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Abstract

In this thesis we investigate the category of finite-dimensional modules over an EI-category
algebra. More precisely, we analyze the representation type for this class of algebras in
the first part. It will be shown that a representation-finite EI-category is an amalgam of a
representation-finite poset and a collection of representation-finite groups. We will then see
that the representation type depends on the characteristic of the ground field. Furthermore,
we give a necessary criterion for an EI-category with two objects to be representation-finite.
Under additional assumptions on the automorphism groups of the objects we give a full
classification of the representation-finite EI-categories with two objects. In the second part
we present a new proof for the existence of an upper bound for the finitistic dimension of
an EI-category algebra. Inspired by this proof we define a new class of algebras, which we
call algebras with a directed stratification. We prove a result on the finitistic dimension of
these algebras. This reduces the finitistic dimension conjecture to a class of algebras which
we can describe combinatorially in terms of their Gabriel-quiver.

Zusammenfassung

In dieser Arbeit untersuchen wir die Kategorie der endlichdimensionalen Moduln über einer
EI-Kategorienalgebra. Genauer analysieren wir im ersten Teil den Darstellungstyp dieser
Klasse von Algebren. Es wird gezeigt, dass eine darstellungsendliche EI-Kategorie sich
aus einer darstellungsendlichen halbgeordneten Menge und darstellungsendlichen Gruppen
zusammensetzt und dass der Darstellungstyp von der Charakteristik des zugrundeliegen-
den Körpers abhängt. Darüber hinaus beweisen wir ein notwendiges Kriterium für die
Endlichkeit des Darstellungstyps einer EI-Kategorie mit zwei Objekten. Unter zusätzlichen
Voraussetzungen an die Automorphismengruppen, geben wir eine vollständige Klassifika-
tion der darstellungsendlichen EI-Kategorien mit zwei Objekten an. Im zweiten Teil der
Arbeit präsentieren wir einen neuen Beweis für die Existenz einer oberen Schranke für die
finitistische Dimension einer EI-Kategorienalgebra. Dieser Beweis motiviert die Definition
einer neuen Klasse von Algebren, die wir Algebren mit einer gerichteten Stratifizierung nen-
nen. Für diese Algebren beweisen wir ein Resultat über die finitistische Dimension. Dieses
Resultat reduziert die finitistische Dimensionsvermutung auf eine Klasse von Algebren, die
wir kombinatorisch mithilfe ihres Gabriel-Köchers beschreiben können.
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1 Introduction

The study of EI-categories and their representations has its origin in the work of tom
Dieck [31] and Lück [26] in the late 1980s. These authors used representations of EI-
categories in algebraic K-theory and it took some years before EI-categories attracted
attention from mathematicians working with representations of finite-dimensional algebras.
Webb [32] investigated the question under which circumstances EI-categories are standardly
stratified (in the sense of [10, 11]) and his student Xu recently worked on the cohomology
theory of EI-categories and related aspects of their representation theory, compare [33–35].
Also fusion systems, transporter categories and other categories constructed from the set
of subgroups of a given group are EI-categories and the object of recent research in the
framework of p-local finite groups, see for instance [8].

An EI-category C is a category in which every endomorphism is an isomorphism. For a
fixed base ring k the associated category algebra is denoted by kC. It has as basis the set
of morphisms in C with multiplication induced by composition of morphisms. Hence, the
category algebra of a finite EI-category is a simultaneous generalization of several important
constructions in representation theory, such as the group algebra of a finite group, the path
algebra of a finite quiver without oriented cycles or the incidence algebra of a finite poset.

Although representations of finite groups and representations of quivers are, up to a
certain degree, well-understood and lie at the heart of modern representation theory, the
two theories are in some sense orthogonal to each other. It is therefore a natural question
to ask for a general theory which contains representations of finite groups and finite quivers
as special cases. One way to obtain this goal is the analysis of representations of finite
EI-categories.

In this thesis we will focus on two central questions that always arise naturally for a new
class of algebras, namely: What are the algebras of finite representation type and does the
finitistic dimension conjecture hold for this class of algebras? The latter is also motivated by
work of Grodal and Smith [19], where the projective dimensions of certain modules over EI-
category algebras play a role for the description of algebraic models for finite G-spaces that
appear in algebraic topology. Furthermore, the finitistic dimension of standardly stratified
algebras is always finite, while for stratified algebras the finitistic dimension conjecture is
still open. By work of Webb [32] we know that an EI-category algebra is always stratified
but not standardly stratified in general. Here, we follow Cline, Parshall and Scott [10, 11]
for the definition of stratified and standardly stratified algebras.
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Introduction 5

A classification of the representation-finite EI-category algebras would be a new way of
generalizing the results for groups and quivers. Bautista, Gabriel, Roiter, Salmeron and
others developed a theory for representation-finite algebras in general in the 1980s, but they
always assumed that the Gabriel-quiver of the algebra in question is known. In particular,
they assumed that every simple module has dimension one. The computation of the quiver
of an algebra is in general a non-trivial task. Therefore, the results of the mentioned authors
are often not applicable for the treatment of algebras which are not given in terms of quivers
with relations.

Throughout this thesis k will denote a commutative ring with unit and often an alge-
braically closed field. For a finite category C it is a well-known fact due to Mitchell [27]
that the category of modules over the category algebra kC is equivalent to the category of
k-linear representations of C, i.e. the functor category Fun(C,Mod k). Thus, we can work
with representations of C to derive results for the module category of kC, which is often an
advantage for explicit computations.

The characterizations of representation-finite path algebras, incidence algebras and group
algebras of finite quivers, finite groups and finite posets respectively are classical results in
the representation theory of finite-dimensional algebras. Since all these classes of algebras
appear as special cases of EI-category algebras, a representation-finite EI-category algebra
has to satisfy the conditions for representation-finiteness for these three classes of algebras
simultaneously.

For a finite EI-category C we introduce a new category Ĉ which is the ’endotrivialization’
of C, i.e. all endomorphisms are made trivial and morphisms x → y that lie in the same
(Aut(x)×Aut(y))-orbit are identified. As a first step we show that if kC is a representation-
finite EI-category algebra, then kĈ is a representation-finite incidence algebra. Furthermore,
it is an easy observation that for a representation-finite EI-category algebra kC every group
algebra kAut(x) for x ∈ Ob C is representation-finite. The question that needs to be
answered for a characterization of all representation-finite EI-category algebras is the fol-
lowing: Which combinations of representation-finite groups and representation-finite posets
give representation-finite EI-categories (always with respect to the ground field k)? It turns
out that this question is not easy to answer in general. Therefore, we will restrict ourselves
to EI-categories with two objects, which is the easiest class of EI-categories that has not
yet been investigated. The analysis of the representation type of EI-categories with two
objects provides us with necessary criteria for finite representation type.

The first observation is that the representation type of an EI-category algebra kC signif-
icantly depends on the characteristic of the ground field. Despite this dependence on the
characteristic we will show that the category algebra kC of an EI-category C with two non-
isomorphic objects x and y, where Aut(x)×Aut(y) acts freely on the morphism set C(x, y),
is of infinite representation type for any algebraically closed field k. This result gives a nec-
essary criterion for EI-category algebras to be of finite representation type. Unfortunately,
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we are not able to give a full classification of these algebras, even under the assumption
that the underlying category C has only two objects. Under additional assumptions on the
automorphism groups of the objects of the EI-category C, one can compute the Gabriel-
quiver of the associated category algebra explicitly and then use results about quivers with
relations to determine the representation type. In that way we can for instance characterize
all representation-finite EI-category algebras with two simple modules. It turns out that
for EI-categories with two objects the representation type is governed by the group action
of the automorphism groups of the two objects on the set of morphisms between the two
objects.

The (little) finitistic dimension of an algebra A defined as

fin.dim(A) = sup { proj.dimM |M ∈ modA, proj.dimM <∞}

has been introduced by Bass [5] in 1960 and is an important invariant of the module
category, which, roughly speaking, measures the complexity of modA. Bass proposed the
question whether this finitistic dimension is always finite as a ’problem’ and for finite-
dimensional algebras it is nowadays known as the finitistic dimension conjecture (while for
commutative rings it is easily seen to fail). Up to now there is no proof for this conjecture,
but also no counterexample. The finitistic dimension has been calculated for several classes
of algebras and turned out to be finite in these cases.

Lück [26] gave an upper bound for the finitistic dimension of an EI-category algebra kC (k
a field), namely he showed fin.dim kC ≤ `(C), where `(C) denotes the length of the category
C, i.e. the maximal length of a chain of non-isomorphisms in C. We will present a new
proof for this upper bound using recent results of Xu [33], that describe the structure of
projective resolutions of modules over EI-category algebras. The intrinsic structure of an
EI-category C that guarantees the finiteness of fin.dim kC is the natural poset structure on
the set of isomorphism classes of objects defined by [x] ≤ [y] ⇔ C(x, y) 6= ∅ together with
the finiteness of the finitistic dimension of all automorphism groups of objects in C, which
are group algebras.

Inspired by this observation we define a new class of finite-dimensional algebras which
we call algebras with a directed stratification. According to our definition an algebra A

has a directed stratification of length n if there exist idempotents e1, . . . , en in A with
1 = e1 + · · · + en and ejAei = 0 for all i > j. This class of algebras contains EI-category
algebras as a special case and we can describe the structure of projective resolutions of
modules in the same way as Xu did for EI-category algebras and finally prove that an
algebra A with a directed stratification given by e1, . . . , en has finite finitistic dimension if
and only if all algebras eiAei for i = 1, . . . , n have finite finitistic dimension. As a matter
of fact, this result could also be obtained by induction from a result of Fossum, Griffith,
Reiten [14] and Fuller, Saorin [15], but these authors used trivial extensions of abelian
categories for the proof, which is a rather abstract machinery. With our proof we gain a
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deeper insight into the structure of projective resolutions of modules over algebras with a
directed stratification. Furthermore, we give a combinatorial description of the algebras
that do not admit a non-trivial directed stratification (i.e. of length > 1) in terms of their
Gabriel-quiver. Finally, we construct examples which show that this reduction technique
for the finitistic dimension conjecture is not a special case of other well-known results for
the conjecture.

Outline

In Chapter 2 we collect the fundamental definitions of category algebras and EI-categories
together with basic facts about their representation theory. We also recall the description
of all simple and projective modules over EI-category algebras and introduce induction and
restriction functors for representations of small categories. The third chapter contains our
results on the representation type of EI-category algebras that have partly been mentioned
above as well as short surveys on techniques we need for our proofs like covering theory
and the Gabriel-quiver of a finite-dimensional algebra. In Chapter 4 we give a new proof
for Lück’s upper bound for the finitistic dimension of EI-category algebras. This motivates
the fifth chapter, where we develop the whole theory of projective resolutions for modules
over algebras with a directed stratification and prove the result on the finitistic dimension
for these algebras. Finally, we conclude this thesis with chapter 6 in which we name open
problems and some ideas how one could attack them in the future.
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2 Preliminaries

In this chapter we collect the definitions of category algebras, EI-categories and basic facts
about their representation theory. Throughout this thesis all modules will be left modules.

2.1 Definition of EI-categories and examples

We begin with the classical definition of a category algebra.

Definition 2.1. Let C be any category and k a commutative ring with identity. Then we
define the category algebra kC to be the free k-module whose basis is the set of morphisms
in C. The multiplication on two basis elements f and g of kC is defined as follows

f · g =

{
f ◦ g if f and g can be composed in C,
0 otherwise.

We are mostly interested in the category mod kC of finitely generated left modules over
category algebras. Under certain assumptions, this category can be identified with the
category of k-linear representations of C which is defined as follows.

Definition 2.2. Let C be a small category and k a commutative ring. A representation of
C over k is a covariant functor M : C → Mod k from C into the category of k-modules. To-
gether with natural transformations of functors this gives an abelian category with enough
projective and injective objects. This category will be denoted by Repk C.

The following elementary observation relates the concepts of representations of C and
modules over kC.

Proposition 2.3 (Mitchell, [27]). Let C be a category with finitely many objects and k a
commutative ring. Then the categories Repk C and Mod kC are equivalent.

Later on we will deal with category algebras over a field k. In this case the equivalence
in the Proposition restricts to an equivalence mod kC → repk C = Fun(C,mod k) from the
category of finite-dimensional modules to the category of finite-dimensional representations.

We are particularly interested in a very special class of small categories, namely in the
class of finite EI-categories.

8



Definition of EI-categories and examples 9

Definition 2.4. An EI-category is a category C in which every endomorphism is an iso-
morphism. If C is a finite EI-category, the associated k-algebra

kC =

 ∑
f∈Mor C

λff

∣∣∣∣∣∣ λf ∈ k


is a finitely generated unital k-algebra, sometimes called the associated EI-algebra. The unit
element is

∑
x∈Ob C 1x and obviously the elements { 1x | x ∈ Ob C } form a set of pairwise

mutually orthogonal idempotents in kC. These idempotents are in general not primitive.

Example 2.5. EI-categories arise as important examples in at least in two branches of
mathematics, namely representation theory of finite dimensional algebras and algebraic
topology. We will present examples from both branches, starting with representation theory.

(1) Let G be a finite group and let G be the category with one object x and End(x) = G.
Then G is an EI-category and kG = kG.

(2) Let Q be a finite quiver without oriented cycles and Q its path category. Then Q is
an EI-category with kQ = kQ.

Another important class of EI-algebras is the class of incidence algebras associated to
finite partially ordered sets (short: finite posets).

Definition 2.6. Let (X,≤) be a finite poset, i.e. a finite set equipped with a binary relation
≤ which is reflexive, antisymmetric and transitive. The incidence algebra A(X) (over k) of
X consists of all incidence functions

A(X) = { f : X ×X → k | f(x, y) = 0 if x 6≤ y }

with pointwise summation and scalar multiplication. Moreover, we define the product of
two such functions f and g as

(f ∗ g)(x, y) =
∑
x≤z≤y

f(x, z)g(z, y).

The Kronecker delta function δ(x, y) is the two-sided identity of A(X).

To every finite poset X we can also associate a finite category CX in the following way:

• Ob CX = X;

• For x, y ∈ X there is a morphism x → y in CX if and only if x ≤ y and we require
that for any two objects x, y all morphisms x→ y are equal.

In other words, CX is the bound path category of a quiver with relations and we could
alternatively define a poset to be a finite category P with the property that |P(x, y)| ≤ 1
for all x, y ∈ ObP. The incidence algebra defined above is then isomorphic to kP.
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Example 2.7. Let X = { a, b, c, d } be equipped with the following partial order

a ≤

{
b

c

}
≤ d.

Then the category CX is the path category of the quiver

d

b

γ
@@��������

c

δ
^^========

a

α

__>>>>>>>> β

??��������

bound by the relation γα = δβ.

The three examples mentioned above are the most important and classical examples of
EI-categories in representation theory of finite-dimensional algebras. Now we present some
examples from algebraic topology such as fusion systems that have recently been studied
by Broto, Levi and Oliver [8] in the context of p-local finite groups, orbit categories that
play a prominent role in the theory of finite G-spaces, or transporter categories. All these
categories are constructed from a set of subgroups of a given group in the following way.

Definition 2.8. Let S be a set of subgroups of a finite group G.

(1) The transporter category TS has as objects the elements of S and the morphisms
are Hom(H,K) = NG(H,K) =

{
g ∈ G

∣∣ gHg−1 ⊆ K
}

. For the case H = K the
set of endomorphisms is the normalizer subgroup of H in G and therefore all the
endomorphisms are isomorphisms.

(2) The orbit category OS is the category whose objects are the coset spaces G/H for
H ∈ S and the morphisms in OS are the G-equivariant mappings. Those are all
epimorphisms and hence, every endomorphism is an isomorphism.

(3) The Frobenius category FS associated to S (or the fusion system) plays an important
role for the definition of a p-local finite group. Its objects are the elements of S and
the morphisms are group homomorphisms H → K that are given by conjugation with
an element of G. In this category every morphism is a monomorphism, which implies
that FS is an EI-category.

To an arbitrary EI-category C we will associate another category Ĉ with only identity
endomorphisms, which reflects the global structure of C. This category Ĉ will play an
important role in the analysis of the representation type of EI-categories later on.

Definition 2.9. Let f and g be two morphisms in a finite, skeletal EI-category C. Then
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we define a relation ∼ on the set of morphisms of C as follows.

f ∼ g :⇔ f = f ′′h1f
′ and g = f ′′h2f

′ for some f ′′, f ′ ∈ Mor C and endomorphisms h1, h2

This is clearly a reflexive and symmetric relation. We will consider the transitive hull of this
relation and denote it again by ∼. This relation is also compatible with the composition of
morphisms in C. Therefore, we get a new category Ĉ := C/ ∼ which is by construction an
endotrivial category (in particular EI).

Roughly speaking, Ĉ is constructed from C by making all endomorphisms trivial and
identifying all morphisms x → y in the same (Aut(x) × Aut(y))-orbit. By construction
it has the following important universal property. Suppose that C is an EI-category and
F : C → D any functor to an endotrivial category D. Then this functor F factors via
a unique functor through the quotient functor G : C → Ĉ, i.e. the following diagram is
commutative.

C G //

F

��

Ĉ

∃!���
�

�
�

D

Example 2.10. (1) If G is a finite group and C = G the associated EI-category, then Ĝ
consists of one object x and the only morphism is the identity 1x.

(2) If Q is a finite quiver without oriented cycles and C = Q the path category, then
Ĉ = C.

(3) If C is the EI-category associated to a finite poset (X,≤), we get Ĉ = C.

Remark 2.11. (1) An EI-category C is not uniquely determined by the category Ĉ to-
gether with its automorphism groups. To recover the entire structure of C one needs
to know the composition of morphisms which is the same as the whole structure of C.
Nevertheless, the category Ĉ is of great importance for us. As an example consider
the EI-category

C : xf 99

i1

��
i2

))
i3 55

i4

AAy,

satisfying the relations f4 = 1x and i1f = i2, i2f = i3, i3f = i4, i4f = i1 and the
EI-category

C′ : ag 99
h // b,

with the relations g4 = 1a and gh = h. Then both Ĉ and Ĉ′ are the path category of
A2 and C and C′ have the same automorphism groups. However, they are not equiv-
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alent and the associated category algebras have completely different representation-
theoretic properties. We will later see that C is representation-infinite and C′ has
finite representation type over any algebraically closed field k.

(2) By construction of Ĉ we have the quotient functor G : C → Ĉ which is the identity on
objects and surjective on morphisms. This functor induces a fully faithful embedding
of mod kĈ into mod kC.

2.2 Simple and projective modules

In this part we give an explicit description of the projective modules and the simple modules
over an EI-category algebra kC. From now on we assume that k is a field (or a complete
discrete valuation ring in order to have the Krull-Schmidt property), if not stated otherwise.
We start with an important observation: If C is an EI-category, then one has a natural
preorder defined on the set of objects Ob C, given by

x ≤ y ⇔ C(x, y) 6= 0.

This preorder clearly induces a partial order on the set of isomorphism classes of objects of
C.

In [26] Lück gave a characterization of all indecomposable projective and simple modules
over EI-category algebras. These results can also be obtained using work of Auslander [4],
but in the following formulation they are due to Lück.

Proposition 2.12 (Lück, [26]). Let C be an EI-category. Then any finitely generated
projective kC-module is isomorphic to a direct sum of indecomposable projectives of the
form kC · e, with e ∈ kAut(x) being a primitive idempotent for some x ∈ Ob C.

For an object x in C we denote by [x] the isomorphism class of x. With this notation
there is the following theorem.

Theorem 2.13 (Lück, [26]). Let C be an EI-category. For each object x ∈ Ob C and every
simple kAut(x)-module V there is a simple kC-module M such that [x] is exactly the set of
objects on which M is non-zero and M(x) = V . Conversely, if M is a simple kC-module,
then there is a unique isomorphism class of objects [x] on which M is non-zero and each
M(x) is a simple kAut(x)-module. Thus, there is a bijection between the isomorphism
classes of simple kC-modules and the pairs ([x], V ) where x is an object in C and V a
simple kAut(x)-module.

With this theorem it is natural to denote a simple kC-module by Sx,V if it corresponds
to the pair ([x], V ) and to write Px,V for its projective cover. Note that the structure of
Px,V is determined by its value at x.
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Remark 2.14. If C and D are equivalent EI-categories, then their associated module-
categories mod kC and mod kD are equivalent as well.

Thus, we may throughout assume without loss of generality, that all EI-categories are
skeletal and therefore the set of objects (not only the isomorphism classes) carries the
natural structure of a finite poset.

2.3 Induction and restriction

Induction and restriction functors play an important role in modular representation theory
of finite groups, for example to classify the group algebras of finite representation type. This
concept can be carried over to the context of category algebras where we replace subgroups
of a given finite group by subcategories of a finite category. In the general setting the
definition of the restriction is the following.

Definition 2.15. Let k be a commutative ring and C and D be two small categories and
µ : D → C a covariant functor. Then we define the restriction along µ to be the functor
Resµ : repk C → repk D which sends a representation M of C to the representation M ◦µ of
D.

This functor also has its counterpart on the level of modules over the category alge-
bras, which we also denote by Resµ : mod kC → mod kD and it sends a module M =⊕

x∈Ob CM(x) to the module ResµM =
⊕

y∈ObDM(µ(y)).

A functor µ as in the definition extends naturally to a k-module homomorphism µ : kD →
kC, but this map is in general not an algebra homomorphism. The cases when this happens
are characterized in the following proposition.

Proposition 2.16. A functor µ : D → C extends linearly to an algebra homomorphism
µ : kD → kC if and only if µ is injective on ObD. In this case, the induced functor
followed by 1kD, i.e. 1kD· ↓kCkD: mod kC → mod kD is exactly Resµ.

In this work we want to use this concept for the case where D is a (full) subcategory of
a finite category C and we take for µ = ι the inclusion functor. In this case the restriction
Resι : mod kC → mod kD is determined by the algebra homomorphism ι : kD → kC, hence
by ι : D → C. Therefore, we will not distinguish Resι and ↓kCkD and write ↓kCkD and Resι
as ↓CD, which is the usual notation in representation theory, for example in the articles of
Xu. In the representation-theoretic setting the restriction ↓CD has a left adjoint, which is
the induction ↑CD= kC⊗kD− : mod kD → mod kC. These induction and restriction functors
will play a crucial role in almost all situations we will consider.

In the framework of restriction and induction functors we will later need the following
definitions.
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Definition 2.17. Let C be an EI-category.

(1) Let x be an object in C. Then we define C≤x to be the full subcategory of C consisting
of all objects y ∈ Ob C with C(y, x) 6= ∅. Similarly we define C≥x.

(2) An ideal in C is a full subcategory D of C such that for any object x in D we have
that C≤x ⊆ D. A coideal in C is a full subcategory E of C such that C≥x ⊆ E for any
x ∈ E .

(3) Let M be a kC-module. The M -minimal objects are the objects x ∈ Ob C such that
M(x) 6= 0 and for any y ∈ Ob C with y 6' x and C(y, x) 6= ∅ one has M(y) = 0.
Analogously one defines M -maximal objects.

(4) Let again M be a kC-module. We put CM to be the full subcategory consisting of all
y ∈ Ob C with C(x, y) 6= ∅ for some M -minimal object x in C.

It is clear by definition that any kC-module M is determined by its values on CM . We
are now going to point out a nice property of ideals, namely that in this case the restriction
preserves projectives.

Proposition 2.18 (Xu, [33] Lemma 3.1.6). Let D be an ideal in an EI-category C. Then
the restriction functor ↓CD preserves projective (left-)modules

If one would deal with right modules instead of left modules, then the restriction to
coideals would preserve projectives.



3 EI-categories of finite representation type

Since the concept of EI algebras generalizes the concept of group algebras of finite groups
and of path algebras of finite quivers or more generally of finite posets, it is a natural
question to ask for a classification of the EI-category algebras of finite representation type.
In 3.24 we will classify all endotrivial representation-finite EI-categories, which, roughly
speaking, gives us the global shape of representation-finite EI-categories. Afterwards, we
will turn our attention to EI-categories with two objects, since they are the easiest categories
which are not group algebras. Even for this class it turns out that a classification of finite
representation type is not easy. Nevertheless, we will derive some necessary criteria for finite
representation type and compute various examples. In section 3.7 and section 3.8 we will put
stronger conditions on the automorphism groups of the objects in our EI-categories and are
then able to classify the representation-finite categories under this additional assumptions.
It will become clear how involved this classification gets, even for very small categories.
In the beginning of this chapter we will recall the classification of representation-finite
group algebras, quivers and posets and afterwards present basic definitions and results on
the Gabriel-quiver of a finite-dimensional algebra as well as a quick survey about covering
theory for bound path algebras of quivers. In the introductory sections there will be no
proofs in order to keep this part short and streamlined. Let us start with the most important
definition for this chapter.

Definition 3.1. Let A be a finite-dimensional algebra over any field k. We say that
A is representation-finite or of finite representation type if there are only finitely many
isomorphism classes of indecomposable A-modules.

3.1 Finite representation type for finite groups, quivers and

posets

The classification of representation-finite quivers and group algebras of finite groups is given
by the following theorems.

Theorem 3.2 (Gabriel [18]). Let Q be a finite and connected quiver and k any field. Then
the path algebra kQ is of finite representation type if and only if the underlying graph of Q

15
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is a simply laced Dynkin diagram, i.e. one of the following graphs.

An : • • • ... • (n ≥ 1) E6 : • • • • •

•

Dn : • • .... •

•
���

• ???
(n ≥ 4) E7 : • • • • • •

•

(n = number of vertices) E8 : • • • • • • •

•

Theorem 3.3 (Highman [22], Kasch, Kneser and Kupisch [24]). Let G be a finite group
and let k be an algebraically closed field of characteristic p dividing the order of G. Then
the group algebra kG is of finite representation type if and only if the Sylow p-subgroups Gp
of G are cyclic.

If the characteristic does not divide the order of G, a theorem of Maschke states that
A is semisimple, in particular representation-finite. A good reference for both theorems is
for example the book of Assem, Simson and Skowronski [3]. Also the representation-finite
posets have been classified by Loupias (and independently by some russian mathematicians)
and we want to recall the results here. A complete list of all representation-finite posets
may be created using the criterion we will present. One can find such a list in the diploma
thesis of H. Küchenhoff, who was a student of Gabriel, from 1982. Another good reference
for representations of posets in general is the book of Simson [30], but one should note
that he has a different definition of representation-finite posets. Therefore, we will mainly
stick to the notations of Loupias since they are convenient for our purposes. From now on
assume that (I,≤) is a connected finite poset.

Definition 3.4. Let I and J be two finite partially ordered sets and f : I → J a surjective
morphism of ordered sets, i.e. f(x) ≤ f(y) if x ≤ y. If f−1(j) is connected for every j ∈ J ,
then we call J a contracted set of I.

Theorem 3.5 (Loupias 1974, [25]). Let I be a finite partially ordered set. Then I is of
finite representation type if and only if it has no subset and no contracted set, which is
given by one of the Hasse-diagrams (or their duals) in the list below. If there is a just a
line between two points the orientation is arbitrary.

Ãn : •

•
���

..... •

•
???

•
���

. . . . .•
???

(n ≥ 0) D̃n : • • ... •

•
���

•
???

• ???

•
���

(n ≥ 4)
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Ẽ6 : • • • • •

•

•

(n+ 1 = number of vertices)

Ẽ7 : • • • • • • •

•

Ẽ8 : • • • • • • • •

•

D̃1 : • • •

•

•

Ã4 : • •

•

•

??�����

��?????

__?????

�������

R1 : • •

•

•

• • • •

•

??�����
__?????

??�����

__?????
R2 : • •

•

•

• • • •

•

??�����

��????? ??�����

��?????

R3 : • • • •

•

•

• •

•

??����
__????

??����

__????
R4 : • • •

•

•

• • • •

•

??����
__????

??����

__????

R5 : • •

•

•

•

• • • •

??�����

__?????

WW/////////
GG����

GG����

R6 : • • •

•

•

•

• • •

??�����

__?????

GG���������

WW////

WW////

R7 : • • •

•

•

•

•

• •

GG����

GG����

WW/////////

WW////

WW////
GG���������
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From this result it is possible to produce the Hasse-diagrams of all representation-finite
partially ordered sets as it was done by Küchenhoff.

The leading question throughout this chapter is the following: Is there any general concept
which contains the classification results from above as special cases and which gives a
characterization of all representation-finite EI-category algebras?

3.2 The Gabriel-quiver of a finite dimensional algebra

To each finite-dimensional connected algebra A over a field k one can associate a finite
quiver Γ(A) and, in case the field k is algebraically closed, a theorem of Gabriel yields
that A is Morita-equivalent to kΓ(A)/I for some admissible ideal I. In this section we
will briefly recall the most important definitions and results in this context, because we
will use them intensively in our treatment of finite representation type for EI-categories.
For more details for this whole section one may consult the book of Assem, Simson and
Skowronski [3, Chapter II].

Definition 3.6. Let Q be a finite quiver and R the ideal generated by all arrows in the
path algebra kQ. A two-sided ideal I in kQ is called admissible if there exists n ≥ 2 such
that Rn ⊆ I ⊆ R2. If I is an admissible ideal, then the pair (Q, I) is called a bound quiver
and kQ/I is said to be a bound path algebra.

Definition 3.7. Let A be a basic connected finite-dimensional algebra over a field k and
e1, . . . , en a complete set of primitive orthogonal idempotents of A. The Gabriel-quiver of
A, denoted by Γ(A), is defined in the following way:

(i) The vertices of Γ(A) correspond bijectively to the idempotents e1, . . . , en;
(ii) For two vertices a, b ∈ Γ(A)0, the arrows α : a → b are in bijective correspondence

with the vectors of a k-basis of the k-vector space ea(radA/ rad2A)eb.

One can easily verify that this quiver does not depend on the choice of the primitive
idempotents in the definition. One should note here that every finite-dimensional k-algebra
A is Morita-equivalent to a basic algebra A′ and from the representation-theoretic point
of view it makes no difference whether we deal with A or A′. One can also define Γ(A)
in a way that only depends on the category modA and not on the structure of A itself as
follows: The vertices 1, . . . , n of Γ(A) are in bijective correspondence with the isomorphism
classes S1, . . . , Sn of simple A-modules with dimk Ext1

A(Si, Sj) vertices from i to j. For
explicit computations the first definition in terms of idempotents is often more applicable.

The central result in this context is the following theorem of Gabriel.

Theorem 3.8 (Gabriel). Let A be a basic and connected finite-dimensional algebra over
an algebraically closed field k. Then there exists an admissible ideal I in kQ such that
A ∼= kΓ(A)/I.
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Note that the ideal I is in general not unique. See [3, II.2.2] for an example of an algebra
A with two admissible ideals satisfying the conditions of the theorem. We will now illustrate
how one can compute the quiver of an EI-category with one example.

Example 3.9. We consider the EI-category C which will also be treated in Proposition 3.27.
That is: Let C be an EI-category with two objects x and y such that End(x) = 〈f〉 ∼= Z2 and
End(y) = 〈g〉 ∼= Z2. Furthermore, we require that C(x, y) = { i1, i2, i3, i4 } with i1 ◦ f = i2,
i3 ◦ f = i4, g ◦ i1 = i3 and g ◦ i2 = i4. C may be illustrated as follows.

C : xf 99

i1

��
i2

((
i3 66

i4

AA y
gee

To compute the quiver of the (basic) algebra kC we have to distinguish between the case
where char(k) = 2 and the case char(k) 6= 2.

Suppose char(k) = 2. Then 1x and 1y form a complete list of orthogonal, primitive
idempotents of A := kC. We compute the radical to be rad(A) = 〈i1, 1x + f, 1y + g〉 and
therefore rad2(A) = { is + it | s 6= t }. Hence, the quiver Γ(A) has two vertices correspond-
ing to 1x and 1y each of this vertices having a loop corresponding to 1x + f and 1y + g

respectively. Finally, there is one arrow from 1x to 1y corresponding to the class of i1 in
1y(rad(A)/ rad2(A))1x and the quiver of A is

Γ(A) : ◦α 99
β // ◦ γee .

With the assignments from above, we get an algebra epimorphism kΓ(A)→ A whose kernel
is the admissible ideal (α2, γ2) and hence A ∼= kΓ(A)/(α2, γ2).

If char(k) 6= 2, then kC is hereditary as the path algebra of

◦ //

��@@@@@@@ ◦

◦

??~~~~~~~~
// ◦,

which is a quiver with underlying Eucledian graph Ã3.

3.3 Covering theory

In [7] Bongartz and Gabriel introduced covering theory for finite-dimensional algebras.
Their work had been inspired by work of Riedtmann [28]. We will briefly recall some
definitions, but mainly try to explain the use of covering theory for our purposes with an
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example.

Definition 3.10. Let A and B be two k-linear categories. A k-linear functor F : A → B
is called covering functor if the induced maps∐

Fy=b

A(a, y)→ B(Fa, b) and
∐
Fy=b

A(y, a)→ B(b, Fx)

are bijective for every a ∈ A and b ∈ B.
Every covering functor gives rise to a push-down functor Fλ : Repk(A)→ Repk(B), where
Fλ(M)(b) =

∐
Fa=bM(a). The definition on morphisms is fairly obvious.

A theorem of Gabriel [16] states that, under certain assumptions, the push-down functor
preserves indecomposability. We will use this method for quivers with relations and loops
at some vertices. We will explain how this procedure works in the following example, which,
in our opinion, explains sufficiently well how a cover of the given quiver is constructed for
all cases we are interested in.

Consider the Jordan-quiver
Q : aα 99 ,

subject to the relation α2 = 0. This is the quiver of the group algebra of the cyclic group
of order 2 in characteristic 2. For the infinite quiver

Q : . . .
γ // x−1

γ // x0
γ // x1

γ // . . . ,

bound by γ2 = 0, we get a functor F : Q→ Q defined by F (xi) = a for all i and F (γ) = α,
which is a covering functor (here we take for Q and Q the k-linear category spanned by their
associated path categories). In this case the push-down functor preserves indecomposability
(and also sends almost-split sequences to almost-split sequences). To get all indecomposable
representations of Q/α2, we pick a finite piece of Q/γ2 and knit its Auslander-Reiten quiver.
Then we use the push-down to get indecomposable representations of Q/α2 and see, that
this procedure is 2-periodic and we immediately get all indecomposable representations
“downstairs”, namely two representations of dimension 1 and 2, respectively.

Analogously, one constructs the cover for all quivers with relations that appear in this
thesis. The example we will see most frequently is the one of a quiver of the form

Γ : ◦α 99
β // ◦ γ

yy
,

subject to some admissible relations. The universal cover of this quiver is then the infinite
quiver which is displayed below, bound by the same relations as the original quiver. The
covering basically coincides with the one in the last example and the push-down functor
again preserves indecomposability. In the language of Gabriel, this is a Galois-covering.
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...
α

��

...
γ

��
◦

α

��

β // ◦
γ

��
◦

α

��

β // ◦
γ

��
◦

α
��

β // ◦
γ
��

...
...

Figure 3.1: The universal cover of Γ

The fact we will heavily use is that, if the covering quiver of Q/I contains a relation-free
part which is representation-infinite, then Q/I is representation-infinite since we can push-
down the infinite family of indecomposable representations. Once again we refer to the
literature for a more detailed treatment of this fact.

3.4 Relative projectivity, vertices and sources

The main tools for the classification of group algebras of finite representation type are
restriction and induction functors as well as the concepts of relative projectivity, vertices,
sources and defect groups. For EI-category algebras Xu [33] developed a theory of vertices
and sources, which is very similar to the one for finite groups. In this subsection we will
first briefly present the main definitions and results of this theory and then give an abstract
classification of EI-category algebras of finite representation type in terms of vertices, which
is a more or less immediate Corollary of Xu’s results.

Definition 3.11. Let C be an EI-category and D a subcategory of C. We call a kC-module
M relatively D-projective (or projective relative to D) if the canonical surjective kC-module
homomorphism ε = εM : M ↓CD↑CD= kC ⊗kDM →M, a⊗m 7→ a ·m splits.

Again as in the group case, we have several equivalent characterizations of relative pro-
jectivity.

Proposition 3.12 (Xu [33, Proposition 3.2.2]). Let C be a finite EI-category, D ⊆ C a
subcategory and M a kC-module. Then the following conditions are equivalent:

(1) M is relatively D-projective;
(2) M is a direct summand of M ↓CD↑CD;
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(3) M is a direct summand of N ↑CD for some kD-module N ;
(4) If 0 → M ′ → M → M ′′ → 0 is an exact sequence of kC-modules which splits in

mod kD, then it splits in mod kC.

Relative projectivity of a module M is closely related to M -minimal objects in the fol-
lowing way.

Lemma 3.13 (Xu [33, Lemma 3.2.5]). Let M be a kC-module and D ⊆ C a subcategory.

(1) If M is relatively D-projective, then ObD contains all M -minimal objects.
(2) If M is relatively D-projective, then the module M(x) is relatively AutD(x)-projective

as a kAutC(x)-module for any M -minimal object x.

For the case of full subcategories of an EI-category C, relative projectivity of a module
yields that this module is already generated by its values on the full subcategory relative
to which it is projective in the following sense.

Proposition 3.14 (Xu [33, Proposition 3.3.1]). Let D be a full subcategory of an EI-
category C and M a kC-module which is relatively D-projective. Then M is generated by
its values on D, i.e. M ↓CD↑CD ∼= M .

The next theorem guarantees that for a representation-finite EI-category every connected,
full subcategory has to be of finite representation type.

Theorem 3.15 (Xu [33, Theorem 3.3.2]). Let C be an EI-category, D a connected, full sub-
category and N an indecomposable kD-module. Then the kC-module N ↑CD is indecomposable
and relatively D-projective.

This theorem can be compared with Green’s indecomposability theorem for representa-
tions of finite groups (see [2]). Its inverse holds as well:

Theorem 3.16 (Xu [33, Theorem 3.3.4]). Let M be an indecomposable kC-module which
is relatively D-projective for a connected, full subcategory D ⊆ C. Then M ↓CD is an inde-
composable kD-module.

The two previous theorems give an equivalence of categories by means of the following
definition.

Definition 3.17. Let D ⊆ C be a connected, full subcategory of an EI-category C. We
denote by mod kCD the full subcategory of mod kC consisting of those kC-modules which
are relatively D-projective.

Proposition 3.18 (Xu [33, Proposition 3.3.6]). The functors ↓CD and ↑CD induce quasi-
inverse equivalences

mod kCD
↓CD //

mod kD
↑CD
oo .
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The next result is necessary to develop the theory of vertices and sources in our framework.

Proposition 3.19 (Xu [33, Corollary 3.3.8]). For any indecomposable kC-module M there
exists a smallest ideal ṼM in C relative to which M is projective.

Definition 3.20. The full subcategory VM = ṼM ∩ CM is called the vertex of M .

It is clear by definition that the vertex of an indecomposable kC-module is always a
connected, full subcategory of C. We say that a subcategory D of C is convex if, whenever
there is a sequence of morphisms x α−→ y

β−→ z in C with x, z ∈ ObD, then both α and β

are in MorD. With this definition there are three equivalent characterizations of the vertex
of a kC-module.

Proposition 3.21 (Xu [33, Proposition 3.3.12]). Let M be an indecomposable kC-module
and D ⊆ C a connected and full subcategory of C. Then the following statements are
equivalent:

(1) D is the vertex of M ;
(2) D is the smallest ideal in CM relative to which M is projective;
(3) D is the smallest full and convex subcategory of C relative to which M is projective.

If M is again an indecomposable kC-module and VM its vertex, then M ↓CVM ↑
C
VM
∼= M

and M ↓CVM is indecomposable. Therefore, M is (up to isomorphism) determined by the
indecomposable kVM -module M ↓CVM . For that reason, we call M ↓CVM the source for M .

Using the whole theory Xu developed, we derive the following easy Proposition which is
an abstract characterization of EI-categories of finite representation type.

Proposition 3.22. Let C be a finite, connected EI-category. Then the algebra kC is of finite
representation type if and only if kVM is of finite representation type for any indecomposable
module M in mod kC.

Proof. If C is of finite representation type, then every full, connected subcategory is of fi-
nite representation type by Theorem 3.15. Conversely, suppose that every kVM is of finite
representation type. Since C is finite, there can only be finitely many vertices of indecom-
posable kC-modules, each having only finitely many indecomposable representations up to
isomorphism. An indecomposable kC-module M is (up to isomorphism) determined by its
source M ↓CVM , which is an indecomposable kVM -module. Together, this yields that there
are only finitely many isomorphism classes of indecomposable kC-modules.

Remark 3.23. (i) In representation theory of finite groups it is known that for a finite
groupG and a field k of characteristic p > 0 dividing |G| every kG-module is projective
relative to the Sylow p-subgroup P of G. For that reason, the representation type
of kG is governed by the representation type of kP . In contrast to that, for an
EI-category algebra kC it almost always happens that the smallest full subcategory
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relative to which a kC-module M is projective is the category C itself. Thus, the
theory of vertices and sources for EI-categories does not help much for an explicit
characterization of finite representation type.

With existing methods it is also not possible to generalize the concept of a defect
group to an equivalent concept for EI-category algebras since the conjugation with
group elements of a group G (as basis vectors in kG) is essential to obtain a reasonable
theory for defect groups. For EI-categories there is no concept similar to conjugation.

(ii) Restriction and induction are defined for an arbitrary subcategory D of an EI-category
C. Most of the results of Xu only work for the case where D is a full subcategory of C.
The problem with arbitrary subcategories is, that the computation of the induction of
a module is in general very complicated. If D is a full subcategory, then the induction
of every indecomposable kD-module to kC is indecomposable. This is not true for
arbitrary subcategories (e.g. subgroups of a finite group) and for that reason it is
not clear how one can get a reduction technique for the representation type of an
EI-category in terms of arbitrary subcategories.

3.5 The endotrivial case

For any EI-category C we have seen that there is a fully faithful embedding mod kĈ →
mod kC, where Ĉ is the ’endotrivialization’ of C which has been defined above. The existence
of this embedding implies that, if C is representation-finite, then Ĉ is representation-finite as
well. Therefore, it is natural to ask for a description of all representation-finite EI-categories
with only trivial endomorphisms. This description characterizes the global structure of any
representation-finite EI-category.

Theorem 3.24. Let C be an EI-category with only trivial endomorphisms. Then C is of
finite representation type if and only if kC is Morita-equivalent to an incidence algebra of
finite representation type.

Proof. Let C be endotrivial and of finite representation type. We have to show that kC is
Morita-equivalent to an incidence algebra of finite type. The other direction in the theorem
is trivial. Again, we may (up to Morita-equivalence of kC) assume that C is skeletal.
Since C is representation-finite, there are no objects x, y ∈ C with two distinct morphisms
f, g : x→ y. Otherwise one gets a fully faithful embedding of the category of representations
of the 2-Kronecker into mod kC. Since C is skeletal its set of objects carries a natural
structure of a finite poset defined by

x ≤ y :⇔ ∃f ∈ C(x, y).

Using, that C(x, y) ≤ 1 for all x, y ∈ Ob C, we get that kC is the incidence algebra associated
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to the finite poset (Ob C,≤) and the claim follows.

Corollary 3.25. Let C be a finite and skeletal EI-category and k a field such that kC is
representation-finite. Then Ĉ is a finite poset of finite representation type.

Remark 3.26. Suppose C is an endotrivial EI-category. Then its set of objects naturally
carries the structure of a finite partially ordered set, but in general it will not be the case
that C is the category associated to this poset. For instance, take C to be the category

d

b

γ
@@��������

c,

δ
__>>>>>>>>

a

α

__>>>>>>>> β

??~~~~~~~

without any relations. Then the category associated to (Ob C,≤) is C modulo the relation
γα = δβ.

3.6 EI-categories with two objects

The easiest class of EI-categories for which the representation type has not yet been
investigated is the class of EI-categories with two non-isomorphic objects. Clearly, a
representation-finite EI-category C with two objects has to satisfy Ĉ = A2 and both group
algebras attached to the two objects have to be of finite representation type. Therefore,
we may illustrate a possibly representation-finite EI-category C with two non-isomorphic
objects as follows.

x
GxfGy // y

Here f is one representative of the class of morphisms from x to y with respect to our
relation ∼ and Gx, Gy denote the endomorphism groups of x and y respectively. In other
words, f is one representative of the unique orbit of the group action of Gx×Gy on C(x, y).
One should note that the representation type of an endotrivial category does not depend
on the characteristic of the ground field k. In contrast to that, the representation type of
group algebras depends on char(k) and the same is true for EI-category algebras which are
not group algebras, as we will see later.

An arbitrary EI-category algebra kC is representation-infinite if there exists at least one
full subcategory D ⊆ C such that the algebra kD is representation-infinite. Therefore,
the treatment of EI-categories with two objects yields necessary criteria for an EI-category
algebra to be representation-finite.

We assume that k denotes an algebraically closed field.



EI-categories with two objects 26

3.6.1 The easiest example

The following example, which we will treat in every detail, illustrates how involved the
characterization of representation-finite EI-category algebras might get. We consider an EI-
category C with two objects x and y such that End(x) = 〈f〉 ∼= Z2 and End(y) = 〈g〉 ∼= Z2.
Under these assumptions there are 5 different EI-categories that can appear, namely:

(1) C(x, y) = { i } with i ◦ f = i and g ◦ i = i;

(2) C(x, y) = { i1, i2 } with f acting trivially on { i1, i2 } and g permuting the two mor-
phisms;

(3) C(x, y) = { i1, i2 } with f permuting i1 and i2 and g acting trivially;

(4) C(x, y) = { i1, i2 } with f and g permuting i1 and i2;

(5) C(x, y) = { i1, i2, i3, i4 } with i1 ◦ f = i2, i3 ◦ f = i4, g ◦ i1 = i3 and g ◦ i2 = i4.

The second case has briefly been studied by Xu in [33], where he claims that this category
is of infinite representation type in characteristic 2, but the representations he constructed
turn out to be decomposable and (as we will see later) and the category is of finite repre-
sentation type. It will turn out that the representation type of an EI-category with two
objects is mainly governed by the group action of the endomorphism groups on the set of
morphisms between the two non-isomorphic objects.

The investigation of case (5), which is obviously the one with the most complicated
representation theory, leads to the following result.

Proposition 3.27. Let C be an EI-category with two objects x and y such that End(x) =
〈f〉 ∼= Z2 and End(y) = 〈g〉 ∼= Z2. Furthermore, we require that C(x, y) = { i1, i2, i3, i4 }
with i1 ◦ f = i2, i3 ◦ f = i4, g ◦ i1 = i3 and g ◦ i2 = i4.

C : xf 99

i1

��
i2

((
i3 66

i4

AA y
gee

Then kC is of infinite representation type, no matter which base field k we choose.

Proof. We prove the theorem by constructing an infinite family of indecomposable repre-
sentations of C:

For n ∈ N let Vn ∈ repk C be defined by Vn(x) = k2n, Vn(y) = k2n−1 and

Vn(f) =


0 1
1 0

.
.
.

0 1
1 0

 , Vn(g) =


0 1
1 0

.
.
.

0 1
1 0

1

 , Vn(i1) =

 0 0
0 1
. .
. .
. .
0 1

 .
This gives (together with the compositions of the maps we defined above) a representation
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of C. We prove the indecomposability of Vn (which we will for simplicity denote by V ) by
computing its endomorphism ring.

Let φ be an endomorphism of V , that means φ = (A,B) where A ∈ M2n(k) and B ∈
M2n−1(k). First of all, A = (ai,j) has to commute with V (f) which is equivalent to the
condition that a2l−1,2t−1 = a2l,2t and a2l−1,2t = a2l,2t−1 for any 1 ≤ l, t ≤ n. Therefore, A is
of the following form.

A =



a1,1 a1,2 a1,3 a1,4 . . . a1,2n−1 a1,2n

a1,2 a1,1 a1,4 a1,3 . . . a1,2n a1,2n−1

a3,1 a3,2 a3,3 a3,4 . . . a3,2n−1 a3,2n

a3,2 a3,1 a3,4 a3,3 . . . a3,2n a3,2n−1

. . . . . .

. . . . . .

. . . . . .

a2n−1,1 a2n−1,2 a2n−1,3 a2n−1,4 . . . a2n−1,2n−1 a2n−1,2n

a2n−1,2 a2n−1,1 a2n−1,4 a2n−1,3 . . . a2n−1,2n a2n−1,2n−1


Analogously, B has to commute with V (g) which is equivalent to the conditions b2l−1,2t−1 =
b2l,2t, b2l−1,2t = b2l,2t−1, b2l,2n−1 = b2l−1,2n−1 and b2n−1,2t = b2n−1,2t−1 for any 1 ≤ l, t ≤
n− 1, i.e. B is of the following form.

B =



b1,1 b1,2 . . . b1,2n−3 b1,2n−2 b1,2n−1

b1,2 b1,1 . . . b1,2n−2 b1,2n−3 b1,2n−1

. . . . .

. . . . .

. . . . .

b2n−3,1 b2n−3,2 . . . b2n−3,2n−3 b2n−3,2n−2 b2n−3,2n−1

b2n−3,2 b2n−3,1 . . . b2n−3,2n−2 b2n−3,2n−3 b2n−3,2n−1

b2n−1,1 b2n−1,1 . . . b2n−1,2n−3 b2n−1,2n−3 b2n−1,2n−1


Additionally, A and B have to satisfy the relation

BV (i1) = V (i1)A. (3.1)

The left hand side of this equation equals (0, B) where 0 denotes the zero vector in k2n−1.
The right hand side is easily seen to be V (i1)A = Â, where we want Â to denote the matrix
one obtains from A by erasing the first line.

Now we claim, that (3.1) implies A = λ · E2n and B = λ · E2n−1 with λ := a1,1 = b1,1.

First of all, we note that both A and B only have entries whose first index is odd and that
all diagonal entries of A and B are equal to λ. Now we compare the left hand side and the
right hand side of (3.1) columnwise, starting with the first column. This yields a2i−1,j = 0
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for all i = 1, . . . , n, j = 1, . . . 2n with 2i − 1 6= j and j 6= 2i + 1 as well as b2l−1,t = 0 for
all l = 1, . . . , n, t = 1, . . . 2n− 1 with t 6= 2l− 1 and t 6= 2l+ 1. Furthermore, we infer that
a2i−1,2i+1 = a2l−1,2l+1 = b2j−1,2j+1 = b2t−1,2t+1 for all i, j, l, t = 1, . . . , n− 1.

In other words the entries of A and B are zero if they do not lie on the diagonal or have
indices of the form 2i− 1, 2i+ 1, and the latter are all equal. The last column of (3.1) gives
0 = a2n−1,2n = b2n−3,2n−1 which implies 0 = a2i−1,2i+1 = b2j−1,2j+1 for all i, j = 1, . . . , n−1
and the claim follows.

This is the first non-trivial example of an EI-category of infinite representation type,
where non-trivial means, that neither Ĉ nor kEnd(x) (for some x ∈ Ob C) is of infinite
representation type. Indeed, even the characteristic of the ground field is arbitrary in
the proposition and therefore the group algebras associated to the two objects may be
semisimple, e.g. for char(k) = 0.

We will now dicuss all five cases from above by computing their Gabriel-quivers and
deducing their representation type from this quiver (with relations). Surprisingly, it will
turn out, that the characteristic of the ground field does not play any role in this special
cases. We will also get the result from above again by this discussion, but the construction
of an infinite family of non-isomorphic indecomposables is interesting on its own.

Proposition 3.28. Let C be the EI-category from case (1). Then kC is of finite represen-
tation type.

Proof. The computation of the Gabriel quiver of kC in characteristic 2 yields the quiver

Q : ◦α 99
β // ◦ γee . (3.2)

An easy calculation shows that kC is isomorphic to kQ/I, where I is the admissible ideal
generated by the zero relations 0 = α2 = γ2 = βα = γβ. Therefore, kC is a string
algebra without any bands and those algebras are known to be of finite representation
type. Alternatively one can consult the list at the end of [7] and see that this algebra is of
finite representation type and also find its Auslander-Reiten quiver.

If char(k) 6= 2, then the algebra kC is isomorphic to the path algebra kQ where Q is the
quiver

◦ ◦

◦ // ◦,

which is obviously of finite representation type.

The other cases are discussed analogously and we deduce the following results (with
respect to the numbering from the beginning of this subsection). Fix the quiver Q from
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(3.2).

(2) kC ' kQ/〈α2, γ2, βα〉 if char(k) = 2 and this algebra is of finite representation type,
again as a string algebra without any bands. If the characteristic is different from 2,
then kC is the path algebra of the representation-finite quiver

◦ ◦

◦

>>}}}}}}} // ◦.

(3) This situation is dual to the one above. In char(k) = 2 we have kC ' kQ/〈α2, γ2, γβ〉,
which again is a string algebra without bands, and in char(k) 6= 2 the algebra kC is
hereditary of finite representation type as the path algebra of the following quiver

◦

  AAAAAAA ◦

◦ // ◦.

(4) If char(k) = 2, then kC ' kQ/〈α2, γ2, βα− γβ〉. This algebra is representation-finite,
which can be seen by knitting the AR-quiver using covering theory as we explained
before (or see for example [16]). If the characteristic is different from 2, then the
algebra kC is isomorphic to the path algebra of the quiver

◦ // ◦

◦ // ◦,

which is of finite representation type.
(5) For this case we have already seen that kC is of infinite representation type in any

characteristic. This also follows from the computation of the Gabriel quiver and the
attached relations. If char(k) = 2, then we get that kC ' kQ/〈α2, γ2〉 which is a
string algebra with infinitely many bands and therefore it is of infinite representation
type. In any characteristic different from 2 the algebra kC is hereditary (as we know
from work of Xu) and in this particular case isomorphic to the path algebra of the
following quiver

◦ //

��@@@@@@@ ◦

◦

??~~~~~~~~
// ◦,

which is a quiver with underlying Eucledian graph Ã3.
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3.6.2 The characteristic plays a role

In this subsection we present an example, which shows that the representation type of an EI-
category algebra kC, which does not come from a group, depends on the characteristic of the
field k. The reason for this is that the same is true for group algebras. The easiest example
where different characteristics of k yield different representation types is the following one.

Example 3.29. Consider the EI-category

C : xg 99

f1

&&f2 //
f3

88 y hee ,

with the relations g2 = 1x, fig = fi, for i = 1, 2, 3, h3 = 1y and hf1 = f2, hf2 = f3,

hf3 = f1.
We will now show that the associated k-algebra kC is of finite representation type if and
only if char(k) 6= 2. First of all, we suppose that char(k) 6= 2, 3. Then kC is hereditary (and
basic) and we compute the Gabriel quiver to be

◦ //

  AAAAAAA

��0
0000000000000 ◦

◦ ◦

◦,

which is of finite representation type as the union of quivers with underlying graphs A1 and
D4.

Now we assume that the characteristic of k is 3. Then the radical of kC is 〈1y−h, f1, f2, f3〉
and rad2kC = 〈(1y − h)2, f1 − f2, f2 − f3〉 where 〈 — 〉 denotes the k-span. A complete list
of primitive, orthogonal idempotents is given by 1y, 1

2(1x + g), 1
2(1x − g). Therefore, kC is

isomorphic to the path algebra of the quiver

◦ β // ◦ γee

◦

,

bound by the relation γ3 = 0. This bound path algebra is of finite representation type since
it is the union of A1 with a bound path algebra whose module category can be embedded

into the module category of k( ◦
ν // ◦
δ
oo ρee )/〈ρ3, δρ, δν, δρν〉. The latter is known to be

of finite type by work of Bautista, Gabriel, Roiter and Salmeron [6] and work of Bongartz
and Gabriel [7].
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The last case is the one where char(k) = 2. Here the radical of kC is 〈1x + g, f1, f2, f3〉
and its square is zero. A complete list of primitive, orthogonal idempotents is given by
1x, 1

3(1y + h+ h2), 1
3(1y + εh+ ε2h2), 1

3(1y + ε2h+ εh2), where ε denotes a primitive third
root of unity in k. Therefore, we deduce for the Gabriel quiver of kC the quiver

◦

Γ : ◦α 99

β1

??~~~~~~~~ β2 //

β3 ��@@@@@@@@ ◦,

◦

and kC is isomorphic to kΓ/〈α2, β1α, β2α, β3α〉. This bound quiver is of infinite represen-
tation type since its universal cover contains the 4-subspace quiver without relations. It
is also not difficult to write down a 1-parameter family of indecomposables of dimension
vector (3, 1, 1, 1).

The discussion of the first case in the example can be generalized to the following Propo-
sition, which provides us with a situation where we can prove that the EI-category algebras
in question always have finite representation type.

Proposition 3.30. Let C be a finite, skeletal EI-category with 2 objects x and y such that
C(x, y) = { f } and the two groups End(x) and End(y) are abelian. Let k be an algebraically
closed field whose characteristic neither divides the order of End(x) nor the order of End(y).
Then kC is of finite representation type.

Proof. Let n := |End(X)| and m := |End(Y )|.
First of all we note that the algebra kC is hereditary (see Theorem 4.2.4 in [33]) and

basic since the two groups are abelian. Therefore, it is isomorphic to the path algebra of
its Gabriel quiver.

Since the groups End(x) and End(y) are assumed to be abelian of order not divisible by
the characteristic of our field, it is known that kC has exactly m + n isomorphism classes
of simple modules (see [29] and [26]) and all the simples do not have self-extensions. This
implies, that the Gabriel quiver Γ(kC) has m+ n vertices. Furthermore, we know that the
k-dimension of kC is m + n + 1. This yields that we have exactly one arrow in Γ(kC) and
the claim follows.

3.6.3 Free action implies infinite type

In this subsection we prove the fact that free action of the automorphism groups of an
EI-category C with two objects x and y on C(x, y) implies infinite representation type in
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any characteristic. This is the most general result we will achieve in our treatment of EI-
categories with two objects. The proof is carried out by considering various cases. The
most interesting cases will be presented as Lemmata starting with the following one.

Lemma 3.31. Let C be an EI-category with two non-isomorphic objects x, y and abelian
endomorphism groups End(x) and End(y) of order ≥ 2 such that the group action of
End(x) × End(y) on C(x, y) is free and transitive. Let k be an algebraically closed field
which characteristic neither divides the order of End(x) nor the order of End(y). Then kC
is of infinite representation type.

Proof. Analogous to the proof in the last subsection, we have that kC is isomorphic to the
path algebra of its Gabriel-quiver which has m+n vertices. Since dimk kC = m+n+m ·n
there are m · n arrows in Γ(kC). Therefore, the underlying graph of the Gabriel quiver is
not Dynkin.

If both group algebras are not semisimple, we can prove the assertion without constructing
representations or computing the Gabriel quiver.

Lemma 3.32. Let C be an EI-category with two objects x and y and let k be an algebraically
closed field of positive characteristic p dividing both |End(x)| and |End(y)|. Further, we
assume that End(x)×End(y) acts freely on C(X,Y ). Then kC is of infinite representation
type.

Proof. For simplicity we write G := End(x) and H := End(y). We will prove the theorem
by constructing a fully faithful embedding F : mod k(G×H)→ mod kC. The construction
of this functor is rather obvious. For M ∈ mod k(G × H) let F (M)(x) = M = F (M)(y)
together with the natural actions of G and H on M given by G× idY and idX ×H, respec-
tively. Furthermore, we let F (M)(C(x, y)) = G×H. This is indeed a representation of kC.
Now let µ : M →M ′ be a morphism in mod k(G×H). We put F (µ) = (µ, µ) which gives a
morphism F (M)→ F (M ′) of kC modules. Finally this functor is fully faithful and k-linear
by construction and it is known that k(G×H) (in this particular framework) is of infinite
representation type.

Remark 3.33. If C is a skeletal EI-category with two objects x, y such that Aut(x) ×
Aut(y) acts freely on C(x, y), then we can also localize the category C with respect to the
set of morphisms S := C(x, y) in the set of Gabriel and Zisman [17]. This gives a new
category C[S] and the category of representations of C[S] is equivalent to the subcategory
of representations of C consisting of all representations V for which V (f) is invertible for
all f in C(x, y). Then, it is easy to see that this category contains mod(Aut(x) × Aut(y))
as a full subcategory as we have seen in the previous proof.
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One should note that the localization of an EI-category is not again an EI-category in
general, but if we assume that the EI-category has no parallel morphisms (i.e. |C(x, y)| ≤ 1
for all x, y ∈ Ob C), then every localization is again EI.

For cyclic groups the computation of the Gabriel quiver is rather easy, which gives the
next lemma.

Lemma 3.34. Let C be an EI-category with two non-isomorphic objects x and y such that
the action of End(x)×End(y) on C(x, y) is free and End(x) and End(y) are cyclic of order
≥ 2. Then kC is of infinite representation type for any algebraically closed field k.

Proof. In the case of cyclic endomorphism groups one can easily compute the Gabriel quiver
of kC and derive the relations on it such that kC is isomorphic to this bound path algebra.
One has to distinguish between the cases where the orders of both groups are divided by
the characteristic, only one of them or none. In all the three cases one ends up with infinite
representation type. We are not going to present the details here, the computations are
exactly the same as in the examples we discussed above.

Up to now we have seen several special cases of EI-categories with two objects and two
non-trivial endomorphism groups with free action which are representation-infinite. We are
now in the position to prove the general statement

Theorem 3.35. Let C be a skeletal EI-category with two objects x and y such that the
groups End(x) and End(y) are non-trivial and their product End(x)×End(y) acts freely on
C(x, y). Then kC is of infinite representation type for any algebraically closed field k.

Proof. The claim has already been proven for the case where both group algebras are non-
semisimple, for the case where both groups are cyclic and for the case of two semisimple
abelian group algebras. To prove the theorem we still have to distinguish between different
cases. For simplicity denote G := End(X) and H := End(Y ).

(a) Suppose that kG and kH are semisimple. We are going to construct an infinite family
(Vλ)λ∈k? of pairwise non-isomorphic indecomposable representations of C. Let λ ∈ k?

and define Vλ(X) = M , Vλ(Y ) = N where M is a kG-module, N a kH-module, both
having dimension at least 2. Furthermore we have to choose one linear map M → N

which we want, for some fixed basis, to be given by the matrix

Aλ :=


1 0 0 0 . . .

λ 1 0 0 . . .

0 0 0 0 · · ·
...

...
...

... · · ·

 ,

where all the dots stand for zeros. For the choice of M and N we again have to
distinguish different cases.



EI-categories with two objects 34

(i) Suppose that neither G nor H is abelian. Then we can choose M to be a simple
kG-module and N to be a simple kH-module, both of dimension ≥ 2. Then,
since M and N are indecomposable, it is clear that every Vλ is indecomposable.
We will now show that for λ 6= µ we have Vλ 6∼= Vµ. To see that, suppose
that (φ, ψ) : Vλ → Vµ is an isomorphism of kC-modules. This implies that
φ ∈ EndkG(M) ∼= k and ψ ∈ EndkH(N) ∼= k, which means φ = α · 1M and
ψ = β · 1N . In addition, φ and ψ have to be compatible with the action of the
matrix Aλ (defined above). This gives the equations α = β and αλ = βµ and
hence α = β = 0 which contradicts the assumption that (φ, ψ) is an isomorphism.

(ii) Suppose that H is non-abelian and G is abelian (the other way around is dual).
Choose N as above and put M = k2 with G-action given by the matrix

(
a 0
0 b

)
where a 6= b and both are non-zero. In other words we want M to be the direct
sum of two non-isomorphic one-dimensional simple kG-modules. In this case we
have that EndkG(M) =

(
k 0
0 k

)
and we deduce that Vλ is indecomposable. As

above we see that Vλ 6∼= Vµ for λ 6= µ.

(b) The last case that has to be treated (again by subdivision into different cases) is the
case where one of the group algebras kG and kH is semisimple while the other is
not and not both of them are abelian. We will deal with the case where kG is not
semisimple and kH is semisimple, the other case can be proven analogously.
We may assume, that the Sylow p-subgroup D of G is cyclic (p = char(k)), since
otherwise kG and hence kC is of infinite representation type and we have nothing
to prove. By standard results from representation theory of finite groups we can
then choose an indecomposable kG-module M such that its restriction M ↓D has a
p-dimensional direct summand on which D acts by the matrix

S =



1 1
1 .

. .

. .

. 1
1


.

If now H is not abelian we choose, as above, a simple kH-module N with dimN ≥ 2

and for λ ∈ k? we denote by Aλ the same matrix as above. Then M
Aλ // N is an

indecomposable representation of C. We should now show that Vλ 6∼= Vµ for λ 6= µ.
Suppose that ((bi,j), (ci,j)) is an isomorhpism of representations Vλ → Vµ. Then the
matrix (bi,j) has to commute with the G-action on M , in particular with a matrix
of the shape

(
S 0
0 ?

)
, where ? is any matrix. This gives the conditions b2,1 = 0 and

b1,1 = b2,2. An endomorphism of N as a kH-module is just a scalar multiple of the
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identity, i.e. (ci,j) = c · 1N . Finally, the following diagram has to commute.

M

(bi,j)

��

Aλ // N

c

��
M

Aµ // N

This yields the conditions b1,2 = 0, c = b1,1 = b2,2 and λ · c = µ · c, which give that
c = 0 and hence Vλ 6∼= Vµ. If the group H is abelian we replace the module N from
above by a 2-dimensional kH-module which is the direct sum of two non-isomorphic
one-dimensional simple kH-modules and get the claim by the same computations as
we have just done.
To finish the proof we should consider the case where kG is semisimple and kH is
not and not both are abelian. In this case the argument is the same as in the case we
have treated above, only the computations are a little bit different.

3.7 EI-category algebras with two simple modules

As we have seen, the classification of EI-categories of finite representation type gets very
complicated, even with the assumption that the category has only two objects. The distin-
guishing mark for finite or infinite representation type seems to be the nature of the group
actions of the automorphism groups on the morphism sets between distinct objects. In this
section we will give a classification of all representation-finite EI-category algebras with
only two simple modules. This work is motivated by work of Bongartz and Gabriel [7] who
classified all representation-finite k-categories with two simples and radical of codimension
2. We will compute the Gabriel quiver of a given EI-category algebra with two objects and
then use the list of Bongartz and Gabriel. For the convenience of the reader we collect
those representation-finite and representation-infinite bound path algebras of quivers with
two vertices that we will need later on. For a complete list one may consult [6, page 242].

Every algebra (given by quiver and relations), that is a quotient or dual to a quotient of
an algebra in the following list is of finite representation type.

◦ ν // ◦ ρee (1) 0 = ρ2ν = ρ5,

◦σ 99
ν // ◦ ρee (2) 0 = νσ = ρν = σt = ρt, t ≥ 2,

(3) 0 = νσ = σt = ρ2, t ≥ 2,

(4) νσ = ρ2ν, 0 = σ2 = ρ3,

(5) νσ = ρν, 0 = σ2 = ρt, t = 2r ≥ 2,

(6) νσ = ρν, 0 = σ2 = ρ5,
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◦
ν // ◦
γ
oo ρee (7) 0 = ρ3 = γρ = γν = νγ,

(8) 0 = ρ2 = νγ = γρν.

As mentioned above, this list is not a complete list of representation-finite k-categories with
two simples, but it is sufficient for our purposes. For every algebra from this list, one can
prove representation-finiteness using covering theory in the way we have explained it in the
beginning of this chapter.
Conversely, the algebras in the following list are all representation-infinite and they are in
some sense minimal with that property. For details we refer to [6].

◦ ν // ◦ ρee (9) 0 = ρ2ν = ρ6,

(10) 0 = ρ3ν = ρ4,

◦σ 99
ν // ◦ ρee (11) 0 = νσ = σ2 = ρ2ν = ρ4,

(12) 0 = νσ = σ3 = ρ2ν = ρ3.

Since we want to decide how many simples an EI-category algebra kC has and the simples
of kC are given by the simple modules over the group algebras kAut(x) for x ∈ Ob C, the
following well-known result from representation theory of finite groups is useful.

Lemma 3.36 (see for example [2]). Let G be a finite group and k an algebraically closed
field of characteristic p. Then the number of simple kG-modules equals the number of
conjugacy classes of elements in G whose order is not divisible by p.

The elements of a finite group G of order not divisible by some prime p are called p-
regular, the remaining ones are called p-singular. Every element of G can be written as a
product of a p-singular and a p-regular element. Using this fact, we observe the following
easy but important statement.

Corollary 3.37. Let G be a finite group such that the group algebra kG has only one simple
module. Then G is either the trivial group or a p-group for p = char(k).

Proof. From the lemma we know that G has only one p-regular element, namely the unit
1G. If p does not divide the order of G, then if follows that G = { 1G }. Suppose that
p | |G| and let x ∈ G be any element. Then we write x = zy as a product of a p-regular
element z and a p-singular element y. By assumption we have z = 1G and therefore x is
p-singular. Hence, every element has order divisible by p and G is a p-group.

This corollary together with the list from above implies the following result.
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Theorem 3.38. Let C be a skeletal EI-category and k an algebraically closed field such
that kC has two simple modules. Then kC is of finite representation type if and only if it
satisfies one of the following conditions.

(1) C has one object x, the group Aut(x) = Mor C has two conjugacy classes of p-regular
elements and the Sylow p-subgroup of G is cyclic.

(2) C has two objects x and y, the natural action of the group Aut(x)×Aut(y) on C(x, y)
has at most one orbit, the Sylow p-subgroups of Aut(x) and Aut(y) are cyclic or the
groups are trivial and one of the follwing conditions holds.
(a) C(x, y) = ∅;
(b) |Aut(x)| · |Aut(y)| ≤ 3;
(c) |Aut(x)| · |Aut(y)| = 4 and |C(x, y)| ≤ 2;
(d) |Aut(x)| · |Aut(y)| ≥ 5 and |C(x, y)| = 1.

Proof. C has at most two objects since every object gives at least one simple kC-module.
If C has only one object, then kC is a group algebra and, if it is representation-finite with
only two simples, it has to satisfy condition (1).

Suppose that C has two objects x and y. The assumption that kC has two simples implies
that both kAut(x) and kAut(y) have one simple module. Hence, they are either trivial or
p-groups. In case of two trivial automorphism groups, C is the path category of the Dynkin
quiver A2 which is representation-finite. If one of Aut(x) and Aut(y) is a p-group it has
to be representation-finite which means that it is a cyclic p-group. Assume that Aut(x) is
a cyclic p-group and Aut(y) is trivial. Then the computation of the Gabriel-quiver of kC
yields, that kC is isomorphic to the following path algebra with relations or its dual:

◦α
%% β // ◦ , αm = 0 = βαn, m = pr, n | m.

According to the Bongartz-Gabriel list, this algebra is representation-finite only for the
following values of m and n

• m = 2, n = 1, 2;
• m = 3, n = 1, 3;
• m = 4, n = 1, 2;
• m ≥ 5, n = 1.

Any of these cases fulfils one of the conditions from (2).
Analogously, we assume that both Aut(x) and Aut(y) are cyclic p-groups. In this case kC
is isomorphic to the following path algebra with relations or its dual:

◦α
%% β // ◦ γ

yy
, γt = αm = 0 = γsβ = βαn, m = pr, t = pl, n | m, s | t.

Again we consult the list of Bongartz-Gabriel and find that (up to duality) only the following
values for m,n, s and t give a representation-finite algebra:
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• m = 2 = s and n = 1, t = 2 or n = 2, t = 1 or n = t = 1;
• m, s ≥ 3 and n = 1 = t.

Again this fits into our assertion and no other cases can occur, which finishes the proof.

Remark 3.39. For the representation-finite EI-categories with two simples one can com-
pute the Auslander-Reiten quiver, since they are either hereditary of Dynkin type or occur
in the list of Bongartz-Gabriel. For the latter case one again uses covering-theory to knit
the Auslander-Reiten quiver of the covering and then pushes everything down to the algebra
itself.

3.8 Two objects and cyclic automorphism groups

The last special case of EI-categories we will consider is the one of EI-categories C with
two objects x and y such that Aut(x) is a cyclic p-group and Aut(y) is a cyclic q-group for
two distinct primes p and q. For this class of EI-categories the characterization of finite
representation type can be obtained in the same way as for EI-category algebras with two
simples modules. We will only treat the case where one group algebra is semisimple and
the other is not. The case with two semisimple group algebras is rather trivial.

Proposition 3.40. Let C be an EI-category with two non-isomorphic objects x and y such
that G := Aut(x) is a cylic p-group and H := Aut(y) is a cyclic q-group for two distinct
primes p and q. Let k be an algebraically closed field of characteristic p. Then kC is
representation-finite if and only if C(x, y) (or C(y, x)) consists of one G×H-orbit and C or
its dual satisfies one of the following conditions.

(1) H acts trivially on C(x, y) and the category C′ = C/Aut(y) (’trivialize’ all endomor-
phisms of y) is representation-finite with two simples;

(2) q = 2, C(x, y) = { f1, f2 } and G acts trivially on C(x, y);
(3) |C(x, y)| = 1, i.e. both G and H act trivially on C(x, y).

Proof. The proof works in the same fashion as the proof in the last section. Therefore, we
will not provide many details here. First of all, if H acts trivially, one computes the quiver
of kC to be the union of

Q : ◦α 99
β // ◦

with |H|−1 isolated points. Hence, the representation type depends on Q and the relations
for which this quiver is representation-finite have been listed in the previous section.

If H does not act trivially we get more arrows from left to right in the quiver of kC. If
this are more than three, the universal cover contains the 4-subspace quiver as a relation-
free part, hence kC is representation-infinite. The remaining representation-finite cases are
easily seen to be conditions (2) and (3).
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Remark 3.41. In the case of EI-categories with only two simple representations the repre-
sentation type was really governed by the size of the group algebras. If the product of their
orders is big enough, only trivial actions yield finite type. In contrast to this, we could take
H to be arbitrarily big and still have that condition (2) from the proposition is satisfied.



4 The finitistic dimension of EI-category

algebras

The finitistic dimensions of a ring Λ provide a measure for the complexity of the module
category of Λ. They are defined as

fin. dim(Λ) = sup { proj.dimM |M ∈ mod(Λ),proj. dimM <∞} ,
Fin. dim(Λ) = sup { proj.dimM |M ∈ Mod(Λ),proj.dimM <∞} .

There are at least two canonical questions that arise in studying these invariants, namely:
Are these two dimensions finite for any ring Λ and do they coincide? For noetherian rings
both questions have to be answered in the negative, but for finite-dimensional algebras
there is no counterexample up to now. In 1960 Bass published the two questions for finite-
dimensional algebras as “problems” and they are nowadays known as the finitistic dimension
conjectures.

The little finitistic dimension, fin.dim, is known to be finite for certain classes of algebras,
for example for algebras with representation dimension at most 3, monomial algebras or
algebras with radical cube zero. One may consult [37] for a survey on this conjecture and
other homological conjectures (not including the result of Igusa and Todorov from [23]
concerning the relation of the representation dimension and the finitistic dimension).

In [26] Lück gave an explicit upper bound for the finitistic dimension of an EI-category
algebra. This result seems not to be well-known even among specialists and we will give a
new and fairly elementary proof of this result in the language of representation theory. To
be able to do this, we use results of Xu [33] on the structure of projective resolutions of
modules over EI-category algebras, which we will briefly recall and prove in the beginning
of this chapter.

The main theorem of this chapter is the following.

Theorem 4.1 (Lück, [26, Proposition 17.31] ). Let C be an EI-category and kC its associated
unital k-algebra. Then the global dimension of kC is finite if and only if |Aut(x)| is invertible
in k for any x ∈ Ob C and

Fin. dim(kC) ≤ `(C),

where `(C) is the maximal length of a chain of non-isomorphisms in C.

40
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For the proof we need some preparations. The following characterization of projective
resolutions of kC-modules is the main tool to compute the finitistic dimension of EI-category
algebras.

Lemma 4.2 (Xu, [33] Lemma 4.1.1). Let M be a kC-module and PM its projective cover.
Then PM is supported on CM and for any M -minimal object x the module P (x) is the
projective cover of M(x).

Proof. By the characterization of the indecomposable projective modules and by definition
of CM it is clear that the support of PM is contained in CM . Now let x be an M -minimal
object in C. The full subcategory C≤x is an ideal in C and its intersection with CM is just
x. Now by Proposition 2.18 the kAut(x)-module PM (x) is a projective module and admits
a surjection onto M(x). Thus, what remains to be shown is the minimality of PM (x). If
PM (x) would not be the projective cover of M(x), then by the universal property of the
projective cover, there would exist projective modules P1 and P2 such that PM = P1 ⊕ P2

with P1(x) being the projective cover of M(x) and P2(x) 6= 0 such that, if π : PM →M is
the defining essential epimorphism, then π↓CD sends P2(x) to zero. The module P2 has an
indecomposable projective direct summand P ′2. Now, since P ′2(x) = kAut(x) · e for some
primitive idempotent e ∈ kAut(x) and P ′2 = kC · e, it follows that π sends P ′2 to zero. This
is a contradiction to the minimality of PM .

This Lemma gives us the following description of the minimal projective resolution of a
kC-module M .

Corollary 4.3. Let M be a kC-module and PM a minimal projective resolution. Then PM
is supported on CM and for any M -minimal x ∈ Ob C we have that PM (x) is a minimal
projective resolution of M(x).

With these preparations we are now in the position to prove Theorem 4.1.

Proof of Theorem 4.1. Let M be a kC-module which is of finite projective dimension and
consider a minimal projective resolution

PM : 0→ Pn → Pn−1 → · · · → P1 → P0 →M → 0.

Then PM is supported on CM as we have seen above. Now let x be an M -minimal object in
C. By Corollary 4.3 PM (x) is a minimal projective resolution of M(x) as kAut(x)-module.
As a module over a group algebra of a finite group, the module M(x) is either projective or
of infinite projective dimension. The latter case is impossible since PM is a finite resolution.
This implies that P1(x) = 0 and P1 is supported on CM \ {M -minimal objects}. Applying
this argument inductively to any of the Pi, we get that n ≤ `(C) and hence the claim.

Finally we will present some examples to illustrate this result.
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Example 4.4. (1) Let C be an EI category with only one object. Then kC is the group
algebra of a finite group G. For this case it is well known that the finitistic dimension
is zero and `(C) equals zero as well.

(2) Suppose that C is the path category of a finite quiver without oriented cycles, then
kC is hereditary and therefore fin. dim(kC) = gl.dim(kC) ≤ 1. Thus, in this case the
given bound is not optimal.

(3) Let

C : Xg 77
f // Y 1Yff

be the EI-category given by the relations g2 = 1X and fg = f . Further, suppose that
k is a field of characteristic 2. Then the indecomposable projective representations of
C are exactly

PX : k2A 66
(1 1) // k (1)ee where A = ( 0 1

1 0 ) and

PY : 0(0) 99
(0) // k (1)ee .

Now it is clear that this algebra is of infinite global dimension since the group algebra
kAut(x) is not semisimple. Its finitistic dimension equals 1 since it is easy to see,
that the representation

M : k2A 66
(0) // 0 (0)ee with A = ( 0 1

1 0 )

has projective dimension 1 and there is no module with projective dimension greater
than one (if the projective dimension is finite) by our theorem.



5 The finitistic dimension of algebras with a

directed stratification

In this chapter we introduce the notion of a directed stratification for a finite-dimensional
algebra A. This definition is inspired by the study of EI-category algebras, where we have
already seen that the finitistic dimension is always finite. The proof of this finiteness of
fin. dim for EI-category algebras reduces the problem to the finitistic dimension of the group
algebras of the automorphism groups. This concept will be generalized to algebras with a
directed stratification in the second subsection, where we show that finiteness of the finitis-
tic dimension of such an algebra only depends on the finitistic dimensions of the strata. As
a matter of fact, our reduction technique is a corollary (using induction) of a much more
general theorem of Fossum, Griffith and Reiten in [14], which they obtained in the context
of trivial extensions of abelian categories. We will briefly present their result in the first
section of this chapter. Nevertheless, the approach we will present in terms of represen-
tations of a category which is associated to an algebra with a directed stratification gives
a very convenient combinatorial description of the projective resolutions of the modules.
Furthermore, our reduction technique will prove to be of broader applicability for the com-
putation of concrete examples. This reduction reduces the finitistic dimension conjecture
to the class of algebras, which are minimal in the sense that they do not admit a non-trivial
directed stratification. We will give a combinatorial description of these algebras in terms
of their Gabriel-quiver. Finally, in the last section, we relate our result to other known
results for the finitistic dimension, for example to results of Happel [20], Cline, Parshall
and Scott [9–11] and Huisgen-Zimmermann [36].

5.1 Trivial extensions of abelian categories and finitistic

dimension

As mentioned in the introduction of this chapter, Fossum, Griffith and Reiten developed
the theory of trivial extensions of abelian categories and derived remarkably beautiful and
general results on the finitistic dimension. Let us begin with the definition of trivial exten-
sions.

Definition 5.1. Let A be an abelian category and F : A → A an additive endofunctor of
A. We construct new additive categories F oA and An F as follows.

43
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The objects of AnF are morphisms α : FA→ A for some A ∈ ObA such that α◦Fα = 0.
Let α : FA → A and β : FB → B be objects in A n F , then a morphism γ : α → β is a
morphism γ : A→ B such that the following diagram commutes.

FA

α

��

Fγ // FB

β

��
A

γ // B

The composition in An F is just composition in A.
Similarly we define the category F o A with objects α : A → FA and morphisms defined
in an analogous way as for An F .

Example 5.2. (i) Suppose R is a ring and M an R-bimodule. The category A = ModR
is abelian and we have at least two natural functors associated with M , namely the
tensor product F = M ⊗R − and the internal Hom G = HomR(M,−). These two
functors give possibilities to define trivial extensions of R by M . One can also define
it to be the ring whose additive group is the direct sum R⊕M with multiplication

(r,m) · (r′,m′) = (rr′,mr′ + rm′).

Denote this ring by R n M (or M o R). One can show that G o A, A n F and
Mod(RnM) are isomorphic.

(ii) Suppose A and B are abelian categories and F : A → B an additive functor. The
category Map(FA,B) is the category whose objects are triples (A, f,B) where A ∈
ObA, B ∈ ObB and f : FA → B. The morphisms are pairs (α, β) of morphisms in
A× B such that the following diagram commutes.

FA

f

��

Fα // FA′

f ′

��
B

β // B′

The functor F induces a functor F̃ : A × B → A × B by F̃ (A,B) = (0, FA) and
F̃ (α, β) = (0, Fα) and the categories Map(FA,B) and (A× B) n F̃ are isomorphic.

In the case of the second example Fossum, Griffith and Reiten obtained the following
result.

Theorem 5.3 (Fossum, Griffith, Reiten, [14]). Let A and B be abelian categories with
enough projectives and F : A → B a right exact functor. Let M := Map(FA,B). Then the
following inequalities hold.

(1) Fin. dimB ≤ Fin. dimM≤ 1 + Fin.dimA+ Fin. dimB,
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(2) If F is exact, then Fin. dimM≥ Fin. dimA,
(3) max(gl. dimA, gl.dimB) ≤ gl.dimM≤ 1 + gl.dimA+ gl. dimB.

In particular, this result applies to the setting of triangular matrix algebras: Let R and
S be rings and M an R-S-bimodule. The associated triangular matrix algebra is defined
as Λ =

(
R 0
M S

)
. This is related to the trivial extensions and the result above, since here we

have Mod Λ ∼= Map(F ModR,ModS), where F = M ⊗R −. The corollary is the following.

Corollary 5.4. Let R,S,M and Λ be as above, M 6= 0. Then

(1) Fin. dimS ≤ Fin. dim Λ ≤ 1 + Fin.dimR+ Fin. dimS,
(2) If M is a flat R-module, then Fin.dim Λ ≥ Fin.dimR,
(3) max(gl. dimR, gl.dimS, proj.dimSM + 1) ≤ gl. dim Λ

and gl.dim Λ ≤ max(gl.dimR+ proj. dimSM + 1, gl. dimS).

Now, as another special case of this corollary, we get the following lemma.

Lemma 5.5 (Fossum, Griffith, Reiten [14] and Fuller, Saorin [15]). Let A be any ring and
e, f two non-zero idempotents in A with 1 = e+ f and eAf = 0. Then

max(gl. dim eAe, gl.dim fAf) ≤ gl. dimA ≤ gl.dim eAe+ gl. dim fAf + 1,

and the same inequalities hold for Fin. dim.

This result can be used inductively to obtain our result for algebras which admit what
we call a directed stratification. We will see in the following sections that our approach will
have the advantage that we gain new insight into the structure of the projective resolutions.

5.2 Basic notions and properties

In [11] Cline, Parshall and Scott introduced the notion of a stratifying ideal as well as the
notion of stratified and standardly stratified algebras. Since our class of algebras fits into
this framework we will recall their definitions.

Definition 5.6. An ideal J in an algebra A is called stratifying if the following conditions
are satisfied.

(i) J = AeA for some idempotent e ∈ A,

(ii) Multiplication induces an isomorphism Ae⊗eAe eA→̃J ,

(iii) ToreAen (Ae, eA) = 0 for all n > 0.

It was also observed by Cline, Parshall and Scott that an ideal J in A is stratifying if and
only if the derived functor i? : D+(A/J) → D+(A) induced by the exact inflation functor
i? : modA/J → modA is a full embedding.
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A stratification of A of length n is a chain

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A

of ideals with the property that Ji/Ji−1 is a stratifying ideal in A/Ji−1. The stratification
is called (left-)standard if Ji/Ji−1 is projective (as left A/Ji−1-module).

The class of algebras which we will define and deal with in this chapter somehow sits
between stratified algebras and standardly stratified algebras. We will make this precise in
Remark 5.10.

Definition 5.7. Let A be a finite-dimensional algebra over some field k. Then we say that
A has a directed stratification of length n if there exist pairwise orthogonal idempotents
e1, . . . , en in A with

∑n
i=1 ei = 1A such that eiAej = 0 for all i < j.

One should note that we do not require the idempotents to be primitive. It is clear that
every algebra admits a directed stratification of length 1 given by its identity element, but
in this case the theory we will develop will give us nothing new.

Example 5.8. (1) Let C be a finite and skeletal EI-category with n objects and A = kC
its category algebra. Then we have a partial order defined on the set of objects of
C which gives us a directed stratification of length n given by the idempotents 1Xi ,
where Xi, i = 1, . . . , n are the objects of C and the numbering respects the partial
order.

(2) Let Q be any finite quiver without oriented cycles and I any admissible ideal in kQ.
Then A = kQ/I admits a directed stratification of length |Q0| given by the primitive
idempotents εi with a suitable numbering.

We will see more examples in the last part of this chapter.

As a matter of fact, one can identify the module category of an algebra A with a directed
stratification given by e1, . . . , en with the category of representations of a certain category
A which we will define now.

Definition 5.9. Let A be as above. Then the associated category A is defined as follows.
The objects x1, . . . , xn of A are in bijective correspondence with the idempotents e1, . . . , en
that define our stratification and the morphisms xi → xj are in bijective correspondence
with a k-basis of ejAei. Under the assumption that A is a finite-dimensional algebra, the
category A is finite.

By means of this definition, A is the category algebra kA of A.

In this setting we have seen, that the categories repk(A) and modA are equivalent. For
this reason, we will switch frequently between the concepts of representations and modules
without any further explanation. For instance for an A-module M we write M(xi) for its
evaluation at the object xi as a functor.
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Remark 5.10. With the above characterization of A as the category algebra of A, we may
apply a result of Webb [32, Proposition 2.2] which almost immediately gives that any algebra
with a directed stratification is also stratified in the sense of Cline, Parshall and Scott. Pre-
cisely, if A has a directed stratification given by e1, . . . , en, then we take Ji = A(

∑n
l=n−i el)A.

These are indeed stratifying ideals by Webbs theorem and therefore give a stratification of
A of length n. Another result of Webb [32, Theorem 2.5] characterizes the standardly
stratified EI-category algebras to be exactly those, that are given by an EI category C in
which for every morphism α : x→ y the group StabAut(y)(α) = { θ ∈ Aut(y) | θα = α } has
order invertible in k. Therefore, we may for instance take the category algebra kC of the
following EI category

C : y1y 99
α // x

1x

��

h

ZZ , h2 = 1x, hα = α.

If k has characteristic 2, then the category algebra kC is not standardly stratified but it
clearly admits a directed stratification given by the idempotents 1x, 1y.

Hence, an algebra with a directed stratification is always stratified but in general not
standardly stratified. This is an interesting point since the finitistic dimension conjecture
is known to hold for standardly stratified algebras by work of Ágoston, Happel, Lukács and
Unger [1] while it is still open for stratified algebras.

We can describe the algebras A which do not admit a non-trivial directed stratification
(i.e. of length ≥ 2) in a very convenient way by conditions that should be rather easy to
check in concrete examples. This characterization is given by the following Proposition.

Proposition 5.11. Let A be a finite-dimensional k-algebra, where k is any field. Denote
by Q its Gabriel-quiver. Then A does admit a non-trivial directed stratification if and only
if there exist disjoint subsets Q′0 and Q′′0 of Q0 satisfying the following conditions.

(1) Q0 = Q′0 ∪Q′′0,
(2) For any i ∈ Q′0 and j ∈ Q′′0 there is no path from i to j in Q.

Proof. First assume that A admits a directed stratification. We may without loss of gen-
erality assume that it has length 2 and hence is given by two idempotents e and f with
eAf = 0. Denote by Γ the Gabriel-quiver of eAe and by Γ′ the Gabriel quiver of fAf .
Then we set Q′0 = Γ0 and Q′′0 = Γ′0. Since we have 1 = e+ f condition (1) is satisfied and
eAf = 0 implies the second condition.
For the converse implication assume that conditions (1) and (2) hold. Then put e =∑

i∈Q′0
ei and f = 1− e =

∑
j∈Q′′0

ej . By definition we have 1 = e+ f and eAf = 0 follows
from condition (2).
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Our main result in this chapter will then reduce the finitistic dimension conjecture to
exactly the class of algebras mentioned in the proposition above.

The following result describes the simple and the projective A-modules if A admits a
directed stratification. It is completely analogous to the one given by Lück in [26] for
EI-category algebras and would again also follow from work of Auslander in [4].

Proposition 5.12. Let A be an algebra with a directed stratification given by idempotents
e1, . . . , en. Then for every simple A-module S one has eiS 6= 0 for exactly one ei. In other
words as a representation S is supported on exactly one object Xi and S(Xi) is a simple
eiAei-module. Their projective covers (i.e. all the indecomposable projective A-modules) are
of the form Ae for some primitive idempotent e ∈ eiAei for some i ∈ { 1, . . . , n }.

Proof. The assertion on the indecomposable projective modules is obvious since 1 =
∑n

i=1 ei.
Then we decompose every ei and infer that the summands have to be in eiAei.

Let S be a simple A-module and choose ei with eiS 6= 0. Then consider the submodule U
of S generated by eiS. Since the idempotents e1, . . . , en define a directed stratification we
have ejU = 0 whenever j < i. Let N be the submodule of S generated by all the ejS with
j > i. Again, since A has a directed stratification, it follows that eiN = 0, which, together
with the fact that S is simple, implies that N = 0 and therefore ejS = 0 for every j 6= i. If
eiS would not be a simple eiAei-module, then S = eiS would have a non-trivial submodule
since it is itself an eiAei-module.

With this Proposition it is natural to use the same notation as for EI-category algebras
and denote the simple A-modules by Sx,V where x is an object of A and V a simple exAex-
module (here the idempotent ex corresponds to the object x) and to let Px,V denote the
projective cover of Sx,V .

The main tool to understand the structure of projective resolutions of modules over
algebras with a directed stratifications will be the use of restriction functors as introduced
in Chapter 2. We will use the same definitions as for EI-category algebras like ideals etc.
and see that the whole theory can be carried over with slightly more complicated proofs.
The following definition is completely analogous to the one for EI-categories.

Definition 5.13. Let A be an algebra with a directed stratification and let A be the
associated finite category.

(1) Let x be an object in A. Then we define A≤x to be the full subcategory of A consisting
of all objects y ∈ ObA with A(y, x) 6= ∅. Similarly we define A≥x.

(2) An ideal in A is a full subcategory B of A such that for any object x in B we have
that A≤x ⊆ B.

(3) Let M be an A-module. The M -minimal objects are the objects x ∈ ObA such that
M(x) 6= ∅ and for any y ∈ ObA with A(y, x) 6= ∅ one has M(y) = 0.
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(4) Let M again be an A-module. We put AM to be the full subcategory consisting of
all y ∈ ObA with A(x, y) 6= ∅ for some M -minimal object x in A.

Proposition 5.14. Let A be an algebra with a directed stratification, A the associated
category and B an ideal in A. Then the restriction ↓AB preserves projectives.

Proof. We construct an exact right adjoint F : repB → repA of the restriction functor in
the following way. For M∈ repB and any morphism f :M→N in repB let

FM(x) =

{
M(x) if x ∈ ObB,
0 otherwise,

F (f)x =

{
fx if x ∈ ObB,
0 otherwise.

This defines an exact functor. Now let M ∈ repA and N ∈ repB. Then we define a
morphism Ψ : HomrepB(M ↓AB ,N )→ HomrepA(M, FN ) via

Ψ(f)x =

{
fx for x ∈ ObB,
0 otherwise.

Thanks to B being an ideal, this gives a k-linear map which is easily seen to be an isomor-
phism. Therefore, we get that F is the desired exact right adjoint of the restriction.

5.3 Projective resolutions and the main result

In this section we will analyze the structure of projective resolutions for modules over
algebras with a directed stratification. It will turn out, that they can be described in the
same fashion as the ones for modules over EI-category algebras, only the proofs become a
little bit more involved.

Theorem 5.15. Let A be an algebra with a directed stratification and A the associated
category. Let M be an A-module and P = PM its projective cover. Then P is supported on
AM and for any M -minimal object x in A the module P (x) is a projective cover of M(x)
as an exAex-module.

Proof. (i) Clearly, we have P =
⊕

y,U Py,U for some objects y in A and simple eyAey-
modules U . What we have to show is that no y′ with y′ /∈ AM appears in that
direct sum. Let us assume the contrary and suppose that there is an object y′ with
A(y′, x) 6= 0 for an M -minimal object x that appears in the direct sum decomposition
of P . Then, for any x with A(y′, x) 6= 0 and any f ∈ A(y′, x) the following diagram
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has to commute
Py′,U ′(x) πx //M(x)

Py′,U ′(y′)

Py′,U′ (f)

OO

πy′ //M(y′) = 0,

OO
,

where π : P → M is the defining essential epimorphism. By the characterization
of the projective A-modules we have

∑
f ImPy′,U ′(f) = Py′,U ′(x), which gives that

πx = 0 (for any such x). This is a contradiction to the minimality of P and we have
proven the first assertion.

(ii) Since A≤x is an ideal and A≤x ∩ AM = {x}, it follows from Proposition 5.14 that
P (x) is projective. Thus, we only have to show that P (x) is the projective cover of
M(x).
Suppose P (x) would not be the projective cover of M(x). Then P (x) = Q′⊕Q′′ where
Q′, Q′′ are projective and Q′ is the projective cover of M(x), whereas πx(Q′′) = 0.
Since x is M -minimal, we have that Q′ = P ′(x) and Q′′ = P ′′(x) for some projective
A-modules P ′ and P ′′. Denote again by π the defining essential epimorphism P →M .
Now, using that P is supported on AM and a similar diagram as in the first part of
our proof, we get that π(P ′′) = 0 which contradicts the minimality of P .

Corollary 5.16. Let A be an algebra with a directed stratification and A the associated
category. Suppose that M is an A-module and P a minimal projective resolution of M .
Then for any M -minimal object x in A we have that P(x) is a minimal projective resolution
of M(x) as an exAex module.

With this characterization of projective resolutions of A-modules we get the following
theorem, which, roughly speaking, states that the finitistic dimension of an algebra with a
directed stratification is determined by the finitistic dimension of the strata.

Theorem 5.17. Let A be an algebra with a directed stratification and A the associated
category.

(1) A has finite finitistic dimension if and only if exAex has finite finitistic dimension for
any object x of A. In this case fin.dimA ≤

∑
x∈ObA fin. dim exAex + |ObA| − 1.

(2) A is of finite global dimension if and only if exAex is of finite global dimension for
any object x of A. In this case gl. dimA ≤

∑
x∈ObA gl.dim exAex + |ObA| − 1.

Proof. We only prove part (1). The proof of (2) is completely analogous.

Let e1, . . . , en be the idempotents, that give the directed stratification of A. First suppose
that the algebra eiAei has infinite finitistic dimension for some i = 1, . . . , n. Then there
exists an indecomposable eiAei-module N of projective dimension at least d for any natural
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number d ≥ 1. Let P be a minimal projective resolution ofN as an A-module. By definition,
the object x of A corresponding to ei is N -minimal. Hence, P(x) is a minimal projective
resolution of N as an eiAei-module, which therefore is of length at least d. Thus, we infer
that N regarded as an A-module has projective dimension at least d and A has infinite
finitistic dimension.

Now assume that for i = 1, . . . , n every eiAei has finite finitistic dimension and denote
by xi the object in A corresponding to ei. Let M be an A-module of finite projective
dimension. We consider a minimal projective resolution of M :

P : 0→ Pm → Pm−1 → · · · → P 1 → P 0 →M → 0.

The object x1 ∈ ObA is M -minimal for every A-module M . Therefore, P(x1) is a
minimal projective resolution of M(x1) as e1Ae1-module. Hence, P d(x1) = 0 for all
d > fin. dim e1Ae1. Denote by s the largest integer for which P s(x) 6= 0. Then, for
any d > s, the module P d is supported on ObA \ {x1} and the object x2 is N -minimal,
where N = ker(P s → P s−1). With the same argument as above we infer that P s+d(x2) = 0
for all d > fin. dim e2Ae2. Now the claimed inequality follows by induction.

The following corollary is equivalent to the theorem from above.

Corollary 5.18. Let A be a finite-dimensional k-algebra with a directed stratification of
length 2 given by idempotents e, f ∈ A (i.e. 1 = e + f and eAf = 0). Then the following
statements hold.

(1) A has finite finitistic dimension if and only if eAe and fAf have finite finitistic
dimension. In this case fin.dimA ≤ fin.dim eAe+ fin.dim fAf + 1 .

(2) A has finite global dimension if and only if eAe and fAf have finite global dimension.
In this case gl.dimA ≤ gl.dim eAe+ gl. dim fAf + 1.

Remark 5.19. (i) As we have seen in the first part of this chapter, Corollary 5.18 has
already been obtained by Fossum, Griffith and Reiten and it also implies our theorem
by using induction. Nevertheless, our proof is different and provides us with inter-
esting new information about the structure of projective resolutions of A-modules, if
A has a directed stratification. Furthermore we will see that the iterated version of
Corollary 5.18 can easily be applied in examples that have not been studied so far.

(ii) Another immediate corollary of the theorem is the following well-known fact: Let Q
be a finite quiver without oriented cycles and I any admissible ideal in kQ. Then
the algebra kQ/I has finite global dimension. The theorem applies to this setting
in the way that we take the natural directed stratification given by the primitive
idempotents εi in a suitable numbering. Then every stratum is just the ground field
k which has finite global dimension.

One interpretation of our result from above is to understand it as a technique to reduce
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the finitistic dimension conjecture to a smaller class of algebras, namely those that do
not admit a non-trivial directed stratification. These algebras have been characterized in
Proposition 5.11.

5.4 Relation to known results and examples

5.4.1 Relation to recollements

In [20] Happel developed a reduction technique for the finitistic dimension conjecture (and
other homological conjectures) using recollements of the bounded derived categories. To
explain the relation of this result to our situation we first recall the definition of a recolle-
ment.

Definition 5.20. Let C, C′ and C′′ be triangulated categories. Then a recollement of C
relative to C′ and C′′ is given by six exact functors

C′ i?=i! // C
i?oo

i!
oo

j?=j! // C′′,
j?

oo

j!oo

satisfying the following conditions.

(R1) (i?, i?), (i!, i!), (j!, j!) and (j?, j?) are adjoint pairs of exact functors,

(R2) j?i? = 0,

(R3) i?i? ∼= id, id ∼= i!i!, j
?j? ∼= id and id ∼= j!j!,

(R4) for any X ∈ C there exist triangles

j!j
!X → X → i?i

?X → j!j
!X[1]

i!i
!X → X → j?j

?X → i!i
!X[1].

With this concept of recollements Happel obtained the following result.

Theorem 5.21 (Happel, [20]). Let A be a finite-dimensional algebra and assume that
Db(A) has a recollement relative to Db(A′) and Db(A′′) for some finite-dimensional algebras
A′ and A′′. Then fin.dimA <∞ if and only if fin.dimA′ <∞ and fin.dimA′′ <∞.

The structure of this result is similar to that of Corollary 5.18. Therefore, it is a natural
question to ask if the two reduction techniques are equivalent. To see that this is not
the case we have to translate the setting of algebras with a directed stratification into the
language of triangulated categories. Clearly, the triangulated categories that will appear
are the (bounded) derived module categories of the algebra itself and the algebras eiAei.
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Let A be a finite-dimensional algebra with a directed stratification of length 2 given by
idempotents e and f with eAf = 0. Then J := AfA is a stratifying ideal of A. With
B = A/J it is clear that B ∼= eAe. Following [11], we have partial recollement diagrams

D+(eAe)
i? //

D+(A)
i!
oo

j? //
DD+(fAf)

j?
oo

D−(eAe)
i?
// D−(A)

i?oo

j?
// D−(fAf).

j!oo

If all the algebras involved have finite global dimension we get a full recollement of the
bounded derived categories. Cline, Parshall and Scott also proved that A has finite global
dimension if and only if both fAf and eAe have finite global dimension in this situation,
which is exactly the result we obtained with our characterization of the projective resolu-
tions of modules for A. The situation for the finitistic dimension is more complicated. The
following theorem provides a criterion for the above diagrams to become full recollement
diagrams for the bounded derived categories.

Theorem 5.22 (Cline, Parshall, Scott [9]). Let A be a ring, J an ideal in A and B = A/J .
The functor i! = i? : Db(B) → Db(A) has a right adjoint i! satisfying i!i! = idDb(B) if and
only if

(1) ExtnA(BA, F ) = 0 for all n > 0 and all free right B-modules F and
(2) proj. dimBA <∞.

We will now present an example of an algebra with a directed stratification in which
condition (b) is not satisfied. Consider the following EI category (and its category algebra
A = kC) in characteristic 2:

C : y

1y

��

g

XX
α // x

1x

��

h

ZZ , g2 = 1y, h2 = 1x, hα = α = αg.

In this example we choose f = 1x and e = 1y. The stratifying ideal is J = AfA =
〈1x, h, α〉k. Thus, the algebra eAe is just the group algebra kAut(y). As an A-module, or
as a representation of C, the A-module B is

k2

(1)

��

M

WW
0 // 0

0

��

0

YY, where M = ( 0 1
1 0 ).
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The projective cover P1 = PB of B as an A module is

k2

(1)

��

M

WW
0 // k

(1)

��

(1)

XX , again with M = ( 0 1
1 0 ).

The kernel K of the essential epimorphism P1 → B is the representation

0

(0)

��

(0)

YY
0 // k

(1)

��

(1)

XX

and we denote by P2 the projective module

0

(0)

��

(0)

YY
0 // k2

1

��

M

WW , with M = ( 0 1
1 0 ).

Finally, the minimal projective resolution of B as an A module looks as follows

· · · → P2 → P2 → P2 → P1 → B → 0.

In particular, the projective dimension of B as an A module is infinite. Therefore we do
not have a recollement of A relative to eAe and fAf , which means that we are not in the
position to apply Happels result. However, with our result on algebras with a directed
stratification it is obvious that A has finite finitistic dimension since the group algebras
kAut(x) = fAf and kAut(y) = eAe have this property.

5.4.2 A non-trivial example

To prove the finiteness of the finitistic dimension of an algebra A in concrete examples,
there are at the moment (to the best knowledge of the author) four important classes of
algebras where the finiteness of fin.dim is known. First of all for algebras with radical
cube zero and for monomial relation algebras Huisgen-Zimmermann showed that fin. dim is
always finite. Those classes are very easy to detect, if the algebra in question is given by its
quiver and relations. Igusa and Todorov proved that the finitistic dimension of an algebra
Λ is finite if Λ has representation dimension at most 3. Here the representation dimension
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of Λ is defined as

rep. dim Λ = inf { gl. dim End(M) |M is a generator cogenerator in mod Λ } .

This dimension is very hard to calculate in general and therefore this result is often difficult
to apply in concrete examples or it is at least not applicable without tedious calculations.
For instance, it is not known how to calculate (or give an upper bound) for the representation
dimension of a group algebra of an arbitrary finite group.

The fourth class of algebras where the finitistic dimension conjecture is known to hold true
is the class of algebras Λ for which the category P∞(mod Λ) of modules of finite projective
dimension is contravariantly finite in mod Λ. The notion of contravariant finiteness goes
back to Auslander and Smalø while the result for the finitistic dimension is due to Auslander
and Reiten. For the convenience of the reader we recall the definition here.

Definition 5.23. A full subcategory A of mod Λ is called contravariantly finite if each
module M in mod Λ has an A-approximation in the following sense: there exists a homo-
morphism f : A → M for some A ∈ A such that every g ∈ HomΛ(B,M) with B ∈ A
factors through f . This property may be illustrated by the following diagram.

A
f //M

B

g

OO

∃

ff

If the category P∞(mod Λ) is contravariantly finite in mod Λ, then Auslander and Reiten
proved that fin. dim Λ < ∞. The property of P∞ being contravariantly finite has been
investigated by Happel and Huisgen-Zimmermann in [21] and they observed that this prop-
erty is rather ’unstable’. They also give an elementary criterion for P∞(mod Λ) not being
contravariantly finite in mod Λ for a bound path algebra Λ = kQ/I. To state the theorem
we need the following notation. Let Λ = kQ/I be a bound path algebra and p : e1 → e2

some path in kQ. If M is a Λ-module we write fp : e1M → e2M for the linear map cor-
responding to p. With this convention the theorem of Happel and Huisgen-Zimmermann
goes as follows.

Theorem 5.24 ( [21]). Let Λ = kQ/I. Suppose that e1 and e2 are vertices of Q and
p, q ∈ kQ \ I paths from e1 to e2 with Λp ∩ Λq = 0. Moreover, suppose that

(1) the cyclic module Λ(p, q) generated by (p, q) ∈ Λ2 has finite projective dimension and
that one of the following conditions is satisfied: either

(2) whenever M ∈ P∞(mod Λ), then fp(e1M \ rad(Λ)M) ∩ fq(e1 rad(Λ)M) = ∅; or,
(2′) whenever M ∈ P∞(mod Λ), then Ker(fp) ⊆ Ker(fq) and Ker(fp) ⊆ e1 rad(Λ)M .

An easily recognizable situation in which the hypothesis of the criterion as well as both
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conditions are satisfied is the following one: p is an arrow e1 → e2, q ∈ kQ \ I a path
from e1 to e2 of positive length, different from p such that rad(Λ)p = 0 = q rad(Λ), and
proj. dim(Λq) <∞ whereas proj.dim(Λe2/ rad(Λ)e2) =∞.

After this definitions and preparations, we can now present an example to which none of
the above methods applies (perhaps besides calculation of rep.dim).

Example 5.25. Let Q be the following quiver:

3
δ2

��>>>>>>>

1
α //

β
// 2

γ

��

δ1
@@�������

ε1 ��>>>>>>> 5

ρ

qq

4
ε2

@@�������

Then let A = kQ/I where I is the ideal generated by{
γ2, γβ, ε1β, δ1β, ε1γ, δ1γ, ε2ε1 − δ2δ1, ρε2, ρδ2, ρ

5
}
.

A is by definition not monomial and does not satisfy rad3(A) = 0. Furthermore this algebra
doesn’t have the property that P∞(modA) is contravariantly finite in modA. To see this,
we put q = α and p = β. Then rad(A)p = 0 = q rad(A) and Aq = Aα = Ae2 is a
projective module. The module Ae2/ rad(A)e2 is of infinite projective dimension, since
it is (as a representation) non-zero only on the vertex 2 and as an e2Ae2-module it has
infinite projective dimension. Here we use that the idempotents e1, . . . , e5 give a directed
stratification of A and our results from the previous section.

The finiteness of fin. dim for A follows on the one hand very easily from the fact that
e1, . . . , e5 give a directed stratification of A and on the other hand by considering e =
e1 + · · · + e4 and f = e5. These two idempotents give a directed stratification of A of
length 2 and eAe as well as fAf have finite finitistic dimension, since they are monomial
relation algebras. Here we notice that the iterated version of the result of Fossum, Griffith
and Reiten, which we deduced with our methods, gives the finiteness of fin. dimA almost
immediately, while for a directed stratification of length two one has to be more careful and
use non-trivial results of other authors.

It is also interesting to point out that, for this example, there is no reasonable recollement-
situation in sight which would give us the finiteness of fin. dimA immediately. For instance,
if we take e and f as above, then the stratifying ideal is J = AfA and B := A/J = eAe. In
this case we don not get a recollement of Db(A) relative to Db(eAe) and Db(fAf) because
B as an A-module has the simple module Ae2/ rad(A)e2 as a summand and is therefore of
infinite projective dimension.

To sum up, we have constructed an example of an algebra A which is not monomial, does
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not satisfy rad3(A) = 0, does not have the property that P∞(modA) is contravariantly
finite in modA and does not give a recollement-situation which gives the finiteness of
fin. dim. Nevertheless, the finiteness of fin. dimA follows immediately from our theorem
because we have a directed stratification with strata that are of finite finitistic dimension.
What we have not done is to calculate the representation dimension of A in this example,
but in general the calculation of rep.dim is a very hard task. Here it is (at least for the
author) not obvious that A has representation dimension at most 3 and if it would be the
case, then one could imagine how one could construct arbitrarily complicated examples to
which our theorem applies and where one cannot calculate the representation dimension.



6 Outlook

In this final chapter we want to discuss some problems which we think are interesting for
further investigation and which we could not solve within this thesis. We also mention
techniques that might be used to attack the open problems.

The most interesting question that is still not answered is the following: What are the
representation-finite EI-category algebras?

We proved a necessary criterion for finite representation type, namely we showed that
if kC is representation-finite then, for any two objects x and y of C for which Aut(x) and
Aut(y) are non-trivial, the group Aut(x)×Aut(y) does not act freely on C(x, y). A sufficient
criterion for finite representation type, which may be applied to a large class of EI-category
algebras, is still missing. However, the computation of various examples and the results
for special classes of EI-categories that have been presented in this thesis lead us to the
following conjecture.

Conjecture 6.1. Let C be a finite EI-category and k an algebraically closed field such that
the group algebra kAut(x) is representation-finite for any object x of C and with |C(x, y)| ≤ 1
for any two distinct objects x and y of C. Then the category algebra kC is representation-
finite.

EI-category algebras which satisfy the conditions of this conjecture are the easiest EI-
categories which are not group algebras or incidence algebras.

For the group algebra of a finite group G it is well-known that the group algebra kG is
semisimple if and only if char(k) does not divide |G|. In other words, the representation
theory gets more complicated if the characteristic of the ground field divides the group order.
Therefore, it is natural to expect a similar behaviour for EI-category algebras. An evidence
for this expectation is the fact that an EI-category algebra has finite global dimension if
and only if the characteristic of the field does not divide any of |Aut(x)| for x ∈ Ob C.
Again, together with our experience from the examples we computed, one may conjecture
the following:

Conjecture 6.2. Let C be a finite EI-category and k an algebraically closed field whose
characteristic does not divide any of |Aut(x)| for x ∈ Ob C. If the algebra kC has infinite
representation type, then k′C has infinite representation type for any algebraically closed
field k′.

58
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Roughly speaking, this conjecture states that, if every group algebra kAut(x) for x ∈ Ob C
is semisimple, then we have the smallest number of indecomposable modules over kC.

Unfortunately, there are, up to now, only few techniques that one can apply to study
representations of EI-categories. Xu’s theory of vertices and sources looks promising for a
characterization of finite representation type at first sight. The problem is that one cannot
easily imitate the definition of a defect group for a finite EI-category, because there is no
analogue for the conjugation in a finite group. Nevertheless, it may be worth a try to work
in this direction to derive some interesting results. Another idea to use Xu’s results is to
drop the assumption that one always restricts to full subcategories of an EI-category. The
problem that arises here is that the computation of the induction is rather difficult if the
subcategory is not full.

For quivers with relations the construction of universal covers is often an easy way to de-
cide whether the given algebra is representation-finite or not. Covering theory as developed
by Bongartz and Gabriel works for arbitrary representation-finite algebras in principle, but
for the treatment of examples which are not given by quivers with relations it is often not
applicable. For instance, it is not known how one constructs the universal cover of a finite
group in general. It might therefore be interesting to develop a ’new’ covering theory for
EI-categories or more generally for small categories.

Finally, there is nothing known about the structure of the Auslander-Reiten quiver of an
EI-category algebra. Recently, several authors proved results on the shape of certain com-
ponents in the Auslander-Reiten quiver of a selfinjective algebra. Since the representation
theory of EI-categories is somehow related to selfinjective algebras one might expect similar
results in this framework.
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[15] K. R. Fuller and M. Saoŕın. On the finitistic dimension conjecture for Artinian rings.
Manuscripta Math., 74(2):117–132, 1992.

[16] P. Gabriel. The universal cover of a representation-finite algebra. In Representations of
algebras (Puebla, 1980), volume 903 of Lecture Notes in Math., pages 68–105. Springer,
Berlin, 1981.

[17] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New
York, 1967.

[18] Peter Gabriel. Unzerlegbare Darstellungen. I. Manuscripta Math., 6:71–103; correction,
ibid. 6 (1972), 309, 1972.

[19] Jesper Grodal and Jeffrey H. Smith. Algebraic models for finite G-spaces. Oberwolfach
report, 2006.

[20] Dieter Happel. Reduction techniques for homological conjectures. Tsukuba J. Math.,
17, 1993.

[21] Dieter Happel and Birge Huisgen-Zimmermann. Viewing finite-dimensional represen-
tations through infinite-dimensional ones. Pacific J. Math., 187(1):65–89, 1999.

[22] D. G. Higman. Indecomposable representations at characteristic p. Duke Math. J.,
21:377–381, 1954.

[23] Kiyoshi Igusa and Gordana Todorov. On the finitistic global dimension conjecture for
Artin algebras. In Representations of algebras and related topics, volume 45 of Fields
Inst. Commun., pages 201–204. Amer. Math. Soc., Providence, RI, 2005.

[24] F. Kasch, M. Kneser, and H. Kupisch. Unzerlegbare modulare Darstellungen endlicher
Gruppen mit zyklischer p-Sylow-Gruppe. Arch. Math. (Basel), 8:320–321, 1957.

[25] Michèle Loupias. Indecomposable representations of finite ordered sets. In Represen-
tations of algebras (Proc. Internat. Conf., Carleton Univ., Ottawa, Ont., 1974), pages
201–209. Lecture Notes in Math., Vol. 488. Springer, Berlin, 1975.

[26] Wolfgang Lück. Transformation groups and algebraic K-theory, volume 1408 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1989. Mathematica Gottingensis.

[27] Barry Mitchell. Rings with several objects. Advances in Math., 8:1–161, 1972.

[28] C. Riedtmann. Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment.
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