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Chapter 1.

Introduction

Mixed-integer programming is a branch of mathematical programming concerned
with optimization problems in which a linear objective function is maximized (or
minimized) subject to linear constraints and integrality requirements on some of
the variables. Early work on mixed-integer programming dates from the 1950s
when, for instance, George B. Dantzig [67] demonstrated that various combinato-
rial optimization problems can be formulated as mixed-integer programs (MIPs).
Dantzig [68] also noted that many problems involving complex logical conditions,
non-linear separable functions and non-convex regions can be transformed into
MIPs. Today mixed-integer programming is a widely used tool for modeling
and solving real-world optimization problems. Applications originate in various
domains such as telecommunication, public transport or production planning (see,
for instance, Guéret et al. [I10]). The versatility of mixed-integer programming
also generated strong interest in solution methods for MIPs. A number of efficient
software packages for solving MIPs were developed, including the commercial
products CPLEX [115], XPRESS-MP [74] and Mops [139], the open-source MIP
solver CBC [I] and the constraint integer programming solver Scip [2] which is

free for academic use.

Solving mixed-integer programs is an intricate task. From a theoretical point
of view the computational complexity of solving MIPs is high. It is well known
that mixed-integer programming is N'P-hard (cf. Schrijver [152]), which means
that there is most likely no polynomial-time exact algorithm for solving MIPs. In
practice there are MIP instances which take several hours or days to solve and

others which can not be solved to optimality at all by today’s state-of-the-art
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MIP solvers. Such large computation times are often unacceptable in practical
applications.

The first algorithms for solving MIPs were proposed by Gomory [97] and Land
and Doig [127]. The branch-and-bound algorithm of Land and Doig performs an
implicit enumeration of the solution space which can be represented by a search
tree. Since optimizing the objective function over the convex hull of the feasible
solutions of an MIP is equivalent to solving the MIP itself, an alternative approach
for solving MIPs is, in theory, to find a complete description of the convex hull
of the feasible region. If we could compute the convex hull, we would be able to
obtain an optimal MIP solution by solving a linear program. Linear programs are
solvable in polynomial time (cf. Khachiyan [I18]) and general solution algorithms
for them, such as the simplex algorithm and interior point methods, are efficient
in practice. Obtaining a complete description of the convex hull is, however, as
hard as solving the MIP itself (cf. Grotschel et al. [106]). Gomory’s algorithm
thus approximates the convex hull of the feasible solutions of an MIP by adding
so-called cutting planes to the problem formulation. Cutting planes (or cuts) are
linear inequalities which are satisfied by all feasible solutions of an MIP but not by
all feasible solutions of its linear programming (LP) relaxation, which is obtained
by omitting the integrality restrictions on the integer-constrained variables.

Regardless of the theoretical complexity of MIP, the last two decades have
brought enormous performance improvements in standard software for solving
MIPs, and these for several reasons. Besides faster computers and improvements
to the simplex method (cf. Koberstein [123]), enhanced cutting plane techniques
brought about major reductions in the times needed to solve many MIPs to
proven optimality (see Bixby et al. [38]). State-of-the-art MIP solvers use both
the branch-and-bound algorithm and cutting planes. For each node in the branch-
and-bound tree the LP relaxation is solved. Cutting planes are used to strengthen
the LP relaxation by removing fractional solutions, thus reducing the search space
of the branch-and-bound algorithm. In consequence, cutting planes can lead to a
decrease in the number of enumeration nodes explored by the branch-and-bound
algorithm.

There are various classes of cutting planes for mixed-integer programs which
are generated from particular relaxations of MIPs with certain characteristics.

Cutting planes can, for instance, be categorized by the amount of information



about problem structure they use. There are cutting planes which can only be
applied if the MIP has a special structure, i.e. if specific types of constraints are
present. On the other hand, there are general-purpose cutting planes, also referred
to as cutting planes for unstructured MIPs, which can be applied independently
of any problem structure. Another possible categorization of cutting planes for
mixed-integer programs is based on the number of constraints in the relaxation
used for cut generation. Cutting planes can in particular also be derived from
multiple-constraint relaxations of MIPs.

In this thesis we focus on general-purpose cutting planes for mixed-integer
programs. We particularly concentrate on split cuts such as Chvatal-Gomory
cuts [53] and Gomory mixed-integer cuts [99]. Split cuts are known crucially
to affect the overall performance of MIP solvers. For instance, Bixby et al. [3§]
detected the Gomory mixed-integer cuts to be the most effective cutting planes
in CpLEX 8.0. We discuss several approaches in the literature which seek to
improve the performance of the Gomory mixed-integer cuts; see Cornuéjols et
al. [61], Ceria et al. [46], Andersen et al. [§] and Balas et al. [24]. We also propose
a new heuristic algorithm which obtains improved Gomory mixed-integer cuts
by performing a sequence of pivots on the simplex tableau. Moreover, we give a
detailed description of our implementation of the discussed approaches and assess
their practical usefulness based on computational experiments.

Multi-row cuts are known to play an important role in describing the convex hull
of mixed-integer sets. Cook et al. [57] provide an example with a mixed-integer set
whose convex hull of feasible solutions can not be obtained by repeated application
of split cuts such as the Gomory mixed-integer cuts, i.e. there is a facet-defining
inequality which does not have finite split rank. This facet-defining inequality
can, however, be obtained as a multi-row cut. Multi-row cuts recently gained
renewed interest; see, for instance, Andersen et al. [I1], Dey and Wolsey [78-80]
and Basu et al. [32] B33, B35 36]. In this thesis we study cutting planes which
are generated using more than one row of the simplex tableau simultaneously.
We describe a separation algorithm and highlight important implementation
details. We moreover evaluate the strength of multi-row cuts computationally
and compare them with split cuts like the Gomory mixed-integer cuts.

Cut generation routines typically produce a large number of cutting planes

violated by the current optimal solution of the LP relaxation. Adding all of
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these cutting planes to the problem formulation increases the size of the LP
relaxation, making it more difficult to solve. In particular, the increased size
of the LP relaxation repeatedly leads to higher node solution times during the
branch-and-bound algorithm. In this thesis we discuss techniques for cutting
plane selection and management to cope with the complexity introduced by the
number of generated cutting planes.

The remainder of this thesis is structured in three parts. Part [[] comprises
two chapters and introduces the basic concepts and notation used in this thesis.
In Chapter [2] we present an introduction to mixed-integer programming and in
Chapter [3| we discuss the basic algorithms for solving mixed-integer programs.
Part [[] consists of three chapters and is concerned with the state-of-the-art
in cutting plane methods. In Chapter [4] we consider single-row cuts such as
Gomory mixed-integer cuts and Chvéatal-Gomory cuts. In Chapter [5] we discuss
the derivation of cutting planes from multi-row relaxations. Chapter [6] describes
in detail the goals of this thesis. Part [[T]] comprises five chapters and is devoted to
computational techniques and experiments. In Chapter [7] we introduce the MIP
solver MoOPS, on which our work is based and discuss some important aspects of
our implementation. Chapter [§|concentrates on the separation of Chvatal-Gomory
cuts and Gomory mixed-integer cuts. We describe implementations of a variety
of algorithms designed to improve the performance of the latter class of cutting
planes and compare their computational results. In Chapter [9] we present a
scheme for generating cutting planes from multiple rows of a simplex tableau and
again highlight some important implementation details. We in addition report
on computational experiments assessing the effectiveness of multi-row cuts and
compare them with split cuts. In Chapter [I0] we describe a cut selection scheme.
Chapter [11] summarizes the main results of this thesis, offers some conclusions

and suggests possibilities for further research.
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Chapter 2.
Integer Programming Preliminaries

In this chapter we present an introduction to mixed-integer programming and
discuss the basic concepts and notation we work with in the remainder of this
thesis. We formally define the mixed-integer programming problem and introduce
its linear programming relaxation and disjunctive relaxation. We also highlight
the role these relaxations play in solving mixed-integer programs. We discuss in
particular the concept of a tight LP relaxation.

This chapter is structured as follows. Section [2.1]defines mixed-integer programs.
The linear programming relaxation is discussed in Section Section treats

of disjunctive relaxations of mixed-integer programs.

2.1. Mixed-Integer Programs

Consider the mized-integer program
(MIP) min{cx: Az > b,x > 0,2; € Z,Vj € Ny} (2.1)

where c € R", b € R™, A € R™*" and N; C N = {1,...,n}. An MIP consists of
a linear objective function, linear constraints and lower and upper bounds on the
variables. Moreover, some of the variables are constrained to take integer values.
The form in which the MIP is given is referred to as the standard inequality
form as all variables have a lower bound of zero. If N; = () we obtain a linear
program. On the other hand, if N\ N; = () we have a pure integer program. The
set of feasible solutions to is given by

XMIPZ{.IGR”:AQZZZ),Z‘ZO,.TJ‘EZ,VjGN[}. (2.2)
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Let ¢ be the optimal (minimal) objective value of (2.1)). A feasible solution
T € Xygp is called optimal if cx = ¢. Finding a feasible solution for an MIP
generally is N"P-hard (cf. Schrijver [152]).

It is sometimes more natural to consider an MIP in standard equality form or

equality form
(MIP) min{cz: Az =b,x >0,z; € Z,Vj € N} (2.3)

where ¢, b, A, and N are defined as above. We assume that the matrix A has
full row rank. This assumption is always satisfied if arises from . As
before, we denote by X/7p the feasible region of the MIP (2.3)). In Parts|I|and
of this thesis we use MIPs in the standard forms to discuss theory and algorithms.
It will be noted or should become clear from the context whether an MIP of the
form or is used. These representations of an MIP are equivalent, i.e.
any MIP can be transformed from the form to the form and vice versa.

In the following sections we discuss two relazationdl| of MIPs. Relaxations
are primarily constructed in the hope that they are easier to analyze and solve
than the original MIPs. As all feasible solutions to an MIP are also feasible to a
relaxation, information about the solution space of a relaxation is also valid for
the original MIP, and can be used to improve the solution process. For example,
valid inequalitieﬂ generated from a relaxation are also valid for an MIP. Moreover,
the optimal value of the objective function of a relaxation provides a dual bound
on the value of the objective function of an MIP (see Section [3.2)).

The most prevalent technique to solve MIPs is the branch-and-bound algo-
rithm which recursively subdivides the problem into smaller subproblems (see
Section [3.2]). For each of these subproblems the linear programming relaxation
(see Section is solved in order to obtain dual bounds. Disjunctive relaxations
are used to derive valid inequalities (see Section [2.3)).

!The set of feasible solutions of a relaxation is required properly to contain the set of feasible
solutions to the original optimization problem. Moreover, the objective value of a relaxation
has to be no worse than the value of the original objective function for all feasible solutions
to the original problem. For a more detailed discussion we refer the reader to Wolsey [175].

2Given a set X an inequality is referred to as a valid inequality if it is satisfied by all z € X.
With respect to a solution z* ¢ X a valid inequality for X is called a cutting plane (or cut)
if it is not satisfied by z*. More formal definitions for MIPs are given in Chapter



2.2. Linear Programming Relaxation

2.2. Linear Programming Relaxation

A linear program is an optimization problem in which the objective function and
the constraints are linear and all variables are continuous. Dantzig [66] proposed
the simplex algorithm to solve linear programs. Later, Khachiyan [118] presented
the ellipsoid algorithm and showed that linear programs are solvable in polynomial
time.

A linear program that is closely related to an MIP is its linear programming
(LP) relazation. The LP relaxation of is obtained by omitting the integrality

conditions on the integer-constrained variables

(LP) min{cx: Az > b,z > 0}. (2.4)
The feasible region of the LP relaxation is given by

Xep={zeR": Az > b,z > 0}. (2.5)

Let ¢* be the optimal (minimal) objective value of (2.4). A feasible solution
x* € Xpp is called LP-optimal if cx* = ¢*. The set is defined by m +n
inequalities which in turn define m 4+ n half-spaces. The set P = X p is the
polyhedron which lies at the intersection of these half-spaces. We can write the
set X s7p of feasible solutions to in the form

Xuip=PnN (ZNI X ]RN\NI> . (2.6)

We have Pr = conv(Xprp) C P, i.e. the polyhedron P contains the polyhedron
P; which is the integer hull or the convex hull of feasible solutions to (2.1)).
Concerning the MIP in standard equality form (2.3), X7 p and P will denote the

feasible domain of the LP relaxation and the associated polyhedron.

2.2.1. Tight LP Relaxation

The set Xprp of feasible solutions to the MIP (2.1) or (2.3 is contained in
the polyhedron P which is the feasible domain of the associated LP relaxation.
Typically there exist a large number of different polyhedra that all contain exactly

the solutions from Xj;;p but no additional feasible (integral) solutions. Each
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4
\ 4

(a) a formulation Py (b) an alternative formulation P,

(c) a stronger formulation Ps (d) the ideal formulation P4 (convex hull)

Figure 2.1. Formulations

of these polyhedra is called a formulation for an MIP. For instance, Figure
presents different formulations for the same integer program.

A standard technique for solving MIPs is to use an enumerative approach
which solves a series of LP relaxations. Concerning this solution approach, not all
formulations for an MIP are of the same quality. By linear programming theory,
we know that an optimal solution to an LP in standard form is an extreme point
of the solution space. Thus all fractional extreme points of a formulation P for
an MIP are potential optimal solutions for the LP relaxation . However,
these solutions are not feasible to the MIP. Ideally, the formulation for an MIP

10
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is the integer hull P; = conv(Xsrp), i.e. a formulation P having only feasible
(integral) extreme points. The strength of an LP relaxation depends heavily on
how closely Py is approximated. A formulation P that well approximates P; has

a tight LP relazation which gives strong dual bounds (see Section .

As the convex hull P; is the ideal formulation, we have
Xmip CPrCP (2.7)

for all formulations P. Solving an LP over Py is equivalent to solving the MIP (2.1))
or . More precisely, instead of solving the MIP min{cx : © € Xj;;p} we can
solve the LP

min{cz : z € Pr}. (2.8)

This, however, is primarily a theoretical result. Finding a complete description of
the convex hull of general N’P-hard MIPs is a hard if not impossible task. It is
not only difficult to characterize which inequalities describe the convex hull; their
number is often exponential in the size of the problem. We therefore concentrate
on approximating the convex hull of such problems rather than computing it
completely. More precisely, we seek to find a formulation P’ such that the optimal
extreme point of the LP min{cx : © € P’} is integer. This solution is then also
an optimal solution to the associated MIP. There are two basic ways of obtaining
formulations better approximating the convex hull. The first approach creates
extended formulations by adding additional variables. The second approach
adds additional constraints to the formulation. These constraints are called valid

inequalities.

2.2.2. Bases of the LP Relaxation and the Simplex Tableau

The polyhedron P associated with the LP relaxation of or respectively
is defined by m + n constraints, including m constraints from the system Az > b
or Az = b respectively, and n lower bound constraints from Iz > 0. Each extreme
point (vertex) x* of P corresponds to at least one basis. Concerning the LP
relaxation of , a basis B is a set of n constraints such that the submatrix
which consists of these constraints is non-singular. The solution x* that satisfies

all n constraints at equality is called the basic solution. Geometrically, x* is

11
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a vertex that lies at the intersection point of n hyperplanes. With respect to
the LP relaxation of (2.3)), a basis B is a set of m linearly independent columns
of A. The polyhedron P is said to be non-degenerate, if there is a one-to-one

correspondence between bases and basic solutions (vertices).

Assume that an MIP in the form is given. Let B be a basis of the LP
relaxation, i.e. a set of m linearly independent columns of A, and denote the
associated basic solution by z*. Moreover, let J = N \ B index the non-basic
variables, i.e. the remaining columns of A. With the partition N = (B, J) of the
variables, we have A = (Ap, Ay) and = (zp,z). The matrix Ap is called the

basis matriz. We can write

Az =D, (2.9a)
Apxp + Ajry =0b, (2.9b)
rp = Aglb - (AEIAJ) xTyJ. (290)

The vectorial Equation (2.9¢)) is known as the simplex tableau. Fach row of the
simplex tableau is associated with a specific basic variable. Let eiAE;l be the "
row of the basis inverse where e; is the i*” unit vector. For simplicity, we assume
this row of the basis inverse to be associated with the basic variable z;. Also let
(Ay); be the 4t column of A ;. We obtain

.%‘Z':l‘f—z&ijibj, 1 € B, (2.10)

JjeJ
where z} = (eiAl_gl)b and a;; = (eiA;)(AJ)j with ¢ € B and j € J. We note,
however, that in practice the relation between basic variables and rows of the
basis inverse is dependent on the order of the columns in the basis matrix Ap.
We will sometimes substitute a;o for 7 in the tableau row (2.10)). To simplify the

notation the basic and non-basic integer constrained variables will be denoted by
By = BN Ny and J; = J N Ny respectively.

12
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2.3. Disjunctive Relaxation

Disjunctive programming [19] can be seen as an extension of integer programming.
More precisely, disjunctive programs are allowed to contain disjunctions of linear
constraints. This is a highly intuitive modeling approach since it captures the
idea of choosing from a number of alternatives. For example, any combinatorial
optimization problem can be modeled as a disjunctive program where each of the
disjunctions is one of the feasible solutions. In general, integer programs and other
non-convex optimization problems can also be formulated as disjunctive programs,

i.e. statements about linear inequalities connected by the logical operator “or”.
A disjunctive program is of the form
Az > b

(DP) min| cz: \/ , (2.11)
i€Q r >0

where ¢ € R”, and b* € R™, A® € R™*" Vi € . The feasible solutions of this
disjunctive program are given by the disjunctive set
Az > b

Xpp=(SazeR":\/ - : (2.12)
ieQ X 0

\%

Y

Here we assume that (2.11)) is a disjunctive relazation of an MIP in the form (2.1)).

More precisely, we assume that

A A , b
At = A and ' = ], VieqQ, 2.13

and that Xprrp = Xpp N (ZNT x RN\NI), i.e. the disjunctive set contains all of
the feasible solutions to (2.1)). In addition, let

Pt = {xeR";Aixzb",xzo}, Vi € Q. (2.14)
Each of the sets P is a polyhedron. We can restate the disjunctive set (2.12)) as
Xpp=J P (2.15)

1€Q

13
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This shows that disjunctive programming is in fact the optimization over the
union of (convex) polyhedra. The union of these polyhedra is not, however,

necessarily convex.

2.3.1. Disjunctive Inequalities

A disjunctive inequality is a valid inequality which is derived from a disjunction.
The idea is to find an inequality that is valid for each term of a disjunction, or in
other words for each polyhedron P?. It then follows that this inequality is also

valid for the disjunction itself, i.e. for the union Xpp.

Proposition 2.1 ([T9]). Let a' € R" and b' € R. Suppose the disjunctive set

a'zx b
S=SzeR":\/ (2.16)

v

is given. An inequality ax > [ is valid for S if and only if

ajzl?e%c{a;i}, j=1,...,n, (2.17a)
§ < min {v'}. (2.17b)

Proposition plays a central role in deriving valid inequalities for both
disjunctive and mixed-integer programs. However, in our case, each polyhedron
P' (see Equation (2.14)) is described by a set of inequalities. In order to be able
to derive a disjunctive inequality using Proposition the systems (A%, b) need
to be subsumed by single inequalities.

To this end linear combinations (uA%)z > u'b' with v’ > 0, Vi € Q are
considered. These linear combinations are called surrogates. For an inequality
to be valid for a set it has to be dominated by a surrogate of the corresponding
constraint system. One can think of a surrogate as a reformulation in the sense
that it brings out information about feasible solutions that is implicitly contained
in the original problem description. Surrogates are particularly helpful in detecting
inconsistency of a constraint system. By first constructing surrogates and then

applying Proposition [2.1] we obtain the following result.

14
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Theorem 2.2 ([19, 21]). Consider the polyhedra
Pr={zeR": Alw >t 0>0} £0, VieQ. (2.18)

An inequality ax > B is valid for Xpp = Ucq P if and only if there exist
ut € R™i, u! > 0 such that

a>u'Al, Vieq, (2.19a)
B<ub, VieQq. (2.19b)

To identify multipliers u? > 0 such that the surrogates (u‘A%)z > u’b* dominate

an inequality ax > 3, one can construct the following linear program:

max 0, (2.20a)
sit. a—u'A" >0, VieqQ, (2.20D)
—B4+u'bt >0, VieqQ, (2.20c)

ut >0, VYieQ, (2.20d)

(o, B) € R™L. (2.20e)

Inequalities (2.20b)) and (2.20c|) ensure that the inequality az > £ is valid, i.e.
that it is dominated by a surrogate of every disjunct. The system ([2.20]) can be

exclusively written in the variables u’ by eliminating the unrestricted variables
a and . Solving the resulting system, one obtains the multipliers u’. A valid

inequality ax > [ is then generated by setting

aj = max {u Aj}, (2.21)
for j=1,...,n and
g = min {ub }, (2.22)

where A;- is the j*" column of A,

15
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2.3.2. Generating Deepest Disjunctive Cuts

Suppose a solution z* ¢ Xpp is given and we seek to find a disjunctive inequality
which is violated by this solution. A solution z* violates an inequality ax > 3 if
B — ax* > 0. The most violated (deepest) disjunctive cut is therefore found by
adding an appropriate objective function to the linear program .

Proposition 2.3 ([19]). Consider the polyhedra
Pi:{xeR”:Aibei,xZO}#@, Vi€ Q, (2.23)

and their union Xpp = UieQ P'. Moreover, suppose a solution z* ¢ Xpp is
given. Then the most-violated (deepest) disjunctive cut ax > [3 with respect to x*

is found by solving the so-called cut generating linear program (CGLP)

(CGLP) max f— azx”,

s.t. a—uA" >0, VieqQ,
—B+ub >0, Vieq, (2.24)
u' >0, Vie€Q,
(o, B) € R

Apparently, the system is a polyhedral cone. Moreover, it is the cone
that contains all valid inequalities for (2.12]). This observation is important since
it allows us to generate solutions for (i.e. cutting planes) that are arbitrarily
good (in the sense of the objective function). For example, suppose we have
identified a feasible solution (&, 3, {#'}icq) to (2.24). This solution generates the
valid inequality az > B using the multipliers @*, Vi € Q. Let § — az* = & > 0,
i.e. the inequality is actually a cut for an arbitrary solution x*. Now, consider
a second solution (A@, A3, {\i'}icq) with A € R, A > 0. Tt is easy to check that
this solution is also feasible for the linear program . Moreover, this solution
produces the cut A@z > A3 which is identical with that generated from the first
solution. However, for A > 1 this cut is A times more violated than az > 3
since A3 — Aaz* = X\ > & > 0. It is therefore possible to scale a solution (or
cut) such that the objective function has the value infinity. This is one of the

major drawbacks of maximizing the violation over a polyhedral cone. There are
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two approaches to overcoming issues related to scaling. Firstly, we could try
to find a better objective function for the linear program (2.24]). Secondly, we
could truncate the polyhedral cone by a bounding constraint which prevents the

solutions from scaling up indefinitely.

The ideal objective function for (2.24) would be to maximize the distance

between the solution z* and its orthogonal projection on the hyperplane ax = 5.
B—ax*

llell
objective function is not affected by scaling. On the other hand, it is non-linear

This distance is given by , where || - || is the Euclidean norm. Obviously this

ruling out standard LP methods to solve the resulting cut generating non-linear
program. Accordingly, the objective function is kept unaltered and bounding

constraints are considered.

Balas et al. [24], 25] discuss different bounding constraints for the system ((2.24)

which they call normalizations. These constraints are

18] <1, (2.25)
laj| <1, j=1,...,n, (2.26)
n
>l <1, (2.27)
j=1

and are imposed directly on the coefficient vector o and the right-hand side
[ of the disjunctive cut. Each of these normalizations has certain drawbacks.
While introducing the constraints or into the linear program
is easy, normalization does not guarantee that « is bounded in general
and normalization is computationally less attractive (with respect to the
quality of the generated cuts). Similarly, while performs well in practice, it
has to be linearized. For a detailed study see [24] [25].

As an alternative, Balas [20] proposes the normalization
mi
> <Z u;> <k, (2.28)
i€Q \I=1

where k£ > 0. This normalization is considered by Ceria and Pataki [47] for the case
k = 1. Instead of directly restricting the coefficients of the cut and its right-hand

side, normalization ([2.28) imposes a restriction on the non-negative multipliers
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u', Vi € Q. As o and 3 are determined by a linear combination involving these

multipliers (see Equations (2.21)) and (2.22))), the normalization (2.28) bounds all

variables in ([2.24]). It follows that the objective function is bounded as well.

A special case of the normalization ([2.28)) is given by
mi
> (Z u;> =1 (2.29)
i€Q \i=1

The latter normalization was studied by Ceria and Soares [48] and later by Balas
and Perregaard [29, B0]. Normalization (2.29) is easily integrated into the linear
program ([2.24]) and tends to produce cuts with nice properties (see [87]). It has

thus become the most widely used normalization constraint.

2.3.3. Examples

Example 2.4. Consider the integer program

min r1 + X9,
s. t. -1 + x2 > -1
! 2= (2.30)
51 + 3z > 11,
xr1,T2 € VA

Solving the LP relaxation yields the fractional solution x* = (1%, %) With regard

to this solution, we examine the valid disjunction

5c1 + 3z > 11 \/ —r1 + X9
> -1

AV

2

—x1 T

! ) (2.31)

and try to find a valid inequality cutting off z*. Figure|2.2(a)| shows the feasible
regions of each of the disjuncts (in the LP relazation). We associate the multipliers

u,v € Rf_ with the first and second terms of the disjunction respectively

((5U1 — U2) x1 + 3uixg > 11ug — UQ)

V ((—v1 +v2) 21 +v1we > —v1 + 209) . (2.32)
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(a) an integer program and a disjunctive  (b) a disjunctive inequality cutting off the
relaxation fractional LP solution

Figure 2.2. An example of a disjunctive cut

Theorem states that an inequality ax > B is valid for if and only if it is
dominated by each of the surrogates in . Setting u = (1,2) and v = (3,6), we
obtain the surrogate 3x1 + 3x2 > 9 for both disjuncts. Clearly, by Proposition|2.1
this inequality is then also valid for the original integer program . Moreover,
it cuts off the fractional solution x* as shown in Figure|2.2(b).

Example 2.5. Consider the simple mized-integer set
X={(zy) eRy xZ' :z+y>0b}. (2.33)

A disjunctive relaxation of (2.33)) is given by the set Xpp = P! U P? (see
Figure [2.3(a)) where

P'={(z,y) €RL xR ;2 +y > b,y < [b]} (2.34)

and
P?={(z,y) e Ry xR 1y > [5]}. (2.35)

In what follows, we assume that the right-hand side b is fractional and let
f=b—1b] >0 denote the fractional part of b. The surrogates of the disjuncts
P! and P? are given by

u(x s ) Vool ) (2:36)

-y
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k///// N

Figure 2.3. The simple mixed-integer rounding inequality

where u € R2 and v € RY. Let u = (%, % —1) and v =1. We obtain the valid
inequality

+ty

Y

4] (2.37)

|8

for Pt and the valid inequality y > [b] for P%. In fact, by applying Proposz’tion
we have that Inequality is also valid for the simple mixed-integer set
(see Figure |2.3(b)). This disjunctive inequality is well known as the simple
mized-integer rounding inequality (see Wolsey [175]).
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Chapter 3.
Algorithms

In the preceding chapter, we introduced mixed-integer programming problems
and two important relaxations. We pointed out that any MIP can be solved by
finding a complete description of the convex hull of its feasible solutions. We
showed, furthermore, how disjunctive relaxations can be used to derive valid
inequalities.

In this chapter we deal with algorithms for solving MIPs. After formally
defining the terms valid inequality and cutting plane, we discuss cutting plane
algorithms which attempt to solve MIPs by applying cutting planes to the LP
relaxation. We further consider the branch-and-bound algorithm which tackles
MIPs by successively dividing them into smaller subproblems. We highlight
the merits and demerits of each of these solution approaches and also discuss
how state-of-the art MIP solvers combine the branch-and-bound algorithm with
cutting planes.

This chapter is organized as follows. In Section we deal with cutting planes
and cutting plane algorithms. The branch-and-bound algorithm which employs a
divide-conquer-strategy to solve MIPs is introduced in Section

3.1. Cutting Planes

In practice, LP relaxations are often weak in the sense that the polyhedron P
provides a bad approximation of the convex hull of feasible solutions P;. Additional
constraints (valid inequalities) are introduced to strengthen the LP relaxation by
excluding fractional solutions from its feasible domain without removing integral
solutions. An inequality ax > f is valid for Pr if P C {z € R" : ax > [}.
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Chapter 3. Algorithms

Figure 3.1. A cutting plane separating a fractional LP solution z*

Moreover, an inequality ax >  is called a cutting plane (or cut) for z* & Py if

the solution z* does not lie in the half-space defined by ax > 3, i.e.
2 g {x eR":ax > p}. (3.1)

Consequently, the cut separates the solution z* from the convex hull P; (see
Figure |3.1)).
To find a violated cutting plane, one can solve the separation problem. This

problem is defined as follows.

Given a feasible solution z* to the LP relaxation (2.4) which is not
feasible to the MIP , find a valid inequality ax > S for the
MIP that is violated by (or, in other words, cuts off) z*, i.e.
ar® < f.

The separation problem for a class of cutting planes is often modeled as a
(non-) linear optimization problem. An algorithm which is designed to solve the
separation problem is referred to as a separation algorithm. There are two kinds of
separation algorithms, exact and heuristic. An exact separation algorithm solves
the separation problem and is therefore guaranteed to find a violated cutting plane,
if one exists. Exact separation is not always cost-efficient, especially when the
separation problem is large and difficult to solve. Separation heuristics perform a

heuristic search for violated cutting planes, e.g. by examining a sufficiently small
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3.1. Cutting Planes

relaxation of the separation problem. While these heuristics are fast, they can
fail to find a violated cut even if there is one.

Any MIP can be solved by finding a description of the convex hull of feasible so-
lutions Pr. A cutting plane algorithm is that which approximates P; by iteratively
solving the LP relaxation and the separation problem (see Algorithm [3.1). If the

Algorithm 3.1. Cutting plane algorithm
Input: MIP (2.1)).
Output: An optimal solution z to the MIP with objective
value ¢, or model is infeasible indicated by ¢ = co.

(step 1) Solve the LP relaxation
Solve the LP relaxation to optimality.
(Check for infeasibility.) If P = () (the LP relaxation is infeasible)
set ¢ := oo and exit.

Otherwise, let * be an optimal solution to the LP relaxation with
objective value c*.

(Check for optimality.) If z* is feasible for the MIP (2.1)) set

T := " and ¢ := ¢*, and exit.

(step 2) Solve the separation problem
Solve the separation problem to obtain a cut axz > § for x*.
Add this cut to the formulation of the MIP.

Goto Step

solution to the LP relaxation is not feasible to the MIP, the algorithm separates
this solution from P; by solving the separation problem. This process is iterated
until the optimal solution of the LP relaxation is feasible to the MIP or the LP
relaxation is infeasible. Gomory [97, 99] proposed a cutting plane algorithm which
converges finitely for integer programs in rational data. In practice, however, this
algorithm usually needs an exponential number of cutting planes and iterations
to achieve convergence. Thus the size of the problem formulation is increased
dramatically, which complicates the solution of the LP relaxation. In addition,
the cuts Gomory used in his algorithm are vulnerable to numerical inaccuracies
which influence the numerical stability of the LP solverE] Gomory [98] also intro-

duced a cutting plane algorithm for MIPs which does not have finite convergence

'However, Zanette et al. [I77] have recently shown that Gomory’s cutting plane algorithm [97,
99] can be effective when used in conjunction with the lexicographic dual simplex method.
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properties in general. In the hope of achieving faster convergence, Algorithm [3.]]

can be adapted to add more than one violated cut at the same time.

3.2. Branch-and-Bound

A method for solving general optimization problems is the branch-and-bound
algorithm. The branch-and-bound algorithm is a divide-and-conquer solution
technique which uses an implicit enumeration to explore the solution space. Given
a problem instance, this means that the solution space is recursively divided into
smaller subproblems. The hope is that these subproblems become easier to solve
as the algorithm proceeds (and the subproblems become smaller and smaller).
Land and Doig [127] were the first to present a branch-and-bound algorithm for
integer programming.

The flow of the branch-and-bound algorithm is shown in Algorithm [3.2] The
action of dividing a (sub-) problem into smaller subproblems is called branching.
In so doing the algorithm creates a so-called branching tree. An example of such
a tree is depicted in Figure In Step [1] of Algorithm the original MIP
is added to the empty list £ of unprocessed problems (nodes). This problem
represents the root of the branching tree (see Figure . On the other hand,
the leaves of the branching tree are either unprocessed (unsolved) subproblems or
subproblems which were solved and taken out of consideration.

The process of removing parts of the branching tree which can be guaranteed
only to contain inferior solutions is called bounding or pruning. Specifically, the
bounding in Step [5] of Algorithm [3.2] prevents the algorithm from performing a
complete enumeration of the solution space. A node can be pruned by infeasibility,
bound or optimality. The key ingredients in the bounding step are strong dual
(lower) bounds and primal (upper) bounds. Dual bounds are obtained by solving
the LP relaxation Sgr for each node S. Primal bounds are either found when
a node is pruned by optimality or by primal heuristics. The effectiveness of
bounding is also heavily dependent on the node selection and branching strategy.
It is important to find a good primal bound and cut off parts of the search tree
as early as possible.

Algorithm is also called LP-based as it solves LP relaxations to obtain

dual bounds. In general, an arbitrary relaxation can be used to this end. Such
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Algorithm 3.2. Branch-and-bound algorithm
Input: MIP denoted by R.
Output: An optimal solution Z to the MIP with objective
value ¢, or model is infeasible indicated by ¢ = co.

(step 1) Initialize
Add original problem to the list of unprocessed nodes £ := {R},
and set global upper bound ¢ := co.

(step 2) Check termination criteria
If £L=0,set z:=2 and ¢ := ¢, and exit.

(step 3) Select node
Choose node S € L, and update list of unprocessed nodes

L:=L\{S}

(step 4) Calculate dual bound
Solve the LP relaxation Sk of S.

(step 5) Bound
(Prune by infeasibility.) If S is infeasible, goto Step
Otherwise, let * be an optimal solution to Sr with ¢* being the
objective value.
(Prune by bound.) If ¢* > ¢, goto Step
(Prune by optimality.) If 2* is feasible for R, set & := z*, ¢ := ¢¥,

and goto Step
(step 6) Branch

Create two subproblems S = S U Sy, set £ := LU {51, S2}, and
goto Step

a relaxation is required to be relatively easy to solve and to yield strong dual
bounds. Note that these requirements do not usually coincide. The optimal
solution to the LP relaxation is also used to decide on which variable to branch
next. Consider an integer variable z;, j € Ny, and let z7 ¢ Z be the value of
this variable in the optimal solution to the LP relaxation. We construct two
subproblems 51 = SN{z € R" : x; < [27]} and Sy = SN {z € R" : z; > [2]]},

i.e. we branch on the disjunction

(5 < |25]) v (22 [3]). (5.2)
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root node

solved
subproblem

pruned by
optimality

pruned by
infeasibility

\\ / or bound

unsolved subproblems

Figure 3.2. Branch-and-bound tree

Branching on such two-term disjunctions involving only single variables is called
single-variable branching. Linderoth and Savelsbergh [132] and Achterberg et
al. [5] give excellent overviews of single-variable branching rules and study their
computational usefulness. A different approach is to branch on constraints or

general disjunctions of the form
(mx < mp) V (mz > mo+1). (3.3)

Different strategies for branching on general disjunctions and computational
results are discussed by Karamanov and Cornuéjols [117], Cornuéjols et al. [62]
and Mahajan and Ralphs [I34]. It is also possible to create more than two
subproblems during branching, i.e. to branch on multiple-term disjunctions.
State-of-the-art MIP solvers combine the branch-and-bound method with
cutting plane techniques to benefit from a stronger LP relaxation during bounding.
The first approach, called cut-and-branch, strengthens the LP relaxation at the
root node by a reasonable number of cutting planes, and then solves the problem
by branch-and-bound. An alternative strategy is to strengthen the LP relaxation
by cutting planes at further selected nodes of the branching tree. This approach
is called branch-and-cut. Some complications arise since one needs to distinguish
between locally and globally valid cutting planes. The latter can be applied

throughout the entire search tree. By contrast, locally valid cutting planes use
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information about branching decisions and are thus only valid in the current
subtree. Consequently these cuts must be removed from the LP relaxation once

the algorithm leaves this part of the branching tree.
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Chapter 4.
Single-Row Cutting Planes

In Part [[|of this thesis, we presented an introduction to mixed-integer programming
and described solution approaches for mixed-integer programs. We focussed
particularly on valid inequalities and cutting planes. We showed how wvalid
inequalities can be derived from disjunctive arguments and discussed how the
LP relaxation of MIPs can be strengthened by using valid inequalities as cutting
planes.

In this chapter we are concerned with general-purpose cutting planes derived
from single-row relaxations of MIPs. We review the state-of-the-art in cutting
plane methods and give a unified presentation of the different techniques. In
particular we concentrate on the Gomory mixed-integer cuts and discuss several
approaches which seek to improve their performance.

This chapter is structured as follows. Section explains why single-row
relaxations are studied and defines the term “single-row inequality”. In Section
we review the relevant literature. Section treats Chvatal-Gomory cuts which
are derived from single-row relaxations of pure integer programs. Section is
devoted to cutting planes for general MIPs and discusses different classes of split

cuts.

4.1. Introduction

As the name suggests, single-row relaxations of MIPs only consist of single linear
constraints. Such optimization problems are rarely encountered in practice. In
fact, MIPs arising from practical applications tend to become more and more

complex in the number of variables and constraints involved. On the other hand,
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single-row relaxations are very interesting from a theoretical point of view. In
comparison with general MIPs, these relaxations are very simple, which makes
them easier to analyze. Let us reconsider the MIP . If we aggregate the
constraints of using the weights u € R'[", we obtain the single-row MIP

min {cx : (uA)x > ub,x > 0,x; € Z,Vj € Ny} (4.1)

which is a relaxation of . We refer to an inequality derived from a relaxation
of the form as a single-row inequality or single-row cut respectively. In other
words, any inequality that is derived from a single linear constraint including lower
(and upper) bounds and integrality requirements on the variables is a single-row
inequality.

Any solution to is also a solution to . Moreover, any inequality that
is valid for is also valid for . The latter fact is one of the main reasons
why single-row relaxations are studied. More precisely, the hope is that strong
inequalities for , which ideally would be facet—deﬁningﬂ will turn out to be
strong inequalities for and that these inequalities then enable more efficient
solution of complex MIPs. The generation of valid inequalities (cutting planes)
which are based on single-row relaxations is a central component of today’s
state-of-the-art MIP solvers. For example, Bixby and Rothberg [38] report on
notable performance degradations obtained by switching off the generation of
these cutting planes in CPLEX [115].

Valid inequalities from single-row relaxations have been studied intensely during
the last decades. In fact most valid inequalities in (mixed-) integer programming
are based on a particular single-row relaxation. In the following section we give a
brief review of the most important publications on this subject. For an excellent

survey on single-row cutting planes we refer the reader to Cornuéjols [59].

4.2. Literature Review

In 1958 Gomory [97] published a seminal paper in which he proposed an algorithm

to solve pure integer programs using a class of cutting planes which are derived

LA facet is a face of dimension one less than the dimension of the associated polyhedron. For a
detailed discussion we refer the reader to Wolsey [175].
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from the simplex tableau. This algorithm is today known as Gomory’s fractional
cutting plane algorithm. Gomory also stated (without proof) that his algorithm
obtains the integer optimum in a finite number of steps. Later Gomory [99]
analyzed his fractional cutting plane algorithm in more detail and proved finiteness
(for integer programs in rational data). As no finite algorithm for solving integer
programs was known to that day, Gomory’s initial paper represents a revolution
in the field of integer programming. Thus the year 1958 is considered to mark
the birth of integer programming. In [98] Gomory extended his work to mixed-
integer programs and proposed the Gomory mized-integer cut. He also showed
that a pure cutting plane algorithm which is based on these cuts (Gomory’s
mized-integer cutting plane algorithm) converges finitely if the objective function
is integer-valued.

Although the Gomory fractional and Gomory mixed-integer cuts have very
nice theoretical properties, these were, for several reasons, considered useless in
practice for more than thirty years. First of all, pure cutting plane algorithms
turned out in practice to converge very slowly. This means that a large number
of cutting planes (iterations) was necessary to achieve convergence. Moreover,
working on the simplex tableau, Gomory cuts are highly prone to numerical
inaccuraciesﬂ In the 1990s, Balas et al. [26] reevaluated Gomory cuts in the
course of their work on a special class of disjunctive cuts, namely lift-and-project
cuts. Surprisingly, in their experiments, Gomory cuts proved to be effective.
In contrast to previous approaches, Balas et al. embedded Gomory cuts into a
branch-and-cut framework and added several cuts at a time (in rounds) before re-
optimizing the LP relaxation. Moreover, enhancements in the numerical stability
of LP solvers made Gomory cuts more reliable. Cornuéjols [58] gives an excellent
overview of the history of Gomory cuts and the development that led to their
rediscovery. Since then Gomory cuts have been studied intensively, resulting
in several improvements and variations [8, B0, [46, [61), 129]. The most recent
approaches are due to Fischetti and Salvagnin [88] who propose a relax-and-cut
framework for Gomory mixed-integer cuts and Dash and Goycoolea [69] who
discuss several heuristics for obtaining strong Gomory mixed-integer cuts from

alternative bases of the LP relaxation.

2However, we note again that Zanette et al. [I77] recently reported on an effective implementa-
tion of Gomory’s algorithm [97].
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Balas et al. [24] propose lift-and-project cuts which are a subclass of the dis-
junctive cuts. These cuts are derived from a simple disjunction of the form x < 0
or x > 1 on a 0-1 (binary) variable. The most-violated lift-and-project cut can
be found by solving a cut generating linear program (cf. Proposition . Com-
putational experience with lift-and-project cuts in a branch-and-cut framework
is reported in [25] and additional enhancements of the method are documented
in [20] 29]. Although lift-and-project cuts proved to be effective, setting up and
solving the cut generating linear program involves a large amount of additional
computational work which is not always cost-efficient. This changed when Balas
and Perregaard [30] presented an elegant algorithm which mimics the optimization
of the cut generating linear program by performing pivots on the original linear
programming tableau. Different variants of this algorithm are discussed and

evaluated computationally in [22] 23].

An additional class of cutting planes which are derived from a single-row
relaxation are the knapsack cover cuts [18, 11} 172]. These cuts are based
on the observation that certain variables (which form a so-called cover) are
not allowed all simultaneously to have a non-zero value in a feasible integral
solution. The process of lifting additional Variablesﬂ into cover inequalities is
treated in [144], 145, 173]. Crowder et al. [65] discuss an algorithm for solving 0-1
IPs which includes an a priori generation of cover cuts. Nowadays, all successful
commercial software packages for solving MIPs contain separation routines for
cover cuts. There are a large number of further publications related to cover
inequalities. For instance, Weismantel [168] proposes the larger class of weight
inequalities which includes cover inequalities. Other papers study extensions of
cover inequalities which are able to handle additional side constraints [107), [174]
or general integer knapsacks [45]. The complexity of the separation problem for
cover cuts is examined in [108, 120]. On overview of knapsack cuts is given by

Atamtiirk [15].

Clique inequalities [144] are valid for set packing polytope and are derived from

the so-called intersection graph. Each node in this graph represents a column

3In the context of cover inequalities, lifting means that coefficients for the variables which are
not in the cover are computed. In general, the process of deriving a valid inequality for a
set from an inequality which is valid for a lower-dimensional restriction of the set is called
lifting. For instance, lifting is discussed thoroughly by Nemhauser and Wolsey [143].
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in the set packing problem. Two nodes are connected by an edge whenever the
corresponding columns appear together in a set packing constraint at least once.
A clique in the intersection graph then translates into a set of variables from
which only one can be selected in a feasible solution to the set packing problem.
This gives rise to a family of valid inequalities, namely the above-mentioned
clique inequalities. Hoffman and Padberg [I13] use clique inequalities in a branch-
and-cut framework to solve set partitioning problems arising from airline crew
scheduling. Moreover, they also discuss the lifting of clique inequalities.

Another well-studied single-row mixed-integer set is the (binary) single-node
flow set. The flow cover inequalities developed by Padberg et al. [I47] are valid
for this set. In [165] van Roy and Wolsey study a variant of the single-node flow
set and define two families of valid inequalities. The separation algorithm for flow
cover inequalities, its implementation and computational results are presented
in [166]. Gu et al. [109] suggest an efficient approach to lift flow cover inequalities
and report on extensive computational experiments.

Mixzed-integer rounding (MIR) inequalities appeared in [142] and are valid for
mixed-integer knapsack sets (see also [143] [174]). Whether or not MIR cuts are
useful from a computational point of view was for quite a while an open question.
Marchand and Wolsey [135] proposed a sophisticated separation heuristic for
MIR cuts that features constraint aggregation and bound substitution. Their
results showed that MIR cuts can significantly reduce the integrality gap on
many instances from MIPLIB 3.0 [37]. Moreover, Marchand and Wolsey pointed
out that other families of strong valid inequalities (weight, residual capacity,
mixed cover and flow cover inequalities) are actually MIR inequalities. Given
these positive results, separation routines for MIR cuts have been integrated
into commercial MIP solvers where they are among the most effective cutting
planes [38]. Recently, several extensions to MIR cuts have been proposed [16, [70),
71, [119]. Furthermore, the exact separation of MIR inequalities is investigated
in [73)].

Chvdtal-Gomory (CG) inequalities [53] are valid inequalities for pure integer
programs. These inequalities are derived by weighting and summing up a set of
inequalities, followed by a rounding. If the weights (multipliers) are restricted

1

to either 0 or 5 we obtain the {0, %}—Chvétal—Gomory cuts of Caprara and

Fischetti [42]. In particular, {0, %}—cuts subsume some classes of problem-specific
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valid inequalities for the matching polytope and the stable set polytope among
others. The more general class of mod-k cuts is examined by Caprara et al. [43]
who particularly concentrate on the complexity of the separation problem. Let us
note that the mod-2 cuts are precisely the {0, %}—cuts. A separation algorithm for
{0, 3}-cuts and its implementation is discussed in [I3] [126]. In addition, there are
several other contributions concerning CG inequalities. For instance, Letchford
and Lodi [129] propose a strengthened variant of the CG cuts and report on
preliminary computational tests. Fischetti and Lodi [86] address the question of
how useful CG cuts are in practice by solving the separation problem (an MIP)
in a pure cutting plane framework. Their results show that CG cuts are very
effective and succeed in closing large percentages of the integrality gaps of the
pure IPs in MIPLIB 3.0 [37]. Another direction of research is to apply CG cuts
to mixed-integer programs. Bonami et al. [40] extend the separation problem
for CG cuts to handle continuous variables. The results with this approach are
promising, especially when the continuous variables only play a minor role in the

structure of the problem.

Typically, to compare different families of cutting planes their elementary
closures are analyzed both theoretically and computationally. Given a family of
cutting planes F and a polyhedron P, the elementary closure of P with respect
to F is the set of all points in P satisfying the cutting planes in the family F.
In particular, Nemhauser and Wolsey [142] proved that Gomory mixed-integer
cuts, split cuts and MIR cuts are equivalent, i.e. their elementary closures are
identical. For an overview of the relation between various classes of cutting
planes we refer the reader to Cornuéjols and Li [60]. Another important notion is
the rank of an inequality which was introduced by Chvatal [53] for the special
case of CG inequalities. Loosely speaking, the rank of an inequality from the
original formulation of a polyhedron P is 0 whereas any inequality obtained from
a combination of rank-0 inequalities for P has rank 1 and so onE| The concepts
of the rank of inequalities and the closures of a polyhedron P are closely related.
The elementary closure is precisely the intersection of all rank-1 cutting planes.
As mentioned above, several authors investigate computationally the strength

of the elementary closure of specific classes of cutting planes. Dash et al. [73]

“For a precise definition of the rank of an inequality we refer the reader to Chvatal [53].
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study the MIR closure (see also [39]) while Balas and Saxena [3I] analyze the
strength of the split closure. The elementary closure of CG and projected CG
cuts is studied by Fischetti and Lodi [86] and Bonami et al. [40] respectively.

4.3. Chvatal-Gomory Cuts

In this section we consider Chvatal-Gomory (CG) cuts for pure integer programs
which were introduced by Chvatal [53]. This section comprises two subsections.
Section is devoted to a subclass of the CG cuts known as {0, § }-cuts [42].
In Section we elaborate on how to obtain stronger CG cuts. In particular,
we consider the strong CG cuts of Letchford and Lodi [129].

Pure integer programs (IPs) may be seen as special cases of MIPs in which all
variables are integer-constrained. For convenience, we introduce IPs in a slightly

different notation. Consider an IP of the form
(IP) min{cr:2z € Xpp,x € Z"}, (4.2)
where ¢ € R™ and the feasible set to the LP relaxation is given by
Xpp={z eR": Ax < b,z > 0} (4.3)

with the integral matrix A € Z™*™ and the integral vector b € Z™. Again,
we use P = X p to denote the polyhedron associated with the LP relaxation.
The system defining P can be written as a system of equations Ax + s = b by
introducing a vector s of slack variables. As above, let Pr denote the convex hull
of the feasible solutions of .

Proposition 4.1 ([53]). The Chvdtal-Gomory cut
luA] x < |ub], (4.4)

where v € R is valid for the IP (4.2)).

It is easy to see that CG cuts match our definition of single-row cuts. The
values u; € Ry for ¢ =1,...,m are called the CG multipliers. It can be shown
that the vector of CG multipliers u of undominated CG cuts satisfies u € [0, 1[™.
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CG cuts can be applied without knowing the structure of an IP (see Figure .
Let a = uA and ag = ub. For an arbitrary vector u € R’ the inequality ax < ag
is valid for the polyhedron P. It follows that the inequality |a]x < ag is also valid
for P. Now suppose that ag is non-integral. Then the inequality |a|z < |ag] is
valid for P; but not for P. On the other hand, if a¢ is integral the CG inequality
will not cut off any part of the polyhedron P.

An important characteristic of CG cuts is that they are sufficient to describe
the convex hull Py of feasible solutions to the pure IP (4.2)) [53, 97]. This means
that any valid inequality for P; can be obtained as a CG inequality by applying
Proposition a finite number of times.

Given an arbitrary solution z*, the CG separation problem is to find a vector
u of CG multipliers such that the resulting CG inequality is violated by z* (see
Fischetti and Lodi [86]). Eisenbrand [82] proved that the separation problem
for CG cuts is N'P-hard. The CG separation problem can be modeled as a

mixed-integer program

max ax® — 3,

s. t. a; < udj, forj=1,...,n,
B > ub—1+c¢, (4.5)
u; > 0, fori=1,...,m,
(o, B) € 2",

where A; is the 4% column of A and e is a small positive value. The objective
function maximizes the violation of the CG cut ax < § with respect to the
solution x*. The constraint matrix of (4.5 has n+ 1 rows and n+m + 1 columns.

The CG separation problem is thus large and solving it is not always practicable.

We now consider a special case in which finding a separating CG cut is trivial.
Let z* be a non-integral basic solution to the LP relaxation of , i.e. a
non-integral vertex of P. Suppose that x is non-integral and let u = eiAgl be
the ¥ row of the basis inverse. Applying Proposition we obtain the CG cut

KeiAE,l) AJ z < KeiAE;l) bJ : (4.6)
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\ 4

(a) A polyhedron P and its integer hull P; (b) A valid inequality for P (gray dashed

in R? line) and the resulting CG cut (red solid
line) which is valid for P;. The cut depicted
by the red dashed line is valid for Pr but
cannot be derived from P as a CG cut.

(¢) Another valid inequality for P (gray (d) The resulting polyhedron P’ and a valid
dashed line) and the resulting CG cut (red inequality for P’ (gray dashed line). Now,
solid line) which is valid for P;. the cut from Figurecan be derived as

a CG cut from P’ (red solid line).

Figure 4.1. Examples of Chvatal-Gomory cuts
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Since we assumed that =} = (e;A5")b is non-integral the CG cut (6] is violated
by the amount z — [z} ] > 0. The CG cut (4.6) is well known as the Gomory
fractional cut [97, [99]. The Gomory fractional cut can thus be seen as a CG cut

derived from a row of the simplex tableau.

4.3.1. {0, ;}-Chvatal-Gomory Cuts

The {0, }-Chvital-Gomory cuts (or {0, 3}-cuts) of Caprara and Fischetti [42]

are a special case of the general CG cuts. Here the components of the vector u
1
2
As mentioned above, one of the main reasons for studying {0, 3 }-cuts is that

of CG multipliers are constrained to be either 0 or 1, i.e. we have u € {0, 3}™.
many problem-specific facet-defining inequalities for combinatorial optimization

problems are actually {0, }-cuts.

Proposition 4.2 ([42]). The {0, 3 }-cut
|luAd] z < |ub], (4.7)

where u € {0, $}™ is valid for the IP (4.2).

Gentile et al. [94] showed that {0, 2 }-cuts are sufficient to describe the convex
hull Py of feasible solutions to the IP . Some CG inequalities may not be
{0, %}—cuts with respect to the current polyhedron (or formulation) P, meaning
that these CG inequalities can not be derived from linear combinations of the
constraints defining P with weights u € {0, 3}™. However, Gentile et al. showed
that these inequalities can be derived as {0, %}—cuts from modified polyhedra P’
in subsequent rounds of the CG procedure (see Figure .

Caprara and Fischetti [42] proved that the separation of {0, 1 }-cuts is AN"P-hard.
Given an arbitrary solution z*, the most-violated {0, %}-Cut is found by solving
a separation problem similar to . In contrast to general CG cuts, however,
every row i of (A,b) that is involved in the linear combination (uA)z < ub is
weighted with the same multiplier, namely u; = 3. Let v € {0,1}™ be a binary
vector such that v = 2u. The {0, %}—cut separation problem is then obtained by
substituting « = v in (£5)). In addition, the {0, 1}-cut can be restated as

enfo< [f0o]
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4.3. Chvatal-Gomory Cuts

We now take a closer look at the objective function of the separation problem.
Specifically, we investigate under what conditions a {0, %}-cut is violated. We

can write 1
uA = |uA] 4+ = (vAmod 2),

2
. (4.9)
ub = |ub] + 3 (vbmod 2).

Recall that the violation of a CG cut ax < § is given by az* — 8. In the special

case of {0, 3}-cuts we have

ar® — = |uA]x* — |ub],

(uA — = (vAmod 2)) ¥ — <ub - % (vbmod 2)) ,

) ) (4.10)
5 (vbmod 2) — 5 (vAmod2)z* —u (b — Azx™),

1

2

((vbmod2) — (vAmod2) x* — vs™).
The violation is positive, if the inequality
(vbmod2) > (vAmod2) z* + vs™ (4.11)

holds. Note that both the left-hand side and the right-hand side of Inequality (4.11])

take non-negative values.

Inequality shows that the violation of a {0, %}—cut is dependent on
the parity of the terms vb and vA. If vb is even, it follows that 3(vb) (or ub
respectively) is integral. However, as mentioned above, non-integrality of ub is
a necessary condition of a CG cut’s being violated. Thus there is no violated
{0, %}—cut with vbmod2 = 0. Now, let A = Amod2, b = bmod2 where the
modulo operation is applied component-wise. A {0, %}-cut is violated, then, if vb
is odd and

(v/_l mod 2) ¥ +oust < 1. (4.12)

Consider also the system (A,b). This system can be used to preprocess the
{0, %}—cut separation problem. For instance, zero rows of (A,b) can be removed
since they only affect the value of vs* but not the parity of vb and vA. Moreover,

any row i of (A,b) having s¥ > 1 can be removed since it will never be selected
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due to the condition (4.12). There are a number of additional preprocessing rules
which we shall discuss in more detail in Part [III] of this thesis (see Section .

4.3.2. Strong Chvatal-Gomory Cuts

So far we discussed CG cuts and a subclass of the CG cuts known as {0, 3 }-cuts.
In this section we address the strengthening of CG cuts. Firstly, we introduce
some additional notation. Let N = {1,...,n} and let (uA); denote the ;"
component of the vector uA. With this notation, the inequality (uA)z < ub can

be written as

Z (uA);zj < ub (4.13)
JEN
and the CG cut reads
> [wA), | o < |ub). (4.14)
JEN

Using the integrality conditions on the variables one can apply a simple strength-
ening of the coefficients in the CG cut. Let fo = ub—|ub] and f; = (uA);—[(vA);]
for j € N. Applying mixed-integer rounding to (4.13)) we obtain the inequality

R +
2 ([(UA)jJ + (f]l_fo)> zj < |ub], (4.15)

ien Jo

where (a)™ = max{0,a} (see Marchand and Wolsey [135]). This inequality is
valid for (4.2) and clearly dominates the CG cut (4.14)).

A different approach to strengthen CG cuts was proposed by Letchford and
Lodi [129]:

Proposition 4.3 ([129]). Suppose that fo > 0 and let k > 1 be the unique
integer such that %_H < fo< % Let No={jeN:f; < fo} and Ny={j e N:
f0+(17_1)(+m < f; < fo+@} forp=1,..., k. The strong Chvdtal-Gomory
cut
i p
DD Q(“A)jj + k+1> zj < ub) (4.16)
p=0jEN,

is valid for the IP (4.2)) and dominates the CG cut (4.14).
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While both strong CG cuts (4.16)) and MIR cuts (4.15)) dominate CG cuts (|4.14))

there is no dominance relationship between MIR cuts and strong CG cuts in

general.

4.4. Cutting Planes for MIPs

This section deals with cutting planes for general MIPs. While all valid inequalities
for pure IPs are CG inequalities, the CG rounding procedure can not be used
to derive valid inequalities for general MIPs. To see this, let P again denote the
polyhedron associated with LP relaxation of the MIP (2.1)). Suppose, moreover,
that the inequality cx > 3 is valid for P. As the terms aj;x; with j € N\ Ny are
not guaranteed to be integer-valued, the inequality [« |z > [/3] is not valid for
the MIP . A different approach for generating valid inequalities for MIPs is
therefore needed.

Next we outline the basic concept that is used to generate cuts for MIPs.
Suppose that z* is a fractional basic solution to the LP relaxation of the MIP (2.1)),
i.e. a vertex of the polyhedron P. Now, consider a convex set S C R" containing
the fractional vertex x* in its interior but no integral solutions. More formally,

we require the convex set S to have the properties
2* €int (S) and z & int (S), Ve € ZNT x RVN\VT, (4.17)

where int(S) denotes the interior of the set S. An inequality aaz > 8 which only
cuts off points x € int(.S) is valid for the MIP as no points feasible to (2.1
lie in the interior of S. Thus cutting planes for MIPs can be obtained by first
selecting a set S according to and then computing a cut in relation to S.
Instead of working with convex sets S satisfying , we use disjunctions
to express that a feasible solution is not allowed to lie in the interior of a set S.
Thus all cutting planes derived using the above principle are in fact disjunctive
cuts. In practice, the main questions are how to select the disjunction (or the set
S respectively) and how to compute deep disjunctive cuts (see Section .
The results presented in the remainder of this chapter complement the basic
theory of disjunctive inequalities discussed in Chapter We outline several

practical approaches for deriving disjunctive cuts. The most commonly used
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disjunctions for deriving cutting planes are split disjunctions which are defined by
two hyperplanes. The resulting cuts are called split cuts. We formally introduce
split disjunctions and split cuts in Section In the succeeding sections we
discuss several classes of split cuts. In Section we deal with intersection cuts.
We introduce Gomory mixed-integer cuts in Section [£.4.3] We also investigate
k-cuts in Section [4.4.4] combined Gomory mixed-integer cuts in Section
reduce-and-split cuts in Section [£.4.6] and lift-and-project cuts in Section [£.4.7]

4.4.1. Split Cuts

Split cuts were introduced by Cook et al. [57]. These cuts are a special class of
disjunctive cuts (see Section generated from simple two-term disjunctions.
Split cuts are very important since they subsume various other classes of cutting
planes. In particular, all cutting planes presented in the remainder of this chapter
are in fact split cuts.

We start with some basic definitions. A split disjunction is given by
(rx < mp) V (mz > mo+ 1), (4.18)

where (m,m) € Z""! and 7; = 0, Vj € N\ N;. We shall write D(m, mp) to denote
the disjunction ([4.18)). Clearly, any feasible solution to the MIP (2.1 satisfies
one of the terms of D(7, mp). An inequality which is valid for a split disjunction
is called a split inequality or split cut. With respect to the MIP ({2.1]), we call any

valid inequality which is derived from a disjunction

Ar > b Ar > b
B 4.
(waz 770>\/<7m:27r0+1) (4.19)

a split inequality. Figure shows how a split disjunction divides the feasible

Y
V

Y

region of a set P into the two parts P, and P». In addition, a split inequality is
shown. This inequality is valid for conv(P; U Ps).

As mentioned above, Nemhauser and Wolsey [142] showed that split cuts and
MIR cuts are equivalent. Given a split cut derived from the disjunction
we can thus find a linear combination of the constraints of Ax > b such that the

MIR cut generated from this single-row relaxation is equivalent to the split cut.
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mxr < mx > mo+ 1

Figure 4.2. Split cut

Let us now consider the separation of split cuts. By associating multipliers
(u,up), (v,v9) € RTT with the terms of the disjunction (#.19)), we obtain the

surrogates
((uA —uom) z > ub — upmg) V (VA + vom) & > vb+ vg (mo + 1)) . (4.20)

Given an LP solution z*, the most-violated split cut ax > 3 is found by solving

the mixed-integer non-linear program

max —ax*+ [,
s. t. o —uA + ugm > 0,
o —vA — VT > 0,
(4.21)
— B +ub — UQTQ > 0,
- +vb +wo (mo+1) > 0,
ue +ve +ug + o < k,

where (u, up), (v,v0) € RT, (7, m) € Z"*!, 7; =0 for all j € N\ Ny and the
vectors (, 3) € R™! are unrestricted in sign. The last inequality in (4.21)) is the
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normalization constraint where e is the vector of all ones of appropriate
dimension. The non-linearity of is caused by the multiplication of the
multipliers (u, up) and (v, vo) with the vectors (m, mg) defining the split disjunction.
Once the split disjunction is fixed, reduces to an LP of the form .
Caprara and Letchford proved that optimizing over the split closure is NP-hard.
Balas and Saxena [31] restate the problem as a parametric MIP using the
normalization constraint ug + vg = 1 and show that the elementary split closure
gives a tight approximation of the convex hull of the feasible solutions of many
practical MIPs.

Finally, we offer some comments on the connection between Chvatal-Gomory
cuts and split cuts. In fact any CG cut is a split cut, implying that the split closure
of a polyhedron is contained in its CG closure. Let ax < ag be a valid inequality
for the polyhedron P associated with the LP relaxation of a pure integer program.
The CG cut |a]z < |ap] is then valid for the integer hull P;. To see that this CG
cut is a split cut, consider the split disjunction (|a]z < |ag]) V (la]z > |ag] + 1),
i.e. D(|a], |ao]), and observe that PN {z : |a|z > |ao| + 1} = 0.

4.4.2. Intersection Cuts

Intersection cuts were introduced by Balas [I7]. These cuts are derived from
a basic solution to the LP relaxation of an MIP and a violated disjunction.
Furthermore, intersection cuts have a nice geometric interpretation. In this section
we concentrate on intersection cuts derived from split disjunctions. Nevertheless,

intersection cuts can also be derived using general disjunctions.

Let B be a basis of the LP relaxation of the MIP ({2.3)) and denote the associated

basic solution by x*. Consider also the rows of the simplex tableau

xi =} — Y ajzj, i€ By, (4.22)
JjeJ

associated with the basic integer-constrained variables. Moreover, we have the
trivial equation
Z; :O—I-J}j, jeJr, (4.23)
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for all non-basic integer-constrained variables. Suppose that the split disjunc-
tion D(m, mp) is given. We assume that the disjunction is violated by z*, i.e. we
have that e(m, mp) = ma* —mp > 0.

In the following, we shall demonstrate a way to derive the intersection cut.
Firstly, let us construct a linear combination of Equations and . The
weight we associate with each equation is the corresponding entry in the split

disjunction, namely ; for ¢ € Nj. The result of this linear combination is

Tr=mrt 4+ (’/T?“j> zj, (4.24)
jeJ
where 17 is defined as
—C_ij if ke B,
=11 if k= j, (4.25)
0 otherwise,

for j € J. Substituting for 7x in D(m, my) and rewriting yields the disjunction

(— Z (wrj) xj > 6(7’[‘,7‘(0)) V (Z (wrj> x;>1—¢€ (7‘(’,71'0)) . (4.26)

JjeJ JjeJ
Applying Proposition 2.1 we obtain the following result.

Proposition 4.4 ([I7]). Suppose that a basis B of the LP relazation, the cor-
responding basic solution x* and a split disjunction D(w, mp) are given. Let the
split disjunction be violated by x*, that is e(w,mg) = ma* — w9 > 0. Then the

intersection cut

> )m"j‘ xj > min {e (m,m),1 — € (m,m0)} (4.27)
Jj€J
associated with the basis B and the split disjunction D(r, mg) is valid for the

MIP (23).

Note that the intersection cut (4.27)) is a split cut as it is derived from a
split disjunction. However, it is of key importance that intersection cuts are

generated from bases of the LP relaxation. Observe that the left-hand side of
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the intersection cut only contains non-basic variables which are at their bounds.
Since we assumed all variables to have a lower bound of zero and an infinite upper
bound, the whole left-hand side also has the value zero. Moreover, the right-hand
side of the intersection cut is positive as we selected a violated split disjunction,
i.e. we assumed that e(m, mp) > 0. Therefore the intersection cut is violated by
the current basic solution z* to the LP relaxation.

Note that the coefficient of a continuous variable in the intersection cut derived
from the split disjunction D(7, mp) and the basis B is not affected by components

of 7 corresponding to non-basic variables. More formally, we have

D if jeJ\Jr,
nrd = {1€B ; o (4.28)
‘%mri +m; ifjeJr.
e

Depending on the way in which the disjunction (4.26]) is written, different
intersection cuts can be obtained. For instance, multiply the first term of the
disjunction (4.26) with 1 — e(m,m9) > 0 and the second term with e(m,m) > 0.

The intersection cut is then given by

Zmax{ (—er> (1 —e€(m,m)),
j€J (4.29)

(m“j) e (m,mp) }azj >e(m,m) (1 —e(m,m)) .

If the disjunction (4.26)) is normalizedEL a third version of the intersection cut is

obtained:

—7rd wrd
> 1 4.30
Zmax{e(ﬂ-vﬂ-ﬂ)’1_6(71-171-0)}1:]_ ( )

As mentioned before, intersection cuts have a very nice geometric interpretation
(see Figure [4.3), which we shall discuss next. Let us again suppose that the basic
solution z* solves the LP relaxation and violates the split disjunction D(m, 7).

Now consider the following relaxation of P

P(B)={z €R": Av = b,a; > 0,¥j € J}, (4.31)

5Given a disjunction \/ieQ(aim > b*) with o' € R™, b* € R and provided that b > 0,Vi € Q,
the normalized disjunction is \/ZGQ((%)I >1).
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Figure 4.3. Intersection cut

where we drop the non-negativity conditions on the basic variables. In the case
of non-degeneracy, these are the only non-binding constraints (with respect to
the basic solution z*). We can alternatively write P(B) = z* 4+ C where C' is the
polyhedral cone C' = {z € R" : Az =0,2; > 0,Vj € J}. The extreme rays of the
cone C are given by the vectors 7 as defined in Equation for j € J. Now,
for j € J define

_dmmo) iyl < 0,

rd
a; = 717675:;”0) if 7rd >0, (4.32)
00 otherwise.

The scalars o can be interpreted in the following way. Consider the half-line
starting from z* in the direction 77 which is given by z* + ar? where o € R..
The scalar «; is the smallest o € R4 such that z* 4 ar’ satisfies the split
disjunction D(m, mp). Therefore the point z* + a1/ is the point at which the
half-line z* + ar/ and the hyperplanes mx = my or 7z = mg + 1 intersect (see
Figure . This is why the resulting cut is called the intersection cut. Note that
a;j = 00, if the inner product 7l is zero and the extreme ray r/ is thus parallel
to the hyperplanes mx = 7y and wx = wg + 1. With the aid of the scalars ,
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we can write the intersection cut from the basis B and the disjunction 7z < mg

or mx > mo + 1 in the form

Sl (4.33)

A natural question is whether the split disjunction D(7, my) can be improved in
order to obtain stronger split cuts. More precisely, we consider replacing D(7, )
by

(r—=h)x<m)V((r—h)x>m+1), (4.34)

where, as before, (m,m) € Z""! and 7; = 0, Vj € N \ N;. We denote the
disjunction (4.34)) by D(w — h, mg). Let h € Z™ be a vector with the characteristic
that h; = 0, Vj € Jr. In other words, we modify the split disjunction on the

*:ﬂ'ﬁ*

non-basic integer-constrained variables. Hence we have that (7 — h)z
and it follows that the split disjunctions D(7, mp) and D(mw — h, m) are violated
by the same amount, i.e. e(m — h,my) = €(m, 7). Summing up Equations (4.22)

and (4.23) with weights m; — h; for i € Ny yields the linear combination

(ﬂ—h)x:(ﬂ—h)$*+z((ﬂ—h)rj> ;. (4.35)

jedJ

By inserting Equation (4.35]) into the split disjunction D(m — h, mp), normalizing

the disjunction and applying the disjunctive principle, we obtain the intersection

hrd — rd J — hyd
S max{ o TE M > (4.36)
jeJ € (7T7 770) l—e (ﬂ-a 7T0)

cut

Observe that hri = hjrg = h; for j € J. Thus we have that hri > 0 if the
non-basic variable x; is integer-constrained and hr? = 0 otherwise. Consequently,

we can restate the intersection cut as

{hj-?TT’j er—hj }
Zmax ) $j

i e(m,m) 1 —e(m, mo
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We are now concerned with the question of how to choose the vector h to obtain
the strongest split cuts. We already noted that the violation of the cut is
the same as of . However, it turns out that the size of the coeflicients on
the non-basic variables greatly affects the strength of an intersection cut. For
example, consider the intersection cut vz > 1. The distance between the basic

solution z* and its orthogonal projection on the hyperplane yx = 1 is given by

1
. (4.38)
17
where || - || denotes the Euclidean norm. It is therefore desirable to obtain cut

coefficients that are as small as possible to increase the distance cut off. It can be
verified [7, [27] that the smallest coefficients are given by either setting h; = |77/ |
or h; = [wri] for j € J;. We get

) { { [wrd] —7rd rd — [7rd
min { max

6(7’(’,71'0) ,1_6( » TTO

T
J| — mpd J _ J
max{ \7r? | —7rd |77

e(m,my) 1 —e(m mo

} } (4.39)

- { [mrd] — i wrd — |7 | }

€ (7T,7T0) 1—e (ﬂ-a 7T0)
for 5 € Jy.

Proposition 4.5 ([27]). Suppose that a basis B of the LP relaxzation, the cor-
responding basic solution x* and a split disjunction D(rw, mp) are given. Let the
split disjunction be violated by x*, that is e(w,my) = ma* — w9 > 0. Then the

strengthened intersection cut (or strengthened split cut)

S i { (rd] —mrd wrd — |7 | }%

e(m,m) " 1—e(m m)

- j
+ 3 max{ ik akh }ijI (4.40)

e(m,mo) 1 —e(m, m)

associated with the basis B and the split disjunction D(r, mg) is valid for the

MIP (2.3).
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Concerning the split disjunction D(7 — h, m), it follows that we have to choose

hj = |mr? | if the inequality

[wrd] — 7rd mrd — |mrd |
e (m,mo) 1—e(m m)’ (4.41)
— [mﬂ‘ﬂ —7mrt > e(m, ),

holds and h;j = [mr/] otherwise.

Proposition 4.6 ([8]). Suppose that a basis B of the LP relazation, the corre-
sponding basic solution x* and a split disjunction D(m, 7o) are given. Let the split
disjunction be violated by x*, that is e(m,my) = ma* —mg > 0. The strengthened

split disjunction is then given by D(mw — h, mg) where

hy = L?TT']:J if [777"]:] - 7r7“7i > e(m,m), (4.42)
[7r?] if [mrd] —mr? < e(m,mo),

for j € Jr.

Any split inequality is equal to or dominated by a split cut derived from a basis
of the LP relaxation and a split disjunction. The split closure of an MIP (i.e. the
intersection of all split cuts) can thus be obtained using only intersection cuts
by considering also non-optimal and infeasible bases. This correspondence was
established by Balas and Perregaard [30] for mixed 0-1 programs. Andersen et

al. [9] generalized it to mixed-integer programs.

In the previous discussion we concentrated on generating intersection cuts
from split disjunctions. In general, intersection cuts can also be derived from
more complex convex sets (or, in other words, from more complex disjunctions).
However, we must still require that these sets contain the fractional basic solution

to the LP relaxation and no feasible solution to the (mixed) integer program.

Balas and Margot [28] recently generalized the notion of intersection cuts
by replacing the polyhedral cone used to derive these cuts by a more general

polyhedron.
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4.4. Cutting Planes for MIPs

4.4.3. Gomory Mixed-Integer Cuts

Gomory mixed-integer (GMI) cuts were introduced by Gomory [98] in the early
1960s as one of the first classes of cutting planes for MIPs. One of the merits
of GMI cuts is their separation: GMI cuts can be easily read from rows of the

simplex tableau associated with fractional integer variables.

We assume that the MIP (2.3 is given. Consider a row of the simplex tableau

T; = a0 — Z Elij$j, i € By, (4.43)
jeJ

associated with the basic integer-constrained variable x; which has a fractional
value in the solution to the LP relaxation of the MIP ({2.3). More formally, we
assume that fjo = a0 — [aio] > 0. In addition, let f;; = a;; — |a;;] for j € J.

Suppose we would like to generate an intersection cut (see Section [4.4.2) that
cuts off z*. Remember that intersection cuts are generated from a basis and a
violated disjunction. We use the current optimal basis B of the LP relaxation

and the simple split disjunction

Clearly, this disjunction is violated since €(, mp) = wz*—mg = a;o—|ai| = fio > 0.
Furthermore, it is equivalent to D(7, |7z*]) where 7 = ¢; and e; is the i unit
vector. As disjunctions of the form are imposed only on a single variable,
they are referred to as elementary disjunctions. The intersection cut from the
convex set {x € R™ : |aj0| < z; < [aip]} is equal to the simple disjunctive
inequality derived from the above split disjunction. Indeed, using the split
disjunction (cf. Proposition we obtain the intersection cut

> max {a;; (1= fio), —aijfio} x5 > fio (1= fio)- (4.45)

jeJ
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Chapter 4. Single-Row Cutting Planes

This cut can be strengthened using Proposition We get the strengthened

intersection cut

> min{fi; (1= fio), (1= fij) fio} ;

Jje€Jr

+ Z max {a;; (1 — fio) , —aijfio} ©j > fio (1 — fio) . (4.46)

JEINJ1

By rearranging the terms on the left-hand side and dividing by 1 — f;o we obtain
the GMI cut. So we have just proved the following result.

Proposition 4.7 ([98]). The Gomory mized-integer cut generated from a row of

the simplex tableau (4.43)

S gt Y fio (1 — fz‘j)mj

J€Jr:fi5<fio JE€JI:fii> fio L= fio
_ f’O — Qs
+ Z aijxTj + Z M%’ > fio (4.47)
jeJ\JI:aijZO jEJ\J[:&ij<O i0

is valid for the MIP ({2.3)).

The GMI cut is equivalent to the strengthened split (or intersection) cut
from the basis B and the disjunction . Thus GMI cuts are also split cuts.
Moreover, it can be shown that split cuts and GMI cuts are equivalent [142] with
respect to their elementary closures. The GMI cut can alternatively be derived
by strengthening the split disjunction (cf. Proposition before applying
the intersection cut. The strengthened version of the split disjunction is
given by D(m, mp) with

lai;| if j € Jrand fi; < fios
Q;q if j € J;y and ii > Ji0,
;= [ ]—I J I fj fio (4.48)
1 if § =i,
0 otherwise,
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4.4. Cutting Planes for MIPs

for j € N and my = |a;0]. The intersection cut generated from the basis B
and this disjunction is equivalent to the GMI cut obtained from (4.43)). It is

straightforward to see that
€ (71', 71'0) = (_li() - LC_LZ'()J = a:f - L(E:J = in (4.49)

and

mrl = 7Ti7’1]~ +7Tj7’§ = TZJ- + 7 = —ai; + 75,

—fij it jeJrand fi; < fio,
=1—fi; ifjeJrand fi; > fio,
*flij iijJ\J[,

(4.50)

using and the definition of the extreme rays of the polyhedral cone
defined by the basis B. Inserting these values into gives the GMI cut. As
MIR cuts and GMI cuts are equivalent, the GMI cut can also be obtained by
applying mixed-integer rounding [I35] to the tableau row (£.43). Thus a GMI
cut is in fact a MIR cut derived from a row of the simplex tableau.

GMI cuts can not only be derived from single rows of the simplex tableau but

also from linear combinations of these rows.

Proposition 4.8 ([46]). Suppose the rows of the simplex tableau (4.43) associated
with basic integer-constrained variables are given. Moreover, let m € Z" be a
vector with m; = 0 for i ¢ Br. Define agp = > ;cp, miGio, fo = ao — [ao] and

aj = Y iep, Tilij, fj = aj — |a;| for j € J. Then the Gomory mived-integer cut
Jo(I—fj
> hmt X f_f])ﬂ«“j
j€lrfi<fo J€Ir:fi>fo 0

+ > G+ > 7@ (__;Lg)xj > fo (4.51)

jEJ\J[:(_TLjZO jEJ\J}I(_l]'<0

is valid for the MIP ([2.3).

The GMI cut (4.51)) can also be obtained as a strengthened intersection cut

from the basis B and the split disjunction D(m, |7z*|) where 7 is chosen as in
Proposition [£.8]
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Chapter 4. Single-Row Cutting Planes

The Quality of a Gomory Mixed-Integer Cut

The question of how to strengthen GMI cuts is related to the problem of measuring
cut quality. Let ax > 8 be an arbitrary GMI cut. The violation of the GMI cut
is given by

f—ax*=p (4.52)

as ax® = 0. Thus the violation is equal to the fractional part of the right-hand side
of the corresponding simplex tableau row (or the violation of the split disjunction
respectively). We may also consider the distance between the solution x* and its

orthogonal projection on the cut hyperplane ax = 8 which is defined as

=2 (4.53)

The value of is also referred to as the distance cut off. Observe that
to enhance the distance cut off, we can either try to increase the fractional
part of the right-hand side of a tableau row (numerator) or decrease the size of
the coefficients in the GMI cut (denominator). The coefficients of the integer-
constrained variables in a GMI cut are in the interval [0, 1] while coefficients on
continuous variables are not bounded and depend on the size of the entries in the
corresponding simplex tableau row.

In the following sections we present four approaches which improve the perfor-
mance of the GMI cuts by increasing the violation or the distance cut off. These
approaches either manipulate the disjunction (see Figure or the basis (see
Figure on which a GMI cut (or strengthened intersection cut) is based.

4.4.4. K-Cuts

In this section we discuss an approach to improve the performance of the Gomory
mixed-integer cuts developed by Cornuéjols et al. [61]. Reconsider a row of the
simplex tableau associated with a basic integer-constrained variable x;
which is fractional. Recall, moreover, that the GMI cut generated from this
row is equivalent to the strengthened intersection cut from the basis B and the
elementary split disjunction . The approach outlined in this section modifies

this disjunction.
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4.4. Cutting Planes for MIPs

(a) A polyhedron (b) A basic solution z*, a split disjunction
and the corresponding intersection cut

(c) A modified split disjunction which pro-
duces a deeper intersection cut

Figure 4.4. Modifying the disjunction to obtain deeper intersection cuts
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o8

(a) A polyhedron (b) A basic solution z*, a split disjunction
and the corresponding intersection cut

(c) An infeasible basic solution x* which
produces a deeper intersection cut

Figure 4.5. Modifying the basis to obtain deeper intersection cuts
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Specifically, Cornuéjols et al. [61] consider the disjunction
(kxi < U{?(_IioJ) \Y (kxl > U{Jaioj + 1), (4.54)

where k is an integer with k # 0. We denote this disjunction by D(7w, |72*])
where T = km = ke;, and let 9 = |ka;o]. Clearly, the multiplication with k& # 0
affects the violation of the split disjunction. More precisely, assuming that ka;g is
non-integral, we have €(7, 7o) = kajo — |kao| > 0. Now consider the intersection
cut generated from the basis B and the modified split disjunction

Z max { k; E_maj) b () } xzj > 1. (4.55)

ﬁaﬁO) 11— G(ﬁ,ﬁo)

For each k # 0 a variation of the plain intersection cut (k = 1) is obtained.
Note that the violation of the split disjunction €(7, 7g) is equal to the violation
of the GMI cut (cf. Proposition . Therefore some values of k may increase
the amount by which the associated GMI cut is violated. Moreover, it becomes
apparent from that the size of the non-zero integer k has a direct influence
on the size of the coefficients in the intersection cut. Specifically, large values for k
lead to large coefficients in the intersection cut. Note that this is undesirable since
it decreases 1/||7||, i.e. the distance cut off. The strengthening of Proposition
resolves this issue for the integer-constrained variables. On the other hand, the
size of the coefficients on the continuous variables in the intersection cut and the
GMI cut remains proportional to the size of k. This situation is also observed
by Cornuéjols et al. [61] who report on a deterioration of the coefficients on

continuous variables in preliminary experiments as k increases.

Cornuéjols et al. call the strengthened intersection cut from the modified
disjunction (4.54)) a k-cut. Alternatively the k-cut can be derived as the GMI cut

from the scaled tableau row

]C:Ei = k@io - Z (k‘aij) Zj- (456)
jed

The following proposition states this result more formally.
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Proposition 4.9 ([61]). Suppose a row of the simplex tableau (4.43)) and a non-
zero integer k are given. Moreover, let fio = ka0 — |kaio] and fij = ka;j — | kag;]
for j € J. Then the k-cut

S it Y fio (1 — fz‘j)mj

Je€Jr:fij<fio J€Jr:fij>fio 1- fio
~ fio (—kag;)
+ Z kaiju; + Z ﬁ%’ > fio (4.57)
jeJ\JI:kaijZO jEJ\J]:k@L‘]‘<O i0

is valid for the MIP ({2.3)).

Cornuéjols et al. [61] prove that in the pure integer case k-cuts perform variable-

wise better than GMI cuts with exactly fifty percent probability.

4.4.5. Combined Gomory Mixed-Integer Cuts

Ceria et al. [46] present a method which obtains strengthened GMI cuts by
modifying the underlying split disjunctions. They argue that the quality of a
split (or intersection) cut is, among other factors, influenced by the violation of
the split disjunction and the size of the coefficients of the integer variables. As a
result, they propose a procedure controlling the latter two factors by constructing
split disjunctions on several basic integer variables.
Ceria et al. [46] assume that the rows of the simplex tableau are given
in rational data. We have
N

€T; = —
D jeJD

x;, i€ By, (4.58)

where e;0, D € Z and e;; € Z for i € By and j € J. The integer D is the common
denominator in which the coefficients of the simplex tableau can be expressed.
This representation of the simplex tableau allows for a detailed analysis of the
connection between the properties of the split disjunction and the strengthened
intersection cut generated from it. In particular we shall see that it enables us
to select the split disjunction such that a strengthened intersection cut with a
maximal right-hand side and minimal coefficients on certain variables is obtained.

To simplify the notation, let By = {1,...,r}.
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4.4. Cutting Planes for MIPs

Maximizing the Violation of a Split Disjunction

Firstly, we deal with the violation of the split disjunction which is given by

€ (m,mo) = gﬂ'i <eg]) - Lz;; 0 <ell?0>J . (4.59)

Let < ejg,e90,...,¢er0,D > be the greatest common divisor of e, eg, ..., e
and D. Suppose we would like to obtain the violation e(m,m) = 5. Suppose
furthermore that < ey, €2, . . ., €70, D > divides e. Ceria et al. [46] show that this
specific violation is obtained by choosing the multipliers 7; (or the disjunction )

appropriately.
Proposition 4.10 ([46]). The violation e(m,mg) = 4 can be obtained by setting
m=D—lIlp;,, i=1,...,7 (4.60)

D—e
<€10,€20,--+,€r0,

diophantine equation

where | = ps and p1,p2,...,pr and q are integers which solve the

< €10,€20, - - - €70, D >= e1op1 + e20p2 + ... + eropr + qD. (4.61)

The requirement that < eqq, e2g, ..., e, D > divides e must be made to ensure
that [ is integral. It follows that m; is integral for ¢ = 1,...,r. With the proposed

choice of the multipliers m; we have

z_jlw (%) =S (D ip) ().

=1

T l T
= Z €0~ 5 Zpiez‘m (4.62)
i=1 i=1
T
= <Zeio+lq— 1) + =
D

=1

As the term in the brackets is integral, we obtain the violation ¢(m,mp) = 5. Note
that the maximal value of €(m, ) in Equation (4.59)) is D_<61°’625""’6T0’D>. Set-
ting e = D — < eqq, €20, - - - , €70, D > in Equation (4.60]), we obtain that choosing

m; =D —p; for i = 1,...,r maximizes €(m, m).
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Chapter 4. Single-Row Cutting Planes

Minimizing the Coefficients of Integer Variables

In the following we concentrate on minimizing a coefficient of an integer-constrained
variable. Firstly, we offer some remarks on solving diophantine equations of the
form (4.61). Following Ceria et al. [46] we use the algorithm of Rosser [I5I] to

solve such type of equations. The algorithm provides us with a family of solutions

(P1,p2,035 - Pr, @) = P+ Paya + P3ys + ... + Pry1yrs1, (4.63)
where y;, for k= 2,...,r + 1 are arbitrary integers and P, € Z""! are vectors of
the form

Pk = (plf7p§>p§a'--apf7p7]?+1) (464)
for k=1,...,r+ 1. Suppose that the family (4.63]) is a general solution to (4.61]).
Then for an arbitrary choice of the integers yo,...,yr+1 this solution yields

multipliers maximizing e(m, mp). On the other hand, different coefficients are
obtained on the left-hand side of the cut.

Accordingly, Ceria et al. propose to select a set of multipliers from the fam-
ily (4.63]) which gives the best coefficient on an integer variable while keeping the

right-hand side maximal. Specifically, given an index j € J; we wish to minimize

Z']Tz'fij — \‘Z WifijJ R (4.65)
=1 i=1

where, as above, the values f;; = a;; — |a;;] are the fractional parts of the
coefficients of the tableau rows (see Equation (4.43)). The multipliers maximizing

e(m, my) are given by

r+1
sz—le—pryk, i=1,...,r (4.66)
k=2

To find a particular set of multipliers from this family that minimizes (4.65]) for
some j € J; we insert the general solution (4.66)) into (4.65). We have that

r r r+1 / r
S omifii= <D - le) fig +> (Z —Pffz‘j> Yk (4.67)
=1 k=2

i=1 = =1
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and can rewrite (4.65) as

r—+1 r+1
90+ > gkyk — |90+ Y gkykJ (4.68)
k=2 k=2
with g = 33 (D ~p})fi = |,(0 = ph)fs) and g = 3 (~pkfig) = L (kS

Recall that the integers pf represent a specific family of solutions maximizing
€(m,mo). Thus the only variables at this point are the integers yx, k = 2,...,r+1,
which need to be chosen such that the selected coefficient (4.68)) is minimized. As

we assumed that the rows of the simplex tableau are given in rational numbers,

we can restate (4.68) as
r+1 r+1
€0 (47 €0 (&%
Ol - F i R 4.69
D+k:2<D>yk {D+k:2<D>ykJ (4.69)

with go = B, gv = %, e0 € Zand ey € Z for k =2,...,r + 1. Let <ea,e3,...,

er+1, D > denote the greatest common divisor of eg,e3,...,e,+1 and D. Then
there exist integers ps, p3,...,pr+1 and ¢ such that
< e,€3,...,6r41, D >=eapo +e3p3+ ...+ erp1pr41 +qD. (4.70)

Rosser’s algorithm again yields a general solution of the form (4.63]) to the
diophantine Equation (4.70)).

Proposition 4.11 (J46]). Suppose that w = m is integral. Then,
setting yr = —upg yields a zero coefficient of the selected non-basic integer variable

x;j in the strengthened intersection cut.

Indeed with the proposed choice of y; for k =2,...,7 + 1 we obtain

o e, e (s

+3 (B =D —uy A

D P D D P D
_ € <eo(< €2,€3,...,6r11, D > —qD)) (4.71)
D <€2,€3,...,6r+1,D>D ’
= uq,
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which is integral if u is integral. As a result, using these values for y; in Equa-
tion yields a family of multipliers which maximizes the right-hand side and
minimizes the coefficient of the selected variable in the strengthened intersection
cut.

In our presentation we interpreted the procedure of Ceria et al. [46] as a
strengthening of the split disjunction D(7, m). In terms of the rows of the
simplex tableau associated with basic integer variables, the procedure selects a
vector 7 of multipliers such that the GMI cut from the linear combination of these
rows (cf. Proposition is strong. Here strong means that it has a maximal
right-hand side and minimal coefficients on some integer variables. We call the
resulting cuts combined Gomory mized-integer (¢cGMI) cuts.

The procedure outlined above does not, however, take into account the size
of the coefficients of the continuous variables in the strengthened intersection
cut or GMI cut. The size of these coefficients is directly dependent on the size
of the entries in the vector w. Therefore large multipliers (or equivalently large
coefficients in the split disjunction) are likely to produce cuts with weak (large)
coefficients on the continuous variables. Again this has a negative influence on

the distance cut off.

4.4.6. Reduce-and-Split Cuts

In the previous section we discussed a method that maximizes the right-hand
side of the GMI cut and minimizes the coefficients on some integer variables.
Even though the size of these coefficients is important, the strengthening of
Proposition [4.5] in fact guarantees that any integer variable has a coefficient that
is in the interval [0, 1] in a strengthened intersection cut or GMI cut. However,
as mentioned above, the coefficients of the continuous variables in a strengthened
intersection cut as well as in a GMI cut are not bounded. The size of these
coefficients is influenced by the underlying split disjunction and has a direct
influence on the distance cut off. Andersen et al. [§] accordingly propose a method
which reduces the size of these coefficients. This method is closely related to the
basis reduction algorithm of Lenstra et al. [12§].

We start our discussion by analyzing in more detail the influence of the split

disjunction on the size of the coefficients of the continuous variables in an inter-
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section cut. Suppose a basis B and the corresponding basic solution z* are given.
Let D(m, mo) be an arbitrary split disjunction which is violated. Let yx > 1 be
the strengthened intersection cut generated from B and D(m, mp). The
distance cut off by this cut is 1/||y||. Now observe that the size of a coefficient on
a continuous variable z; in this cut is dependent on the size of |7r7|. Therefore
the distance cut off can be increased by reducing the size of |7r7|.

Andersen et al. [8] propose an algorithm which reduces the size of |77r7| by
modifying the vector m (or the split disjunction D(m, m) respectively). This
algorithm works as follows. Consider an additional split disjunction D (7', 7())
distinct from D(m, mp). The algorithm replaces the disjunction D(7, my) by the
disjunction D(7(8), 7o(d)) where 7(d) = 7w+ 7’ and 7o(0) = [7(d)x* | with § € Z.

The integer § is chosen such that it minimizes the function

o)=Y (r@r)

jeINJ

-y ((wf 125 (m7) (x'19) + 82 (Wwf) .

JENJT

(4.72)

The function f(4) measures nothing more than the squared Euclidean norm of
the vector with entries 7(d)r7 for j € J\ J;. An alternative interpretation of ()
is the following. Combine the rows of the simplex tableau associated with basic
integer variables with weights 7(0). Then f(J) measures the squared Euclidean
norm of this combined row on the continuous variables. But why do we measure
the quality of the combined disjunction D(m(6), mp(d)) by the squared Euclidean
norm? Let h(m, ') = 3 e, (7r?)(x'r?) and g(r) = ;e p 7, (777)?. Then the
first derivative of f(0) is given by f'(0) = 2h(m,7’) 4+ 2dg(7’") and the second
derivative reads f”(8) = 2g(n") > 0. As f(0) is a quadratic convex function in 9,

its minimum can be found by rounding. More precisely, the optimal solution is

5*:_{”9(7;;)% or 5*:_[2(7{7’:)')] (4.73)

If f(6*) < f(0), then the disjunction D(m, my) is replaced by the disjunc-
tion D(7(8*), mo(6*)) and the process is iterated. Andersen et al. [8] call the

resulting cuts reduce-and-split (R€9S) cuts. The above procedure is started from
the elementary split disjunctions (4.44)).

either
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This procedure can also be carried on the rows of the simplex tableau (4.43]).
In each iteration a pair of rows associated with two basic integer-constrained

variables, say x; and xy, is selected and the linear combination

Ti + 0wy, = @i + 6ako — »_ (Gij + 0ax;) ; (4.74)
Je€J

with § € Z is considered. Note that we intend to replace the original rows
of the simplex tableau by combined rows of the form (4.74]). Thus in
subsequent iterations of the algorithm a row of the simplex tableau originally
associated with the basic variable z; may contain several other basic integer
variables. Nevertheless, the variable o = z; + dxy is also integer-constrained.
The effect that using the multiplier 6 has on the size of the coefficients on the
continuous variables in the combined row is measured by . Specifically, we

can also write f(0) as

FO)= > (ay+dar)*. (4.75)

JeNJr

The optimal value of 0 minimizing f(J) is then given by

Z\ QijQk; 2{ ijak;

ieJ\J JEJ\J1

o = [1& or 0'=—|——F——— (4.76)
P> a%j 2 aij
JEJ\JI jeJ\Jr

We have identified a reduction, if the inequality f(6*) < f(0) holds. Then
the linear combination is calculated with the optimal multiplier §*. The
combined row then replaces the original row and the process is iterated.

In a recent paper Cornuéjols and Nannicini [64] propose to select a certain
subset of the continuous non-basic variables and to use the reduce-and-split

approach to reduce the coefficients of these variables.

4.4.7. Lift-and-Project Cuts

So far we have discussed three approaches to improving the performance of the
strengthened intersection (or GMI) cut. What all of these approaches have in
common is that they modify the elementary split disjunctions (4.44]) on basic
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integer variables. The strengthened intersection cut from the basis B and this
improved disjunction is then generated. However, each approach aims at optimiz-
ing different characteristics of the strengthened intersection cut, be it the size of
the coefficients in the cut or its violation. In this section we consider a procedure
which finds the best basis B (in some sense to be discussed later) from which the
intersection cut is generated while leaving the underlying elementary disjunction
unchanged.

Firstly, we introduce some additional notation. Reconsider the MIP (2.1 and
suppose that all integer-constrained variables are 0-1 variables, i.e. we have a
(mixed) 0-1 program. Let N be the set of variables and Ny = {1,...,p} C N
be the set of 0-1 variables. For technical reasons we assume that the constraint
system of our mixed 0-1 program explicitly contains the simple upper bounds on
the 0-1 variables. We assume in addition that the lower bound constraints on all
structural variables are as well explicitly present as constraints. More formally,

we consider the mixed 0-1 program
(MBP) min{cz:2 € Xpp,z; € {0,1},j=1,...,p}, (4.77)

where the set Xy p is defined as

Ax > b
Xp = .Z'ER”:—ZL‘J'E—L i=1,....p ;. (478)
z >0
The LP relaxation of (4.77)) is given by
(LP) min{cx:z € Xyp}. (4.79)

Typically, MIP solvers store the bounds of the variables separate from the
constraint matrix. We shall discuss this and other practical issues in Part [[TI] of
this thesis (see Section . As before, we denote by P = X p the polyhedron
associated with (LP). We shall denote the whole system defining the polyhedron
P by Az > b.

The system Az > b consists of m + p+n rows and can be written as Az —s = b

by introducing surplus variables. Note that the vector s € R™™P*" consists of m
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surplus variables from the constraints in A, p surplus variables from the upper
bound constraints, and n surplus variables from the lower bound constraints. As
all bounds on the 0-1 variables are contained in the constraint system Az > b, all
of these variables are unrestricted and can without loss of generality be assumed
to be basic. Since sp,4py; = ; for j =1,...,n, it is possible to write the rows of

the simplex tableau completely using only surplus variables

Ti =ai — Y ais;, i€ Br. (4.80)

jed
With respect to notation, also note the following. We use (z*,s*) to denote
an optimal basic solution to (LP). On the other hand, concerning the simplex
tableau associated with the current basic solution (z,s) to (LP), we denote by
a;; and a;o the coefficient of variable j in row 7 and the right-hand side of row i

respectively.

Lift-and-project (LEP) cuts [24), 25] are disjunctive cuts which are derived from

Az > b Az > b
\Y, (4.81)
—x; > 0 T > 1

on a fractional 0-1 variable. Further developments of the method were docu-
mented in [20], 29, [149]. The most-violated (deepest) L&P cut ax > § from the
disjunction (4.81)) is obtained by solving the cut generating linear program

a disjunction of the form

(CGLP;) min az*—p,

s.t. « —uA + upe; =

(4.82)

o O O O
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where u, v, ug,vg > 0. Recall that the set of feasible solutions to (CGLP;) is a

cone which needs to be truncated by a normalization constraint

m-+p+n
> (ui+vi) +ug+vo =1 (4.83)
i=1
in order to obtain a bounded set. The linear program (CGLP;) is a special case
of the general CGLP (2.24]) for disjunctive programs.

The cut generating linear program (CGLP;) is large. Specifically, it consists
of 2n + 3 rows and 2(m + p) + 3(n + 1) columns. Moreover, it can be shown
to be highly-degenerate. Thus solving (CGLP;) may be too expensive from a

computational point of view.

Note that Proposition tells us that the first two constraints in (CGLP;)
defining « should be >-inequalities. However, the identity matrix (lower bound
constraints) which we added to A serves as a vector of surplus variables for these
constraints. Similarly, the last two constraints in (CGLP;) could be relaxed to
>-inequalities. As the constraints x; > 0 and —x; > —1 are contained in the
system Az > b, the trivial inequality Ox > —1 is also implicitly present in this
system. We can therefore require that the inequalities defining 8 hold at equality.

While the most-violated L&P cut is found by solving (CGLP;) to optimality,
any solution to (CGLP;) yields an L&P cut. Let flj be the j* column of A.
Furthermore, let ajl- = ’Lbzzlj — Um4pt; and a? = v/lj — Uppgpyj for j =1,...,n.
Then the L&P cut az > f associated with the basic solution («, 8, u, v, ug, vo)
of (CGLP;) is given by

o = {max{a} - uO,a? +vo} ifj =1, (4.84)

max{a},a?} if j # 14,

and 8 = ub = vb + vo.
L&P cuts can be strengthened by considering the integrality of some of the
variables. The strengthened LESP cut ax > f has the coefficients

& = {min{a} +ug [my], a5 —wo [my]} if j e {1,...,p}\{i}, (4.85)

o otherwise,
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where
i (4.86)
m; = ———2, .
J ug + Vo

The strengthened L&P cut can also be obtained by replacing the split disjunction

—z; > 0 or x; > 1 by the more general split disjunction

(_zp:ﬂ-jxj > 0) V (zp: T > 1) . (487)
j=1 J=1

The vector 7 € ZP producing the best (smallest) coefficients in the L&P cut can

be shown [25] to be given by m; = |m;] or mj = [m;] for j =1,...,p.

The foundations for a more efficient separation of L&P cuts were laid by Balas
and Perregaard [30]. Given a basis B of (LP), Balas and Perregaard show that
the intersection cut generated from the tableau row associated with the
basic fractional integer variable x; is equivalent to an L&P cut from a particular
basis of (CGLP;). Moreover, they show that the correspondence between bases
of (LP) and (CGLP;) is well defined. This means that a basis of (LP) can be
constructed such that it gives an intersection cut which is equivalent to a specific

L&P cut. The following section details this correspondence.

A Precise Correspondence

Consider a feasible basic solution («, £, u, v, ug, vg) of (CGLP;) which yields the
L&P cut ax > 3 and the strengthened L&P cut ax > 5. We suppose that ug > 0
and vy > 0 since otherwise the L&P cut is just a non-negative linear combination
of the constraints of Az > b. Let the sets My and M> contain the indices of the
basic components of u and v respectively. Moreover, let J = M; U My and A be
the matrix which consists of the rows of A indexed by J. It can be verified that
My N My = () and |M; U Ms| = n. Therefore A is a n x n square matrix which

is invertible [30]. With this notation we can write

Az =50 + sy,
TR (4.88)
.’I,':Ajle+A31$J.
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Then the row associated with the basic variable x; can be written as

Ti = Q0 — Z a;js;, (4.89)
jedJ
where a;9 = (A}léj)i and a;; = —(fljl)ij. This row of the simplex tableau is

the same as . It can furthermore be shown that 0 < a;9 < 1 due to the
assumption that ug > 0 and vy > 0. Thus there is a correspondence between the
basic components of u and v in (CGLP;) and the non-basic components of the
surplus variables s in (LP). Conversely, the non-basic components of u and v are

connected to basic components of s or x respectively.

Theorem 4.12 ([30]). The strengthened LEP cut ax > [ is equivalent to the
GMI cut generated from (4.89).

On the other hand, this correspondence can be used to construct a basic feasible
solution of (CGLP;) such that the strengthened L&P cut is equivalent to the
GMI cut from . Suppose that a row of the simplex tableau associated
with a basis B of (LP) and a basic variable z; is given such that 0 < a;o < 1.
Note that the basis B does not have to be optimal or feasible.

Theorem 4.13 ([30]). Let (My, Ma) be a partition of J such that j € My, if
a;; <0 and j € Mo, if a;; > 0. Then the strengthened LEP cut ax > 3 which is
defined by the solution to (CGLP;) associated with the basis

(a, B,up,vo, {ug : k € My}, {vg : k € Ma}) (4.90)

is equivalent to the GMI cut derived from (4.89).
Theorem is based on the partition (M;, Mz) of the non-basic variables J.

But if there are any non-basic variables with a;; = 0, this partition is not
unique. In this case we are free to assign the variable either to M; or M.
Therefore Theorem relates each basis B of (LP) to a number of different
bases of (CGLP;). However, these bases are degenerate and correspond to the
same basic solution of (CGLP;). So there is a one-to-one relation between basic
solutions of (LP) and (CGLP;). The correspondence stated in Theorem and
Theorem can also be established between the unstrengthened L&P cut and

the intersection cut.
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Solving the CGLP on the LP Tableau

Based on these insights, Balas and Perregaard [30] developed a very elegant
method which mimics the optimization of (CGLP;) by performing a sequence of
pivots on the original (LP) tableau. In each iteration of this procedure a pivot in
a row of the simplex tableau associated with the basic variable xp with k # i is

performed. This pivot produces a linear combination
Ti + YTe = Gio + Yago — Y, (Gij + Yars) s (4.91)
jedJ

of our reference row (4.89)) associated with z; and the selected row. The procedure
aims at selecting the pivot such that the GMI cut from the combined row (4.91))

is more violated than that obtained from the original row. Let v = —g;’; for some
p € J. The pivot in Equation then makes the basic variable xj leave the
basis and the non-basic variable x, enter the basis. The variable x}, is also called
the pivot row and the variable x,, is called the pivot column. To guide the search
for an improving pivot, the correspondence between bases of (LP) and (CGLP;)

is used.

In order to be able to perform a pivot, a variable which leaves the basis needs
to be selected in a first step. This selection is guided by the fact that each basic
variable zj, of the (LP) simplex tableau corresponds to a pair uy, vg of non-basic
variables of (CGLP;). The reduced cost of the non-basic variables uy and vy can
be calculated from the entries in the (LP) tableau rows associated with x; and

xy, and the solution vector z* for each row k ¢ J U {i}

Tu, = —0 + ago (1 — 27) — 7, (4.922)
ro = —0 —aro (1 - a}) + sk + 7 (4.92b)

where _ _

21\34 aijs;'f — a0 (1 — l’;k)
JEM>

= — , 4.93
L+ 3 |ag) (4.93)

jeJ

and

= Y omgt 3 (55— 0) (499

JjEM; JEM2
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If one of the reduced cost r,, or r,, is negative, the L&P cut can be improved by
pivoting the non-basic variable uy or vy respectively into the basis of (CGLP;).
In terms of the (LP) tableau, the equivalent effect can be achieved by pivoting
the basic variable z; out of the basis. If none of the variables u; or v, with
k ¢ JU{i} has negative reduced cost, there is no improving pivot and the current
basis of (LP) corresponds to an optimal basis of (CGLP;). In this case, the GMI
cut from the row of the simplex tableau associated with the current basis
is equivalent to the optimal L&P cut.

In a second step a non-basic variable z;, from the row associated with the basic

variable x;. is selected to enter the basis. The two functions

ZJ max {@;j, —Yak; } 8; — Gio + (Gio + Yako) Ty

e

f—‘r v) = J — — 4.95a

() 1+~v+ Zj\aij—F’Yakj\ ( )
j€

and

> max {0, g + ya;} 5 — (@io + varo) (1 — )

jeT
fr =15 — 4.95b
( ) 11—+ ZJ\aij—F’yakj\ ( )

Je

are used to measure the effect that pivoting z, into the basis of (LP) has on the
value of the objective function of (CGLP;). The functions f*(v) and f~(v) are
minimized to identify the entering variable x, which brings about the largest
improvement of the violation of the L&P cut. If a leaving and an entering variable
are selected, the corresponding pivot is performed and the process is iterated. For

recent computational studies of different variants of this algorithm see [22], 23].

Connection to Split Cuts

In this section we discuss the connection of L&P cuts and split cuts. Multiplying
the left-hand side of the disjunction (4.81)) with u,ug > 0 and the right-hand side

with v, vg > 0 we obtain

(uflx — ugT; > ug) Vv (v[lx + vox; > vb + vo) : (4.96)
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Solving (CGLP;) optimizes the multipliers u, v, ug, vy and generates the most-
violated intersection (or simple disjunctive) cut with respect to the elementary
split disjunction x; < 0 or z; > 1. Using the correspondence discussed above, an
equivalent result can be obtained by performing pivots on the (LP) tableau. The
intersection cut can then be strengthened by using the integrality conditions on
the non-basic integer variables (cf. Proposition . This second operation can
be seen as a strengthening of the underlying disjunction (cf. Proposition .
Therefore the most-violated strengthened intersection cut (or GMI cut) is the
result of a two-stage procedure. One would like ideally to optimize the basis and
the disjunction at the same time. This is equivalent to finding an optimal split

cut which can be separated by solving a mixed-integer non-linear program (see

Section 4.4.1J).

The Role of the Normalization

Fischetti et al. [87] examine the strengths and weaknesses of the standard normal-
ization constraint . This normalization has several positive characteristics.
To see this, consider the right-hand side of the normalization constraint to be a
resource that must be shared among the multipliers u, v, ug, and vg. As a conse-
quence large multipliers are generally undesirable as they consume large amounts
of this resource. Therefore the standard normalization will produce cuts
with relatively small coefficients due to the usage of relatively small multipliers.
This in turn implies that multipliers associated with cuts need to be comparably
large for the cuts to become relevant. Thus cuts with relatively low rank are
separated. Since original inequalities from the problem formulation are normally
sparse and the normalization produces relatively sparse multiplier vectors, the
generated cuts also tend to be sparse.

A weakness of the standard normalization is that it is dependent on the scaling
of the constraint system. Consider an inequality axz > b and its scaled version
a'x > b where ' = pa and V' = pb with g > 1. The multipliers of the second
inequality are v’ = % and v/ = % Selecting the second inequality is therefore
more favorable as it consumes fewer resources with respect to the right-hand side
of the normalization constraint. By an appropriate scaling previously generated

cuts can also become relevant. Thus the nice properties of the normalization,
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i.e. the generation of sparse low-rank cuts, are lost. Constraints that become

redundant in (CGLP;) due to the disjunction used pose an additional problem.

To overcome the discussed drawbacks, Fischetti et al. [87] propose the Euclidean

normalization
m-+p+n
Z ||| (wi + vi) +uo +vo =1, (4.97)
i=1
where @; is the i*" row of A and || - || denotes the Euclidean norm. This approach

is equivalent to scaling the system Az > b such that every row of A has Euclidean

norm equal to 1. Clearly the Euclidean normalization is not affected by scaling.

Balas and Bonami [23] take up the ideas of Fischetti et al. and study the

normalization constraint

m-+p+n
D A (i +vi) +ug 4 vo = Ao, (4.98)
i=1
where \; > 0fori=1,...,m+p+n and A is a positive integer. Introducing

the new normalization into (CGLP;) is easy. Moreover, the correspon-
dence between bases of (LP) and (CGLP;) which is stated in Theorem [4.12]
and [£.13] is not affected by modifying the normalization. However, the algo-
rithm optimizing (CGLP;) by pivoting on the original (LP) tableau needs to be
adapted. Specifically, the calculation of the reduced cost and the evalua-
tion functions is based on the assumption that the standard normalization
vet+ue+vg+ug = 1is used. When the normalization is used the expressions

of the reduced cost are given by

Tu, = =0 + ako (1 — z7) — 7%, (4.99a)
Ty, = =0\ — Ggo (1 — x7) + sp, + Tk, (4.99b)

where _ _

z]\:/[ aijsj» — ;0 (1 — a:;k)
JEM2
= — , 4.100
14 37 fai| Aj ( )
jedJ
and

T = Z Jc_lkj/\j + Z (8; — U)\j) Q- (4.101)

JEM; JEM>
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In addition, the two evaluation functions (4.95) have to be slightly modified:

(Z max {C_lz'j, —"}/C_ij} S;f — Q0 + (C_li(] + ’Y@ko) xf) Ao
() = € (4.102a)

L4+ yXe + X @i + vars| A ’
JjeJ

(Z max {0, a;; + "}/C_ij} S; — (@0 + varo) (1 — x:)) Ao
() = j€J (4.102b)

L=k + X [aij + yaw;| A
jer
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Multi-Row Cutting Planes

In this chapter we consider cutting planes which are derived using multiple rows
of the simplex tableau simultaneously. We give a brief review of the relevant
literature on this subject. We also discuss group relaxations in more detail and
elaborate on the connection between valid inequalities and lattice-free convex

sets.

This chapter is organized as follows. Section[5.I]introduces multi-row relaxations
and Section presents a literature review. In Section we treat the (master)
group relaxation. The derivation of valid inequalities is discussed in Section
In particular we deal with the generation of valid inequalities from two rows of

the simplex tableau.

5.1. Introduction

In the previous chapter we were concerned with the generation of cutting planes
from single-row relaxations. These relaxations are obtained by aggregating the
constraints of an MIP. The resulting single constraint is then used as the input
data for a cutting plane separation algorithm. In particular, any row of the
simplex tableau can be seen as a single-row relaxation. In this chapter, however,
we concentrate on generating cutting planes using more than one row of the
simplex tableau at the same time. This approach is not new. The fundamental
results on which it is based were discovered more than 40 years ago. However,
recently cutting planes from multiple rows have been revisited and new interesting

theoretical results have been proposed. The new impetus to the field of multi-
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row cuts is mainly due to the constant need for strong cutting planes and the
limitations of the single-row cuts.

Once again, let B be a basis of the LP relaxation of the MIP . As before, let
the set J index the non-basic variables and let * be the basic solution associated
with B. Using the extreme rays defined in Equation , we can write

x =z + erxj,
jed

x>0, (5.1)

$]’€Z, j € Ny.

Let zp and z; denote the basic and non-basic components of = respectively. We

consider the simplex tableau

ap = x5+ Y raj,
jed
z >0, (5.2)

.TjGZ, J € Ny.

We assume that the basic solution (zp,xs) = (27, 0) is integer infeasible. The
simplex tableau is nothing more than a reformulation of the MIP (2.3 in the
sense that every row of the tableau is a linear combination of the original rows of
the system (A,b). Note that we slightly abuse notation by denoting the columns
of the simplex tableau by 7. Here and in what follows the vectors r/ only contain
the components of the extreme rays that are associated with the selected
vector of basic variables.

A Gomory mixed-integer cut is generated from a single row of the simplex
tableau (see Section . This single row provides only very limited information
about the structure of the underlying MIP. An interesting question is thus whether
the additional information provided by the remaining rows of the simplex tableau
can be used to construct stronger (or at least different) valid inequalities.

The following section presents a brief literature review. Recent surveys on multi-
row cutting planes are given by Conforti et al. [55] and Dey and Tramontani [77).
An excellent review of the group theoretic approach in integer programming is
given by Richard and Dey [150].
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5.2. Literature Review

In 1969 Gomory [101] introduced the corner relaxation (or group relaxation) of
an integer program which is obtained by dropping the non-negativity restrictions
on the basic variables. The convex hull of feasible solutions to this relaxation
is called the corner polyhedron. Moreover, Gomory studied the master corner
relaxation (or master group relaxation) and the associated master polyhedron.
These polyhedra can be seen as a data-independent generalization of corner

polyhedra.

Different algorithms for solving the corner relaxation have been proposed.
Gomory [I00] discusses a dynamic programming algorithm for optimizing a
linear function over the corner relaxation. Other algorithms solving the corner
relaxation are presented in [49] 95] 114, [153] 154]. In [I0I] Gomory also proved
the asymptotic theorem. This theorem gives necessary conditions under which
the optimal solution to the corner relaxation is equal to the optimal solution to
the original integer program. In a computational study Gorry et al. [105] showed
that for most real-life integer programs the (asymptotic) corner relaxation does

not solve the original integer program.

Valid inequalities for the (master) corner relaxation are also valid for the original
integer program. It therefore seems reasonable to derive valid inequalities for the
group relaxation (group inequalities) and apply them to integer programs. Gomory
and Johnson [102] 103] studied group inequalities and particularly concentrated on
the facets of master polyhedra. Gomory [I01] showed that the Gomory fractional
cut [97] can also be derived as a facet of the master polyhedron. Similarly, the
Gomory mixed-integer cut [99)] is a facet of the mixed-integer extension of the
master polyhedron (see [102]). Both of these inequalities are one-dimensional
group inequalities, i.e. they are based on a group relaxation that only consists of
a single row. Since the GMI cut is very effective from a computational point of
view [26], several attempts to find other effective single-row group inequalities
have been made. For instance, Dash et al. [70] proposed two-step MIR cuts and
Kianfar and Fathi [I19] introduced the more general class of n-step MIR cuts.
However, none of these variants has proved to outperform the GMI cuts in solving

practical (mixed-) integer programs (see also [72]). Dey and Wolsey [79] suppose

79



Chapter 5. Multi-Row Cutting Planes

that this is because the GMI cut has the strongest coefficients on the continuous
variables among all single-row group inequalities.

Johnson [I16] studied inequalities which are based on multi-row group relax-
ations. These inequalities are known to be important to describe the convex hull
of (mixed-) integer programs. For example, Cook et al. [57] present a simple
mixed-integer set whose convex hull cannot be obtained using split cuts while
a single multi-row cut yields the convex hull. Gomory and Johnson [104] point
out that multi-row inequalities are able to reflect the structure of the columns
associated with continuous variables more accurately. For these reasons there has
been a renewed interest in multi-row cuts. Borozan and Cornuéjols [41] consider
a semi-infinite relaxation and establish a connection between minimal valid in-
equalities for this relaxation and maximal lattice-free convex sets. Andersen et
al. [11] and Cornuéjols and Margot [63] study cutting planes from two rows. Dey
and Wolsey [78], [79] address the lifting of non-basic integer variables in two-row
cuts, i.e. they show that two-row cuts can be strengthened using the integrality of
some of the non-basic variables (see also Conforti et al. [54] and Basu et al. [34]).
Andersen et al. [I0] demonstrate that stronger two-row cuts can be obtained by
considering the bounds on the non-basic variables. Dey and Wolsey [80] study
S-free cuts which are generated from multi-row relaxations containing additional
constraints (e.g. bounds) on the basic integer variables (see also Basu et al. [35]
and Fukasawa and Giinliik [92]). Basu et al. [33] compare the strength of the
elementary closures of different families of two-row cuts (see also Andersen et
al. [12]). He et al. [I12] provide a probabilistic comparison of two-row cuts and
split cuts. Dey and Louveaux [76] and Basu et al. [36] study the split rank of
multi-row cuts. Espinoza [83], 84], Basu et al. [32] and Dey et al. [75] report on

computational experience with multi-row cuts.

5.3. Group Relaxations

In this section we investigate multi-row and group relaxations in more detail. Our
presentation here is partly based on [150].

We start by considering a relaxation of which was first studied by Go-
mory [101]. We only consider the rows of the simplex tableau associated with basic

integer variables. For simplicity we assume that all basic variables are integer-
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-

o

Figure 5.1. Corner polyhedron

constrained, i.e. B = Br = {1,...,m}. Moreover, we drop the non-negativity

conditions on all basic variables. We get

xp = xp+ Y raj,
jeJ
T; € Z, j € Ny.

The system is known as the corner relaxation. The convex hull of the
feasible solutions to the corner relaxation is known as Gomory’s corner polyhedron
(see [101]). Note that when the polyhedron P (or the simplex tableau respectively)
is non-degenerate then the non-negativity restrictions on the basic variables are
the only non-binding constraints. Valid inequalities for the corner relaxation
are also valid for and thus for the MIP (12.3)). Figure shows an integer

program and its convex hull of feasible solutions (gray area). The hatched area
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which continues off the figure is the corner polyhedron associated with the basic

solution x7%.

We now examine the rows of the simplex tableau defining the corner relax-
ation (5.3) from a different viewpoint. Let f be a vector with f; = (zF)i — | (275)i]
for i =1,...,m. To obtain a feasible integral vector zp to the corner relaxation
(which is not necessarily non-negative) the fractional part of the sum ;¢ ; rix;
has to be 1 — f. In other words, the sum }_ ;. ; rjxj has to add up to — f modulo 1.

This can be stated by the following congruence.

erxj—i— Z riz; = —f(mod1),
jGJ[ jEJ\JI

r; € Z, j€N.

Corner polyhedra are closely related to groups. Specifically, the problem ([5.4))
can be interpreted as finding a finite sum of group elements such that they add
up to a group element that gives an integral vector xg. The corner relaxation
is thus often called the group relaxation. For the non-basic integer variables the
fractional part of the product rf x; is just an integer multiple of the fractional
part of rf for i =1,...,m. We can therefore replace the column 77 of the tableau
by the vector of its fractional components for all j € J;. For the sake of simplicity,

we also denote this vector by 7.

The structure of the corner relaxation depends heavily on the underlying
mixed-integer program, i.e. the columns /. Therefore an analysis of the corner
relaxation yields very problem specific results. A different idea is to abstract from
the specific system by introducing additional variables. Let G and W be

two sets which contain the columns associated with the integer-constrained and
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continuous variables respectively, i.e. {r/:j € J;} CGand {r/ :j€ J\J} CW.

We obtain the so-called master corner relaxation or master group relaxation

zp=f+Y g-t(g+ D w-s(w),

9eG wew
xg € Z™,

t(g) € 2, ge€aq,

t(g),s(w) >0, geqG, wewWw,

t, s have finite support.

(5.5)

The system contains extra variables for the vectors g € G or w € W which
are not columns of the original simplex tableau. By fixing the variables associated
with these new columns to zero we again obtain the corner relaxation . Thus
every feasible solution to the corner relaxation can be translated into a
solution of . Note that we require the vectors ¢ and s to have finite support in
a feasible solution to , meaning that these vectors only have a finite number

of non-zero components. We thereby ensure that the sums in the first equation

of (b.5)) are well-defined.

Gomory and Johnson [I03] and Johnson [116] considered the case in which
the set G is a group. Let I"™ be the group of m-dimensional vectors [0, 1[™
where addition is taken modulo 1 component-wise. Further let S™ be the set
of m-dimensional real vectors w = (wy,wa,...,w,,) satisfying max{|w;| : ¢ =
1,...,m} = 1. Suppose that G is a subgroup of I and that W is a subset of
S™ ie. W C S™. As above, the group GG and the set W contain the columns
of the integer and continuous variables respectively, i.e. {r/ : j € J;} C G and
{ri:jeJ\J;} CW. Given a vector r € R™, let F(r) denote the vector in I™

th

whose i"" component is r;(mod 1). We obtain

Zg-t(g)Jr}"(Z w'S(w)> = F(=f) (mod1),

geG weW
t(g) € Z, g€Ga, (5.6)
t(g),s(w) >0, geG, wewW,

t, s have finite support.
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A valid inequality for (5.5 is given by two functions ¢ : G — Ry and
m: W — R, such that

Y b9t + Y m(w) s(w)>1 (5.7)

9eG wew
is valid for all solutions (zp,t,s) to (5.5). The functions ¢ and 7 are referred
to as walid functions if Inequality is valid for (5.5). Therefore the terms
“valid inequality” and “valid function” are often used interchangeably. A valid
function (¢, 7) is minimal if there exists no other valid function (¢, 7") such that
(p,m) # (¢',7") and ¢'(g) < ¢(g) for all g € G and 7’'(w) < w(w) for all w € W.
A valid function (¢, ) is extreme if there do not exist two distinct valid functions
(¢!, 7!) and (¢?, m2) such that (¢,7) can be written as a convex combination of
(¢!, 1) and (¢?, m2). The term extreme can be seen as a generalization of the

term facet-defining when the group G is not finite.

5.4. Valid Inequalities

In this section we investigate two additional relaxations of the corner relax-
ation which have played an important role in the recent development of
valid inequalities from multi-row relaxations. In what follows we assume that the
polyhedron P associated with the LP relaxation of the MIP ({2.3)) is rational, i.e.
A e Q™™ and b € Q™. By dropping the integrality restrictions on the non-basic

integer variables in the corner relaxation we obtain a system of the form

k
x=f+> 17,
j=1

5.8
x € 79, (5:8)

seR’i,

where all basic integer and non-basic continuous variables are denoted by = and
s respectively, and J = {1,...,k}. Let Ry(rl,... r*) denote the convex hull of
all vectors s € ]Ri such that the sum f + Z?:l rJ sj is integral. We have that
f,rt, ..., r¥ € Q1. Moreover, remember that f ¢ Z, i.e. the solution f is integer

infeasible.
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Borozan and Cornuéjols [41] propose to relax the system ([5.8) by introducing
a variable s, for every r € Q?. Thus they turn the k-dimensional space of the

non-basic variables into an infinite dimensional space, leading to the semi-infinite

relaxation
r=f+ Z TSy,
reQq
T € Zq, (59)
s > 0,

s has finite support.

Let Ry denote the convex hull of all vectors s > 0 having finite support such that
the sum f + 37, cgq 78y is integral. Borozan and Cornuéjols [41] show that any
valid inequality for Ry that cuts off the infeasible basic solution x = f, s = 0 is

of the form

dow(r)s =1 (5.10)

reQq
with ¢ : Q7 — R4 U{+00}. Moreover, they establish a beautiful correspondence
between minimal valid inequalities of the form and maximal lattice-free
convex sets. A lattice-free convexr set S C RY is a convex set which contains no
integer points in its interior, i.e. int(S) NZ% = (). A lattice-free convex set S is
mazimal if there is no other lattice-free convex set S’ distinct from S such that S

is contained in S’. Now, consider the set

Sy={zecQl:¢p(z—f) <1} (5.11)
and let cl(Sy) denote the topological closure of Sy, in RY.

Theorem 5.1 ([41]). Let f € Q7 \ Z4. A minimal valid inequality ¢ for Ry is
non-negative, piecewise linear, positively homogeneous and convex. Furthermore,
the set cl(Sy) is a full-dimensional mazimal lattice-free convex set containing
f. Conwversely, for any full-dimensional maximal lattice-free convexr set S C RY
containing f there exists a minimal valid function ¢ for Ry such that cl(Sy) = S,

and when f is in the interior of S, this function is unique.

Theorem states that any minimal valid inequality for R, arises from

a particular maximal lattice-free convex set S. Moreover, these inequalities
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are unique provided that f lies in the interior of S. So there is a one-to-one
correspondence between maximal lattice-free convex sets and minimal valid
functions . This case is called non-degenerate and ) is referred to as a non-
degenerate function. On the other hand, there is the degenerate case in which
the maximal-lattice free convex set S contains f on its boundary. In this case,
the set S corresponds to several minimal valid degenerate functions i yielding
different minimal inequalities. However, Zambelli [I76] showed that for any
minimal valid inequality for the finite dimensional set Ry (r!,... ,r*) there exists

a non-degenerate function generating it.

5.4.1. Two-Row Cuts

In the previous discussion we presented some results concerning the relaxation
Ry (r',...,7%). While these results are valid for an arbitrary dimension ¢ of the
system (5.8]), several authors have studied the two-row special case (¢ = 2) in
detail.

Andersen et al. [I1] were the first to study the problem R¢(r!, ..., r*) with two
rows. They showed that all facets of R¢(r!, ..., ) are intersection cuts which are
generated from two-dimensional lattice-free convex sets such as splits, triangles
and quadrilaterals. Cornuéjols and Margot [63] present sufficient conditions for a
lattice-free convex set to define a facet of Ry(rl,...,r*). They show that degen-
erate lattice-free convex sets are not needed to define the facets of Ry(r!,...,r%).
Moreover, Cornuéjols and Margot characterize the extreme inequalities for Ry in

the two-row case.

Dey and Wolsey [78, [T9] address the strengthening of multi-row inequalities
by using the integrality of some of the non-basic variables (see also Conforti et
al. [04] and Basu et al. [34]). Moreover, they provide a classification of maximal
lattice-free triangles. Triangles of type 1 have integral vertices and contain an
integer point in the relative interior of each edge. Triangles of type 2 have more

than one integral point in the relative interior of one edge. Triangles of type 3
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have non-integral vertices and contain one integral point in the relative interior

of each edge. Now, consider the two-row relaxation

1= fi+ Y riz,
jed

zo = fa+ Y iz,
jeJ

(5.12)

:L‘jEZ, j € Ny,

where {1,2} C By, i.e. x1 and x5 are basic integer variables. Let S C R? be a
maximal lattice-free convex set containing f = (fi, f2) in its interior. Then define
the function 7 : R2 — R, with

0 if w € recession cone of S,
m(w) = (5.13)

A if f+ %w € boundary (5),

where boundary(.S) denotes the boundary of the set S. The inequality

Sor(r) e =1 (5.14)

jeJ

is valid for (5.12). However, as some of the non-basic variables are integer-

constrained this inequality is not minimal in general. The inequality

Z ¢0 (7.]') T + Z ﬂ'(T’j) Tj >1 (515)

JEJT jeJ\J1

is also valid for (5.12)) where ¢ : [0, 1[2— [0, 1] is called the trivial fill-in function

#° (w) = min {7 (w+ u)}. (5.16)

u€”Z?

Since 7(r7) > ¢°(r7) for j € Jy, Inequality (5.15) dominates (5.14]). Again note
that we assume that the columns associated with non-basic integer variables have

been replaced by their fractional parts such that r/ € [0,1[2. Dey and Wolsey
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showed that Inequality (5.15)) is minimal when the maximal lattice-free convex
set S is a triangle of type 1 or type 2.

Let Sf(rl,...,rk), Tf(rl,...,rk) and Qf(rl,...,rk) denote the closures of
the split, triangle and quadrilateral inequalities respectively. The closure of
the split inequalities is the intersection of all valid inequalities derived from
lattice-free split bodies. The triangle and quadrilateral closure are defined
analogously. Basu et al. [33] examine the relative strength of these closures
from a theoretical point of view. Given the results discussed above, we have
Re(rl, ..o ork)y = Sp(rt, oo orB)Y N Ty (et 7R N Qp(rY, ... 7). Now, an inter-
esting question is whether one of these closures plays a more important role
in approximating Rf(rl,...,rk) than the others. Basu et al. proved that
Te(rt,...or%) C Sp(rt, . ooorF) and Qp(rl,...,7F) C Sp(rl,...,7F), ie. they
showed that the triangle and quadrilateral closure are at least as strong as the
split closure. They showed, moreover, that the triangle closure and the quadrilat-
eral closure close at least half of the integrality gap while the amount of integrality
gap closed by the split closure can be arbitrarily small. Andersen et al. [12]
generalized this result to relaxations containing an arbitrary number of rows of
the simplex tableau. They showed that intersection cuts derived from lattice-free
convex sets with so-called full split-dimension are crucial to obtaining a good
approximation of the integer hull. These results suggest that cutting planes from
two rows are stronger than most of the cutting planes used in state-of-the-art
MIP solvers.

On the other hand, Dey and Louveaux [76] showed that intersection cuts
generated from maximal lattice-free triangles (except for type 1 triangles, see
Cook et al. [57]) and quadrilaterals have finite split rank. Almost all triangle and
quadrilateral cuts can therefore be obtained through a sequence of split cuts. A
more general characterization of cuts with infinite split rank is provided by Basu
et al. [30].

He et al. [I12] present a probabilistic comparison of type 1 triangle cuts and
split cuts for two-row mixed-integer programs. They show that, if the vectors
f and 17 are subject to specific probability distributions, then there is a high
likelihood that split cuts dominate type 1 triangle cuts with respect to the size of

the cut coefficients and the volume cut off from the LP relaxation.
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Espinoza [83, 84] reports on successful computational experience with un-
strengthened intersection cuts derived from several families of maximal lattice-free
convex sets. Basu et al. [36] study the computational effectiveness of a family of
strengthened type 2 triangle cuts generated from degenerate simplex tableaus.
Their results show that the selected family of two-row cuts only provides a slight
improvement over the Gomory mixed-integer cuts. Dey et al. [75] consider a
different family of strengthened type 2 triangle cuts. They show that these
cuts are effective in increasing the amount of integrality gap closed on randomly

generated multidimensional knapsack instances.

5.4.2. Intersection Cuts

In this section we deal with intersection cuts from general lattice-free convex sets.
We discussed the special case where the lattice-free convex set is a split set in
Section 4.4.2l Consider the multi-row relaxation
= f+ Z riz;,
jeJ
w; >0, jed, (5.17)
x; € Z, je€ Ny,

which is essentially the same as (5.1]) except that the non-negativity conditions on
the basic variables have been removed. We assume that the solution f is integer

infeasible. Now suppose that the set
S:{xeanwixgﬂé,izl,...,l} (5.18)

is a lattice-free convex set containing f in its interior. We require that 7r§- =0 for
all j € N\Nrandi=1,...,[since these components of x are associated with con-
tinuous variables. We can rewrite the set S in the form {z € R" : Al_, (7'x < 7))}
We can therefore represent the fact that the solution f is not allowed to lie in the

interior of S' by the [-term disjunction

l
\/ (ﬂ'ix > 7['6) . (5.19)

=1
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By using the definition of z from (5.17)) we obtain the valid inequalities

t (f+2rjxj) 271‘6, i=1,...,1. (5.20)

jeJ

The solution f lies in the interior of the set S, implying that 7§ — 7¢f > 0 for

1=1,...,1. We can therefore rewrite this set of inequalities as
Ly
Z(ﬂ)szl, i=1,...,1L (5.21)
jer \mo —mf

To obtain a valid inequality for the disjunction (5.19)), we apply the disjunctive
principle (cf. Proposition [2.1)). We get the intersection cut

ipd
max { —— L > 1. (5.22)
i=1,...0 | mh —mf

For each non-basic variable j € J define a vector o/ with components

7r(i)—7rif . i q
, — if 77 >0
al =4 ™ ’ (5.23)
400 otherwise,
for i =1,...,l. We can then restate the intersection cut as
oy
_7Jj > 1. (5.24)
; min < a7
jeJ i:l,...,l{ Z}

Consider the half-line f 4+ ar/ with a > 0 starting in f in the direction 7. The
point f + ag 77 is the point at which the extreme ray r/ and the hyperplane
mix = 7} intersect (see Figure [5.2).

Next we discuss the strengthening of the intersection cut. We again consider
modifying each term of the disjunction (5.19)) on the non-basic integer variables.

We get
!

\/ ((W’ - hi> x> 71'6) , (5.25)

=1
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L] L] L] L] L]
TQ
T’l
7”3 f ?”3
7“4
(a) A fractional solution f and four extreme (b) A maximal lattice-free triangle
rays

(¢) A two-row cut

Figure 5.2. Example of the derivation of a two-row cut
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where hi € Z" with h;- =0 fori=1,...,0 and for all j & J;. If the original
disjunction is a split disjunction any modified disjunction of the
form is again a split disjunction and thus satisfied by all feasible integral
solutions (see Section . The optimal strengthening is then given by a closed-
form formula (see Proposition . Concerning general multiple-term disjunctions
like the modification shown in Equation is not, however, valid for
arbitrary choices of the vectors h'. We therefore consider a special case in which

for i = 1,...,1 the vectors h' are given by

(5.26)

B = Tl if j e Jy,
’ 0 otherwise,

for j =1,...,n and where u/ € Z" for j € J;. We obtain the modified disjunction

l
\_/ (ﬂiac - Z (Wiuj) x> Wé) , (5.27)

which we can rewrite as

l
\/ (Wi (ZL‘ - Z ujxj) > 776) . (5.28)
i=1 JEJI

Since we assumed that the original disjunction (5.19)) is valid and the term
T =3 e, ul x; is integral the modified disjunction is indeed valid. We obtain the

intersection cut

O | 1]
S L G0} z;+ max { —— bz >1.  (5.29)
l L —r 1 0

JEJI =

Clearly, we are interested in making the coefficients on the integer variables as

small as possible. We get

(5.30)
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The trivial fill-in function can thus be viewed as a strengthening of the disjunc-

tion (5.19).
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Chapter 6.

Required Work

The purpose of this chapter is to describe in detail the goals of this thesis. We
first summarize the review of the state-of-the-art in cutting plane approaches
we presented in Chapters [4] and [5| and identify research gaps. Following this
discussion we then introduce the objectives of this thesis.

Our review of the literature on general-purpose cutting planes points to a
number of conclusions. The large number of publications shows that general-
purpose cutting planes are an active area of research. Balas and Saxena [31]
demonstrate that the elementary split closure gives a tight approximation of the
integer hull of many mixed-integer programs. Optimizing over the split closure,
however, is N'P-hard as shown by Caprara and Letchford [44]. In line with
these findings, research is devoted to families of split cuts such as the Gomory
mixed-integer cuts [99] which can be generated efficiently. Several authors propose
algorithms for obtaining improved Gomory mixed-integer cuts; see Cornuéjols
et al. [61], Ceria et al. [46], Andersen et al. [§] and Balas et al. [24]. As pointed
out by Cornuéjols and Nannicini [64], the existing approaches for the efficient
generation of split cuts are, however, far from exploiting the full strength of the
split closure. Moreover, a computational comparison of these approaches has not
been conducted.

Andersen et al. [II] initiated new interest in cutting planes generated from
multi-row relaxations, showing that all facet-defining inequalities of the convex
hull of a mixed-integer set defined by a system of two equations with two free
integer variables and non-negative continuous variables are intersection cuts
derived from maximal lattice-free splits, triangles and quadrilaterals. Borozan

and Cornuéjols [41] consider a semi-infinite relaxation consisting of ¢ equations
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with ¢ free integer variables and an infinite number of non-negative continuous
variables. They show that minimal valid inequalities for this relaxation correspond
to maximal lattice-free convex sets. Dey and Wolsey [78, [79] demonstrate how
cutting planes derived from two rows of a simplex tableau can be strengthened
using the integrality of some of the non-basic variables. Considering the advances
in the theoretical understanding of inequalities derived from multi-row relaxations,
there is only limited computational experience with their use as cutting planes in
a cut-and-branch (or branch-and-cut) framework. Espinoza [83], 84] was the first
to show that generating cutting planes from multi-rows of a simplex tableau can
positively influence the performance of an MIP solver by implementing separators
for subclasses of these inequalities as a cut callback in CPLEX. Espinoza does
not, however, consider the strengthening proposed by Dey and Wolsey. Basu
et al. [32] study a family of two-row cuts generated from degenerate simplex
tableaus. In their experiments Basu et al. observe the selected family of two-row
cuts not to be competitive with the Gomory mixed-integer cuts. Dey et al. [75]
report on preliminary computational experience with lifted two-row cuts (trivial
fill-in function) derived from a family of maximal lattice-free triangles of type 2
on randomly generated multidimensional knapsack instances. They show that
this family of cuts is effectively reducing the integrality gap in comparison with
the Gomory mixed-integer cuts. Dey et al. also point out the need for further
computational experimentation with multi-row cuts. In general, there are only
few publications discussing implementation details of cut separators. It is, on the
other hand, well known that technical details can greatly affect the performance
of a cut separator and thus the overall performance of an MIP solver. In summary,
research is needed into the separation of single-row and multi-row cuts, efficient
implementations of cut separators and meaningful computational experiments.
Based on the review of the state-of-the-art summarized above, this thesis

pursues three main research objectives which are of computational nature.

1. We propose to develop a new heuristic approach for improving the per-
formance of the Gomory mixed-integer cuts which is based on pivoting.
The main idea behind our approach is to increase the distance cut off by
a Gomory mixed-integer cut by reducing the size of the coefficients of the

continuous variables in the row of the simplex tableau from which it is
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derived. Andersen et al. [8] successfully used a similar reduction algorithm

to generate reduce-and-split cuts.

We want to implement various cut separators which generate split cuts for
integer and mixed-integer programs, including two Chvatal-Gomory cut
separators, the Gomory mixed-integer cut separator and five variations of the
latter cut separator. Furthermore, we want to give a detailed description of
our implementation of these cut separators. We particularly aim to highlight
important computational techniques making these cut separators efficient

in practice.

In addition, we want to conduct meaningful computational experiments with
the discussed cut separators. The questions we intend to answer are: which
approach to strengthening Gomory’s mixed-integer cuts is most effective
in solving practical MIP instances? Concerning the performance of the
lift-and-project cuts, is it beneficial to apply disjunctive modularization or
the Euclidean normalization? How do the Chvatal-Gomory cut separators
perform in comparison with the Gomory mixed-integer cut separator and

its variants?

. We aim to implement cut separators which generate cuts from multiple rows
of a simplex tableau, i.e. intersection cuts which are derived from maximal
lattice-free convex sets other than split sets. We also intend to discuss in
detail our implementation of these cut separators. In particular, we want
to address the construction of a multi-row relaxation and the properties of
selected families of maximal lattice-free convex sets. Espinoza [84] used some
of these sets to generate intersection cuts and obtained promising results.
We also want to integrate the trivial fill-in function into our implementation

in order to strengthen the multi-row cuts.

Besides the description of the multi-row cut separators, we want to provide
computational results which enable evaluation of their practical value in
solving mixed-integer programs. Questions we want to address are: How
do multi-row cuts perform in comparison with split cuts? Are intersection
cuts derived from certain families of maximal lattice-free convex sets more

effective than others? What is the benefit of deriving cuts from relaxations
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which consist of more than two rows? Or, in other words, do intersection
cuts derived from higher-dimensional maximal lattice-free convex sets yield
a larger performance improvement than those derived from triangles or
quadrilaterals? How is the performance affected if the multi-row cuts are

strengthened using the trivial fill-in function?

. The first two objectives of this thesis involve developing various cut sepa-

rators. Typically, these cut separators produce large numbers of cutting
planes violated by the current optimal solution of the LP relaxation of
the associated MIP. Adding all generated cutting planes to the problem
formulation is problematic since they slow down the solution of the LP
relaxation. We want therefore to develop a cut selection algorithm which
only selects a subset of the best cuts with respect to some quality measure.
We furthermore intend to study various quality measures and to compare

their performance by computational experiments.

The remainder of this thesis is organized as follows. Chapter [7] introduces the

MIP solver MoPs and discusses some basic aspects of our implementation such as

data structures and numerical considerations. In Chapter [8| we describe several

cut separators for subclasses of split cuts and present a new pivoting algorithm

for improving the performance of the Gomory mixed-integer cuts. We also report

on our computational experience with these cut separators. Chapter [9] describes

our implementation of several variants of multi-row cut separators and discusses

computational results. In Chapter [I0] we develop a cut selection algorithm and

analyze its effect on the performance of MopPs. Chapter [11|summarizes the results

of this thesis, offers some conclusions and points to opportunities for further

research.
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Chapter 7.
Framework

Part || of this thesis was devoted to the state-of-the-art in cutting plane technology.
We discussed general-purpose cutting planes for both pure integer and mixed-
integer programs. In Chapter [4] we considered split cuts such as Chvatal-Gomory
cuts and Gomory mixed-integer cuts and also discussed several approaches for
improving the performance of the Gomory mixed-integer cuts. In Chapter [5| we
showed how to derive cutting planes from relaxations which consist of multiple
rows of the simplex tableau.

In this chapter we describe the framework in which we implement separation
algorithms for some of the cutting planes discussed in Chapters [ and 5] We
discuss the system architecture and some of the main data structures.

This chapter is organized as follows. In Section we describe the MIP solver
Mops and detail its architecture, history and main algorithms. Some important

aspects of our implementation are discussed in Section

7.1. MOPS - An MIP Solver

The software package MOP{] is a high-performance solver for linear and mixed-
integer programming problems. Starting as a pure LP solver based on a primal
simplex algorithm in 1987, the system today features powerful IP preprocessing
and an effective branch-and-cut algorithm. In particular, MoPS ranks among the
top systems in the world for solving large-scale real-world linear and mixed-integer
programming problems. MOPS is, for the most part, written in Fortran77 and

is available for various platforms such as standard PCs, servers and mainframes.

!Mathematical OPtimization System
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topic reference(s)
- system architecture [158]
- LU factorization [160]
- LU update [156]
- LP preprocessing [137]
- primal simplex algorithm [157]
- dual simplex algorithm [123-125]
- IP preprocessing [162, 163]
- cutting planes [51), T69HITT]
- branch-and-bound [90]
- branch-and-cut [167]

Table 7.1. Documentation of algorithms and computational techniques

The system is a commercial product which has been used in many practical
applications [121] [I55) 159 [161]. Since its initial version, MOPS was significantly
improved in terms of algorithms, software design and implementation. These
improvements have been documented in many scientific publications. Some of

these publications are shown in Table [7.1]

7.1.1. Evolution

Like other MIP solvers, MoPS has undergone a rapid evolution in the last two
decades. Some of the main steps in the development of MOPS are shown in
Table [7.2| (cf. Koberstein [123]).

Only very limited conclusions concerning the overall performance of an MIP or
LP solver can be drawn from the performance on particular problem instances.
Nevertheless, this approach provides an indication of how the performance of an
MIP or LP solver has improved. For several versions of Mops, Tables [7.3] and [7.4]
show the times which the different LP engines and the MIP engine need to solve
the benchmark instance oil to optimality (cf. Koberstein [123]). This instance
consists of 5563 constraints, 6181 variables in total, including 74 binary variables,

and 39597 non-zero elements in the coeflicient matrix.
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year version description

1987 1.0 primal simplex, LU factorization, and PFI update
1988 1.1 LU update of the basis factorization
1989 1.2 LP preprocessing, update

1991 1.3 new pivot row selection minimizing the sum of infeasibilities
1992 1.4 new scaling, ftran, devex
1994 2.0 mixed 0-1 programming with supernode processing

(IP preprocessing)
1995 2.5 mixed-integer programming with general node selection
1997 3.0 first version of dual simplex for branch-and-bound phase
1998 3.5 improved supernode processing
1999 4.0 additional interior point algorithm to solve initial LP
2001 5.0 new memory management, improved numerical kernels

2003 6.0 lifted cover cuts

2003 7.0 fixed charge and general bound reduction by solving LPs

2004 7.5 new dual simplex algorithm for initial LP
and branch-and-bound

2004 7.6 Gomory mixed-integer cuts

2005 7.7 improved dual simplex algorithm

2006 7.8 improved primal simplex algorithm

2007 8.0 Movps studio with AMPL interface

2008 9.0 mixed-integer rounding cuts,
new branch-and-bound algorithm

2009 10.0 new LP preprocessing, lifted clique cuts

Table 7.2. Development of MoOPS

year version hardware and software platform  solution time (seconds)

1991 1.4 1486 (25 MHz) 612.4
1995 25  P133 Win 3.11 20.7
1999 4.0  PIII (400 MHz), Win 98 5.1
2001 5.0  PII (500 MHz), Win 98 3.9
2002 6.0  PIV (2.2 GHz), Win 2000 0.9
2005 7.6  PIV (3.0 GHz), Win 2000, primal 1.1
2005 7.8  PIV (3.0 GHz), Win 2000, dual 1.6
2005 8.0  PIV (3.0 GHz), Win 2000, IPM 0.6

Table 7.3. Improvement of the MoPs LP engines on model 0il
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year version hardware and software platform solution time (seconds)

1994 2.0 PII (500 MHz), 1794.3
LIFO MIP

1995 2.5 PII (500 MHz), 450.1
general node selection

1999 4.0 PIV (2.2 GHz), 75.2
IPM for initial LP

2003 6.3 PIV (2.2 GHz), 39.6
various improvements

2005 7.8 PIV (3.0 GHz), 11.4

Gomory mixed-integer cuts,
dual simplex in B&B

2008 9.0 PIV (3.0 GHz), 6.9
new B&B algorithm
2009 10.0 Core2Duo, 3.6

new LP preprocessing

Table 7.4. Improvement of the MopPs MIP engine on model oil

7.1.2. External System Architecture

This section details the external system architecture of MopPs which is also
depicted in Figure (cf. Koberstein [123]). One way of accessing the MoOPS
code is via a dynamic link library (mops.dll) and a static link library (mops.lib).
Both of these libraries can be integrated into user applications. The static link
library provides direct access to the data structures and solutions routines by
means of the Fortran, C and IMR interfaces. The dynamic link library provides
interface functions which allow for access to a selected subset of the MoOPS core
routines.

The MoPs executable (mops.exe) is available for several system platforms. It
is controlled via a text file, the so-called MoOPS profile, which enables the user to
change the parameters of the LP and MIP optimization. The problem data are
passed to Mops using the MPS file format (see, for instance, Murtagh [140]) or a
Mops-specific triplet format. Additional files are used to store statistics, solution
data, LP bases and branching trees.

Finally, we point to two user-friendly graphical tools. ClipMoPs is an MS Excel
Add-In which is based on the mops.dll and allows for formulating and solving LP
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user programs user programs MoPrs MS Excel Add-In LoadModule
NET C / Fortran studio ClipMoprs mops.exe

~ ] [ S
m— / -

mops.lib /
C / Fortran interface input / output routines 11:11-;;2

IMR interface numerical kernels
save punch tree save / convert .
] 3 solution
restore insert restore bedout

P MPS solution
trees data files

Figure 7.1. External architecture of Mops

and MIP models with up to 250 columns and 400 constraints. MoPS studio is a
powerful frontend for MoOPS in which models can be formulated in a modeling

language such as AMPL [89] and solved interactively.

7.1.3. External and Internal Model Representation

In the previous chapters we worked with MIPs in the standard forms
and . While any MIP can be transformed into these standard forms, MIP
solvers like MoPs must be able to handle MIPs which are of a more general form.
Consider the MIP

(EMR) min cx,
s.t. L S/le < D,
- (7.1)
[ < z<d,
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where ¢, z € R", A € R™*" L, D € (RU{—00,+00})™, I,d € (RU{—o00,4+00})"
and Ny C N = {1,...,n}. In contrast to the standard form, the MIP contains
ranges (L, D) on the constraints and bounds (I, d) on the variables. We refer
to as the external model representation (EMR).

Internally the MIP (|7.1)) is transformed into a form which is quite similar to
that of the standard equality form ([2.3). This is accomplished by a standardized

procedure which adds a complete identity matrix to the constraint matrix A. We

get
(IMR) min cxs,
S. t. Ax = 0,
(7.2)
I < x<d,

T € Z, ¥je€ Ny,

where A = (A,I) € R™ M) ¢ = (2g,21) € R™™ | = (I,-D) € R*™,
d=(d,—L) € R""™ and N; C N = {1, ...,n+m}. The system is called the
internal model representation (IMR). Note that the matrix A has full row rank.
The ranges on the constraints are transformed into bounds on the logical variables.
The variables zg which are associated with the matrix A are called structural
variables (or structurals) and the remaining variables which were introduced to

obtain equality constraints are called logical variables (or logicals).

We keep to the notation we introduced for the MIPs in standard form ([2.1])
and . Note that a basis of the LP relaxation of the IMR may also contain
columns which are associated with logical variables. In the remainder of this
thesis we shall consider MIPs mainly in their IMR. For simplicity we assume that
the IMR does not contain free variables. All of the algorithms discussed in the

following chapters can nevertheless be easily adapted to handle free variables.

7.1.4. MIP Solution Process

The process of solving an LP or MIP problem consists of several steps which are
shown in Figure[7.2|(cf. Koberstein [123]). In the data management phase memory
is allocated and the data structures are initialized. Typically, the standard data

structures used in MoOPS are arrays. These arrays are arranged in a contiguous
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data management phase
allocate
memory
generate / triplet file
load a model
convert
to IMR
LP solution phase
LP pre-
processing
primal simplex dual simplex primal
dual IPM
crossover /
optimal basis
identification
LP post-
processing
MIP solution phase
IP prepro-
cessing
IP heuristics
apply IP branch apply IP
heuristics anil cut preprocessing
at nodes at nodes

Figure 7.2. MIP solution process
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memory block in order to benefit from data caching. The problem data are then
read from a file or passed by a dll function and converted into the IMR format.

The first step in the LP solution phase is the LP preprocessing. During LP
preprocessing a number of techniques are applied with the objective of reducing the
size of the problem. For instance, redundant constraints and variables are removed.
In addition, an elimination procedure is used further to reduce the number of
variables and constraints. The level of preprocessing that is applied is dependent
on whether the model is an MIP or LP problem. In particular, the most aggressive
LP preprocessing is only applied to LP problems. For MIP problems, a slightly
restricted LP preprocessing is performed, since aggressive LP preprocessing can
lead to a less effective IP preprocessing. The preprocessed problem is then solved
by the primal simplex algorithm, the dual simplex algorithm or by an interior
point method (IPM). The main difference between the two simplex engines and
the IPM engine is that the optimal solution computed by the IPM engine is
usually not basic. To obtain a basic optimal solution a crossover algorithm is
performed. This algorithm is in fact a specialized simplex algorithm. If one of the
simplex engines is used, the problem is perturbed (see [123]) in order to cope with
degeneracy. With respect to these perturbations, the primal and dual simplex
algorithm form an entangled pair: when solving a problem with the dual simplex
algorithm, the primal simplex algorithm is used to remove the dual perturbation,
and vice versa. Thus efficient implementations of both simplex engines are needed.
The last step of the LP solution phase is the LP postprocessing which deduces
an optimal solution to the original problem from an optimal solution to the
preprocessed problem. If an MIP problem is solved, the third solution phase is
entered. Otherwise the solution process terminates.

The third phase is the MIP solution phase. The first step in this phase is
to perform the IP preprocessing (or supernode processing [162]) in order to
strengthen the LP relaxation of the MIP problem. Besides coefficient or bound
reduction techniques, cutting planes play a major role in this regard. MoPS
generates cutting planes in rounds. Usually a large number of cutting planes can
be derived. When added to the problem formulation, cutting planes increase the
problem size and slow down the LP engine. Therefore it is important to select
only a careful subset of the generated cuts. Primal heuristics are applied in order

to find feasible solutions to the MIP problem. The objective value of any such
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feasible solution provides a primal bound on the optimal objective value. The
branch-and-cut algorithm is then started. By default the LP relaxations of the
subproblems encountered during the branch-and-bound search are solved with the
dual simplex algorithm. Heuristics and specific preprocessing techniques (such as
cutting planes) can also be applied at nodes of the branching tree. The default
setting of MOPS is to only derive cutting planes at the root node, i.e. MOPS in

fact uses a cut-and-branch algorithm.

7.2. Implementation

The purpose of this section is to present some technical details of our imple-
mentation. We describe the main data structures and discuss some numerical

considerations.

7.2.1. Basic Data Structures

The Moprs MIP solver stores the problem data and all intermediate and final
results of algorithms in array-based data structures. Typically arrays are arranged
in a contiguous memory block. This approach has the advantage that all arrays
can be addressed very efficiently by calculating the offsets in this block. In the
following we discuss the data structures for storing matrices and vectors.

MIP solvers like MoPS usually store matrices in a compact form meaning that

only non-zero entries are considered. Figure|7.3|shows the standard data structure

row 1 row 2 row 3 row 1 nz

(col 1) (col 2) (col 3) (coll) /
coef s free
ind e Space

maxnz

\__ /]
S S V8 7 i

R A I N N N
1 2 3 1 1+1

Figure 7.3. Compact storage of a matrix in row-wise or column-wise format
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for storing matrices. For instance, the matrix A which is the structural part of
the coefficient matrix in the IMR is stored using this data structure. In
general a matrix can be stored in row-wise or column-wise format. Let us suppose
we chose the row-wise format. For each row of the matrix the arrays coef and
ind store the coefficients and the column indices respectively. The components
of the array offset point to the starting positions of the rows in coef and ind.
The array length is used to store the lengths of the rows, i.e. the number of
non-zero elements in each row. In Figure each element of length points to
the last element of a row in coef and ind. In fact this last element is given by
offset[i] + length[i] - 1. The light gray areas represent free space between
rows. The gray area at the end of coef and ind is the free space for additional
rows. As hinted in Figure this data structure can similarly store a matrix in

the column-wise format.

The advantages of storing a matrix in this compact row-wise (column-wise)
format are that the rows (columns) can be added and accessed very efficiently.
The data structure also easily allows for adding non-zeros to existent rows or
columns. Moreover, rows or columns can also be replaced efficiently. On the
other hand, given a row-wise representation of a matrix it is not possible to find
all rows that contain a certain column index without iterating over the array
ind of column indices. Therefore using a row-wise representation is inefficient
if columns need to be accessed. Conversely, a column-wise representation is not
the right choice if rows need to be extracted frequently. To avoid performance
degradation a matrix is often stored in both row-wise and column-wise format.
Note that changes in the row-wise structure need to be synchronized with the
column-wise structure and vice versa. In MIP solvers this is accomplished by
performing a sparse transpose which extracts one of the two representations from

the respective other one.

We now turn to a second important data structure. In our code we often work
with vectors, e.g. cut coefficient vectors. Mathematical vectors can be stored in

different ways.

e Dense storage: A single array contains all of the vector’s entries including

zero elements.
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1 2 3 4 5 1 1t 2 3 4 5 1
coef [2.0]0.0]o.6]0.0]1.4] --[o.0] coef  [2.0]o.6]1.4] | [ ] |
ma [t ]sfs| | [-f |
(a) dense storage (b) packed storage
1 2 3 4 5 1

coef [2.0] [o0.6] [1.a] ] |

ima [t ]s|s| | [f |

work |1 ol 1o 1] -]o]

(c) indexed storage

Figure 7.4. Vector storage

e Packed storage: A vector is represented by two compact arrays. One of
these arrays contains only the non-zero elements of the vector while the

other one stores the corresponding indices.

o Indezed Storage: The elements of the vector are stored in a dense array and
the indices are stored in a compact array. The non-zero positions of the

vector are held in an additional array.

Figure [7.4] presents these data structures. Dense storage consumes less memory
than the other two methods. However, iterating over the non-zero positions of a
sparse vector in dense storage is very expensive. Moreover, the array coef needs
to be zeroed out after each usage. Concerning packed storage the situation is
different. As only the non-zero elements are stored in a compact form, looping
over them is cheap. But packed storage also consumes additional memory for the
stack ind which stores the vector indices. Moreover, it is not possible directly to
access the element of a vector at a specific index without iterating over the stack
of indices. Indexed storage combines the advantages of packed and dense storage.
Looping over a vector can be done efficiently and all elements can be accessed
directly. In addition we use the array work to mark the non-zero positions in
the array of coefficients coef. With this it is possible to decide whether a vector

contains an element at a specific index without checking for a non-zero coefficient
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(numerical issues). Nor do we zero out the array coef in indexed storage but zero

out the marker array work using the stack ind after each usage.

7.2.2. Numerical Considerations

Floating point calculations are subject to rounding errors and are consequently
by nature inexact (see [96]). On the other hand, algorithms using floating point
arithmetic are usually considerably faster than those based on exact (rational)
arithmetic. Like most MIP solvers MOPS is based on floating point arithmetic.
Mops deals with numerical issues by introducing tolerances for feasibility, opti-
mality and integrality among others. In most cases the inherent inaccuracy of
floating point arithmetic can be neglected, i.e. a solution can be declared feasible
or optimal if it satisfies the accuracy requirements (in terms of the respective
tolerance parameters). On the other hand, exact solutions are required in some
situations. Concerning the solution of linear programs some authors [14, [93]
describe exact implementations of the simplex method using rational arithmetic.
Fukasawa and Goycoolea [91] study the exact separation of mixed-integer knap-
sack cuts. With respect to running times they report that exact computations
are on average 100 times slower than floating point computations.

All implementations discussed in this thesis are based on floating point arith-
metic. As mentioned above, tolerances are used when checking two floating
point numbers for equality or strict inequality in order to cope with rounding
errors. Similarly, an integrality tolerance is used to decide whether a variable
takes an integral value. A robust implementation of a cutting plane separation
algorithm particularly has to take into account that its input data is subject to an
accumulated rounding error. Concerning cutting planes derived from the simplex
tableau, the computation of the rows of the tableau involves a large number of
arithmetic operations. Numerical inaccuracies might be introduced during the
elimination procedure in LP preprocessing and in the computation of the LU
factorization of the basis matrix. Thus the numerical robustness of algorithms
which generate cutting planes from rows of the simplex tableau is to some extent
directly dependent on the numerical robustness of the underlying LP solver.

In our code we use two techniques to increase the numerical stability of the

generated cuts. We remove variables having very small (quasi-zero) coefficients
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from the generated cuts by substituting their lower or upper bounds for them
respectively, thus relaxing the cut. If this is not possible, the cut is rejected.
Moreover, we compute the dynamism of each cut, i.e. the ratio between the
absolute values of the largest and smallest non-zero coefficient in the cut (see
Margot [136]). If the dynamism is larger than a threshold, the cut is rejected as

well.
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Chapter 8.
Single-Row Cutting Plane Separators

In this chapter we describe separation algorithms for various general-purpose
single-row cutting planes. We discuss our implementation of these algorithms and
highlight important details making them efficient in practice. We also propose
a novel algorithm for improving the performance of the Gomory mixed-integer
cuts. To assess the effectiveness of the discussed implementations we perform
benchmarks on a number of publicly available test sets. Thus this chapter is an
implementation-oriented complement to Chapter [4]

This chapter is organized as follows. In Section we detail our implemen-
tation of the Gomory mixed-integer cuts. We discuss k-cuts in Section [8.2] and
combined Gomory mixed-integer cuts in Section We treat reduce-and-split
cuts in Section and present technical details of our implementation of the
lift-and-project method in Section Section introduces a new pivoting
procedure for strengthening the Gomory mixed-integer cuts. We provide details
of our implementation of the strong Chvétal-Gomory cuts and {0, %}—cuts in Sec-
tion [8.7] and respectively. Finally, in Section [8.9] we report on computational

experiments indicating the effectiveness of our implementations.

8.1. Gomory Mixed-Integer Cuts

In this section we outline our implementation of the Gomory mixed-integer cuts. A
detailed discussion of the theory of GMI cuts and their connection to intersection
and split cuts can be found in Section [4.4.3]

The main steps in the separation of a GMI cut are shown in Algorithms [8.1
and In Step [I] of Algorithm [8.1] a set of basic integer variables which take
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Algorithm 8.1. A round of Gomory mixed-integer cuts

Input: A basis B and the corresponding basic solution z* of the
LP relaxation of the IMR (7.2).
Output: A list £ of GMI cuts.

(step 1) Initialize
Set £ := 0 and k := 0.
Choose a subset S of the basic integer variables which have a
fractional value, i.e. S C {j € By: 2} ¢ Z}.

(step 2) Select a variable
Set k:=k+ 1.
if |S| < k then exit.
Otherwise, let i be the k' element of S.

(step 3) Compute the row of the simplex tableau

Compute the row of the simplex tableau (8.3) associated with x;,
(step 4) Separate the cut

Compute a GMI cut from this tableau row using Algorithm

(step 5) Store the cut
Add the cut to the list £ and goto Step

a fractional value in the solution x* to the LP relaxation of the IMR is
selected. The tableau rows associated with these variables are then used to
derive GMI cuts. In our implementation we restrict cut generation to the set
BrnA{1,...,n} of structural basic integer variables. While deriving GMI cuts
from tableau rows associated with logical basic integer-constrained variables
is possible, such variables are mostly only present in pure integer programs.
Moreover, preliminary computational experiments lead to the conclusion that
the GMI cuts generated from these tableau rows are not effective. Concerning
the set of structural basic integer variables the two main questions are which
and how many of these variables should be used for cut generation. While cut
generation is likely to be fast on small problems, it can be very expensive on large
problems. To rank the variables we compute the fractional part fio =} — |z} |
foralli € Byn{l,...,n}. Note that the value f;o is precisely the right-hand side
of the GMI cut (see Equation ([£.47)) and also represents its violation. A small
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value of f;o corresponds to a GMI cut which is only slightly violated whereas a
small value of 1 — f;o leads to a significant increase in some of the coefficients in

the GMI cut. Accordingly, we only accept variables satisfying
fio€le,1—¢[, ie€eBrn{l,...,n}. (8.1)

The tolerance parameter ¢ bounds the fractionalities. In our code we set € to 0.05.
The number of variables satisfying can still be too large to compute GMI
cuts for all of them. Thus we sort the remaining variables in non-ascending order
of their fractional parts f;p and store them in a stack. We only compute cuts for

a number of the most fractional variables.

The next steps of the algorithm are the selection of a variable and the con-
struction of the associated row of the simplex tableau (see Step [2[ and |3| of
Algorithm [8.1). Given a basis B of the LP relaxation of the IMR (7.2)), the

simplex tableau reads

Aprp+ Ajxy =0, (8.2&)
rp = — (AélAJ) xTJ, (82b)

where A = (Ap, Ay) and = (xp,xs). State-of-the-art simplex engines do not
explicitly work on the simplex tableau. Let B(i) denote the position of the
variable x; in the basis B. The row of the simplex tableau associated with a basic
variable z; is calculated by multiplying the B(i)"" row of the basis inverse A;l

with the matrix A. Let the result of this multiplication be

x; + Z d;jxj =0, (8.3)
jeJ

where ¢ € B.
The row of the tableau (8.3)) contains non-basic variables which are either at
their upper or lower bound. In order to derive a GMI cut all non-basic variables

have to be transformed such that they are at their lower bound of zero. We

partition the set of non-basic variables J into (J!, J%) such that J? contains the
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indices of the non-basic variables which are at their upper bound and J* consists
of the indices of the non-basic variables which are at their lower bound. Let
sj+1; ifjeJ, a,. ifjeJt,

T4 = and C_lz‘j = K (8.4)
dj —s; ifjeJe, —ay; if j e Je,
for j € J. By complementing the variables in J¢ and shifting the variables in J*

we obtain the transformed tableau row

Ti = Q0 — Z aijSj, (8.5)
JjEJ
where the variables s are the surplus variables from the constraints x; > [; for

j € J' and slack variables from the constraints xj <djforjeJ 4 and

app = — Y ayd; — > agl;. (8.6)

jeJd jeJ!

This transformation is also performed in Step [I] of Algorithm

In Step [2] the GMI cut is then generated using Proposition 1.7 However,
in our code we generate a complemented mixed-integer rounding cut from the
untransformed row . Although MIR and GMI cuts are theoretically equivalent,
there are some algorithmic differences. One of the main reasons for generating MIR,
cuts instead of GMI cuts is that an efficient and well-tested implementation of the
MIR separation heuristic (see Marchand and Wolsey [135]) is available in MoPS.
The MIR separation heuristic consists of the steps aggregation, bound substitution
and separation. The aggregation heuristic searches for linear combinations of
the constraints of the problem which give a violated MIR cut. It can be easily
adapted to construct rows of the simplex tableau. In the second phase of the
algorithm the bound substitution heuristic transforms the aggregated constraint
(tableau row) in a way similar to that discussed above. Moreover, it allows for

using so-called variable bound constraints

lgry < x5 < dyay, (8.7)
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Algorithm 8.2. Separating a Gomory mixed-integer cut

Input: A row of the simplex tableau x; + 3¢ &;jxj =0
associated with a basis B of the LP relaxation of the
IMR where x; is a basic fractional integer variable.
Output: A GMI cut ax > 5.

(step 1) Shift and complement
(Shift.) Set a;; == a;; and x; :=[; + s; for all j € J.
(Complement.) Set a;; := —aj; and x; := d; — s; for all j € Je.
(Compute right-hand side.) Set aig 1= — 3¢ ja @};d; — > e 1 @555
The transformed tableau row has the form x; + Eje 7 @ijSj = Q-

(step 2) Compute the GMI cut
Compute the GMI cut 3, ;a’s; > ' (see Proposition .

(step 3) Unshift and uncomplement
(Unshift.) Set a; := o) and s; := x; —I; for all j € Jt
(Uncomplement.) Set a; := —a} and s; :=d; — x; for all j € Je.
(Compute right-hand side.) Set 3 := ' — 3¢ ja &jdj + 3 ey il
The GMI cut reads ZjeJ ;T > 5.

(step 4) Remove logicals

Use the definition of the logical variables xj = —Axg to write the
cut in the space of the structural variables zg.

where z; with j € N\ Ny is a continuous variable and xj, x; with k,l € Ny are
integer variables. More precisely, the bound substitution heuristic substitutes a
continuous variable z; either by the standard bounds as shown in Equation (8.4))

or by the variable bounds
lyxy, +s; or
T4 = { R / (88)
dix; — s;.

There are different criteria for deciding whether to use a variable lower or upper
bound (see [51], [135]). An integer variable x or x; which is substituted into
a tableau row needs to be treated again by bound substitution since it may

have an arbitrary lower or upper bound. Moreover, note that the algorithm has
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to remember whether a simple or variable bound (lower or upper bound) was
substituted for a variable.

We then generate a cut using the separation heuristic. All the variables in the
resulting GMI cut are slack or surplus variables s from the simple and variable
bound constraints. To write the cut in the space of the x variables only we
re-substitute for s. Specifically, depending on which bound was used in the initial
transformation, we have s; = x; — [, s; = d; — x; from the simple bounds or
sj = xj — lpwk, s; = djx; — x; from the variable bounds. In addition, the GMI cut
has to be written in the structural variables xg so as to add it to the matrix A
in the IMR . This is accomplished by using the definition of the logical
variables 27, = —Axzg. The final cut is saved in an intermediate data structure.
After GMI cuts have been generated for the selected basic variables all of the cuts
are typically added to the LP relaxation at the same time. This set of cuts is

also called a round of cuts and Algorithm [B.1]is said to generate cuts in rounds.

8.2. K-Cuts

In Section [4.4.4] we introduced k-cuts. A k-cut is a GMI cut generated from the
tableau row

ki = kag — Y _ (kagg) s;, (8.9)

Jj€J

where k € Z and k # 0. Equation is simply the transformed tableau row
multiplied by k. The motive for the multiplication with k is to obtain GMI cuts
with different violations. On the other hand, the coefficients of the (non-basic)
continuous variables in a GMI cut are increased by a factor of k. Integrating
k-cuts into an existing separation routine for GMI cuts is quite easy. We stick
to the strategy for generating GMI cuts we discussed in Section The main
question is which values should be used for k. In our implementation we generate
k-cuts for k = 2¢ with i =0,...,3.

Finally, we offer some comments on the integrality requirement on k. The
integrality of k is required for the validity of the k-cuts. For instance, consider the
disjunction (kz; < |kao|) V (kx; > |kaio| + 1) on a basic integer variable z; and
let a;o = % and k = %. We obtain z; <0V z; > % which is not a valid disjunction.

Moreover, an integral value of k£ produces an integral coefficient on the basic
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variable in the tableau row. In turn an integer variable with an integral coefficient
k in the tableau row also obtains an integral coefficient c; = k in the GMI or
MIR cut. Thus the violation of the GMI cut is fjo = kaio — |ka;| > 0. However,
for non-integral multipliers k the situation is different. Choosing a non-integral
multiplier & produces the coefficient «; in the GMI cut which is dependent on the
size of k — | k] and fip. In some situations the GMI cut may not be violated, i.e.
;a0 — |kajp| < 0, even though ka;y € Z. For the same reasons the separation
algorithms for combined Gomory mixed-integer cuts and reduce-and-split cuts

also compute integral multipliers for the tableau rows.

8.3. Combined Gomory Mixed-Integer Cuts

In Section we outlined an approach for generating GMI cuts from linear
combinations of the rows of the simplex tableau. The idea behind this approach is
to find a combined tableau row which gives a GMI cut with a maximal violation
and minimal coefficients on certain non-basic integer variables.

We generate combined GMI cuts in rounds using an algorithm similar to
Algorithm The main input parameter for this algorithm is the number r of
tableau rows to be combined. The larger this number is, the more computationally
expensive the separation becomes. In our code we consider three tableau rows at
a time, i.e. r = 3. This number of rows is also suggested Ceria et al. [46]. To avoid
expensive re-computation, we store the rows of the simplex tableau associated
with structural basic integer variables in a matrix 7". The data structure used
to store this matrix is shown in Figure [7.3] Following the ideas described in
Section [8.1| we generate cGMI cuts for the most fractional structural basic integer
variables. More precisely we select r structural basic integer variables in the order
of decreasing fractionality. Once these variables are selected the associated rows
of the simplex tableau need to be computed. We extract these rows from
the matrix T.

Algorithm [8:3] sketches the separation of a ¢cGMI cut. We shall only briefly
outline the algorithm since it was already discussed in Section The input
data for the algorithm are the selected rows of the simplex tableau. The first step
of the algorithm is to write the coefficients of the simplex tableau and the solution

values in rational numbers where D is the common denominator. We use the
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Algorithm 8.3. Separating a combined Gomory mixed-integer cut

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Step 5)

(Step 6)

Input: The rows of the simplex tableau z; +3_ ;¢ ; dgjxj =0
associated with a basis B of the LP relaxation of the
IMR where x; is a basic fractional integer variable for
1= 1

Output: A Comblned GMI cut ax > S.

Compute rational representation
Compute a rational representation x; + 3¢ J( J)xj =0 and

vy = fori=1,...,7

Maximize =7y (%) ~ [ (%)

Find a family of multipliers p; = p} + Z’,;'% pfyk fori=1,...,r
solving the diophantine equation

< €10, €20, - - -5 €70, D > = e1op1 + €20p2 + ... + eropr + qD.

Set ; ::D—pi:D—p}—Z}?épf yp fori=1,... r.

Check termination criteria

if pf =0 (mod D) foralli=1,...,7r and k=2,...,r + 1 then
goto Step @

Select a non-basic integer variable
Select a non-basic integer variable x;, j € Jr, whose coefficient was
not optimized so far.

Minimize Y>i_ () — [ 2 mi(H))
Substitute for the famlly of multipliers m and rewrite the result in

the form ([£.69), i.e. ¢ + Z"H(e’“)yk — B+ S (B
Find a family of multlphers pi = py + St plyl for

t=2,...,7r 4+ 1 solving the diophantine equation
< eg,€3,...,6r41, D > =eapa+e3p3 + ... + erp1pr1 + qD.
Set y 1= —Lmjpk for k =2,...,r + 1 and obtain a

new improved family of multipliers 7; := D — p} — Z’,j; iy

Goto Step

Compute the combined GMI cut
Construct the combined tableau row

i T+ ey (i miag )z = 0.
Compute a GMI cut ax > 8 using Algorithm

122



8.3. Combined Gomory Mixed-Integer Cuts

Euclidean algorithm to compute the rational representation of the tableau rows.
In Step [2] of the algorithm a diophantine equation is solved in order to compute a
family of multipliers which maximizes the right-hand side of the cGMI cut. As
noted in Section we use the algorithm of Rosser [I51] to solve such type of
equations. The study of other algorithms that could be used for this purpose
such as the LLL algorithm [128§] is left to future work.

In the second part of the algorithm the left-hand side of the cGMI cut is
optimized. More specifically a non-basic integer variable is selected in Step [4] and
the algorithm seeks to find a new family of multipliers which maximizes the right-
hand side of the GMI cut and minimizes the coefficient of this variable in Step
To obtain the new family of multipliers a second diophantine equation is solved
and a set of integers y; is computed using Proposition The assumption
of Proposition [£.11] is not, however, always satisfied. As suggested by Ceria et
al. [46] we perform a simple rounding and nevertheless apply Proposition
We thus only approximately minimize the coefficient if Proposition [£.11] is not
applicable. The process is then iterated, i.e. the algorithm selects the next
non-basic integer variable and optimizes its coefficient. The algorithm stops when
the termination criterion in Step [3| is satisfied. If the integers pf are all zero
modulo D, all products pfyk will also always be zero modulo D regardless of how
the integers y; are chosen. It is therefore not possible to optimize an additional
coefficient. The procedure is stopped and the cGMI cut is generated (see Step @

Finally we point to the weaknesses of the above procedure. A first major
drawback is that the number of coefficients on the left-hand side of a GMI cut
that can be optimized is constrained by the number of tableau rows involved. A
resulting cut is therefore likely to have strong coefficients on a few variables and
large, weak coefficients on the majority of the non-basic variables. Secondly, while
the transformation of all entries of a simplex tableau into a rational representation
can theoretically always be obtained by choosing a sufficiently large D, it is
cumbersome from a computational point of view. The size of the multipliers m
is proportional to the size of D. Large multipliers produce large coeflicients on
variables which are not optimized by the procedure. In particular, recall that the
procedure does not at all take into consideration the coefficients of the continuous
non-basic variables in the cGMI cut. In our code we set D = 100 and round the

coefficients of the rows of the simplex tableau accordingly.
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8.4. Reduce-and-Split Cuts

In this section we detail our implementation of the reduce-and-split cuts. R&S
cuts aim at reducing the size of the coefficients of the continuous variables in the
GMI cuts. This is accomplished by an algorithm which constructs integer linear
combinations of the rows of the simplex tableau. We call this algorithm the R&S
reduction algorithm. For a discussion on the theory of R&S cuts we refer the
reader to Section The separation of R&S cuts is presented in Algorithm

A set S of variables is selected in Step [l The R&S reduction algorithm is
carried out on the tableau rows associated with these variables. In our code
we select the complete set By N {1,...,n} of structural basic integer variables.
Then the tableau rows associated with these variables are computed. To save
computational effort we simply deploy the matrix 71" of tableau rows we constructed
for the separation of the combined GMI cuts (see Section . The compact data
structure which is used to store this matrix is shown in Figure

The R&S reduction algorithm performs row operations on the matrix 7. As
the tableau rows stored in 7' are of the form we do not have to consider
right-hand sides in any part of the algorithm. The compact storage of T" has the
drawback that row operations can not be carried out efficiently directly on T
Most notably, it is not possible to determine whether a row contains a variable
without iterating over the array of variable indices (similar to a packed vector).
As an alternative one could store the matrix 7" in a dense form where each of
the rows is a dense vector as shown in Figure However, iterating over
the elements of a dense matrix is a computationally very expensive operation.
Accordingly, whenever the algorithm intends to perform an operation on two
rows, we load these rows into an indexed data structure (see Figure . Using
this data structure the row operations can be implemented very efficiently. Also
the action of replacing a row of the matrix T by its reduced version can be
implemented very efficiently using the free space area and the pointers for the
length and offset of a row. When the free space area is exhausted a compression
routine is executed which re-locates the rows inside the data structure with the
objective of regaining free space.

In Step |2 of Algorithm the actual R&S reduction algorithm is performed.

Given two basic integer variables x; and x; and the associated rows of the simplex
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Algorithm 8.4. Separating reduce-and-split cuts

(Step 1)

(Step 2)

(Step 3)

Input: A basis B of the LP relaxation of the IMR (7.2]) and the
corresponding basic solution x*.
Output: A list £ of reduce-and-split cuts.

Construct the tableau

Select a set S of the structural basic integer variables. Compute
the tableau rows x; + > ; aj;x; = 0 for all # € S and store them
in a matrix T'. Set done := false.

Perform the reduction algorithm

while done = false do

Set done := true.

fori=1,...,|S|—1do

for k=i+1,...,|5| do

(Get tableau rows.) Let x; + 3¢y aj;7; = 0 and
Tk + X jeg Gp;xi = 0 be the i and k™ row of T.

(Check for a reduction.) Let * minimize

f(8) = X e, (@l + daj,;)? with § € Z.

if f(0*) < f(0) then
(Update.) Set z; := z; + 6*z), and a;; = aj; + 6*ay;
for all j € J.
(Replace.) Replace the it row of T by the updated
row and set done := false.

end

(Check for a reduction.) Let * minimize

f(8) = e, (ay; + daj;)? with § € Z.

if f(6*) < f(0) then
(Update.) Set xj := xy, + 0*x; and aj; := aj; + 6*aj;
for all j € J.
(Replace.) Replace the k™ row of T by the updated
row and set done := false.

end

end
end

end

Compute reduce-and-split cuts
Iterate over the matrix 7" and compute a reduce-and-split cut for
each row using Algorithm Add these cuts to the list L.
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tableau in the form ({8.3]), the algorithm evaluates if the combined tableau row
associated with x; + dxj has smaller coefficients on the continuous variables. More

formally, we minimize the function

£(8) = 2\: (a; + o). (8.10a)
JeJ\Jr
_ JZ\J ((a;j)2+2éa;ja§€j+(éa;j)2>, (8.10b)
JeJINJr
= Y (@) +2 Y -+ Y (a) (8.10¢)
VISOAV JEINJIr JEINJIr

The first and last terms of Equation contain the squared Euclidean norm
of the coefficients of the continuous variables of the tableau rows. Therefore
before starting the algorithm we calculate this norm for all tableau rows in the
matrix T and store the norms in a separate data structure. The second term
of Equation contains the inner product of two rows on the continuous
variables. When the algorithm selects two rows in Step [2] these rows are loaded
into an indexed data structure and we compute the inner product. Recall that

the optimal solution minimizing f(9) is either

> @Ay > @ay;
a’ . al .
jer jerr \

These optimal values can be calculated easily from the aforementioned data. To
speed up the algorithm and to avoid large multipliers §* (i.e. large coefficients in
the split disjunction, see Equation ), we stop considering rows if their norm
is not larger than a threshold. Specifically, if

3 (agj)2 <e (8.12)

JjeNJr

we skip the row associated with the basic variable z; in Step [2] of the algorithm.
In our code we set € to 10~°. Moreover, to achieve a faster convergence of the

algorithm, we do not accept linear combinations x; + ¢*x; which only slightly
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reduce the size of the coefficients of the continuous variables. We reject a linear

combination x; + §*xy, if the percentage reduction satisfies

<, (8.13)

where € is set to 0.05 (i.e. 5%) in our implementation. The algorithm performs
several iterations (see Step . It terminates if no improving reduction is found
in an iteration. Further to enhance the speed of the algorithm we store the
iteration in which a reduction on a specific row was performed. Similarly, we
store the iteration in which a combination of two rows was last tried. Thus we
avoid checking the same (unchanged) rows for a reduction over and over again.

In Step [3]the R&S cuts are generated. Note that our implementation is a slight
variation of the R&S cuts as described in [§]. After the rows of the tableau have
been reduced by forming the linear combinations, Andersen et al. [8] strengthen
the underlying split disjunctions and then generate intersection cuts. In our
implementation we directly generate GMI cuts from the reduced rows of the

simplex tableau.

8.5. Lift-and-Project Cuts

In this section we discuss our implementation of the Balas-Perregaard algo-
rithm [30] for generating lift-and-project cuts. The theory of L&P cuts is pre-
sented in Section [4.4.7] For a very detailed discussion of L&P cuts and their
implementation we refer the reader to Perregaard [148)].

We assume that an MIP is given in the IMR (7.2). As in Section we
denote by (CGLP;) the cut generating linear program and by (LP) the
LP relaxation of the IMR . We generate L&P cuts in the same fashion as
Gomory mixed-integer cuts (see Section [8.1)). Algorithm shows the main steps
in the separation of L&P cuts.

8.5.1. Working with Bounded Variables

The correspondence between solving (CGLP;) and performing pivots on (LP)

relies on the fact that bounds are explicitly stored in the constraint set such that
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Algorithm 8.5. Separating a lift-and-project cut

(Step

(Step

(Step

(Step

(Step

(Step

(Step

(Step

1)

2)

3)

4)

5)

6)

7)

8)

Input: A basis B of the LP relaxation of the IMR and the
corresponding basic solution x*. A basic integer variable x;
which has a fractional value z;. The parameter
maz__pivots indicating the maximum number of pivots.

Output: An L&P cut ax > 5.

Initialize
Set num__pivots := 0.

Check termination criteria

if num_ pivots > max__pivots then goto Step

Compute the tableau row

Compute the transformed tableau row associated with x;, i.e.
Ty = dz‘o — ZjGJ ELZ‘ij.

if x; is a general-integer variable then set a;o := @ — |aio]-
Compute the partition J = (M, Ms)

Let M, 2:{j€J:C_Lij<O}, MZ::{jEJ:dij>0}and

M; :Z{jEJlELijZO}.

Assign the variables in M3 to the sets M7 or My at random.

Find the leaving variable

Compute the reduced cost 7}, , 7!, rd rd for all k & J U {i}.
Let k := arg mlntéJU{z}{ruta Utvrgtaric)lt
if min{rl, ,rl 7l rd} >0 then goto Step I

Find the incoming variable

Let J' = {j € J : |ax;| > €} be the set of admissible pivots.

Let J-=J'N{jeJ:n= _g;; <0}and Jt=J\ J.

Let p := arg min{arg min;e j+ {f*(;)}, arg minje ;- {f ~(7;) }}
Perform the pivot

Pivot the variable x}, out of the basis and pivot the variable x; into

the basis B. Set B := (BU {p}) \ {k} and J := (JU{k}) \ {p}.
Set num_ pivots := num__pivots + 1 and goto Step

Compute the L&P cut
Compute the row of the simplex tableau ({8.3) associated with x;
and generate the L&P cut ax > § using Algorithm
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a row of an (LP) tableau row can exclusively be written in the space of the slack
or surplus variables respectively. The theory assumes that all structural variables
are unrestricted. However, in state-of-the-art MIP solvers bounds on variables
are stored separately from the constraint matrix. Reconsider the transformed row
of the simplex tableau

i = Q0 — Z aijSj, (8.14)

JjEJ

where s; are slack or surplus variables of the bound constraints x; < d; and
xj > lj. The transformation ensures that all non-basic variables are slack or
surplus variables which are at their lower bound. To be able to handle a basic
variable xj which is bounded, we can again use the corresponding slack or surplus

variables from the bound constraints. We get

sk = (@ro — ly) — Z akjSj, (8.15a)
jed

st = (dy — aro) — Y (—ar;) 5;. (8.15b)
jeJ

Pivoting the surplus variable si, of the lower bound constraint xj — s%c =l out
of the basis is equivalent to making x; non-basic at its lower bound [l;. Thus
we have to transform the tableau row into the form . On the other hand,
pivoting the slack variable sﬁ of the upper bound constraint xj + sg = dj, out of
the basis is equivalent to making x; non-basic at its upper bound di. In this case
we have to transform the tableau row into the form .

8.5.2. Handling General Integer Variables

In Step [3] of Algorithm [8:5] the row of the simplex tableau associated with the
selected basic integer variable x; is computed. The procedure for generating L&P
cuts as outlined in Section is designed exclusively to deal with 0-1 variables.

Only cuts for fractional 0-1 variables are generated, i.e. x; with 0 < a;o < 1.
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By rewriting the row of the simplex tableau (8.14]) associated with a fractional
general-integer variable x; as
zi — @) = (@io — aio)) = ai;s;,
N ;
jeJ

;= fio = aijsj,

jedJ

(8.16)

we obtain a form that the method can handle because 0 < f;p < 1. Basically we

derive L&P cuts from the elementary disjunction
(—l‘i > — LaioJ) V (3:, > (C_LZ'()]) . (817)

In the remainder of this section we shall for simplicity assume that z; := z; — |a;0],
ai0 = G0 — | @0 and x} 1=z} — |z]] if the reference row i of the simplex tableau

used for cut generation is associated with a basic general-integer variable x;.

8.5.3. Computing the Reduced Cost

We next consider the computation of the reduced cost which is of crucial impor-
tance in finding the variable which leaves the basis (see Step [5| of Algorithm .
We assume that the general normalization constraint is given (see Sec-
tion . As we have the choice either to pivot x; to its lower bound I or to
its upper bound dg, we have slightly to modify the computation of the reduced
cost (see Equation (4.99))). We get

T = =0+ (@ro — ) (1 = af) — 7, (8.18a)
rhy = =0 — (aro — ) (1= o) + (@} — ) + 7%, (8.18b)
rity = —0Ne + (i — aro) (1 — ) + 7, (8.18¢)
ro. = =0\ — (di — axo) (1 — x) + (dy, — xf) — 7, (8.18d)

where, as in Section [£.4.7]

Z]W &ijs; *Elio (1 *33,)[)
_ JEM2

L+ 3 fag| A
jeJ

, (8.19)
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and

=3 cahi+ Y (55— oN) k. (8.20)
JEM; JEM2

A specialized simplex code is necessary efficiently to separate L&P cuts in
the framework of Balas and Perregaard. A point which is of crucial importance
is a fast computation of the reduced cost, particularly the values 7. One way
to compute the values 7 is as follows. First, recompute the (LP) tableau row
associated with x; and then perform the calculations based on the partitioning
(M7, M) of the entries of the tableau row as shown in Equation . As this
approach involves computing a large number of tableau rows, it is computationally
very expensive. However, observe that each tableau row is multiplied with the

same vector. We can hence rewrite the expression for 73 in the form

Tk = Z ak;Ys

jedJ

= (8.21)
- (AB(k) (AJ)]> Ys>

jeJ
= Ay 2 (A7) ;.

jeJ

where B(k) is the position of zj in the basis B, Aé%k) is the row of the basis
inverse associated with xy, (As); is the 4% non-basic column of A, y; = oA;j for
J € My and y; = s7 — o A; for j € Ms. To obtain the vector 7, i.e. the value of 7

for all (LP) tableau rows all at once, we have to solve the system

ApT =) (A));v (8.22)

jed
for 7. Fortunately, solving this system is a standard operation in state-of-the-art
simplex engines. It involves one forward transformation operation (or ftran) which

is carried out in highly efficient manner (see Chvatal [52]).

Recall that in the presence of zero elements in row ¢ the partition J = (M7, Ma)
of the non-basic variables is not unique. Let M3 = {j € J : a;; = 0}. We can

either assign the elements of M3 to the sets M7 or Ms. Given a pivot row k # i,
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let My = {j € J:a;; =0Aag; >0} and My = {j € J : a;; = 0Aay; < 0}. Balas
and Perregaard [30] suggest the rule My = {j € J : a;; <0} UM, My = J\ M;
for computing 7!, and 7l , and My = {j € J : a;; < 0} UM;, My = J\ M,
for computing rf)k and rffk. If a negative reduced cost is identified, this rule is
guaranteed to lead to a strictly better cut. On the other hand, each row k # i of
the tableau needs to be computed to obtain the values ay; for all j € J satisfying
a;; = 0. Nor can we conclude that the current basis of (LP) is optimal with
respect to (CGLP;) if all reduced cost are non-negative, since the reduced cost
of each row k is computed with respect to a different partition (M;, Ms). To
decide whether the current solution is optimal, it is necessary to re-compute
all the reduced cost with respect to a unique partition. Balas and Perregaard
thus propose to perturb the row ¢ of the simplex tableau in such a way that all
non-basic variables have a non-zero coefficient. In our code we randomly assign

the non-basic variables with a zero coefficient to the sets M7 or Ms.

Typically, in implementations of the simplex algorithm a threshold value is used
to decide if all reduced cost are non-negative. Let 7, = min{r!, vl 7 ¢ 3. In
our code we conclude that a basis B of (LP) corresponds to an optimal basis

of (CGLP;), if the reduced cost satisfy
rp > —€, Vke B\ {i}, (8.23)

where e = 5 - 1074,

8.5.4. Finding the Incoming Variable

In Step [0] of Algorithm [8:5] the L&P procedure selects a variable which enters the
basis. This variable is identified by finding the minima of the functions f*(v)
and f~(v) (see Equation ) A procedure for finding the minima of these
functions is described by Perregaard [148]. Suppose that we want to perform
a pivot on the element ay, in row k # i that makes x; non-basic at its lower
bound l;. An important detail is that it is not necessary to identify the minima

of both functions f*(v) and f~(y). Using the bounds on x, we can rewrite the
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corresponding row of the simplex tableau in the form (8.15a)). The pivot then
has the following effect on (8.14))

wi = dio + p (ko — b) — | D (@i + ) 85 + sk | » (8.24)
Jj€J
where vy, = —s;” . Observe that -, is the coefficient of the variable si, in the new
P

combined simplex tableau row associated with z;. In case we pivot x to its upper

bound dj, we obtain

T = a0 + Yp (i — aro) — (Z (@ij — Yparj) 85 + Vpsz) ; (8.25)
jeJ

—Zip . — 22 Again, v, is the new coefficient of the non-basic
(=@kp) Akp p

variable sg. Now, if we update the partition (Mj, Ms) of the non-basic indices,

Qip

where v, =

the sign of v, will determine whether 82 or sg is linked to the basic variable uy
or v in (CGLP;). Therefore if we select xj due the reduced cost rik or rffk, it
follows that v < 0. On the other hand, choosing zj based on reduced cost rfjk or

d

r

v, implies that v > 0. The practical consequence of this correlation is that one

only needs to minimize either f(v) or f~(y) once the leaving variable has been

selected.

To enhance the numerical stability of the algorithm we do not consider pivots
on elements ay; of the pivot row & which are smaller than a threshold. Precisely,

in our code, the set of admissible pivots is
J ={jeJ:|ag| > e} (8.26)

where € = 107°.

8.5.5. Disjunctive Modularization

In order to approximate the generation of an optimal split cut, Balas and

Bonami [22] iteratively strengthen the considered (LP) tableau row after each
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pivot by disjunctive modularization. After each pivot the reference row of the (LP)
tableau (8.14]) is replaced by the row

Yi = ai0 — Z PijSj (8.27)
jeJ

where y; is a new unrestricted integer-constrained variable and

fij fOl“j € Jr and fij < a;o
Saz'j = fij -1 fOI’j € Jr and fij > o (8.28)
aij otherwise

with fi; = a;; — ai;] for j € J. It is easy to see that the intersection cut derived
from ({8.27) is the strengthened intersection cut (or GMI cut) derived from (8.14)).

8.5.6. Additional Considerations

For L&P cuts to be competitive with plain GMI cuts, the pivoting procedure
outlined above must be implemented efficiently. There are a number of factors
which have a large impact on the overall performance. Starting from the opti-
mal (LP) tableau row a number of pivots are performed for each basic integer
variable that is fractional. After pivoting based on the reduced cost of (CGLP;),
one has to restore the initial optimal (LP) basis. Of course, this can be done
by running the dual simplex algorithm. Although only a few pivots of the dual
simplex algorithm may be necessary to return to (LP) optimality, it has to be
executed after each call to the L&P algorithm (see Algorithm . Therefore we
initially save the optimal (LP) basis which can then be restored very quickly by
filling the appropriate data structures. To be able to work with the optimal (LP)
tableau we only need to re-factorize the basis. We found that this approach is
considerably faster, especially when L&P cuts are generated for a large number
of basic variables. As previously discussed, the calculation of the reduced cost
of (CGLP;) is a critical part of the L&P algorithm. Moreover, once the reduced
costs are computed, they are scanned for the most negative element several times

in each iteration. To reduce the effort needed for this operation we maintain a
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stack which contains the indices of the (LP) tableau rows corresponding to basic

variables which have negative reduced cost.

Balas et al. [24],25] demonstrate that L&P cuts can more efficiently be generated
in a subspace obtained by fixing all structural non-basic variables. With respect
to the cut generating linear program (CGLP;) this means that the columns
associated with these variables can be removed which considerably reduces the
size of (CGLP;). After (CGLP;) has been optimized, the fixed variables are lifted
into the L&P cut. In the framework of Balas and Perregaard the same effect can
be achieved by ignoring the structural non-basic variables, in the sense that none
of these variables is selected as an entering variable. Implementing the lifting
step is then very easy. Once the algorithm has found the basis of (LP) giving the
optimal L&P cut, we “lift” this cut by computing cut coefficients for all non-basic

variables.

8.6. A new Pivoting Procedure for Strengthening Gomory
Mixed-Integer Cuts

The Balas-Perregaard procedure [30] for generating lift-and-project cuts guides
the search for an LP basis where the tableau row associated with a specific basic
integer variable gives a stronger GMI cut than the corresponding row of the
optimal LP tableau. In contrast, the reduce-and-split reduction algorithm [g] tries
to improve the disjunction on which a GMI cut is based by forming integer linear
combinations of LP tableau rows while keeping the basis fixed. A natural question
is whether it is possible to integrate both approaches in order simultaneously to
improve the basis and the disjunction.

We approach this question by generating GMI cuts from alternative bases of
the LP relaxation. These bases need be neither optimal nor feasible. Consider the
row of the simplex tableau associated with a basic integer variable x;. At
each iteration of our algorithm we perform a pivot in row k # 4, which produces

a linear combination

T + YT = Qo + yako — Z (ELZ‘]‘ + ’yakj) 8 (8.29)
jedJ
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@ip
Akp
coefficients of the continuous variables decreases. We want to obtain a basis where

where v = — for some p € J such that the squared Euclidean norm of the
the representation of the simplex tableau row corresponding to z; is “better” with

respect to size of the coefficients of the continuous variables.

We thereby also modify the underlying split disjunction D(m, m) as de-
fined in Equation . Suppose that the pivot simulated in Equation (8.29))
makes the integer-constrained variable xj non-basic at its lower bound and
the integer-constrained variable x, basic. We have B := (BU{p}) \ {k} and
J = (JU{k})\ {p}. Define fi; = a;; + var; — |ai; + vax;| for j € J and
fio = @0 + vaxo — |@io + varo|. The new split disjunction D(m, my) is given by

la;j + yag;| if j € Jr and fi; < fio,

a;i +~yag; | if 7€ Jrand f;; > fio,

g = L] i€ Jrand fi > fi (8.30)
1 ifj:i?

0 otherwise,

and mp = |@ip + Yako|. In particular this means that m, = 0 and that 7, either
has the value |v] or [v].

In the following we describe our pivoting algorithm in detail. As mentioned
above, the objective of our algorithm is to reduce the squared Euclidean norm on
the continuous variables in the selected reference row ¢ of the simplex tableau. To
state this objective more formally, we introduce some additional notation. Given
k € B, define the vector ag:

s iijJ\J[,
ap; =41 ifj=Fkandje B\ By, (8.31)

0 otherwise.

We want to select a basic variable x; and a non-basic variable xz, such that

pivoting on the element a, minimizes

f ) = (af +naf) (af +naf),

= [a| ++2[ja€] +2v (aFag). (8.32)

a;
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Qip
agp”

where v = — It follows that a pivot reduces the squared Euclidean norm if
the inequality
o 2
— 2y (aicakc) > 2 HagH (8.33)
holds. Observe that the right-hand side of Inequality (8.33)) is non-negative. Thus
there is no improving pivot in row k with respect to the size of the coefficients of

the continuous variables in row 4 if y(a¢a{’) > 0.

The first main step of the procedure is to identify a variable x; which leaves the
basis, i.e. a pivot row k ¢ J U {i} which we want to combine our reference row i
with. The heuristic we use to select this row measures the similarity between the
reference row and possible pivot rows in terms of the coeflicients of the continuous
variables. Specifically, we compute the absolute value of the cosine of the angle

between the vectors a{ and af

0 (af,af) = CC_C’ (8.34)
la| flaf

for each k ¢ J U {i}. Note that 0 < #(a{,a}) < 1. The larger 6(al,af) is,
the larger is the likelihood that there exists a pivot in row k that reduces the
size of the coefficients of the continuous variables in row ¢. On the other hand,
if we have §(al,al) = 0 (ie. alal = 0), every possible pivot will not be
improving with respect to the size of the coefficients of the continuous variables
(see Inequality ) Therefore the pivot row k # i is chosen such that

~-C =C
k= argléglg?} {H(a- aj )} . (8.35)

The second important step of the procedure is choosing a variable x, which
enters the basis. Again the critical question is how to select this variable. Remem-
ber that, given a pair (i, k) of rows of the simplex tableau, we want to minimize
Equation . Therefore the effect that pivoting the non-basic variable x;, into

the basis has on the size of the coefficients of the continuous variables can be

measured by computing f(v,) where 7, = —S;”. Let J' ={j € J : ay; # 0} be
D
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the set of admissible pivots in tableau row k. From all of these pivots we select

the one which brings about the largest possible reduction

. Qjj
= )iy =——L % 8.36
P arg%{}}{f(%) i %} (8.36)

After the leaving and entering variable have been selected the pivot is performed.
The method is iterated until a pivot limit is reached or no improving reduction is

found. We call the resulting cuts pivot-and-reduce (P&R) cuts.

8.6.1. Implementation

An outline of our implementation of the previously discussed pivoting procedure
is presented in Algorithm [8.6] There are a few aspects one has to consider to
implement this procedure efficiently.

In Step [1] we perform an initialization of the data structures. We then enter
the main loop of the procedure and check whether the termination criteria are
satisfied (see Step . If the pivot limit is reached, we exit the main loop and
generate a P&R cut in Step [7] Otherwise the algorithm computes the reference
row of the simplex tableau in Step [3] We stop the search for an improving pivot
if the coefficients of the continuous variables in the reference row i are relatively
small, i.e. if the norm satisfies [|a’||> < e with e = 1075.

Given a basic integer variable z;, we have to identify a pivot row k ¢ J U {i}
which is likely to contain pivots which reduce the size of the coefficients on the
continuous variables in row i (see Step . We want to choose the index k£ that
maximizes the value of Equation . It turns out that the numerator of
Equation can be computed very efficiently. We get

e = alag = agjaij,
Jj€J
= Z (AEIAJ) ki C_Lij,

7€ (8.37)
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Algorithm 8.6. Separating a pivot-and-reduce cut

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Step 5)

(Step 6)

(Step 7)

Input: A basis B of the LP relaxation of the IMR and the
corresponding basic solution z*. A basic integer variable x;
which has a fractional value z;. The parameter
max__pivots indicating the maximum number of pivots.

Output: A P&R cut ax > S.

Initialize

Set num__pivots := 0.

Check termination criteria

if num_ pivots > max__pivots then goto Step

Let S := B\ {i}.

Compute the tableau row

Compute the tableau row associated with x;, i.e.
T; = ELZ‘O — ZjGJ C_Liij.

if ||a%||?> < € then goto Step @

Find the leaving variable

if S = () then goto Step @

Compute the inner product |a¢’a{| for all k € S.

Let k := arg max;cs{|alal’|}.

if |af'a| < e then goto Step .

Find the incoming variable

Let f(v) = llaf I +~2(laf 1> + 2v(af ap).

Let J' = {j € J : |agj| > €} be the set of admissible pivots.
Compute f(v;) with v; = —% for all j € J'.

Let p := argmin;c y{ f(7; = —%)}
Set S := S\ {k}.
if f(yp) > f(0) then goto Step

Perform the pivot

Pivot the variable zj, out of the basis and pivot the variable z;, into
the basis B. Set B := (BU{p}) \ {k} and J := (JU{k}) \ {p}.
Set num__pivots := num__pivots + 1 and goto Step

Compute the P&R cut
Compute the row of the simplex tableau (8.3]) associated with x;
and generate the P&R cut ax > § using Algorithm
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where B(k) is the position of zj in the basis B, Ag%k) is the row of the basis
inverse associated with 3, and (Ay); is the 4" non-basic column of A. To obtain
the vector A, i.e. the inner product for all candidate rows k ¢ J U {i}, we have to

solve the system

A=Y (A)); i (8.38)
jer

for A. Again this system can be solved by a single ftran operation.

The denominator of Equation can not be calculated so efficiently. The
Euclidean norm of the tableau row associated with x; is of course a constant in
all calculations. On the other hand, the Euclidean norms of the remaining rows of
the simplex tableau may change after each pivot. Therefore there are two ways to
compute the norms for all rows k ¢ JU{i}. Firstly, one can construct each tableau
row in order to calculate its Euclidean norm. This is a computationally very
expensive operation. Secondly, one can initially compute the squared Euclidean
norm for all rows of the simplex tableau and then update them after each pivot
using Equation (8.32)). This is also quite costly from a computational point of
view. Accordingly, we only compute the numerator for all candidates and select
k such that

k = arg max { ELZ-C&ZCH . (8.39)

1¢JO{i}
Suppose that we have computed the index k according to the above formula.
The algorithm is stopped if the inner product with the largest absolute value is

sufficiently small. More precisely, the algorithm is stopped if

aal ] <e, (8.40)

where e = 5 - 10~% in our code.

The second main step of the procedure is selecting the variable which will enter
the basis (see Step [5] of Algorithm[8.6]). It can be implemented in a straightforward
way. As elaborated above, we select the entering variable x;, from row £ such that
the resulting pivot will produce the largest possible reduction in the coefficients
on the continuous variables in row 7. In our current implementation the algorithm
does not, however, check whether the P&R cut derived from the updated row

obtained after the pivot (see Step @ is violated by the optimal LP solution x*.
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8.7. Strong Chvatal-Gomory Cuts

As in our implementation of the L&P cuts, we reject pivots on elements ay; which
are smaller than the pivot tolerance 107°.

The overall computational effort necessary to select the entering and leaving
variable is comparable to the work carried out by the Balas-Perregaard method
for generating L&P cuts. But the L&P algorithm has to maintain a lot of data,
e.g. the value of the objective function of the cut generating linear program and
the partition of the non-basic variables. An advantage of the P&R heuristic is
that it only has to retain the values of the inner products between the vectors
a¢ and a{ for each possible pivot row k ¢ J U {i} (see Equation (8.39)) while
the L&P algorithm has to hold four reduced cost values. Moreover, the inner
products are the direct result of the ftran operation and can therefore be scanned
and handled very efficiently, e.g. by sorting according to descending absolute
values. After a pivot has been performed no additional work is necessary for

updates of existing data.

8.7. Strong Chvatal-Gomory Cuts

In this section we outline our implementation of the strong Chvatal-Gomory
cuts. These cuts are a strengthened variant of the well known CG cuts. We have
already dealt with the theory of strong CG cuts in Section [£.3.2]

In Chapter 4] we mentioned that a Gomory fractional cut is a CG cut derived
from a row of the simplex tableau. We also discussed the relation between mixed-
integer rounding cuts and Gomory mixed-integer cuts, namely that any GMI cut
can be derived as a MIR cut from a tableau row. Our implementation of the
strong CG cuts is based on suggestions made by Achterberg [3]. Inspired by the
connection between CG cuts and Gomory fractional cuts, Achterberg proposes
to generate strong Gomory fractional cuts, i.e. strong CG cuts from rows of the
simplex tableau.

In this regard the separation of a strong CG cut works very similarly to the
separation of a GMI cut (see Section [8.1). The details of the separation are
outlined in Algorithms and Proposition {4.3| assumes that all variables are
non-negative. Thus we need to shift or complement the variables. As strong CG
cuts are not able to handle continuous variables we also have to ensure that all

continuous variables have a non-negative coefficient in the transformed row of
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Algorithm 8.7. Separating a strong Chvétal-Gomory cut (part 1)

Input: A basis B of the LP relaxation of the IMR (7.2]) where z;
is a basic fractional integer variable.
Output: An inequality >° -y ajs; < ag or transformation failed.

(step 1) Compute the base row
Let w = eiAgl be the i row of the basis inverse.
for k=1,...,m with wy # 0 do
if n+k € N\ N; then
if (wr >0 or dpi = o0) and (wg < 0 or ly 1 = —00)
then
\ Wg = 0.
end
end

end
Compute wA and let the result be =y ajz; = 0.

(step 2) Shift and complement
Set ag := 0.
for j=1,...,n+m with a; # 0 do
if j € Ny then
if I; > —oo then
| (Shift.) Set a; := @, z; := l; + 55, and v := ;.
else if d; < oo then
(Complement.) Set a; := —a}, z; := d; — sj, and
v = dj.
else
| exit.
end
else
if a; > 0 and l; > —oo then
| (Shift.) Set a; := @}, z; :=l; + 55, and v := ;.
else if a; < 0 and d;j < oo then

(Complement.) Set a; := —a};, r; := d; — s;, and
v = d;.
else
| exit.
end
end
(Update the right-hand side.) Set ag := aop — a; - v.
end

(Relax.) Set a; := 0 for all j € N\ Ny.
The transformed row has the form ;- a;js; < ao.
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Algorithm 8.8. Separating a strong Chvétal-Gomory cut (part 2)

Input: An inequality of the form 3,y a;s; < ap generated by

Algorithm
Output: A strong CG cut ax < f.

(step 1) Compute the strong CG cut
Compute the strong CG cut 3- ey @s; < 3’ (see Proposition .

(step 2) Unshift and uncomplement
Undo the shifts and complementations on the variables using the

same bounds as in Step |2 of Algorithm

(step 3) Remove logicals
Use the definition of the logical variables xj = —Axs to write the
cut in the space of the structural variables zg.

the tableau. Therefore we choose the substitution that produces a non-negative
coefficient (see Stepof Algorithm. If this is possible, the continuous variables
can be removed from the tableau row, thereby relaxing it to a <-inequality. On the
other hand, the substitution may fail due to missing bounds on some continuous
variables. In this case we can not generate a strong CG cut. In particular, every
continuous logical variable is required to have a non-negative coefficient. Note
that the coefficient of a logical variable in a row of the simplex tableau is directly
given by the associated row of the basis inverse. Thus it is easy to check whether
a continuous logical variable can be transformed such that is has a non-negative
coefficient. If this is not possible, we zero out the corresponding position in the
row of the basis inverse (see Step [l of Algorithm . This means that we are
not necessarily computing rows of the simplex tableau associated with a basis.
Rather we use the row of the basis inverse to guide the search for a violated

strong CG cut.

The resulting row is of the form } ..y d;xj = 0. After the transformation

discussed above, we obtain

Z &ij < ap. (8.41)
JEN

A strong CG cut can then be generated using Proposition (see Step (1] of
Algorithm [8.8). As in Section let fo = ag — |ao) and f; = a; — |a;| for
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j € N. First we have to choose an integer k > 1 that satisfies k—}_l < fo< % As

this is equivalent to % —1<k< %501 — 1, we set

e=|5| -1 (5.42)

in our code. According to the value of k a partition (Np,...,Ni) of N is con-
structed. Recall that the set Ny is defined as No = {j € N : f; < fo} and the
set N, is defined as N, = {j € N : fo-i—w < fj < fo+p(17;f°)} for
p=1,...,k. We do not work with the partition (N, ..., Nj) explicitly. Observe
that we can also write N, = {j e N:p—-1< M{;_i}({o) <ptforp=1,... k. It

follows that we can restate the strong CG cut as

> (Laﬂ + lf%jl) sj < lao] , (8.43)

JEN

where the non-negative integer p; for j € N is given by

- {0 if f; < fo, 5.4

(BRI fy > fo

To write the cut in the space of the original structural variables we undo the

shifts and complementations and substitute for the logical variables (see Steps

and (3| of Algorithm .

8.8. {0,;}-Chvatal-Gomory Cuts

In this section we discuss an algorithm for generating {0, %}—Chvétal—Gomory
cuts. Our implementation of this algorithm is based on the work of Koster et
al. [126]. We briefly introduced {0, 1}-cuts in Section We assume that an
IP of the form

min {cz : Az < b,z >0,z € Z"} (8.45)

is given, where A is an integral matrix of dimension m x n and b is an integral
vector of dimension m. Let x* be a non-integral solution to the LP relaxation
of (8.45)). Let s = b— Az be a vector of slack variables. A general IP (7.2]) can be
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brought into the form by transforming all inequalities into <-inequalities
and shifting or complementing the variables to obtain z > 0.

Now, let A = Amod?2 and bmod 2 where the modulo operation is applied
component-wise. There exists a violated {0, %}—cut if and only if there exists a
binary vector v € {0,1}" such that

vbmod 2 = 1 and (vA mod 2) ¥ +ovs* < 1. (8.46)

A vector v satisfying the constraints presented in Equation (8.46|) indicates which
inequalities of Az < b to combine with weights % such that the CG cut from this
linear combination is violated (see Section |4.3.1]).

8.8.1. Preprocessing

Our code performs three basic operations on the system ([1, l_)). Not all columns
and rows of (A,b) affect the two conditions presented in Equation (8.46). A

number of transformations can be performed which reduce the size of (A, b).

Proposition 8.1 (Reduction [126]). The reductions below do not influence the
set of undominated {0, %}-cuts for the original system (A,b):

fo—

J 0 can be removed.

1. All columns in A corresponding to variables
2. Zero rows in (A,b) can be removed.

3. Zero columns in A can be removed.

4. Identical columns in A can be replaced by a single representative with

associated variable value as sum of the merged variables.

5. Any unit vector (or singleton) column a; = e; in A with j € {1,...,n} and
i€ {l,...,m} can be removed provided that z; is added to the slack s} of
TOW 1.

6. Any row i € {1,...,m} with slack s} > 1 can be removed.

7. Rows identical in (/_1, 5) can be eliminated except for one with smallest slack

value.
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For simplicity, let the reduced system again consist of m rows and n columns.
Up to now we assumed that each row of (A, l_)) is associated with a single inequality
from the original system. In order to obtain additional reductions we now consider
row operations on (A, 5). To this end, let R; contain the indices of the original
inequalities of which row ¢ is currently composed. We initialize R; by setting

R; = {i} fori=1,...,m. Let us assume we add row k to row i. We get

Q5 1= aij+&kjm0d2, Vj € {1,...,n},
b :=b;+b mod 2,
) (8.47)

% *
S; = Si +Sk7

R == (R; URy)\ (RN Ry),

where a;; is the coefficient of the matrix A in row i and column j. The following

proposition plays a major role in obtaining additional reductions.

Proposition 8.2 (Elimination [126]). Let i be the index of a row and j the
index of a column of A such that ai; = 1 and s; = 0. Then adding row i to
all other rows k # i with ar; = 1 does not influence the set of undominated
{0, 3}-cuts for the original system (A,b).

Proposition creates new singleton columns. These columns can then be
removed using rule |5 of Proposition thereby reducing the size of (4, I_)). In
addition, other preprocessing rules may be applicable after the elimination of
these singleton columns. In particular, certain zero rows of A directly correspond
to violated {0, §}-cuts.

Proposition 8.3 (Separation [126]). Let i be the index of a zero row in A with
b; = 1. If s; < 1, then the weight vector u defined by uj, = % forallk € R; and 0

otherwise defines a violated {0, 5 }-cut on the original system (A,b).

8.8.2. Implementation

In this section we present a heuristic procedure for obtaining {0, %}-cuts which
is implemented in our code (see Algorithm . An algorithm for the exact
separation of {0, 3 }-cuts is discussed by Koster et al. [I26]. This exact algorithm

uses the above reduction and elimination rules to reduce the size of (A4,b) and
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then solves a reduced-size separation problem. In our code we primarily use
Proposition [8.3| to obtain violated {0, §}-cuts.

Algorithm 8.9. Separating {0, 5 }-Chvatal-Gomory cuts
Input: An IP (8.45) and a fractional solution z* of the associated
LP relaxation. An integer k indicating the maximum

number of rows combined in the heuristic search.
Output: A list £ of {0, 3 }-cuts.

(step 1) Initialize
Compute the slack values s* = b — Azx*.
Construct the system (A, b).

(step 2) Reduce
Perform the reductions presented in Proposition

(step 3) Separate
Find violated {0, 5 }-cuts using Proposition
Add these cuts to the list L.

(step 4) Eliminate
if s¥ > 0 holds for all rows i of (A,b) then goto Step
Create new singleton columns by the elimination algorithm
outlined in Proposition
Goto Step

(step 5) Search
Try to find combinations of I = 1,..., k rows of (A,b) that give a
violated {0, 2}-cut and add them to the list L.

In Step [1] of Algorithm we compute the matrix A and the vector b and
store them in a compact form (see Figure . We then try to reduce the size of
the system (A, b) using the preprocessing rules presented in Proposition (see
Step . Since checking for duplicate columns and rows is very time-consuming, we
only apply rules [I] to 3] and [5] to [6] in our code. In Step [3| we apply Proposition
and search for zero rows i of A satisfying 57 < 1and b; = 1. If such a row is found,
we first extract the set original inequalities which is associated with this row. We
then combine these original inequalities with weights % and generate a CG cut.
In fact, to obtain stronger cutting planes, we generate a complemented MIR, cut.

Alternatively, we could also generate a strong CG cut. If a violated {0, %}—cut is
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found by Proposition 8.3 we also remove the corresponding row from the system
(A,b) in the hope of achieving further reductions. In Step [4| of the algorithm
the elimination procedure outlined in Proposition [8.2]is performed. We create
column singletons which are then removed by reduction rule [5| of Proposition [8.1
This procedure can only be carried out as long as there are rows with a slack of

zero. A natural question is which columns should be preferred. When removing
*
J

added to the slack of row 7. In our case we have s} := x}k since we select a row

with slack zero. In addition, row ¢ can be removed as well if the updated slack

a singleton column j which has its only non-zero entry in row i, the value z% is

satisfies sy > 1. It is thus desirable to create singletons in columns with a large
value of ;. After the elimination step a new iteration of the procedure is started.
If no row has zero slack, we exit the main loop of the procedure and perform a
final heuristic search for violated {0, 1}-cuts (see Step . First we try to identify
single rows of (A, b) giving a violated {0, %}-cut. Then we check combinations of
two rows of (fl, l_)). This process is iterated up to k rows. However, as this search

is rather expensive, we set kK = 1 in our code.

8.9. Computational Results

In the preceding sections we discussed our implementation of separation algorithms
for several classes of split cuts. We particularly focussed on Gomory mixed-
integer cuts as the most prominent split cuts and also considered Chvatal-Gomory
cuts for pure integer programs. We furthermore discussed several algorithms
designed to improve the performance of the GMI cuts. This section reports
on our computational experience. We investigate whether the performance of
the GMI cuts can in practice be improved by the algorithms discussed earlier
(see Sections to . Moreover, we study the effect that the separation
of CG cuts (see Sections and has on the performance of Moprs. We
perform two types of experiments. In the first we enable particular cut separators
and measure the performance improvement or deterioration as compared with a
reference setting. In the second type of experiment we again consider a reference
setting and disable particular cut separators in order to evaluate each separator’s
contribution to the overall performance. Concerning cut separators working on

the simplex tableau, we limit cut generation to the fifty most fractional structural
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basic integer variables. We use a cut selection algorithm which we shall discuss
in more detail in Chapter Details of our experimental setup, test set and the
evaluation methods used can be found in Appendix [A]

Most of the improvement algorithms for GMI cuts we discussed are heuristic in
nature. The only exact algorithm we considered is the lift-and-project algorithm
which is guaranteed to find a better (more violated) GMI cut from an alternative
basis of the LP relaxation if one exists. We therefore decided to use the L&P
cut separator as a replacement for the GMI cut separator in our benchmarks.
By contrast, the combined GMI, reduce-and-split and pivot-and-reduce cut sep-
arators are executed on top of the GMI cut separator. As mentioned earlier
(see Section we use a separation routine for mixed-integer rounding cuts
to generate the cutting planes discussed in this chapter. Our k-cut separator is
integrated into this separation routine in the sense that a tableau row which is fed
to our MIR separation routine is automatically scaled with different non-negative
integer values k (see Section . We generate a MIR cut for each value of k& and
keep the one with the largest distance cut off relative to the optimal solution to
the LP relaxation.

Concerning the R&S, P&R, L&P, cGMI and k-cut separators, Table[8.1] presents
the results of our first experiment, i.e. the performance gain achieved by applying
each individual separator in conjunction with the GMI cut separator. Exceptions
are, as noted above, the L&P cut separator which replaces the GMI cut separator
and the k-cut separator which is integrated into our separation framework. The
detailed results can be found in Tables to in Appendix [B] Enabling
the k-cut separator (“GMI + k-cuts”) leads to a slight improvement in the
performance on the CORAL test set. On the other hand, the performance
deteriorates significantly on the ACC test set. For instance the running times
and number of nodes increase by more than 100%. Similarly, applying the ¢cGMI
separator (“GMI + ¢GMI”) does not yield a reduction in the running times on
any test set in terms of the relative shifted geometric means. Again a slight
increase in the amount of integrality gap closed and a reduction in the branching
nodes computed can be observed on the test set CORAL. The R&S cut separator
(“GMI + R&S”) is very effective on the MIPLIB test set where it closes 4%
more integrality gap and reduces the number of branching nodes and the running
times by about 10%. Concerning the MILP test set, the GMI cut separator

149



Chapter 8. Single-Row Cutting Plane Separators

GMI GMI GMI GMI
test set + k-cuts 4+ ¢cGMI + R&S + P&R - L&P
ACC +101 0 0 +12 -8
- CORAL -1 +1 -2 0 0
& MIPLIB +2 +1 -10 -19 -6
T MILP +2 +2 +7 -7 411
total +3 +1 -2 -5 0
ACC +124 0 0 +18  -11
%z CORAL -3 -1 -17 -6 -7
< MIPLIB +7 -2 -11 -30 -24
= MILP +3 +6 +7 -10 +7
total +4 0 -12 -13 -11
ACC 0 0 0 0 0
.. CORAL -1 -1 -3 -10  -12
g MIPLIB +2 +3 -4 -9 -18
MILP +2 +9 -3 -8 +5
total 0 +1 -3 -9 -11

Table 8.1. Performance impact of enabling particular single-row tableau cut separators.
The values represent percentage changes in the shifted geometric mean compared with
a reference setting in which only the GMI cut separator is activated. Positive values
indicate a deterioration while negative values signify an improvement.

outperforms the R&S cut separator with respect to running times and number of
branching nodes. The performance ratios are heavily influenced by the instance
swathl where the R&S cut separator closes 35% more integrality gap. At the
same time, however, the running time and the number of branching nodes increase
by a factor of 5 and 10 respectively which indicates that the amount of integrality
gap closed might not be a good performance indicator. The P&R cut separator
(“GMI + P&R”) can significantly improve upon the performance of the GMI
cut separator on the test sets MIPLIB and MILP. For the MIPLIB instances
the running time and the number of branching nodes decrease by about 20%
and 30% respectively. Like the R&S cut separator the P&R cut separator is not
effective on the ACC instances. Both separators apply computationally quite
expensive algorithms to obtain cuts with small coefficients on the continuous
variables. Since the ACC test set only contains pure 0-1 instances it is not
surprising that the R&S and P&R cut separators are not effective. The L&P cut
separator (“L&P”) outperforms the other separators on the test sets CORAL
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and MIPLIB with respect to the amount of integrality gap closed. In particular,
for the MIPLIB instances the L&P cut separator closes 18% more integrality
gap than the GMI cut separator. Along with this reduction in the integrality gap
the number of branching nodes decreases by about 25%. Table also indicates,
however, that the L&P cut separator deteriorates the performance on the MILP
test set. The running time and the number of branching nodes increase by 11%
and 7% respectively. An extreme example is again the instance swathl where
the running time increases by a factor of about 28. Concerning the total test set
the R&S, P&R and L&P cut separators reduce the number of branching nodes
by about 10% and significantly increase the amount of integrality gap closed.
Compared with these improvements the decrease in the running times, on the
other hand, is quite small.

We conclude from the above discussion that the R&S, P&R and L&P cut
separators are the winners of our first experiment, while the k-cut separator and
the cGMI cut separator seem to be largely ineffective on our test set. For many
instances R&S, P&R and L&P cut separators obviously succeed in obtaining cuts
which are of higher quality than those produced by the GMI cut separator. On
the other hand, the results also reflect that the R&S and P&R cut separators
are heuristic algorithms which are not guaranteed to generate improved cuts.
By contrast the L&P cut separator is guaranteed to find the most-violated
intersection cut (with respect to a fixed disjunction). A different question is
whether these improved cuts cause a gain in performance. The L&P cut separator
computes at least 10% fewer branching nodes than the GMI cut separator on 77
instances and closes at least 10% more integrality gap than the GMI cut separator
on 48 instances in the entire test set (see Table . The results also show,
however, that adding improved cuts does not invariably result in an improved
dual bound and a reduction in the running times or the number of branching
nodes. In general, our computational experiments indicate that it is difficult
to compete with the GMI cut separator with respect to running times. The
main reason is the computational cost of the R&S, P&R and L&P cut separation
algorithms. On easy or moderately difficult instances the speed-up created by
improved cuts is overcompensated by the running times of the separators (i.e.
the time needed to compute these improved cuts). It is known that cutting

planes play a more important role in solving hard instances than in solving easy
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GMI GMI GMI GMI

test set 4+ k-cuts + cGMI 4+ R&S + P&R L&P

ACC +530 +1 +1 +38 13

- CORAL +6 +4 +29 +32 +31

£ MIPLIB +2 -3 +9 -15 +60
= MILP +1 -12 +79  +113 4279
total +17 +1 +24 +23  +46

ACC +618 0 0 +52 -23

%z » CORAL 0 +2 -7 +6 +8
§ T MIPLIB +11 -3 +1 -27 -8
= MILP +6 +1 +82 +79 4222
total +12 -1 0 -6 +5

ACC 0 0 0 0 0

. CORAL +2 0 4 -5 -2
g MIPLIB 0 +2 -5 -12 -2
MILP +17 +29 -7 -13  +54

total +1 +2 -4 -8 +1

ACC 0 0 0 0 -7

- CORAL 4 0 -11 -9 -10

E MIPLIB +3 +4 -25 -33 -37
= MILP +3 +4 0 -19 -9
total -2 +1 -11 -15 -14

ACC 0 0 0 0 -3

T z CORAL 4 -3 -23 -13 -16
£ T MIPLIB +1 +1 -31 -39 -50
=  MILP +3 +7 -3 -21 -13
total 2 0 -20 -19 -21

ACC 0 0 0 0 0

.. CORAL 2 ) 2 -14 -20
g MIPLIB +6 +5 0 -3 -68
MILP 0 +6 2 -8 4

total 0 +1 -2 -10 -22

Table 8.2. Performance impact of enabling particular single-row tableau cut separators
on easy and hard instances. We consider an instance to be easy if it can be solved to
optimality using only the GMI cut separator in 60 seconds or less. The values represent
percentage changes in the shifted geometric mean compared with a reference setting in
which only the GMI cut separator is activated. Positive values indicate a deterioration

while negative values signify an improvement.
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test set only GMI no k-cuts no cGMI no R&S no P&R no L&P

ACC -3 +1 0 0 -8 +2
- CORAL -2 -13 -6 -10 -6 +9
& MIPLIB +19 +6 +6 -11 +14 +25
~ MILP -1 +9 +4 -1 +16 0
total +2 -5 -2 -8 +1 +10
ACC +3 0 0 0 -8 +8
%z CORAL +15 -17 -6 -7 -15 +14
< MIPLIB +103 +8 +10 -5 +49 +47
= MILP +13 +6 +3 -1 +22 +11
total +33 -8 -1 -5 +4 +21
ACC 0 0 0 0 0 0
. CORAL +18 -1 0 +2 +1 +11
g MIPLIB +25 +2 0 +4 +4 +10
MILP +18 +5 +3 +5 +9 +21
total +19 +1 +1 +3 +3 +12

Table 8.3. Performance impact of disabling particular single-row tableau cut separators.
The values represent percentage changes in the shifted geometric mean compared with a
reference setting in which all single-row tableau cut separators are activated. Positive
values indicate a deterioration while negative values signify an improvement.

instances, e.g instances which can be solved efficiently by pure branch-and-bound.
In our context this means that the R&S, P&R and L&P cut separators should be
applied on instances which are hard to solve using only the GMI cut separator.
Accordingly, we partition our test instances into two sets: those instances that
can be solved using only the GMI cut separator in 60 seconds or less, and those
that can not. Table is similar to Table and presents the performance of
the cut separators on the easy and hard instances respectively. Concerning the
hard instances, the R&S, P&R and L&P cut separators, as expected, outperform
the GMI cut separator. Concerning the total test set, the running times decrease
by between 11% and 15% and the number of branching nodes is reduced by
about 20%. On the other hand, a deterioration can be observed on the easy
instances. The running times on the test set MILP, for instance, increase by 279%
when activating the L&P cut separator. The detailed results can be found in
Appendix [B], more precisely in Tables to for the easy instances and in
Tables [B.11] to for the hard instances.
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In our second experiment we consider a reference setting in which we apply
the GMI cut separator together with the cGMI, R&S, P&R, L&P and k-cut
separators. We then disable one of last-mentioned separators at a time and
record the performance improvement or deterioration. We are interested in the
contribution of each separator to the overall performance and the interaction of the
different separators. Table shows a summary of the results of this experiment.
The detailed results are presented in Tables [B.16] to [B:20] in Appendix [B] The
column headed “only GMI” shows the relative performance of the solver if only the
GMI cut separator is activated, i.e. a setting in which all “improved” separators
are deactivated. When using only the GMI cut separator the number of branching
nodes computed increases considerably (e.g. by 103% on the MIPLIB instances)
and the amount of integrality gap closed clearly reduces. With respect to running
times the results are not so clear. While a slight reduction in the running times can
be observed on the ACC and CORAL instances if GMI cuts only are separated,
the performance clearly deteriorates on the MIPLIB instances. Deactivating the
c¢GMI (“no ¢cGMI”) or k-cut separator (“no k-cuts”) improves the performance of
the solver on the CORAL instances. Interestingly, CORAL was the only test set
we detected the k-cut separator to be effective on in our first experiment. Although
the R&S cut separator turned out to be effective when applied individually in
our first experiment, Table reveals that disabling the R&S cut separator
(“no R&S”) does not result in a performance deterioration. On the contrary,
deactivating the R&S cut separator reduces the running times and the number of
branching nodes on any of our test sets (in terms of the relative shifted geometric
means). A possible explanation of this behavior is that the cuts generated by
the R&S cut separator coincide to a large extent with the cuts generated by
the remaining separators (e.g. those generated by the P&R cut separator). In
addition, the R&S cut separation algorithm is computationally very demanding.
The deactivation of the P&R cut separator (“no P&R”) interferes with the
performance of the solver on the MIPLIB and MILP instances. The running
time increases by about 15% and the number branching nodes by about 50%
and 20% respectively. In our first experiment the P&R cut separator yielded
the largest improvement over the GMI cut separator precisely on these two test
sets. As an additional similarity to our first experiment, disabling the P&R. cut
separator improves the performances on the ACC test set (see Table . The
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L&P cut separator greatly affects the overall performance of the solver. All values
in the column headed “no L&P” are non-negative, indicating that deactivating
the L&P cut separator mainly leads to performance deteriorations with respect
to the shifted geometric means of running times, branching nodes and amounts
of integrality gap closed. On the MIPLIB instances the running time increases
by 25% and the number of branching nodes by 47% if the L&P cut separator is
disabled. In addition the amount of integrality gap closed decreases by 21%. It is
further interesting that the running times increase by 19% if only the GMI cut
separator is activated (“only GMI”) and by 25% if we apply our reference setting
with the L&P cut separator deactivated (“no L&P”). A similar observation can
be made regarding the number of branching nodes. The deterioration obtained
when disabling the P&R cut separator (“no P&R”) is larger than that obtained
when applying only the GMI cut separator. Concerning the total test set the
sum of the relative changes of the number of nodes is, moreover, smaller than
the deterioration obtained when disabling all “improved” separators. These
observations point to the interaction of the different cut separators. With respect
to the total test set the P&R and L&P cut separators are the only separators
whose deactivation leads to an increase in the shifted geometric means of the
running times and number of branching nodes.

In order to obtain satisfactory performance of the L&P cut separator it requires
a sophisticated implementation and fine-tuning. All computational results for the
L&P cut separator we presented so far were obtained with a standard version
(cf. [30]) which uses the standard normalization (see Equation (4.83))) and a pivot
limit of 10. We now consider improving the performance of this standard L&P
cut separator by applying disjunctive modularization (see Section and the
Euclidean normalization (see Section . Following our previous approach to
evaluate the performance of cut separators, we use the standard L&P cut separator
as the reference setting and enable the two last-mentioned techniques. The results
of this experiment are summarized in Table The detailed results can be found
in Tables [B:26] to [B:30] in Appendix [B] Activating disjunctive modularization
(“L&P + DM”) improves the performance of the L&P cut separator on the ACC
and MILP instances. The running time decreases by 1% and 5% respectively
and the number of branching nodes by 5% for both test sets. For the MIPLIB

instances the L&P cut separator with disjunctive modularization closes 2% more
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test set L&P + DM  L&P + EN  L&P + DM + EN

ACC -1 -20 +9
- CORAL +4 +2 +2
£ MIPLIB +3 -10 -8
~  MILP -5 -11 +2
total +2 -4 0
ACC -5 -22 +9
%z CORAL +2 +4 +3
< MIPLIB +5 -13 -9
= MILP -5 -13 -6
total +2 -5 -1
ACC 0 0 0
. CORAL +1 -1 0
g MIPLIB 2 -2 2
MILP +3 -9 -12
total 0 -2 -2

Table 8.4. Performance impact of enabling disjunctive modularization (DM) and
Euclidean normalization (EN). The values represent percentage changes in the shifted
geometric mean compared with a reference setting in which the standard L&P cut
separator is activated. Positive values indicate a deterioration while negative values
signify an improvement.

integrality gap than the standard L&P cut separator. The variant of the L&P cut
separator applying the Euclidean normalization (“L&P + EN”) is particularly
effective on the ACC instances. The running time decreases by 20% and the
number of branching nodes by 22%. Fischetti et al. [87] found the Euclidean
normalization to be well suited for instances whose constraints have only non-
negative coefficients (e.g. set covering or set partitioning instances). Since the
scheduling problem from which the ACC instances arise contains, among others,
set partitioning constraints, it is not surprising that the Euclidean normalization
is successful. The Euclidean normalization also works well on the MIPLIB and
MILP instances where it reduces the running time by about 10% and the number
of branching nodes by 13%. Concerning the amount of integrality gap closed,
applying the Euclidean normalization yields an improvement of about 9% on the
MILP test set. Another observation that can be made from Table [8:4] is that,
in comparison with the standard L&P cut separator and with regard to running

times, applying disjunctive modularization and Euclidean normalization together
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SR tableau SR tableau SR tableau

test set  + strong CG +{0,4} + strong CG + {0, 3}
ACC +9 -10 +50

o CORAL -7 -19 -19
£ MIPLIB +6 +11 +8
~ MILP +4 +10 +20
total -2 -9 -6
ACC -7 +11 +42

z CORAL -7 -25 -25
< MIPLIB -1 +1 -5
= MILP 0 -2 +1
total -5 -15 -15
ACC 0 0 0

- CORAL 0 -7 -9
g MIPLIB -3 -2 -5
MILP +5 -7 -11
total 0 -5 -8

Table 8.5. Performance impact of enabling particular CG cut separa