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Chapter 1.

Introduction

Mixed-integer programming is a branch of mathematical programming concerned
with optimization problems in which a linear objective function is maximized (or
minimized) subject to linear constraints and integrality requirements on some of
the variables. Early work on mixed-integer programming dates from the 1950s
when, for instance, George B. Dantzig [67] demonstrated that various combinato-
rial optimization problems can be formulated as mixed-integer programs (MIPs).
Dantzig [68] also noted that many problems involving complex logical conditions,
non-linear separable functions and non-convex regions can be transformed into
MIPs. Today mixed-integer programming is a widely used tool for modeling
and solving real-world optimization problems. Applications originate in various
domains such as telecommunication, public transport or production planning (see,
for instance, Guéret et al. [110]). The versatility of mixed-integer programming
also generated strong interest in solution methods for MIPs. A number of efficient
software packages for solving MIPs were developed, including the commercial
products Cplex [115], Xpress-MP [74] and Mops [139], the open-source MIP
solver Cbc [1] and the constraint integer programming solver Scip [2] which is
free for academic use.

Solving mixed-integer programs is an intricate task. From a theoretical point
of view the computational complexity of solving MIPs is high. It is well known
that mixed-integer programming is NP-hard (cf. Schrijver [152]), which means
that there is most likely no polynomial-time exact algorithm for solving MIPs. In
practice there are MIP instances which take several hours or days to solve and
others which can not be solved to optimality at all by today’s state-of-the-art
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Chapter 1. Introduction

MIP solvers. Such large computation times are often unacceptable in practical
applications.

The first algorithms for solving MIPs were proposed by Gomory [97] and Land
and Doig [127]. The branch-and-bound algorithm of Land and Doig performs an
implicit enumeration of the solution space which can be represented by a search
tree. Since optimizing the objective function over the convex hull of the feasible
solutions of an MIP is equivalent to solving the MIP itself, an alternative approach
for solving MIPs is, in theory, to find a complete description of the convex hull
of the feasible region. If we could compute the convex hull, we would be able to
obtain an optimal MIP solution by solving a linear program. Linear programs are
solvable in polynomial time (cf. Khachiyan [118]) and general solution algorithms
for them, such as the simplex algorithm and interior point methods, are efficient
in practice. Obtaining a complete description of the convex hull is, however, as
hard as solving the MIP itself (cf. Grötschel et al. [106]). Gomory’s algorithm
thus approximates the convex hull of the feasible solutions of an MIP by adding
so-called cutting planes to the problem formulation. Cutting planes (or cuts) are
linear inequalities which are satisfied by all feasible solutions of an MIP but not by
all feasible solutions of its linear programming (LP) relaxation, which is obtained
by omitting the integrality restrictions on the integer-constrained variables.
Regardless of the theoretical complexity of MIP, the last two decades have

brought enormous performance improvements in standard software for solving
MIPs, and these for several reasons. Besides faster computers and improvements
to the simplex method (cf. Koberstein [123]), enhanced cutting plane techniques
brought about major reductions in the times needed to solve many MIPs to
proven optimality (see Bixby et al. [38]). State-of-the-art MIP solvers use both
the branch-and-bound algorithm and cutting planes. For each node in the branch-
and-bound tree the LP relaxation is solved. Cutting planes are used to strengthen
the LP relaxation by removing fractional solutions, thus reducing the search space
of the branch-and-bound algorithm. In consequence, cutting planes can lead to a
decrease in the number of enumeration nodes explored by the branch-and-bound
algorithm.
There are various classes of cutting planes for mixed-integer programs which

are generated from particular relaxations of MIPs with certain characteristics.
Cutting planes can, for instance, be categorized by the amount of information
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about problem structure they use. There are cutting planes which can only be
applied if the MIP has a special structure, i.e. if specific types of constraints are
present. On the other hand, there are general-purpose cutting planes, also referred
to as cutting planes for unstructured MIPs, which can be applied independently
of any problem structure. Another possible categorization of cutting planes for
mixed-integer programs is based on the number of constraints in the relaxation
used for cut generation. Cutting planes can in particular also be derived from
multiple-constraint relaxations of MIPs.
In this thesis we focus on general-purpose cutting planes for mixed-integer

programs. We particularly concentrate on split cuts such as Chvátal-Gomory
cuts [53] and Gomory mixed-integer cuts [99]. Split cuts are known crucially
to affect the overall performance of MIP solvers. For instance, Bixby et al. [38]
detected the Gomory mixed-integer cuts to be the most effective cutting planes
in Cplex 8.0. We discuss several approaches in the literature which seek to
improve the performance of the Gomory mixed-integer cuts; see Cornuéjols et
al. [61], Ceria et al. [46], Andersen et al. [8] and Balas et al. [24]. We also propose
a new heuristic algorithm which obtains improved Gomory mixed-integer cuts
by performing a sequence of pivots on the simplex tableau. Moreover, we give a
detailed description of our implementation of the discussed approaches and assess
their practical usefulness based on computational experiments.

Multi-row cuts are known to play an important role in describing the convex hull
of mixed-integer sets. Cook et al. [57] provide an example with a mixed-integer set
whose convex hull of feasible solutions can not be obtained by repeated application
of split cuts such as the Gomory mixed-integer cuts, i.e. there is a facet-defining
inequality which does not have finite split rank. This facet-defining inequality
can, however, be obtained as a multi-row cut. Multi-row cuts recently gained
renewed interest; see, for instance, Andersen et al. [11], Dey and Wolsey [78–80]
and Basu et al. [32, 33, 35, 36]. In this thesis we study cutting planes which
are generated using more than one row of the simplex tableau simultaneously.
We describe a separation algorithm and highlight important implementation
details. We moreover evaluate the strength of multi-row cuts computationally
and compare them with split cuts like the Gomory mixed-integer cuts.
Cut generation routines typically produce a large number of cutting planes

violated by the current optimal solution of the LP relaxation. Adding all of
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these cutting planes to the problem formulation increases the size of the LP
relaxation, making it more difficult to solve. In particular, the increased size
of the LP relaxation repeatedly leads to higher node solution times during the
branch-and-bound algorithm. In this thesis we discuss techniques for cutting
plane selection and management to cope with the complexity introduced by the
number of generated cutting planes.
The remainder of this thesis is structured in three parts. Part I comprises

two chapters and introduces the basic concepts and notation used in this thesis.
In Chapter 2 we present an introduction to mixed-integer programming and in
Chapter 3 we discuss the basic algorithms for solving mixed-integer programs.
Part II consists of three chapters and is concerned with the state-of-the-art
in cutting plane methods. In Chapter 4 we consider single-row cuts such as
Gomory mixed-integer cuts and Chvátal-Gomory cuts. In Chapter 5 we discuss
the derivation of cutting planes from multi-row relaxations. Chapter 6 describes
in detail the goals of this thesis. Part III comprises five chapters and is devoted to
computational techniques and experiments. In Chapter 7 we introduce the MIP
solver Mops, on which our work is based and discuss some important aspects of
our implementation. Chapter 8 concentrates on the separation of Chvátal-Gomory
cuts and Gomory mixed-integer cuts. We describe implementations of a variety
of algorithms designed to improve the performance of the latter class of cutting
planes and compare their computational results. In Chapter 9 we present a
scheme for generating cutting planes from multiple rows of a simplex tableau and
again highlight some important implementation details. We in addition report
on computational experiments assessing the effectiveness of multi-row cuts and
compare them with split cuts. In Chapter 10 we describe a cut selection scheme.
Chapter 11 summarizes the main results of this thesis, offers some conclusions
and suggests possibilities for further research.
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Chapter 2.

Integer Programming Preliminaries

In this chapter we present an introduction to mixed-integer programming and
discuss the basic concepts and notation we work with in the remainder of this
thesis. We formally define the mixed-integer programming problem and introduce
its linear programming relaxation and disjunctive relaxation. We also highlight
the role these relaxations play in solving mixed-integer programs. We discuss in
particular the concept of a tight LP relaxation.

This chapter is structured as follows. Section 2.1 defines mixed-integer programs.
The linear programming relaxation is discussed in Section 2.2. Section 2.3 treats
of disjunctive relaxations of mixed-integer programs.

2.1. Mixed-Integer Programs

Consider the mixed-integer program

(MIP) min {cx : Ax ≥ b, x ≥ 0, xj ∈ Z,∀j ∈ NI} (2.1)

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n, and NI ⊆ N = {1, . . . , n}. An MIP consists of
a linear objective function, linear constraints and lower and upper bounds on the
variables. Moreover, some of the variables are constrained to take integer values.
The form in which the MIP (2.1) is given is referred to as the standard inequality
form as all variables have a lower bound of zero. If NI = ∅ we obtain a linear
program. On the other hand, if N \NI = ∅ we have a pure integer program. The
set of feasible solutions to (2.1) is given by

XMIP = {x ∈ Rn : Ax ≥ b, x ≥ 0, xj ∈ Z,∀j ∈ NI} . (2.2)
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Chapter 2. Integer Programming Preliminaries

Let c̄ be the optimal (minimal) objective value of (2.1). A feasible solution
x̄ ∈ XMIP is called optimal if cx̄ = c̄. Finding a feasible solution for an MIP
generally is NP-hard (cf. Schrijver [152]).
It is sometimes more natural to consider an MIP in standard equality form or

equality form

(MIP) min {cx : Ax = b, x ≥ 0, xj ∈ Z, ∀j ∈ NI} (2.3)

where c, b, A, and NI are defined as above. We assume that the matrix A has
full row rank. This assumption is always satisfied if (2.3) arises from (2.1). As
before, we denote by XMIP the feasible region of the MIP (2.3). In Parts I and II
of this thesis we use MIPs in the standard forms to discuss theory and algorithms.
It will be noted or should become clear from the context whether an MIP of the
form (2.1) or (2.3) is used. These representations of an MIP are equivalent, i.e.
any MIP can be transformed from the form (2.1) to the form (2.3) and vice versa.
In the following sections we discuss two relaxations1 of MIPs. Relaxations

are primarily constructed in the hope that they are easier to analyze and solve
than the original MIPs. As all feasible solutions to an MIP are also feasible to a
relaxation, information about the solution space of a relaxation is also valid for
the original MIP, and can be used to improve the solution process. For example,
valid inequalities2 generated from a relaxation are also valid for an MIP. Moreover,
the optimal value of the objective function of a relaxation provides a dual bound
on the value of the objective function of an MIP (see Section 3.2).
The most prevalent technique to solve MIPs is the branch-and-bound algo-

rithm which recursively subdivides the problem into smaller subproblems (see
Section 3.2). For each of these subproblems the linear programming relaxation
(see Section 2.2) is solved in order to obtain dual bounds. Disjunctive relaxations
are used to derive valid inequalities (see Section 2.3).

1The set of feasible solutions of a relaxation is required properly to contain the set of feasible
solutions to the original optimization problem. Moreover, the objective value of a relaxation
has to be no worse than the value of the original objective function for all feasible solutions
to the original problem. For a more detailed discussion we refer the reader to Wolsey [175].

2Given a set X an inequality is referred to as a valid inequality if it is satisfied by all x ∈ X.
With respect to a solution x∗ 6∈ X a valid inequality for X is called a cutting plane (or cut)
if it is not satisfied by x∗. More formal definitions for MIPs are given in Chapter 3.
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2.2. Linear Programming Relaxation

2.2. Linear Programming Relaxation

A linear program is an optimization problem in which the objective function and
the constraints are linear and all variables are continuous. Dantzig [66] proposed
the simplex algorithm to solve linear programs. Later, Khachiyan [118] presented
the ellipsoid algorithm and showed that linear programs are solvable in polynomial
time.
A linear program that is closely related to an MIP is its linear programming

(LP) relaxation. The LP relaxation of (2.1) is obtained by omitting the integrality
conditions on the integer-constrained variables

(LP) min {cx : Ax ≥ b, x ≥ 0} . (2.4)

The feasible region of the LP relaxation is given by

XLP = {x ∈ Rn : Ax ≥ b, x ≥ 0} . (2.5)

Let c∗ be the optimal (minimal) objective value of (2.4). A feasible solution
x∗ ∈ XLP is called LP-optimal if cx∗ = c∗. The set (2.5) is defined by m + n

inequalities which in turn define m + n half-spaces. The set P = XLP is the
polyhedron which lies at the intersection of these half-spaces. We can write the
set XMIP of feasible solutions to (2.1) in the form

XMIP = P ∩
(
ZNI × RN\NI

)
. (2.6)

We have PI = conv(XMIP ) ⊆ P , i.e. the polyhedron P contains the polyhedron
PI which is the integer hull or the convex hull of feasible solutions to (2.1).
Concerning the MIP in standard equality form (2.3), XLP and P will denote the
feasible domain of the LP relaxation and the associated polyhedron.

2.2.1. Tight LP Relaxation

The set XMIP of feasible solutions to the MIP (2.1) or (2.3) is contained in
the polyhedron P which is the feasible domain of the associated LP relaxation.
Typically there exist a large number of different polyhedra that all contain exactly
the solutions from XMIP but no additional feasible (integral) solutions. Each

9
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Figure 2.1. Formulations

of these polyhedra is called a formulation for an MIP. For instance, Figure 2.1
presents different formulations for the same integer program.
A standard technique for solving MIPs is to use an enumerative approach

which solves a series of LP relaxations. Concerning this solution approach, not all
formulations for an MIP are of the same quality. By linear programming theory,
we know that an optimal solution to an LP in standard form is an extreme point
of the solution space. Thus all fractional extreme points of a formulation P for
an MIP are potential optimal solutions for the LP relaxation (2.4). However,
these solutions are not feasible to the MIP. Ideally, the formulation for an MIP
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2.2. Linear Programming Relaxation

is the integer hull PI = conv(XMIP ), i.e. a formulation P having only feasible
(integral) extreme points. The strength of an LP relaxation depends heavily on
how closely PI is approximated. A formulation P that well approximates PI has
a tight LP relaxation which gives strong dual bounds (see Section 3.2).
As the convex hull PI is the ideal formulation, we have

XMIP ⊆ PI ⊆ P (2.7)

for all formulations P . Solving an LP over PI is equivalent to solving the MIP (2.1)
or (2.3). More precisely, instead of solving the MIP min{cx : x ∈ XMIP } we can
solve the LP

min{cx : x ∈ PI}. (2.8)

This, however, is primarily a theoretical result. Finding a complete description of
the convex hull of general NP-hard MIPs is a hard if not impossible task. It is
not only difficult to characterize which inequalities describe the convex hull; their
number is often exponential in the size of the problem. We therefore concentrate
on approximating the convex hull of such problems rather than computing it
completely. More precisely, we seek to find a formulation P ′ such that the optimal
extreme point of the LP min{cx : x ∈ P ′} is integer. This solution is then also
an optimal solution to the associated MIP. There are two basic ways of obtaining
formulations better approximating the convex hull. The first approach creates
extended formulations by adding additional variables. The second approach
adds additional constraints to the formulation. These constraints are called valid
inequalities.

2.2.2. Bases of the LP Relaxation and the Simplex Tableau

The polyhedron P associated with the LP relaxation of (2.1) or (2.3) respectively
is defined by m+ n constraints, including m constraints from the system Ax ≥ b
or Ax = b respectively, and n lower bound constraints from Ix ≥ 0. Each extreme
point (vertex) x∗ of P corresponds to at least one basis. Concerning the LP
relaxation of (2.1), a basis B is a set of n constraints such that the submatrix
which consists of these constraints is non-singular. The solution x∗ that satisfies
all n constraints at equality is called the basic solution. Geometrically, x∗ is

11



Chapter 2. Integer Programming Preliminaries

a vertex that lies at the intersection point of n hyperplanes. With respect to
the LP relaxation of (2.3), a basis B is a set of m linearly independent columns
of A. The polyhedron P is said to be non-degenerate, if there is a one-to-one
correspondence between bases and basic solutions (vertices).

Assume that an MIP in the form (2.3) is given. Let B be a basis of the LP
relaxation, i.e. a set of m linearly independent columns of A, and denote the
associated basic solution by x∗. Moreover, let J = N \ B index the non-basic
variables, i.e. the remaining columns of A. With the partition N = (B, J) of the
variables, we have A = (AB, AJ) and x = (xB, xJ). The matrix AB is called the
basis matrix. We can write

Ax = b, (2.9a)

ABxB +AJxJ = b, (2.9b)

xB = A−1
B b−

(
A−1
B AJ

)
xJ . (2.9c)

The vectorial Equation (2.9c) is known as the simplex tableau. Each row of the
simplex tableau is associated with a specific basic variable. Let eiA−1

B be the ith

row of the basis inverse where ei is the ith unit vector. For simplicity, we assume
this row of the basis inverse to be associated with the basic variable xi. Also let
(AJ)j be the jth column of AJ . We obtain

xi = x∗i −
∑
j∈J

āijxj , i ∈ B, (2.10)

where x∗i = (eiA−1
B )b and āij = (eiA−1

B )(AJ)j with i ∈ B and j ∈ J . We note,
however, that in practice the relation between basic variables and rows of the
basis inverse is dependent on the order of the columns in the basis matrix AB.
We will sometimes substitute āi0 for x∗i in the tableau row (2.10). To simplify the
notation the basic and non-basic integer constrained variables will be denoted by
BI = B ∩NI and JI = J ∩NI respectively.

12



2.3. Disjunctive Relaxation

2.3. Disjunctive Relaxation

Disjunctive programming [19] can be seen as an extension of integer programming.
More precisely, disjunctive programs are allowed to contain disjunctions of linear
constraints. This is a highly intuitive modeling approach since it captures the
idea of choosing from a number of alternatives. For example, any combinatorial
optimization problem can be modeled as a disjunctive program where each of the
disjunctions is one of the feasible solutions. In general, integer programs and other
non-convex optimization problems can also be formulated as disjunctive programs,
i.e. statements about linear inequalities connected by the logical operator “or”.

A disjunctive program is of the form

(DP) min

cx :
∨
i∈Q

Aix ≥ bi

x ≥ 0

 , (2.11)

where c ∈ Rn, and bi ∈ Rmi , Ai ∈ Rmi×n, ∀i ∈ Q. The feasible solutions of this
disjunctive program are given by the disjunctive set

XDP =

x ∈ Rn :
∨
i∈Q

Aix ≥ bi

x ≥ 0

 . (2.12)

Here we assume that (2.11) is a disjunctive relaxation of an MIP in the form (2.1).
More precisely, we assume that

Ai =
(

A

Di

)
and bi =

(
b

di

)
, ∀i ∈ Q, (2.13)

and that XMIP = XDP ∩ (ZNI × RN\NI ), i.e. the disjunctive set contains all of
the feasible solutions to (2.1). In addition, let

P i =
{
x ∈ Rn : Aix ≥ bi, x ≥ 0

}
, ∀i ∈ Q. (2.14)

Each of the sets P i is a polyhedron. We can restate the disjunctive set (2.12) as

XDP =
⋃
i∈Q

P i. (2.15)

13
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This shows that disjunctive programming is in fact the optimization over the
union of (convex) polyhedra. The union of these polyhedra is not, however,
necessarily convex.

2.3.1. Disjunctive Inequalities

A disjunctive inequality is a valid inequality which is derived from a disjunction.
The idea is to find an inequality that is valid for each term of a disjunction, or in
other words for each polyhedron P i. It then follows that this inequality is also
valid for the disjunction itself, i.e. for the union XDP .

Proposition 2.1 ([19]). Let ai ∈ Rn and bi ∈ R. Suppose the disjunctive set

S =

x ∈ Rn :
∨
i∈Q

 aix ≥ bi

x ≥ 0

 (2.16)

is given. An inequality αx ≥ β is valid for S if and only if

αj ≥ max
i∈Q

{
aij

}
, j = 1, . . . , n, (2.17a)

β ≤ min
i∈Q

{
bi
}
. (2.17b)

Proposition 2.1 plays a central role in deriving valid inequalities for both
disjunctive and mixed-integer programs. However, in our case, each polyhedron
P i (see Equation (2.14)) is described by a set of inequalities. In order to be able
to derive a disjunctive inequality using Proposition 2.1 the systems (Ai, bi) need
to be subsumed by single inequalities.
To this end linear combinations (uAi)x ≥ uibi with ui ≥ 0, ∀i ∈ Q are

considered. These linear combinations are called surrogates. For an inequality
to be valid for a set it has to be dominated by a surrogate of the corresponding
constraint system. One can think of a surrogate as a reformulation in the sense
that it brings out information about feasible solutions that is implicitly contained
in the original problem description. Surrogates are particularly helpful in detecting
inconsistency of a constraint system. By first constructing surrogates and then
applying Proposition 2.1, we obtain the following result.
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2.3. Disjunctive Relaxation

Theorem 2.2 ([19, 21]). Consider the polyhedra

P i =
{
x ∈ Rn : Aix ≥ bi, x ≥ 0

}
6= ∅, ∀i ∈ Q. (2.18)

An inequality αx ≥ β is valid for XDP = ⋃
i∈Q P

i if and only if there exist
ui ∈ Rmi, ui ≥ 0 such that

α ≥ uiAi, ∀i ∈ Q, (2.19a)

β ≤ uibi, ∀i ∈ Q. (2.19b)

To identify multipliers ui ≥ 0 such that the surrogates (uiAi)x ≥ uibi dominate
an inequality αx ≥ β, one can construct the following linear program:

max 0, (2.20a)

s. t. α− uiAi ≥ 0, ∀i ∈ Q, (2.20b)

−β + uibi ≥ 0, ∀i ∈ Q, (2.20c)

ui ≥ 0, ∀i ∈ Q, (2.20d)

(α, β) ∈ Rn+1. (2.20e)

Inequalities (2.20b) and (2.20c) ensure that the inequality αx ≥ β is valid, i.e.
that it is dominated by a surrogate of every disjunct. The system (2.20) can be
exclusively written in the variables ui by eliminating the unrestricted variables
α and β. Solving the resulting system, one obtains the multipliers ui. A valid
inequality αx ≥ β is then generated by setting

αj = max
i∈Q

{
uiAij

}
, (2.21)

for j = 1, . . . , n and
β = min

i∈Q

{
uibi

}
, (2.22)

where Aij is the jth column of Ai.
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2.3.2. Generating Deepest Disjunctive Cuts

Suppose a solution x∗ 6∈ XDP is given and we seek to find a disjunctive inequality
which is violated by this solution. A solution x∗ violates an inequality αx ≥ β if
β − αx∗ > 0. The most violated (deepest) disjunctive cut is therefore found by
adding an appropriate objective function to the linear program (2.20).

Proposition 2.3 ([19]). Consider the polyhedra

P i =
{
x ∈ Rn : Aix ≥ bi, x ≥ 0

}
6= ∅, ∀i ∈ Q, (2.23)

and their union XDP = ⋃
i∈Q P

i. Moreover, suppose a solution x∗ 6∈ XDP is
given. Then the most-violated (deepest) disjunctive cut αx ≥ β with respect to x∗

is found by solving the so-called cut generating linear program (CGLP)

(CGLP) max β − αx∗,
s. t. α− uiAi ≥ 0, ∀i ∈ Q,

−β + uibi ≥ 0, ∀i ∈ Q,
ui ≥ 0, ∀i ∈ Q,

(α, β) ∈ Rn+1.

(2.24)

Apparently, the system (2.24) is a polyhedral cone. Moreover, it is the cone
that contains all valid inequalities for (2.12). This observation is important since
it allows us to generate solutions for (2.24) (i.e. cutting planes) that are arbitrarily
good (in the sense of the objective function). For example, suppose we have
identified a feasible solution (ᾱ, β̄, {ūi}i∈Q) to (2.24). This solution generates the
valid inequality ᾱx ≥ β̄ using the multipliers ūi, ∀i ∈ Q. Let β̄ − ᾱx∗ = ξ > 0,
i.e. the inequality is actually a cut for an arbitrary solution x∗. Now, consider
a second solution (λᾱ, λβ̄, {λūi}i∈Q) with λ ∈ R, λ > 0. It is easy to check that
this solution is also feasible for the linear program (2.24). Moreover, this solution
produces the cut λᾱx ≥ λβ̄ which is identical with that generated from the first
solution. However, for λ > 1 this cut is λ times more violated than ᾱx ≥ β̄

since λβ̄ − λᾱx∗ = λξ > ξ > 0. It is therefore possible to scale a solution (or
cut) such that the objective function has the value infinity. This is one of the
major drawbacks of maximizing the violation over a polyhedral cone. There are
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2.3. Disjunctive Relaxation

two approaches to overcoming issues related to scaling. Firstly, we could try
to find a better objective function for the linear program (2.24). Secondly, we
could truncate the polyhedral cone by a bounding constraint which prevents the
solutions from scaling up indefinitely.

The ideal objective function for (2.24) would be to maximize the distance
between the solution x∗ and its orthogonal projection on the hyperplane αx = β.
This distance is given by β−αx∗

‖α‖ , where ‖ · ‖ is the Euclidean norm. Obviously this
objective function is not affected by scaling. On the other hand, it is non-linear
ruling out standard LP methods to solve the resulting cut generating non-linear
program. Accordingly, the objective function is kept unaltered and bounding
constraints are considered.

Balas et al. [24, 25] discuss different bounding constraints for the system (2.24)
which they call normalizations. These constraints are

|β| ≤ 1, (2.25)

|αj | ≤ 1, j = 1, . . . , n, (2.26)
n∑
j=1
|αj | ≤ 1, (2.27)

and are imposed directly on the coefficient vector α and the right-hand side
β of the disjunctive cut. Each of these normalizations has certain drawbacks.
While introducing the constraints (2.25) or (2.26) into the linear program (2.24)
is easy, normalization (2.25) does not guarantee that α is bounded in general
and normalization (2.26) is computationally less attractive (with respect to the
quality of the generated cuts). Similarly, while (2.27) performs well in practice, it
has to be linearized. For a detailed study see [24, 25].

As an alternative, Balas [20] proposes the normalization

∑
i∈Q

(
mi∑
l=1

uil

)
≤ k, (2.28)

where k > 0. This normalization is considered by Ceria and Pataki [47] for the case
k = 1. Instead of directly restricting the coefficients of the cut and its right-hand
side, normalization (2.28) imposes a restriction on the non-negative multipliers

17



Chapter 2. Integer Programming Preliminaries

ui, ∀i ∈ Q. As α and β are determined by a linear combination involving these
multipliers (see Equations (2.21) and (2.22)), the normalization (2.28) bounds all
variables in (2.24). It follows that the objective function is bounded as well.

A special case of the normalization (2.28) is given by

∑
i∈Q

(
mi∑
l=1

uil

)
= 1. (2.29)

The latter normalization was studied by Ceria and Soares [48] and later by Balas
and Perregaard [29, 30]. Normalization (2.29) is easily integrated into the linear
program (2.24) and tends to produce cuts with nice properties (see [87]). It has
thus become the most widely used normalization constraint.

2.3.3. Examples

Example 2.4. Consider the integer program

min x1 + x2,

s. t. −x1 + x2 ≥ −1,
5x1 + 3x2 ≥ 11,

x1, x2 ∈ Z1.

(2.30)

Solving the LP relaxation yields the fractional solution x∗ = (13
4 ,

3
4). With regard

to this solution, we examine the valid disjunction(
5x1 + 3x2 ≥ 11
−x1 ≥ −1

)∨(
−x1 + x2 ≥ −1
x1 ≥ 2

)
(2.31)

and try to find a valid inequality cutting off x∗. Figure 2.2(a) shows the feasible
regions of each of the disjuncts (in the LP relaxation). We associate the multipliers
u, v ∈ R2

+ with the first and second terms of the disjunction respectively

((5u1 − u2)x1 + 3u1x2 ≥ 11u1 − u2)

∨ ((−v1 + v2)x1 + v1x2 ≥ −v1 + 2v2) . (2.32)
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b

(a) an integer program and a disjunctive
relaxation

(b) a disjunctive inequality cutting off the
fractional LP solution

Figure 2.2. An example of a disjunctive cut

Theorem 2.2 states that an inequality αx ≥ β is valid for (2.30) if and only if it is
dominated by each of the surrogates in (2.32). Setting u = (1, 2) and v = (3, 6), we
obtain the surrogate 3x1 + 3x2 ≥ 9 for both disjuncts. Clearly, by Proposition 2.1
this inequality is then also valid for the original integer program (2.30). Moreover,
it cuts off the fractional solution x∗ as shown in Figure 2.2(b).

Example 2.5. Consider the simple mixed-integer set

X =
{

(x, y) ∈ R1
+ × Z1 : x+ y ≥ b

}
. (2.33)

A disjunctive relaxation of (2.33) is given by the set XDP = P 1 ∪ P 2 (see
Figure 2.3(a)) where

P 1 =
{

(x, y) ∈ R1
+ × R1 : x+ y ≥ b, y ≤ bbc

}
(2.34)

and
P 2 =

{
(x, y) ∈ R1

+ × R1 : y ≥ dbe
}
. (2.35)

In what follows, we assume that the right-hand side b is fractional and let
f = b− bbc > 0 denote the fractional part of b. The surrogates of the disjuncts
P 1 and P 2 are given by

u ·
(
x + y ≥ b

−y ≥ −bbc

) ∨
v · (y ≥ dbe) (2.36)
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bb

(a) a simple mixed-integer set and a dis-
junctive relaxation

b

(b) a disjunctive inequality cutting off
the fractional LP solution

Figure 2.3. The simple mixed-integer rounding inequality

where u ∈ R2
+ and v ∈ R1

+. Let u = ( 1
f ,

1
f − 1) and v = 1. We obtain the valid

inequality
x

f
+ y ≥ dbe (2.37)

for P 1 and the valid inequality y ≥ dbe for P 2. In fact, by applying Proposition 2.1,
we have that Inequality (2.37) is also valid for the simple mixed-integer set (2.33)
(see Figure 2.3(b)). This disjunctive inequality is well known as the simple
mixed-integer rounding inequality (see Wolsey [175]).
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Chapter 3.

Algorithms

In the preceding chapter, we introduced mixed-integer programming problems
and two important relaxations. We pointed out that any MIP can be solved by
finding a complete description of the convex hull of its feasible solutions. We
showed, furthermore, how disjunctive relaxations can be used to derive valid
inequalities.
In this chapter we deal with algorithms for solving MIPs. After formally

defining the terms valid inequality and cutting plane, we discuss cutting plane
algorithms which attempt to solve MIPs by applying cutting planes to the LP
relaxation. We further consider the branch-and-bound algorithm which tackles
MIPs by successively dividing them into smaller subproblems. We highlight
the merits and demerits of each of these solution approaches and also discuss
how state-of-the art MIP solvers combine the branch-and-bound algorithm with
cutting planes.

This chapter is organized as follows. In Section 3.1 we deal with cutting planes
and cutting plane algorithms. The branch-and-bound algorithm which employs a
divide-conquer-strategy to solve MIPs is introduced in Section 3.2.

3.1. Cutting Planes

In practice, LP relaxations are often weak in the sense that the polyhedron P
provides a bad approximation of the convex hull of feasible solutions PI . Additional
constraints (valid inequalities) are introduced to strengthen the LP relaxation by
excluding fractional solutions from its feasible domain without removing integral
solutions. An inequality αx ≥ β is valid for PI if PI ⊆ {x ∈ Rn : αx ≥ β}.
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b

PI

x∗

Figure 3.1. A cutting plane separating a fractional LP solution x∗

Moreover, an inequality αx ≥ β is called a cutting plane (or cut) for x∗ 6∈ PI if
the solution x∗ does not lie in the half-space defined by αx ≥ β, i.e.

x∗ 6∈ {x ∈ Rn : αx ≥ β} . (3.1)

Consequently, the cut separates the solution x∗ from the convex hull PI (see
Figure 3.1).
To find a violated cutting plane, one can solve the separation problem. This

problem is defined as follows.

Given a feasible solution x∗ to the LP relaxation (2.4) which is not
feasible to the MIP (2.1), find a valid inequality αx ≥ β for the
MIP (2.1) that is violated by (or, in other words, cuts off) x∗, i.e.
αx∗ < β.

The separation problem for a class of cutting planes is often modeled as a
(non-) linear optimization problem. An algorithm which is designed to solve the
separation problem is referred to as a separation algorithm. There are two kinds of
separation algorithms, exact and heuristic. An exact separation algorithm solves
the separation problem and is therefore guaranteed to find a violated cutting plane,
if one exists. Exact separation is not always cost-efficient, especially when the
separation problem is large and difficult to solve. Separation heuristics perform a
heuristic search for violated cutting planes, e.g. by examining a sufficiently small
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relaxation of the separation problem. While these heuristics are fast, they can
fail to find a violated cut even if there is one.

Any MIP can be solved by finding a description of the convex hull of feasible so-
lutions PI . A cutting plane algorithm is that which approximates PI by iteratively
solving the LP relaxation and the separation problem (see Algorithm 3.1). If the

Algorithm 3.1. Cutting plane algorithm
Input: MIP (2.1).
Output: An optimal solution x̄ to the MIP (2.1) with objective

value c̄, or model is infeasible indicated by c̄ =∞.
(Step 1) Solve the LP relaxation

Solve the LP relaxation (2.4) to optimality.
(Check for infeasibility.) If P = ∅ (the LP relaxation is infeasible)
set c̄ :=∞ and exit.
Otherwise, let x∗ be an optimal solution to the LP relaxation with
objective value c∗.
(Check for optimality.) If x∗ is feasible for the MIP (2.1) set
x̄ := x∗ and c̄ := c∗, and exit.

(Step 2) Solve the separation problem
Solve the separation problem to obtain a cut αx ≥ β for x∗.
Add this cut to the formulation of the MIP.
Goto Step 1.

solution to the LP relaxation is not feasible to the MIP, the algorithm separates
this solution from PI by solving the separation problem. This process is iterated
until the optimal solution of the LP relaxation is feasible to the MIP or the LP
relaxation is infeasible. Gomory [97, 99] proposed a cutting plane algorithm which
converges finitely for integer programs in rational data. In practice, however, this
algorithm usually needs an exponential number of cutting planes and iterations
to achieve convergence. Thus the size of the problem formulation is increased
dramatically, which complicates the solution of the LP relaxation. In addition,
the cuts Gomory used in his algorithm are vulnerable to numerical inaccuracies
which influence the numerical stability of the LP solver.1 Gomory [98] also intro-
duced a cutting plane algorithm for MIPs which does not have finite convergence

1However, Zanette et al. [177] have recently shown that Gomory’s cutting plane algorithm [97,
99] can be effective when used in conjunction with the lexicographic dual simplex method.
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properties in general. In the hope of achieving faster convergence, Algorithm 3.1
can be adapted to add more than one violated cut at the same time.

3.2. Branch-and-Bound

A method for solving general optimization problems is the branch-and-bound
algorithm. The branch-and-bound algorithm is a divide-and-conquer solution
technique which uses an implicit enumeration to explore the solution space. Given
a problem instance, this means that the solution space is recursively divided into
smaller subproblems. The hope is that these subproblems become easier to solve
as the algorithm proceeds (and the subproblems become smaller and smaller).
Land and Doig [127] were the first to present a branch-and-bound algorithm for
integer programming.
The flow of the branch-and-bound algorithm is shown in Algorithm 3.2. The

action of dividing a (sub-) problem into smaller subproblems is called branching.
In so doing the algorithm creates a so-called branching tree. An example of such
a tree is depicted in Figure 3.2. In Step 1 of Algorithm 3.2 the original MIP
is added to the empty list L of unprocessed problems (nodes). This problem
represents the root of the branching tree (see Figure 3.2). On the other hand,
the leaves of the branching tree are either unprocessed (unsolved) subproblems or
subproblems which were solved and taken out of consideration.
The process of removing parts of the branching tree which can be guaranteed

only to contain inferior solutions is called bounding or pruning. Specifically, the
bounding in Step 5 of Algorithm 3.2 prevents the algorithm from performing a
complete enumeration of the solution space. A node can be pruned by infeasibility,
bound or optimality. The key ingredients in the bounding step are strong dual
(lower) bounds and primal (upper) bounds. Dual bounds are obtained by solving
the LP relaxation SR for each node S. Primal bounds are either found when
a node is pruned by optimality or by primal heuristics. The effectiveness of
bounding is also heavily dependent on the node selection and branching strategy.
It is important to find a good primal bound and cut off parts of the search tree
as early as possible.
Algorithm 3.2 is also called LP-based as it solves LP relaxations to obtain

dual bounds. In general, an arbitrary relaxation can be used to this end. Such
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Algorithm 3.2. Branch-and-bound algorithm
Input: MIP (2.1) denoted by R.
Output: An optimal solution x̄ to the MIP (2.1) with objective

value c̄, or model is infeasible indicated by c̄ =∞.
(Step 1) Initialize

Add original problem to the list of unprocessed nodes L := {R},
and set global upper bound ĉ :=∞.

(Step 2) Check termination criteria
If L = ∅, set x̄ := x̂ and c̄ := ĉ, and exit.

(Step 3) Select node
Choose node S ∈ L, and update list of unprocessed nodes
L := L \ {S}.

(Step 4) Calculate dual bound
Solve the LP relaxation SR of S.

(Step 5) Bound
(Prune by infeasibility.) If SR is infeasible, goto Step 2.
Otherwise, let x∗ be an optimal solution to SR with c∗ being the
objective value.
(Prune by bound.) If c∗ ≥ ĉ, goto Step 2.
(Prune by optimality.) If x∗ is feasible for R, set x̂ := x∗, ĉ := c∗,
and goto Step 2.

(Step 6) Branch
Create two subproblems S = S1 ∪ S2, set L := L ∪ {S1, S2}, and
goto Step 2.

a relaxation is required to be relatively easy to solve and to yield strong dual
bounds. Note that these requirements do not usually coincide. The optimal
solution to the LP relaxation is also used to decide on which variable to branch
next. Consider an integer variable xj , j ∈ NI , and let x∗j 6∈ Z be the value of
this variable in the optimal solution to the LP relaxation. We construct two
subproblems S1 = S ∩ {x ∈ Rn : xj ≤ bx∗jc} and S2 = S ∩ {x ∈ Rn : xj ≥ dx∗je},
i.e. we branch on the disjunction(

xj ≤
⌊
x∗j
⌋)
∨
(
xj ≥

⌈
x∗j
⌉)
. (3.2)
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R root node

pruned by
optimality S

S1 S2

solved
subproblem

pruned by
infeasibility
or bound

unsolved subproblems

Figure 3.2. Branch-and-bound tree

Branching on such two-term disjunctions involving only single variables is called
single-variable branching. Linderoth and Savelsbergh [132] and Achterberg et
al. [5] give excellent overviews of single-variable branching rules and study their
computational usefulness. A different approach is to branch on constraints or
general disjunctions of the form

(πx ≤ π0) ∨ (πx ≥ π0 + 1) . (3.3)

Different strategies for branching on general disjunctions and computational
results are discussed by Karamanov and Cornuéjols [117], Cornuéjols et al. [62]
and Mahajan and Ralphs [134]. It is also possible to create more than two
subproblems during branching, i.e. to branch on multiple-term disjunctions.
State-of-the-art MIP solvers combine the branch-and-bound method with

cutting plane techniques to benefit from a stronger LP relaxation during bounding.
The first approach, called cut-and-branch, strengthens the LP relaxation at the
root node by a reasonable number of cutting planes, and then solves the problem
by branch-and-bound. An alternative strategy is to strengthen the LP relaxation
by cutting planes at further selected nodes of the branching tree. This approach
is called branch-and-cut. Some complications arise since one needs to distinguish
between locally and globally valid cutting planes. The latter can be applied
throughout the entire search tree. By contrast, locally valid cutting planes use
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information about branching decisions and are thus only valid in the current
subtree. Consequently these cuts must be removed from the LP relaxation once
the algorithm leaves this part of the branching tree.
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Chapter 4.

Single-Row Cutting Planes

In Part I of this thesis, we presented an introduction to mixed-integer programming
and described solution approaches for mixed-integer programs. We focussed
particularly on valid inequalities and cutting planes. We showed how valid
inequalities can be derived from disjunctive arguments and discussed how the
LP relaxation of MIPs can be strengthened by using valid inequalities as cutting
planes.
In this chapter we are concerned with general-purpose cutting planes derived

from single-row relaxations of MIPs. We review the state-of-the-art in cutting
plane methods and give a unified presentation of the different techniques. In
particular we concentrate on the Gomory mixed-integer cuts and discuss several
approaches which seek to improve their performance.
This chapter is structured as follows. Section 4.1 explains why single-row

relaxations are studied and defines the term “single-row inequality”. In Section 4.2
we review the relevant literature. Section 4.3 treats Chvátal-Gomory cuts which
are derived from single-row relaxations of pure integer programs. Section 4.4 is
devoted to cutting planes for general MIPs and discusses different classes of split
cuts.

4.1. Introduction

As the name suggests, single-row relaxations of MIPs only consist of single linear
constraints. Such optimization problems are rarely encountered in practice. In
fact, MIPs arising from practical applications tend to become more and more
complex in the number of variables and constraints involved. On the other hand,
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single-row relaxations are very interesting from a theoretical point of view. In
comparison with general MIPs, these relaxations are very simple, which makes
them easier to analyze. Let us reconsider the MIP (2.1). If we aggregate the
constraints of (2.1) using the weights u ∈ Rm+ , we obtain the single-row MIP

min {cx : (uA)x ≥ ub, x ≥ 0, xj ∈ Z,∀j ∈ NI} (4.1)

which is a relaxation of (2.1). We refer to an inequality derived from a relaxation
of the form (4.1) as a single-row inequality or single-row cut respectively. In other
words, any inequality that is derived from a single linear constraint including lower
(and upper) bounds and integrality requirements on the variables is a single-row
inequality.

Any solution to (2.1) is also a solution to (4.1). Moreover, any inequality that
is valid for (4.1) is also valid for (2.1). The latter fact is one of the main reasons
why single-row relaxations are studied. More precisely, the hope is that strong
inequalities for (4.1), which ideally would be facet-defining1, will turn out to be
strong inequalities for (2.1) and that these inequalities then enable more efficient
solution of complex MIPs. The generation of valid inequalities (cutting planes)
which are based on single-row relaxations is a central component of today’s
state-of-the-art MIP solvers. For example, Bixby and Rothberg [38] report on
notable performance degradations obtained by switching off the generation of
these cutting planes in Cplex [115].

Valid inequalities from single-row relaxations have been studied intensely during
the last decades. In fact most valid inequalities in (mixed-) integer programming
are based on a particular single-row relaxation. In the following section we give a
brief review of the most important publications on this subject. For an excellent
survey on single-row cutting planes we refer the reader to Cornuéjols [59].

4.2. Literature Review

In 1958 Gomory [97] published a seminal paper in which he proposed an algorithm
to solve pure integer programs using a class of cutting planes which are derived

1A facet is a face of dimension one less than the dimension of the associated polyhedron. For a
detailed discussion we refer the reader to Wolsey [175].
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from the simplex tableau. This algorithm is today known as Gomory’s fractional
cutting plane algorithm. Gomory also stated (without proof) that his algorithm
obtains the integer optimum in a finite number of steps. Later Gomory [99]
analyzed his fractional cutting plane algorithm in more detail and proved finiteness
(for integer programs in rational data). As no finite algorithm for solving integer
programs was known to that day, Gomory’s initial paper represents a revolution
in the field of integer programming. Thus the year 1958 is considered to mark
the birth of integer programming. In [98] Gomory extended his work to mixed-
integer programs and proposed the Gomory mixed-integer cut. He also showed
that a pure cutting plane algorithm which is based on these cuts (Gomory’s
mixed-integer cutting plane algorithm) converges finitely if the objective function
is integer-valued.
Although the Gomory fractional and Gomory mixed-integer cuts have very

nice theoretical properties, these were, for several reasons, considered useless in
practice for more than thirty years. First of all, pure cutting plane algorithms
turned out in practice to converge very slowly. This means that a large number
of cutting planes (iterations) was necessary to achieve convergence. Moreover,
working on the simplex tableau, Gomory cuts are highly prone to numerical
inaccuracies.2 In the 1990s, Balas et al. [26] reevaluated Gomory cuts in the
course of their work on a special class of disjunctive cuts, namely lift-and-project
cuts. Surprisingly, in their experiments, Gomory cuts proved to be effective.
In contrast to previous approaches, Balas et al. embedded Gomory cuts into a
branch-and-cut framework and added several cuts at a time (in rounds) before re-
optimizing the LP relaxation. Moreover, enhancements in the numerical stability
of LP solvers made Gomory cuts more reliable. Cornuéjols [58] gives an excellent
overview of the history of Gomory cuts and the development that led to their
rediscovery. Since then Gomory cuts have been studied intensively, resulting
in several improvements and variations [8, 30, 46, 61, 129]. The most recent
approaches are due to Fischetti and Salvagnin [88] who propose a relax-and-cut
framework for Gomory mixed-integer cuts and Dash and Goycoolea [69] who
discuss several heuristics for obtaining strong Gomory mixed-integer cuts from
alternative bases of the LP relaxation.

2However, we note again that Zanette et al. [177] recently reported on an effective implementa-
tion of Gomory’s algorithm [97].
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Balas et al. [24] propose lift-and-project cuts which are a subclass of the dis-
junctive cuts. These cuts are derived from a simple disjunction of the form x ≤ 0
or x ≥ 1 on a 0-1 (binary) variable. The most-violated lift-and-project cut can
be found by solving a cut generating linear program (cf. Proposition 2.3). Com-
putational experience with lift-and-project cuts in a branch-and-cut framework
is reported in [25] and additional enhancements of the method are documented
in [20, 29]. Although lift-and-project cuts proved to be effective, setting up and
solving the cut generating linear program involves a large amount of additional
computational work which is not always cost-efficient. This changed when Balas
and Perregaard [30] presented an elegant algorithm which mimics the optimization
of the cut generating linear program by performing pivots on the original linear
programming tableau. Different variants of this algorithm are discussed and
evaluated computationally in [22, 23].
An additional class of cutting planes which are derived from a single-row

relaxation are the knapsack cover cuts [18, 111, 172]. These cuts are based
on the observation that certain variables (which form a so-called cover) are
not allowed all simultaneously to have a non-zero value in a feasible integral
solution. The process of lifting additional variables3 into cover inequalities is
treated in [144, 145, 173]. Crowder et al. [65] discuss an algorithm for solving 0-1
IPs which includes an a priori generation of cover cuts. Nowadays, all successful
commercial software packages for solving MIPs contain separation routines for
cover cuts. There are a large number of further publications related to cover
inequalities. For instance, Weismantel [168] proposes the larger class of weight
inequalities which includes cover inequalities. Other papers study extensions of
cover inequalities which are able to handle additional side constraints [107, 174]
or general integer knapsacks [45]. The complexity of the separation problem for
cover cuts is examined in [108, 120]. On overview of knapsack cuts is given by
Atamtürk [15].

Clique inequalities [144] are valid for set packing polytope and are derived from
the so-called intersection graph. Each node in this graph represents a column

3In the context of cover inequalities, lifting means that coefficients for the variables which are
not in the cover are computed. In general, the process of deriving a valid inequality for a
set from an inequality which is valid for a lower-dimensional restriction of the set is called
lifting. For instance, lifting is discussed thoroughly by Nemhauser and Wolsey [143].
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in the set packing problem. Two nodes are connected by an edge whenever the
corresponding columns appear together in a set packing constraint at least once.
A clique in the intersection graph then translates into a set of variables from
which only one can be selected in a feasible solution to the set packing problem.
This gives rise to a family of valid inequalities, namely the above-mentioned
clique inequalities. Hoffman and Padberg [113] use clique inequalities in a branch-
and-cut framework to solve set partitioning problems arising from airline crew
scheduling. Moreover, they also discuss the lifting of clique inequalities.
Another well-studied single-row mixed-integer set is the (binary) single-node

flow set. The flow cover inequalities developed by Padberg et al. [147] are valid
for this set. In [165] van Roy and Wolsey study a variant of the single-node flow
set and define two families of valid inequalities. The separation algorithm for flow
cover inequalities, its implementation and computational results are presented
in [166]. Gu et al. [109] suggest an efficient approach to lift flow cover inequalities
and report on extensive computational experiments.
Mixed-integer rounding (MIR) inequalities appeared in [142] and are valid for

mixed-integer knapsack sets (see also [143, 174]). Whether or not MIR cuts are
useful from a computational point of view was for quite a while an open question.
Marchand and Wolsey [135] proposed a sophisticated separation heuristic for
MIR cuts that features constraint aggregation and bound substitution. Their
results showed that MIR cuts can significantly reduce the integrality gap on
many instances from MIPLIB 3.0 [37]. Moreover, Marchand and Wolsey pointed
out that other families of strong valid inequalities (weight, residual capacity,
mixed cover and flow cover inequalities) are actually MIR inequalities. Given
these positive results, separation routines for MIR cuts have been integrated
into commercial MIP solvers where they are among the most effective cutting
planes [38]. Recently, several extensions to MIR cuts have been proposed [16, 70,
71, 119]. Furthermore, the exact separation of MIR inequalities is investigated
in [73].
Chvátal-Gomory (CG) inequalities [53] are valid inequalities for pure integer

programs. These inequalities are derived by weighting and summing up a set of
inequalities, followed by a rounding. If the weights (multipliers) are restricted
to either 0 or 1

2 we obtain the {0, 1
2}-Chvátal-Gomory cuts of Caprara and

Fischetti [42]. In particular, {0, 1
2}-cuts subsume some classes of problem-specific
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valid inequalities for the matching polytope and the stable set polytope among
others. The more general class of mod-k cuts is examined by Caprara et al. [43]
who particularly concentrate on the complexity of the separation problem. Let us
note that the mod-2 cuts are precisely the {0, 1

2}-cuts. A separation algorithm for
{0, 1

2}-cuts and its implementation is discussed in [13, 126]. In addition, there are
several other contributions concerning CG inequalities. For instance, Letchford
and Lodi [129] propose a strengthened variant of the CG cuts and report on
preliminary computational tests. Fischetti and Lodi [86] address the question of
how useful CG cuts are in practice by solving the separation problem (an MIP)
in a pure cutting plane framework. Their results show that CG cuts are very
effective and succeed in closing large percentages of the integrality gaps of the
pure IPs in MIPLIB 3.0 [37]. Another direction of research is to apply CG cuts
to mixed-integer programs. Bonami et al. [40] extend the separation problem
for CG cuts to handle continuous variables. The results with this approach are
promising, especially when the continuous variables only play a minor role in the
structure of the problem.
Typically, to compare different families of cutting planes their elementary

closures are analyzed both theoretically and computationally. Given a family of
cutting planes F and a polyhedron P , the elementary closure of P with respect
to F is the set of all points in P satisfying the cutting planes in the family F .
In particular, Nemhauser and Wolsey [142] proved that Gomory mixed-integer
cuts, split cuts and MIR cuts are equivalent, i.e. their elementary closures are
identical. For an overview of the relation between various classes of cutting
planes we refer the reader to Cornuéjols and Li [60]. Another important notion is
the rank of an inequality which was introduced by Chvátal [53] for the special
case of CG inequalities. Loosely speaking, the rank of an inequality from the
original formulation of a polyhedron P is 0 whereas any inequality obtained from
a combination of rank-0 inequalities for P has rank 1 and so on.4 The concepts
of the rank of inequalities and the closures of a polyhedron P are closely related.
The elementary closure is precisely the intersection of all rank-1 cutting planes.
As mentioned above, several authors investigate computationally the strength
of the elementary closure of specific classes of cutting planes. Dash et al. [73]

4For a precise definition of the rank of an inequality we refer the reader to Chvátal [53].
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study the MIR closure (see also [39]) while Balas and Saxena [31] analyze the
strength of the split closure. The elementary closure of CG and projected CG
cuts is studied by Fischetti and Lodi [86] and Bonami et al. [40] respectively.

4.3. Chvátal-Gomory Cuts

In this section we consider Chvátal-Gomory (CG) cuts for pure integer programs
which were introduced by Chvátal [53]. This section comprises two subsections.
Section 4.3.1 is devoted to a subclass of the CG cuts known as {0, 1

2}-cuts [42].
In Section 4.3.2 we elaborate on how to obtain stronger CG cuts. In particular,
we consider the strong CG cuts of Letchford and Lodi [129].

Pure integer programs (IPs) may be seen as special cases of MIPs in which all
variables are integer-constrained. For convenience, we introduce IPs in a slightly
different notation. Consider an IP of the form

(IP) min {cx : x ∈ XLP , x ∈ Zn} , (4.2)

where c ∈ Rn and the feasible set to the LP relaxation is given by

XLP = {x ∈ Rn : Ax ≤ b, x ≥ 0} (4.3)

with the integral matrix A ∈ Zm×n and the integral vector b ∈ Zm. Again,
we use P = XLP to denote the polyhedron associated with the LP relaxation.
The system defining P can be written as a system of equations Ax + s = b by
introducing a vector s of slack variables. As above, let PI denote the convex hull
of the feasible solutions of (4.2).

Proposition 4.1 ([53]). The Chvátal-Gomory cut

buAcx ≤ bubc , (4.4)

where u ∈ Rm+ is valid for the IP (4.2).

It is easy to see that CG cuts match our definition of single-row cuts. The
values ui ∈ R+ for i = 1, . . . ,m are called the CG multipliers. It can be shown
that the vector of CG multipliers u of undominated CG cuts satisfies u ∈ [0, 1[m.
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CG cuts can be applied without knowing the structure of an IP (see Figure 4.1).
Let a = uA and a0 = ub. For an arbitrary vector u ∈ Rm+ the inequality ax ≤ a0

is valid for the polyhedron P . It follows that the inequality bacx ≤ a0 is also valid
for P . Now suppose that a0 is non-integral. Then the inequality bacx ≤ ba0c is
valid for PI but not for P . On the other hand, if a0 is integral the CG inequality
will not cut off any part of the polyhedron P .

An important characteristic of CG cuts is that they are sufficient to describe
the convex hull PI of feasible solutions to the pure IP (4.2) [53, 97]. This means
that any valid inequality for PI can be obtained as a CG inequality by applying
Proposition 4.1 a finite number of times.

Given an arbitrary solution x∗, the CG separation problem is to find a vector
u of CG multipliers such that the resulting CG inequality is violated by x∗ (see
Fischetti and Lodi [86]). Eisenbrand [82] proved that the separation problem
for CG cuts is NP-hard. The CG separation problem can be modeled as a
mixed-integer program

max αx∗ − β,
s. t. αj ≤ uAj , for j = 1, . . . , n,

β ≥ ub− 1 + ε,

ui ≥ 0, for i = 1, . . . ,m,

(α, β) ∈ Zn+1,

(4.5)

where Aj is the jth column of A and ε is a small positive value. The objective
function maximizes the violation of the CG cut αx ≤ β with respect to the
solution x∗. The constraint matrix of (4.5) has n+ 1 rows and n+m+ 1 columns.
The CG separation problem is thus large and solving it is not always practicable.

We now consider a special case in which finding a separating CG cut is trivial.
Let x∗ be a non-integral basic solution to the LP relaxation of (4.2), i.e. a
non-integral vertex of P . Suppose that x∗i is non-integral and let u = eiA

−1
B be

the ith row of the basis inverse. Applying Proposition 4.1 we obtain the CG cut⌊(
eiA
−1
B

)
A
⌋
x ≤

⌊(
eiA
−1
B

)
b
⌋
. (4.6)
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b

b b

b

P PI

(a) A polyhedron P and its integer hull PI

in R2

b

b b

b

(b) A valid inequality for P (gray dashed
line) and the resulting CG cut (red solid
line) which is valid for PI . The cut depicted
by the red dashed line is valid for PI but
cannot be derived from P as a CG cut.

b

b b

b

(c) Another valid inequality for P (gray
dashed line) and the resulting CG cut (red
solid line) which is valid for PI .

b

b b

b

P ′

(d) The resulting polyhedron P ′ and a valid
inequality for P ′ (gray dashed line). Now,
the cut from Figure 4.1(b) can be derived as
a CG cut from P ′ (red solid line).

Figure 4.1. Examples of Chvátal-Gomory cuts
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Since we assumed that x∗i = (eiA−1
B )b is non-integral the CG cut (4.6) is violated

by the amount x∗i − bx∗i c > 0. The CG cut (4.6) is well known as the Gomory
fractional cut [97, 99]. The Gomory fractional cut can thus be seen as a CG cut
derived from a row of the simplex tableau.

4.3.1. {0, 1
2}-Chvátal-Gomory Cuts

The {0, 1
2}-Chvátal-Gomory cuts (or {0, 1

2}-cuts) of Caprara and Fischetti [42]
are a special case of the general CG cuts. Here the components of the vector u
of CG multipliers are constrained to be either 0 or 1

2 , i.e. we have u ∈ {0, 1
2}m.

As mentioned above, one of the main reasons for studying {0, 1
2}-cuts is that

many problem-specific facet-defining inequalities for combinatorial optimization
problems are actually {0, 1

2}-cuts.

Proposition 4.2 ([42]). The {0, 1
2}-cut

buAcx ≤ bubc , (4.7)

where u ∈ {0, 1
2}m is valid for the IP (4.2).

Gentile et al. [94] showed that {0, 1
2}-cuts are sufficient to describe the convex

hull PI of feasible solutions to the IP (4.2). Some CG inequalities may not be
{0, 1

2}-cuts with respect to the current polyhedron (or formulation) P , meaning
that these CG inequalities can not be derived from linear combinations of the
constraints defining P with weights u ∈ {0, 1

2}m. However, Gentile et al. showed
that these inequalities can be derived as {0, 1

2}-cuts from modified polyhedra P ′

in subsequent rounds of the CG procedure (see Figure 4.1).
Caprara and Fischetti [42] proved that the separation of {0, 1

2}-cuts is NP-hard.
Given an arbitrary solution x∗, the most-violated {0, 1

2}-cut is found by solving
a separation problem similar to (4.5). In contrast to general CG cuts, however,
every row i of (A, b) that is involved in the linear combination (uA)x ≤ ub is
weighted with the same multiplier, namely ui = 1

2 . Let v ∈ {0, 1}m be a binary
vector such that v = 2u. The {0, 1

2}-cut separation problem is then obtained by
substituting u = 1

2v in (4.5). In addition, the {0, 1
2}-cut (4.7) can be restated as⌊1

2 (vA)
⌋
x ≤

⌊1
2 (vb)

⌋
. (4.8)
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We now take a closer look at the objective function of the separation problem.
Specifically, we investigate under what conditions a {0, 1

2}-cut is violated. We
can write

uA = buAc+ 1
2 (vAmod 2) ,

ub = bubc+ 1
2 (vbmod 2) .

(4.9)

Recall that the violation of a CG cut αx ≤ β is given by αx∗ − β. In the special
case of {0, 1

2}-cuts we have

αx∗ − β = buAcx∗ − bubc ,

=
(
uA− 1

2 (vAmod 2)
)
x∗ −

(
ub− 1

2 (vbmod 2)
)
,

= 1
2 (vbmod 2)− 1

2 (vAmod 2)x∗ − u (b−Ax∗) ,

= 1
2 ((vbmod 2)− (vAmod 2)x∗ − vs∗) .

(4.10)

The violation is positive, if the inequality

(vbmod 2) > (vAmod 2)x∗ + vs∗ (4.11)

holds. Note that both the left-hand side and the right-hand side of Inequality (4.11)
take non-negative values.

Inequality (4.11) shows that the violation of a {0, 1
2}-cut is dependent on

the parity of the terms vb and vA. If vb is even, it follows that 1
2(vb) (or ub

respectively) is integral. However, as mentioned above, non-integrality of ub is
a necessary condition of a CG cut’s being violated. Thus there is no violated
{0, 1

2}-cut with vbmod 2 = 0. Now, let Ā = Amod 2, b̄ = bmod 2 where the
modulo operation is applied component-wise. A {0, 1

2}-cut is violated, then, if vb̄
is odd and (

vĀmod 2
)
x∗ + vs∗ < 1. (4.12)

Consider also the system (Ā, b̄). This system can be used to preprocess the
{0, 1

2}-cut separation problem. For instance, zero rows of (Ā, b̄) can be removed
since they only affect the value of vs∗ but not the parity of vb̄ and vĀ. Moreover,
any row i of (Ā, b̄) having s∗i ≥ 1 can be removed since it will never be selected
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due to the condition (4.12). There are a number of additional preprocessing rules
which we shall discuss in more detail in Part III of this thesis (see Section 8.8).

4.3.2. Strong Chvátal-Gomory Cuts

So far we discussed CG cuts and a subclass of the CG cuts known as {0, 1
2}-cuts.

In this section we address the strengthening of CG cuts. Firstly, we introduce
some additional notation. Let N = {1, . . . , n} and let (uA)j denote the jth

component of the vector uA. With this notation, the inequality (uA)x ≤ ub can
be written as ∑

j∈N
(uA)j xj ≤ ub (4.13)

and the CG cut (4.4) reads

∑
j∈N

⌊
(uA)j

⌋
xj ≤ bubc . (4.14)

Using the integrality conditions on the variables one can apply a simple strength-
ening of the coefficients in the CG cut. Let f0 = ub−bubc and fj = (uA)j−b(uA)jc
for j ∈ N . Applying mixed-integer rounding to (4.13) we obtain the inequality

∑
j∈N

(⌊
(uA)j

⌋
+ (fj − f0)+

1− f0

)
xj ≤ bubc , (4.15)

where (a)+ = max{0, a} (see Marchand and Wolsey [135]). This inequality is
valid for (4.2) and clearly dominates the CG cut (4.14).

A different approach to strengthen CG cuts was proposed by Letchford and
Lodi [129]:

Proposition 4.3 ([129]). Suppose that f0 > 0 and let k ≥ 1 be the unique
integer such that 1

k+1 ≤ f0 <
1
k . Let N0 = {j ∈ N : fj ≤ f0} and Np = {j ∈ N :

f0 + (p−1)(1−f0)
k < fj ≤ f0 + p(1−f0)

k } for p = 1, . . . , k. The strong Chvátal-Gomory
cut

k∑
p=0

∑
j∈Np

(⌊
(uA)j

⌋
+ p

k + 1

)
xj ≤ bubc (4.16)

is valid for the IP (4.2) and dominates the CG cut (4.14).
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While both strong CG cuts (4.16) and MIR cuts (4.15) dominate CG cuts (4.14)
there is no dominance relationship between MIR cuts and strong CG cuts in
general.

4.4. Cutting Planes for MIPs

This section deals with cutting planes for general MIPs. While all valid inequalities
for pure IPs are CG inequalities, the CG rounding procedure can not be used
to derive valid inequalities for general MIPs. To see this, let P again denote the
polyhedron associated with LP relaxation of the MIP (2.1). Suppose, moreover,
that the inequality αx ≥ β is valid for P . As the terms αjxj with j ∈ N \NI are
not guaranteed to be integer-valued, the inequality dαex ≥ dβe is not valid for
the MIP (2.1). A different approach for generating valid inequalities for MIPs is
therefore needed.
Next we outline the basic concept that is used to generate cuts for MIPs.

Suppose that x∗ is a fractional basic solution to the LP relaxation of the MIP (2.1),
i.e. a vertex of the polyhedron P . Now, consider a convex set S ⊆ Rn containing
the fractional vertex x∗ in its interior but no integral solutions. More formally,
we require the convex set S to have the properties

x∗ ∈ int (S) and x 6∈ int (S) , ∀x ∈ ZNI × RN\NI , (4.17)

where int(S) denotes the interior of the set S. An inequality αx ≥ β which only
cuts off points x ∈ int(S) is valid for the MIP (2.1) as no points feasible to (2.1)
lie in the interior of S. Thus cutting planes for MIPs can be obtained by first
selecting a set S according to (4.17) and then computing a cut in relation to S.
Instead of working with convex sets S satisfying (4.17), we use disjunctions

to express that a feasible solution is not allowed to lie in the interior of a set S.
Thus all cutting planes derived using the above principle are in fact disjunctive
cuts. In practice, the main questions are how to select the disjunction (or the set
S respectively) and how to compute deep disjunctive cuts (see Section 2.3.2).
The results presented in the remainder of this chapter complement the basic

theory of disjunctive inequalities discussed in Chapter 2. We outline several
practical approaches for deriving disjunctive cuts. The most commonly used
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disjunctions for deriving cutting planes are split disjunctions which are defined by
two hyperplanes. The resulting cuts are called split cuts. We formally introduce
split disjunctions and split cuts in Section 4.4.1. In the succeeding sections we
discuss several classes of split cuts. In Section 4.4.2 we deal with intersection cuts.
We introduce Gomory mixed-integer cuts in Section 4.4.3. We also investigate
k-cuts in Section 4.4.4, combined Gomory mixed-integer cuts in Section 4.4.5,
reduce-and-split cuts in Section 4.4.6 and lift-and-project cuts in Section 4.4.7.

4.4.1. Split Cuts

Split cuts were introduced by Cook et al. [57]. These cuts are a special class of
disjunctive cuts (see Section 2.3.1) generated from simple two-term disjunctions.
Split cuts are very important since they subsume various other classes of cutting
planes. In particular, all cutting planes presented in the remainder of this chapter
are in fact split cuts.
We start with some basic definitions. A split disjunction is given by

(πx ≤ π0) ∨ (πx ≥ π0 + 1) , (4.18)

where (π, π0) ∈ Zn+1 and πj = 0, ∀j ∈ N \NI . We shall write D(π, π0) to denote
the disjunction (4.18). Clearly, any feasible solution to the MIP (2.1) satisfies
one of the terms of D(π, π0). An inequality which is valid for a split disjunction
is called a split inequality or split cut. With respect to the MIP (2.1), we call any
valid inequality which is derived from a disjunction Ax ≥ b

−πx ≥ −π0

∨Ax ≥ b

πx ≥ π0 + 1

 (4.19)

a split inequality. Figure 4.2 shows how a split disjunction divides the feasible
region of a set P into the two parts P1 and P2. In addition, a split inequality is
shown. This inequality is valid for conv(P1 ∪ P2).
As mentioned above, Nemhauser and Wolsey [142] showed that split cuts and

MIR cuts are equivalent. Given a split cut derived from the disjunction (4.19)
we can thus find a linear combination of the constraints of Ax ≥ b such that the
MIR cut generated from this single-row relaxation is equivalent to the split cut.
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πx ≤ π0 πx ≥ π0 + 1

P1PP2

Figure 4.2. Split cut

Let us now consider the separation of split cuts. By associating multipliers
(u, u0), (v, v0) ∈ Rm+1

+ with the terms of the disjunction (4.19), we obtain the
surrogates

((uA− u0π)x ≥ ub− u0π0) ∨ ((vA+ v0π)x ≥ vb+ v0 (π0 + 1)) . (4.20)

Given an LP solution x∗, the most-violated split cut αx ≥ β is found by solving
the mixed-integer non-linear program

max −αx∗+β,

s. t. α −uA +u0π ≥ 0,

α − vA − v0π ≥ 0,

−β +ub −u0π0 ≥ 0,

−β + vb + v0 (π0 + 1)≥ 0,

ue + ve +u0 + v0 ≤ k,

(4.21)

where (u, u0), (v, v0) ∈ Rm+1
+ , (π, π0) ∈ Zn+1, πj = 0 for all j ∈ N \NI and the

vectors (α, β) ∈ Rn+1 are unrestricted in sign. The last inequality in (4.21) is the
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normalization constraint (2.28) where e is the vector of all ones of appropriate
dimension. The non-linearity of (4.21) is caused by the multiplication of the
multipliers (u, u0) and (v, v0) with the vectors (π, π0) defining the split disjunction.
Once the split disjunction is fixed, (4.21) reduces to an LP of the form (2.24).
Caprara and Letchford proved that optimizing over the split closure is NP-hard.
Balas and Saxena [31] restate the problem (4.21) as a parametric MIP using the
normalization constraint u0 + v0 = 1 and show that the elementary split closure
gives a tight approximation of the convex hull of the feasible solutions of many
practical MIPs.

Finally, we offer some comments on the connection between Chvátal-Gomory
cuts and split cuts. In fact any CG cut is a split cut, implying that the split closure
of a polyhedron is contained in its CG closure. Let ax ≤ a0 be a valid inequality
for the polyhedron P associated with the LP relaxation of a pure integer program.
The CG cut bacx ≤ ba0c is then valid for the integer hull PI . To see that this CG
cut is a split cut, consider the split disjunction (bacx ≤ ba0c)∨ (bacx ≥ ba0c+ 1),
i.e. D(bac, ba0c), and observe that P ∩ {x : bacx ≥ ba0c+ 1} = ∅.

4.4.2. Intersection Cuts

Intersection cuts were introduced by Balas [17]. These cuts are derived from
a basic solution to the LP relaxation of an MIP and a violated disjunction.
Furthermore, intersection cuts have a nice geometric interpretation. In this section
we concentrate on intersection cuts derived from split disjunctions. Nevertheless,
intersection cuts can also be derived using general disjunctions.

Let B be a basis of the LP relaxation of the MIP (2.3) and denote the associated
basic solution by x∗. Consider also the rows of the simplex tableau

xi = x∗i −
∑
j∈J

āijxj , i ∈ BI , (4.22)

associated with the basic integer-constrained variables. Moreover, we have the
trivial equation

xj = 0 + xj , j ∈ JI , (4.23)
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for all non-basic integer-constrained variables. Suppose that the split disjunc-
tion D(π, π0) is given. We assume that the disjunction is violated by x∗, i.e. we
have that ε(π, π0) = πx∗ − π0 > 0.
In the following, we shall demonstrate a way to derive the intersection cut.

Firstly, let us construct a linear combination of Equations (4.22) and (4.23). The
weight we associate with each equation is the corresponding entry in the split
disjunction, namely πi for i ∈ NI . The result of this linear combination is

πx = πx∗ +
∑
j∈J

(
πrj

)
xj , (4.24)

where rj is defined as

rjk =


−ākj if k ∈ B,
1 if k = j,

0 otherwise,

(4.25)

for j ∈ J . Substituting for πx in D(π, π0) and rewriting yields the disjunction−∑
j∈J

(
πrj

)
xj ≥ ε (π, π0)

 ∨
∑
j∈J

(
πrj

)
xj ≥ 1− ε (π, π0)

 . (4.26)

Applying Proposition 2.1 we obtain the following result.

Proposition 4.4 ([17]). Suppose that a basis B of the LP relaxation, the cor-
responding basic solution x∗ and a split disjunction D(π, π0) are given. Let the
split disjunction be violated by x∗, that is ε(π, π0) = πx∗ − π0 > 0. Then the
intersection cut

∑
j∈J

∣∣∣πrj∣∣∣xj ≥ min {ε (π, π0) , 1− ε (π, π0)} (4.27)

associated with the basis B and the split disjunction D(π, π0) is valid for the
MIP (2.3).

Note that the intersection cut (4.27) is a split cut as it is derived from a
split disjunction. However, it is of key importance that intersection cuts are
generated from bases of the LP relaxation. Observe that the left-hand side of
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the intersection cut only contains non-basic variables which are at their bounds.
Since we assumed all variables to have a lower bound of zero and an infinite upper
bound, the whole left-hand side also has the value zero. Moreover, the right-hand
side of the intersection cut is positive as we selected a violated split disjunction,
i.e. we assumed that ε(π, π0) > 0. Therefore the intersection cut is violated by
the current basic solution x∗ to the LP relaxation.

Note that the coefficient of a continuous variable in the intersection cut derived
from the split disjunction D(π, π0) and the basis B is not affected by components
of π corresponding to non-basic variables. More formally, we have

πrj =


∑
i∈B

πir
j
i if j ∈ J \ JI ,∑

i∈B
πir

j
i + πj if j ∈ JI .

(4.28)

Depending on the way in which the disjunction (4.26) is written, different
intersection cuts can be obtained. For instance, multiply the first term of the
disjunction (4.26) with 1 − ε(π, π0) > 0 and the second term with ε(π, π0) > 0.
The intersection cut is then given by

∑
j∈J

max
{ (
−πrj

)
(1− ε (π, π0)) ,

(
πrj

)
ε (π, π0)

}
xj ≥ ε (π, π0) (1− ε (π, π0)) .

(4.29)

If the disjunction (4.26) is normalized5, a third version of the intersection cut is
obtained: ∑

j∈J
max

{
−πrj
ε (π, π0) ,

πrj

1− ε (π, π0)

}
xj ≥ 1 (4.30)

As mentioned before, intersection cuts have a very nice geometric interpretation
(see Figure 4.3), which we shall discuss next. Let us again suppose that the basic
solution x∗ solves the LP relaxation and violates the split disjunction D(π, π0).
Now consider the following relaxation of P

P (B) = {x ∈ Rn : Ax = b, xj ≥ 0, ∀j ∈ J} , (4.31)
5Given a disjunction

∨
i∈Q

(aix ≥ bi) with ai ∈ Rn, bi ∈ R1 and provided that bi > 0, ∀i ∈ Q,
the normalized disjunction is

∨
i∈Q

(( ai

bi )x ≥ 1).
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b

b

b

πx ≤ π0 πx ≥ π0 + 1

x∗

r1

r2x∗ + α1r1

x∗ + α2r2

Figure 4.3. Intersection cut

where we drop the non-negativity conditions on the basic variables. In the case
of non-degeneracy, these are the only non-binding constraints (with respect to
the basic solution x∗). We can alternatively write P (B) = x∗ +C where C is the
polyhedral cone C = {x ∈ Rn : Ax = 0, xj ≥ 0, ∀j ∈ J}. The extreme rays of the
cone C are given by the vectors rj as defined in Equation (4.25) for j ∈ J . Now,
for j ∈ J define

αj =


− ε(π,π0)

πrj if πrj < 0,
1−ε(π,π0)

πrj if πrj > 0,

∞ otherwise.

(4.32)

The scalars αj can be interpreted in the following way. Consider the half-line
starting from x∗ in the direction rj which is given by x∗ + αrj where α ∈ R+.
The scalar αj is the smallest α ∈ R+ such that x∗ + αrj satisfies the split
disjunction D(π, π0). Therefore the point x∗ + αjr

j is the point at which the
half-line x∗ + αrj and the hyperplanes πx = π0 or πx = π0 + 1 intersect (see
Figure 4.3). This is why the resulting cut is called the intersection cut. Note that
αj =∞, if the inner product πrj is zero and the extreme ray rj is thus parallel
to the hyperplanes πx = π0 and πx = π0 + 1. With the aid of the scalars (4.32),
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we can write the intersection cut from the basis B and the disjunction πx ≤ π0

or πx ≥ π0 + 1 in the form ∑
j∈J

xj
αj
≥ 1. (4.33)

A natural question is whether the split disjunction D(π, π0) can be improved in
order to obtain stronger split cuts. More precisely, we consider replacing D(π, π0)
by

((π − h)x ≤ π0) ∨ ((π − h)x ≥ π0 + 1) , (4.34)

where, as before, (π, π0) ∈ Zn+1 and πj = 0, ∀j ∈ N \ NI . We denote the
disjunction (4.34) by D(π−h, π0). Let h ∈ Zn be a vector with the characteristic
that hj = 0, ∀j 6∈ JI . In other words, we modify the split disjunction on the
non-basic integer-constrained variables. Hence we have that (π − h)x∗ = πx∗

and it follows that the split disjunctions D(π, π0) and D(π − h, π0) are violated
by the same amount, i.e. ε(π − h, π0) = ε(π, π0). Summing up Equations (4.22)
and (4.23) with weights πi − hi for i ∈ NI yields the linear combination

(π − h)x = (π − h)x∗ +
∑
j∈J

(
(π − h) rj

)
xj . (4.35)

By inserting Equation (4.35) into the split disjunction D(π − h, π0), normalizing
the disjunction and applying the disjunctive principle, we obtain the intersection
cut ∑

j∈J
max

{
hrj − πrj
ε (π, π0) ,

πrj − hrj
1− ε (π, π0)

}
xj ≥ 1. (4.36)

Observe that hrj = hjr
j
j = hj for j ∈ J . Thus we have that hrj ≥ 0 if the

non-basic variable xj is integer-constrained and hrj = 0 otherwise. Consequently,
we can restate the intersection cut as

∑
j∈JI

max
{
hj − πrj
ε (π, π0) ,

πrj − hj
1− ε (π, π0)

}
xj

+
∑

j∈J\JI

max
{
−πrj
ε (π, π0) ,

πrj

1− ε (π, π0)

}
xj ≥ 1. (4.37)
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We are now concerned with the question of how to choose the vector h to obtain
the strongest split cuts. We already noted that the violation of the cut (4.37) is
the same as of (4.30). However, it turns out that the size of the coefficients on
the non-basic variables greatly affects the strength of an intersection cut. For
example, consider the intersection cut γx ≥ 1. The distance between the basic
solution x∗ and its orthogonal projection on the hyperplane γx = 1 is given by

1
‖γ‖ , (4.38)

where ‖ · ‖ denotes the Euclidean norm. It is therefore desirable to obtain cut
coefficients that are as small as possible to increase the distance cut off. It can be
verified [7, 27] that the smallest coefficients are given by either setting hj = bπrjc
or hj = dπrje for j ∈ JI . We get

min
{

max
{⌈
πrj

⌉− πrj
ε (π, π0) ,

πrj − ⌈πrj⌉
1− ε (π, π0)

}
,

max
{⌊
πrj

⌋− πrj
ε (π, π0) ,

πrj − ⌊πrj⌋
1− ε (π, π0)

}}
,

= min
{⌈
πrj

⌉− πrj
ε (π, π0) ,

πrj − ⌊πrj⌋
1− ε (π, π0)

}
,

(4.39)

for j ∈ JI .

Proposition 4.5 ([27]). Suppose that a basis B of the LP relaxation, the cor-
responding basic solution x∗ and a split disjunction D(π, π0) are given. Let the
split disjunction be violated by x∗, that is ε(π, π0) = πx∗ − π0 > 0. Then the
strengthened intersection cut (or strengthened split cut)

∑
j∈JI

min
{⌈
πrj

⌉− πrj
ε (π, π0) ,

πrj − ⌊πrj⌋
1− ε (π, π0)

}
xj

+
∑

j∈J\JI

max
{
−πrj
ε (π, π0) ,

πrj

1− ε (π, π0)

}
xj ≥ 1 (4.40)

associated with the basis B and the split disjunction D(π, π0) is valid for the
MIP (2.3).
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Concerning the split disjunction D(π−h, π0), it follows that we have to choose
hj = bπrjc if the inequality ⌈

πrj
⌉− πrj

ε (π, π0) >
πrj − ⌊πrj⌋
1− ε (π, π0) ,

⇐⇒
⌈
πrj

⌉
− πrj > ε (π, π0) ,

(4.41)

holds and hj = dπrje otherwise.

Proposition 4.6 ([8]). Suppose that a basis B of the LP relaxation, the corre-
sponding basic solution x∗ and a split disjunction D(π, π0) are given. Let the split
disjunction be violated by x∗, that is ε(π, π0) = πx∗ − π0 > 0. The strengthened
split disjunction is then given by D(π − h, π0) where

hj =


⌊
πrj

⌋
if
⌈
πrj

⌉− πrj > ε (π, π0) ,⌈
πrj

⌉
if
⌈
πrj

⌉− πrj ≤ ε (π, π0) ,
(4.42)

for j ∈ JI .

Any split inequality is equal to or dominated by a split cut derived from a basis
of the LP relaxation and a split disjunction. The split closure of an MIP (i.e. the
intersection of all split cuts) can thus be obtained using only intersection cuts
by considering also non-optimal and infeasible bases. This correspondence was
established by Balas and Perregaard [30] for mixed 0-1 programs. Andersen et
al. [9] generalized it to mixed-integer programs.

In the previous discussion we concentrated on generating intersection cuts
from split disjunctions. In general, intersection cuts can also be derived from
more complex convex sets (or, in other words, from more complex disjunctions).
However, we must still require that these sets contain the fractional basic solution
to the LP relaxation and no feasible solution to the (mixed) integer program.

Balas and Margot [28] recently generalized the notion of intersection cuts
by replacing the polyhedral cone used to derive these cuts by a more general
polyhedron.
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4.4.3. Gomory Mixed-Integer Cuts

Gomory mixed-integer (GMI) cuts were introduced by Gomory [98] in the early
1960s as one of the first classes of cutting planes for MIPs. One of the merits
of GMI cuts is their separation: GMI cuts can be easily read from rows of the
simplex tableau associated with fractional integer variables.

We assume that the MIP (2.3) is given. Consider a row of the simplex tableau

xi = āi0 −
∑
j∈J

āijxj , i ∈ BI , (4.43)

associated with the basic integer-constrained variable xi which has a fractional
value in the solution to the LP relaxation of the MIP (2.3). More formally, we
assume that fi0 = āi0 − bāi0c > 0. In addition, let fij = āij − bāijc for j ∈ J .

Suppose we would like to generate an intersection cut (see Section 4.4.2) that
cuts off x∗. Remember that intersection cuts are generated from a basis and a
violated disjunction. We use the current optimal basis B of the LP relaxation
and the simple split disjunction

(xi ≤ bāi0c) ∨ (xi ≥ bāi0c+ 1) . (4.44)

Clearly, this disjunction is violated since ε(π, π0) = πx∗−π0 = āi0−bāi0c = fi0 > 0.
Furthermore, it is equivalent to D(π, bπx∗c) where π = ei and ei is the ith unit
vector. As disjunctions of the form (4.44) are imposed only on a single variable,
they are referred to as elementary disjunctions. The intersection cut from the
convex set {x ∈ Rn : bāi0c ≤ xi ≤ dāi0e} is equal to the simple disjunctive
inequality derived from the above split disjunction. Indeed, using the split
disjunction (4.44) (cf. Proposition 4.4) we obtain the intersection cut

∑
j∈J

max {āij (1− fi0) ,−āijfi0}xj ≥ fi0 (1− fi0) . (4.45)
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This cut can be strengthened using Proposition 4.5. We get the strengthened
intersection cut

∑
j∈JI

min {fij (1− fi0) , (1− fij) fi0}xj

+
∑

j∈J\JI

max {āij (1− fi0) ,−āijfi0}xj ≥ fi0 (1− fi0) . (4.46)

By rearranging the terms on the left-hand side and dividing by 1− fi0 we obtain
the GMI cut. So we have just proved the following result.

Proposition 4.7 ([98]). The Gomory mixed-integer cut generated from a row of
the simplex tableau (4.43)

∑
j∈JI :fij≤fi0

fijxj +
∑

j∈JI :fij>fi0

fi0 (1− fij)
1− fi0

xj

+
∑

j∈J\JI :āij≥0
āijxj +

∑
j∈J\JI :āij<0

fi0 (−āij)
1− fi0

xj ≥ fi0 (4.47)

is valid for the MIP (2.3).

The GMI cut is equivalent to the strengthened split (or intersection) cut
from the basis B and the disjunction (4.44). Thus GMI cuts are also split cuts.
Moreover, it can be shown that split cuts and GMI cuts are equivalent [142] with
respect to their elementary closures. The GMI cut can alternatively be derived
by strengthening the split disjunction (4.44) (cf. Proposition 4.6) before applying
the intersection cut. The strengthened version of the split disjunction (4.44) is
given by D(π, π0) with

πj =



bāijc if j ∈ JI and fij ≤ fi0,
dāije if j ∈ JI and fij > fi0,

1 if j = i,

0 otherwise,

(4.48)
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for j ∈ N and π0 = bāi0c. The intersection cut generated from the basis B
and this disjunction is equivalent to the GMI cut obtained from (4.43). It is
straightforward to see that

ε (π, π0) = āi0 − bāi0c = x∗i − bx∗i c = fi0 (4.49)

and
πrj = πir

j
i + πjr

j
j = rji + πj = −āij + πj ,

=


−fij if j ∈ JI and fij ≤ fi0,
1− fij if j ∈ JI and fij > fi0,

−āij if j ∈ J \ JI ,

(4.50)

using (4.48) and the definition of the extreme rays (4.25) of the polyhedral cone
defined by the basis B. Inserting these values into (4.30) gives the GMI cut. As
MIR cuts and GMI cuts are equivalent, the GMI cut can also be obtained by
applying mixed-integer rounding [135] to the tableau row (4.43). Thus a GMI
cut is in fact a MIR cut derived from a row of the simplex tableau.

GMI cuts can not only be derived from single rows of the simplex tableau but
also from linear combinations of these rows.

Proposition 4.8 ([46]). Suppose the rows of the simplex tableau (4.43) associated
with basic integer-constrained variables are given. Moreover, let π ∈ Zn be a
vector with πi = 0 for i 6∈ BI . Define ā0 = ∑

i∈BI
πiāi0, f0 = ā0 − bā0c and

āj = ∑
i∈BI

πiāij, fj = āj − bājc for j ∈ J . Then the Gomory mixed-integer cut

∑
j∈JI :fj≤f0

fjxj +
∑

j∈JI :fj>f0

f0 (1− fj)
1− f0

xj

+
∑

j∈J\JI :āj≥0
ājxj +

∑
j∈J\JI :āj<0

f0 (−āj)
1− f0

xj ≥ f0 (4.51)

is valid for the MIP (2.3).

The GMI cut (4.51) can also be obtained as a strengthened intersection cut
from the basis B and the split disjunction D(π, bπx∗c) where π is chosen as in
Proposition 4.8.
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The Quality of a Gomory Mixed-Integer Cut

The question of how to strengthen GMI cuts is related to the problem of measuring
cut quality. Let αx ≥ β be an arbitrary GMI cut. The violation of the GMI cut
is given by

β − αx∗ = β (4.52)

as αx∗ = 0. Thus the violation is equal to the fractional part of the right-hand side
of the corresponding simplex tableau row (or the violation of the split disjunction
respectively). We may also consider the distance between the solution x∗ and its
orthogonal projection on the cut hyperplane αx = β which is defined as

β − αx∗
‖α‖ = β

‖α‖ . (4.53)

The value of (4.53) is also referred to as the distance cut off. Observe that
to enhance the distance cut off, we can either try to increase the fractional
part of the right-hand side of a tableau row (numerator) or decrease the size of
the coefficients in the GMI cut (denominator). The coefficients of the integer-
constrained variables in a GMI cut are in the interval [0, 1] while coefficients on
continuous variables are not bounded and depend on the size of the entries in the
corresponding simplex tableau row.

In the following sections we present four approaches which improve the perfor-
mance of the GMI cuts by increasing the violation or the distance cut off. These
approaches either manipulate the disjunction (see Figure 4.4) or the basis (see
Figure 4.5) on which a GMI cut (or strengthened intersection cut) is based.

4.4.4. K-Cuts

In this section we discuss an approach to improve the performance of the Gomory
mixed-integer cuts developed by Cornuéjols et al. [61]. Reconsider a row of the
simplex tableau (4.43) associated with a basic integer-constrained variable xi
which is fractional. Recall, moreover, that the GMI cut generated from this
row is equivalent to the strengthened intersection cut from the basis B and the
elementary split disjunction (4.44). The approach outlined in this section modifies
this disjunction.
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b b

b

(a) A polyhedron

b

b b

b

x∗

(b) A basic solution x∗, a split disjunction
and the corresponding intersection cut

b b

b

b

x∗

(c) A modified split disjunction which pro-
duces a deeper intersection cut

Figure 4.4. Modifying the disjunction to obtain deeper intersection cuts
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b b

b b

(a) A polyhedron

b

b b

b b

x∗

(b) A basic solution x∗, a split disjunction
and the corresponding intersection cut

b b

b b

b

x∗

(c) An infeasible basic solution x∗ which
produces a deeper intersection cut

Figure 4.5. Modifying the basis to obtain deeper intersection cuts
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Specifically, Cornuéjols et al. [61] consider the disjunction

(kxi ≤ bkāi0c) ∨ (kxi ≥ bkāi0c+ 1) , (4.54)

where k is an integer with k 6= 0. We denote this disjunction by D(π̄, bπ̄x∗c)
where π̄ = kπ = kei, and let π̄0 = bkāi0c. Clearly, the multiplication with k 6= 0
affects the violation of the split disjunction. More precisely, assuming that kāi0 is
non-integral, we have ε(π̄, π̄0) = kāi0 − bkāi0c > 0. Now consider the intersection
cut generated from the basis B and the modified split disjunction (4.54)

∑
j∈J

max
{
k
(−πrj)
ε (π̄, π̄0) ,

k
(
πrj

)
1− ε (π̄, π̄0)

}
xj ≥ 1. (4.55)

For each k 6= 0 a variation of the plain intersection cut (k = 1) is obtained.
Note that the violation of the split disjunction ε(π̄, π̄0) is equal to the violation
of the GMI cut (cf. Proposition 4.7). Therefore some values of k may increase
the amount by which the associated GMI cut is violated. Moreover, it becomes
apparent from (4.55) that the size of the non-zero integer k has a direct influence
on the size of the coefficients in the intersection cut. Specifically, large values for k
lead to large coefficients in the intersection cut. Note that this is undesirable since
it decreases 1/‖γ‖, i.e. the distance cut off. The strengthening of Proposition 4.5
resolves this issue for the integer-constrained variables. On the other hand, the
size of the coefficients on the continuous variables in the intersection cut and the
GMI cut remains proportional to the size of k. This situation is also observed
by Cornuéjols et al. [61] who report on a deterioration of the coefficients on
continuous variables in preliminary experiments as k increases.

Cornuéjols et al. call the strengthened intersection cut from the modified
disjunction (4.54) a k-cut. Alternatively the k-cut can be derived as the GMI cut
from the scaled tableau row

kxi = kāi0 −
∑
j∈J

(kāij)xj . (4.56)

The following proposition states this result more formally.
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Proposition 4.9 ([61]). Suppose a row of the simplex tableau (4.43) and a non-
zero integer k are given. Moreover, let fi0 = kāi0−bkāi0c and fij = kāij −bkāijc
for j ∈ J . Then the k-cut

∑
j∈JI :fij≤fi0

fijxj +
∑

j∈JI :fij>fi0

fi0 (1− fij)
1− fi0

xj

+
∑

j∈J\JI :kāij≥0
kāijxj +

∑
j∈J\JI :kāij<0

fi0 (−kāij)
1− fi0

xj ≥ fi0 (4.57)

is valid for the MIP (2.3).

Cornuéjols et al. [61] prove that in the pure integer case k-cuts perform variable-
wise better than GMI cuts with exactly fifty percent probability.

4.4.5. Combined Gomory Mixed-Integer Cuts

Ceria et al. [46] present a method which obtains strengthened GMI cuts by
modifying the underlying split disjunctions. They argue that the quality of a
split (or intersection) cut is, among other factors, influenced by the violation of
the split disjunction and the size of the coefficients of the integer variables. As a
result, they propose a procedure controlling the latter two factors by constructing
split disjunctions on several basic integer variables.
Ceria et al. [46] assume that the rows of the simplex tableau (4.43) are given

in rational data. We have

xi = ei0
D
−
∑
j∈J

eij
D
xj , i ∈ BI , (4.58)

where ei0, D ∈ Z and eij ∈ Z for i ∈ BI and j ∈ J . The integer D is the common
denominator in which the coefficients of the simplex tableau can be expressed.
This representation of the simplex tableau allows for a detailed analysis of the
connection between the properties of the split disjunction and the strengthened
intersection cut generated from it. In particular we shall see that it enables us
to select the split disjunction such that a strengthened intersection cut with a
maximal right-hand side and minimal coefficients on certain variables is obtained.
To simplify the notation, let BI = {1, . . . , r}.
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Maximizing the Violation of a Split Disjunction

Firstly, we deal with the violation of the split disjunction which is given by

ε (π, π0) =
r∑
i=1

πi

(
ei0
D

)
−
⌊

r∑
i=1

πi

(
ei0
D

)⌋
. (4.59)

Let < e10, e20, . . . , er0, D > be the greatest common divisor of e10, e20, . . . , er0

and D. Suppose we would like to obtain the violation ε(π, π0) = e
D . Suppose

furthermore that < e10, e20, . . . , er0, D > divides e. Ceria et al. [46] show that this
specific violation is obtained by choosing the multipliers πi (or the disjunction π)
appropriately.

Proposition 4.10 ([46]). The violation ε(π, π0) = e
D can be obtained by setting

πi = D − lpi, i = 1, . . . , r, (4.60)

where l = D−e
<e10,e20,...,er0,D>

and p1, p2, . . . , pr and q are integers which solve the
diophantine equation

< e10, e20, . . . , er0, D >= e10p1 + e20p2 + . . .+ er0pr + qD. (4.61)

The requirement that < e10, e20, . . . , er0, D > divides e must be made to ensure
that l is integral. It follows that πi is integral for i = 1, . . . , r. With the proposed
choice of the multipliers πi we have

r∑
i=1

πi

(
ei0
D

)
=

r∑
i=1

(D − lpi)
(
ei0
D

)
,

=
r∑
i=1

ei0 −
l

D

r∑
i=1

piei0,

=
(

r∑
i=1

ei0 + lq − 1
)

+ e

D
.

(4.62)

As the term in the brackets is integral, we obtain the violation ε(π, π0) = e
D . Note

that the maximal value of ε(π, π0) in Equation (4.59) is D−<e10,e20,...,er0,D>
D . Set-

ting e = D −< e10, e20, . . . , er0, D > in Equation (4.60), we obtain that choosing
πi = D − pi for i = 1, . . . , r maximizes ε(π, π0).
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Minimizing the Coefficients of Integer Variables

In the following we concentrate on minimizing a coefficient of an integer-constrained
variable. Firstly, we offer some remarks on solving diophantine equations of the
form (4.61). Following Ceria et al. [46] we use the algorithm of Rosser [151] to
solve such type of equations. The algorithm provides us with a family of solutions

(p1, p2, p3, . . . , pr, q) = P1 + P2y2 + P3y3 + . . .+ Pr+1yr+1, (4.63)

where yk for k = 2, . . . , r + 1 are arbitrary integers and Pk ∈ Zr+1 are vectors of
the form

Pk =
(
pk1, p

k
2, p

k
3, . . . , p

k
r , p

k
r+1
)

(4.64)

for k = 1, . . . , r+ 1. Suppose that the family (4.63) is a general solution to (4.61).
Then for an arbitrary choice of the integers y2, . . . , yr+1 this solution yields
multipliers maximizing ε(π, π0). On the other hand, different coefficients are
obtained on the left-hand side of the cut.

Accordingly, Ceria et al. propose to select a set of multipliers from the fam-
ily (4.63) which gives the best coefficient on an integer variable while keeping the
right-hand side maximal. Specifically, given an index j ∈ JI we wish to minimize

r∑
i=1

πifij −
⌊

r∑
i=1

πifij

⌋
, (4.65)

where, as above, the values fij = āij − bāijc are the fractional parts of the
coefficients of the tableau rows (see Equation (4.43)). The multipliers maximizing
ε(π, π0) are given by

πi = D − p1
i −

r+1∑
k=2

pki yk, i = 1, . . . , r. (4.66)

To find a particular set of multipliers from this family that minimizes (4.65) for
some j ∈ JI we insert the general solution (4.66) into (4.65). We have that

r∑
i=1

πifij =
r∑
i=1

(
D − p1

i

)
fij +

r+1∑
k=2

(
r∑
i=1
−pki fij

)
yk (4.67)
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and can rewrite (4.65) as

g0 +
r+1∑
k=2

gkyk −
⌊
g0 +

r+1∑
k=2

gkyk

⌋
(4.68)

with g0 =
r∑
i=1

(D− p1
i )fij −b

r∑
i=1

(D− p1
i )fijc and gk =

r∑
i=1

(−pki fij)−b
r∑
i=1

(−pki fij)c.
Recall that the integers pki represent a specific family of solutions maximizing
ε(π, π0). Thus the only variables at this point are the integers yk, k = 2, . . . , r+ 1,
which need to be chosen such that the selected coefficient (4.68) is minimized. As
we assumed that the rows of the simplex tableau are given in rational numbers,
we can restate (4.68) as

e0
D

+
r+1∑
k=2

(
ek
D

)
yk −

⌊
e0
D

+
r+1∑
k=2

(
ek
D

)
yk

⌋
(4.69)

with g0 = e0
D , gk = ek

D , e0 ∈ Z and ek ∈ Z for k = 2, . . . , r + 1. Let < e2, e3, . . . ,

er+1, D > denote the greatest common divisor of e2, e3, . . . , er+1 and D. Then
there exist integers p2, p3, . . . , pr+1 and q such that

< e2, e3, . . . , er+1, D >= e2p2 + e3p3 + . . .+ er+1pr+1 + qD. (4.70)

Rosser’s algorithm again yields a general solution of the form (4.63) to the
diophantine Equation (4.70).

Proposition 4.11 ([46]). Suppose that u = e0
<e2,e3,...,er+1,D>

is integral. Then,
setting yk = −upk yields a zero coefficient of the selected non-basic integer variable
xj in the strengthened intersection cut.

Indeed with the proposed choice of yk for k = 2, . . . , r + 1 we obtain

e0
D

+
r+1∑
k=2

(
ek
D

)
yk = e0

D
− u

r+1∑
k=2

ekpk
D

,

= e0
D
−
(
e0 (< e2, e3, . . . , er+1, D > −qD)

< e2, e3, . . . , er+1, D > D

)
,

= uq,

(4.71)
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which is integral if u is integral. As a result, using these values for yk in Equa-
tion (4.66) yields a family of multipliers which maximizes the right-hand side and
minimizes the coefficient of the selected variable in the strengthened intersection
cut.
In our presentation we interpreted the procedure of Ceria et al. [46] as a

strengthening of the split disjunction D(π, π0). In terms of the rows of the
simplex tableau associated with basic integer variables, the procedure selects a
vector π of multipliers such that the GMI cut from the linear combination of these
rows (cf. Proposition 4.8) is strong. Here strong means that it has a maximal
right-hand side and minimal coefficients on some integer variables. We call the
resulting cuts combined Gomory mixed-integer (cGMI) cuts.
The procedure outlined above does not, however, take into account the size

of the coefficients of the continuous variables in the strengthened intersection
cut or GMI cut. The size of these coefficients is directly dependent on the size
of the entries in the vector π. Therefore large multipliers (or equivalently large
coefficients in the split disjunction) are likely to produce cuts with weak (large)
coefficients on the continuous variables. Again this has a negative influence on
the distance cut off.

4.4.6. Reduce-and-Split Cuts

In the previous section we discussed a method that maximizes the right-hand
side of the GMI cut and minimizes the coefficients on some integer variables.
Even though the size of these coefficients is important, the strengthening of
Proposition 4.5 in fact guarantees that any integer variable has a coefficient that
is in the interval [0, 1] in a strengthened intersection cut or GMI cut. However,
as mentioned above, the coefficients of the continuous variables in a strengthened
intersection cut as well as in a GMI cut are not bounded. The size of these
coefficients is influenced by the underlying split disjunction and has a direct
influence on the distance cut off. Andersen et al. [8] accordingly propose a method
which reduces the size of these coefficients. This method is closely related to the
basis reduction algorithm of Lenstra et al. [128].
We start our discussion by analyzing in more detail the influence of the split

disjunction on the size of the coefficients of the continuous variables in an inter-
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section cut. Suppose a basis B and the corresponding basic solution x∗ are given.
Let D(π, π0) be an arbitrary split disjunction which is violated. Let γx ≥ 1 be
the strengthened intersection cut (4.40) generated from B and D(π, π0). The
distance cut off by this cut is 1/‖γ‖. Now observe that the size of a coefficient on
a continuous variable xj in this cut is dependent on the size of |πrj |. Therefore
the distance cut off can be increased by reducing the size of |πrj |.
Andersen et al. [8] propose an algorithm which reduces the size of |πrj | by

modifying the vector π (or the split disjunction D(π, π0) respectively). This
algorithm works as follows. Consider an additional split disjunction D(π′, π′0)
distinct from D(π, π0). The algorithm replaces the disjunction D(π, π0) by the
disjunction D(π(δ), π0(δ)) where π(δ) = π+δπ′ and π0(δ) = bπ(δ)x∗c with δ ∈ Z.
The integer δ is chosen such that it minimizes the function

f(δ) =
∑

j∈J\JI

(
π (δ) rj

)2
,

=
∑

j∈J\JI

((
πrj

)2
+ 2δ

(
πrj

) (
π′rj

)
+ δ2

(
π′rj

)2
)
.

(4.72)

The function f(δ) measures nothing more than the squared Euclidean norm of
the vector with entries π(δ)rj for j ∈ J \ JI . An alternative interpretation of π(δ)
is the following. Combine the rows of the simplex tableau associated with basic
integer variables with weights π(δ). Then f(δ) measures the squared Euclidean
norm of this combined row on the continuous variables. But why do we measure
the quality of the combined disjunction D(π(δ), π0(δ)) by the squared Euclidean
norm? Let h(π, π′) = ∑

j∈J\JI
(πrj)(π′rj) and g(π) = ∑

j∈J\JI
(πrj)2. Then the

first derivative of f(δ) is given by f ′(δ) = 2h(π, π′) + 2δg(π′) and the second
derivative reads f ′′(δ) = 2g(π′) > 0. As f(δ) is a quadratic convex function in δ,
its minimum can be found by rounding. More precisely, the optimal solution is
either

δ∗ = −
⌊
h (π, π′)
g (π′)

⌋
or δ∗ = −

⌈
h (π, π′)
g (π′)

⌉
. (4.73)

If f(δ∗) < f(0), then the disjunction D(π, π0) is replaced by the disjunc-
tion D(π(δ∗), π0(δ∗)) and the process is iterated. Andersen et al. [8] call the
resulting cuts reduce-and-split (R&S) cuts. The above procedure is started from
the elementary split disjunctions (4.44).
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This procedure can also be carried on the rows of the simplex tableau (4.43).
In each iteration a pair of rows associated with two basic integer-constrained
variables, say xi and xk, is selected and the linear combination

xi + δxk = āi0 + δāk0 −
∑
j∈J

(āij + δākj)xj (4.74)

with δ ∈ Z is considered. Note that we intend to replace the original rows
of the simplex tableau (4.43) by combined rows of the form (4.74). Thus in
subsequent iterations of the algorithm a row of the simplex tableau originally
associated with the basic variable xi may contain several other basic integer
variables. Nevertheless, the variable x′i = xi + δxk is also integer-constrained.
The effect that using the multiplier δ has on the size of the coefficients on the
continuous variables in the combined row is measured by (4.72). Specifically, we
can also write f(δ) as

f (δ) =
∑

j∈J\JI

(āij + δākj)2 . (4.75)

The optimal value of δ minimizing f(δ) is then given by

δ∗ = −


∑

j∈J\JI

āij ākj∑
j∈J\JI

ā2
kj

 or δ∗ = −


∑

j∈J\JI

āij ākj∑
j∈J\JI

ā2
kj

 . (4.76)

We have identified a reduction, if the inequality f(δ∗) < f(0) holds. Then
the linear combination (4.74) is calculated with the optimal multiplier δ∗. The
combined row then replaces the original row and the process is iterated.
In a recent paper Cornuéjols and Nannicini [64] propose to select a certain

subset of the continuous non-basic variables and to use the reduce-and-split
approach to reduce the coefficients of these variables.

4.4.7. Lift-and-Project Cuts

So far we have discussed three approaches to improving the performance of the
strengthened intersection (or GMI) cut. What all of these approaches have in
common is that they modify the elementary split disjunctions (4.44) on basic

66



4.4. Cutting Planes for MIPs

integer variables. The strengthened intersection cut from the basis B and this
improved disjunction is then generated. However, each approach aims at optimiz-
ing different characteristics of the strengthened intersection cut, be it the size of
the coefficients in the cut or its violation. In this section we consider a procedure
which finds the best basis B (in some sense to be discussed later) from which the
intersection cut is generated while leaving the underlying elementary disjunction
unchanged.
Firstly, we introduce some additional notation. Reconsider the MIP (2.1) and

suppose that all integer-constrained variables are 0-1 variables, i.e. we have a
(mixed) 0-1 program. Let N be the set of variables and NI = {1, . . . , p} ⊆ N

be the set of 0-1 variables. For technical reasons we assume that the constraint
system of our mixed 0-1 program explicitly contains the simple upper bounds on
the 0-1 variables. We assume in addition that the lower bound constraints on all
structural variables are as well explicitly present as constraints. More formally,
we consider the mixed 0-1 program

(MBP) min {cx : x ∈ XLP , xj ∈ {0, 1} , j = 1, . . . , p} , (4.77)

where the set XLP is defined as

XLP =

x ∈ Rn :
Ax ≥ b

−xj ≥ −1, j = 1, . . . , p

x ≥ 0

 . (4.78)

The LP relaxation of (4.77) is given by

(LP) min {cx : x ∈ XLP } . (4.79)

Typically, MIP solvers store the bounds of the variables separate from the
constraint matrix. We shall discuss this and other practical issues in Part III of
this thesis (see Section 8.5). As before, we denote by P = XLP the polyhedron
associated with (LP). We shall denote the whole system defining the polyhedron
P by Ãx ≥ b̃.

The system Ãx ≥ b̃ consists of m+p+n rows and can be written as Ãx− s = b̃

by introducing surplus variables. Note that the vector s ∈ Rm+p+n consists of m
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surplus variables from the constraints in A, p surplus variables from the upper
bound constraints, and n surplus variables from the lower bound constraints. As
all bounds on the 0-1 variables are contained in the constraint system Ãx ≥ b̃, all
of these variables are unrestricted and can without loss of generality be assumed
to be basic. Since sm+p+j = xj for j = 1, . . . , n, it is possible to write the rows of
the simplex tableau completely using only surplus variables

xi = āi0 −
∑
j∈J

āijsj , i ∈ BI . (4.80)

With respect to notation, also note the following. We use (x∗, s∗) to denote
an optimal basic solution to (LP). On the other hand, concerning the simplex
tableau associated with the current basic solution (x, s) to (LP), we denote by
āij and āi0 the coefficient of variable j in row i and the right-hand side of row i

respectively.

Lift-and-project (L&P) cuts [24, 25] are disjunctive cuts which are derived from
a disjunction of the form  Ãx ≥ b̃

−xi ≥ 0

 ∨
 Ãx ≥ b̃

xi ≥ 1

 (4.81)

on a fractional 0-1 variable. Further developments of the method were docu-
mented in [20, 29, 149]. The most-violated (deepest) L&P cut αx ≥ β from the
disjunction (4.81) is obtained by solving the cut generating linear program

(CGLPi) min αx∗−β,
s. t. α −uÃ +u0ei = 0,

α − vÃ − v0ei = 0,

−β +ub̃ = 0,

−β + vb̃ + v0 = 0,

(4.82)
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where u, v, u0, v0 ≥ 0. Recall that the set of feasible solutions to (CGLPi) is a
cone which needs to be truncated by a normalization constraint

m+p+n∑
i=1

(ui + vi) + u0 + v0 = 1 (4.83)

in order to obtain a bounded set. The linear program (CGLPi) is a special case
of the general CGLP (2.24) for disjunctive programs.
The cut generating linear program (CGLPi) is large. Specifically, it consists

of 2n + 3 rows and 2(m + p) + 3(n + 1) columns. Moreover, it can be shown
to be highly-degenerate. Thus solving (CGLPi) may be too expensive from a
computational point of view.
Note that Proposition 2.3 tells us that the first two constraints in (CGLPi)

defining α should be ≥-inequalities. However, the identity matrix (lower bound
constraints) which we added to A serves as a vector of surplus variables for these
constraints. Similarly, the last two constraints in (CGLPi) could be relaxed to
≥-inequalities. As the constraints xj ≥ 0 and −xj ≥ −1 are contained in the
system Ãx ≥ b̃, the trivial inequality 0x ≥ −1 is also implicitly present in this
system. We can therefore require that the inequalities defining β hold at equality.
While the most-violated L&P cut is found by solving (CGLPi) to optimality,

any solution to (CGLPi) yields an L&P cut. Let Ãj be the jth column of Ã.
Furthermore, let α1

j = uÃj − um+p+j and α2
j = vÃj − vm+p+j for j = 1, . . . , n.

Then the L&P cut αx ≥ β associated with the basic solution (α, β, u, v, u0, v0)
of (CGLPi) is given by

αj =

max{α1
j − u0, α2

j + v0} if j = i,

max{α1
j , α

2
j} if j 6= i,

(4.84)

and β = ub̃ = vb̃+ v0.
L&P cuts can be strengthened by considering the integrality of some of the

variables. The strengthened L&P cut ᾱx ≥ β has the coefficients

ᾱj =

min{α1
j + u0 dmje , α2

j − v0 bmjc} if j ∈ {1, . . . , p} \ {i} ,
αj otherwise,

(4.85)
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where
mj =

α2
j − α1

j

u0 + v0
. (4.86)

The strengthened L&P cut can also be obtained by replacing the split disjunction
−xi ≥ 0 or xi ≥ 1 by the more general split disjunction− p∑

j=1
πjxj ≥ 0

 ∨
 p∑
j=1

πjxj ≥ 1

 . (4.87)

The vector π ∈ Zp producing the best (smallest) coefficients in the L&P cut can
be shown [25] to be given by πj = bmjc or πj = dmje for j = 1, . . . , p.

The foundations for a more efficient separation of L&P cuts were laid by Balas
and Perregaard [30]. Given a basis B of (LP), Balas and Perregaard show that
the intersection cut generated from the tableau row (4.80) associated with the
basic fractional integer variable xi is equivalent to an L&P cut from a particular
basis of (CGLPi). Moreover, they show that the correspondence between bases
of (LP) and (CGLPi) is well defined. This means that a basis of (LP) can be
constructed such that it gives an intersection cut which is equivalent to a specific
L&P cut. The following section details this correspondence.

A Precise Correspondence

Consider a feasible basic solution (α, β, u, v, u0, v0) of (CGLPi) which yields the
L&P cut αx ≥ β and the strengthened L&P cut ᾱx ≥ β. We suppose that u0 > 0
and v0 > 0 since otherwise the L&P cut is just a non-negative linear combination
of the constraints of Ãx ≥ b̃. Let the sets M1 and M2 contain the indices of the
basic components of u and v respectively. Moreover, let J = M1 ∪M2 and ÃJ be
the matrix which consists of the rows of Ã indexed by J . It can be verified that
M1 ∩M2 = ∅ and |M1 ∪M2| = n. Therefore ÃJ is a n× n square matrix which
is invertible [30]. With this notation we can write

ÃJx = b̃J + sJ ,

x = Ã−1
J b̃J + Ã−1

J sJ .
(4.88)
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Then the row associated with the basic variable xi can be written as

xi = āi0 −
∑
j∈J

āijsj , (4.89)

where āi0 = (Ã−1
J b̃J)i and āij = −(Ã−1

J )ij . This row of the simplex tableau is
the same as (4.80). It can furthermore be shown that 0 < āi0 < 1 due to the
assumption that u0 > 0 and v0 > 0. Thus there is a correspondence between the
basic components of u and v in (CGLPi) and the non-basic components of the
surplus variables s in (LP). Conversely, the non-basic components of u and v are
connected to basic components of s or x respectively.

Theorem 4.12 ([30]). The strengthened L&P cut ᾱx ≥ β is equivalent to the
GMI cut generated from (4.89).

On the other hand, this correspondence can be used to construct a basic feasible
solution of (CGLPi) such that the strengthened L&P cut is equivalent to the
GMI cut from (4.89). Suppose that a row of the simplex tableau (4.89) associated
with a basis B of (LP) and a basic variable xi is given such that 0 < āi0 < 1.
Note that the basis B does not have to be optimal or feasible.

Theorem 4.13 ([30]). Let (M1,M2) be a partition of J such that j ∈ M1, if
āij < 0 and j ∈M2, if āij > 0. Then the strengthened L&P cut ᾱx ≥ β which is
defined by the solution to (CGLPi) associated with the basis

(α, β, u0, v0, {uk : k ∈M1} , {vk : k ∈M2}) (4.90)

is equivalent to the GMI cut derived from (4.89).

Theorem 4.13 is based on the partition (M1,M2) of the non-basic variables J .
But if there are any non-basic variables with āij = 0, this partition is not
unique. In this case we are free to assign the variable either to M1 or M2.
Therefore Theorem 4.13 relates each basis B of (LP) to a number of different
bases of (CGLPi). However, these bases are degenerate and correspond to the
same basic solution of (CGLPi). So there is a one-to-one relation between basic
solutions of (LP) and (CGLPi). The correspondence stated in Theorem 4.12 and
Theorem 4.13 can also be established between the unstrengthened L&P cut and
the intersection cut.
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Solving the CGLP on the LP Tableau

Based on these insights, Balas and Perregaard [30] developed a very elegant
method which mimics the optimization of (CGLPi) by performing a sequence of
pivots on the original (LP) tableau. In each iteration of this procedure a pivot in
a row of the simplex tableau associated with the basic variable xk with k 6= i is
performed. This pivot produces a linear combination

xi + γxk = āi0 + γāk0 −
∑
j∈J

(āij + γākj) sj (4.91)

of our reference row (4.89) associated with xi and the selected row. The procedure
aims at selecting the pivot such that the GMI cut from the combined row (4.91)
is more violated than that obtained from the original row. Let γ = − āip

ākp
for some

p ∈ J . The pivot in Equation (4.91) then makes the basic variable xk leave the
basis and the non-basic variable xp enter the basis. The variable xk is also called
the pivot row and the variable xp is called the pivot column. To guide the search
for an improving pivot, the correspondence between bases of (LP) and (CGLPi)
is used.

In order to be able to perform a pivot, a variable which leaves the basis needs
to be selected in a first step. This selection is guided by the fact that each basic
variable xk of the (LP) simplex tableau corresponds to a pair uk, vk of non-basic
variables of (CGLPi). The reduced cost of the non-basic variables uk and vk can
be calculated from the entries in the (LP) tableau rows associated with xi and
xk and the solution vector x∗ for each row k /∈ J ∪ {i}

ruk
= −σ + āk0 (1− x∗i )− τk, (4.92a)

rvk
= −σ − āk0 (1− x∗i ) + s∗k + τk, (4.92b)

where

σ =

∑
j∈M2

āijs
∗
j − āi0 (1− x∗i )

1 + ∑
j∈J
|āij |

, (4.93)

and
τk =

∑
j∈M1

σākj +
∑
j∈M2

(
s∗j − σ

)
ākj . (4.94)
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If one of the reduced cost ruk
or rvk

is negative, the L&P cut can be improved by
pivoting the non-basic variable uk or vk respectively into the basis of (CGLPi).
In terms of the (LP) tableau, the equivalent effect can be achieved by pivoting
the basic variable xk out of the basis. If none of the variables uk or vk with
k /∈ J ∪{i} has negative reduced cost, there is no improving pivot and the current
basis of (LP) corresponds to an optimal basis of (CGLPi). In this case, the GMI
cut from the row (4.89) of the simplex tableau associated with the current basis
is equivalent to the optimal L&P cut.

In a second step a non-basic variable xp from the row associated with the basic
variable xk is selected to enter the basis. The two functions

f+ (γ) =

∑
j∈J

max {āij ,−γākj} s∗j − āi0 + (āi0 + γāk0)x∗i

1 + γ + ∑
j∈J
|āij + γākj |

(4.95a)

and

f− (γ) =

∑
j∈J

max {0, āij + γākj} s∗j − (āi0 + γāk0) (1− x∗i )

1− γ + ∑
j∈J
|āij + γākj |

(4.95b)

are used to measure the effect that pivoting xp into the basis of (LP) has on the
value of the objective function of (CGLPi). The functions f+(γ) and f−(γ) are
minimized to identify the entering variable xp which brings about the largest
improvement of the violation of the L&P cut. If a leaving and an entering variable
are selected, the corresponding pivot is performed and the process is iterated. For
recent computational studies of different variants of this algorithm see [22, 23].

Connection to Split Cuts

In this section we discuss the connection of L&P cuts and split cuts. Multiplying
the left-hand side of the disjunction (4.81) with u, u0 ≥ 0 and the right-hand side
with v, v0 ≥ 0 we obtain(

uÃx− u0xi ≥ ub̃
)
∨
(
vÃx+ v0xi ≥ vb̃+ v0

)
. (4.96)
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Solving (CGLPi) optimizes the multipliers u, v, u0, v0 and generates the most-
violated intersection (or simple disjunctive) cut with respect to the elementary
split disjunction xi ≤ 0 or xi ≥ 1. Using the correspondence discussed above, an
equivalent result can be obtained by performing pivots on the (LP) tableau. The
intersection cut can then be strengthened by using the integrality conditions on
the non-basic integer variables (cf. Proposition 4.5). This second operation can
be seen as a strengthening of the underlying disjunction (cf. Proposition 4.6).
Therefore the most-violated strengthened intersection cut (or GMI cut) is the
result of a two-stage procedure. One would like ideally to optimize the basis and
the disjunction at the same time. This is equivalent to finding an optimal split
cut which can be separated by solving a mixed-integer non-linear program (see
Section 4.4.1).

The Role of the Normalization

Fischetti et al. [87] examine the strengths and weaknesses of the standard normal-
ization constraint (4.83). This normalization has several positive characteristics.
To see this, consider the right-hand side of the normalization constraint to be a
resource that must be shared among the multipliers u, v, u0, and v0. As a conse-
quence large multipliers are generally undesirable as they consume large amounts
of this resource. Therefore the standard normalization (4.83) will produce cuts
with relatively small coefficients due to the usage of relatively small multipliers.
This in turn implies that multipliers associated with cuts need to be comparably
large for the cuts to become relevant. Thus cuts with relatively low rank are
separated. Since original inequalities from the problem formulation are normally
sparse and the normalization produces relatively sparse multiplier vectors, the
generated cuts also tend to be sparse.

A weakness of the standard normalization is that it is dependent on the scaling
of the constraint system. Consider an inequality ax ≥ b and its scaled version
a′x ≥ b′ where a′ = µa and b′ = µb with µ > 1. The multipliers of the second
inequality are u′ = u

µ and v′ = v
µ . Selecting the second inequality is therefore

more favorable as it consumes fewer resources with respect to the right-hand side
of the normalization constraint. By an appropriate scaling previously generated
cuts can also become relevant. Thus the nice properties of the normalization,
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i.e. the generation of sparse low-rank cuts, are lost. Constraints that become
redundant in (CGLPi) due to the disjunction used pose an additional problem.

To overcome the discussed drawbacks, Fischetti et al. [87] propose the Euclidean
normalization

m+p+n∑
i=1

‖ãi‖ (ui + vi) + u0 + v0 = 1, (4.97)

where ãi is the ith row of Ã and ‖ · ‖ denotes the Euclidean norm. This approach
is equivalent to scaling the system Ãx ≥ b̃ such that every row of Ã has Euclidean
norm equal to 1. Clearly the Euclidean normalization is not affected by scaling.

Balas and Bonami [23] take up the ideas of Fischetti et al. and study the
normalization constraint

m+p+n∑
i=1

λi (ui + vi) + u0 + v0 = λ0, (4.98)

where λi ≥ 0 for i = 1, . . . ,m+ p+ n and λ0 is a positive integer. Introducing
the new normalization (4.98) into (CGLPi) is easy. Moreover, the correspon-
dence between bases of (LP) and (CGLPi) which is stated in Theorem 4.12
and 4.13 is not affected by modifying the normalization. However, the algo-
rithm optimizing (CGLPi) by pivoting on the original (LP) tableau needs to be
adapted. Specifically, the calculation of the reduced cost (4.92) and the evalua-
tion functions (4.95) is based on the assumption that the standard normalization
ve+ue+v0+u0 = 1 is used. When the normalization (4.98) is used the expressions
of the reduced cost are given by

ruk
= −σλk + āk0 (1− x∗i )− τk, (4.99a)

rvk
= −σλk − āk0 (1− x∗i ) + s∗k + τk, (4.99b)

where

σ =

∑
j∈M2

āijs
∗
j − āi0 (1− x∗i )

1 + ∑
j∈J
|āij |λj

, (4.100)

and
τk =

∑
j∈M1

σākjλj +
∑
j∈M2

(
s∗j − σλj

)
ākj . (4.101)
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In addition, the two evaluation functions (4.95) have to be slightly modified:

f+ (γ) =

(∑
j∈J

max {āij ,−γākj} s∗j − āi0 + (āi0 + γāk0)x∗i

)
λ0

1 + γλk + ∑
j∈J
|āij + γākj |λj

, (4.102a)

f− (γ) =

(∑
j∈J

max {0, āij + γākj} s∗j − (āi0 + γāk0) (1− x∗i )
)
λ0

1− γλk + ∑
j∈J
|āij + γākj |λj

. (4.102b)
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Multi-Row Cutting Planes

In this chapter we consider cutting planes which are derived using multiple rows
of the simplex tableau simultaneously. We give a brief review of the relevant
literature on this subject. We also discuss group relaxations in more detail and
elaborate on the connection between valid inequalities and lattice-free convex
sets.

This chapter is organized as follows. Section 5.1 introduces multi-row relaxations
and Section 5.2 presents a literature review. In Section 5.3 we treat the (master)
group relaxation. The derivation of valid inequalities is discussed in Section 5.4.
In particular we deal with the generation of valid inequalities from two rows of
the simplex tableau.

5.1. Introduction

In the previous chapter we were concerned with the generation of cutting planes
from single-row relaxations. These relaxations are obtained by aggregating the
constraints of an MIP. The resulting single constraint is then used as the input
data for a cutting plane separation algorithm. In particular, any row of the
simplex tableau can be seen as a single-row relaxation. In this chapter, however,
we concentrate on generating cutting planes using more than one row of the
simplex tableau at the same time. This approach is not new. The fundamental
results on which it is based were discovered more than 40 years ago. However,
recently cutting planes from multiple rows have been revisited and new interesting
theoretical results have been proposed. The new impetus to the field of multi-
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row cuts is mainly due to the constant need for strong cutting planes and the
limitations of the single-row cuts.

Once again, let B be a basis of the LP relaxation of the MIP (2.3). As before, let
the set J index the non-basic variables and let x∗ be the basic solution associated
with B. Using the extreme rays defined in Equation (4.25), we can write

x = x∗ +
∑
j∈J

rjxj ,

x ≥ 0,

xj ∈ Z, j ∈ NI .

(5.1)

Let xB and xJ denote the basic and non-basic components of x respectively. We
consider the simplex tableau

xB = x∗B +
∑
j∈J

rjxj ,

x ≥ 0,

xj ∈ Z, j ∈ NI .

(5.2)

We assume that the basic solution (xB, xJ) = (x∗B, 0) is integer infeasible. The
simplex tableau is nothing more than a reformulation of the MIP (2.3) in the
sense that every row of the tableau is a linear combination of the original rows of
the system (A, b). Note that we slightly abuse notation by denoting the columns
of the simplex tableau by rj . Here and in what follows the vectors rj only contain
the components of the extreme rays (4.25) that are associated with the selected
vector of basic variables.

A Gomory mixed-integer cut is generated from a single row of the simplex
tableau (see Section 4.4.3). This single row provides only very limited information
about the structure of the underlying MIP. An interesting question is thus whether
the additional information provided by the remaining rows of the simplex tableau
can be used to construct stronger (or at least different) valid inequalities.

The following section presents a brief literature review. Recent surveys on multi-
row cutting planes are given by Conforti et al. [55] and Dey and Tramontani [77].
An excellent review of the group theoretic approach in integer programming is
given by Richard and Dey [150].

78



5.2. Literature Review

5.2. Literature Review

In 1969 Gomory [101] introduced the corner relaxation (or group relaxation) of
an integer program which is obtained by dropping the non-negativity restrictions
on the basic variables. The convex hull of feasible solutions to this relaxation
is called the corner polyhedron. Moreover, Gomory studied the master corner
relaxation (or master group relaxation) and the associated master polyhedron.
These polyhedra can be seen as a data-independent generalization of corner
polyhedra.

Different algorithms for solving the corner relaxation have been proposed.
Gomory [100] discusses a dynamic programming algorithm for optimizing a
linear function over the corner relaxation. Other algorithms solving the corner
relaxation are presented in [49, 95, 114, 153, 154]. In [101] Gomory also proved
the asymptotic theorem. This theorem gives necessary conditions under which
the optimal solution to the corner relaxation is equal to the optimal solution to
the original integer program. In a computational study Gorry et al. [105] showed
that for most real-life integer programs the (asymptotic) corner relaxation does
not solve the original integer program.

Valid inequalities for the (master) corner relaxation are also valid for the original
integer program. It therefore seems reasonable to derive valid inequalities for the
group relaxation (group inequalities) and apply them to integer programs. Gomory
and Johnson [102, 103] studied group inequalities and particularly concentrated on
the facets of master polyhedra. Gomory [101] showed that the Gomory fractional
cut [97] can also be derived as a facet of the master polyhedron. Similarly, the
Gomory mixed-integer cut [99] is a facet of the mixed-integer extension of the
master polyhedron (see [102]). Both of these inequalities are one-dimensional
group inequalities, i.e. they are based on a group relaxation that only consists of
a single row. Since the GMI cut is very effective from a computational point of
view [26], several attempts to find other effective single-row group inequalities
have been made. For instance, Dash et al. [70] proposed two-step MIR cuts and
Kianfar and Fathi [119] introduced the more general class of n-step MIR cuts.
However, none of these variants has proved to outperform the GMI cuts in solving
practical (mixed-) integer programs (see also [72]). Dey and Wolsey [79] suppose
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that this is because the GMI cut has the strongest coefficients on the continuous
variables among all single-row group inequalities.

Johnson [116] studied inequalities which are based on multi-row group relax-
ations. These inequalities are known to be important to describe the convex hull
of (mixed-) integer programs. For example, Cook et al. [57] present a simple
mixed-integer set whose convex hull cannot be obtained using split cuts while
a single multi-row cut yields the convex hull. Gomory and Johnson [104] point
out that multi-row inequalities are able to reflect the structure of the columns
associated with continuous variables more accurately. For these reasons there has
been a renewed interest in multi-row cuts. Borozan and Cornuéjols [41] consider
a semi-infinite relaxation and establish a connection between minimal valid in-
equalities for this relaxation and maximal lattice-free convex sets. Andersen et
al. [11] and Cornuéjols and Margot [63] study cutting planes from two rows. Dey
and Wolsey [78, 79] address the lifting of non-basic integer variables in two-row
cuts, i.e. they show that two-row cuts can be strengthened using the integrality of
some of the non-basic variables (see also Conforti et al. [54] and Basu et al. [34]).
Andersen et al. [10] demonstrate that stronger two-row cuts can be obtained by
considering the bounds on the non-basic variables. Dey and Wolsey [80] study
S-free cuts which are generated from multi-row relaxations containing additional
constraints (e.g. bounds) on the basic integer variables (see also Basu et al. [35]
and Fukasawa and Günlük [92]). Basu et al. [33] compare the strength of the
elementary closures of different families of two-row cuts (see also Andersen et
al. [12]). He et al. [112] provide a probabilistic comparison of two-row cuts and
split cuts. Dey and Louveaux [76] and Basu et al. [36] study the split rank of
multi-row cuts. Espinoza [83, 84], Basu et al. [32] and Dey et al. [75] report on
computational experience with multi-row cuts.

5.3. Group Relaxations

In this section we investigate multi-row and group relaxations in more detail. Our
presentation here is partly based on [150].
We start by considering a relaxation of (5.2) which was first studied by Go-

mory [101]. We only consider the rows of the simplex tableau associated with basic
integer variables. For simplicity we assume that all basic variables are integer-
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b x∗
B

Figure 5.1. Corner polyhedron

constrained, i.e. B = BI = {1, . . . ,m}. Moreover, we drop the non-negativity
conditions on all basic variables. We get

xB = x∗B +
∑
j∈J

rjxj ,

xj ≥ 0, j ∈ J,
xj ∈ Z, j ∈ NI .

(5.3)

The system (5.3) is known as the corner relaxation. The convex hull of the
feasible solutions to the corner relaxation is known as Gomory’s corner polyhedron
(see [101]). Note that when the polyhedron P (or the simplex tableau respectively)
is non-degenerate then the non-negativity restrictions on the basic variables are
the only non-binding constraints. Valid inequalities for the corner relaxation
are also valid for (5.2) and thus for the MIP (2.3). Figure 5.1 shows an integer
program and its convex hull of feasible solutions (gray area). The hatched area
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which continues off the figure is the corner polyhedron associated with the basic
solution x∗B.

We now examine the rows of the simplex tableau defining the corner relax-
ation (5.3) from a different viewpoint. Let f be a vector with fi = (x∗B)i−b(x∗B)ic
for i = 1, . . . ,m. To obtain a feasible integral vector xB to the corner relaxation
(which is not necessarily non-negative) the fractional part of the sum ∑

j∈J r
jxj

has to be 1−f . In other words, the sum∑
j∈J r

jxj has to add up to −f modulo 1.
This can be stated by the following congruence.∑

j∈JI

rjxj +
∑

j∈J\JI

rjxj ≡ −f (mod 1) ,

xj ≥ 0, j ∈ J,
xj ∈ Z, j ∈ NI .

(5.4)

Corner polyhedra are closely related to groups. Specifically, the problem (5.4)
can be interpreted as finding a finite sum of group elements such that they add
up to a group element that gives an integral vector xB. The corner relaxation
is thus often called the group relaxation. For the non-basic integer variables the
fractional part of the product rjixj is just an integer multiple of the fractional
part of rji for i = 1, . . . ,m. We can therefore replace the column rj of the tableau
by the vector of its fractional components for all j ∈ JI . For the sake of simplicity,
we also denote this vector by rj .

The structure of the corner relaxation depends heavily on the underlying
mixed-integer program, i.e. the columns rj . Therefore an analysis of the corner
relaxation yields very problem specific results. A different idea is to abstract from
the specific system (5.3) by introducing additional variables. Let G and W be
two sets which contain the columns associated with the integer-constrained and
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continuous variables respectively, i.e. {rj : j ∈ JI} ⊆ G and {rj : j ∈ J \JI} ⊆W .
We obtain the so-called master corner relaxation or master group relaxation

xB = f +
∑
g∈G

g · t (g) +
∑
w∈W

w · s (w) ,

xB ∈ Zm,

t(g) ∈ Z, g ∈ G,
t(g), s(w) ≥ 0, g ∈ G, w ∈W,

t, s have finite support.

(5.5)

The system (5.5) contains extra variables for the vectors g ∈ G or w ∈W which
are not columns of the original simplex tableau. By fixing the variables associated
with these new columns to zero we again obtain the corner relaxation (5.3). Thus
every feasible solution to the corner relaxation (5.3) can be translated into a
solution of (5.5). Note that we require the vectors t and s to have finite support in
a feasible solution to (5.5), meaning that these vectors only have a finite number
of non-zero components. We thereby ensure that the sums in the first equation
of (5.5) are well-defined.

Gomory and Johnson [103] and Johnson [116] considered the case in which
the set G is a group. Let Im be the group of m-dimensional vectors [0, 1[m

where addition is taken modulo 1 component-wise. Further let Sm be the set
of m-dimensional real vectors w = (w1, w2, . . . , wm) satisfying max{|wi| : i =
1, . . . ,m} = 1. Suppose that G is a subgroup of Im and that W is a subset of
Sm, i.e. W ⊆ Sm. As above, the group G and the set W contain the columns
of the integer and continuous variables respectively, i.e. {rj : j ∈ JI} ⊆ G and
{rj : j ∈ J \ JI} ⊆W . Given a vector r ∈ Rm, let F(r) denote the vector in Im

whose ith component is ri(mod 1). We obtain

∑
g∈G

g · t (g) + F
( ∑
w∈W

w · s (w)
)
≡ F (−f) (mod 1) ,

t(g) ∈ Z, g ∈ G,
t(g), s(w) ≥ 0, g ∈ G, w ∈W,

t, s have finite support.

(5.6)
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A valid inequality for (5.5) is given by two functions φ : G −→ R+ and
π : W −→ R+ such that

∑
g∈G

φ (g) · t (g) +
∑
w∈W

π (w) · s (w) ≥ 1 (5.7)

is valid for all solutions (xB, t, s) to (5.5). The functions φ and π are referred
to as valid functions if Inequality (5.7) is valid for (5.5). Therefore the terms
“valid inequality” and “valid function” are often used interchangeably. A valid
function (φ, π) is minimal if there exists no other valid function (φ′, π′) such that
(φ, π) 6= (φ′, π′) and φ′(g) ≤ φ(g) for all g ∈ G and π′(w) ≤ π(w) for all w ∈ W .
A valid function (φ, π) is extreme if there do not exist two distinct valid functions
(φ1, π1) and (φ2, π2) such that (φ, π) can be written as a convex combination of
(φ1, π1) and (φ2, π2). The term extreme can be seen as a generalization of the
term facet-defining when the group G is not finite.

5.4. Valid Inequalities

In this section we investigate two additional relaxations of the corner relax-
ation (5.3) which have played an important role in the recent development of
valid inequalities from multi-row relaxations. In what follows we assume that the
polyhedron P associated with the LP relaxation of the MIP (2.3) is rational, i.e.
A ∈ Qm×n and b ∈ Qm. By dropping the integrality restrictions on the non-basic
integer variables in the corner relaxation we obtain a system of the form

x = f +
k∑
j=1

rjsj ,

x ∈ Zq,

s ∈ Rk+,

(5.8)

where all basic integer and non-basic continuous variables are denoted by x and
s respectively, and J = {1, . . . , k}. Let Rf (r1, . . . , rk) denote the convex hull of
all vectors s ∈ Rk+ such that the sum f +∑k

j=1 r
jsj is integral. We have that

f, r1, . . . , rk ∈ Qq. Moreover, remember that f 6∈ Zq, i.e. the solution f is integer
infeasible.
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Borozan and Cornuéjols [41] propose to relax the system (5.8) by introducing
a variable sr for every r ∈ Qq. Thus they turn the k-dimensional space of the
non-basic variables into an infinite dimensional space, leading to the semi-infinite
relaxation

x = f +
∑
r∈Qq

rsr,

x ∈ Zq,

s ≥ 0,

s has finite support.

(5.9)

Let Rf denote the convex hull of all vectors s ≥ 0 having finite support such that
the sum f +∑

r∈Qq rsr is integral. Borozan and Cornuéjols [41] show that any
valid inequality for Rf that cuts off the infeasible basic solution x = f , s = 0 is
of the form ∑

r∈Qq

ψ (r) sr ≥ 1 (5.10)

with ψ : Qq −→ R+∪{+∞}. Moreover, they establish a beautiful correspondence
between minimal valid inequalities of the form (5.10) and maximal lattice-free
convex sets. A lattice-free convex set S ⊆ Rq is a convex set which contains no
integer points in its interior, i.e. int(S) ∩ Zq = ∅. A lattice-free convex set S is
maximal if there is no other lattice-free convex set S′ distinct from S such that S
is contained in S′. Now, consider the set

Sψ = {x ∈ Qq : ψ (x− f) ≤ 1} (5.11)

and let cl(Sψ) denote the topological closure of Sψ in Rq.

Theorem 5.1 ([41]). Let f ∈ Qq \ Zq. A minimal valid inequality ψ for Rf is
non-negative, piecewise linear, positively homogeneous and convex. Furthermore,
the set cl(Sψ) is a full-dimensional maximal lattice-free convex set containing
f . Conversely, for any full-dimensional maximal lattice-free convex set S ⊂ Rq

containing f there exists a minimal valid function ψ for Rf such that cl(Sψ) = S,
and when f is in the interior of S, this function is unique.

Theorem 5.1 states that any minimal valid inequality for Rf arises from
a particular maximal lattice-free convex set S. Moreover, these inequalities
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are unique provided that f lies in the interior of S. So there is a one-to-one
correspondence between maximal lattice-free convex sets and minimal valid
functions ψ. This case is called non-degenerate and ψ is referred to as a non-
degenerate function. On the other hand, there is the degenerate case in which
the maximal-lattice free convex set S contains f on its boundary. In this case,
the set S corresponds to several minimal valid degenerate functions ψ yielding
different minimal inequalities. However, Zambelli [176] showed that for any
minimal valid inequality for the finite dimensional set Rf (r1, . . . , rk) there exists
a non-degenerate function generating it.

5.4.1. Two-Row Cuts

In the previous discussion we presented some results concerning the relaxation
Rf (r1, . . . , rk). While these results are valid for an arbitrary dimension q of the
system (5.8), several authors have studied the two-row special case (q = 2) in
detail.

Andersen et al. [11] were the first to study the problem Rf (r1, . . . , rk) with two
rows. They showed that all facets of Rf (r1, . . . , rk) are intersection cuts which are
generated from two-dimensional lattice-free convex sets such as splits, triangles
and quadrilaterals. Cornuéjols and Margot [63] present sufficient conditions for a
lattice-free convex set to define a facet of Rf (r1, . . . , rk). They show that degen-
erate lattice-free convex sets are not needed to define the facets of Rf (r1, . . . , rk).
Moreover, Cornuéjols and Margot characterize the extreme inequalities for Rf in
the two-row case.

Dey and Wolsey [78, 79] address the strengthening of multi-row inequalities
by using the integrality of some of the non-basic variables (see also Conforti et
al. [54] and Basu et al. [34]). Moreover, they provide a classification of maximal
lattice-free triangles. Triangles of type 1 have integral vertices and contain an
integer point in the relative interior of each edge. Triangles of type 2 have more
than one integral point in the relative interior of one edge. Triangles of type 3
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have non-integral vertices and contain one integral point in the relative interior
of each edge. Now, consider the two-row relaxation

x1 = f1 +
∑
j∈J

rj1xj ,

x2 = f2 +
∑
j∈J

rj2xj ,

xj ≥ 0, j ∈ J,
xj ∈ Z, j ∈ NI ,

(5.12)

where {1, 2} ⊆ BI , i.e. x1 and x2 are basic integer variables. Let S ⊆ R2 be a
maximal lattice-free convex set containing f = (f1, f2) in its interior. Then define
the function π : R2 −→ R+ with

π(w) =

0 if w ∈ recession cone of S,

λ if f + 1
λw ∈ boundary (S) ,

(5.13)

where boundary(S) denotes the boundary of the set S. The inequality

∑
j∈J

π
(
rj
)
xj ≥ 1 (5.14)

is valid for (5.12). However, as some of the non-basic variables are integer-
constrained this inequality is not minimal in general. The inequality

∑
j∈JI

φ0
(
rj
)
xj +

∑
j∈J\JI

π
(
rj
)
xj ≥ 1 (5.15)

is also valid for (5.12) where φ0 : [0, 1[2−→ [0, 1] is called the trivial fill-in function

φ0 (w) = min
u∈Z2

{π (w + u)} . (5.16)

Since π(rj) ≥ φ0(rj) for j ∈ JI , Inequality (5.15) dominates (5.14). Again note
that we assume that the columns associated with non-basic integer variables have
been replaced by their fractional parts such that rj ∈ [0, 1[2. Dey and Wolsey
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showed that Inequality (5.15) is minimal when the maximal lattice-free convex
set S is a triangle of type 1 or type 2.

Let Sf (r1, . . . , rk), Tf (r1, . . . , rk) and Qf (r1, . . . , rk) denote the closures of
the split, triangle and quadrilateral inequalities respectively. The closure of
the split inequalities is the intersection of all valid inequalities derived from
lattice-free split bodies. The triangle and quadrilateral closure are defined
analogously. Basu et al. [33] examine the relative strength of these closures
from a theoretical point of view. Given the results discussed above, we have
Rf (r1, . . . , rk) = Sf (r1, . . . , rk) ∩ Tf (r1, . . . , rk) ∩Qf (r1, . . . , rk). Now, an inter-
esting question is whether one of these closures plays a more important role
in approximating Rf (r1, . . . , rk) than the others. Basu et al. proved that
Tf (r1, . . . , rk) ⊆ Sf (r1, . . . , rk) and Qf (r1, . . . , rk) ⊆ Sf (r1, . . . , rk), i.e. they
showed that the triangle and quadrilateral closure are at least as strong as the
split closure. They showed, moreover, that the triangle closure and the quadrilat-
eral closure close at least half of the integrality gap while the amount of integrality
gap closed by the split closure can be arbitrarily small. Andersen et al. [12]
generalized this result to relaxations containing an arbitrary number of rows of
the simplex tableau. They showed that intersection cuts derived from lattice-free
convex sets with so-called full split-dimension are crucial to obtaining a good
approximation of the integer hull. These results suggest that cutting planes from
two rows are stronger than most of the cutting planes used in state-of-the-art
MIP solvers.

On the other hand, Dey and Louveaux [76] showed that intersection cuts
generated from maximal lattice-free triangles (except for type 1 triangles, see
Cook et al. [57]) and quadrilaterals have finite split rank. Almost all triangle and
quadrilateral cuts can therefore be obtained through a sequence of split cuts. A
more general characterization of cuts with infinite split rank is provided by Basu
et al. [36].

He et al. [112] present a probabilistic comparison of type 1 triangle cuts and
split cuts for two-row mixed-integer programs. They show that, if the vectors
f and rj are subject to specific probability distributions, then there is a high
likelihood that split cuts dominate type 1 triangle cuts with respect to the size of
the cut coefficients and the volume cut off from the LP relaxation.
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Espinoza [83, 84] reports on successful computational experience with un-
strengthened intersection cuts derived from several families of maximal lattice-free
convex sets. Basu et al. [36] study the computational effectiveness of a family of
strengthened type 2 triangle cuts generated from degenerate simplex tableaus.
Their results show that the selected family of two-row cuts only provides a slight
improvement over the Gomory mixed-integer cuts. Dey et al. [75] consider a
different family of strengthened type 2 triangle cuts. They show that these
cuts are effective in increasing the amount of integrality gap closed on randomly
generated multidimensional knapsack instances.

5.4.2. Intersection Cuts

In this section we deal with intersection cuts from general lattice-free convex sets.
We discussed the special case where the lattice-free convex set is a split set in
Section 4.4.2. Consider the multi-row relaxation

x = f +
∑
j∈J

rjxj ,

xj ≥ 0, j ∈ J,
xj ∈ Z, j ∈ NI ,

(5.17)

which is essentially the same as (5.1) except that the non-negativity conditions on
the basic variables have been removed. We assume that the solution f is integer
infeasible. Now suppose that the set

S =
{
x ∈ Rn : πix ≤ πi0, i = 1, . . . , l

}
(5.18)

is a lattice-free convex set containing f in its interior. We require that πij = 0 for
all j ∈ N \NI and i = 1, . . . , l since these components of x are associated with con-
tinuous variables. We can rewrite the set S in the form {x ∈ Rn : ∧li=1(πix ≤ πi0)}.
We can therefore represent the fact that the solution f is not allowed to lie in the
interior of S by the l-term disjunction

l∨
i=1

(
πix ≥ πi0

)
. (5.19)
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By using the definition of x from (5.17) we obtain the valid inequalities

πi

f +
∑
j∈J

rjxj

 ≥ πi0, i = 1, . . . , l. (5.20)

The solution f lies in the interior of the set S, implying that πi0 − πif > 0 for
i = 1, . . . , l. We can therefore rewrite this set of inequalities as

∑
j∈J

(
πirj

πi0 − πif

)
xj ≥ 1, i = 1, . . . , l. (5.21)

To obtain a valid inequality for the disjunction (5.19), we apply the disjunctive
principle (cf. Proposition 2.1). We get the intersection cut

∑
j∈J

max
i=1,...,l

{
πirj

πi0 − πif

}
xj ≥ 1. (5.22)

For each non-basic variable j ∈ J define a vector αj with components

αji =


πi

0−πif

πirj if πirj > 0,

+∞ otherwise,
(5.23)

for i = 1, . . . , l. We can then restate the intersection cut as

∑
j∈J

xj

min
i=1,...,l

{
αji

} ≥ 1. (5.24)

Consider the half-line f + αrj with α > 0 starting in f in the direction rj . The
point f + αji r

j is the point at which the extreme ray rj and the hyperplane
πix = πi0 intersect (see Figure 5.2).

Next we discuss the strengthening of the intersection cut. We again consider
modifying each term of the disjunction (5.19) on the non-basic integer variables.
We get

l∨
i=1

((
πi − hi

)
x ≥ πi0

)
, (5.25)
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b

f

r1
r2

r3

r4

(a) A fractional solution f and four extreme
rays

b

f

r1
r2

r3

r4

(b) A maximal lattice-free triangle

b

f

r1
r2

r3

r4

(c) A two-row cut

Figure 5.2. Example of the derivation of a two-row cut
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where hi ∈ Zn with hij = 0 for i = 1, . . . , l and for all j 6∈ JI . If the original
disjunction (5.19) is a split disjunction (4.18) any modified disjunction of the
form (4.34) is again a split disjunction and thus satisfied by all feasible integral
solutions (see Section 4.4.2). The optimal strengthening is then given by a closed-
form formula (see Proposition 4.5). Concerning general multiple-term disjunctions
like (5.19) the modification shown in Equation (5.25) is not, however, valid for
arbitrary choices of the vectors hi. We therefore consider a special case in which
for i = 1, . . . , l the vectors hi are given by

hij =

π
iuj if j ∈ JI ,

0 otherwise,
(5.26)

for j = 1, . . . , n and where uj ∈ Zn for j ∈ JI . We obtain the modified disjunction

l∨
i=1

πix− ∑
j∈JI

(
πiuj

)
xj ≥ πi0

 , (5.27)

which we can rewrite as

l∨
i=1

πi
x− ∑

j∈JI

ujxj

 ≥ πi0
 . (5.28)

Since we assumed that the original disjunction (5.19) is valid and the term
x−∑j∈JI

ujxj is integral the modified disjunction is indeed valid. We obtain the
intersection cut

∑
j∈JI

max
i=1,...,l

{
πi
(
rj − uj)

πi0 − πif

}
xj +

∑
j∈J\JI

max
i=1,...,l

{
πirj

πi0 − πif

}
xj ≥ 1. (5.29)

Clearly, we are interested in making the coefficients on the integer variables as
small as possible. We get

∑
j∈JI

min
uj∈Zn

{
max
i=1,...,l

{
πi
(
rj − uj)

πi0 − πif

}}
xj +

∑
j∈J\JI

max
i=1,...,l

{
πirj

πi0 − πif

}
xj ≥ 1.

(5.30)

92



5.4. Valid Inequalities

The trivial fill-in function can thus be viewed as a strengthening of the disjunc-
tion (5.19).
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Required Work

The purpose of this chapter is to describe in detail the goals of this thesis. We
first summarize the review of the state-of-the-art in cutting plane approaches
we presented in Chapters 4 and 5 and identify research gaps. Following this
discussion we then introduce the objectives of this thesis.
Our review of the literature on general-purpose cutting planes points to a

number of conclusions. The large number of publications shows that general-
purpose cutting planes are an active area of research. Balas and Saxena [31]
demonstrate that the elementary split closure gives a tight approximation of the
integer hull of many mixed-integer programs. Optimizing over the split closure,
however, is NP-hard as shown by Caprara and Letchford [44]. In line with
these findings, research is devoted to families of split cuts such as the Gomory
mixed-integer cuts [99] which can be generated efficiently. Several authors propose
algorithms for obtaining improved Gomory mixed-integer cuts; see Cornuéjols
et al. [61], Ceria et al. [46], Andersen et al. [8] and Balas et al. [24]. As pointed
out by Cornuéjols and Nannicini [64], the existing approaches for the efficient
generation of split cuts are, however, far from exploiting the full strength of the
split closure. Moreover, a computational comparison of these approaches has not
been conducted.
Andersen et al. [11] initiated new interest in cutting planes generated from

multi-row relaxations, showing that all facet-defining inequalities of the convex
hull of a mixed-integer set defined by a system of two equations with two free
integer variables and non-negative continuous variables are intersection cuts
derived from maximal lattice-free splits, triangles and quadrilaterals. Borozan
and Cornuéjols [41] consider a semi-infinite relaxation consisting of q equations
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with q free integer variables and an infinite number of non-negative continuous
variables. They show that minimal valid inequalities for this relaxation correspond
to maximal lattice-free convex sets. Dey and Wolsey [78, 79] demonstrate how
cutting planes derived from two rows of a simplex tableau can be strengthened
using the integrality of some of the non-basic variables. Considering the advances
in the theoretical understanding of inequalities derived from multi-row relaxations,
there is only limited computational experience with their use as cutting planes in
a cut-and-branch (or branch-and-cut) framework. Espinoza [83, 84] was the first
to show that generating cutting planes from multi-rows of a simplex tableau can
positively influence the performance of an MIP solver by implementing separators
for subclasses of these inequalities as a cut callback in Cplex. Espinoza does
not, however, consider the strengthening proposed by Dey and Wolsey. Basu
et al. [32] study a family of two-row cuts generated from degenerate simplex
tableaus. In their experiments Basu et al. observe the selected family of two-row
cuts not to be competitive with the Gomory mixed-integer cuts. Dey et al. [75]
report on preliminary computational experience with lifted two-row cuts (trivial
fill-in function) derived from a family of maximal lattice-free triangles of type 2
on randomly generated multidimensional knapsack instances. They show that
this family of cuts is effectively reducing the integrality gap in comparison with
the Gomory mixed-integer cuts. Dey et al. also point out the need for further
computational experimentation with multi-row cuts. In general, there are only
few publications discussing implementation details of cut separators. It is, on the
other hand, well known that technical details can greatly affect the performance
of a cut separator and thus the overall performance of an MIP solver. In summary,
research is needed into the separation of single-row and multi-row cuts, efficient
implementations of cut separators and meaningful computational experiments.
Based on the review of the state-of-the-art summarized above, this thesis

pursues three main research objectives which are of computational nature.

1. We propose to develop a new heuristic approach for improving the per-
formance of the Gomory mixed-integer cuts which is based on pivoting.
The main idea behind our approach is to increase the distance cut off by
a Gomory mixed-integer cut by reducing the size of the coefficients of the
continuous variables in the row of the simplex tableau from which it is
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derived. Andersen et al. [8] successfully used a similar reduction algorithm
to generate reduce-and-split cuts.

We want to implement various cut separators which generate split cuts for
integer and mixed-integer programs, including two Chvátal-Gomory cut
separators, the Gomory mixed-integer cut separator and five variations of the
latter cut separator. Furthermore, we want to give a detailed description of
our implementation of these cut separators. We particularly aim to highlight
important computational techniques making these cut separators efficient
in practice.

In addition, we want to conduct meaningful computational experiments with
the discussed cut separators. The questions we intend to answer are: which
approach to strengthening Gomory’s mixed-integer cuts is most effective
in solving practical MIP instances? Concerning the performance of the
lift-and-project cuts, is it beneficial to apply disjunctive modularization or
the Euclidean normalization? How do the Chvátal-Gomory cut separators
perform in comparison with the Gomory mixed-integer cut separator and
its variants?

2. We aim to implement cut separators which generate cuts from multiple rows
of a simplex tableau, i.e. intersection cuts which are derived from maximal
lattice-free convex sets other than split sets. We also intend to discuss in
detail our implementation of these cut separators. In particular, we want
to address the construction of a multi-row relaxation and the properties of
selected families of maximal lattice-free convex sets. Espinoza [84] used some
of these sets to generate intersection cuts and obtained promising results.
We also want to integrate the trivial fill-in function into our implementation
in order to strengthen the multi-row cuts.

Besides the description of the multi-row cut separators, we want to provide
computational results which enable evaluation of their practical value in
solving mixed-integer programs. Questions we want to address are: How
do multi-row cuts perform in comparison with split cuts? Are intersection
cuts derived from certain families of maximal lattice-free convex sets more
effective than others? What is the benefit of deriving cuts from relaxations
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which consist of more than two rows? Or, in other words, do intersection
cuts derived from higher-dimensional maximal lattice-free convex sets yield
a larger performance improvement than those derived from triangles or
quadrilaterals? How is the performance affected if the multi-row cuts are
strengthened using the trivial fill-in function?

3. The first two objectives of this thesis involve developing various cut sepa-
rators. Typically, these cut separators produce large numbers of cutting
planes violated by the current optimal solution of the LP relaxation of
the associated MIP. Adding all generated cutting planes to the problem
formulation is problematic since they slow down the solution of the LP
relaxation. We want therefore to develop a cut selection algorithm which
only selects a subset of the best cuts with respect to some quality measure.
We furthermore intend to study various quality measures and to compare
their performance by computational experiments.

The remainder of this thesis is organized as follows. Chapter 7 introduces the
MIP solver Mops and discusses some basic aspects of our implementation such as
data structures and numerical considerations. In Chapter 8 we describe several
cut separators for subclasses of split cuts and present a new pivoting algorithm
for improving the performance of the Gomory mixed-integer cuts. We also report
on our computational experience with these cut separators. Chapter 9 describes
our implementation of several variants of multi-row cut separators and discusses
computational results. In Chapter 10 we develop a cut selection algorithm and
analyze its effect on the performance of Mops. Chapter 11 summarizes the results
of this thesis, offers some conclusions and points to opportunities for further
research.
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Framework

Part II of this thesis was devoted to the state-of-the-art in cutting plane technology.
We discussed general-purpose cutting planes for both pure integer and mixed-
integer programs. In Chapter 4 we considered split cuts such as Chvátal-Gomory
cuts and Gomory mixed-integer cuts and also discussed several approaches for
improving the performance of the Gomory mixed-integer cuts. In Chapter 5 we
showed how to derive cutting planes from relaxations which consist of multiple
rows of the simplex tableau.
In this chapter we describe the framework in which we implement separation

algorithms for some of the cutting planes discussed in Chapters 4 and 5. We
discuss the system architecture and some of the main data structures.

This chapter is organized as follows. In Section 7.1 we describe the MIP solver
Mops and detail its architecture, history and main algorithms. Some important
aspects of our implementation are discussed in Section 7.2.

7.1. MOPS - An MIP Solver

The software package Mops1 is a high-performance solver for linear and mixed-
integer programming problems. Starting as a pure LP solver based on a primal
simplex algorithm in 1987, the system today features powerful IP preprocessing
and an effective branch-and-cut algorithm. In particular, Mops ranks among the
top systems in the world for solving large-scale real-world linear and mixed-integer
programming problems. Mops is, for the most part, written in Fortran77 and
is available for various platforms such as standard PCs, servers and mainframes.

1Mathematical OPtimization System
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topic reference(s)
- system architecture [158]
- LU factorization [160]
- LU update [156]
- LP preprocessing [137]
- primal simplex algorithm [157]
- dual simplex algorithm [123–125]
- IP preprocessing [162, 163]
- cutting planes [51, 169–171]
- branch-and-bound [90]
- branch-and-cut [167]

Table 7.1. Documentation of algorithms and computational techniques

The system is a commercial product which has been used in many practical
applications [121, 155, 159, 161]. Since its initial version, Mops was significantly
improved in terms of algorithms, software design and implementation. These
improvements have been documented in many scientific publications. Some of
these publications are shown in Table 7.1.

7.1.1. Evolution

Like other MIP solvers, Mops has undergone a rapid evolution in the last two
decades. Some of the main steps in the development of Mops are shown in
Table 7.2 (cf. Koberstein [123]).

Only very limited conclusions concerning the overall performance of an MIP or
LP solver can be drawn from the performance on particular problem instances.
Nevertheless, this approach provides an indication of how the performance of an
MIP or LP solver has improved. For several versions of Mops, Tables 7.3 and 7.4
show the times which the different LP engines and the MIP engine need to solve
the benchmark instance oil to optimality (cf. Koberstein [123]). This instance
consists of 5563 constraints, 6181 variables in total, including 74 binary variables,
and 39597 non-zero elements in the coefficient matrix.
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year version description
1987 1.0 primal simplex, LU factorization, and PFI update
1988 1.1 LU update of the basis factorization
1989 1.2 LP preprocessing, update
1991 1.3 new pivot row selection minimizing the sum of infeasibilities
1992 1.4 new scaling, ftran, devex
1994 2.0 mixed 0-1 programming with supernode processing

(IP preprocessing)
1995 2.5 mixed-integer programming with general node selection
1997 3.0 first version of dual simplex for branch-and-bound phase
1998 3.5 improved supernode processing
1999 4.0 additional interior point algorithm to solve initial LP
2001 5.0 new memory management, improved numerical kernels
2003 6.0 lifted cover cuts
2003 7.0 fixed charge and general bound reduction by solving LPs
2004 7.5 new dual simplex algorithm for initial LP

and branch-and-bound
2004 7.6 Gomory mixed-integer cuts
2005 7.7 improved dual simplex algorithm
2006 7.8 improved primal simplex algorithm
2007 8.0 Mops studio with AMPL interface
2008 9.0 mixed-integer rounding cuts,

new branch-and-bound algorithm
2009 10.0 new LP preprocessing, lifted clique cuts

Table 7.2. Development of Mops

year version hardware and software platform solution time (seconds)
1991 1.4 I486 (25 MHz) 612.4
1995 2.5 P133 Win 3.11 20.7
1999 4.0 PIII (400 MHz), Win 98 5.1
2001 5.0 PIII (500 MHz), Win 98 3.9
2002 6.0 PIV (2.2 GHz), Win 2000 0.9
2005 7.6 PIV (3.0 GHz), Win 2000, primal 1.1
2005 7.8 PIV (3.0 GHz), Win 2000, dual 1.6
2005 8.0 PIV (3.0 GHz), Win 2000, IPM 0.6

Table 7.3. Improvement of the Mops LP engines on model oil
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year version hardware and software platform solution time (seconds)
1994 2.0 PII (500 MHz), 1794.3

LIFO MIP
1995 2.5 PII (500 MHz), 450.1

general node selection
1999 4.0 PIV (2.2 GHz), 75.2

IPM for initial LP
2003 6.3 PIV (2.2 GHz), 39.6

various improvements
2005 7.8 PIV (3.0 GHz), 11.4

Gomory mixed-integer cuts,
dual simplex in B&B

2008 9.0 PIV (3.0 GHz), 6.9
new B&B algorithm

2009 10.0 Core2Duo, 3.6
new LP preprocessing

Table 7.4. Improvement of the Mops MIP engine on model oil

7.1.2. External System Architecture

This section details the external system architecture of Mops which is also
depicted in Figure 7.1 (cf. Koberstein [123]). One way of accessing the Mops
code is via a dynamic link library (mops.dll) and a static link library (mops.lib).
Both of these libraries can be integrated into user applications. The static link
library provides direct access to the data structures and solutions routines by
means of the Fortran, C and IMR interfaces. The dynamic link library provides
interface functions which allow for access to a selected subset of the Mops core
routines.
The Mops executable (mops.exe) is available for several system platforms. It

is controlled via a text file, the so-called Mops profile, which enables the user to
change the parameters of the LP and MIP optimization. The problem data are
passed to Mops using the MPS file format (see, for instance, Murtagh [140]) or a
Mops-specific triplet format. Additional files are used to store statistics, solution
data, LP bases and branching trees.

Finally, we point to two user-friendly graphical tools. ClipMops is an MS Excel
Add-In which is based on the mops.dll and allows for formulating and solving LP
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Figure 7.1. External architecture of Mops

and MIP models with up to 250 columns and 400 constraints. Mops studio is a
powerful frontend for Mops in which models can be formulated in a modeling
language such as AMPL [89] and solved interactively.

7.1.3. External and Internal Model Representation

In the previous chapters we worked with MIPs in the standard forms (2.1)
and (2.3). While any MIP can be transformed into these standard forms, MIP
solvers like Mops must be able to handle MIPs which are of a more general form.
Consider the MIP

(EMR) min cx,

s. t. L ≤ Ãx ≤ D,

l̃ ≤ x ≤ d̃,

xj ∈ Z, ∀j ∈ ÑI ,

(7.1)
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where c, x ∈ Rn, Ã ∈ Rm×n, L,D ∈ (R∪{−∞,+∞})m, l̃, d̃ ∈ (R∪{−∞,+∞})n
and ÑI ⊆ Ñ = {1, ..., n}. In contrast to the standard form, the MIP (7.1) contains
ranges (L, D) on the constraints and bounds (l̃, d̃) on the variables. We refer
to (7.1) as the external model representation (EMR).

Internally the MIP (7.1) is transformed into a form which is quite similar to
that of the standard equality form (2.3). This is accomplished by a standardized
procedure which adds a complete identity matrix to the constraint matrix Ã. We
get

(IMR) min cxS ,

s. t. Ax = 0,

l ≤ x ≤ d,

xj ∈ Z, ∀j ∈ NI ,

(7.2)

where A = (Ã, I) ∈ Rm×(n+m), x = (xS , xL) ∈ Rn+m, l = (l̃,−D) ∈ Rn+m,
d = (d̃,−L) ∈ Rn+m and NI ⊆ N = {1, ..., n+m}. The system (7.2) is called the
internal model representation (IMR). Note that the matrix A has full row rank.
The ranges on the constraints are transformed into bounds on the logical variables.
The variables xS which are associated with the matrix Ã are called structural
variables (or structurals) and the remaining variables which were introduced to
obtain equality constraints are called logical variables (or logicals).

We keep to the notation we introduced for the MIPs in standard form (2.1)
and (2.3). Note that a basis of the LP relaxation of the IMR may also contain
columns which are associated with logical variables. In the remainder of this
thesis we shall consider MIPs mainly in their IMR. For simplicity we assume that
the IMR does not contain free variables. All of the algorithms discussed in the
following chapters can nevertheless be easily adapted to handle free variables.

7.1.4. MIP Solution Process

The process of solving an LP or MIP problem consists of several steps which are
shown in Figure 7.2 (cf. Koberstein [123]). In the data management phase memory
is allocated and the data structures are initialized. Typically, the standard data
structures used in Mops are arrays. These arrays are arranged in a contiguous
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Figure 7.2. MIP solution process
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memory block in order to benefit from data caching. The problem data are then
read from a file or passed by a dll function and converted into the IMR format.
The first step in the LP solution phase is the LP preprocessing. During LP

preprocessing a number of techniques are applied with the objective of reducing the
size of the problem. For instance, redundant constraints and variables are removed.
In addition, an elimination procedure is used further to reduce the number of
variables and constraints. The level of preprocessing that is applied is dependent
on whether the model is an MIP or LP problem. In particular, the most aggressive
LP preprocessing is only applied to LP problems. For MIP problems, a slightly
restricted LP preprocessing is performed, since aggressive LP preprocessing can
lead to a less effective IP preprocessing. The preprocessed problem is then solved
by the primal simplex algorithm, the dual simplex algorithm or by an interior
point method (IPM). The main difference between the two simplex engines and
the IPM engine is that the optimal solution computed by the IPM engine is
usually not basic. To obtain a basic optimal solution a crossover algorithm is
performed. This algorithm is in fact a specialized simplex algorithm. If one of the
simplex engines is used, the problem is perturbed (see [123]) in order to cope with
degeneracy. With respect to these perturbations, the primal and dual simplex
algorithm form an entangled pair: when solving a problem with the dual simplex
algorithm, the primal simplex algorithm is used to remove the dual perturbation,
and vice versa. Thus efficient implementations of both simplex engines are needed.
The last step of the LP solution phase is the LP postprocessing which deduces
an optimal solution to the original problem from an optimal solution to the
preprocessed problem. If an MIP problem is solved, the third solution phase is
entered. Otherwise the solution process terminates.
The third phase is the MIP solution phase. The first step in this phase is

to perform the IP preprocessing (or supernode processing [162]) in order to
strengthen the LP relaxation of the MIP problem. Besides coefficient or bound
reduction techniques, cutting planes play a major role in this regard. Mops
generates cutting planes in rounds. Usually a large number of cutting planes can
be derived. When added to the problem formulation, cutting planes increase the
problem size and slow down the LP engine. Therefore it is important to select
only a careful subset of the generated cuts. Primal heuristics are applied in order
to find feasible solutions to the MIP problem. The objective value of any such
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feasible solution provides a primal bound on the optimal objective value. The
branch-and-cut algorithm is then started. By default the LP relaxations of the
subproblems encountered during the branch-and-bound search are solved with the
dual simplex algorithm. Heuristics and specific preprocessing techniques (such as
cutting planes) can also be applied at nodes of the branching tree. The default
setting of Mops is to only derive cutting planes at the root node, i.e. Mops in
fact uses a cut-and-branch algorithm.

7.2. Implementation

The purpose of this section is to present some technical details of our imple-
mentation. We describe the main data structures and discuss some numerical
considerations.

7.2.1. Basic Data Structures

The Mops MIP solver stores the problem data and all intermediate and final
results of algorithms in array-based data structures. Typically arrays are arranged
in a contiguous memory block. This approach has the advantage that all arrays
can be addressed very efficiently by calculating the offsets in this block. In the
following we discuss the data structures for storing matrices and vectors.

MIP solvers like Mops usually store matrices in a compact form meaning that
only non-zero entries are considered. Figure 7.3 shows the standard data structure

coef

row 1
(col 1)

row 2
(col 2)

row 3
(col 3)

. . .

row l
(col l)

free

ind . . . space

offset . . .

length

1 2 3

. . .

l l + 1

nz

maxnz

Figure 7.3. Compact storage of a matrix in row-wise or column-wise format
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for storing matrices. For instance, the matrix Ã which is the structural part of
the coefficient matrix in the IMR (7.2) is stored using this data structure. In
general a matrix can be stored in row-wise or column-wise format. Let us suppose
we chose the row-wise format. For each row of the matrix the arrays coef and
ind store the coefficients and the column indices respectively. The components
of the array offset point to the starting positions of the rows in coef and ind.
The array length is used to store the lengths of the rows, i.e. the number of
non-zero elements in each row. In Figure 7.3 each element of length points to
the last element of a row in coef and ind. In fact this last element is given by
offset[i] + length[i] - 1. The light gray areas represent free space between
rows. The gray area at the end of coef and ind is the free space for additional
rows. As hinted in Figure 7.3 this data structure can similarly store a matrix in
the column-wise format.

The advantages of storing a matrix in this compact row-wise (column-wise)
format are that the rows (columns) can be added and accessed very efficiently.
The data structure also easily allows for adding non-zeros to existent rows or
columns. Moreover, rows or columns can also be replaced efficiently. On the
other hand, given a row-wise representation of a matrix it is not possible to find
all rows that contain a certain column index without iterating over the array
ind of column indices. Therefore using a row-wise representation is inefficient
if columns need to be accessed. Conversely, a column-wise representation is not
the right choice if rows need to be extracted frequently. To avoid performance
degradation a matrix is often stored in both row-wise and column-wise format.
Note that changes in the row-wise structure need to be synchronized with the
column-wise structure and vice versa. In MIP solvers this is accomplished by
performing a sparse transpose which extracts one of the two representations from
the respective other one.

We now turn to a second important data structure. In our code we often work
with vectors, e.g. cut coefficient vectors. Mathematical vectors can be stored in
different ways.

• Dense storage: A single array contains all of the vector’s entries including
zero elements.
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(c) indexed storage

Figure 7.4. Vector storage

• Packed storage: A vector is represented by two compact arrays. One of
these arrays contains only the non-zero elements of the vector while the
other one stores the corresponding indices.

• Indexed Storage: The elements of the vector are stored in a dense array and
the indices are stored in a compact array. The non-zero positions of the
vector are held in an additional array.

Figure 7.4 presents these data structures. Dense storage consumes less memory
than the other two methods. However, iterating over the non-zero positions of a
sparse vector in dense storage is very expensive. Moreover, the array coef needs
to be zeroed out after each usage. Concerning packed storage the situation is
different. As only the non-zero elements are stored in a compact form, looping
over them is cheap. But packed storage also consumes additional memory for the
stack ind which stores the vector indices. Moreover, it is not possible directly to
access the element of a vector at a specific index without iterating over the stack
of indices. Indexed storage combines the advantages of packed and dense storage.
Looping over a vector can be done efficiently and all elements can be accessed
directly. In addition we use the array work to mark the non-zero positions in
the array of coefficients coef. With this it is possible to decide whether a vector
contains an element at a specific index without checking for a non-zero coefficient
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(numerical issues). Nor do we zero out the array coef in indexed storage but zero
out the marker array work using the stack ind after each usage.

7.2.2. Numerical Considerations

Floating point calculations are subject to rounding errors and are consequently
by nature inexact (see [96]). On the other hand, algorithms using floating point
arithmetic are usually considerably faster than those based on exact (rational)
arithmetic. Like most MIP solvers Mops is based on floating point arithmetic.
Mops deals with numerical issues by introducing tolerances for feasibility, opti-
mality and integrality among others. In most cases the inherent inaccuracy of
floating point arithmetic can be neglected, i.e. a solution can be declared feasible
or optimal if it satisfies the accuracy requirements (in terms of the respective
tolerance parameters). On the other hand, exact solutions are required in some
situations. Concerning the solution of linear programs some authors [14, 93]
describe exact implementations of the simplex method using rational arithmetic.
Fukasawa and Goycoolea [91] study the exact separation of mixed-integer knap-
sack cuts. With respect to running times they report that exact computations
are on average 100 times slower than floating point computations.
All implementations discussed in this thesis are based on floating point arith-

metic. As mentioned above, tolerances are used when checking two floating
point numbers for equality or strict inequality in order to cope with rounding
errors. Similarly, an integrality tolerance is used to decide whether a variable
takes an integral value. A robust implementation of a cutting plane separation
algorithm particularly has to take into account that its input data is subject to an
accumulated rounding error. Concerning cutting planes derived from the simplex
tableau, the computation of the rows of the tableau involves a large number of
arithmetic operations. Numerical inaccuracies might be introduced during the
elimination procedure in LP preprocessing and in the computation of the LU
factorization of the basis matrix. Thus the numerical robustness of algorithms
which generate cutting planes from rows of the simplex tableau is to some extent
directly dependent on the numerical robustness of the underlying LP solver.
In our code we use two techniques to increase the numerical stability of the

generated cuts. We remove variables having very small (quasi-zero) coefficients
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from the generated cuts by substituting their lower or upper bounds for them
respectively, thus relaxing the cut. If this is not possible, the cut is rejected.
Moreover, we compute the dynamism of each cut, i.e. the ratio between the
absolute values of the largest and smallest non-zero coefficient in the cut (see
Margot [136]). If the dynamism is larger than a threshold, the cut is rejected as
well.
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Chapter 8.

Single-Row Cutting Plane Separators

In this chapter we describe separation algorithms for various general-purpose
single-row cutting planes. We discuss our implementation of these algorithms and
highlight important details making them efficient in practice. We also propose
a novel algorithm for improving the performance of the Gomory mixed-integer
cuts. To assess the effectiveness of the discussed implementations we perform
benchmarks on a number of publicly available test sets. Thus this chapter is an
implementation-oriented complement to Chapter 4.
This chapter is organized as follows. In Section 8.1 we detail our implemen-

tation of the Gomory mixed-integer cuts. We discuss k-cuts in Section 8.2 and
combined Gomory mixed-integer cuts in Section 8.3. We treat reduce-and-split
cuts in Section 8.4 and present technical details of our implementation of the
lift-and-project method in Section 8.5. Section 8.6 introduces a new pivoting
procedure for strengthening the Gomory mixed-integer cuts. We provide details
of our implementation of the strong Chvátal-Gomory cuts and {0, 1

2}-cuts in Sec-
tion 8.7 and 8.8 respectively. Finally, in Section 8.9 we report on computational
experiments indicating the effectiveness of our implementations.

8.1. Gomory Mixed-Integer Cuts

In this section we outline our implementation of the Gomory mixed-integer cuts. A
detailed discussion of the theory of GMI cuts and their connection to intersection
and split cuts can be found in Section 4.4.3.
The main steps in the separation of a GMI cut are shown in Algorithms 8.1

and 8.2. In Step 1 of Algorithm 8.1 a set of basic integer variables which take
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Algorithm 8.1. A round of Gomory mixed-integer cuts
Input: A basis B and the corresponding basic solution x∗ of the

LP relaxation of the IMR (7.2).
Output: A list L of GMI cuts.

(Step 1) Initialize
Set L := ∅ and k := 0.
Choose a subset S of the basic integer variables which have a
fractional value, i.e. S ⊆ {j ∈ BI : x∗j 6∈ Z}.

(Step 2) Select a variable
Set k := k + 1.
if |S| < k then exit.
Otherwise, let i be the kth element of S.

(Step 3) Compute the row of the simplex tableau
Compute the row of the simplex tableau (8.3) associated with xi,
i.e. xi +∑

j∈J ā
′
ijxj = 0.

(Step 4) Separate the cut
Compute a GMI cut from this tableau row using Algorithm 8.2.

(Step 5) Store the cut
Add the cut to the list L and goto Step 2.

a fractional value in the solution x∗ to the LP relaxation of the IMR (7.2) is
selected. The tableau rows associated with these variables are then used to
derive GMI cuts. In our implementation we restrict cut generation to the set
BI ∩ {1, . . . , n} of structural basic integer variables. While deriving GMI cuts
from tableau rows associated with logical basic integer-constrained variables
is possible, such variables are mostly only present in pure integer programs.
Moreover, preliminary computational experiments lead to the conclusion that
the GMI cuts generated from these tableau rows are not effective. Concerning
the set of structural basic integer variables the two main questions are which
and how many of these variables should be used for cut generation. While cut
generation is likely to be fast on small problems, it can be very expensive on large
problems. To rank the variables we compute the fractional part fi0 = x∗i − bx∗i c
for all i ∈ BI ∩ {1, . . . , n}. Note that the value fi0 is precisely the right-hand side
of the GMI cut (see Equation (4.47)) and also represents its violation. A small
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8.1. Gomory Mixed-Integer Cuts

value of fi0 corresponds to a GMI cut which is only slightly violated whereas a
small value of 1− fi0 leads to a significant increase in some of the coefficients in
the GMI cut. Accordingly, we only accept variables satisfying

fi0 ∈ ]ε, 1− ε[ , i ∈ BI ∩ {1, . . . , n}. (8.1)

The tolerance parameter ε bounds the fractionalities. In our code we set ε to 0.05.
The number of variables satisfying (8.1) can still be too large to compute GMI
cuts for all of them. Thus we sort the remaining variables in non-ascending order
of their fractional parts fi0 and store them in a stack. We only compute cuts for
a number of the most fractional variables.

The next steps of the algorithm are the selection of a variable and the con-
struction of the associated row of the simplex tableau (see Step 2 and 3 of
Algorithm 8.1). Given a basis B of the LP relaxation of the IMR (7.2), the
simplex tableau reads

ABxB +AJxJ = 0, (8.2a)

xB = −
(
A−1
B AJ

)
xJ , (8.2b)

where A = (AB, AJ) and x = (xB, xJ). State-of-the-art simplex engines do not
explicitly work on the simplex tableau. Let B(i) denote the position of the
variable xi in the basis B. The row of the simplex tableau associated with a basic
variable xi is calculated by multiplying the B(i)th row of the basis inverse A−1

B

with the matrix A. Let the result of this multiplication be

xi +
∑
j∈J

ā′ijxj = 0, (8.3)

where i ∈ B.

The row of the tableau (8.3) contains non-basic variables which are either at
their upper or lower bound. In order to derive a GMI cut all non-basic variables
have to be transformed such that they are at their lower bound of zero. We
partition the set of non-basic variables J into (J l, Jd) such that Jd contains the
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indices of the non-basic variables which are at their upper bound and J l consists
of the indices of the non-basic variables which are at their lower bound. Let

xj =

sj + lj if j ∈ J l,
dj − sj if j ∈ Jd,

and āij =

ā
′
ij if j ∈ J l,
−ā′ij if j ∈ Jd,

(8.4)

for j ∈ J . By complementing the variables in Jd and shifting the variables in J l

we obtain the transformed tableau row

xi = āi0 −
∑
j∈J

āijsj , (8.5)

where the variables s are the surplus variables from the constraints xj ≥ lj for
j ∈ J l and slack variables from the constraints xj ≤ dj for j ∈ Jd, and

āi0 = −
∑
j∈Jd

ā′ijdj −
∑
j∈J l

ā′ijlj . (8.6)

This transformation is also performed in Step 1 of Algorithm 8.2.

In Step 2 the GMI cut is then generated using Proposition 4.7. However,
in our code we generate a complemented mixed-integer rounding cut from the
untransformed row (8.3). Although MIR and GMI cuts are theoretically equivalent,
there are some algorithmic differences. One of the main reasons for generating MIR
cuts instead of GMI cuts is that an efficient and well-tested implementation of the
MIR separation heuristic (see Marchand and Wolsey [135]) is available in Mops.
The MIR separation heuristic consists of the steps aggregation, bound substitution
and separation. The aggregation heuristic searches for linear combinations of
the constraints of the problem which give a violated MIR cut. It can be easily
adapted to construct rows of the simplex tableau. In the second phase of the
algorithm the bound substitution heuristic transforms the aggregated constraint
(tableau row) in a way similar to that discussed above. Moreover, it allows for
using so-called variable bound constraints

lkxk ≤ xj ≤ dlxl, (8.7)
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Algorithm 8.2. Separating a Gomory mixed-integer cut
Input: A row of the simplex tableau xi +∑

j∈J ā
′
ijxj = 0

associated with a basis B of the LP relaxation of the
IMR (7.2) where xi is a basic fractional integer variable.

Output: A GMI cut αx ≥ β.
(Step 1) Shift and complement

(Shift.) Set āij := ā′ij and xj := lj + sj for all j ∈ J l.
(Complement.) Set āij := −ā′ij and xj := dj − sj for all j ∈ Jd.
(Compute right-hand side.) Set āi0 := −∑j∈Jd ā′ijdj −

∑
j∈J l ā′ijlj .

The transformed tableau row has the form xi +∑
j∈J āijsj = āi0.

(Step 2) Compute the GMI cut
Compute the GMI cut ∑j∈J α

′
jsj ≥ β′ (see Proposition 4.7).

(Step 3) Unshift and uncomplement
(Unshift.) Set αj := α′j and sj := xj − lj for all j ∈ J l.
(Uncomplement.) Set αj := −α′j and sj := dj − xj for all j ∈ Jd.
(Compute right-hand side.) Set β := β′ −∑j∈Jd α′jdj +∑

j∈J l α′jlj .
The GMI cut reads ∑j∈J αjxj ≥ β.

(Step 4) Remove logicals
Use the definition of the logical variables xL = −ÃxS to write the
cut in the space of the structural variables xS .

where xj with j ∈ N \NI is a continuous variable and xk, xl with k, l ∈ NI are
integer variables. More precisely, the bound substitution heuristic substitutes a
continuous variable xj either by the standard bounds as shown in Equation (8.4)
or by the variable bounds

xj =

lkxk + sj or

dlxl − sj .
(8.8)

There are different criteria for deciding whether to use a variable lower or upper
bound (see [51, 135]). An integer variable xk or xl which is substituted into
a tableau row needs to be treated again by bound substitution since it may
have an arbitrary lower or upper bound. Moreover, note that the algorithm has
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to remember whether a simple or variable bound (lower or upper bound) was
substituted for a variable.

We then generate a cut using the separation heuristic. All the variables in the
resulting GMI cut are slack or surplus variables s from the simple and variable
bound constraints. To write the cut in the space of the x variables only we
re-substitute for s. Specifically, depending on which bound was used in the initial
transformation, we have sj = xj − lj , sj = dj − xj from the simple bounds or
sj = xj − lkxk, sj = dlxl−xj from the variable bounds. In addition, the GMI cut
has to be written in the structural variables xS so as to add it to the matrix Ã
in the IMR (7.2). This is accomplished by using the definition of the logical
variables xL = −ÃxS . The final cut is saved in an intermediate data structure.
After GMI cuts have been generated for the selected basic variables all of the cuts
are typically added to the LP relaxation at the same time. This set of cuts is
also called a round of cuts and Algorithm 8.1 is said to generate cuts in rounds.

8.2. K-Cuts

In Section 4.4.4 we introduced k-cuts. A k-cut is a GMI cut generated from the
tableau row

kxi = kāi0 −
∑
j∈J

(kāij) sj , (8.9)

where k ∈ Z and k 6= 0. Equation (8.9) is simply the transformed tableau row (8.5)
multiplied by k. The motive for the multiplication with k is to obtain GMI cuts
with different violations. On the other hand, the coefficients of the (non-basic)
continuous variables in a GMI cut are increased by a factor of k. Integrating
k-cuts into an existing separation routine for GMI cuts is quite easy. We stick
to the strategy for generating GMI cuts we discussed in Section 8.1. The main
question is which values should be used for k. In our implementation we generate
k-cuts for k = 2i with i = 0, . . . , 3.
Finally, we offer some comments on the integrality requirement on k. The

integrality of k is required for the validity of the k-cuts. For instance, consider the
disjunction (kxi ≤ bkāi0c) ∨ (kxi ≥ bkāi0c+ 1) on a basic integer variable xi and
let āi0 = 1

2 and k = 3
4 . We obtain xi ≤ 0∨ xi ≥ 4

3 which is not a valid disjunction.
Moreover, an integral value of k produces an integral coefficient on the basic
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variable in the tableau row. In turn an integer variable with an integral coefficient
k in the tableau row also obtains an integral coefficient αi = k in the GMI or
MIR cut. Thus the violation of the GMI cut is fi0 = kāi0 − bkāi0c > 0. However,
for non-integral multipliers k the situation is different. Choosing a non-integral
multiplier k produces the coefficient αi in the GMI cut which is dependent on the
size of k − bkc and fi0. In some situations the GMI cut may not be violated, i.e.
αiāi0 − bkāi0c ≤ 0, even though kāi0 6∈ Z. For the same reasons the separation
algorithms for combined Gomory mixed-integer cuts and reduce-and-split cuts
also compute integral multipliers for the tableau rows.

8.3. Combined Gomory Mixed-Integer Cuts

In Section 4.4.5 we outlined an approach for generating GMI cuts from linear
combinations of the rows of the simplex tableau. The idea behind this approach is
to find a combined tableau row which gives a GMI cut with a maximal violation
and minimal coefficients on certain non-basic integer variables.
We generate combined GMI cuts in rounds using an algorithm similar to

Algorithm 8.1. The main input parameter for this algorithm is the number r of
tableau rows to be combined. The larger this number is, the more computationally
expensive the separation becomes. In our code we consider three tableau rows at
a time, i.e. r = 3. This number of rows is also suggested Ceria et al. [46]. To avoid
expensive re-computation, we store the rows of the simplex tableau associated
with structural basic integer variables in a matrix T . The data structure used
to store this matrix is shown in Figure 7.3. Following the ideas described in
Section 8.1 we generate cGMI cuts for the most fractional structural basic integer
variables. More precisely we select r structural basic integer variables in the order
of decreasing fractionality. Once these variables are selected the associated rows
of the simplex tableau (8.3) need to be computed. We extract these rows from
the matrix T .
Algorithm 8.3 sketches the separation of a cGMI cut. We shall only briefly

outline the algorithm since it was already discussed in Section 4.4.5. The input
data for the algorithm are the selected rows of the simplex tableau. The first step
of the algorithm is to write the coefficients of the simplex tableau and the solution
values in rational numbers where D is the common denominator. We use the
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Algorithm 8.3. Separating a combined Gomory mixed-integer cut
Input: The rows of the simplex tableau xi +∑

j∈J ā
′
ijxj = 0

associated with a basis B of the LP relaxation of the
IMR (7.2) where xi is a basic fractional integer variable for
i = 1, . . . , r.

Output: A combined GMI cut αx ≥ β.
(Step 1) Compute rational representation

Compute a rational representation xi +∑
j∈J( eij

D )xj = 0 and
x∗i = ei0

D for i = 1, . . . , r.
(Step 2) Maximize

∑r
i=1 πi( ei0

D )− b∑r
i=1 πi( ei0

D )c
Find a family of multipliers pi = p1

i +∑r+1
k=2 p

k
i yk for i = 1, . . . , r

solving the diophantine equation
< e10, e20, . . . , er0, D > = e10p1 + e20p2 + . . .+ er0pr + qD.
Set πi := D − pi = D − p1

i −
∑r+1
k=2 p

k
i yk for i = 1, . . . , r.

(Step 3) Check termination criteria
if pki ≡ 0 (modD) for all i = 1, . . . , r and k = 2, . . . , r + 1 then
goto Step 6.

(Step 4) Select a non-basic integer variable
Select a non-basic integer variable xj , j ∈ JI , whose coefficient was
not optimized so far.

(Step 5) Minimize
∑r
i=1 πi(

eij

D )− b∑r
i=1 πi(

eij

D )c
Substitute for the family of multipliers π and rewrite the result in
the form (4.69), i.e. e0

D +∑r+1
k=2( ek

D )yk − b e0
D +∑r+1

k=2( ek
D )ykc.

Find a family of multipliers pi = p1
i +∑r+1

k=2 p
k
i y
′
k for

i = 2, . . . , r + 1 solving the diophantine equation
< e2, e3, . . . , er+1, D > = e2p2 + e3p3 + . . .+ er+1pr+1 + qD.
Set yk := −b e0

<e2,e3,...,er+1,D>
cpk for k = 2, . . . , r + 1 and obtain a

new improved family of multipliers πi := D − p1
i −

∑r+1
k=2 p

k
i y
′
k.

Goto Step 3.
(Step 6) Compute the combined GMI cut

Construct the combined tableau row∑r
i=1 πixi +∑

j∈J(∑r
i=1 πiā

′
ij)xj = 0.

Compute a GMI cut αx ≥ β using Algorithm 8.2.
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Euclidean algorithm to compute the rational representation of the tableau rows.
In Step 2 of the algorithm a diophantine equation is solved in order to compute a
family of multipliers which maximizes the right-hand side of the cGMI cut. As
noted in Section 4.4.5 we use the algorithm of Rosser [151] to solve such type of
equations. The study of other algorithms that could be used for this purpose
such as the LLL algorithm [128] is left to future work.
In the second part of the algorithm the left-hand side of the cGMI cut is

optimized. More specifically a non-basic integer variable is selected in Step 4 and
the algorithm seeks to find a new family of multipliers which maximizes the right-
hand side of the GMI cut and minimizes the coefficient of this variable in Step 5.
To obtain the new family of multipliers a second diophantine equation is solved
and a set of integers yk is computed using Proposition 4.11. The assumption
of Proposition 4.11 is not, however, always satisfied. As suggested by Ceria et
al. [46] we perform a simple rounding and nevertheless apply Proposition 4.11.
We thus only approximately minimize the coefficient if Proposition 4.11 is not
applicable. The process is then iterated, i.e. the algorithm selects the next
non-basic integer variable and optimizes its coefficient. The algorithm stops when
the termination criterion in Step 3 is satisfied. If the integers pki are all zero
modulo D, all products pki yk will also always be zero modulo D regardless of how
the integers yk are chosen. It is therefore not possible to optimize an additional
coefficient. The procedure is stopped and the cGMI cut is generated (see Step 6).
Finally we point to the weaknesses of the above procedure. A first major

drawback is that the number of coefficients on the left-hand side of a GMI cut
that can be optimized is constrained by the number of tableau rows involved. A
resulting cut is therefore likely to have strong coefficients on a few variables and
large, weak coefficients on the majority of the non-basic variables. Secondly, while
the transformation of all entries of a simplex tableau into a rational representation
can theoretically always be obtained by choosing a sufficiently large D, it is
cumbersome from a computational point of view. The size of the multipliers π
is proportional to the size of D. Large multipliers produce large coefficients on
variables which are not optimized by the procedure. In particular, recall that the
procedure does not at all take into consideration the coefficients of the continuous
non-basic variables in the cGMI cut. In our code we set D = 100 and round the
coefficients of the rows of the simplex tableau accordingly.
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8.4. Reduce-and-Split Cuts

In this section we detail our implementation of the reduce-and-split cuts. R&S
cuts aim at reducing the size of the coefficients of the continuous variables in the
GMI cuts. This is accomplished by an algorithm which constructs integer linear
combinations of the rows of the simplex tableau. We call this algorithm the R&S
reduction algorithm. For a discussion on the theory of R&S cuts we refer the
reader to Section 4.4.6. The separation of R&S cuts is presented in Algorithm 8.4.
A set S of variables is selected in Step 1. The R&S reduction algorithm is

carried out on the tableau rows associated with these variables. In our code
we select the complete set BI ∩ {1, . . . , n} of structural basic integer variables.
Then the tableau rows associated with these variables are computed. To save
computational effort we simply deploy the matrix T of tableau rows we constructed
for the separation of the combined GMI cuts (see Section 8.3). The compact data
structure which is used to store this matrix is shown in Figure 7.3.
The R&S reduction algorithm performs row operations on the matrix T . As

the tableau rows stored in T are of the form (8.3) we do not have to consider
right-hand sides in any part of the algorithm. The compact storage of T has the
drawback that row operations can not be carried out efficiently directly on T .
Most notably, it is not possible to determine whether a row contains a variable
without iterating over the array of variable indices (similar to a packed vector).
As an alternative one could store the matrix T in a dense form where each of
the rows is a dense vector as shown in Figure 7.4(a). However, iterating over
the elements of a dense matrix is a computationally very expensive operation.
Accordingly, whenever the algorithm intends to perform an operation on two
rows, we load these rows into an indexed data structure (see Figure 7.4(c)). Using
this data structure the row operations can be implemented very efficiently. Also
the action of replacing a row of the matrix T by its reduced version can be
implemented very efficiently using the free space area and the pointers for the
length and offset of a row. When the free space area is exhausted a compression
routine is executed which re-locates the rows inside the data structure with the
objective of regaining free space.
In Step 2 of Algorithm 8.4 the actual R&S reduction algorithm is performed.

Given two basic integer variables xi and xk and the associated rows of the simplex
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Algorithm 8.4. Separating reduce-and-split cuts
Input: A basis B of the LP relaxation of the IMR (7.2) and the

corresponding basic solution x∗.
Output: A list L of reduce-and-split cuts.

(Step 1) Construct the tableau
Select a set S of the structural basic integer variables. Compute
the tableau rows xi +∑

j∈J ā
′
ijxj = 0 for all i ∈ S and store them

in a matrix T . Set done := false.
(Step 2) Perform the reduction algorithm

while done = false do
Set done := true.
for i = 1, . . . , |S| − 1 do

for k = i+ 1, . . . , |S| do
(Get tableau rows.) Let xi +∑

j∈J ā
′
ijxj = 0 and

xk +∑
j∈J ā

′
kjxj = 0 be the ith and kth row of T .

(Check for a reduction.) Let δ∗ minimize
f(δ) = ∑

j∈J\JI
(ā′ij + δā′kj)2 with δ ∈ Z.

if f(δ∗) < f(0) then
(Update.) Set xi := xi + δ∗xk and ā′ij := ā′ij + δ∗ā′kj
for all j ∈ J .
(Replace.) Replace the ith row of T by the updated
row and set done := false.

end
(Check for a reduction.) Let δ∗ minimize
f(δ) = ∑

j∈J\JI
(ā′kj + δā′ij)2 with δ ∈ Z.

if f(δ∗) < f(0) then
(Update.) Set xk := xk + δ∗xi and ā′kj := ā′kj + δ∗ā′ij
for all j ∈ J .
(Replace.) Replace the kth row of T by the updated
row and set done := false.

end
end

end
end

(Step 3) Compute reduce-and-split cuts
Iterate over the matrix T and compute a reduce-and-split cut for
each row using Algorithm 8.2. Add these cuts to the list L.
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tableau in the form (8.3), the algorithm evaluates if the combined tableau row
associated with xi+δxk has smaller coefficients on the continuous variables. More
formally, we minimize the function

f (δ) =
∑

j∈J\JI

(
ā′ij + δā′kj

)2
, (8.10a)

=
∑

j∈J\JI

((
ā′ij
)2

+ 2δā′ij ā′kj +
(
δā′kj

)2
)
, (8.10b)

=
∑

j∈J\JI

(
ā′ij
)2

+ 2δ
∑

j∈J\JI

ā′ij ā
′
kj + δ2 ∑

j∈J\JI

(
ā′kj
)2
. (8.10c)

The first and last terms of Equation (8.10c) contain the squared Euclidean norm
of the coefficients of the continuous variables of the tableau rows. Therefore
before starting the algorithm we calculate this norm for all tableau rows in the
matrix T and store the norms in a separate data structure. The second term
of Equation (8.10c) contains the inner product of two rows on the continuous
variables. When the algorithm selects two rows in Step 2 these rows are loaded
into an indexed data structure and we compute the inner product. Recall that
the optimal solution minimizing f(δ) is either

δ∗ = −


∑

j∈J\JI

ā′ij ā
′
kj∑

j∈J\JI

(
ā′kj
)2

 or δ∗ = −


∑

j∈J\JI

ā′ij ā
′
kj∑

j∈J\JI

(
ā′kj
)2

 . (8.11)

These optimal values can be calculated easily from the aforementioned data. To
speed up the algorithm and to avoid large multipliers δ∗ (i.e. large coefficients in
the split disjunction, see Equation (8.11)), we stop considering rows if their norm
is not larger than a threshold. Specifically, if

∑
j∈J\JI

(
ā′ij
)2
≤ ε, (8.12)

we skip the row associated with the basic variable xi in Step 2 of the algorithm.
In our code we set ε to 10−5. Moreover, to achieve a faster convergence of the
algorithm, we do not accept linear combinations xi + δ∗xk which only slightly
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reduce the size of the coefficients of the continuous variables. We reject a linear
combination xi + δ∗xk if the percentage reduction satisfies

1− f (δ∗)
f (0) ≤ ε, (8.13)

where ε is set to 0.05 (i.e. 5%) in our implementation. The algorithm performs
several iterations (see Step 2). It terminates if no improving reduction is found
in an iteration. Further to enhance the speed of the algorithm we store the
iteration in which a reduction on a specific row was performed. Similarly, we
store the iteration in which a combination of two rows was last tried. Thus we
avoid checking the same (unchanged) rows for a reduction over and over again.

In Step 3 the R&S cuts are generated. Note that our implementation is a slight
variation of the R&S cuts as described in [8]. After the rows of the tableau have
been reduced by forming the linear combinations, Andersen et al. [8] strengthen
the underlying split disjunctions and then generate intersection cuts. In our
implementation we directly generate GMI cuts from the reduced rows of the
simplex tableau.

8.5. Lift-and-Project Cuts

In this section we discuss our implementation of the Balas-Perregaard algo-
rithm [30] for generating lift-and-project cuts. The theory of L&P cuts is pre-
sented in Section 4.4.7. For a very detailed discussion of L&P cuts and their
implementation we refer the reader to Perregaard [148].
We assume that an MIP is given in the IMR (7.2). As in Section 4.4.7 we

denote by (CGLPi) the cut generating linear program (4.82) and by (LP) the
LP relaxation of the IMR (7.2). We generate L&P cuts in the same fashion as
Gomory mixed-integer cuts (see Section 8.1). Algorithm 8.5 shows the main steps
in the separation of L&P cuts.

8.5.1. Working with Bounded Variables

The correspondence between solving (CGLPi) and performing pivots on (LP)
relies on the fact that bounds are explicitly stored in the constraint set such that
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Algorithm 8.5. Separating a lift-and-project cut
Input: A basis B of the LP relaxation of the IMR (7.2) and the

corresponding basic solution x∗. A basic integer variable xi
which has a fractional value x∗i . The parameter
max_pivots indicating the maximum number of pivots.

Output: An L&P cut αx ≥ β.
(Step 1) Initialize

Set num_pivots := 0.
(Step 2) Check termination criteria

if num_pivots ≥ max_pivots then goto Step 8.
(Step 3) Compute the tableau row

Compute the transformed tableau row (8.5) associated with xi, i.e.
xi = āi0 −

∑
j∈J āijsj .

if xi is a general-integer variable then set āi0 := āi0 − bāi0c.
(Step 4) Compute the partition J = (M1,M2)

Let M1 := {j ∈ J : āij < 0}, M2 := {j ∈ J : āij > 0} and
M3 := {j ∈ J : āij = 0}.
Assign the variables in M3 to the sets M1 or M2 at random.

(Step 5) Find the leaving variable
Compute the reduced cost rluk

, rlvk
, rduk

, rdvk
for all k 6∈ J ∪ {i}.

Let k := arg mint6∈J∪{i}{rlut
, rlvt

, rdut
, rdvt
}.

if min{rluk
, rlvk

, rduk
, rdvk
} ≥ 0 then goto Step 8.

(Step 6) Find the incoming variable
Let J ′ = {j ∈ J : |ākj | ≥ ε} be the set of admissible pivots.
Let J− = J ′ ∩ {j ∈ J : γj = − āij

ākj
< 0} and J+ = J ′ \ J−.

Let p := arg min{arg minj∈J+{f+(γj)}, arg minj∈J−{f−(γj)}}.
(Step 7) Perform the pivot

Pivot the variable xk out of the basis and pivot the variable xp into
the basis B. Set B := (B ∪ {p}) \ {k} and J := (J ∪ {k}) \ {p}.
Set num_pivots := num_pivots+ 1 and goto Step 2.

(Step 8) Compute the L&P cut
Compute the row of the simplex tableau (8.3) associated with xi
and generate the L&P cut αx ≥ β using Algorithm 8.2.
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a row of an (LP) tableau row can exclusively be written in the space of the slack
or surplus variables respectively. The theory assumes that all structural variables
are unrestricted. However, in state-of-the-art MIP solvers bounds on variables
are stored separately from the constraint matrix. Reconsider the transformed row
of the simplex tableau

xi = āi0 −
∑
j∈J

āijsj , (8.14)

where sj are slack or surplus variables of the bound constraints xj ≤ dj and
xj ≥ lj . The transformation ensures that all non-basic variables are slack or
surplus variables which are at their lower bound. To be able to handle a basic
variable xk which is bounded, we can again use the corresponding slack or surplus
variables from the bound constraints. We get

slk = (āk0 − lk)−
∑
j∈J

ākjsj , (8.15a)

sdk = (dk − āk0)−
∑
j∈J

(−ākj) sj . (8.15b)

Pivoting the surplus variable slk of the lower bound constraint xk − slk = lk out
of the basis is equivalent to making xk non-basic at its lower bound lk. Thus
we have to transform the tableau row into the form (8.15a). On the other hand,
pivoting the slack variable sdk of the upper bound constraint xk + sdk = dk out of
the basis is equivalent to making xk non-basic at its upper bound dk. In this case
we have to transform the tableau row into the form (8.15b).

8.5.2. Handling General Integer Variables

In Step 3 of Algorithm 8.5 the row of the simplex tableau associated with the
selected basic integer variable xi is computed. The procedure for generating L&P
cuts as outlined in Section 4.4.7 is designed exclusively to deal with 0-1 variables.
Only cuts for fractional 0-1 variables are generated, i.e. xi with 0 < āi0 < 1.
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By rewriting the row of the simplex tableau (8.14) associated with a fractional
general-integer variable xi as

xi − bāi0c = (āi0 − bāi0c)︸ ︷︷ ︸ −∑
j∈J

āijsj ,

x′i = fi0 −
∑
j∈J

āijsj ,
(8.16)

we obtain a form that the method can handle because 0 < fi0 < 1. Basically we
derive L&P cuts from the elementary disjunction

(−xi ≥ −bāi0c) ∨ (xi ≥ dāi0e) . (8.17)

In the remainder of this section we shall for simplicity assume that xi := xi − bāi0c,
āi0 := āi0 − bāi0c and x∗i := x∗i − bx∗i c if the reference row i of the simplex tableau
used for cut generation is associated with a basic general-integer variable xi.

8.5.3. Computing the Reduced Cost

We next consider the computation of the reduced cost which is of crucial impor-
tance in finding the variable which leaves the basis (see Step 5 of Algorithm 8.5).
We assume that the general normalization constraint (4.98) is given (see Sec-
tion 4.4.7). As we have the choice either to pivot xk to its lower bound lk or to
its upper bound dk, we have slightly to modify the computation of the reduced
cost (see Equation (4.99)). We get

rluk
= −σλk + (āk0 − lk) (1− x∗i )− τk, (8.18a)

rlvk
= −σλk − (āk0 − lk) (1− x∗i ) + (x∗k − lk) + τk, (8.18b)

rduk
= −σλk + (dk − āk0) (1− x∗i ) + τk, (8.18c)

rdvk
= −σλk − (dk − āk0) (1− x∗i ) + (dk − x∗k)− τk, (8.18d)

where, as in Section 4.4.7,

σ =

∑
j∈M2

āijs
∗
j − āi0 (1− x∗i )

1 + ∑
j∈J
|āij |λj

, (8.19)
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and
τk =

∑
j∈M1

σākjλj +
∑
j∈M2

(
s∗j − σλj

)
ākj . (8.20)

A specialized simplex code is necessary efficiently to separate L&P cuts in
the framework of Balas and Perregaard. A point which is of crucial importance
is a fast computation of the reduced cost, particularly the values τk. One way
to compute the values τk is as follows. First, recompute the (LP) tableau row
associated with xk and then perform the calculations based on the partitioning
(M1,M2) of the entries of the tableau row as shown in Equation (8.20). As this
approach involves computing a large number of tableau rows, it is computationally
very expensive. However, observe that each tableau row is multiplied with the
same vector. We can hence rewrite the expression for τk in the form

τk =
∑
j∈J

ākjyj ,

=
∑
j∈J

(
A−1
B AJ

)
kj
yj ,

=
∑
j∈J

(
A−1
B(k) (AJ)j

)
yj ,

= A−1
B(k)

∑
j∈J

(AJ)j yj ,

(8.21)

where B(k) is the position of xk in the basis B, A−1
B(k) is the row of the basis

inverse associated with xk, (AJ)j is the jth non-basic column of A, yj = σλj for
j ∈M1 and yj = s∗j − σλj for j ∈M2. To obtain the vector τ , i.e. the value of τk
for all (LP) tableau rows all at once, we have to solve the system

ABτ =
∑
j∈J

(AJ)j yj (8.22)

for τ . Fortunately, solving this system is a standard operation in state-of-the-art
simplex engines. It involves one forward transformation operation (or ftran) which
is carried out in highly efficient manner (see Chvátal [52]).

Recall that in the presence of zero elements in row i the partition J = (M1,M2)
of the non-basic variables is not unique. Let M3 = {j ∈ J : āij = 0}. We can
either assign the elements of M3 to the sets M1 or M2. Given a pivot row k 6= i,
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letM+
3 = {j ∈ J : āij = 0∧ ākj > 0} andM−3 = {j ∈ J : āij = 0∧ ākj < 0}. Balas

and Perregaard [30] suggest the rule M1 = {j ∈ J : āij < 0} ∪M+
3 , M2 = J \M1

for computing rluk
and rduk

, and M1 = {j ∈ J : āij < 0} ∪M−3 , M2 = J \M1

for computing rlvk
and rdvk

. If a negative reduced cost is identified, this rule is
guaranteed to lead to a strictly better cut. On the other hand, each row k 6= i of
the tableau needs to be computed to obtain the values ākj for all j ∈ J satisfying
āij = 0. Nor can we conclude that the current basis of (LP) is optimal with
respect to (CGLPi) if all reduced cost are non-negative, since the reduced cost
of each row k is computed with respect to a different partition (M1,M2). To
decide whether the current solution is optimal, it is necessary to re-compute
all the reduced cost with respect to a unique partition. Balas and Perregaard
thus propose to perturb the row i of the simplex tableau in such a way that all
non-basic variables have a non-zero coefficient. In our code we randomly assign
the non-basic variables with a zero coefficient to the sets M1 or M2.

Typically, in implementations of the simplex algorithm a threshold value is used
to decide if all reduced cost are non-negative. Let rk = min{rluk

, rlvk
, rduk

, rdvk
}. In

our code we conclude that a basis B of (LP) corresponds to an optimal basis
of (CGLPi), if the reduced cost satisfy

rk ≥ −ε, ∀k ∈ B \ {i} , (8.23)

where ε = 5 · 10−4.

8.5.4. Finding the Incoming Variable

In Step 6 of Algorithm 8.5 the L&P procedure selects a variable which enters the
basis. This variable is identified by finding the minima of the functions f+(γ)
and f−(γ) (see Equation (4.102)). A procedure for finding the minima of these
functions is described by Perregaard [148]. Suppose that we want to perform
a pivot on the element ākp in row k 6= i that makes xk non-basic at its lower
bound lk. An important detail is that it is not necessary to identify the minima
of both functions f+(γ) and f−(γ). Using the bounds on xk, we can rewrite the
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corresponding row of the simplex tableau in the form (8.15a). The pivot then
has the following effect on (8.14)

xi = āi0 + γp (āk0 − lk)−
∑
j∈J

(āij + γpākj) sj + γps
l
k

 , (8.24)

where γp = − āip

ākp
. Observe that γp is the coefficient of the variable slk in the new

combined simplex tableau row associated with xi. In case we pivot xk to its upper
bound dk, we obtain

xi = āi0 + γp (dk − āk0)−
∑
j∈J

(āij − γpākj) sj + γps
d
k

 , (8.25)

where γp = − āip

(−ākp) = āip

ākp
. Again, γp is the new coefficient of the non-basic

variable sdk. Now, if we update the partition (M1,M2) of the non-basic indices,
the sign of γp will determine whether slk or sdk is linked to the basic variable uk
or vk in (CGLPi). Therefore if we select xk due the reduced cost rluk

or rduk
, it

follows that γ < 0. On the other hand, choosing xk based on reduced cost rlvk
or

rdvk
implies that γ > 0. The practical consequence of this correlation is that one

only needs to minimize either f+(γ) or f−(γ) once the leaving variable has been
selected.

To enhance the numerical stability of the algorithm we do not consider pivots
on elements ākj of the pivot row k which are smaller than a threshold. Precisely,
in our code, the set of admissible pivots is

J ′ = {j ∈ J : |ākj | > ε} (8.26)

where ε = 10−5.

8.5.5. Disjunctive Modularization

In order to approximate the generation of an optimal split cut, Balas and
Bonami [22] iteratively strengthen the considered (LP) tableau row after each
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pivot by disjunctive modularization. After each pivot the reference row of the (LP)
tableau (8.14) is replaced by the row

yi = āi0 −
∑
j∈J

ϕ̄ijsj (8.27)

where yi is a new unrestricted integer-constrained variable and

ϕ̄ij =


fij for j ∈ JI and fij ≤ āi0
fij − 1 for j ∈ JI and fij > āi0

āij otherwise

(8.28)

with fij = āij − bāijc for j ∈ J . It is easy to see that the intersection cut derived
from (8.27) is the strengthened intersection cut (or GMI cut) derived from (8.14).

8.5.6. Additional Considerations

For L&P cuts to be competitive with plain GMI cuts, the pivoting procedure
outlined above must be implemented efficiently. There are a number of factors
which have a large impact on the overall performance. Starting from the opti-
mal (LP) tableau row a number of pivots are performed for each basic integer
variable that is fractional. After pivoting based on the reduced cost of (CGLPi),
one has to restore the initial optimal (LP) basis. Of course, this can be done
by running the dual simplex algorithm. Although only a few pivots of the dual
simplex algorithm may be necessary to return to (LP) optimality, it has to be
executed after each call to the L&P algorithm (see Algorithm 8.5). Therefore we
initially save the optimal (LP) basis which can then be restored very quickly by
filling the appropriate data structures. To be able to work with the optimal (LP)
tableau we only need to re-factorize the basis. We found that this approach is
considerably faster, especially when L&P cuts are generated for a large number
of basic variables. As previously discussed, the calculation of the reduced cost
of (CGLPi) is a critical part of the L&P algorithm. Moreover, once the reduced
costs are computed, they are scanned for the most negative element several times
in each iteration. To reduce the effort needed for this operation we maintain a
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stack which contains the indices of the (LP) tableau rows corresponding to basic
variables which have negative reduced cost.

Balas et al. [24, 25] demonstrate that L&P cuts can more efficiently be generated
in a subspace obtained by fixing all structural non-basic variables. With respect
to the cut generating linear program (CGLPi) this means that the columns
associated with these variables can be removed which considerably reduces the
size of (CGLPi). After (CGLPi) has been optimized, the fixed variables are lifted
into the L&P cut. In the framework of Balas and Perregaard the same effect can
be achieved by ignoring the structural non-basic variables, in the sense that none
of these variables is selected as an entering variable. Implementing the lifting
step is then very easy. Once the algorithm has found the basis of (LP) giving the
optimal L&P cut, we “lift” this cut by computing cut coefficients for all non-basic
variables.

8.6. A new Pivoting Procedure for Strengthening Gomory
Mixed-Integer Cuts

The Balas-Perregaard procedure [30] for generating lift-and-project cuts guides
the search for an LP basis where the tableau row associated with a specific basic
integer variable gives a stronger GMI cut than the corresponding row of the
optimal LP tableau. In contrast, the reduce-and-split reduction algorithm [8] tries
to improve the disjunction on which a GMI cut is based by forming integer linear
combinations of LP tableau rows while keeping the basis fixed. A natural question
is whether it is possible to integrate both approaches in order simultaneously to
improve the basis and the disjunction.
We approach this question by generating GMI cuts from alternative bases of

the LP relaxation. These bases need be neither optimal nor feasible. Consider the
row of the simplex tableau (8.5) associated with a basic integer variable xi. At
each iteration of our algorithm we perform a pivot in row k 6= i, which produces
a linear combination

xi + γxk = āi0 + γāk0 −
∑
j∈J

(āij + γākj) sj (8.29)
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where γ = − āip

ākp
for some p ∈ J such that the squared Euclidean norm of the

coefficients of the continuous variables decreases. We want to obtain a basis where
the representation of the simplex tableau row corresponding to xi is “better” with
respect to size of the coefficients of the continuous variables.

We thereby also modify the underlying split disjunction D(π, π0) as de-
fined in Equation (4.48). Suppose that the pivot simulated in Equation (8.29)
makes the integer-constrained variable xk non-basic at its lower bound and
the integer-constrained variable xp basic. We have B := (B ∪ {p}) \ {k} and
J := (J ∪ {k}) \ {p}. Define fij = āij + γākj − bāij + γākjc for j ∈ J and
fi0 = āi0 + γāk0 − bāi0 + γāk0c. The new split disjunction D(π, π0) is given by

πj =



bāij + γākjc if j ∈ JI and fij ≤ fi0,
dāij + γākje if j ∈ JI and fij > fi0,

1 if j = i,

0 otherwise,

(8.30)

and π0 = bāi0 + γāk0c. In particular this means that πp = 0 and that πk either
has the value bγc or dγe.
In the following we describe our pivoting algorithm in detail. As mentioned

above, the objective of our algorithm is to reduce the squared Euclidean norm on
the continuous variables in the selected reference row i of the simplex tableau. To
state this objective more formally, we introduce some additional notation. Given
k ∈ B, define the vector āCk :

āCkj =


ākj if j ∈ J \ JI ,
1 if j = k and j ∈ B \BI ,
0 otherwise.

(8.31)

We want to select a basic variable xk and a non-basic variable xp such that
pivoting on the element ākp minimizes

f (γ) =
(
āCi + γāCk

) (
āCi + γāCk

)
,

=
∥∥∥āCi ∥∥∥2

+ γ2
∥∥∥āCk ∥∥∥2

+ 2γ
(
āCi ā

C
k

)
,

(8.32)
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where γ = − āip

ākp
. It follows that a pivot reduces the squared Euclidean norm if

the inequality
− 2γ

(
āCi ā

C
k

)
> γ2

∥∥∥āCk ∥∥∥2
(8.33)

holds. Observe that the right-hand side of Inequality (8.33) is non-negative. Thus
there is no improving pivot in row k with respect to the size of the coefficients of
the continuous variables in row i if γ(āCi āCk ) ≥ 0.

The first main step of the procedure is to identify a variable xk which leaves the
basis, i.e. a pivot row k 6∈ J ∪ {i} which we want to combine our reference row i

with. The heuristic we use to select this row measures the similarity between the
reference row and possible pivot rows in terms of the coefficients of the continuous
variables. Specifically, we compute the absolute value of the cosine of the angle
between the vectors āCi and āCk

θ
(
āCi , ā

C
k

)
=

∣∣∣āCi āCk ∣∣∣∥∥āCi ∥∥ ∥∥āCk ∥∥ (8.34)

for each k 6∈ J ∪ {i}. Note that 0 ≤ θ(āCi , āCk ) ≤ 1. The larger θ(āCi , āCk ) is,
the larger is the likelihood that there exists a pivot in row k that reduces the
size of the coefficients of the continuous variables in row i. On the other hand,
if we have θ(āCi , āCk ) = 0 (i.e. āCi ā

C
k = 0), every possible pivot will not be

improving with respect to the size of the coefficients of the continuous variables
(see Inequality (8.33)). Therefore the pivot row k 6= i is chosen such that

k = arg max
l 6∈J∪{i}

{
θ(āCi , āCl )

}
. (8.35)

The second important step of the procedure is choosing a variable xp which
enters the basis. Again the critical question is how to select this variable. Remem-
ber that, given a pair (i, k) of rows of the simplex tableau, we want to minimize
Equation (8.32). Therefore the effect that pivoting the non-basic variable xp into
the basis has on the size of the coefficients of the continuous variables can be
measured by computing f(γp) where γp = − āip

ākp
. Let J ′ = {j ∈ J : ākj 6= 0} be
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the set of admissible pivots in tableau row k. From all of these pivots we select
the one which brings about the largest possible reduction

p = arg min
j∈J ′

{
f (γj) : γj = − āij

ākj

}
. (8.36)

After the leaving and entering variable have been selected the pivot is performed.
The method is iterated until a pivot limit is reached or no improving reduction is
found. We call the resulting cuts pivot-and-reduce (P&R) cuts.

8.6.1. Implementation

An outline of our implementation of the previously discussed pivoting procedure
is presented in Algorithm 8.6. There are a few aspects one has to consider to
implement this procedure efficiently.
In Step 1 we perform an initialization of the data structures. We then enter

the main loop of the procedure and check whether the termination criteria are
satisfied (see Step 2). If the pivot limit is reached, we exit the main loop and
generate a P&R cut in Step 7. Otherwise the algorithm computes the reference
row of the simplex tableau in Step 3. We stop the search for an improving pivot
if the coefficients of the continuous variables in the reference row i are relatively
small, i.e. if the norm satisfies ‖āCi ‖2 ≤ ε with ε = 10−5.
Given a basic integer variable xi, we have to identify a pivot row k 6∈ J ∪ {i}

which is likely to contain pivots which reduce the size of the coefficients on the
continuous variables in row i (see Step 4). We want to choose the index k that
maximizes the value of Equation (8.34). It turns out that the numerator of
Equation (8.34) can be computed very efficiently. We get

λk = āCi ā
C
k =

∑
j∈J

ākj āij ,

=
∑
j∈J

(
A−1
B AJ

)
kj
āij ,

=
∑
j∈J

(
A−1
B(k) (AJ)j

)
āij ,

= A−1
B(k)

∑
j∈J

(AJ)j āij ,

(8.37)
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Algorithm 8.6. Separating a pivot-and-reduce cut
Input: A basis B of the LP relaxation of the IMR (7.2) and the

corresponding basic solution x∗. A basic integer variable xi
which has a fractional value x∗i . The parameter
max_pivots indicating the maximum number of pivots.

Output: A P&R cut αx ≥ β.
(Step 1) Initialize

Set num_pivots := 0.
(Step 2) Check termination criteria

if num_pivots ≥ max_pivots then goto Step 7.
Let S := B \ {i}.

(Step 3) Compute the tableau row
Compute the tableau row (8.5) associated with xi, i.e.
xi = āi0 −

∑
j∈J āijsj .

if ‖āCi ‖2 ≤ ε then goto Step 7.
(Step 4) Find the leaving variable

if S = ∅ then goto Step 7.
Compute the inner product |āCi āCk | for all k ∈ S.
Let k := arg maxl∈S{|āCi āCl |}.
if |āCi āCk | ≤ ε then goto Step 7.

(Step 5) Find the incoming variable
Let f(γ) = ‖āCi ‖2 + γ2‖āCk ‖2 + 2γ(āCi āCk ).
Let J ′ = {j ∈ J : |ākj | ≥ ε} be the set of admissible pivots.
Compute f(γj) with γj = − āij

ākj
for all j ∈ J ′.

Let p := arg minj∈J ′{f(γj = − āij

ākj
)}.

Set S := S \ {k}.
if f(γp) ≥ f(0) then goto Step 4.

(Step 6) Perform the pivot
Pivot the variable xk out of the basis and pivot the variable xp into
the basis B. Set B := (B ∪ {p}) \ {k} and J := (J ∪ {k}) \ {p}.
Set num_pivots := num_pivots+ 1 and goto Step 2.

(Step 7) Compute the P&R cut
Compute the row of the simplex tableau (8.3) associated with xi
and generate the P&R cut αx ≥ β using Algorithm 8.2.
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where B(k) is the position of xk in the basis B, A−1
B(k) is the row of the basis

inverse associated with xk and (AJ)j is the jth non-basic column of A. To obtain
the vector λ, i.e. the inner product for all candidate rows k 6∈ J ∪ {i}, we have to
solve the system

ABλ =
∑
j∈J

(AJ)j āij (8.38)

for λ. Again this system can be solved by a single ftran operation.

The denominator of Equation (8.34) can not be calculated so efficiently. The
Euclidean norm of the tableau row associated with xi is of course a constant in
all calculations. On the other hand, the Euclidean norms of the remaining rows of
the simplex tableau may change after each pivot. Therefore there are two ways to
compute the norms for all rows k 6∈ J∪{i}. Firstly, one can construct each tableau
row in order to calculate its Euclidean norm. This is a computationally very
expensive operation. Secondly, one can initially compute the squared Euclidean
norm for all rows of the simplex tableau and then update them after each pivot
using Equation (8.32). This is also quite costly from a computational point of
view. Accordingly, we only compute the numerator for all candidates and select
k such that

k = arg max
l 6∈J∪{i}

{∣∣∣āCi āCl ∣∣∣} . (8.39)

Suppose that we have computed the index k according to the above formula.
The algorithm is stopped if the inner product with the largest absolute value is
sufficiently small. More precisely, the algorithm is stopped if∣∣∣āCi āCk ∣∣∣ ≤ ε, (8.40)

where ε = 5 · 10−4 in our code.

The second main step of the procedure is selecting the variable which will enter
the basis (see Step 5 of Algorithm 8.6). It can be implemented in a straightforward
way. As elaborated above, we select the entering variable xp from row k such that
the resulting pivot will produce the largest possible reduction in the coefficients
on the continuous variables in row i. In our current implementation the algorithm
does not, however, check whether the P&R cut derived from the updated row i

obtained after the pivot (see Step 6) is violated by the optimal LP solution x∗.
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As in our implementation of the L&P cuts, we reject pivots on elements ākj which
are smaller than the pivot tolerance 10−5.
The overall computational effort necessary to select the entering and leaving

variable is comparable to the work carried out by the Balas-Perregaard method
for generating L&P cuts. But the L&P algorithm has to maintain a lot of data,
e.g. the value of the objective function of the cut generating linear program and
the partition of the non-basic variables. An advantage of the P&R heuristic is
that it only has to retain the values of the inner products between the vectors
āCi and āCk for each possible pivot row k 6∈ J ∪ {i} (see Equation (8.39)) while
the L&P algorithm has to hold four reduced cost values. Moreover, the inner
products are the direct result of the ftran operation and can therefore be scanned
and handled very efficiently, e.g. by sorting according to descending absolute
values. After a pivot has been performed no additional work is necessary for
updates of existing data.

8.7. Strong Chvátal-Gomory Cuts

In this section we outline our implementation of the strong Chvátal-Gomory
cuts. These cuts are a strengthened variant of the well known CG cuts. We have
already dealt with the theory of strong CG cuts in Section 4.3.2.
In Chapter 4 we mentioned that a Gomory fractional cut is a CG cut derived

from a row of the simplex tableau. We also discussed the relation between mixed-
integer rounding cuts and Gomory mixed-integer cuts, namely that any GMI cut
can be derived as a MIR cut from a tableau row. Our implementation of the
strong CG cuts is based on suggestions made by Achterberg [3]. Inspired by the
connection between CG cuts and Gomory fractional cuts, Achterberg proposes
to generate strong Gomory fractional cuts, i.e. strong CG cuts from rows of the
simplex tableau.
In this regard the separation of a strong CG cut works very similarly to the

separation of a GMI cut (see Section 8.1). The details of the separation are
outlined in Algorithms 8.7 and 8.8. Proposition 4.3 assumes that all variables are
non-negative. Thus we need to shift or complement the variables. As strong CG
cuts are not able to handle continuous variables we also have to ensure that all
continuous variables have a non-negative coefficient in the transformed row of
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Algorithm 8.7. Separating a strong Chvátal-Gomory cut (part 1)
Input: A basis B of the LP relaxation of the IMR (7.2) where xi

is a basic fractional integer variable.
Output: An inequality ∑j∈N ājsj ≤ ā0 or transformation failed.

(Step 1) Compute the base row
Let w = eiA

−1
B be the ith row of the basis inverse.

for k = 1, . . . ,m with wk 6= 0 do
if n+ k ∈ N \NI then

if (wk > 0 or dn+k =∞) and (wk < 0 or ln+k = −∞)
then

wk := 0.
end

end
end
Compute wA and let the result be ∑j∈N ā

′
jxj = 0.

(Step 2) Shift and complement
Set ā0 := 0.
for j = 1, . . . , n+m with ā′j 6= 0 do

if j ∈ NI then
if lj > −∞ then

(Shift.) Set āj := ā′j , xj := lj + sj , and v := lj .
else if dj <∞ then

(Complement.) Set āj := −ā′j , xj := dj − sj , and
v := dj .

else
exit.

end
else

if āj > 0 and lj > −∞ then
(Shift.) Set āj := ā′j , xj := lj + sj , and v := lj .

else if āj < 0 and dj <∞ then
(Complement.) Set āj := −ā′j , xj := dj − sj , and
v := dj .

else
exit.

end
end
(Update the right-hand side.) Set ā0 := ā0 − ā′j · v.

end
(Relax.) Set āj := 0 for all j ∈ N \NI .
The transformed row has the form ∑

j∈N ājsj ≤ ā0.
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Algorithm 8.8. Separating a strong Chvátal-Gomory cut (part 2)
Input: An inequality of the form ∑

j∈N ājsj ≤ ā0 generated by
Algorithm 8.7.

Output: A strong CG cut αx ≤ β.

(Step 1) Compute the strong CG cut
Compute the strong CG cut ∑j∈N α

′
jsj ≤ β′ (see Proposition 4.3).

(Step 2) Unshift and uncomplement
Undo the shifts and complementations on the variables using the
same bounds as in Step 2 of Algorithm 8.7.

(Step 3) Remove logicals
Use the definition of the logical variables xL = −ÃxS to write the
cut in the space of the structural variables xS .

the tableau. Therefore we choose the substitution that produces a non-negative
coefficient (see Step 2 of Algorithm 8.7). If this is possible, the continuous variables
can be removed from the tableau row, thereby relaxing it to a ≤-inequality. On the
other hand, the substitution may fail due to missing bounds on some continuous
variables. In this case we can not generate a strong CG cut. In particular, every
continuous logical variable is required to have a non-negative coefficient. Note
that the coefficient of a logical variable in a row of the simplex tableau is directly
given by the associated row of the basis inverse. Thus it is easy to check whether
a continuous logical variable can be transformed such that is has a non-negative
coefficient. If this is not possible, we zero out the corresponding position in the
row of the basis inverse (see Step 1 of Algorithm 8.7). This means that we are
not necessarily computing rows of the simplex tableau associated with a basis.
Rather we use the row of the basis inverse to guide the search for a violated
strong CG cut.

The resulting row is of the form ∑
j∈N ā

′
jxj = 0. After the transformation

discussed above, we obtain ∑
j∈N

ājsj ≤ ā0. (8.41)

A strong CG cut can then be generated using Proposition 4.3 (see Step 1 of
Algorithm 8.8). As in Section 4.3.2, let f0 = ā0 − bā0c and fj = āj − bājc for
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j ∈ N . First we have to choose an integer k ≥ 1 that satisfies 1
k+1 ≤ f0 <

1
k . As

this is equivalent to 1
f0
− 1 ≤ k < k+1

kf0
− 1, we set

k =
⌈ 1
f0

⌉
− 1 (8.42)

in our code. According to the value of k a partition (N0, . . . , Nk) of N is con-
structed. Recall that the set N0 is defined as N0 = {j ∈ N : fj ≤ f0} and the
set Np is defined as Np = {j ∈ N : f0 + (p−1)(1−f0)

k < fj ≤ f0 + p(1−f0)
k } for

p = 1, . . . , k. We do not work with the partition (N0, . . . , Nk) explicitly. Observe
that we can also write Np = {j ∈ N : p− 1 < k(fj−f0)

1−f0
≤ p} for p = 1, . . . , k. It

follows that we can restate the strong CG cut as

∑
j∈N

(
bājc+ pj

k + 1

)
sj ≤ bā0c , (8.43)

where the non-negative integer pj for j ∈ N is given by

pj =

0 if fj ≤ f0,⌈
k(fj−f0)

1−f0

⌉
if fj > f0.

(8.44)

To write the cut in the space of the original structural variables we undo the
shifts and complementations and substitute for the logical variables (see Steps 2
and 3 of Algorithm 8.8).

8.8. {0, 1
2}-Chvátal-Gomory Cuts

In this section we discuss an algorithm for generating {0, 1
2}-Chvátal-Gomory

cuts. Our implementation of this algorithm is based on the work of Koster et
al. [126]. We briefly introduced {0, 1

2}-cuts in Section 4.3.1. We assume that an
IP of the form

min {cx : Ax ≤ b, x ≥ 0, x ∈ Zn} (8.45)

is given, where A is an integral matrix of dimension m× n and b is an integral
vector of dimension m. Let x∗ be a non-integral solution to the LP relaxation
of (8.45). Let s = b−Ax be a vector of slack variables. A general IP (7.2) can be
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brought into the form (8.45) by transforming all inequalities into ≤-inequalities
and shifting or complementing the variables to obtain x ≥ 0.
Now, let Ā = Amod 2 and b̄mod 2 where the modulo operation is applied

component-wise. There exists a violated {0, 1
2}-cut if and only if there exists a

binary vector v ∈ {0, 1}m such that

vb̄mod 2 = 1 and
(
vĀmod 2

)
x∗ + vs∗ < 1. (8.46)

A vector v satisfying the constraints presented in Equation (8.46) indicates which
inequalities of Ax ≤ b to combine with weights 1

2 such that the CG cut from this
linear combination is violated (see Section 4.3.1).

8.8.1. Preprocessing

Our code performs three basic operations on the system (Ā, b̄). Not all columns
and rows of (Ā, b̄) affect the two conditions presented in Equation (8.46). A
number of transformations can be performed which reduce the size of (Ā, b̄).

Proposition 8.1 (Reduction [126]). The reductions below do not influence the
set of undominated {0, 1

2}-cuts for the original system (A, b):

1. All columns in Ā corresponding to variables x∗j = 0 can be removed.

2. Zero rows in (Ā, b̄) can be removed.

3. Zero columns in Ā can be removed.

4. Identical columns in Ā can be replaced by a single representative with
associated variable value as sum of the merged variables.

5. Any unit vector (or singleton) column āj = ei in Ā with j ∈ {1, . . . , n} and
i ∈ {1, . . . ,m} can be removed provided that x∗j is added to the slack s∗i of
row i.

6. Any row i ∈ {1, . . . ,m} with slack s∗i ≥ 1 can be removed.

7. Rows identical in (Ā, b̄) can be eliminated except for one with smallest slack
value.
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For simplicity, let the reduced system again consist of m rows and n columns.
Up to now we assumed that each row of (Ā, b̄) is associated with a single inequality
from the original system. In order to obtain additional reductions we now consider
row operations on (Ā, b̄). To this end, let Ri contain the indices of the original
inequalities of which row i is currently composed. We initialize Ri by setting
Ri = {i} for i = 1, . . . ,m. Let us assume we add row k to row i. We get

āij := āij + ākj mod 2, ∀j ∈ {1, . . . , n},
b̄i := b̄i + b̄k mod 2,

s∗i := s∗i + s∗k,

Ri := (Ri ∪Rk) \ (Ri ∩Rk) ,

(8.47)

where āij is the coefficient of the matrix Ā in row i and column j. The following
proposition plays a major role in obtaining additional reductions.

Proposition 8.2 (Elimination [126]). Let i be the index of a row and j the
index of a column of Ā such that āij = 1 and s∗i = 0. Then adding row i to
all other rows k 6= i with ākj = 1 does not influence the set of undominated
{0, 1

2}-cuts for the original system (A, b).

Proposition 8.2 creates new singleton columns. These columns can then be
removed using rule 5 of Proposition 8.1, thereby reducing the size of (Ā, b̄). In
addition, other preprocessing rules may be applicable after the elimination of
these singleton columns. In particular, certain zero rows of Ā directly correspond
to violated {0, 1

2}-cuts.

Proposition 8.3 (Separation [126]). Let i be the index of a zero row in Ā with
b̄i = 1. If si < 1, then the weight vector u defined by uk = 1

2 for all k ∈ Ri and 0
otherwise defines a violated {0, 1

2}-cut on the original system (A, b).

8.8.2. Implementation

In this section we present a heuristic procedure for obtaining {0, 1
2}-cuts which

is implemented in our code (see Algorithm 8.9). An algorithm for the exact
separation of {0, 1

2}-cuts is discussed by Koster et al. [126]. This exact algorithm
uses the above reduction and elimination rules to reduce the size of (Ā, b̄) and
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then solves a reduced-size separation problem. In our code we primarily use
Proposition 8.3 to obtain violated {0, 1

2}-cuts.

Algorithm 8.9. Separating {0, 1
2}-Chvátal-Gomory cuts

Input: An IP (8.45) and a fractional solution x∗ of the associated
LP relaxation. An integer k indicating the maximum
number of rows combined in the heuristic search.

Output: A list L of {0, 1
2}-cuts.

(Step 1) Initialize
Compute the slack values s∗ = b−Ax∗.
Construct the system (Ā, b̄).

(Step 2) Reduce
Perform the reductions presented in Proposition 8.1.

(Step 3) Separate
Find violated {0, 1

2}-cuts using Proposition 8.3.
Add these cuts to the list L.

(Step 4) Eliminate
if s∗i > 0 holds for all rows i of (Ā, b̄) then goto Step 5.
Create new singleton columns by the elimination algorithm
outlined in Proposition 8.2.
Goto Step 2.

(Step 5) Search
Try to find combinations of l = 1, . . . , k rows of (Ā, b̄) that give a
violated {0, 1

2}-cut and add them to the list L.

In Step 1 of Algorithm 8.9 we compute the matrix Ā and the vector b̄ and
store them in a compact form (see Figure 7.3). We then try to reduce the size of
the system (Ā, b̄) using the preprocessing rules presented in Proposition 8.1 (see
Step 2). Since checking for duplicate columns and rows is very time-consuming, we
only apply rules 1 to 3 and 5 to 6 in our code. In Step 3 we apply Proposition 8.3
and search for zero rows i of Ā satisfying s∗i < 1 and b̄i = 1. If such a row is found,
we first extract the set original inequalities which is associated with this row. We
then combine these original inequalities with weights 1

2 and generate a CG cut.
In fact, to obtain stronger cutting planes, we generate a complemented MIR cut.
Alternatively, we could also generate a strong CG cut. If a violated {0, 1

2}-cut is
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found by Proposition 8.3, we also remove the corresponding row from the system
(Ā, b̄) in the hope of achieving further reductions. In Step 4 of the algorithm
the elimination procedure outlined in Proposition 8.2 is performed. We create
column singletons which are then removed by reduction rule 5 of Proposition 8.1.
This procedure can only be carried out as long as there are rows with a slack of
zero. A natural question is which columns should be preferred. When removing
a singleton column j which has its only non-zero entry in row i, the value x∗j is
added to the slack of row i. In our case we have s∗i := x∗j since we select a row
with slack zero. In addition, row i can be removed as well if the updated slack
satisfies s∗i ≥ 1. It is thus desirable to create singletons in columns with a large
value of x∗j . After the elimination step a new iteration of the procedure is started.
If no row has zero slack, we exit the main loop of the procedure and perform a
final heuristic search for violated {0, 1

2}-cuts (see Step 5). First we try to identify
single rows of (Ā, b̄) giving a violated {0, 1

2}-cut. Then we check combinations of
two rows of (Ā, b̄). This process is iterated up to k rows. However, as this search
is rather expensive, we set k = 1 in our code.

8.9. Computational Results

In the preceding sections we discussed our implementation of separation algorithms
for several classes of split cuts. We particularly focussed on Gomory mixed-
integer cuts as the most prominent split cuts and also considered Chvátal-Gomory
cuts for pure integer programs. We furthermore discussed several algorithms
designed to improve the performance of the GMI cuts. This section reports
on our computational experience. We investigate whether the performance of
the GMI cuts can in practice be improved by the algorithms discussed earlier
(see Sections 8.2 to 8.5). Moreover, we study the effect that the separation
of CG cuts (see Sections 8.7 and 8.8) has on the performance of Mops. We
perform two types of experiments. In the first we enable particular cut separators
and measure the performance improvement or deterioration as compared with a
reference setting. In the second type of experiment we again consider a reference
setting and disable particular cut separators in order to evaluate each separator’s
contribution to the overall performance. Concerning cut separators working on
the simplex tableau, we limit cut generation to the fifty most fractional structural
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basic integer variables. We use a cut selection algorithm which we shall discuss
in more detail in Chapter 10. Details of our experimental setup, test set and the
evaluation methods used can be found in Appendix A.

Most of the improvement algorithms for GMI cuts we discussed are heuristic in
nature. The only exact algorithm we considered is the lift-and-project algorithm
which is guaranteed to find a better (more violated) GMI cut from an alternative
basis of the LP relaxation if one exists. We therefore decided to use the L&P
cut separator as a replacement for the GMI cut separator in our benchmarks.
By contrast, the combined GMI, reduce-and-split and pivot-and-reduce cut sep-
arators are executed on top of the GMI cut separator. As mentioned earlier
(see Section 8.1) we use a separation routine for mixed-integer rounding cuts
to generate the cutting planes discussed in this chapter. Our k-cut separator is
integrated into this separation routine in the sense that a tableau row which is fed
to our MIR separation routine is automatically scaled with different non-negative
integer values k (see Section 8.2). We generate a MIR cut for each value of k and
keep the one with the largest distance cut off relative to the optimal solution to
the LP relaxation.

Concerning the R&S, P&R, L&P, cGMI and k-cut separators, Table 8.1 presents
the results of our first experiment, i.e. the performance gain achieved by applying
each individual separator in conjunction with the GMI cut separator. Exceptions
are, as noted above, the L&P cut separator which replaces the GMI cut separator
and the k-cut separator which is integrated into our separation framework. The
detailed results can be found in Tables B.1 to B.5 in Appendix B. Enabling
the k-cut separator (“GMI + k-cuts”) leads to a slight improvement in the
performance on the CORAL test set. On the other hand, the performance
deteriorates significantly on the ACC test set. For instance the running times
and number of nodes increase by more than 100%. Similarly, applying the cGMI
separator (“GMI + cGMI”) does not yield a reduction in the running times on
any test set in terms of the relative shifted geometric means. Again a slight
increase in the amount of integrality gap closed and a reduction in the branching
nodes computed can be observed on the test set CORAL. The R&S cut separator
(“GMI + R&S”) is very effective on the MIPLIB test set where it closes 4%
more integrality gap and reduces the number of branching nodes and the running
times by about 10%. Concerning the MILP test set, the GMI cut separator
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GMI GMI GMI GMI
test set + k-cuts + cGMI + R&S + P&R L&P

tim
e

ACC +101 0 0 +12 -8
CORAL -1 +1 -2 0 0
MIPLIB +2 +1 -10 -19 -6
MILP +2 +2 +7 -7 +11
total +3 +1 -2 -5 0

no
de
s

ACC +124 0 0 +18 -11
CORAL -3 -1 -17 -6 -7
MIPLIB +7 -2 -11 -30 -24
MILP +3 +6 +7 -10 +7
total +4 0 -12 -13 -11

ga
p

ACC 0 0 0 0 0
CORAL -1 -1 -3 -10 -12
MIPLIB +2 +3 -4 -9 -18
MILP +2 +9 -3 -8 +5
total 0 +1 -3 -9 -11

Table 8.1. Performance impact of enabling particular single-row tableau cut separators.
The values represent percentage changes in the shifted geometric mean compared with
a reference setting in which only the GMI cut separator is activated. Positive values
indicate a deterioration while negative values signify an improvement.

outperforms the R&S cut separator with respect to running times and number of
branching nodes. The performance ratios are heavily influenced by the instance
swath1 where the R&S cut separator closes 35% more integrality gap. At the
same time, however, the running time and the number of branching nodes increase
by a factor of 5 and 10 respectively which indicates that the amount of integrality
gap closed might not be a good performance indicator. The P&R cut separator
(“GMI + P&R”) can significantly improve upon the performance of the GMI
cut separator on the test sets MIPLIB and MILP. For the MIPLIB instances
the running time and the number of branching nodes decrease by about 20%
and 30% respectively. Like the R&S cut separator the P&R cut separator is not
effective on the ACC instances. Both separators apply computationally quite
expensive algorithms to obtain cuts with small coefficients on the continuous
variables. Since the ACC test set only contains pure 0-1 instances it is not
surprising that the R&S and P&R cut separators are not effective. The L&P cut
separator (“L&P”) outperforms the other separators on the test sets CORAL
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and MIPLIB with respect to the amount of integrality gap closed. In particular,
for the MIPLIB instances the L&P cut separator closes 18% more integrality
gap than the GMI cut separator. Along with this reduction in the integrality gap
the number of branching nodes decreases by about 25%. Table 8.1 also indicates,
however, that the L&P cut separator deteriorates the performance on the MILP
test set. The running time and the number of branching nodes increase by 11%
and 7% respectively. An extreme example is again the instance swath1 where
the running time increases by a factor of about 28. Concerning the total test set
the R&S, P&R and L&P cut separators reduce the number of branching nodes
by about 10% and significantly increase the amount of integrality gap closed.
Compared with these improvements the decrease in the running times, on the
other hand, is quite small.
We conclude from the above discussion that the R&S, P&R and L&P cut

separators are the winners of our first experiment, while the k-cut separator and
the cGMI cut separator seem to be largely ineffective on our test set. For many
instances R&S, P&R and L&P cut separators obviously succeed in obtaining cuts
which are of higher quality than those produced by the GMI cut separator. On
the other hand, the results also reflect that the R&S and P&R cut separators
are heuristic algorithms which are not guaranteed to generate improved cuts.
By contrast the L&P cut separator is guaranteed to find the most-violated
intersection cut (with respect to a fixed disjunction). A different question is
whether these improved cuts cause a gain in performance. The L&P cut separator
computes at least 10% fewer branching nodes than the GMI cut separator on 77
instances and closes at least 10% more integrality gap than the GMI cut separator
on 48 instances in the entire test set (see Table B.5). The results also show,
however, that adding improved cuts does not invariably result in an improved
dual bound and a reduction in the running times or the number of branching
nodes. In general, our computational experiments indicate that it is difficult
to compete with the GMI cut separator with respect to running times. The
main reason is the computational cost of the R&S, P&R and L&P cut separation
algorithms. On easy or moderately difficult instances the speed-up created by
improved cuts is overcompensated by the running times of the separators (i.e.
the time needed to compute these improved cuts). It is known that cutting
planes play a more important role in solving hard instances than in solving easy
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GMI GMI GMI GMI
test set + k-cuts + cGMI + R&S + P&R L&P

ea
sy

tim
e

ACC +530 +1 +1 +38 -13
CORAL +6 +4 +29 +32 +31
MIPLIB +2 -3 +9 -15 +60
MILP +1 -12 +79 +113 +279
total +17 +1 +24 +23 +46

no
de
s

ACC +618 0 0 +52 -23
CORAL 0 +2 -7 +6 +8
MIPLIB +11 -3 +1 -27 -8
MILP +6 +1 +82 +79 +222
total +12 -1 0 -6 +5

ga
p

ACC 0 0 0 0 0
CORAL +2 0 -4 -5 -2
MIPLIB 0 +2 -5 -12 -2
MILP +17 +29 -7 -13 +54
total +1 +2 -4 -8 +1

ha
rd

tim
e

ACC 0 0 0 0 -7
CORAL -4 0 -11 -9 -10
MIPLIB +3 +4 -25 -33 -37
MILP +3 +4 0 -19 -9
total -2 +1 -11 -15 -14

no
de
s

ACC 0 0 0 0 -3
CORAL -4 -3 -23 -13 -16
MIPLIB +1 +1 -31 -39 -50
MILP +3 +7 -3 -21 -13
total -2 0 -20 -19 -21

ga
p

ACC 0 0 0 0 0
CORAL -2 -2 -2 -14 -20
MIPLIB +6 +5 0 -3 -68
MILP 0 +6 -2 -8 -4
total 0 +1 -2 -10 -22

Table 8.2. Performance impact of enabling particular single-row tableau cut separators
on easy and hard instances. We consider an instance to be easy if it can be solved to
optimality using only the GMI cut separator in 60 seconds or less. The values represent
percentage changes in the shifted geometric mean compared with a reference setting in
which only the GMI cut separator is activated. Positive values indicate a deterioration
while negative values signify an improvement.
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test set only GMI no k-cuts no cGMI no R&S no P&R no L&P

tim
e

ACC -3 +1 0 0 -8 +2
CORAL -2 -13 -6 -10 -6 +9
MIPLIB +19 +6 +6 -11 +14 +25
MILP -1 +9 +4 -1 +16 0
total +2 -5 -2 -8 +1 +10

no
de
s

ACC +3 0 0 0 -8 +8
CORAL +15 -17 -6 -7 -15 +14
MIPLIB +103 +8 +10 -5 +49 +47
MILP +13 +6 +3 -1 +22 +11
total +33 -8 -1 -5 +4 +21

ga
p

ACC 0 0 0 0 0 0
CORAL +18 -1 0 +2 +1 +11
MIPLIB +25 +2 0 +4 +4 +10
MILP +18 +5 +3 +5 +9 +21
total +19 +1 +1 +3 +3 +12

Table 8.3. Performance impact of disabling particular single-row tableau cut separators.
The values represent percentage changes in the shifted geometric mean compared with a
reference setting in which all single-row tableau cut separators are activated. Positive
values indicate a deterioration while negative values signify an improvement.

instances, e.g instances which can be solved efficiently by pure branch-and-bound.
In our context this means that the R&S, P&R and L&P cut separators should be
applied on instances which are hard to solve using only the GMI cut separator.
Accordingly, we partition our test instances into two sets: those instances that
can be solved using only the GMI cut separator in 60 seconds or less, and those
that can not. Table 8.2 is similar to Table 8.1 and presents the performance of
the cut separators on the easy and hard instances respectively. Concerning the
hard instances, the R&S, P&R and L&P cut separators, as expected, outperform
the GMI cut separator. Concerning the total test set, the running times decrease
by between 11% and 15% and the number of branching nodes is reduced by
about 20%. On the other hand, a deterioration can be observed on the easy
instances. The running times on the test set MILP, for instance, increase by 279%
when activating the L&P cut separator. The detailed results can be found in
Appendix B, more precisely in Tables B.6 to B.10 for the easy instances and in
Tables B.11 to B.15 for the hard instances.
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In our second experiment we consider a reference setting in which we apply
the GMI cut separator together with the cGMI, R&S, P&R, L&P and k-cut
separators. We then disable one of last-mentioned separators at a time and
record the performance improvement or deterioration. We are interested in the
contribution of each separator to the overall performance and the interaction of the
different separators. Table 8.3 shows a summary of the results of this experiment.
The detailed results are presented in Tables B.16 to B.20 in Appendix B. The
column headed “only GMI” shows the relative performance of the solver if only the
GMI cut separator is activated, i.e. a setting in which all “improved” separators
are deactivated. When using only the GMI cut separator the number of branching
nodes computed increases considerably (e.g. by 103% on the MIPLIB instances)
and the amount of integrality gap closed clearly reduces. With respect to running
times the results are not so clear. While a slight reduction in the running times can
be observed on the ACC and CORAL instances if GMI cuts only are separated,
the performance clearly deteriorates on the MIPLIB instances. Deactivating the
cGMI (“no cGMI”) or k-cut separator (“no k-cuts”) improves the performance of
the solver on the CORAL instances. Interestingly, CORAL was the only test set
we detected the k-cut separator to be effective on in our first experiment. Although
the R&S cut separator turned out to be effective when applied individually in
our first experiment, Table 8.3 reveals that disabling the R&S cut separator
(“no R&S”) does not result in a performance deterioration. On the contrary,
deactivating the R&S cut separator reduces the running times and the number of
branching nodes on any of our test sets (in terms of the relative shifted geometric
means). A possible explanation of this behavior is that the cuts generated by
the R&S cut separator coincide to a large extent with the cuts generated by
the remaining separators (e.g. those generated by the P&R cut separator). In
addition, the R&S cut separation algorithm is computationally very demanding.
The deactivation of the P&R cut separator (“no P&R”) interferes with the
performance of the solver on the MIPLIB and MILP instances. The running
time increases by about 15% and the number branching nodes by about 50%
and 20% respectively. In our first experiment the P&R cut separator yielded
the largest improvement over the GMI cut separator precisely on these two test
sets. As an additional similarity to our first experiment, disabling the P&R cut
separator improves the performances on the ACC test set (see Table 8.1). The
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L&P cut separator greatly affects the overall performance of the solver. All values
in the column headed “no L&P” are non-negative, indicating that deactivating
the L&P cut separator mainly leads to performance deteriorations with respect
to the shifted geometric means of running times, branching nodes and amounts
of integrality gap closed. On the MIPLIB instances the running time increases
by 25% and the number of branching nodes by 47% if the L&P cut separator is
disabled. In addition the amount of integrality gap closed decreases by 21%. It is
further interesting that the running times increase by 19% if only the GMI cut
separator is activated (“only GMI”) and by 25% if we apply our reference setting
with the L&P cut separator deactivated (“no L&P”). A similar observation can
be made regarding the number of branching nodes. The deterioration obtained
when disabling the P&R cut separator (“no P&R”) is larger than that obtained
when applying only the GMI cut separator. Concerning the total test set the
sum of the relative changes of the number of nodes is, moreover, smaller than
the deterioration obtained when disabling all “improved” separators. These
observations point to the interaction of the different cut separators. With respect
to the total test set the P&R and L&P cut separators are the only separators
whose deactivation leads to an increase in the shifted geometric means of the
running times and number of branching nodes.

In order to obtain satisfactory performance of the L&P cut separator it requires
a sophisticated implementation and fine-tuning. All computational results for the
L&P cut separator we presented so far were obtained with a standard version
(cf. [30]) which uses the standard normalization (see Equation (4.83)) and a pivot
limit of 10. We now consider improving the performance of this standard L&P
cut separator by applying disjunctive modularization (see Section 8.5.5) and the
Euclidean normalization (see Section 4.4.7). Following our previous approach to
evaluate the performance of cut separators, we use the standard L&P cut separator
as the reference setting and enable the two last-mentioned techniques. The results
of this experiment are summarized in Table 8.4. The detailed results can be found
in Tables B.26 to B.30 in Appendix B. Activating disjunctive modularization
(“L&P + DM”) improves the performance of the L&P cut separator on the ACC
and MILP instances. The running time decreases by 1% and 5% respectively
and the number of branching nodes by 5% for both test sets. For the MIPLIB
instances the L&P cut separator with disjunctive modularization closes 2% more
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test set L&P + DM L&P + EN L&P + DM + EN

tim
e

ACC -1 -20 +9
CORAL +4 +2 +2
MIPLIB +3 -10 -8
MILP -5 -11 +2
total +2 -4 0

no
de
s

ACC -5 -22 +9
CORAL +2 +4 +3
MIPLIB +5 -13 -9
MILP -5 -13 -6
total +2 -5 -1

ga
p

ACC 0 0 0
CORAL +1 -1 0
MIPLIB -2 -2 -2
MILP +3 -9 -12
total 0 -2 -2

Table 8.4. Performance impact of enabling disjunctive modularization (DM) and
Euclidean normalization (EN). The values represent percentage changes in the shifted
geometric mean compared with a reference setting in which the standard L&P cut
separator is activated. Positive values indicate a deterioration while negative values
signify an improvement.

integrality gap than the standard L&P cut separator. The variant of the L&P cut
separator applying the Euclidean normalization (“L&P + EN”) is particularly
effective on the ACC instances. The running time decreases by 20% and the
number of branching nodes by 22%. Fischetti et al. [87] found the Euclidean
normalization to be well suited for instances whose constraints have only non-
negative coefficients (e.g. set covering or set partitioning instances). Since the
scheduling problem from which the ACC instances arise contains, among others,
set partitioning constraints, it is not surprising that the Euclidean normalization
is successful. The Euclidean normalization also works well on the MIPLIB and
MILP instances where it reduces the running time by about 10% and the number
of branching nodes by 13%. Concerning the amount of integrality gap closed,
applying the Euclidean normalization yields an improvement of about 9% on the
MILP test set. Another observation that can be made from Table 8.4 is that,
in comparison with the standard L&P cut separator and with regard to running
times, applying disjunctive modularization and Euclidean normalization together
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SR tableau SR tableau SR tableau
test set + strong CG + {0, 1

2} + strong CG + {0, 1
2}

tim
e

ACC +9 -10 +50
CORAL -7 -19 -19
MIPLIB +6 +11 +8
MILP +4 +10 +20
total -2 -9 -6

no
de
s

ACC -7 +11 +42
CORAL -7 -25 -25
MIPLIB -1 +1 -5
MILP 0 -2 +1
total -5 -15 -15

ga
p

ACC 0 0 0
CORAL 0 -7 -9
MIPLIB -3 -2 -5
MILP +5 -7 -11
total 0 -5 -8

Table 8.5. Performance impact of enabling particular CG cut separators. The values
represent percentage changes in the shifted geometric mean compared with a reference
setting in which all single-row tableau cut separators are activated. Positive values
indicate a deterioration while negative values signify an improvement.

(“L&P + DM + EN”) is not effective on any test set except for MIPLIB. The
L&P cut separator which applies only the Euclidean normalization, however,
performs just as well or better than the combined variant with respect to the
relative shifted geometric means. The only exception is the amount of integrality
gap closed on the MILP instances. We conclude from the above discussion that
combining disjunctive modularization and Euclidean normalization interferes with
the positive effects that each of these techniques has when applied individually.
This behavior can especially be seen on the ACC instances where the combination
of both techniques performs worse than any other configuration.
In the preceding part of this section we evaluated our GMI cut separator and

other separators which try to generate improved GMI cuts. In the remainder of
this section we study the computational effectiveness of CG cuts and consider
the strong CG cut separator (see Section 8.7) and the {0, 1

2}-cut separator (see
Section 8.8). We consider a reference setting in which all previously discussed
tableau cut separators are activated, then enable the CG cut separators and
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measure the relative improvement or deterioration in performance. We are
interested in whether the CG cut separators can improve the performance of
the solver or whether it is enough to generate (improved) GMI cuts. Table 8.5
presents a summary of this experiment. Tables B.21 to B.25 in Appendix B
show the detailed results. For the CORAL instances enabling the strong CG cut
separator (“SR tableau + strong CG”) reduces the shifted geometric mean of the
running times and the number of branching nodes by 7%. The strong CG cut
separator, on the other hand, deteriorates the performance on the other test sets
with regard to running times. Concerning our entire assembly of test instances,
activating the strong CG cut separator reduces the running times by 2% and
the number of branching nodes by 5%. Activating the {0, 1

2}-cut separator (“SR
tableau + {0, 1

2}”) results in a reduction in the running times on the ACC and
CORAL instances. The running times, more precisely, reduce by 10% on the
ACC instances and by 19% on the CORAL instances. In addition the number of
branching nodes computed decreases by 25% for the CORAL instances. On the
test sets MIPLIB and MILP the running times, however, increase by about 10%.
Concerning the amount of integrality gap closed at the root node, the variant in
which the {0, 1

2}-cut separator is activated consistently outperforms the reference
setting. On the total test set enabling the {0, 1

2}-cut separator yields a reduction in
the running times and the number of branching nodes by 9% and 15% respectively.
Furthermore, the amount of integrality gap closed increases by 5%. Applying the
{0, 1

2}-cut separator together with the strong CG cut separator (“SR tableau +
strong CG + {0, 1

2}”) yields the largest increases in the amounts of integrality gap
closed at the root node. Adding the strong CG cut separator interferes with the
good performance of the {0, 1

2}-cut separator on the ACC instances. While there
is a 10% decrease in the running times if only the {0, 1

2}-cut separator is activated,
using both separators in conjunction increases the running times by 50% and the
number of branching nodes by 42%. The combination of both CG separators, as
mentioned above, closes the largest amounts of integrality gap. Yet the running
times on the MILP instances increase by 20% and the number of branching
nodes by 1%. Concerning the CORAL test set, the relative shifted geometric
means obtained using both CG cut separators are equal to those obtained with
the {0, 1

2}-cut separator. All entries in the rows headed “total” are non-positive,
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indicating that, concerning the entire collection of test instances, the CG cut
separators can improve upon the performance of the GMI cut separators.
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Chapter 9.

Multi-Row Cutting Plane Separators

This chapter complements Chapter 5 which was concerned with the derivation
of cutting planes from multiple rows of a simplex tableau. In this chapter we
present a separation algorithm for multi-row cuts and discuss the key issues for an
efficient implementation. We define the maximal lattice-free convex sets we use to
derive cuts and show how we construct the multi-row relaxations. We also discuss
how stronger cuts can be obtained by using the integrality conditions on the
non-basic integer variables. Finally, we report on our computational experience
with multi-row cuts.

This chapter is organized as follows. Section 9.1 deals with maximal lattice-free
convex sets. The construction of a multi-row relaxation is described in Section 9.2.
In Section 9.3 we discuss how we generate intersection cuts and highlight some
implementation details. Computational results are presented in Section 9.4.

9.1. Maximal Lattice-Free Convex Sets

Given the results presented in Section 5.4, particularly Theorem 5.1, the main
task regarding the generation of multi-row cuts is to select a maximal lattice-free
convex set.

9.1.1. Maximal Lattice-Free Convex Sets in the Plane

In the plane there exist three general classes of maximal lattice-free convex
sets [133]. A maximal lattice-free quadrilateral contains four integral points each
of which lies in the relative interior of one edge. An unbounded maximal lattice-
free convex set which consists of two edges is called a split. Finally, following
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Figure 9.1. Non-empty maximal lattice-free convex sets in R2

Dey and Wolsey [78], we distinguish between three classes of maximal lattice-free
triangles (see Section 5.4).

9.1.2. Selected Maximal Lattice-Free Convex Sets

In the following we define the families of maximal lattice-free convex sets we
use in our computational experiments. A characterization of all maximal lattice-
free convex sets in arbitrary dimension is unknown. Therefore we use higher-
dimensional generalizations of the maximal lattice-free convex sets in R2 we
discussed in the previous section. Some of the following definitions are taken from
Espinoza [83, 84].

Definition 9.1 (T1n [84]). We define

T1n := {x ∈ Rn : x ≥ 0, ex ≤ n} (9.1)
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where e is the vector of all ones.

The set T1n is defined by n+ 1 inequalities. Each of these inequalities has one
integral point in its relative interior. Moreover, we have int(T1n)∩Zn = ∅ and the
volume of T1n is given by nn

n! . Thus T1n is a bounded maximal lattice-free convex
set in Rn. The set T1n has n+ 1 vertices which are given by v1

n, . . . , v
n+1
n ∈ Qn

with (vkn)i = n if i = k and (vkn)i = 0 otherwise. Note that the set T12 is a
maximal lattice-free triangle of type 1 as shown in Figure 9.1(a).

Definition 9.2 (T2n [84]). We define

T2n :=

x ∈ Rn :
Rj :

j−1∑
i=1

xi − xj ≤ j − 1, ∀j = 1, . . . , n

Rn+1 : ex ≤ n

 (9.2)

The set T2n is defined by n+1 inequalities. An integral point lies in the relative
interior of each of these inequalities. The volume of T2n is (2 n+1

2 − 2 1−n
2 )n/n!

which is substantially larger than the volume of T1n. In addition we have
int(T2n) ∩ Zn = ∅. It follows that the set T2n is a bounded maximal lattice-free
convex set in Rn. The n+ 1 vertices of T2n are given by v1

n, . . . , v
n+1
n ∈ Qn with

(vkn)i = 1−2i−1 if i < k, (vkn)i = 2k−2i−1−2k−n+1 if i = k and (vkn)i = 1−2i−1−n

if i > k. The set T22 is a maximal lattice-free triangle of type 2 as shown in
Figure 9.1(b).

Definition 9.3 (T3n). We define

T3n :=


x ∈ Rn :

R1 : γx ≤ −1− λn

Rj :
j−1∑
i=1

xi − xj ≤ j − 1, ∀j = 2, . . . , n

Rn+1 : δx ≤ n+ 1 + λn


(9.3)

where γ ∈ Zn and δ ∈ Zn are the vectors γ = (−3,−1, 0, . . . , 0), δ = (1, 2, 1, . . . , 1)
and λn = min{n− 2, 0}.

Proposition 9.4. The set T3n is lattice-free, i.e. there is no point x ∈ Zn in
the interior of T3n. Furthermore, each facet of T3n has an integer point in its
relative interior.
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Proof. We prove the claim by showing that every integral point x ∈ Zn in T3n
lies in the relative interior of a facet Rj with j ∈ {1, . . . , n + 1}. Suppose that
n = 1, then T31 = conv{0, 1} and the statement holds. We assume that n ≥ 2 in
what follows. As 0 ≤ x1 ≤ 1 for x ∈ T3n ∩Zn, we have T3n ∩Zn = P1 ∪P2 where

P1 = T3n ∩ {x ∈ Zn : x1 = 0} ,
P2 = T3n ∩ {x ∈ Zn : x1 = 1} .

(9.4)

First we consider the set P1 where x1 = 0. In this case, R1 forces all feasible
integral solutions to have the characteristic that x2 ≥ 1. All solutions having
x2 = 1 satisfy R1 at equality. Note that for n ≥ 3 there are also solutions with
x2 = 2. Furthermore, the variable x2 is upper bounded, i.e. we have that x2 ≤ 2
for x ∈ T3n ∩ Zn. Now, assume that n ≥ 3 and consider the set

P1k = (T3n ∩ Zn) ∩
{
x ∈ Zn : x = (0, 2, ek−3, 0, t), t ∈ Zn−k

}
, (9.5)

where ek is the vector of all ones with dimension k and 3 ≤ k ≤ n. All solutions
x ∈ P1k satisfy constraint Rk at equality.

Next we investigate the set P2 where x1 = 1. All of the solutions having x1 = 1
and x2 = 0 satisfy R2 at equality. Consider the set

P2k = (T3n ∩ Zn) ∩
{
x ∈ Zn : x = (ek−1, 0, t), t ∈ Zn−k

}
(9.6)

where 2 ≤ k ≤ n. It is easy to see that all solutions in P2k satisfy Rk at equality.
Finally, the solution en satisfies Rn+1 at equality which completes the proof.

The set T3n is defined by n+ 1 inequalities, each of them containing an integer
point in its relative interior and int(T3n) ∩ Zn = ∅. The volume of T3n is

21−n(n−1)
2 (3 · 2n + 2)n

(22n + 2n+3 + 12)n! (9.7)

for n ≥ 2. Thus T3n is a bounded maximal lattice-free convex set in Rn. The
volume of T3n is smaller than the volume of T2n. On the other hand, for increasing
values of n the volume of T3n is clearly larger than the volume of T1n. Note that
the set T32 is a maximal lattice-free triangle of type 3 (see Figure 9.1(c)).
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The set T3n has n+1 vertices. For n = 1 we obtain the two vertices v1 = 0 and
v2 = 1. For n ≥ 2 the vertices of T3n are given by the vectors v1

n, . . . , v
n+1
n ∈ Qn

(v1
n)i :=


2n+1+2
2n+2 if i = 1,

2n−2i−1+2
2n+2 otherwise,

(9.8)

(v2
n)i :=


−2n−2

2n+6 if i = 1,
2n+2

2n+6 if i = 2,
2n−2i+1+6

2n+6 otherwise,

(9.9)

(vkn)i :=


1− 2i−1 + 2max{−1,i−3} if i < k,

1 + 2i−n−1 + 3 · 2i−3 if i = k,

1 + 2i−n−2 if i > k,

(9.10)

with k = 3, . . . , n+ 1. It is easy to see that these vertices are non-integral.

Definition 9.5 (Gn [83, 84]). We define

Gn := 1
2e+

{
x ∈ Rn : δx ≤ n

2 , ∀δ ∈ {−1, 1}n
}
. (9.11)

The set Gn is defined by 2n inequalities. Each of these inequalities has one
integer point in its relative interior and int(Gn) ∩ Zn = ∅. Moreover, the set Gn
has a volume of nn

n! . Thus Gn is a bounded maximal lattice-free convex set in Rn.
In particular, the set G2 is a maximal lattice-free quadrilateral (see Figure 9.1(d)).
Note also that the set Gn has 2n vertices which are given by 1

2e+ {V } where the
set V contains all permutations of the vector (±n

2 , 0, . . . , 0).

Definition 9.6 (SPn). We define

SPn := 1
2e+

x ∈ Rn :
δx ≤ n

2
δx ≥ n

2 − 1

 (9.12)

with δ ∈ {−1, 1}n.
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Proposition 9.7. The set SPn is lattice-free, i.e. there is no point x ∈ Zn in
the interior of SPn. Furthermore, each facet of SPn has an integer point in its
relative interior.

Proof. Let S = {1, . . . , n}. Observe that SPn can alternatively be written as

SPn :=

x ∈ Rn :
δx ≤ ρ
δx ≥ ρ− 1

 , (9.13)

where δ ∈ {−1, 1}n and ρ = |S+| with S+ = {i ∈ S : δi = 1}. As the vector δ
and the right-hand side ρ are integral, SPn is a split. By construction, a split
cannot contain integral points in its interior. For instance, the vectors t+ with
t+i = 1, ∀i ∈ S+, ti = 0 otherwise, and t− = t+ − ek with k ∈ S \ S+ satisfy one
of the inequalities defining SPn at equality respectively.

Finally, we offer some comments on the characteristics of the selected maximal
lattice-free convex sets. The sets T1n, T2n and Gn completely contain the 0-1
hypercube in Rn while the sets T3n and SPn do not. We can rotate each axis
around 1

2e by 180 degrees and again obtain maximal lattice-free convex sets.
There are 2n of these orientations. Moreover, additional variations are generated
by permuting the sequence of the variables defining a set. There exist n! of these
permutations. Therefore each set discussed above in fact gives rise to a family
of lattice-free convex sets. Following Espinoza [84], we shall denote, for a fixed
dimension n, these families by T1n, T2n, T3n, Gn or SPn respectively. A family
altogether yields 2nn! maximal lattice-free convex sets for a fixed dimension n.
However, not all families are affected by these variations, i.e. not all of the
generated sets differ from each other. In particular, the family Gn is completely
symmetric, and thus all variations correspond to the same lattice-free convex set.
The families T1n and SPn are not affected by permuting the variables and each
of them generates 2n different sets. Concerning T2n, we obtain 2n−1 different
sets for a fixed permutation, and 2n−1n! different sets in total. The family T3n
represents an extreme in terms of variations and generates 2nn! different sets.
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9.2. Selecting a Multi-Row Relaxation

Another important step in generating multi-row cuts is the construction of an
appropriate multi-row relaxation. We first compute the rows of the simplex
tableau associated with the basic integer variables. We then rewrite these rows in
the form

xi = x∗i +
∑
j∈J

(−āij) sj , i ∈ BI . (9.14)

Recall that the variables s are the slack or surplus variables from the simple
lower or upper bound constraints respectively (see Section 8.1). We store these
transformed tableau rows in a matrix. As we want to experiment with different
multi-row relaxations we thereby avoid expensive re-computations which slow
down the overall separation algorithm. Let Q ⊆ BI be a subset of the basic
integer variables. For simplicity, let us assume that Q = {1, . . . , q}. With the
help of the tableau rows (9.14) we are able efficiently to construct any multi-row
relaxation of the form

xQ = f +
∑
j∈J

rjsj ,

sj ≥ 0, j ∈ J,
sj ∈ Z, j ∈ JI ,
xQ ∈ Zq.

(9.15)

The system (9.15) can be viewed as a group relaxation (see Section 5.3). We
therefore let f be a vector with components fi = x∗i − bx∗i c for i ∈ Q and replace
any column vector rj associated with a non-basic integer variable by the vector
of its fractional parts, i.e. rji := rji − brji c for all j ∈ JI and i ∈ Q.

Concerning the separation of multi-row cuts, any set Q of basic integer variables
with at least one fractional (i.e. ∃i ∈ Q such that fi > 0) provides a relaxation
from which a violated cut can be derived. Nevertheless, in practice the question
is which and how many of the tableau rows should be selected. To obtain a q-row
relaxation of the form (9.15), we select the tableau rows associated with the q
most fractional structural basic integer variables in our implementation. A similar
strategy is also used to derive Gomory mixed-integer cuts (see Section 8.1).
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9.3. Generating Intersection Cuts

Intersection cuts are derived from a basis of the LP relaxation and a violated
disjunction. Given a multi-row relaxation (9.14) consisting of q rows, we derive
violated disjunctions by means of maximal lattice-free convex sets. More precisely,
once a maximal lattice-free convex set S = {x ∈ Rq : πixQ ≤ πi0, i = 1, . . . , l}
with f in its interior has been selected, we can derive the violated disjunction

l∨
i=1

(
πixQ ≥ πi0

)
. (9.16)

The intersection cut is then given by

∑
j∈J

max
i=1,...,l

{
πirj

πi0 − πif

}
sj ≥ 1, (9.17)

and can be written in the space of the original variables by substituting for the
variables s.

To derive an intersection cut we compute the points at which the extreme rays
rj and the inequalities defining a maximal lattice-free convex set intersect. Since
the family Gq is defined by 2q inequalities, the work to derive an intersection
cut from Gq is exponential in q. The families T1q, T2q and T3q are in contrast
defined by n + 1 inequalities which makes their separation less expensive. As
suggested by Espinoza [84], we use gray-code enumeration [122] to generate all
tuples {−1, 1}q (or orientations respectively) and a plain changes algorithm [122]
to iterate over all permutations of {1, 2, . . . , q}.

We generate intersection cuts from all families of maximal lattice-free convex
sets discussed in Section 9.1.2 (see Definition 9.1 to 9.6). Given a family of
maximal lattice free convex sets, we iterate over all variants obtained by re-
orientating the axes or permuting the variables. Since the families T1q, T2q
and Gq contain the 0-1 hypercube in Rq, all variants obtained by applying these
operations yield valid intersection cuts. The situation is different for the families
T3q and SPq. Concerning a specific orientation and permutation, we have to
check if the solution f lies in the interior of the resulting maximal lattice-free
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convex set. We generate an intersection cut αx ≥ 1 for each possible variant and
keep the cut with the largest value of 1

‖α‖ .
The reason for using gray-code enumeration to generate the tuples {−1, 1}q

is that two consecutive tuples only differ by a single element. For example,
consider again the set Gq (see Definition 9.5) which is defined by 2q inequalities
whose coefficients are given by the tuples {−1, 1}q. Now, suppose two vectors
π, π̂ ∈ {−1, 1}q are given which only differ on the kth component with 1 ≤ k ≤ q.
Thus we can obtain π̂ by either setting π̂ := π+ 2ek or π̂ := π− 2ek depending on
whether the kth element changed from 1 to −1 or vice versa. It follows that we
can perform a simple update to switch from one to the next inequality defining
Gq. Suppose that the kth component is changed from 1 to −1. We obtain

π̂rj = (π − 2ek) rj = πrj + 2ākj , ∀j ∈ J,
π̂f = (π − 2ek) f = πf − 2fk.

(9.18)

The opposite case works analogously. Using this trick we can speed up the
computation of the intersection cut (9.17) generated from Gq. In particular, we
can work with the rows of the simplex tableau (9.14) instead of the columns rj .
Since gray-code enumeration is also used to iterate over the orientations of the
sets T1q, T2q, T3q and SPq, we can also use this trick to speed up this process.

9.3.1. Strengthening

In this section we discuss improving the performance of the intersection cut
by strengthening the disjunction (9.16). We consider the so-called trivial fill-
in function (or trivial strengthening) discussed in Section 5.4. Given a q-row
relaxation of the form (9.15), the strengthened intersection cut generated by the
trivial fill-in function reads

∑
j∈JI

min
uj∈Zq

{
max
i=1,...,l

{
πi
(
rj − uj)

πi0 − πif

}}
sj +

∑
j∈J\JI

max
i=1,...,l

{
πirj

πi0 − πif

}
sj ≥ 1. (9.19)

To strengthen the intersection cut a minimization problem is solved for each
non-basic integer variable. We are not, however, forced to solve these problems to
optimality. Since the intersection cut is a ≥-inequality and we are minimizing the
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coefficients of the integer variables, any set of integral vectors {uj}j∈JI
generates

a valid intersection cut.

Concerning the maximal lattice-free triangles T12 and T22, Dey and Wolsey [78,
79] showed that the trivial strengthening is optimal, i.e. the resulting intersection
cuts (9.19) are minimal. In general, the trivial strengthening does not always
produce the strongest possible intersection cuts. Even for the maximal lattice-free
triangle T32 the trivial strengthening only generates minimal inequalities under
additional conditions. On the other hand, while the trivial strengthening function
may not reach the optimum, it may still succeed in improving the coefficients of
some of the integer variables. In our view, this justifies applying the (strengthened)
intersection cut (9.19) while overlooking the fact that the trivial fill-in function
does not produce minimal inequalities in general.

Our implementation is as follows. For each non-basic integer variable we simply
iterate over vectors uj ∈ Zq and select the one producing the best (smallest)
coefficient. In the previous section we noted that the cut generation process can
be improved by saving parts of previous computations and by working with the
rows of the simplex tableau. However, when computing the trivial fill-in function
we instead have to work with the columns rj of the simplex tableau. Concerning
the orientations of the lattice-free bodies, we can not derive the intersection cut
produced by the current orientation from the intersection cut generated by the
previous one using simple updates. Therefore separation algorithms using the
trivial fill-in function to strengthen the intersection cuts are likely to be slower
than those not using any strengthening.

Finally, we offer some comments on intersection cuts generated from lattice-free
split bodies. Any intersection cut generated from a lattice-free split body is a
single-row cut in the sense that it can also be obtained by applying integrality
arguments and rounding to a linear combination of the rows in the multi-row
relaxation. On the other hand, split cuts have the advantage that they can be
strengthened using the closed-form formula presented in Proposition 4.5. Although
intersection cuts derived from SPn (see Definition 9.6) are single-row cuts, we
generate these cuts in order to compare them with the multi-row cuts generated
using the remaining families of maximal lattice-free convex sets.
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9.4. Computational Results

In the preceding sections we described a practical implementation of multi-row cut
separators. We concentrated particularly on the two key decisions in generating
intersection cuts from multiple rows of the simplex tableau: the selection of a
multi-row relaxation and the selection of a violated disjunction (or, in other
words, the selection of a maximal lattice-free convex set containing the fractional
LP solution f). In this section we report on our computational experience with
multi-row cut separators. We show that the separation of multi-row cutting
planes can positively affect the overall performance of an MIP solver. In line with
our evaluation method in Chapter 8 we perform two types of experiments. Our
experimental setup, test set and evaluation methods are covered in more detail in
Appendix A.

Our separation scheme for multi-row cuts is as follows. Suppose a family of
maximal lattice-free convex sets, say T1n (see Definition 9.1), is given. Let m̄
be the maximum number of intersection cuts we allow to be generated from T1n
in each round of IP preprocessing. Given the dimension n and the upper bound
m̄, define s = ((k − 1) · n) + 1 for k = 1, . . . , m̄. For each starting value s we
construct a multi-row relaxation consisting of LP tableau rows associated with
the sth to the (s+ n− 1)th most fractional structural basic integer variables and
generate an intersection cut. As with the single-row cut separators discussed in
Chapter 8, we generate at most fifty cuts (m̄ = 50) for each selected maximal
lattice-free convex set in our implementation. For instance, given the set T22 (i.e.
a maximal lattice-free triangle of type 2), we first generate a triangle cut using
the tableau rows associated with the first and second most fractional structural
basic integer variables, then for the third and fourth most fractional structural
basic integer variables and so on. We do not add all generated cuts to the LP
relaxation. The cut selection algorithm we use is described in Chapter 10.
In our first experiment we individually apply the multi-row cut separators

on top of the single-row cut separators discussed in Chapter 8 and record the
percentage change in the shifted geometric means of the running times, number
of branching nodes and amounts of integrality gap closed. This experiment is
meant to answer the question of whether multi-row cut separators can contribute
to improving the overall performance of an MIP solver. The results of this
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experiment are summarized in Tables 9.1 and 9.2. The detailed results can be
found in Tables B.31 to B.35 in Appendix B. In particular Table 9.1 presents
results obtained with the two-row and lifted (or strengthened) two-row cut
separators. The last mentioned cut separators use the trivial fill-in function
or trivial strengthening (see Equation (9.19)) to obtain intersection cuts with
small coefficients on the integer-constrained variables. The only exceptions are
intersection cuts generated from split disjunctions (i.e. split cuts) which we
strengthen using Proposition 4.5. Columns “T12” to “SP2” in Table 9.1 show the
results obtained with plain (unstrengthened) two-row intersection cuts generated
from different families of maximal lattice-free convex sets (see Section 9.1). The
remaining columns “T1L2” to “SPL2” present the results obtained with the
strengthened (or lifted) versions of these cuts. In the same way Table 9.2 shows
the results obtained with intersection cuts from higher-dimensional maximal
lattice-free convex sets and their strengthened counterparts. We emphasize again
that in general the trivial strengthening is not guaranteed to yield minimal
intersection cuts. In the special case where a maximal lattice-free triangle of
type 1 or type 2 is used to derive an intersection cut, this strengthening, however,
yields minimal coefficients on the integer variables (see [78, 79]).

We first examine the effect that activating individual two-row cut separators has
on the performance of Mops. An immediate observation that can be made from
Table 9.1 is that the two-row cut separators are only in some cases competitive
with the single-row cut separators in terms of the relative shifted geometric
means of the times needed to solve the instances in the test sets to optimality.
Concerning the ACC and MIPLIB instances, the shifted geometric means of
the running times consistently increase. For these two test sets, the number of
branching nodes is also consistently larger than in the reference setting which only
makes use of the single-row cut separators. The situation is, on the other hand,
different for the CORAL and MILP instances. Activating the unstrengthened
two-row cut separators leads to a decrease in the running times on the MILP
instances. Decreases in the running times of 7% and 8% can be observed when
applying the type 1 (“T12”) or type 3 triangle cut separator (“T32”) respectively.
Simultaneously the number of branching nodes reduces by 6% and 8% respectively.
For the CORAL instances the largest decreases in the shifted geometric means of
the running times (8%) are yielded by the type 3 triangle cut separator and the
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ACC +9 +16 +18 +13 +22 +15 +16 +16 +14 +12
CORAL +1 -1 -8 +7 -8 +4 0 +2 -4 -6
MIPLIB +11 +21 +13 +6 +8 +17 +24 +8 +6 +3
MILP -7 -1 -8 -5 -4 +10 -2 -11 +8 +6
total +2 +4 -2 +5 -3 +8 +5 +2 +1 -2

no
de
s

ACC +22 +23 +31 +21 +30 +21 +21 +21 +21 +18
CORAL -3 -12 -13 +6 -17 +1 -14 -11 -13 -9
MIPLIB +16 +20 +12 +6 +13 +17 +15 +2 +1 +6
MILP -6 -3 -8 -2 -3 +2 -13 -18 -1 +2
total +2 -2 -5 +5 -6 +6 -5 -8 -7 -2

ga
p

ACC 0 0 0 0 0 0 0 0 0 0
CORAL 0 +1 +2 -3 0 -1 -3 -2 -4 -4
MIPLIB +5 +6 +5 +2 +2 +7 +9 +7 +3 +2
MILP +12 +6 +2 +2 +6 +1 +2 +4 0 +1
total +3 +3 +3 -1 +1 +2 +1 +1 -1 -2

Table 9.1. Performance impact of enabling particular two-row tableau cut separators.
The values represent percentage changes in the shifted geometric mean compared with
a reference setting in which all single-row cut separators (see Chapter 8) are activated.
Positive values indicate a deterioration while negative values signify an improvement.

split cut separator (“SP2”). These two cut separators are also the winners with
respect to the number of branching nodes: the number of branching nodes reduces
by 13% and 17% respectively. At the same time, however, there is no increase in
the amount of integrality gap closed at the root node. This observation again
leads to the conclusion that the amount of integrality gap closed is not a reliable
indicator of the performance of an MIP solver.

Table 9.1 also reveals that the strengthened two-row cut separators only rarely
yield reductions of the solutions times in terms of the relative shifted geometric
means. In particular, strengthened cuts are bought at the cost of additional
computational effort. The time spent on generating unstrengthened type 1 triangle
cuts for the instance nw04, for example, is about 0.8 seconds. On the other hand,
the generation of strengthened type 1 triangle cuts for the same instance takes
about 7.0 seconds. As mentioned above, split cuts are an exception as they can
be strengthened via a closed-form formula and thus their strengthening comes
virtually free. Apart from increased running times, strengthened two-row cuts
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lead to considerable reductions of the number of branching nodes as compared
with the unstrengthened cut separators. Concerning the type 3 triangle cut
separators, the reduction in the number of branching nodes computed on the
MILP test set increases from 8% to 18% when the strengthening is applied (see
columns “T32” and “T3L2”). The running times in addition slightly decrease
in terms of the relative shifted geometric means. Regarding the unstrengthened
and strengthened type 2 triangle cut separators a similar development of the
reductions of the number of branching nodes can be observed on the CORAL and
MILP test sets (see columns “T22” and “T2L2”). For the CORAL instances the
strengthened quadrilateral cut separator (“GL2”) performs considerably better
than its unstrengthened pendant (“G2”). In contrast, the performance of the
unstrengthened split cut separator (“SP2”) is superior to that of the strengthened
version (“SPL2”) with respect to running times and number of branching nodes.
The amount of integrality gap closed, however, increases when the strengthened
split cut separator is applied.

In the following we analyze the computational effectiveness of intersection cuts
generated from more than two rows of a simplex tableau. In other words, we
consider using higher-dimensional maximal lattice-free convex sets to generate
intersection cuts. The results of our evaluation are summarized in Table 9.2
whose structure is similar to that of Table 9.1. For each family of maximal lattice-
free convex sets we considered (see Section 9.1) the subscripts in the column
headers of Table 9.2 indicate which members of these families were used for cut
generation. For instance, the column “T22−3” shows the results obtained by
generating intersection cuts from the sets T22 and T23. As discussed above, we
generate at most fifty cuts for each selected maximal lattice-free convex set. This
means that to obtain the results in column “T22−3” we generated at most 100
intersection cuts (50 from T22 and 50 cuts from T23). Table 9.2 again indicates
that, regarding solution times, the generation of multi-row cuts does not generally
lead to an improved performance in terms of reduced shifted geometric means.
One possible explanation is that, compared with the generation of two-row cuts,
generating intersection cuts from higher-dimensional maximal lattice-free convex
sets is computationally expensive. The generation of type 3 triangle cuts (“T32”)
for the instance acc0, for example, takes about 0.4 seconds while the generation
of type 3 triangle and 3-simplex cuts (“T32−3”) takes about 2.8 seconds. The
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ACC +18 +20 +57 +19 +18 +146 +64 +59 +52 +13
CORAL +3 -2 -1 +5 -10 +101 +56 +57 +38 -11
MIPLIB +14 +15 +10 +5 -2 +177 +91 +84 +52 +21
MILP -5 -6 -11 -15 +1 +48 +41 +47 +15 +2
total +5 +2 +1 +3 -5 +106 +59 +59 +36 -1

no
de
s

ACC +24 +23 +71 +27 +27 +10 +16 +5 +29 +21
CORAL -14 -21 -14 -3 -16 -27 -8 -7 -1 -12
MIPLIB +4 +12 -2 +9 -12 -6 +1 +9 +9 +6
MILP -4 -7 -14 -9 -1 -21 -3 +3 -13 -3
total -7 -10 -8 0 -12 -20 -4 -1 +1 -5

ga
p

ACC 0 0 0 0 0 0 0 0 0 0
CORAL -1 -3 0 -3 -1 -1 -3 -4 -3 -4
MIPLIB +7 +7 +4 +6 +3 +7 +8 +5 +4 +2
MILP +12 +7 +8 +6 +4 +8 +4 +1 -5 -1
total +3 +1 +2 +1 +1 +3 +1 -1 -1 -2

Table 9.2. Performance impact of enabling particular multi-row tableau cut separators.
The values represent percentage changes in the shifted geometric mean compared with
a reference setting in which all single-row cut separators (see Chapter 8) are activated.
Positive values indicate a deterioration while negative values signify an improvement.

increase in the separation time is caused by the number of variations (i.e. rotations
and permutations) of T33 we consider. To obtain a single type 3 3-simplex cut
we actually compute 23 · 3! = 48 intersection cuts and select the one with the
largest distance cut off relative to the fractional LP solution (see Section 9.3).
On the MILP test set, however, improvements in terms of running times can be
achieved by generating intersection cuts from more than two rows. For example,
the quadrilateral cut separator (“G2”) reduces the running times by 5% for the
MILP instances. By considering up to six rows simultaneously (“G2−6”), we
can improve upon this result and obtain a reduction of 15%. With respect to
the number of branching nodes computed, our analysis above showed that the
two-row cut separators are particularly effective on the CORAL and MILP
test sets. Table 9.2 also shows that generating intersection cuts from more than
two rows can further reduce the number of branching nodes. For the CORAL
instances the reduction in the number of branching nodes yielded by the type 1
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triangle cut separator (“T12”) is 3%. The reduction obtained by using a multi-row
relaxation consisting of up to six rows (“T12−6”) is 14%. On the CORAL and
MILP instances a similar progress in the reduction in the number of branching
nodes can be observed for all cut separators except for the split cut separator (see
columns “T12−6” to “G2−6”). Concerning the amount of integrality gap closed
at the root node, those cut separators deriving intersection cuts from more than
two rows of the simplex tableau perform slightly better than the two-row cut
separators in terms of the relative shifted geometric mean values computed for
the total test set.
Like two-row intersection cuts, general multi-row intersection cuts can also

be strengthened using the integrality requirements on some of the non-basic
variables (see Equation (9.19)). Columns “T1L2−6” to “SPL2−6” of Table 9.2
report on results for the strengthened multi-row intersection cuts using between
two and six rows. Table 9.2 allows for the direct observation that the solution
times increase considerably if the strengthening is applied. Generating type 1
simplex cuts (“T12−6”), for example, produces a deterioration of the solution
times by about 14% on the MIPLIB instances as compared with the single-row
cut separators. If the strengthening is applied (“T1L2−6”), the relative shifted
geometric mean further deteriorates to a value of 177%. This deterioration is to
some extent caused by the computational expensiveness of generating strengthened
intersection cuts from multiple (i.e. more than two) rows of the simplex tableau
(see Section 9.3.1). For example, generating unstrengthened type 1 simplex cuts
(“T12−6”) for the instance nw04 takes about 12.2 seconds. The time spent on
separating the strengthened versions of these cuts (“T1L2−6”) is 515.5 seconds.
The strengthened type 1 simplex cuts yield reductions of the number of branching
nodes on all test sets except for the ACC test set. Concerning the MILP test set,
the unstrengthened cuts (“T12−6”), for example, compute 4% fewer branching
nodes than the reference setting (i.e. the single-row cut separators) while a
reduction of about 20% is realized by applying the strengthening (“T1L2−6”).
Strengthened cuts are, on the other hand, not guaranteed to produce smaller node
counts. On the CORAL test set the strengthened type 2 and type 3 simplex cut
separators compute significantly more branching nodes than the unstrengthened
versions of these separators (see columns “T22−3” and “T2L2−3” or “T32−3” and
“T3L2−3” respectively). Similar to the results discussed above, the separation of
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strengthened intersection cuts from more than two rows of the simplex tableau
does not significantly increase the amount of integrality gap closed at the root
node.

So far in this section we have evaluated the individual computational effective-
ness of various multi-row cut separators. Several conclusions can be drawn from
our experiments.

Firstly, our computational experiments revealed that, regarding solution times,
the multi-row cut separators are only sporadically competitive with the single-
row cut separators. One may argue that this result is not surprising since the
separation of multi-row cuts is computationally more demanding than, for example,
the separation of Gomory mixed-integer cuts. In particular, the multi-row cut
separators turned out to be ineffective on the ACC and MIPLIB instances. A
possible explanation is that most instances in the MIPLIB test set are easy in
the sense that they can rapidly be solved using the single-row cut separators.
Concerning the ACC instances, the rather dense tableau rows especially make the
generation of intersection cuts from more than two rows of the simplex tableau
relatively time-consuming. Plain (unstrengthened) multi-row intersection cuts
can nevertheless be obtained very efficiently as explained in Section 9.3. Our
experiments suggest that the separation times are acceptable even if a multi-row
relaxation which consists of more than two rows is used for cut generation. For
example, if type 2 3-simplex cuts are separated in addition to type 2 triangle
cuts the mean value of the overall solution times is not decisively influenced (see
Tables 9.1 and 9.2) because the separation times only increase by a reasonable
amount. Similar to their unstrengthened pendants, strengthened intersection cuts
from multiple rows only rarely yield performance improvements in terms of reduced
running times. In the two-row case the strengthening is mostly cost-efficient in
the sense that the increases in the overall running times of the separators are
acceptable. Our experiments, however, also indicate that computing strengthened
multi-row cuts, especially from more than two rows (except for split cuts), is in
general very time-consuming.
Besides computation times, our computational study indicates, secondly, that

separating multi-row cutting planes can positively affect the enumeration during
the branch-and-bound algorithm. Configurations applying particular multi-row
cut separators compute significantly fewer branching nodes on several test sets.
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Concerning the effectiveness of strengthening, recall that the only minimal inter-
section cuts we compute are strengthened type 1 and type 2 triangle cuts (see
Section 9.3.1). Aside from the fact that the intersection cuts we compute are
thus not minimal in general, our experiments demonstrate that strengthened
cuts can lead to an improved performance in terms of reducing the number of
branching nodes computed. In particular, we showed that intersection cuts from
more than two rows of the simplex tableau can successfully be strengthened. On
the other hand, the influence of the separation of multi-row cuts on the amount of
integrality gap closed at the root node is unclear. On selected test sets multi-row
cut separators reduce the integrality gap while they lead to increased integrality
gaps on other test sets.

Thirdly, we offer some conclusions concerning the performance of multi-row cuts
as compared with split cuts. The separation of split cuts was treated in Chapter 8.
The difference between split cuts and the remaining classes of intersection cuts we
considered in this chapter is that the latter can not directly be derived as split cuts
from the current formulation of the LP relaxation. As mentioned above, it was,
however, recently shown by Dey and Louveaux [76] that all triangle cuts (except
for type 1 triangle cuts) and quadrilateral cuts have finite split rank, implying
that these cuts can also be obtained by iteratively applying split cuts. To ensure
high comparability our split cut separator was integrated into the framework used
for the separation of multi-row cuts. Our computational experiments showed
that split cuts are clearly superior to multi-row cuts as far as separation times
are concerned. Compared with multi-row cuts, split cuts can, in addition, be
strengthened very efficiently. For some test sets, larger reductions of the number
of branching nodes computed can, on the other hand, be obtained by applying
the multi-row cut separators.
We conclude from the previous discussion that, although multi-row cuts lead

to notable improvements in performance for certain instances or test sets, their
general effect on the overall performance of an MIP solver like Mops is not
univocal. In particular, it is not always cost-efficient to apply the multi-row cut
separators, especially for those instances where the fast single-row cut separators
are effective. In Section 8.9 we showed that separating lift-and-project cuts (or
reduce-and-split cuts, etc.) for instances which are hard to solve using GMI cuts
is beneficial. Similarly, we suppose that multi-row cuts play a more important
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ACC +33 +59 +66 +46 +81 +52 +58 +58 +49 +42
CORAL +13 +5 +3 +27 -1 +50 +17 +24 +10 +3
MIPLIB +18 +30 +32 +34 +18 +25 +52 +33 +16 +7
MILP -39 -36 -18 -21 -39 +145 +136 +46 +105 +63
total +14 +14 +14 +28 +7 +42 +32 +28 +15 +8

no
de
s

ACC +70 +74 +108 +68 +101 +68 +68 +68 +68 +58
CORAL +14 -8 +4 +35 -16 +42 -6 +2 +5 +4
MIPLIB +15 +18 +16 +15 +17 +16 +13 +7 0 +9
MILP -11 -11 -17 -19 -15 -18 -9 -8 +3 +22
total +16 +5 +11 +26 +1 +30 +4 +6 +4 +8

ga
p

ACC 0 0 0 0 0 0 0 0 0 0
CORAL 0 +1 +2 +1 -1 0 0 +1 +1 -2
MIPLIB +3 +6 +4 0 +2 +5 +6 +4 +2 +2
MILP +59 +59 0 0 +59 -45 0 0 0 0
total +2 +4 +3 0 +1 +2 +2 +2 +1 0

ha
rd

tim
e

ACC 0 0 0 0 0 0 0 0 0 0
CORAL -3 -3 -13 +2 -12 -10 -6 -5 -9 -10
MIPLIB +15 +30 +7 -11 +5 +24 +19 -4 +4 +2
MILP -6 0 -8 -5 -3 +6 -7 -14 +4 +4
total -1 +2 -9 -2 -8 -2 -3 -7 -4 -5

no
de
s

ACC 0 0 0 0 0 0 0 0 0 0
CORAL -13 -15 -23 -8 -18 -18 -19 -18 -23 -16
MIPLIB +24 +29 +5 -11 +6 +23 +22 -6 +2 +2
MILP -6 -3 -8 -1 -3 +3 -14 -19 -1 +1
total -6 -6 -15 -7 -11 -8 -12 -16 -15 -9

ga
p

ACC 0 0 0 0 0 0 0 0 0 0
CORAL -1 +1 +2 -6 +1 -2 -5 -3 -7 -5
MIPLIB +11 +4 +8 +8 +2 +11 +17 +12 +6 +1
MILP +10 +3 +2 +2 +3 +3 +2 +4 0 +1
total +4 +2 +3 -2 +1 +1 0 +1 -3 -3

Table 9.3. Performance impact of enabling particular two-row tableau cut separators
on easy and hard instances. We consider an instance to be easy if it can be solved to
optimality using the single-row cut separators (see Chapter 8) in 60 seconds or less. The
values represent percentage changes in the shifted geometric mean compared with a
reference setting in which all single-row cut separators are activated. Positive values
indicate a deterioration while negative values signify an improvement.
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ACC +65 +75 +262 +72 +66 +911 +294 +263 +225 +48
CORAL +34 +20 +18 +42 +4 +556 +256 +240 +216 +29
MIPLIB +46 +46 +46 +32 +17 +494 +274 +248 +151 +62
MILP +19 -21 -23 -32 -12 +1704 +637 +487 +299 +19
total +38 +29 +33 +36 +11 +530 +259 +238 +185 +39

no
de
s

ACC +78 +74 +299 +91 +90 +36 +53 +16 +100 +69
CORAL +5 -4 +4 +44 -12 +5 +14 +8 +54 +32
MIPLIB +7 +20 +8 +25 -2 +2 +11 +19 +21 +19
MILP -6 -8 -18 -4 -8 -8 +15 -16 +13 -4
total +8 +8 +11 +35 -5 +4 +13 +13 +39 +26

ga
p

ACC 0 0 0 0 0 0 0 0 0 0
CORAL -1 0 0 0 -2 -1 -2 -2 -1 -1
MIPLIB +5 +7 +3 +6 +3 +7 +5 +4 +5 +4
MILP +59 +59 +59 +59 0 -45 0 0 -117 -84
total +3 +4 +2 +4 0 +2 +1 +1 +1 0

ha
rd

tim
e

ACC 0 0 0 0 0 +6 +1 +1 +1 0
CORAL -6 -9 -8 -5 -16 +21 +14 +18 -1 -24
MIPLIB 0 +2 -10 -10 -17 +71 +24 +24 +16 +5
MILP -6 -6 -11 -15 +2 +26 +28 +37 +7 +1
total -5 -7 -9 -8 -12 +28 +18 +22 +3 -14

no
de
s

ACC 0 0 0 0 0 -4 -1 -1 -1 0
CORAL -24 -30 -23 -23 -19 -42 -20 -15 -24 -31
MIPLIB -2 -4 -21 -17 -33 -22 -17 -9 -13 -17
MILP -5 -7 -15 -10 -1 -22 -4 +4 -14 -3
total -16 -21 -20 -19 -17 -34 -15 -10 -20 -23

ga
p

ACC 0 0 0 0 0 0 0 0 0 0
CORAL 0 -6 0 -6 0 -1 -4 -6 -5 -7
MIPLIB +12 +6 +9 +6 +2 +6 +17 +9 +2 -1
MILP +9 +4 +6 +4 +4 +11 +4 +1 0 +3
total +4 -2 +2 -2 +1 +3 +1 -2 -3 -4

Table 9.4. Performance impact of enabling particular multi-row tableau cut separators
on easy and hard instances. We consider an instance to be easy if it can be solved to
optimality using the single-row cut separators (see Chapter 8) in 60 seconds or less. The
values represent percentage changes in the shifted geometric mean compared with a
reference setting in which all single-row cut separators are activated. Positive values
indicate a deterioration while negative values signify an improvement.
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role in solving hard instances (in the sense hard to solve with the single-row cut
separators) than in solving instances where applying the single-row cut separators
suffices. We consider an instance to be hard if it can not be solved to optimality
with the single-row cut separators within a time limit of 60 seconds. Tables 9.3
and 9.4 summarize the performance of the multi-row cut separators on easy and
hard instances respectively. The detailed results can be found in Tables B.36
to B.40 and Tables B.41 to B.45 in Appendix B. Concerning the easy instances
performance deteriorations can mainly be observed, especially if the strengthened
multi-row cut separators are applied. On the other hand, a large number of
improvements can be seen on the hard instances. For these reasons we suggest
use of a separation scheme in which the multi-row cut separators are only applied
if the single-row cut separators are not effective. For example, the multi-row cut
separators should be activated if the single-row cut separators do not succeed in
noticeably improving the dual bound for a number of rounds of IP preprocessing.
We should like to emphasize that we draw our conclusions from (shifted

geometric) mean values. Conclusions drawn for a specific test set do not therefore
necessarily apply to every single instance in this test set. This means in particular
that while multi-row cut separators deteriorate the overall performance on the
ACC and MIPLIB test sets in our experiments in terms of the mean values,
these cut separators may nevertheless be beneficial on certain instances in these
test sets.

In the preceding part of this section, we analyzed the individual computational
usefulness of various multi-row cut separators. A question which has so far
remained unanswered is how the multi-row cut separators interact. We are
especially interested in whether an improved performance can be obtained by
applying several multi-row cut separators together. To keep the number of test
runs manageable we limit our investigation to the two-row cut separators. In
future research we plan also to investigate the interaction of cut separators which
use more than two rows of the simplex tableau simultaneously. In our second
experiment, which is meant to answer the questions raised above, we therefore
consider a reference setting which applies all single-row (see Chapter 8) and
two-row cut separators. We then disable specific two-row cut separators and
examine the performance improvement or deterioration. Table 9.5 presents a
summary of the results of this experiment. The detailed results can be found in
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ACC -16 -10 +1 -10 -10 -6 -10 -11 -11 -10 -10
CORAL -5 +6 -4 +4 +2 +8 -2 -9 -4 +3 -2
MIPLIB -30 -4 -7 -2 +2 -2 -6 -7 -9 -3 -6
MILP +7 +1 0 +3 +5 +3 +5 +1 +22 -3 +5
total -10 +2 -4 +2 +2 +4 -3 -7 -2 0 -3

no
de
s

ACC -18 -13 +1 -13 -12 -14 -12 -13 -12 -12 -12
CORAL +20 +6 -6 +3 +5 +9 -3 -11 -1 +4 -3
MIPLIB -22 -7 -3 +3 -2 -2 -15 -5 -9 -5 -15
MILP +20 -4 -9 -3 -3 -1 +2 -4 +23 -3 +2
total +5 0 -6 +2 +1 +4 -6 -9 -1 0 -6

ga
p

ACC 0 0 0 0 0 0 0 0 0 0 0
CORAL +5 0 0 -1 +1 0 +1 0 0 0 +1
MIPLIB -6 +1 +1 +1 0 +2 +3 +2 +2 +1 +3
MILP -3 +2 +5 +1 0 0 +6 +4 +1 +1 +6
total +1 0 +1 0 0 +1 +2 +1 +1 0 +2

Table 9.5. Performance impact of disabling particular two-row tableau cut separators.
The values represent percentage changes in the shifted geometric mean compared with
a reference setting in which all single-row (see Chapter 8) and two-row cut separators
are activated. Positive values indicate a deterioration while negative values signify an
improvement.

Tables B.46 to B.50 in Appendix B. As shown by the results of our first experiment,
it is difficult for our two-row cut separators to compete with our single-row cut
separators regarding solution times. If only the single-row cut separators (“only
SR”) are activated, the solution times for the ACC, CORAL and MIPLIB
instances decrease by 16%, 5% and 30% respectively. Concerning the entire test
set (“total”), the largest improvement in the solution times is also caused by
the deactivation of all two-row cut separators. For the CORAL test set, the
running times, by contrast, increase by 7% if only the single-row cut separators
are executed. Compared with the reference setting, the largest deterioration in the
solution times (22%) is obtained by deactivating the strengthened type 3 triangle
cut separator (“no T3L2”) on the MILP instances. We note that this deterioration
is larger than that produced by deactivating all two-row cut separators. This
observation indicates that strengthened type 3 triangle cuts are especially effective
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on the MILP test set and also points to the interaction of the different two-
row cut separators. In our study of the individual strength of the two-row cut
separators the strengthened type 3 triangle cut separator was also most effective
on the MILP instances (see Table 9.1). Also in line with the results of our
first experiment, the two-row cut separators considerably reduce the number of
branching nodes computed for the CORAL and MILP instances. The number
of branching nodes reduces by 20% for both test sets. Regarding the two-row cut
separators, the largest increase in the number of branching nodes (9%) is caused
by the deactivation of the split cut separator (“no SP2”). When the strengthened
type 3 cut separator is disabled the number of branching nodes increases by 23%.
On the other hand, disabling the strengthened type 2 triangle cut separator (“no
T2L2”) consistently leads to improvements in terms of the shifted geometric
means of the number of branching nodes computed. Table 9.5 also shows that
the effect of disabling specific two-row cut separators on the amount of integrality
gap closed at the root node is rather small. Regarding the entire test set (“total”)
only small deteriorations arise if two-row cut separators are deactivated.
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Chapter 10.

Cutting Plane Selection and
Management

In the preceding two chapters we described various cut separation algorithms and
discussed implementation details. Typically, these algorithms generate a large
number of cutting planes.

In this chapter we address the problem of selecting only a subset of the generated
cuts. To this end we discuss the reliability of different cut selection rules or cut
quality measures respectively and point out their merits and demerits. We also
describe a cut selection algorithm and highlight important implementation details.
Finally, we present computational results to emphasize the importance of cut
selection algorithms and study the impact of different cut quality measures on
the overall performance of Mops.
This chapter is organized as follows. After giving a short introduction in

Section 10.1, we present different cut quality measures in Section 10.2. The
cut pool and our cut selection algorithm are described in Section 10.3. Finally,
Section 10.4 discusses computational results.

10.1. Introduction

Cutting planes play a central role in solving MIPs. Closely related to cut
generation is the problem of reducing the number of cuts that are added to the
LP relaxation. This problem in particular has become increasingly important
since there are numerous cutting planes available in MIP solvers like Cplex [115],
Xpress-MP [74] or Mops [139]. If the number of generated cuts is large, adding
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all of them represents a computational burden for the LP solver, possibly leading
to longer (node) solution times. Thus finding cut quality measures and developing
cut selection algorithms are central issues in the study of cutting plane algorithms.

10.2. Cut Selection

Crucial to solving MIPs is a strong LP relaxation. There are a number of
techniques such as bound and coefficient reduction to improve the strength of the
LP relaxation. However, cutting planes like Gomory mixed-integer cuts, cover
cuts, flow cover cuts, flow path cuts, mixed-integer rounding cuts, etc. are very
important to obtaining a tight LP relaxation.

The primary aim of cutting plane selection is to choose the “right” cuts which
help to solve an MIP problem more rapidly. The essential question is how to
select such a subset of cuts. To answer this question reliable cut quality measures
are needed. An additional aim of cutting plane selection is to keep the number of
cuts that are added to the LP relaxation small.

10.2.1. Brief Literature Review

Padberg and Rinaldi [146] emphasize that “finding a reasonable quality measure
is one of the central issues in the area of polyhedral cutting-plane algorithms that
is - as of today - not yet investigated satisfactorily”([146], p. 79). Although this
statement was made over fifteen years ago, the situation has not fundamentally
changed. Several contributions on cutting plane theory address measuring cut
quality as a secondary problem. Balas et al. [26] point out that using the improve-
ment of the objective function as a cut quality measure has certain drawbacks
(e.g. zero gap problems) and suggest calculating the Euclidean distance between
a given LP solution and the cutting plane instead. Christof and Reinelt [50]
propose preference be given to cutting planes that are as parallel as possible to the
objective function and try to estimate the improvement of the objective function.
A different proposal put forward by Ferris et al. [85] is called “cut selection by
usage”. Here the policy is to add all generated cuts tentatively and then track the
pivots performed by the dual simplex method. If a cut is used, meaning that is
was pivoted on, it is marked and later on only marked cuts are added. To increase
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the diversity of cuts, Andreello et al. [13] check cuts pairwise for parallelism (see
also [85]). Achterberg [4] proposes a sophisticated cut selection algorithm which
combines several cut quality measures.

10.2.2. Cut Quality Measures

Assume that a mixed-integer program is given in the form

max {cx : Ax ≤ b, x ≥ 0, xj ∈ Z, ∀j ∈ NI} (10.1)

where c ∈ Rn, x ∈ Rn and b ∈ Rm, A ∈ Rm×n, and NI ⊆ N = {1, . . . , n}. Let x∗
be an optimal solution to the corresponding LP relaxation. Suppose that some
separation algorithm generated a number of cutting planes

αix =
∑
j∈N

αijxj ≤ βi, ∀i ∈ L, (10.2)

where αi ∈ Rn and βi ∈ R and L is an arbitrary index set. To simplify the
notation we omit the index i whenever possible and denote a single cut by

αx =
∑
j∈N

αjxj ≤ β. (10.3)

Some known quality measures for cutting planes are the following.

Violation The simplest quality measure for cutting planes is violation which is
defined as

v (α, β, x∗) = αx∗ − β. (10.4)

Using violation to measure the quality of cutting planes has several drawbacks.
For example, violation is not invariant under scaling. Given any integer k ∈ Z+,
the cut kαx ≤ kβ is k times more violated than αx ≤ β. Observe that the value
of v(α, β, x∗) is positive for violated cuts with this definition.

Relative Violation A straightforward approach to overcome issues related to
scaling is to divide the violation value by the absolute value of the right-hand
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side, i.e. normalizing the right-hand side. The resulting quality measure is called
relative violation (cf. [130]) and is defined as follows:

r (α, β, x∗) = αx∗ − β
|β| = v (α, β, x∗)

|β| (10.5)

However, it is not possible to compute the relative violation if the right-hand side
of the cut is zero. In this case we instead use the violation.

Distance A third possibility to measure the cut quality is to determine the
Euclidean distance between a given LP solution x∗ and the hyperplane αx = β.
In other words, we consider the distance between x∗ and its orthogonal projection
on this hyperplane:

d (α, β, x∗) = αx∗ − β
‖α‖ = v (α, β, x∗)

‖α‖ (10.6)

Using the Euclidean distance can be seen as an improvement of relative violation
and overcomes some of its drawbacks. Like relative violation, the Euclidean
distance is independent of scaling. In addition it can also be calculated for cuts
whose right-hand sides take arbitrary values.

Objective Function Parallelism Suppose that c and α are linearly dependent,
for example α = kc, k ∈ R and k > 0. After substitution of α the cut (10.3)
reads (kc)x ≤ β which is equivalent to cx ≤ β

k . This means that β
k is an upper

bound on the value of the objective function. Therefore cutting planes with α as
parallel as possible to the objective function are preferable (cf. [50]). Parallelism
is measured by inspecting the cosine of the angle between c and α:

o (α) = αc

‖α‖ ‖c‖ (10.7)

If o(α) = 1, the cutting plane is parallel to the objective function.

Expected Improvement An intuitive method for measuring the quality of a cut
is to inspect the improvement of the value of the objective function after the
cut has been added and the LP has been reoptimized. Due to its computational
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cost (add cut, reoptimize, remove cut) this approach is normally not practicable.
Although the exact improvement of the value of the objective function is therefore
unknown, the improvement can be estimated under certain assumptions. Let
x∗exp be the expected next LP solution (cf. [50]). As we are maximizing, we expect
the value of the objective function to decrease (or remain the same) after a
violated cut has been added, i.e. cx∗ − cx∗exp ≥ 0. Taking −α as the direction of
reoptimization, e.g. x∗exp = x∗ − δα, and assuming that αx∗exp = β gives

δ =
αx∗ − αx∗exp
‖α‖2 = αx∗ − β

‖α‖2 = v (α, β, x∗)
‖α‖2 . (10.8)

The value of the objective function for x∗exp takes the form

cx∗exp = cx∗ − αc · v (α, β, x∗)
‖α‖2 = cx∗ − αc

‖α‖ · d (α, β, x∗) , (10.9)

and the quality of a cut can, for instance, be measured by calculating

e (α, β, x∗) = cx∗ − cx∗exp = αc

‖α‖ · d (α, β, x∗) ,

= ‖c‖ · o (α) · d (α, β, x∗) .
(10.10)

It is quite easy to see from (10.10) that the expected improvement is a combi-
nation of other previously defined quality measures. Not only is the prediction of
the improvement of the objective function highly dependent on the assumptions,
measuring cut quality this way is problematic when the objective gap between
the optimal solution of the LP relaxation and the optimal MIP solution is zero.

Support The support of the coefficient vector α is the set of its non-zero positions
N̄ = {j ∈ N : |αj | > 0}. One can compute the percentage of all variables that is
present in the cut

s (α) =

∣∣∣N̄ ∣∣∣
|N | . (10.11)

Cutting planes which have a coefficient vector α which has a large value of s(α)
are called dense. Dense cuts are likely to slow down computations in the simplex
algorithm (e.g. the LU factorization) and can possibly cause numerical difficulties.
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Since adding these cuts is thus not desirable, we select cuts with minimal support,
i.e. we use the quality measure 1− s(α).

Integral Support Let the set N̄ be defined as in the previous paragraph. The
set N̄I = N̄ ∩NI consists of those non-zero positions of α which correspond to
integer-constrained variables. Using this information it is possible to calculate the
ratio between the number of integer-constrained variables and the total number
of variables present in a cut

i (α) =

∣∣∣N̄I

∣∣∣∣∣∣N̄ ∣∣∣ . (10.12)

One may argue that a cut having non-zero coefficients on many (possibly frac-
tional) integer variables is preferable to a cut which consists mostly of continuous
variables.

Parallelism Let αix ≤ βi and αkx ≤ βk be two cuts generated by some cut
separation routine. If their defining hyperplanes are parallel, one of the two
cuts is dominated by the other and should consequently not be added to the LP
relaxation. Again, the absolute value of the cosine of the angle between the two
hyperplanes (or vectors) is used to detect parallelism:

p
(
αi, αk

)
=

∣∣∣αiαk∣∣∣
‖αi‖ ‖αk‖ (10.13)

If p(αi, αk) = 1, the hyperplanes which correspond to the two given cuts are
parallel. In contrast, p(αi, αk) = 0 indicates that the two cuts are orthogonal.

Distance Variant I A problem of the Euclidean distance is that it does not
work properly with a system of equations (cf. [56]). This is because a polyhedron
whose feasible points have to satisfy a number of equations is not full-dimensional.
In other words, measuring cut quality by the Euclidean distance does not take
into account that a solution must exactly lie at the intersection of all existent
hyperplanes. For example, consider the simple sets

XR =
{
x ∈ R2

+ : 6x1 + 4x2 = 20
}

and X = XR ∩ Z2
+, (10.14)

190



10.2. Cut Selection

with a fractional solution of x∗1 = 31
3 and x∗2 = 0 to the relaxation XR. The

hyperplanes geometrically representing the two cuts 3x1 + x2 ≤ 8 and x1 ≤ 2
have different Euclidean distances from x∗, meaning that one of them is more
favorable. But this is actually not true. Suppose that we add each cut to the
formulation of XR individually. After reoptimization XR has an optimal integral
solution x′1 = 2, x′2 = 2 in both cases. Thus each of the cuts alone excludes the
fractional solution x∗ from XR. A way to solve this problem is computing the
rotated steepness (cf. [56]).

Consider an example with two cuts with indices i and k, i.e. L = {i, k} (see
Equation (10.2)), and let βi = βk and (N1, N2) be a partition of N with

αij = αkj ≥ 0, ∀j ∈ N1,

αij > αkj ≥ 0, ∀j ∈ N2.

Furthermore, suppose that the LP solution x∗ to the underlying problem fulfills
the condition x∗j = 0, ∀j ∈ N2 and violates both cuts specified above. Clearly,
cut i (mathematically) dominates cut k under these circumstances. But due to the
structure of the example identical violations and relative violations are assigned
to both cuts. Moreover, it follows from the assumed relations between αi and αk

that ‖αi‖ > ‖αk‖. Thus the Euclidean distance between the cut hyperplane of
cut k and x∗ exceeds the Euclidean distance between the cut hyperplane of cut i
and x∗.

A variable having the characteristics that αj > 0 and x∗j = 0 for some j ∈ N
does not affect the numerator of (10.6). The denominator of (10.6), namely the
Euclidean norm of α, is however increased by this variable. It is possible to obtain
a simple variation of the Euclidean distance by modifying the Euclidean norm for
variables with index j satisfying x∗j = 0. Define the vector ᾱ ∈ Rn with

ᾱj =

αj if x∗j 6= 0,

0 otherwise,
(10.15)

for j ∈ N . We obtain
d̃ (α, β, x∗) = v (α, β, x∗)

‖ᾱ‖+ 1 . (10.16)
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Figure 10.1. Computing the deviation in each coordinate direction

In order to avoid division by zero, we increase the denominator by one.

Distance Variant II We now consider the deviation of the LP solution x∗ from
a given cut hyperplane in each variable direction and multiply them. In other
words, given the LP solution x∗, let the point pk be the intersection of the ray
starting in x∗ in coordinate direction k with the cut hyperplane αx = β (see
Figure 10.1). The vectors x∗ and pk only differ in the kth component by the
amount ∆x∗k which can be obtained by calculating

∆x∗k = αx∗ − β
|αk|

, (10.17)

where, as above, k ∈ N̄ = {j ∈ N : |αj | > 0}. To simplify the notation we assume
that N̄ = {1, . . . , p} in the following. Multiplying the deviations ∆x∗k for all
k ∈ N̄ yields

∏
k∈N̄

∆x∗k = ∆x∗1 ·∆x∗2 · · ·∆x∗p = (αx∗ − β)p

|α1 · α2 · · ·αp|
. (10.18)
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In two-dimensional space, the product of the deviations computed in Equa-
tion (10.18) is twice the area of the triangle described by x∗ and its projections
pk on the cut hyperplane αx = β (see Figure 10.1). Typically, not all generated
cutting planes have non-zero coefficients on the same number of variables. In
order to improve the comparability we extract the pth root and raise the resulting
expression to the power of k ≥ 1. We obtain

d̂ (α, β, x∗, k) = v (α, β, x∗)k

(|α1 · α2 · · ·αp|)
k
p

. (10.19)

Note that we assume that x∗ violates the inequality αx ≤ β. Otherwise even
values of k would change the sign of the numerator of Equation (10.19). It is easy
to show that (10.19) is invariant to scaling.

10.3. Cut Pool and Cut Selection Algorithm

The term cut pool (cf. [146]) is used for a data structure which is designed to offer
an intermediate storage area for generated cutting planes. In our implementation
the cut pool uses a packed storage, meaning that only non-zero entries and their
indices are stored (see Figure 7.3). All cuts are stored as less-or-equal inequalities,
i.e. αx ≤ β.
Several cutting plane techniques are available in Mops. So far, all generated

cuts which are violated by the current solution are added to the LP relaxation.
That this policy dramatically increases the problem size motivated the idea of
studying and implementing cut management and selection techniques.
The Mops MIP solver usually generates cuts at the root node of the branch-

and-bound tree (cut-and-branch). Prior to the branch-and-bound algorithm the
so-called supernode processing (cf. [157]) or IP preprocessing is performed. Besides
the classes of cutting planes treated in this thesis, Mops separates clique [65],
bound implication [157], cover [107], flow cover [166] and mixed-integer rounding
cuts [135] with the objective of tightening the LP relaxation. The cut generation
process is iteratively continued until there is no improvement in the dual bound or
a maximum number of rounds (typically twenty) is reached. There is no additional
scheme for deactivating specific cut separators. Cut pool and cut selection are at
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the moment only used at root node. However, it should not take too much effort
to adapt the implementation in such a way that it can be used at any branching
node.
In the following we discuss the details of our implementation which is also

described in Algorithm 10.1. A detailed description of a cut selection algorithm
for {0, 1

2}-cuts can be found in [13].

• In order to minimize work related to changes in the existing implementation
of supernode processing, we changed the cut separation routines in such
a way that they optionally add violated cuts to the cut pool instead of
adding them directly to the LP relaxation. If possible, coefficients are
scaled to integer values whenever a cut is added to the cut pool to avoid
numerical problems. The (Euclidean) norm of a cut and the parallelism to
the objective function (see Equation (10.7)) are computed and stored.

• After each round of cut generation, in which different cutting plane sep-
arators are executed, the cut selection is performed and the cut pool is
scanned for cutting planes which seem to be promising with respect to some
quality measure. If a cut is selected and activated, i.e. added to the problem
formulation, it still remains in the cut pool. But in order to avoid adding
this cut again, we mark it as activated. Having added the selected cuts, the
LP is reoptimized and a new round of cut generation starts.

• We use the algorithm of Tomlin and Welch [164] to identify duplicate
(i.e. exactly parallel) cuts. This algorithm is a very fast and specialized
method which was originally developed to identify duplicate rows in an LP
matrix in LP preprocessing. As this algorithm only works on a columnwise
representation of the cut pool, we need to perform a sparse transpose.

• As the solution to the LP relaxation may have changed since the last call
to the cut selection algorithm, quality measures whose values depend on
this solution need to be updated. In our implementation we just recompute
the violation (see Equation (10.4)) and the different norms (for instance,
see denominator in Equation (10.16)). All other quality measures can be
calculated from these basic values.
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• The cut quality values are computed and stored in the array poolqul and
the index of each cut is stored in the array poolsrt. We sort poolsrt

according to the quality values in poolqul. This strategy makes direct
access to all cuts in order of their quality possible.

• Suppose l cuts have been added to the cut pool and the cut pool has been
sorted by non-ascending quality values. Furthermore, given δ = 1, . . . , l− 1,
let

αix ≤ βi, i = poolsrt[δ] (10.20)

be the cut of δth best quality and let

αkx ≤ βk, k ∈ {poolsrt[δ + 1], . . . ,poolsrt[l]}, (10.21)

be the set of cuts with smaller quality values. To reduce the size of the cut
pool and increase the diversity of cuts we perform a check for parallelism
which exploits the order of the cut pool. Thus we require all pairs (i, k) of
cuts as defined in Equations (10.20) and (10.21) to satisfy the inequality

p
(
αi, αk

)
≤ p_max. (10.22)

We thereby remove all cutting planes with index k which are (almost)
parallel to a better cut with index i from the cut pool. But in order to
avoid removing high-quality cuts from the cut pool, we additionally check
whether the quality of such a cut is relatively large. If the quality value is
larger than skip_factor times best_qual and the value of p(αi, αk) is not
larger than p_max_ub cut k is not removed.

• If αi = wαk with w ∈ R, then the hyperplanes αix = βi and αkx = βk are
parallel. We obtain the equation

p
(
αi, c

)
=

∣∣αic∣∣
‖αi‖ ‖c‖ =

∣∣∣wαkc∣∣∣
‖wαk‖ ‖c‖ =

∣∣∣wαkc∣∣∣
|w| ‖αk‖ ‖c‖ = p

(
αk, c

)
(10.23)

and the implication

p
(
αi, αk

)
= 1 =⇒ p

(
αi, c

)
= p

(
αk, c

)
. (10.24)
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Algorithm 10.1. Cut selection algorithm
Input: A fractional basic LP solution x∗. A number of l cutting planes

in the cut pool.
Output: A selected list L of cutting planes.

(Step 1) Initialize
if first pass of cut selection routine then

Set fail := 0 and total_cuts := 0.
Moreover, set max_cuts_total := total_factor ·m and
max_cuts_round := round_factor ·m.

end
if l = 0 then exit.
Set L := ∅.

(Step 2) Remove duplicates
Perform a sparse transpose and remove duplicate cuts using the
algorithm of Tomlin and Welch [164].

(Step 3) Update quality measures
Calculate the values of the quality measures dependent on the LP
solution x∗.

(Step 4) Sort cut pool according to quality
Sort the array of cut indices poolsrt in non-ascending order of the quality
values in the array poolqul.

(Step 5) Remove parallel cuts
Check for pairs of cuts (i, k) which violate p(αi, αk) ≤ p_max.
Check also for dominated cuts.

(Step 6) Check cut age
For all cuts in the cut pool, set agei := agei + 1 and remove cuts with
agei ≥ max_age.

(Step 7) Calculate required minimal quality
Set best_qual := poolqul[poolsrt[0]].
if first pass of cut selection routine then set
min_qual := min{min_qual_ub, 0.5 · best_qual}.
if best_qual < min_qual then

Set fail := fail + 1.
if fail = 2 then set fail := 0 and min_qual := min_qual − 0.05.
exit.

end
(Step 8) Select cuts

Set k := 0.
while poolqul[poolsrt[k]] ≥ min_qual and k ≤ l do

if total_cuts ≥ max_cuts_total then exit.
Add cut poolsrt[k] to the list L.
Set total_cuts := total_cuts+ 1 and k := k + 1.
if k ≥ max_cuts_round then exit.

end
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Consequently, being immediately parallel to the objective function is a
required condition for the parallelism of two cutting planes. This detail
can be used to save computational effort needed for the computation of the
inner products between coefficient vectors.

• To remove dominated cuts we test whether the set of indices of a cut is
completely contained in the set of indices of another cut in the cut pool.
Then cut coefficients are inspected to decide whether a simple dominance
relationship holds.

• Whenever a cutting plane is found to be parallel to, a duplicate of or
dominated by another cut it is marked as deleted instead of being directly
removed from the cut pool. All parts of the algorithm simply ignore cuts
which are marked as deleted. If an additional cut cannot be added to the
cut pool because the maximum number of cuts in the cut pool is reached,
a compression routine is executed. This compression routine efficiently
removes all cuts which are marked as deleted from the cut pool.

• We require cuts which are inserted into the LP relaxation to have a minimum
quality. Following suggestions described in [13] we do not fix this minimum
qualitymin_qual a priori. At the first call of the selection routinemin_qual
is set to the minimum of min_qual_ub and 50% of the quality of the best
cut in the cut pool. Whenever the cut pool does not contain cuts having the
required minimum quality, the counter fail is incremented. If fail takes
the value two, meaning that the cut pool did not contain adequate cuts
in two rounds, min_qual is reduced to allow for cuts with smaller quality
values.

• The parameters total_factor and round_factor restrict the number of
cuts added to the LP relaxation during one round of cut generation and the
whole supernode processing respectively. As illustrated in Algorithm 10.1,
our implementation does not allow for the total number of cuts (or number of
cuts per round) to be larger than total_factor (or round_factor) times m,
which is the number of constraints in the initial LP formulation.
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• Cutting planes are aged out of the cut pool, meaning that cuts whose quality
values were not large enough to be added to the LP relaxation in max_age
rounds are deleted.

• Non-binding constraints are removed from the LP relaxation. Additional
techniques such as aging are not used in the LP context. In particular, this
means that cuts are not transferred from the LP formulation back to the
cut pool.

10.4. Computational Results

In the preceding sections we discussed various cut quality measures and presented
a cut selection algorithm. In this section we evaluate computationally the effec-
tiveness of these cut quality measures. We further assess the effect that our cut
selection algorithm has on the overall performance of Mops.

Apart from choosing a reliable cut quality measure, a number of parameters need
to be set for our cut selection algorithm. In a series of preliminary experiments,
we tested different default settings for these parameters while keeping the cut
quality measure fixed. We first only limited the number of cutting planes added
to the LP relaxation by setting the parameters total_factor and round_factor
to the values 1.0 and 0.1 respectively. The results obtained with this parameter
setting were not satisfying. After some tuning we found the following default
setting which we used to compute all results presented in this thesis. In particular,
we pursue a quite aggressive strategy to reduce the number of cutting planes
in the cut pool. Duplicate cuts are identified and even fairly parallel cutting
planes (p_max = 0.1) are not considered. We avoid removing cuts with a
relatively high quality (skip_factor = 0.9, p_max_ub = 0.5). In addition,
we try to reduce the size of the cut pool by restricting the maximum age of a
cut to three (max_age = 3). The minimum quality value we require a cut to
have is 0.01 (min_qual_ub = 0.01). It turned out to be unnecessary further
to limit the number of cuts added to the LP relaxation (total_factor = ∞,
round_factor = ∞). Note that we do not examine the effect of each single
parameter on the overall performance. These settings are therefore still first
choices likely to be improved by further experiments.
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ACC -39 -34 -3 -38 -44 -64 -27 -44 -26
CORAL -30 -25 -36 -20 -31 -45 -38 -42 -30
MIPLIB -17 -17 -38 +8 -34 -33 -26 -24 -14
MILP -31 -37 -52 -44 -47 -31 -43 -52 -46
total -27 -25 -37 -18 -34 -40 -35 -39 -28

no
de
s

ACC +41 +58 +87 +48 +39 -19 +72 +23 +73
CORAL +22 +22 -2 +61 +21 -13 +1 -13 +16
MIPLIB +26 +25 -14 +197 -12 -19 -3 +8 +66
MILP +23 -6 -15 +18 -2 +16 -2 -18 +10
total +23 +20 -5 +82 +9 -11 +1 -8 +28

ga
p

ACC 0 0 0 0 0 0 0 0 0
CORAL -2 0 -7 +18 +6 -5 0 -6 +2
MIPLIB 0 -8 0 +25 0 -3 -10 -8 +7
MILP +3 -8 +5 +12 +1 -7 -8 -5 +7
total -1 -3 -3 +19 +4 -4 -3 -6 +4

Table 10.1. Performance impact of using particular cut quality measures. The values
represent percentage changes in the shifted geometric mean compared with a reference set-
ting in which no cut selection scheme is activated. Positive values indicate a deterioration
while negative values signify an improvement.

As in Chapters 8 and 9, we perform two experiments. In our first experiment, we
investigate the individual computational effectiveness of the cut quality measures
we presented in Section 10.2. We compare the variants using a specific quality
measure with a reference setting which does not apply a cut selection algorithm.
The results of this experiment are summarized in Table 10.1. Tables B.51 to B.55
in Appendix B present the detailed results. An immediate observation from
Table 10.1 is that, independent of the cut quality measure used, the performance of
an LP-based cut-and-branch MIP solver like Mops can considerably be improved
by carefully selecting only a subset of the cutting planes generated during IP
preprocessing. Concerning the time spent on solving the instances in our test sets
to optimality, our cut selection algorithm almost exclusively leads to performance

199



Chapter 10. Cutting Plane Selection and Management

improvements in terms of the relative shifted geometric mean values. In fact
the only increase in the solution times that Table 10.1 reports on arises from
using the objective parallelism (“obj. parallelism”) to measure cut quality for the
MIPLIB instances. Measuring cut quality by the Euclidean distance between the
cut hyperplane and the fractional LP solution (“distance”) yields the best results
on the MIPLIB and MILP instances. For the ACC and CORAL instances the
largest decreases in the running times are obtained by evaluating cutting planes
according to their density (“support”). The effect of our cut selection algorithm
on the enumeration during the branch-and-bound algorithm varies across the test
sets and quality measures. The reference setting which adds all cutting planes
generated during IP preprocessing to the LP relaxation in many cases computes
the smallest number of nodes during the branch-and-bound search. Increases
in the node counts are not surprising since our cut selection algorithm strongly
reduces the number of cutting planes added to the LP relaxation, thereby affecting
its tightness. The search space the branch-and-bound algorithm needs to explore
thus increases if the MIP formulation produced by our cut selection algorithm has
a lower quality. The number of branching nodes, for example, increases by 197%
for the MIPLIB instances if cut quality is measured by the objective parallelism.
This increase corresponds to the only increase in the running times we mentioned
above. The remaining, sometimes dramatic, increases in the number of branching
nodes do not, however, lead to increased running times. The greater part of
the branch-and-bound algorithm’s running time is typically spent on solving LP
relaxations. Cutting planes increase the size of these LP relaxations, making
them more difficult to solve. Our computational experiments indicate that the
number of constraints in the LP relaxation is considerably increased by adding
all cutting planes generated during IP preprocessing, which repeatedly leads
to higher node solution times during the branch-and-bound process. If, on the
other hand, only a careful subset of the generated cuts is added, solving the
LP relaxation becomes computationally less expensive. Since the LP relaxation
is solved for every branching node, the performance gain in LP optimization
achieved by adding only selected cuts is likely to overcompensate the loss in the
quality of the MIP formulation. This is also shown by the results in Table 10.1
where the overall solution times decrease even if the number of branching nodes
increases. Concerning the amounts of integrality gap closed at the root node, our
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no cut no int. no obj. only
test set selection support parallelism distance

tim
e

ACC -21 0 -24 -24
CORAL +90 +28 +8 +29
MIPLIB +40 -8 -4 -15
MILP +125 -2 +15 +6
total +73 +13 +5 +12

no
de
s

ACC -66 0 -36 -36
CORAL +39 +49 +19 +48
MIPLIB +18 -2 -9 +1
MILP +25 +2 +17 +9
total +25 +24 +7 +24

ga
p

ACC 0 0 0 0
CORAL +7 +2 0 +1
MIPLIB +15 +1 0 +15
MILP +3 +2 +1 +8
total +9 +2 0 +6

Table 10.2. Performance impact of changing the default cut quality measure. The
values represent percentage changes in the shifted geometric mean compared with the
default setting which uses a weighted sum of the distance, objective function parallelism
and integral support to measure cut quality. (The first quantity is weighted with 1.0 and
the latter two with 0.1.) Positive values indicate a deterioration while negative values
signify an improvement.

results show that most cut quality measures produce dual bounds of good quality.
Considerable losses in the quality of the dual bound can only be observed if cut
quality is measured by the objective parallelism. On the other hand, some quality
measures close more integrality gap than the reference setting although fewer
cuts are added. For the MIPLIB instances the first distance variant (“distance
var. I”) increases the shifted geometric mean of the amounts of integrality gap
closed at the root node by 10%.

In its default settings Mops uses a combined measure for the quality of cutting
planes. This measure is given by a weighted sum of the Euclidean distance,
objective function parallelism and integral support, where the first quantity is
weighted with 1.0 and the latter two with 0.1. In our second experiment, we assess
the effectiveness of this combined quality measure. Table 10.2 presents a summary
of the results of this experiment. The detailed results can be found in Tables B.56
to B.60 in Appendix B. For example, the column headed “no obj. parallelism” in
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Table 10.2 shows the development of the performance if the criterion objective
parallelism is disabled, i.e. if the corresponding weight in the weighted sum is
changed to zero. Table 10.2 indicates that, in comparison with the naive policy
which adds all generated cuts (“no cut selection”), the combined quality measure
performs very well. Concerning the total test set (“total”) the solution times and
the number of branching nodes increase by 73% and 25% respectively if no cut
selection is applied. In addition, the amount of integrality gap closed at the root
node decreases by 9%. Column “only distance” reveals that, in comparison with
the quality measure distance (see Equation (10.6)), the combined quality measure
also performs quite well although it is outperformed on the ACC and MIPLIB
instances with respect to solution times. For the CORAL instances disabling the
integral support (“no int. support”) leads to large performance deteriorations.
The effect of deactivating the objective parallelism (“no obj. parallelism”) is not
so large, but nevertheless the shifted geometric mean of the running times and
number of branching nodes clearly increases for the MILP instances.
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Chapter 11.

Summary and Concluding Remarks

In this thesis we have investigated the generation of general-purpose cutting
planes from single- and multiple-constraint relaxations of mixed-integer programs,
with an emphasis on computational aspects. Cutting planes play a crucial role
in accelerating the solution process of MIPs and are responsible for significant
improvements in the performance of MIP solvers (cf. Bixby et al. [38]). Developing
efficient implementations of cutting plane techniques can yet be a challenging
task. For example, although proposed already in the late 1950s and early 1960s,
Gomory cuts [97–99] were first successfully implemented in a branch-and-cut
framework in the middle of the 1990s by Balas et al. [26].
Part I of this thesis offered an introduction to mixed-integer programming.

In Chapter 2 we showed how valid inequalities for MIPs can be derived from
disjunctive arguments and how the LP relaxation of MIPs can be strengthened by
using these valid inequalities as cutting planes. Chapter 3 discussed basic solution
methods for MIPs such as cutting plane and branch-and-bound algorithms.
In Part II of this thesis we reviewed the state-of-the-art in cutting plane

technology. Chapter 4 considered split cuts, i.e. cutting planes generated from
single-row relaxations of MIPs. In practice the split closure provides a tight
approximation of the convex hull of the feasible solutions of MIPs (see Balas
and Saxena [31] and Dash et al. [73]). On the other hand, it is also known that
optimizing over the split closure is NP-hard (see Caprara and Letchford [44]). We
therefore discussed several families of split cuts which can be generated efficiently
such as Gomory mixed-integer cuts, reduce-and-split cuts [8] and lift-and-project
cuts [30]. These families of split cuts do not, however, produce an approximation of
the integer hull of MIPs which is as tight as that provided by the elementary split
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closure (cf. Cornuéjols and Nannicini [64]). Nor is there any computational study
which compares the individual effectiveness of these families of split cuts in solving
MIPs. In Chapter 5 we examined the derivation of cutting planes from multi-row
relaxations. We reviewed multi-row and group relaxations and elaborated on
the connection between valid inequalities for the semi-infinite relaxation and
maximal lattice-free convex sets. We also demonstrated how intersection cuts can
be derived from maximal lattice-free convex sets other than split sets and how
these intersection cuts can be strengthened by using the integrality of some of
the non-basic variables. While several authors study strengthened two-row cuts
(see Basu et al. [32] and Dey et al. [75]) and non-strengthened multi-row cuts (see
Espinoza [83, 84]) computationally, there is no extensive computational study of
multi-row and strengthened (or lifted) multi-row cuts on a large-scale test set. In
general, only very few publications are concerned with implementation aspects of
cut generation and document the technical details making cut separators effective
in practice.

From our review of the state-of-the-art we presented the three main research
objectives of this thesis in Chapter 6. The first objective addressed computational
aspects of the generation of split cuts. We proposed development of a novel
heuristic approach to strengthen the Gomory mixed-integer cuts or, in other
words, a new algorithm which generates a family of split cuts. We also wanted to
develop efficient implementations of our algorithm and existing algorithms from the
literature for generating split cuts. We intended to document important technical
details and, moreover, to compare the discussed families of split cuts based on
computational experiments. The second objective concerned the generation of
cutting planes from multiple rows of a simplex tableau, again with a focus on
computational aspects. We wanted to implement multi-row cut separators and to
highlight important implementation details. We wanted, moreover, to perform
an extensive computational study of different configurations of these multi-row
cut separators. In particular, we aimed to assess whether the generation of multi-
row cuts provides a performance improvement over split cuts. We also wanted
to analyze the benefits of strengthening multi-row cuts using the integrality
requirements on some of the non-basic variables. The third objective of this
thesis was to study techniques for cut selection and management. We wanted
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to develop a cut selection algorithm and to perform computational experiments
with different cut quality measures.

Part III of this thesis described our implementation of different cut separators
and presented computational results. In Chapter 7 we introduced the MIP
solver Mops and considered some general aspects of our implementation. We
discussed the main data structures used in our code and the internal and external
representation of MIP models in Mops. We also addressed the inherent inaccuracy
of floating-point arithmetic.
With respect to the first research objective stated in Chapter 6 we studied in

Chapter 8 approaches to generate split cuts. We presented a novel algorithm for
improving the performance of the Gomory mixed-integer cuts. This algorithm
is based on the work of Andersen et al. [8] who observed the distance cut off by
an intersection cut to be affected by the size of the coefficients of the continuous
variables in the rows of the simplex tableau. To increase the distance cut off,
Andersen et al. developed an algorithm which reduces the size of these coefficients
by taking integer linear combinations of the rows of the simplex tableau. The
idea behind our approach is very similar. However, instead of considering linear
combinations of tableau rows, we proposed a reduction algorithm which performs
a sequence of pivots on the simplex tableau. Our algorithm thus modifies the
basis from which an intersection cut is generated while Andersen et al. change
the disjunction. Given a reference row of the simplex tableau, we first select a
pivot row distinct from the reference row which is likely to contain an improving
pivot. Once a pivot row has been identified, we choose the pivot column which
produces the largest reduction in the coefficients of the continuous variables in
the reference row. We called the resulting cuts pivot-and-reduce cuts. According
to the research objectives discussed in Chapter 6 we implemented cut separators
for the new family of pivot-and-reduce cuts as well as for several other families
of split cuts from the literature such as {0, 1

2}-cuts, strong CG cuts, Gomory
mixed-integer cuts, k-cuts, combined Gomory mixed-integer cuts, reduce-and-split
cuts and lift-and-project cuts. We described these cut separators in detail and
also highlighted important technical details. For instance, we described how to
apply the reduction algorithm used to obtain reduce-and-split cuts on a sparse
matrix data structure. Concerning the separation of lift-and-project cuts using
the Balas-Perregaard procedure, we addressed the efficient computation of the
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reduced cost and other implementation techniques. Moreover, we discussed a
cost-efficient way of identifying promising pivot rows in the pivot-and-reduce
algorithm. As proposed in Chapter 6 we conducted extensive computational
experiments with the discussed cut separators. We showed that, in comparison
with the Gomory mixed-integer cut separator, the reduce-and-split, pivot-and-
reduce and lift-and-project cut separators are very effective in reducing the number
of branching nodes computed and in increasing the amount of integrality gap
closed on a large part of our test set. Our experiments, on the other hand,
also revealed that these elaborate cut separators are often not competitive with
the Gomory mixed-integer cut separator in terms of solution times due to their
computational expensiveness. We pointed out, however, that the improved cut
separators are superior in respect of solution times on instances which are hard to
solve using only the Gomory mixed-integer cut separator. We demonstrated that
the performance of our lift-and-project cut separator can be improved by applying
the disjunctive modularization or the Euclidean normalization. Our experiments
also showed that the Chvátal-Gomory cut separators are a useful addition to the
discussed tableau cut separators. Especially the {0, 1

2}-cut separator was very
effective on pure integer instances.

In Chapter 9 we discussed the generation of multi-row cutting planes. According
to the research objectives presented in Chapter 6 we implemented several cut
separators which derive cutting planes from multiple rows of a simplex tableau and
described in detail our implementation. We defined in particular the families of
lattice-free convex sets we use for cut generation and discussed how we construct
and handle the multi-row relaxations. We also dealt with implementation details
such as cut strengthening using the integrality of the non-basic variables and fast
iteration over the elements of a family of lattice-free convex sets. In compliance
with the research objectives proposed in Chapter 6 we also performed a detailed
computational study of the multi-row cut separators on a large-scale test set.
We showed that, compared with the split cut separators discussed in Chapter 8,
two-row cuts and strengthened (or lifted) two-row cuts successfully reduce the
number of branching nodes on our test set. The two-row cut separators were,
on the other hand, often not competitive with the split cut separators as far as
solution times are concerned. We also studied the effect of generating cutting
planes from more than two rows of a simplex tableau. These multi-row cut
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separators improved upon the results of the two-row cut separators in terms of
the reduction in the number of branching nodes. Due to our separation strategy
to compute an intersection cut for each maximal lattice-free convex set in a family
and to select the one with the largest distance cut off, the computational work
carried out to compute multi-row cuts increases considerably with the number
of tableau rows in the multi-row relaxation. Therefore enabling these multi-row
cut separators mainly resulted in deteriorations of the solution times. We also
showed, however, that these multi-row cut separators reduce the solution times
on instances which are hard to solve for Mops if only the split cut separators are
applied. In our experiments the strengthening of cuts derived from more than
two rows of a simplex tableau had a positive effect on the number of branching
nodes computed. As implemented in our code, the strengthening is, however,
very expensive and led to large increases in the solution times.

Chapter 10 examined cutting plane selection and management. As stated as
a research objective in Chapter 6, we designed and implemented a cut selection
algorithm and documented the technical details. We also presented various cut
quality measures and carried out computational experiments with them. The
results of these experiments showed that our cut selection algorithm has a positive
effect on the performance of Mops. In particular, the selection of cutting planes
based on the distance cut off performed very well. We also demonstrated that a
combination of quality measures can be effective.
The field of computational mixed-integer programming provides many oppor-

tunities for further research such as the efficient design and implementation of
algorithms and the documentation of key technical details. Future research in the
area of cutting plane techniques could address several interesting theoretical and
computational issues. One research opportunity is to find further families of split
cuts that can be generated efficiently and to evaluate these families computation-
ally. Other fruitful research might lie in strengthening cutting planes derived from
multiple rows of a simplex tableau using the non-negativity constraints on the
basic integer variables. Future research could also be concerned with accelerating
the separation process of multi-row cuts, thereby making multi-row cuts more
competitive with split cuts. For instance, closed-form formulae for the trivial
strengthening of multi-row cuts could be derived. Research could also be devoted
to developing a deeper understanding of the interaction of cutting planes.
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Appendix A.

Benchmarking Environment

This chapter of the appendix presents details of the environment we use compu-
tationally to evaluate the algorithms presented in this thesis. In Section A.1 we
discuss the hard- and software environment in which our benchmarks have been
conducted. Section A.2 deals with the selection of a test set of MIP instances.
Finally, Section A.3 details the methods we use to evaluate the outcome of our
experiments.

A.1. Hard- and Software

Our implementations of the algorithms discussed in this thesis are written in
Fortran 95. The source code was compiled by the Intel Visual Fortran
Compiler 11.1.051 on a standard PC running Microsoft Windows 7 as
operating system. The compiled code was linked to the Mops (static link)
library. For our benchmark runs we employed Mops version 10.7.4. All of our
computational experiments were conducted on Dell Optiplex 755 standard
PCs with 8 GB of main memory and a 3.16 GhZ Intel Core2Duo E8500 CPU
with 6 MB of second-level cache.

For our benchmarks we imposed a maximum computation time of one hour
per instance. If an instance was not solved within this time limit, we assume a
computation time of one hour and treat the current number of computed branch-
and-bound nodes as the final node count in our evaluations. We did, however, not
impose a memory limit. Concerning the branch-and-bound algorithm, we limit
the amount of disk space used to store the node file during the branch-and-bound
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algorithm to 2 GB. If a test run exceeded the disk space limitations, we assume
that it hit the time limit and scale the node count accordingly.

A.2. Test Set

It is common practice in computational mixed-integer programming to perform
numerical experiments so as to assess the impact of specific algorithms on the
overall performance of an MIP solver. We benchmark our code on instances from
several publicly available test sets. The initial collection consisted of the instances
from the following sources:

• ACC [141]
http://www.ps.uni-sb.de/~walser/acc/acc.html

• CORAL [131]
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/

• MIPLIB [6, 37]
http://miplib.zib.de

• MILP [138]
http://plato.asu.edu/ftp/milp/

The ACC test set only contains instances of pure 0-1 (binary) programs originating
from baseball scheduling. All other test sets comprise general MIP instances from
various problem classes and applications. To obtain a manageable set of instances
for our computational experiments we applied the following rules to these test
sets.

1. Our test set MIPLIB consists of the instances from MIPLIB 3.0 and
MIPLIB 2003. Some of the instances contained in MIPLIB 3.0 are also
part of MIPLIB 2003. We removed these duplicates from MIPLIB 2003.

2. Some of the instances in the CORAL test set are duplicates of instances in
MIPLIB and MILP. We removed these duplicates from the CORAL test
set.

212

http://www.ps.uni-sb.de/~walser/acc/acc.html
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/
http://miplib.zib.de
http://plato.asu.edu/ftp/milp/
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3. Finally, we removed all instances from the test sets that could not be
solved by a preliminary version of Mops 10.7.4 (which included our new
algorithms) within one hour of computation time.

Our final test set consists of 198 instances: 7 instances from the ACC test set,
110 instances from the CORAL test set, 55 instances from the MIPLIB test set
and 26 instances from the MILP test set.

A.3. Evaluation Methods

When benchmarking the performance of algorithms related to MIP solving on a
large-scale test set, one is faced with the issue of analyzing the large amount of
result data generated. Due to the size of our test set, reporting results for every
single instance is impractical and would reduce the readability of our analysis.
Thus we decided to sum up the results of our benchmark runs by means of average
values. The detailed results are, however, available from the author upon request.

Given a set of non-negative values u1, . . . , un ≥ 0 we consider the arithmetic
mean

1
n

n∑
i=1

ui, (A.1)

the geometric mean (
n∏
i=1

max {ui, l}
) 1

n

(A.2)

and, following Achterberg [3], the shifted geometric mean

(
n∏
i=1

max {ui + s, l}
) 1

n

− s, (A.3)

where s, l ≥ 0 are non-negative parameters. We compute mean values for the
computation times, the number of branching nodes and the amounts of integrality
gap closed at the root node. The amount of integrality gap closed is given by
(c− c∗)/(c̄− c∗) where c is the optimal objective value of the LP relaxation after
adding cutting planes. For instances which do not have an integrality gap we
assume a value of 1 (i.e. 100% gap closed) in the calculation of the mean values.
The parameter l constitutes a lower bound on the values u1, . . . , un and allows for
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computing the (shifted) geometric mean if there are zero values. When computing
the (shifted) geometric mean, we set l = 1 for node counts and running times
and l = 0.01 (i.e. 1%) for the amounts of integrality gap closed. As proposed by
Achterberg [3] we set the shifting parameter s to s = 10 for the running times
and s = 100 for the node counts. We further set s = 0.05 (i.e. 5%) if amounts of
integrality gap closed are considered.
Depending on the data given each of the above three means may take values

which lead to different conclusions. Suppose two configurations A and B with
two series of observations a1, . . . , an ≥ 0 and b1, . . . , bn ≥ 0 are given, for instance
solution times on a particular test set. Suppose moreover that each series contains
outliers which are very small in the scale of the remaining values, i.e. instances
which are very easy to solve compared with the remaining instances. We should
now like to assess how configuration A performed in comparison with B. Following
Achterberg [3] we shall compute ratios between the arithmetic, geometric and
shifted geometric means. In our example the ratio between the arithmetic
means reads ∑n

i=1 ai/
∑n
i=1 bi and the ratio between the geometric means is given

by ∏n
i=1(ai/bi)1/n. The running times on the easy instances are thus more or less

ignored by the relative arithmetic mean. By contrast, a slight variation of the
running times on an easy instance i greatly affects the ratio ai/bi. Consequently,
the relative geometric mean is greatly influenced by the easy instances. In order
to control the influence of easy instances on the geometric mean, the shifted
geometric mean is considered which is parameterized by the shifting parameter s.
The larger the parameter s chosen, the more the influence of the easy instances is
reduced.

Dolan and Moré [81] propose a different approach to obtaining a comprehensive
view of the performance of algorithms. Suppose that a set T of algorithms and
a set S of test instances are given. Let qt,s be a performance measure which
quantifies how algorithm t ∈ T performs on instance s ∈ S (e.g. running times).
Also let t∗s ∈ T be the algorithm that performs best on instance s ∈ S. By
computing the ratios qt,s/qt∗s ,s for all t ∈ T and s ∈ S we see how an algorithm
performed on an instance in comparison with the best algorithm. When plotting
these ratios in an accumulated way we obtain the so-called performance profiles
of the algorithms.
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Tables

This chapter of the appendix presents the detailed results of our computational
experiments in tabular form. Each table shows the performance of various
parameter configurations on a specific set of test instances. A detailed discussion
of the collections of test instances and the evaluation methods we use can be
found in Appendix A.
For each tested parameter configuration we report the arithmetic mean, ge-

ometric mean and shifted geometric mean of the solution times, the number
of branching nodes and the amounts of integrality gap closed at the root node.
As mentioned in Section A.3 we do not, however, present these mean values
in absolute numbers, but compute the relative percentage change as compared
with a reference configuration. For example, given a set of test instances, let gR
and gT denote the geometric means of the solution times or the number of
branching nodes taken by the reference setting R and an alternative parameter
setting T . The relative percentage change in the geometric mean is then calculated
as 100 · (gT /gR− 1). A negative value thus corresponds to a performance improve-
ment whereas a positive value indicates a performance deterioration compared
with the reference setting. Concerning the amounts of integrality gap closed at the
root node, the relative percentage change in the geometric mean is, for the sake
of consistency, given by 100 · (1− gT /gR). The relative percentage changes in the
arithmetic and shifted geometric means are obtained by analogous calculations.
Information about the tested parameter configurations can be found in the column
“setting”. The respective mean value results can be found in the columns “total”1,

1Given two series of observations, the ratio between the arithmetic mean values is equal to the
ratio between the sums of the observed values. We therefore denote by “total” the columns
containing the relative percentage change in the arithmetic means.
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“geom. mean” and “shifted geom. mean”. The changes in the solution times,
node counts and gap values are shown in the sub-columns “time”, “nodes” and
“gap” respectively. Values printed in bold face indicate that the improvement
or deterioration is larger than five percent. The reference setting is shown in
the first row of each table. For example, the results in Table B.1 are given as
relative percentage changes to the performance of the Gomory mixed-integer cut
separator (see Chapter 8).

Besides these mean values, we provide additional information about the perfor-
mance of the configurations tested. The column headed “T” indicates the number
of instances in the test set which can not be solved to optimality within the time
limit by the respective configuration. In the column “F” we further report the
number of instances on which a configuration failed. The column “wins / losses”
presents the number of instances on which a configuration performs at least 10%
better or worse than the reference setting in terms of solution times, branching
nodes or gap values.
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Appendix C.

Notation

In this chapter of the appendix we describe the notation we use in this thesis.

Basic sets
∅ the empty set
R the set of the real numbers
Rn the set of the n-dimensional real numbers
Q the set of the rational numbers
Qn the set of the n-dimensional rational numbers
Z the set of the integer numbers
Zn the set of the n-dimensional integer numbers
RL the set of vectors indexed by the set L, i.e. x ∈ RL ⇔ x =

(xj)j∈L and xj ∈ R
Basic set operations

|A| the cardinality of the set A
A ⊆ B A is a subset of B or A = B
A = (B,C) (B,C) is a partition of the set A, i.e. A = B ∪ C and

B ∩ C = ∅
int(A) the interior of the set A
boundary(A) the boundary of the set A
conv(A) the convex hull of the set A

Table C.1. Notation
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Appendix C. Notation

MIP notation
N the set of variables
NI the set of integer variables, i.e. NI ⊆ N
A the coefficient matrix
b the right-hand side vector
x the vector of variables
c the objective vector

Bases and the simplex tableau
B the set of basic variables, i.e. a basis of the LP relaxation of

an MIP
BI the set of basic integer-constrained variables, i.e. BI = B∩NI

J the set of non-basic variables, i.e. J = N \B
JI the set of non-basic integer-constrained variables, i.e. JI =

J ∩NI

Sets
XMIP the set of feasible solutions of an MIP
P a polyhedron; the set of feasible solutions of an LP; the set

of feasible solutions of the LP relaxation of an MIP
PI the integer hull; the convex hull of integer solutions in P
XDP a disjunctive set; the set of feasible solutions of disjunc-

tive program; the set of feasible solutions of the disjunctive
relaxation of an MIP

P i a polyhedron; the set of feasible solutions to a disjunct
involved in the description of the disjunctive set XDP

Solutions
x∗ the optimal solution of an LP; the optimal solution of the

LP relaxation of an MIP
c∗ the optimal objective value of an LP; the optimal objective

value of the LP relaxation of an MIP
x̄ the optimal solution of an MIP
c̄ the optimal objective value of an MIP
x̂ the current incumbent solution (branch-and-bound) of an

MIP; a feasible solution of an MIP
ĉ the objective value of the incumbent solution of an MIP

Table C.2. Notation (continued)
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Disjunctions
D(π, π0) the split disjunction πx ≤ π0 or πx ≥ π0 + 1
ε(π, π0) the amount by which the first term of the split disjunction

D(π, π0) is violated by an LP solution x∗, i.e. πx∗ − π0

Miscellaneous
|a| the absolute value of a
‖a‖ the (Euclidean) norm of the vector a
bac the largest integer less or equal to a
dae the smallest integer greater or equal to a
(a)+ the maximum of a and 0
∧ the logical “and”
∨ the logical “or”
r = amod b the remainder r of the division a

b where a and b are integers,
i.e. a = bab c · b+ r

I the identity matrix, i.e. the matrix with ones on the main
diagonal and zeros elsewhere

ei the unit vector with a one in the ith position and zeros
elsewhere

e the vector of all ones
en the vector of all ones of dimension n
(A,B) the matrix (or vector) obtained by placing the matrix (or

vector) A next to the matrix (or vector) B

Table C.3. Notation (continued)
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List of Abbreviations

CG Chvátal-Gomory
CGLP cut generating linear program
cGMI combined Gomory mixed-integer

EMR external model representation

GMI Gomory mixed-integer

IMR internal model representation
IP integer program
IPM interior point method

L&P lift-and-project
LP

linear programming
linear program

MIP
mixed-integer programming
mixed-integer program

MIR mixed-integer rounding

P&R pivot-and-reduce

R&S reduce-and-split
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