results obtained. Figure 8.31

shows the reduction in starting time deviations using the developed approach. Here

it can be seen that although the makespan was better than the upper bounds, the

starting time deviations were increased when compared to the result of Test 2a (or

Figure 8.29). So it seems that with the ASA, when processing times are similar the

system does not help in reducing deviations.

 Table 8.24 Data used for testing system
Variables Values

Processing times 20:25:20:25
Buffer sizes 8:7:7:8
Exception duration 50 minutes
Exception to occur at 1 hour into the planning horizon

 Table 8.25 Summary of results for Test 2b

Method Makespan
(hr:min.sec)

Starting time deviations
(hr:min.sec)

Predictive FAM 5:15
Upper Bounds 5:55 6:33

Best rescheduling iteration 5:45 5:09

-20

-10

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Jobs 1 to 50 on Stages 1 to 4

S
ta

rt
in

g
 t

im
e

 d
e

v
ia

ti
o

n
s

(m
in

u
te

s
)

Stage 1 Stage 2 Stage 3 Stage 4

 Figure 8.31 Comparison of rescheduling result with predictive schedule

The system seems to work best for varying processing times. The reason

for the worser results here is the fashion the jobs are rescheduled on machines with

the maximum capacity. Jobs move in round robin fashion thus not providing the

expected results.

8.3.2 Testing the selective re-routing system

Table 8.26 shows the test plan for testing the selective re-routing system.

The main aims of all the tests here was to prove that it is possible to change a plan

under execution as late as possible in the planning horizon, and as less as

possible. Changing as late as possible was not possible using the match-up

rescheduling system because the aim was to bring back the deviations to their

original trajectories.

Table 8.26 Test plan for testing selective re-routing system

Test number To test the effect of On parameters
Test 1 and Test 2 Processing time

variations
Reactive FAM, Make-span,
Sequence deviations and
number of jobs
rescheduled

These tests are designed randomly to test the effect of randomly set processing

times among a set of jobs. Several tests more were conducted, but not shown here

to limit the amount of data presented.

8.3.2.1 Test 1 to check late change criteria using the selective re-routing

system

 In this test 50 jobs were taken, with a system consisting of 4 stages each

with 4 machines. The processing time varied randomly between 5 to 30 minutes.

The exception was set to occur after 30 minutes for a duration of 90 minutes. It can

be seen from Table 8.27 that a saving of 1 hour can be expected if changes are

made using the developed approach. Figure 8.32 shows the finishing times of the

jobs using the methods developed and incorporating the time of the exception and

the time of the change in the figure. It can be seen that the actual changes are

made much later in the schedule. As seen the exception duration was set to about

35 % of the total make-span. Exceptions of more duration can be considered but in

the author’s opinion, such long exceptions can be better handled by other methods

available to management to manage changes. The methods developed here are

expected to work best for exception durations less than 30 % of the total make-

span. This is because of the nature of the method of making changes from the last

jobs of the stages.

0

50

100

150

200

250

300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Jobs 1 to 50

J
o

b
 f

in
is

h
in

g
 t

im
e
s

(m
in

u
te

s
)

Predictive plan with FAM Final rescheduling result

Figure 8.32 Job finishing times and events in the reactive system

Table 8.27 Summary of results for Test 1

Method Makespan

(hr:min.sec)

Number of jobs

changed

Predictive FAM plan 04:00.00

Upper bounds plan 05:30.00

Reactive FAM plan 04:30.00 6

8.3.2.2 Test 2 to check late change criteria using the selective re-routing

system

 For this test the same settings were used, except for the processing times.

The processing times were randomly set between 5 to 30 minutes for all jobs. 50

jobs were considered on 4 stages, each stage with 4 machines, and a exception of

90 minutes set to occur after 30 minutes of schedule progress.

 Once again, as seen in Table 8.28, a reduction in makespan of 40 minutes

occurred. Figure 8.33 shows the comparison of the job finishing times for the

different methods and the start and end of the exception process and the change

process.

Table 8.28 Summary of results for Test 2

Method Makespan

(hr:min.sec)

Number of jobs

changed

Predictive FAM plan 03:40.00

Upper bounds plan 05:05.00

Reactive FAM plan 04:15.00 6

Exception time Changes made

Here again, the changes took place very late in the schedule. The planners

of the system have time in hand to make changes that could still result in a better

make-span. Note that in this system, it was not required to use the Adaptation

Synchrony Analysis (ASA) system as was developed for the match-up rescheduling

system. Also since the jobs are the ones changed late into the planning horizon, it

is not required to use the reactive FAM as was used in the match-up rescheduling

system.

0

50

100

150

200

250

300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Jobs (1 to 50)

J
o

b
 f

in
is

h
in

g
 t

im
e
s

(M
in

u
te

s
)

Predictive plan with FAM Final rescheduling solution

Figure 8.33 Job finishing times and events in the reactive system

8.4 Conclusions

 In this chapter, we described the results of testing the systems developed in

this thesis. The predictive system was thoroughly tested to result in definite

quantitative benefits. Tests were carried out with parameters choosen

systematically. A reason for this is the fact that the number of variables one could

the test the system for are prohibitively large. Testing the system on these tests

give an impression about the workability of the system to different scenarios. As

noticed in most cases, the rule-based simulation resulted in better performance

measures than the pure optimization algorithm. Although this may not be the case

in systems where several more elements are added, the system developed proves

its applicability to such systems which can be further extended. The predictive

system developed is unique in the way that it considered extreme details that can

exist in production systems, and is yet able to schedule jobs based on specific

constraints and delivery dates. The most important criteria of makespan were met.

For the delivery time or lateness criteria, the system schedules job in such a way

that it achieves the delivery times, and still as much as possible tries to achieve the

Exception time Changes made

makespan criteria. The reactive system also resulted in several benefits. This

system too was tested randomly on certain variables. As noticed, the system

realistically considers the effect of including the actual change times on the overall

change management solution. Specifically, we saw that the system rescheduled

very few jobs and did tasks like post rescheduling analysis, which is also an

important highlight of the system. Besides this the rescheduling system can also

bring deviations back to their planning trajectory as much as possible. The

approach in this thesis can be extended to consider other possibilities of

rescheduling jobs like offloading work to suppliers, or compressing processing

times of existing jobs by adding more resources and labor to the existing shop floor.

The methods developed in this thesis have been developed as a decision support

system, which can be extended further to include real-time information from a real

production system and additional scheduling details and concerns.

Chapter 9 Contributions, conclusions and

further research

9.1 Contributions of this thesis

The specific contributions of this thesis to the state of the art research in

scheduling and rescheduling are as follows:

1. A system was developed which resulted in knowledge on how a combination of

simulation and optimization can be realized to result in additional benefits for

scheduling a flexible production system configuration. This system resulted in

definite improvements in system performance for the flexible production system

as seen in results. Specific features about this system are:

1.1 The optimization algorithm which extends and builds on top of an

established algorithm is relatively trouble-free, yet produces fairly

good results in terms of make-span and delivery time optimization.

1.2 The optimization system considers special and standard job flows

with or without due dates and with or without specific part flows

within the same system alongwith constraints like limited buffer

spaces, materials, tools and resource availability which makes the

problem more complex and which none of the researchers have

considered in their research. The result of this consideration is that

the system becomes applicable to a wider range of manufacturing

situations where part flow depends on technological (machining)

restrictions imposed by the parts and the machines. A system which

works has been developed as a starting point, and this system can

be expanded to include more details in the future, resulting in a

comprehensive planning and scheduling tool within eM-Plant.

1.3 A first small step of combining simulation and optimization using eM-

Plant simulation software was taken in this thesis, which can be

extended in the future. eM-Plant simulation software already offers

the most powerful modeling environment with great flexibility in

modeling complex sitations. The rule based simulation system can

be applied in a general way to encompass the broader

manufacturing organization elements and events. The rules

developed in this system were developed for buffer elements and to

handle bottleneck and optimality problems. Similarly, more general

rules for other elements like transportation equipment, pallets, etc or

any other events, can be written in the form of these rules. The

principles developed here are easy to apply, with the possibility to

set, edit and write own rule generator logic for these elements to suit

custom situations in the simulation. This way, complexity is handled,

as well as ensuring that the final scheduling solution is as near to the

optimal one or atleast a good one, which encompasses great details.

2. A system was developed for rescheduling which resulted in knowledge on how

and if a combination of simulation and optimization can result in additional

benefits. This system resulted in improvements in system performance for the

flexible production system as seen in results. Specific features and

contrubutions of this system are:

2.1 The rescheduling system provided drastic reduction in solutions for

rescheduling, whilst also considering and solving problems of

adaptation synchrony analysis.

2.2.1 This was done by the optimization algorithm, which provided

 the simulation system with alternative solutions, alongwith

 providing feedback on ASA.

 2.2.2 The simulation system did not simulate each and every

 constellation consisting of every job, but the overall iteration,

 by using the updating capacity principle.

2.2 The rule based Flow Analyser Module (FAM) simulation system was

used to provide problem free execution of the rescheduling solution.

It was seen that future problems can indeed be detected, and solved

in the current rescheduling step. The number of jobs rescheduled

were kept to a bare minimum by using the rule based FAM system,

thus meaning, that the entire schedule need not be rescheduled, but

only a few jobs further, for which problems are expected.

2.3 Both the above points were considered, whilst bringing back

deviation to the planned trajectory as much as possible.

2.4 The selective re-routing system changed the schedule as late as

possible in the planning horizon. It was seen that good results were

obtained here too. The planners can neglect the exceptions, and yet

be able to account for them at a later time point.

Results show that these approaches indeed provide critical information and helps in

improving the efficiency of the schedule before and after implementation in the real

world by considering known and unknown events and exceptions.

9.2 Conclusions

The predictive system has several practical applications. Many high volume

production facilities have several separate flow shops. The process in such facilities

is such that machines are flexible or interchangeable at each stage and therefore

practically similar. Some production facilities also have special expertise in

machining a family of parts, where each part follows the same sequence, but each

machine is flexible to accommodate the slight variety in parts. Assembly lines, in

which more than one type of product may be manufactured and each work station

has multiple machines, is also an obvious application of this problem. Similarly, the

situation where a parallel machine is added to ease pressure on a bottleneck

facility, and\or to increase production capacities can be viewed as an application of

the suggested problem. The reactive system could be used in situations where

Just-In-Time or Just-In-Sequence production methods are used, where parts and

supplies are delivered according to a precalculated plan, and deviations in

production are not advisable.

In this thesis, several test examples were taken, solved and simulated to

provide a greater understanding of the underlying system. The solutions generated

alternative policies in both the predictive and reactive areas, are in fact the

significant processes which need to be handled in the predictive and reactive

planning phases. Consequently, this means that significant processes can in fact be

automatically detected, and handled efficiently using a combination of optimization

algorithms and simulation.

9.3 Further research

During the course of this research work, the following observations were

made which can be addressed by further research:

1. In this work, scheduling of special jobs with routes only was limited to

scheduling them last. These jobs could be clubbed with the standard jobs and a

procedure could be developed, where such special jobs are scheduled

according to the critical stage calculation. However, this may or may not yield

better make-span, because of the fact that the selected special job may have

co-incidently a routing on the latest available machines on all the stages. A

method can be developed and tested to see if combining standard jobs with

such special jobs and using the critical stage calculation as a guiding method, is

possible and helpful at all.

2. In this work, scheduling standard jobs was done by considering the earliest

starting times, processing times and the tails of special jobs in the critical stage

calculation. Though this method gave good results, the starting times of special

jobs were not updated when calculating the critical stage. This was because,

the critical stage calculation was directed at the standard jobs, and not the

special jobs which are not going to be scheduled anyway. Further research in

this direction could be considering actual and updated starting times of the

special jobs. This may lead improvement over the method used currently in this

work.

3. In this work, rescheduling was done by considering all jobs – standard and

special on the same priority level. Special jobs with routings, were not

considered. This was done to first prove that the rescheduling methods

developed here work and are beneficial. Including jobs with special routing can

be included in the future.

4. The selective rerouting system did not use the reactive FAM and the ASA

methods because jobs which are last in the planning horizon are rescheduled

last, giving ample time to make changes in the real world. The reactive FAM

and the ASA can be implemented for the selective rerouting algorithm, though

which will be helpful only when the exception occurs close to the end of the

planning horizon.

5. One area where further improvement is possible is the detailing of the

simulation model. For example, until now the PMFS model used in the sysem

does not contain any transportation elements like forklifts or containers. Other

examples include the modelling of workers, set-up times, or even very specific

events etc. In order to make the model more detailed, these elements should be

integrated into the model using the developed base of the Flow Analyser

Module (FAM). eM-Plant also already models these elements as standard

modelling objects within its object library. This makes a more detailed schedule

analysis possible.

6. The effects and costs of rescheduling a current production plan on other nodes

of the bigger manufacturing organization and the supply chain could be

developed. This could be of special interest to industry and research.

7. In the match-up rescheduling area, it seems that the schedule cannot be fully

brought back to its predictive level (though, better results are obtained against

doing no rescheduling at all) due to the limited possibilities considered at the

shop floor. Other possibilities for reduction of starting time deviations could be

encompassing the wider manufacturing system, and alternative possibilities

such as compressing processing times of jobs by adding more resources and

manpower to the already present equipment. These other possibilities will have

impact on costs, and this might prove an additional topic of further research.

8. The rescheduling system can be developed to work with probabilistic exception

durations, where the best and worst case exception durations can be taken to

develop estimated on rescheduling efforts required. In cases where exception

durations are hard to estimate, over estimating the duration slightly by making

approximations, can be tried to be used to estimate rescheduling efforts.

Nevertheless, in such cases, the Adaptation Synchrony Analysis, and the

reactive FAM should still work as developed.

VI ACKNOWLEDGEMENT

I express heartfelt gratitude towards Professor Wilhelm Dangelmaier for his

mentoring and support during the time I spent at his group. Without his direction,

this work simply wouldn’t have been completed. I also extend my thanks to the

International Graduate School Dynamic Intelligent Systems at Paderborn University

for extending me their support.

Looking back to the three years that I spent in Paderborn, I see the

everyday difficulties, small but important things to do everywhere, at work, at home.

Sometimes, it was depressing; the mood was down over uncertainty of my future.

Sometimes i was upbeat as I got results in my work. Nevertheless, I could find my

way as time went by. This was possible only because several people offered me

their assistance in every phase of my work and stay in Paderborn. I truly appreciate

this assistance, and I find myself extremely lucky to have been close to such

wonderful people. Besides earning my PhD, I could also learn important lessons of

discipline, punctuality and the german way of doing things in a systematic way. I

consider these soft skills particularly necessary in an increasing global work arena.

 Finally I want to thank all my colleagues for their everyday assistance in

small and big problems. Particularly, I want to thank Dr. Bengt Mueck for being

patient to listen to my ideas and provide constructive criticism. He particularly got

me close to the German way of life by telling me a lot of stories right from german

soccer to the german military! I also want to thank Dr. Werner Franke for all his

warmth that he extended to me during my stay in Paderborn. I thank Benjamin

Klöpper with whom I always had useful discussions. I also thank Melanie Fearn for

always assisting me in office work. In particular I thank my student Thomas Seeger

very much for assisting me in the implementation of some difficult algorithms.

Finally I want to thank Prof. Suhl and Prof. Meyer auf der Heide for reviewing this

piece of work. I also want to express my gratitude to them for giving me this once in

a lifetime opportunity to work with them. I think the combination of business

computing and manufacturing competence will help me boost my career in the

future. I wish to thank Prof. Wilhelm Schäfer and Dr. Eckhard Steffen at the

International Graduate School of Dynamic Intelligent Systems for giving me an

opportunity of a life time to undertake this studies.

 I know I will miss Paderborn and all these people very much, and it’s never

easy to leave a place you liked so much...

VII REFERENCES

[1] Abumaizar, R. J., and J. A. Svestka. 1997. Rescheduling job shops under

random disruptions. International Journal of Production Research 35 (7):

2065-2082.

[2] Adams, J., Balas, E., Zawack, D., 1988, The shifting bottleneck procedure

for job shop scheduling, Management science, Vol. 34, No.3, pp. 391-401.

[3] Akturk, M. S., and E. Gorgulu. 1999. Match-up scheduling under a machine

breakdown. European Journal of Operational Research 112 (1): 81-97.

[4] Baptiste, P., Favrel, J., 1993. Taking into account the rescheduling problem

during the scheduling phase. Production planning and control 4, 349-360.

[5] Baker, K.R., Introduction to sequencing and scheduling, John-Wiley and

sons, Inc, 1974, ISBN: 0-471-04555-1.

[6] Banks, J., Handbook of simulation – Principles, Methodology, Advanced,

Applications, and Practice. John-Wiley and sons, Inc, 1998, ISBN 0-471-

13403-1.

[7] Bhaskaran, K., Pinedo; M., 1991. Dispatching. In: Salvendy, G. (Ed.),

Handbook of Industrial Engineering. John Wiley, New York, Chapter 83.

[8] Billaut, J.C., Roubellat, F., 1996. A new method for workshop real time

scheduling. International journal of production research 34, 1555-1579.

[9] Bock, S., Lecture on Real-Time control of complex production and logistic

processes, Summer semester 2005, Paderborn University.

[10] Brah, S. A, Hunsucker, J. L., 1991, Branch and Bound algorithm for the flow

shop with multiple processors, European Journal of Operational Research,

Vol. 51, pp- 88-99.

[11] Brockmann, K., Dangelmaier, W., 1997. Ein paralleler Branch and Bound –

Algorithmus zur Minimierung der Zykluszeit in Fleißlinien mit parallelen

maschinen, Report of Sonderforschungsbereich 376, Massive Parallelität –

Algorithmen entwurfsmethoden anwendungen, Universität – Gesamthochs-

hule Paderborn, Germany.

[12] Carlier, J., 1987, Scheduling jobs with release dates and tails on identical

machines to minimize the make span, European Journal of Operational

Research, Vol. 29, pp. 298-306.

[13] Carlier, J., 1982, The one-machine sequencing problem, European Journal

of Operational Research, Vol. 11, pp. 42-47.

[14] Chen, F., Drezner, Z., Ryan, J.K., Simchi-Levi, D., 2000. Quantifying the

bullwhip effect in a simple supply chain: The impact of forecasting, lead-

times and information. Management Science 46, 436-443.

[15] Cheng, J., Karuno, Y., and Kise, H. 2001. A shifting bottleneck approach for

a parallel machine flow shop scheduling problem. Journal of Operations

Research, Society of Japan, Vol. 44, No. 2, pp 140 – 156.

[16] Chong, C. S., A. I. Sivakumar, and R. Gay. 2003. Simulation-based

scheduling for dynamic discrete manufacturing. In Proceedings of the 2003

Winter Simulation Conference, ed. S. Chick, P. J. Sanchez, D. Ferrin, and

D. J. Morrice, 1465 - 1473. Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers.

[17] Church, L.K., Uzsoy, R., 1992. Analysis of periodic and event driven

rescheduling policies in dynamic shops. International Journal of Computer

Integrated Manufacturing 5, 153-163.

[18] Dangelmaier, Wilhelm; Becker, B. D., SIMPLE++ : A new object oriented

simulation system with expert system support. The Eastern Simulation

Conference (ESC), Orlando, Florida, 18 – 21 April 1988.

[19] Dutta, A., 1990. Reacting to scheduling exceptions in FMS environments.

IIE Transactions 22, 300-314.

[20] Drake, G., Smith, J., Peters, B., 1995. Simulation as a planning and

scheduling tool for flexible manufacturing systems. In proceedings of the

1995 Winter Simulation Conference, ed. Alexopoulos, C., Kang, K.,

Lilegdon, W., Goldsman, D. Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers.

[21] Gupta, J.N.D., Ruiz-Torres, A.J., 2000, Minimizing makespan subject to

minimum total flow time on identical parallel machines, European Journal of

Operational Research, Vol. 125, No.5, pp.616-625.

[22] Haldun, A., Lawley, M., McKay, K., Mohan, S., Uzsoy, R., 2005. Executing

production schedules in the face of disturbances: A review. European

Journal of Operational Research 161 (2005), 86-110.

[23] Harmonosky, C. M., R. H. Farr, and M. C. Ni. 1997. Selective rerouting

using simulated steady state system data. In Proceedings of the 1997

Winter Simulation Conference, ed. S. Andradottir, K. J. Healy, D. H.

Withers, and B. L. Nelson, 1293 - 1298. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers.

[24] Hutchison, J., Leong, K., Snyder, D., Ward, P., 1991. Scheduling

approached for random job shop flexible manufacturing systems.

International Journal of Production Research 29, 1053-1067.

[25] Jain, A. K., and H. A. Elmaraghy. 1997. Production scheduling\rescheduling

in flexible manufacturing. International Journal of Production Research 35

(1): 281-309.

[26] Kouvelis, P., Yu, G., 1997. Robust Discrete Optimization and its

Applications. Kluver Academic Publishers.

[27] Krauth, J. 2005. Simulation based Production Planning and Scheduling:

Sim-Serv´s experience. Technical Notes, Simulation News Europe. Issue

43. July 2005. ISSN 0929-2268.

[28] Lawrence, S. R., Sewell, S. E., 1997. Heuristic, optimal, static and dynamic

schedules when processing times are uncertain. Journal of Operations

Management 15, 71-82.

[29] Leon, V. J., S. D. Wu, and R. H. Storer. 1994. A game-theoretic control

approach for job shops in the presence of disruptions. International journal

of production research 32: 1451-1476.

[30] Leon, V. J., S. D. Wu, and R. H. Storer. 1993. Robustness measures and

robust scheduling for job shops. IIE Transactions 26, 32-43.

[31] Lin, G. Y. J., Solberg, J. J., 1992. Integrated shop-floor control using

autonomous agents. IIE Transactions 24, 57-71.

[32] Manivannan, S., Banks, J., 1991. Real-Time Control of a manufacturing cell

using knowledge-based simulation. In Proceedings of the 1991 Winter

Simulation Conference, ed. B. Nelson, W. D. Kelton, G. M. Clark, 251 - 260.

Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

[33] Matsuura, H., Tsubone, H., Kanezashi, M., 1993. Sequencing, dispatching,

and switching in a dynamic manufacturing environment. International

Journal of Production Research 31, 1671-1688.

[34] McKay, K. N., Safayeni, F., Buzacott, J. A., 1995. An information systems

based paradigm for decision making in rapidly changing industries. Control

Engineering Practice 3 (1), 77-88.

[35] Mehta, S. V., Uzsoy, R., 1999. Predictable scheduling of a single machine

subject to breakdowns. International Journal of Computer-Integrated

Manufacturing 12, 15-38.

[36] Mueck, B., Dangelmaier, W. and Fischer, M. 2003. Components for the

active support of the analysis of material flow simulations in a virtual

environment, In Proceedings of the 15th European Simulation Symposium,

ed. A. Verbraeck and V. Hlupic, 367-371. Erlangen Germany: SCS

publishing house e.V.

[37] Musselman, K., Uzsoy, R., 2001. Advanced planning and scheduling for

manufacturing. In: Salvendy, G. (Ed.), Handbook of Industrial Engineering.

John Wiley.

[38] Musselman, K., Reilly, J., Duket, S., 2002. The role of simulation in

advanced planning and scheduling. In proceedings of the 2002 Winter

Simulation Conference, ed. Yücesan, E., Chen, C., Snowdon, J., and

Chranes, J. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers.

[39] O´Kane, J. F., 2000. A knowledge-based system for reactive scheduling

decision-making in FMS. Journal of Intelligent Manufacturing 11 (5), 461-

474.

[40] Phadnis, S., Irani, S., 2003, Development of a new heuristic for scheduling

flow-shops with parallel machines by prioritizing bottleneck stages,

Transactions of the SDPS, Vol. 7, No. 1, pp 87-97.

[41] Pinedo, M., Scheduling Theory, Algorithms, and systems, second edition,

Prentice Hall, 2001.

[42] Russel, S., Norvig, P., Artificial intelligence – A modern approach, Prentice

Hall, 2003, ISBN 0-13-080302-02.

[43] Sun, D., Lin, L., 1994. A dynamic job shop scheduling framework: A

backward approach. International Journal of Production Research 32, 967-

985.

[44] Shafaei, R., Brunn, P., 1999a. Workshop scheduling using practical

(innacurate) data. Part 1. The performance of heuristic scheduling rules in a

dynamic job shop environment using a rolling horizon approach.

International Journal of Production Research 37, 3913-3925.

[45] Tremble, J., Hunter, K., Concannon, K., 2003. Simul8-Planner: Simulation

based planning and scheduling. In Proceedings of the 2003 Winter

Simulation Conference, ed. S. Chick, P. J. Sanchez, D. Ferrin, and D. J.

Morris. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers.

[46] Technomatix eM-Plant user guide 2007.

[47] Ten Hompel, M., Heidenblut, V., 2005. Taschenlexikon Logistik –

Abkürzungen, Definitionen und Erläuterungen der wichtigsten Begriffe aus

Materialfluss und Logistik, VDI series, ISBN3-540-28581-4.

[48] Wan, Y.-W., 1995. Which is better, off-line or real-time scheduling?

International journal of Production Research 33, 2053-2059.

[49] Wu, S. D., Wysk, R. A., 1989. An application of discrete-event simulation to

on-line control and scheduling of flexible manufacturing. International

Journal of Production Research 27 (9).

[50] Wu, S. D., Byeon, E., Storer, R. H., 1999. A graph-theoretic decomposition

of job shop scheduling problems to achieve scheduling robustness.

Operations Research 47, 113-124.

[51] Yamamoto, M., Nof, S. Y., 1985. Scheduling\re-scheduling in a

manufacturing operation system environment. International Journal of

Production Research 23, 795-722.

[52] Vollman, T., Berry, W., Whybark, D., Jacobs, F., 2005. Manufacturing

planning and control systems for supply chain management. Mc-Graw Hill,

ISBN 007144033X.

[53] www.thefreedictionary.com

VIII APPENDICES

APPENDIX 1: Detail iterations for predictive scheduling algorithm and
 validation

Iteration 2

At the beginning of this iteration, job 3 is already in the list of scheduled jobs. In this

iteration it is checked if special jobs (especially job 5 and 7) can be scheduled since

they have delivery times. The check fails in step 11, and hence the iteration

proceeds with scheduling other standard jobs. Stage 1 is the critical stage and job

1, 2, and 4 have common tails on the critical stage. Hence, maximum processing

times for these jobs is checked. Then it is found that job 4 has the maximum

processing time on the critical stage and is hence selected to be scheduled on

earliest available machines on stage 1 and stage 2. The machine ready times are

updated and shown in Table A7. Note here that during the calculation of the critical

stage, special jobs are considered to act as standard jobs when considering their

starting times. This is logical since, we know that special jobs are not going to be

scheduled anyway. The idea is to only include the contribution of special jobs to the

overall calculation of the critical stage, and then select a particular standard job.

Table A1 Job ready times at stage - 1 (ai,1)

 Jobs

 1 2 4 5 6 7 8 9 10

ai,1 0 0 0 1:00:00.0000 30:00.0000 0 0 0 0

Table A2 Tails for each job at each stage

Tails Jobs

at Stage 1 - jiq , at Stage 2 - jiq ,

1 20 0

2 20 0

4 20 0

5 15 0

6 20 0

7 20 0

8 30 0

9 15 0

10 15 0

 Table A3 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

1 0

2 0

3 0

4 0

5 1:00:00.0000

6 30:00.0000

7 0

8 0

9 0

10 0

Table A4 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

1 25

2 25

3 25

4 30

5 75

6 60

7 10

8 15

9 30

10 15

Table A5 Lower bounds computed for both stages

Stage 1 Stage 2

Lower

Bound 1

Lower

Bound 2

Lower

Bound 1

Lower

Bound 2

45 112.5 45 100

45 45

50 50

90 90

80 80

30 30

45 45

45 45

45 30

Table A6 Jobs scheduled list after this iteration
Job 3
Job 4

Table A7 Updating machine ready times on stage 1 and stage 2 after

iteration 2
Stage 1 Stage 2

Machine 1 Machine 2 Machine 1 Machine 2

25 30 50 50

Iteration 3

At the beginning of this iteration, job 3 and 4 is already in the list of scheduled jobs.

In this iteration it is checked if special jobs (especially job 5 and 7) can be

scheduled since they have delivery times. The check fails in step 11, and hence the

iteration proceeds with scheduling other standard jobs. In the third iteration, the

critical stage is stage 2. Since both jobs 1 and 2 have the same tails on the critical

stage, the maximum processing times are checked. Since they are also same, the

tie is broken by selecting a job with a lower number. So job 1 is selected for

scheduling and it is scheduled on the earliest available machines namely on

machine 1 on stage 1 and on machine 1 on stage 2. The machine ready times are

updated as shown in Table A14. Note the updated earliest starting times obtained

from the job ready times and the updated machine ready times on both stages.

Table A8 Job ready times at stage - 1 (ai,1)

 Jobs

 1 2 5 6 7 8 9 10

ai,1 0 0 1:00:00.0000 30:00.0000 0 0 0 0

Table A9 Tails for each job at each stage

Tails Jobs

at Stage 1 - jiq , at Stage 2 - jiq ,

1 20 0

2 20 0

5 15 0

6 20 0

7 20 0

8 30 0

9 15 0

10 15 0

 Table A10 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

1 25

2 25

5 1:00:00.000

6 30:00.0000

7 25

8 25

9 25

10 25

Table A11 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

1 50

2 50

5 75

6 50

7 50

8 50

9 55

10 50

Table A12 Lower bounds computed for both stages

Stage 1 Stage 2

Lower

Bound 1

Lower

Bound 2

Lower

Bound 1

Lower

Bound 2

70 122.5 70 127.5

70 70

90 90

85 70

55 70

70 80

55 70

55 65

Table A13 Jobs scheduled list after this iteration

Job 3
Job 4
Job 1

Table A14 Updating machine ready times on stage 1 and stage 2 after
iteration 3

Stage 1 Stage 2
Machine 1 Machine 2 Machine 1 Machine 2

50 30 70 50

Iteration 4

At the beginning of this iteration, job 3, 4 and 1 is already in the list of scheduled

jobs. In this iteration it is checked if special jobs (especially job 5 and 7) can be

scheduled since they have delivery times. The check fails in step 11, and hence the

iteration proceeds with scheduling other standard jobs. In this iteration, the critical

stage was stage 2 because of the highest lower bounds, and from the available

jobs, job 2 is selected and scheduled earliest on machine 2 on stage 1 and on

machine 2 on stage 2. Note that to schedule jobs earliest, they also have to be

available at that time. So the maximum of the job ready times and the machine

ready times are taken on stage 1 to schedule a particular job earliest. The machine

ready times are then updated. Refer to the table A17 on the updated machine ready

times after this iteration.

Table A15 Job ready times at stage - 1 (ai,1)

 Jobs

 2 5 6 7 8 9 10

ai,1 0 1:00:00.0000 30:00.0000 0 0 0 0

Table A16 Tails for each job at each stage

Tails Jobs

at Stage 1 - jiq , at Stage 2 - jiq ,

2 20 0

5 15 0

6 20 0

7 20 0

8 30 0

9 15 0

10 15 0

Table A17 Updating machine ready times on stage 1 and stage 2 after
iteration 4

Stage 1 Stage 2
Machine 1 Machine 2 Machine 1 Machine 2

50 55 70 75

 Table A18 Earliest start times at stage 1 for all jobs
Jobs si,1 → Stage 1

2 30

5 1:00:00.000

6 30:00.0000

7 30

8 30

9 30

10 30

Table A19 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

2 55

5 75

6 60

7 50

8 50

9 60

10 50

Table A20 Lower bounds computed for both stages

Stage 1 Stage 2

Lower

Bound 1

Lower

Bound 2

Lower

Bound 1

Lower

Bound 2

75 115 75 117.5

90 90

80 80

60 70

75 80

75 75

60 65

Table A21 Jobs scheduled list after this iteration

Job 3

Job 4
Job 1

Job 2

Iteration 5

At the beginning of this iteration, job 3, 4, 1 and 2 are already in the list of

scheduled jobs. In this iteration, only special jobs 5, 6, 7, 8, 9 and 10 are left, and

standard jobs are already scheduled. The special job scheduling system works by

first looking at jobs with delivery time and routing and then jobs with only delivery

times, followed by jobs with only routing. The jobs with only routings (job 6, 8, 9 and

10 in this case) is considered for scheduling last. So in this iteration, job 7 is

selected to checked to see if meets the scheduling criteria of delivery times. This

calculation is performed by doing the following check:

(Earliest time job 7 can start on stage 1 + processing time of job 7 on stage 1) +

(Earliest time job 7 can start on stage 2 + processing time on stage 2) >= Required

delivery time – Tolerance

This comes out as:

(55+10) + (70+20) >= 100 (or 120 – 20)

90 >= 100

Note that the comparison is only made with time the job 7 is expected to exit the

system after stage 2. Hence as seen the time 90 is compared to the required

delivery time minus the tolerance. The earliest start times for the first stage comes

from the updated machine ready times from the previous iteration shown in table

A19 of iteration 4, and the job ready times (which is zero in this case). The earliest

starting times for job 7 on stage 2 is bigger of the time when job 7 finishes on stage

1 which is 65, and the time when job 7 can actually start after one of the machines

becomes ready earliest on the second stage which is 70 (see table A17 of iteration

4 for machine ready times).

The result is false, meaning now is not the time for job 7 to be scheduled. So the

job is not scheduled and the control now considers job 5 for a scheduling try. The

same calculations are performed as described above for job 5, which will translate

as:

(60+15) + (75 + 15) >= 130 (or 150 – 20) or

90 >= 130

Note here that for earliest time job 5 can start on stage 1 is 60 because the tool for

job 5 was available at 60, so it cannot start earlier than 60. On the second stage job

5 can start at 75 at the earliest because it finished at that time on stage 1. Result of

the check is false, meaning job 5 cannot be scheduled now. At this point, the

system selects jobs for scheduling according to the earliest delivery times. This

makes job 7 schedulable first. This may result in jobs getting scheduled earlier, but

still not later than their required times. Job 7 is scheduled on the required machines

on stage 1 and stage 2 – namely machine 2 stage 1 and machine 1 on stage 2, and

the machine ready times are updated as seen in Table A26. Note that job 7 will exit

at time 90 (or 1:30:00.0000), but machine 1 on stage 2 will be ready at 120 (or

2:00.00.0000) because there is a maintenance scheduled on machine 1 from time

1:30:00.0000 to 2:00:00.0000.

Table A22 Jobs at this iteration

Jobs Stage 1 Stage 2 Path Delivery

time

Material\

Tool

availability

5 15 15 2:30:00.000 1:00:00.000

7 10 20 2,1 2:00:00.000

Table A23 Job ready times at stage - 1 (ai,1)

 Jobs

 5 7

ai,1 1:00:00.0000 0

Table A24 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

5 1:00:00.000

7 55

Table A25 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

5 75

7 70

Table A26 Updating machine ready times on stage 1 and stage 2 after
iteration 5

Stage 1 Stage 2
Machine 1 Machine 2 Machine 1 Machine 2

50 65 90 (+30) 75

Table A27 Jobs scheduled list
Job 3
Job 4
Job 1
Job 2
Job 7

Iteration 6

In this iteration, job 5 is selected for scheduling on machines depending on when it

becomes available and the earliest available machines, on machine 1 on stage 1

and machine 2 on stage 2. The machine ready times after scheduling job 5 are

shown in Table A32.

Table A28 Jobs in this iteration

Jobs Stage 1 Stage 2 Path Delivery

time

Material\

Tool

availability

5 15 15 2:30:00.000 1:00:00.000

Table A29 Job ready times at stage - 1 (ai,1)

 Jobs

 5

ai,1 1:00:00.0000

Table A30 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

5 1:00:00.000

Table A31 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

5 75

Table A32 Updating machine ready times on stage 1 and stage 2 after

iteration 6

Stage 1 Stage 2
Machine 1 Machine 2 Machine 1 Machine 2

75 65 120 90

Table A33 Jobs scheduled list after this iteration

Job 3
Job 4
Job 1

Job 2
Job 7

Job 5

Iteration 7

At the beginning of this iteration, all standard jobs and special jobs 7 and 5 with

delivery times have been scheduled. The remaining special jobs 6, 8, 9 and 10 are

left. In this iteration, job 6 is selected for scheduling on machines on its required

path. Note that machine 1 on stage 2 is maintained from time 90 until time 120. The

updated machine ready times are shown in Table A37.

Table A34 Job ready times at stage - 1 (ai,1)

 Jobs

 6 8 9 10

ai,1 30:00.0000 0 0 0

Table A35 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

6 75

8 75

9 65

10 75

Table A36 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

6 120

8 90

9 120

10 120

Table A37 Updating machine ready times on stage 1 and stage 2 after
iteration 7

Stage 1 Stage 2
Machine 1 Machine 2 Machine 1 Machine 2

105 65 140 90

Table A38 Jobs scheduled list after this iteration

Job 3

Job 4
Job 1

Job 2
Job 7

Job 5

Job 6

Iteration 8

In this iteration, job 8 is selected and scheduled on the required machine routing.

The updated machine ready times are shown in Table A43.

Table A39 Jobs for this iteration

Jobs Stage 1 Stage 2 Path Delivery

time

Material\

Tool

availability

8 15 30 1,2

9 30 15 2,1

10 15 15 1,1

Table A40 Job ready times at stage - 1 (ai,1)

 Jobs

 8 9 10

ai,1 0 0 0

Table A41 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

8 105

9 65

10 105

Table A42 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

8 120

9 140

10 140

Table A43 Updating machine ready times on stage 1 and stage 2 after
iteration 8

Stage 1 Stage 2
Machine 1 Machine 2 Machine 1 Machine 2

120 65 140 150

Table A44 Jobs scheduled list after this iteration

Job 3

Job 4
Job 1
Job 2
Job 7
Job 5
Job 6

Job 8

Iteration 9

In this iteration, job 9 is selected for scheduling on the required machines. The

machine ready times are shown in table A49.

Table A45 Jobs in this iteration

Jobs Stage 1 Stage 2 Path Delivery

time

Material\

Tool

availability

9 30 15 2,1

10 15 15 1,1

Table A46 Job ready times at stage - 1 (ai,1)

 Jobs

 9 10

ai,1 0 0

Table A47 Earliest start times at stage 1 for all jobs

Jobs si,1 → Stage 1

9 65

10 120

Table A48 Earliest start times at stage 2 for all jobs

Jobs si,2 → Stage 2

9 140

10 140

Table A49 Updating machine ready times on stage 1 and stage 2 after
iteration 9

Stage 1 Stage 2
Machine 1 Machine 2 Machine 1 Machine 2

120 95 155 150

Table A50 Jobs scheduled list after this iteration

Job 3
Job 4
Job 1

Job 2
Job 7

Job 5
Job 6

Job 8

Job 9

After scheduling job 10 in the next iteration, the machine ready times are updated in

Table A51. After all the iterations, the time when each job will exit the system is

shown in Table A52. As seen the special jobs with delivery times are delivered in

time. A screen shot of the bounds and selection of jobs in the software is shown in

Figure A1. As seen the bounds and the job selections match with the hand

calculations.

Table A51 Updating machine ready times on stage 1 and stage 2 after

iteration 10
Stage 1 Stage 2

Machine 1 Machine 2 Machine 1 Machine 2

135 105 170 150

Table A52 Job exit times for all jobs
Jobs 1 2 3 4 5 6 7 8 9 10

Exit times 70 75 50 50 90 140 120 150 155 170

 Figure A1 Results of bounds and selections in console of eM-Plant

APPENDIX 1.1: Detail events and results for simulation based FAM and
 validation

The reader is advised to refer to terminology such “Line 1” and “Line 2” described in

the predictive simulation based FAM system concepts in section 5.2.2.1.1, to

understand the following results. The system is solved by hand and validated by the

simulation run. Because the calculations are based on instantaenous data during

the simulation run, a simulation run is conducted, and the data recorded and

compared to the hand calculations using the data at that moment. Figure A2, A3

and A4 show the screenshots of the results obtained by the simulation run. The

detailed descriptions of the events and the calculations are shown as follows:

Table A53 FAM analysis of Job 3

 Summation
of

processing
times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
3 on stage

1 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 0 0 25 25 0
Line 2 0 0 25 25 0

FAM condition: FALSE

In the FAM analysis, the optimality rule generator was used. In the analysis, the

same sequence of jobs is used as generated by the optimization algorithm

described in Appendix 1. The same system configuration and processing times data

are used as shown in Table 5.1 to show the detailed results here. In the beginning,

job 3 enters decision point 1 on stage 1. Refere table A53. Since this is the first job,

there are no jobs on any machine on stage 1, and in the buffers, and hence the

processing times are zero. The total sum of time on line 1 and line 2 are 25 minutes

as seen in Table A53. Using the FAM rule logic, no rule is fired by the FAM, and the

system keeps job 3 at its calculated position of going further to line 1.

Table A54 FAM analysis of Job 4

 Summation
of

processing
times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
4 on stage

1 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 25 0 30 55 Job 3
Line 2 0 0 30 30 0

FAM condition = FALSE

After job 3, job 4 enters stage 1 and at the decision point is selected for FAM

analysis. Refer Table A54. At this point it finds job 3 in the buffer on line 1. After

doing calculations for optimality (described in section 5.2.2.1.1), using the total sum

in Table A54, it is found out that job 4 should go to line 2, but this was also the

result calculated by the optimization algorithm. Hence no overriding takes place for

job 4.

 Table A55 FAM analysis of Job 1
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
1 on stage

1 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 0 25 25 50 0

Line 2 30 0 25 55 Job 4
FAM condition: FALSE

After that job 1 entered stage 1, and selected for FAM analysis. Refer to Table A55.

The total sum is used for FAM analysis according to the FAM concept, and it is

found that line 1 is the best result for job 1. Hence, no rule was fired and job 1

proceeds to line 1.

 Table A56 FAM analysis of Job 2
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
2 on stage

1 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 25 25 25 75 Job 1

Line 2 0 30 25 55 0
FAM condition: FALSE

Next, job 2 arrives at the decision point and is selected for FAM analysis. Refer to

Table A56. Here job 1 is in buffer on line 1 and job 4 is being processed on the

machine on line 2. Here too the FAM logic is used to determine if the condition is

fulfilled using the total sum value. It is found out that it is not required to override the

results of the optimization algorithm. Then, job 7 arrives in the system, but since job

7 is special it is not selected for analysis. So job 7 proceeds to its pre-calculated

path.

Table A57 FAM analysis of Job 3
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
3 on stage

2 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 0 0 25 25 0
Line 2 0 0 25 25 0

FAM condition: FALSE

 Next job 3 finishes processing on stage 1 and prepares to go to stage 2,

where it is again selected for FAM analysis. Refer Table A57 for the details. Here

since there are no other jobs on stage 2, in the buffer and on the machines, the

values of processing times are accordingly zero. Upon conducting the condition

check, it is found that job 3 can stick to its original pre-calculated path.

 Table A58 FAM analysis of Job 4
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
4 on stage

2 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 0 20 20 40 0

Line 2 0 0 0 20 0
FAM condition: FALSE

Then, job 4 finished on stage 1 and beings to enter stage 2, where it is selected for

FAM analysis. Refer Table A58, with all the instantaenous data filled in. Upon

condition check, no rule is fired by the FAM and so job 4 proceeds to its original

path.

 Table A59 FAM analysis of Job 1
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
1 on stage

2 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 0 0 20 20 0

Line 2 0 0 20 20 0
FAM condition: FALSE

Next job 1 tries to enter stage 2 and is selected for FAM analysis. Refer Table A59

for the detailed instantaenous data. There were no jobs on the second stage when

job 1 came in for analysis, because job 4 and job 3 were already finished. Upon

analysis it is found that job 1 can take its pre-calculated path from the optimization

algorithm, or in other words the FAM condition was false.

 Table A60 FAM analysis of Job 2
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
2 on stage

2 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 15 0 20 35 Job 1

Line 2 0 0 20 20 0
FAM condition: FALSE

Then job 2 was finished on stage 1 and it prepares to go to stage 2. Refer Table

A60 for the detailed instantaenous data used in the FAM analysis. Upon analysis, it

is found that job 2 can take its pre-calculated path.

 Table A61 FAM analysis of Job 5
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
5 on stage

1 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 0 0 15 15 0
Line 2 0 5 15 20 0

FAM condition: FALSE

Then, job 5 enters stage 1 during the run-time clock of the simulation. At that time

job 7 is being processed on machine 2 on stage 1. Refer Table A61. Note that job 5

is a special job, with only delivery times !! Hence, this makes it possible to be

considered “standard” for FAM analysis, since the FAM only tries to reduce the

makespan of all the considered jobs – thus not affecting the delivery time results

negatively. There were no jobs in the buffer on stage 1 at that instant. Refer Table

A61 for analysis data. Upon analysis, it is found out that overriding is not required

because the FAM condition was false.

Then the next event was the incoming of job 6 in the system at the entrance. It

enters the decision point and is selected for analysis. Since job 6 is special, it is not

analysed, and it goes on its pre-calculated path in the system.

Then the next event was in the incoming of job 8 in the system at the entrance. It

enters the decision point and is selected for analysis. Since job 8 is special, it is not

analysed, and it goes on its pre-calculated path in the system. Then job 7 enters

stage 2 after finishing on stage 1, and since it is a special job it is not selected for

FAM analysis at the decision point for the second stage.

 Table A62 FAM analysis of Job 5
 Summation

of
processing

times of
jobs in

buffer (a)

Processing
time left for
current job
on machine

(b)

Processing
time for job
5 on stage

2 (c)

Total sum
(a+b+c)

Jobs in
buffer on
this line

Line 1 0 15 15 60 0
Line 2 0 0 15 15 0

FAM condition: FALSE

Then job 5 enters stage 2 and is selected for FAM analysis. Refer Table A62. As

mentioned earlier, job 5 is special according to the definition, but since it does not

have routing constraints, it is considered “standard” during the FAM analysis. Note

during this time, machine 1 on line 1 was maintained for a duration of 30 minutes

which is added to the total sum during the FAM analysis. Again, upon analysis, it is

found out that the FAM condition is false, which makes the rule unfirable. Job 5

hence follows its pre-calculated path.

Then job 6 arrives at the second stage and is selected for FAM analysis. Since job

6 is special, nothing is done with it, and it proceeds to its pre-calculated path.

Then job 8 arrives at the second stage and is selected for FAM analysis. Since job

8 is special, nothing is done with it, and it proceeds to its pre-calculated path.

Then job 9 arrives at the first stage and is selected for FAM analysis. Since job 9 is

special, nothing is done with it, and it proceeds to its pre-calculated path.

Then job 10 arrives at the first stage and is selected for FAM analysis. Since job 10

is special, nothing is done with it, and it proceeds to its pre-calculated path.

Then job 10 arrives at the second stage and is selected for FAM analysis. Since job

10 is special, nothing is done with it, and it proceeds to its pre-calculated path.

Then job 9 arrives at the second stage and is selected for FAM analysis. Since job

9 is special, nothing is done with it, and it proceeds to its pre-calculated path.

Figure A2 Run-time results of the FAM in eM-Plant console: Part 1

Figure A3 Run-time results of the simulation based FAM in eM-Plant console:

Part 2

Figure A4 Run-time results of the simulation based FAM in eM-Plant console:

Part 3

APPENDIX 2: Detail iterations for the match-up rescheduling
 algorithm and validation

Figure A5 Predictive FAM schedule gantt chart

Figure A6 Detailed iterations and selections in eM-Plant console

Table A63 Detailed results on makespan
Method Makespan

Predictive schedule 110
Upper bounds 135

Rescheduling solution 135

Table A64 Results on performance indicators
Method Starting time

deviations
Sequence
deviations

Selected rescheduling
iteration

16 33 %

Figure A7 Results from the software run

APPENDIX 3: Detail iterations for the selective re-routing
 algorithm and validation

Figure A8 Predictive FAM gantt chart

Figure A9 Detailed iterations and selections in eM-Plant console

Table A65 Detailed results on makespan

Method Makespan
Predictive schedule 110

Upper bounds 150
Rescheduling solution 145

Table A66 Results on performance indicators

Method Starting time
deviations

Sequence
deviations

Selected rescheduling
iteration

23 66 %

Figure A10 Results from the software run

Figure A11 Rescheduling solution gantt chart

APPENDIX 4: Methods, Tables and Variable objects used during
 implementation

 The following objects were used during the implementation of the system.

The classes and the changes that were made compared to their ancestor classes

are described below:

Tables

• SpecialJobs (derived from SpecialJobs)

For every special job this table contains its path and its position in the entry

sequence, i.e. the number of the row where it will be entered in the

“DeliveryTable”. This table is edited by the user.

• DeliveryTable (derived from DeliveryTable)

This table is used by the source of the system in order to determine the

sequence in which the jobs enter the system. This table is filled by the

“Scheduling_Algorithm” method.

• ToolAvailability (derived from ToolAvailability)

For every job, this table constains the time when the tool will be available. This

table is edited by the user.

• MaintenanceTimes (derived from MaintenanceTimes)

Using this table the user can set the starting time and the ending time of a

scheduled maintenance on one or more of the machines in the system.

• Material availability (derived from MaterialAvailability)

This table contains the time, when the materials for certain jobs will be available

in the planning horizon.

• DecisionPoints (derived from DecisionPoints)

This table contains the information which rule generators shall be used at which

decision point. This table is edited by the user.

• MachineCount (derived from MachineCount)

This table contains information about the number of machines at each stage.

This table is filled by the “CountStagesAndMachines” method.

• Times_StageX (derived from Times_Stage)

One of these tables should exist for each stage. They contain the processing

times of the jobs for each stage. These tables can be filled by the

“RandomTimes” method and edited by the user.

• JobSetOutTimes_StageX (derived from JobSetOutTime)

One of these tables should exist for each stage. They contain information about

how much time would be needed for the different jobs to take them out of the

buffers of this stage.

• JobTransportationTimes_StageX (derived from JobTransportationTime)

One of these tables should exist for each stage. For every job they contain

information about the amount of time that would be needed to transport it from

its original machine to every other machine at this stage.

• JobSetInTimes_StageX (derived from JobSetInTime)

One of these tables should exist for each stage. They contain information about

how much time would be needed for the different jobs to insert them into the

buffers of this stage.

• JobExitTimes (derived from JobExitTimes)

This table saves the time points when the jobs left the system when the pure

predictive, the predictive FAM or a random schedule is used. It also records the

job exit times for the simulation run that simulates the predictive FAM schedule

under the influence of an exception. This table is filled by the “JobExitRecorder”

method.

• ReschedulingJobExitTimes (derived from ReschedulingJobExitTimes)

This table saves the time points when the jobs left the system during the

rescheduling iterations and the simulation run that analyses the selected

iteration with the reactive FAM.

• Rescheduling_JobStartingTimes (derived from JobStartingTimes)

This table saves the starting times for every job on every machine during a

rescheduling iteration. It is filled by the “StartTimeRecorder” method.

• Upper_bound_JobStartingTimes (derived from JobStartingTimes)

This table saves the starting times for every job on every machine during the

simulation of the predictive FAM under the influence of an exception. It is filled

by the “StartTimeRecorder” method.

• TempResults (derived from TempResults)

This table saves the exiting time of every job for a single rescheduling iteration.

After the iteration has finished the contents of the table are written to the

“ReschedulingJobExitTimes” table. The reason for this approach is as follows:

In order to determine the column of the “ReschedulingJobExitTimes” table

where the exiting times should be saved, the number of rescheduling runs that

will be performed is needed. This number will be calculated by the

“MatchupReschedulingAlgorithm” method. But since it is possible that jobs exit

the system, before the method is called, the exiting times of the jobs will first be

written to the “TempResults” table.

• JobsToReschedule (derived from JobsToReschedule)

During the first rescheduling iteration the “MatchupReschedulingAlgorithm”

method saves the jobs that are candidates for rescheduling in this table. During

the rescheduling iterations the jobs are selected from this table and do not have

to be computed again.

• JobQueue (derived from JobQueue)

If a rescheduled job can not enter its destination buffer right away, it is written to

this table by the “ShiftJob” method. The “InsertJobsFromQueue” method picks

jobs from this table and inserts them into their destination buffer, as soon as

they have capacity for an additional job.

• ReschedulingResults (derived from ReschedulingResults)

This table saves the make span, sequence deviation and starting time deviation

for each rescheduling iteration and the reactive FAM run.

• ReschedulingMoves (derived from ReschedulingMoves)

This table saves the rescheduling moves that were made in the rescheduling

iterations. This information is used by the failure handler during the reactive

FAM run, so that the “MatchupReschedulingAlgorithm” does not have to be

called again.

• Re-routingMoves (derived from ReroutingMoves)

This table saves the re-routing moves that were made in the rescheduling

iterations using the selective re-routing algorithm. This information is used by

the failure handler during the reactive FAM run, so that the algorithm does not

have to be called again.

• ReactiveFAM_JobStartingTimes (derived from JobStartingTimes)

This table saves the job starting times during the simulation run with the reactive

FAM. It is filled by the “StartTimeRecorder” method.

• ReschedSolution_JobStartingTimes (derived from JobStartingTimes)

This table saves the job starting times during the simulation run of the selected

rescheduling iteration. It is filled by the “StartTimeRecorder” method.

• FAM_JobStartingTimes (derived from JobStartingTimes)

This table saves the job starting times during the simulation run of the predictive

FAM. It is filled by the “StartTimeRecorder” method.

• HeuristicSchedule (derived from ScheduleTable)

This table saves the paths for all jobs that are calculated by the

“Scheduling_Algorithm” method.

• PredFAMRoutings (derived from ScheduleTable)

This table contains the paths for all jobs after the predictive FAM run has been

completed. These paths consist of the calculations of the

“Scheduling_Algorithm” method and the changes that the rule generators

calculated during the predictive FAM run.

• ReschedRoutings (derived from Schedule Table)

This table contains the routings for the simulation run with the selective re-

routing algorithm.

• RandomRoutings (derived from ScheduleTable)

This table saves paths for all jobs that were calculated by the

“RandomScheduling” method.

• Jobs_StageX_MachineX (derived from Jobs_Stage_Machine)

One of these tables should exist for each machine. For every machine they

save the names of the jobs that are processed and time points when the jobs

start on the machines. These tables are filled by the “StartTimeRecorder”

method.

Variables

• NumberOfJobs

This variable contains the number of jobs the user wishes to simulate.

• NumberOfStages

This variable contains the number of stages the user has modelled.

• NumberOfPredictiveFAMReschedulings

This variable saves the number of changes to the pure predictive schedule the

rule generators have made during the predictive FAM run.

• NumberOfReactiveFAMReschedulings

This variable saves the number of changes to the predictive FAM schedule the

bottleneck rule has made during the reactive FAM run.

• ExceptionType

This variable saves the type of exception that happened.

• ExceptionTime

This variable saves the time point when an exception happened.

• ExceptionDuration

This variable saves the time span the exception will last.

• ExceptionLocation

This variable saves the location of the exception occurred.

• Upper_bound_makespan

This variable saves the makespan of the simulation of the predictive FAM

schedule under the influence of the exception.

• Upper_bound_starting_time_deviation

This variable saves the starting time deviation of the simulation of the predictive

FAM schedule under the influence of the exception.

• Upper_bound_sequence_deviation

This variable saves the sequence deviation of the simulation of the predictive

FAM schedule under the influence of the exception.

• Exception

As soon as an exception occurs, this variable is set to true. This is needed to

control the workflow of the whole system.

• ReschedulingRun

This variable contains the number of the current rescheduling run. This is

needed to control the workflow of the whole system.

• SelectedReschedulingRun

After all rescheduling iterations are finished, this variable will contain the

number of the iteration which is best according to the criterion the user has

selected.

• NumberOfReschedulingRuns

After the “MatchupReschedulingAlgorithm” method has been executed for the

first time, this variable will contain the number of rescheduling iterations that will

be carried out by the system.

• State

This variable contains information about the current state of the whole system.

This information is encoded as an integer and is used to control the workflow of

the whole system.

Methods

• InitializeNewRun (Derived from Method)

Initializes the whole system for a new simulation. It calls the methods

“CountStagesAndMachines”, “ClearTables”, “DeleteDecisionRules”, “InsertExc-

eption”, “ResetVariables” and “init”.

• MatchupReschedulingAlgorithm (Derived from Method)

This method implements the match up rescheduling algorithm and is called by

the failure handler during each rescheduling iteration. It calculates the machines

where to reschedule the jobs during the rescheduling iterations. It call the

“ShiftJob” method.

• SelectiveReroutingAlgorithm (Derived from Method)

This method implements the Selective Rerouting Algorithm and is called by the

failure handler during each rescheduling iteration. It calculates the machines

where to reschedule the jobs during the rescheduling iterations. It calls the

“ShiftJob” method.

• SchedulingAlgorithm (Derived from Method)

This method implements the predictive heuristic and calculates the pure

predictive schedule. It call the methods “DeleteOldJobs” and “MakeNewJobs”.

• RandomScheduling (Derived from Method)

This method calculates a random schedule.

• StartTimeRecorder (Derived from Method)

This method is used as an entry control on the machines in order to record the

job starting times.

• InsertBottleneckRuleForFAMResched (Derived from Method)

This method inserts the bottleneck rule during the reactive FAM run, by setting

the method „FAM_Bottleneck_Rule“ as an entry control for all decision points.

• FAM_Buffer_Rule (Derived from Method)

This method implements the buffer rule. It is used as an entry control of the

decision points during the predictive FAM run.

• FAM_Bottleneck_Rule (Derived from Method)

This method implements the bottleneck rule. It is used as an entry control of the

decision points during the predictive FAM run or the reactive FAM run.

• FAM_PathCopier (Derived from Method)

This method is needed during the predictive FAM run, if the user has not

selected a rule generator for a decision point. Then this method is inserted as

an entry control, in order to copy the pure predictive path of the job that

triggered the entry control to the predictive FAM schedule.

• EntranceSemaphore (Derived from Method)

This method is inserted as an entry control of a buffer, where is job is about to

be rescheduled. During the insertion process together with the exit semaphore it

ensures, that the buffer will have a capacity of at least 1.

• ExitSemaphore (Derived from Method)

This method is inserted as an exit control of a buffer, where is job is about to be

rescheduled. During the insertion process together with the entrance

semaphore it ensures, that the buffer will have a capacity of at least 1.

• ShiftJob (Derived from Method)

This method executes the actual job shift in the system. It is called by the

“MatchupReschedulingAlgorithm” method. After the set out time of the

rescheduled job it deletes the job from the system and then waits for an amount

of time that is equal to the time needed to transport the job from its original to its

new machine. If it finds the destination buffer full after this time, it inserts the

method “InsertJobsFromQueue” as an exit control into the destination buffer.

This control will insert the job as soon as the buffer has capacity again.

Otherwise the entrance and exit semaphores are inserted and the process of

inserting the job in the buffer is started.

• DeleteOldJobs (Derived from Method)

This method is called by the “Scheduling _Algorithm” method. It deletes all job

objects from the class library.

• MakeNewJobs (Derived from Method)

This method is called by the “Scheduling_Algorithm” method. It creates as many

new job objects in the class library as the user has defined in the scheduling

dialog.

• InsertDecisionRules (Derived from Method)

This method is called by the “init” method before the predictive FAM run. It

inserts the rule generators as entrance controls in the decision points according

to the specifications the user has entered in the decision points table.

• DeleteDecisionRules (Derived from Method)

This method deletes all rule generators from the decision points.

• Router (Derived from Method)

This method is used by the flow controller objects. It looks up the path of the job

that triggered the method in the correct schedule and returns the value.

• RandomTimes (Derived from Method)

This method fills the tables that contain the processing times with random

values. These are generated by a uniform distribution.

• CountStagesAndMachines (Derived from Method)

This method counts the number of stages in the model and the number of

machines on each stage.

• InsertException (Derived from Method)

This method inserts the exception starting time and the exception duration in the

machine specified in the variable “ExceptionLocation”.

• DeleteException (Derived from Method)

This method deletes any exception from the machine specified by the variable

„ExceptionLocation“.

• ClearTables (Derived from Method)

This method initializes all tables for a new simulation.

• FailureHandler (Derived from Method)

This method is called as soon as a exception happens. During the rescheduling

iterations it triggers the “MatchupReschedulingAlgorithm” method. During the

reactive FAM run it looks up the calculated job shifts of the selected

rescheduling iteration and performs the job shifts by calling the “ShiftJob”

method.

• ShowResults (Derived from Method)

This method writes the results of the selected rescheduling run modified by the

reactive FAM, if the user has selected this analysation, to the results dialog and

displays it.

• JobExitRecorder (Derived from Method)

This method is used as an entrance control of the sink. It records the times

when the jobs exit the system.

• InsertJobsFromQueue (Derived from Method)

This method is inserted as an exit control to a buffer where a job should be

rescheduled and that was full as soon as the job arrived at the buffer. As soon

as a job exits the buffer, this method inserts the entrance and exit semaphores

and starts the insertion process of the job that could not be inserted before.

• ResetVariables (Derived from Method)

This method resets all variables to their initial values before a new simulation

run.

• CalculateReschedulingResults (Derived from Method)

This method calculates and saves the make span, the starting time deviation

and the sequence deviation of a rescheduling iteration.

• CalculateUpperBound (Derived from Method)

This method calculates and saves the make span, starting time deviation and

the sequence deviation of the exception run.

• InsertMaintenance (Derived from Method)

This method schedules the start and stop maintenance methods, i.e. this

method determines when the methods are called.

• InitializeObjects (Derived from Method)

This method connects source to the delivery table, writes the failure handler to

the failure control of the processing units, it connects the start time recorders as

entry control for the single processing units. It also sets the job exit recorder as

entry controller for the drain. It sets the router method as a selection method for

the flow controllers.

• MakeTables (Derived from Method)

This method adjusts the number of tables required for job set in times, the job

set out time, transportation time, the number of the processing time tables, and

the Jobs_StageX_MachineX tables.

• StartMaintenance (Derived from Method)

This method sets the machine to pause when this method is called by the insert

maintenance method.

• StopMaintenance (Derived from Method)

This method sets the machine to working again when this method is called by

the insert maintenance method.

• Init (Derived from Method)

This method initializes the system for the next run of the whole simulation. For

example it adjusts the state variable of the system.

• Endsim (Derived from Method)

This method triggers all the calculations that need to be done after a simulation

run. Also it triggers a new simulation run if the whole simulation is not finished

yet.

Other generic objects

• Source (Derived from Source)

The “Time of Creation” was changed to “Delivery Table”. The name of the

according table, namely “DeliveryTable”, was already entered in the “Table”-

textbox.

• Drain (Derived from Drain)

The processing time was changed to 0.

• Buffer (Derived from Buffer)

The capacity was changed to 99 and the processing time set to 0.

• FlowControl (Derived from FlowControl)

The strategy was set to “Attribute” and the attribute type was defined as

“Integer”.

• Dialog (Derived from Dialog)

This dialog was developed to give the user a convenient way to enter the

needed input data for the algorithm. The callback-method of the dialog was

edited to check whether the textboxes are filled when any of the buttons of the

dialog is clicked, except the cancel button. The callback-method also starts the

algorithm when the OK - button is clicked.

• ReSchedDialog (Derived from Dialog)

This dialog gives the user the possibility to select a rescheduling solution, and

various options.

• ResultsDialog (Derived from Dialog)

This dialog displays the results of the rescheduling to the the user in a

consolidated form. The user may investigate the results further using the results

table which is implemented as table.

• SingleProc (Derived from SingleProc)

The processing time was set to “List (Type)”.

• GanttChart (Derived from GanttChart)

Eight entries for layers were added to the options table in order to give the

visualized jobs different colours.

Appendix 5: Job finishing times – Test 5

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

J
o

b
s

 (
1

 t
o

 5
0
)

Finishing times in minutes

Optimization Simulation based FAM scheduling Random scheduling

Figure A12: Analysis of job finishing times for different methods

Appendix 6: Job finishing times – Test 6

0.00 200.00 400.00 600.00 800.00 1000.00 1200.00 1400.00

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

J
o

b
s

 (
1

 t
o

 5
0

)

Job finishing times in minutes

Optimization Simulation based FAM Random job scheduling

 Figure A13 Analyzing job finishing times for different scheduling methods

