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Abstract

Mobile users often experience communication outage and lowdata rate. To effi-
ciently and economically cope with this problem,cooperative relayingis promis-
ing. It exploits wireless broadcasts, providing tremendous spatial diversitygains
in theory. Although these gains are consistently shown in theoretical work, their
experimental proof and a theoretical justification of the underlying modeling as-
sumptions are missing so far. In fact, it is not clear whethercooperative relaying
can reach the performance promised by theory even under realistic assumptions.
This leaves a large gap between theoretical and practical research on cooperative
relaying protocols – bridging this gap is the objective of this thesis.

We do so in three steps. First, we study systematically how realistic scenario
and system assumptions decrease the performance of ideal cooperative relaying
protocols. Focusing onselection relaying, we find that the performance of ideal
protocols substantially degrades when usual simplifications like perfectchannel
knowledge, error-freecontrol and feedback transmission, perfectnetwork connec-
tivity, unlimitedsystem complexity, or idealisticfadingstatistics are dropped. We
analyze the performance of selection relaying without these simplifications and
provide guidelines and theoretical tools to choose the mostbeneficial protocol.

Second, we develop new, practical techniques to maintain cooperative gains
even under realistic assumptions and in new scenarios. Moregeneral fading chan-
nels, erroneous control transmissions, and beneficially applying cooperative re-
laying for resource allocationrequire significant extensions of a cooperative sys-
tem. Our lightweight techniques can be readily integrated into many systems and
closely approach the high performance promised by theory.

Third, we implement a transceiver prototype forcooperativeWireless Local
Area Networks (WLANs). Extensive field measurements (e.g., using an actual
train to move the cooperating nodes) not only show the feasibility and high per-
formance of our solutions. Moreover, our lightweight integration into anIEEE
802.11gtransceiver and our measurement results are the missing experimental
proof that selection relaying protocols closely achieve the performance promised
by theory. Even with today’s wireless technology and in realmobile scenarios,
letting nodes cooperate is feasible, efficient, and ready for standardization.
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Zusammenfassung

Nutzer mobiler, drahtloser Netze müssen ḧaufig Verbindungsabbrüche und nied-
rige Datenraten in Kauf nehmen. Um dieses Problem effizient und ökonomisch
zu lösen, ist kooperatives Weiterleiten (sog.cooperative relaying) der Quellda-
ten mittels Zwischenknoten vielversprechend. Cooperativerelaying verspricht ho-
he Diversiẗatsgewinne, die in der theoretischen Literatur konsistentnachgewie-
sen wurden, jedoch experimentell bisher nicht belegt worden sind. Zudem man-
gelt es an Studien, welche die Praxisrelevanz der theoretischen Modellannahmen
überpr̈ufen. Daher ist es derzeit nicht klar, ob die theoretisch prognostizierten Ge-
winne von praktischen kooperativen Netzenüberhaupt erreicht werden können.
Es ist das Ziel dieser Dissertation, diese Lücke zu f̈ullen.

Dies erfolgt in drei Schritten. Zunächst wird systematisch analysiert, in welch-
em Maße praktische Annahmen die Leistung der bisher untersuchten Idealf̈alle
verringern. Die Analyse erfolgt für sog.selection relayingProtokolle, die nun
für realistisches Kanalwissen, fehlerhaften Austausch vonKontrolldaten, einge-
schr̈ankter Konnektiviẗat, begrenzter Systemkomplexität, sowie f̈ur realistischen
Kanalschwund (sog.fading) neu bewertet werden. Für jede dieser Annahmen wird
ein signifikanter Leistungsverlust festgestellt und es werden Maßnahmen disku-
tiert, um diesem Verlust entgegenzuwirken.

Im zweiten Schritt werden neue, praktische Verfahren entworfen, um trotz rea-
listischem Kanalschwund, begrenzter Komplexität, und fehlerhafter Kontrolldaten
hohe Gewinne zu erreichen. Zudem wird die Ressourcenzuteilung in drahtlosen
Mehrbenutzerszenarien als besonders vielversprechenderAnwendungsfall koope-
rativer Techniken untersucht. Die vorgestellten Verfahren erreichen nahezu die
theoretischen Gewinne idealer Protokolle und können ohne großen Aufwand in
viele drahtlose Systeme integriert werden.

Abschließend wird ein Prototyp für kooperativelokale Netze (sog.WLANs)
vorgestellt. Aufẅandige Feldversuche zeigen nicht nur die hohe Leistung und
Praktikabiliẗat des vorgestellten Systems sondern belegen erstmals die theoretisch
vorhergesagten Gewinne kooperativer Netze in echten Szenarien. Dies zeigt, dass
sich cooperative relaying bereits heute effizient in drahtlose Technologien inte-
grieren l̈asst und ist ein vielversprechender Anreiz für die Standardisierung.
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Chapter 1

Introduction

Users of wireless networks demand a high data rate and seamless connectivity
even in mobile scenarios. Fulfilling this need at reasonablecosts is a challenge for
research and development. In particular, technologies arerequired that maintain
connectivity at high data rate but without requiring more bandwidth or substantial
investments in infrastructure –cooperative relayingis one such technology.

Cooperative relaying achieves these benefits by joining two fundamental con-
cepts of wireless communication:multi-antenna communicationand relaying.
Relaying uses intermediate nodes (briefly calledrelays) to retransmit the source’s
information towards the destination and, thereby, splits the overall distance into
multiple hops. Compared to a directly transmitting source, each transmitter has
to invest less power to reach the next hop. This saves transmit energy and allows
to precisely focus the signal power to places where it is needed. For instance, in
densely-connectedad hocnetworks, relays focus the radio signal along a multi-
hop path which limits the interference to neighboring paths. Consequently, more
parallel paths in the network can be established which increases the overall net-
work capacity [GK00].

In infrastructure-basedcellular networksor in Wireless Metropolitan Area
Networks (WMANs), relays can help a base station to cover “blind spots” without
significantly increasing the interference to neighboring cells [SPG+03, VLK +09].
The fact that conventional user nodes can act as relays (ad hoc networks) or that
dedicated relay nodes are significantly simpler than full base stations (infrastruc-
ture-based networks) makes relaying also cost-efficient [THN08]. All these ben-
efits have lead to the standardization of various relaying techniques in ad hoc
networks [IEE99] and in infrastructure-based networks [IEE09a].

Cooperativerelaying can be seen as an extension of conventional relaying
that is inspired by multi-antenna communication. By overhearing the original
broadcast of the source, the destination can combine the original and the relayed
signal. Due to the spatial separation of the transmit antennas it is likely that both

1
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Prototypes

− Ideal/general system

− Protocol concept
− Performance order

− Protocol implementation
− Real/specific scenario
− Real/specific system

− Exact performance

Analysis

This thesis

− Idealistic/general scenario

Figure 1.1: Main objective of this thesis: Bridging the gap between analysis and
prototyping cooperative relaying protocols.

received signals were affected by statistically independent channels. In this case,
combiningthese signals provides high so-calledspatial diversitygains that protect
the overall transmission from rapid channel fluctuations (so-calledfading).

Spatial diversity reached by cooperative relaying is oftencalledcooperation
diversityand was first described in [SEA98]. Based on this fundamental concept,
developing and studying cooperative relaying protocols has become a lively field
of research. During the recent years many authors applied analytical methods
(usually classic information theory or Bit Error Rate (BER) analysis) but also
early prototypes and measurement results were presented.

Naturally, prototyping and analysis have their individualstrengths and limi-
tations. Figure1.1 summarizes these differences. Analysis allows to assess the
performance order (and sometimes even to derive the performance bounds) of a
cooperation protocol. Thereby, analysis is a strong fundament and valuable guid-
ance for designing fundamental concepts for cooperative relaying but it is limited
by its idealistic assumptions. In particular, many analytical papers on cooperative
relaying assume ideal coding, unlimited system complexity, ideal system accu-
racy, ideal channel knowledge, and ideal channel statistics. Due to these idealistic
assumptions, protocol engineers have to take a large step from (1) designing and
analyzing a theoretical protocol concept to (2) transforming this design into a
practical protocol that approaches the theoretical performance at reasonable com-
plexity and overhead.

This large gap between theoretical and practical research on cooperative relay-
ing protocols is highlighted by the fact that, so far, none ofthe previous prototyp-
ing attempts could reproduce the cooperation diversity gains (or at least the order
of magnitude) promised by theory [BL06b, KNBP06, LTN+07, ZJZ09, KKEP09].
Thus, we have to expect that the current theoretical performance results for coop-
erative relaying protocols are not robust topractical constraintsthat are imposed
by real systems and real scenarios. So far, the performance degradation due to
such practical constraints was not consistently studied inprevious work.
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Objectives and scope It is the objective of this thesis to bridge the gap between
the theoretical analysis and practical implementation of cooperative relaying pro-
tocols. In particular, we aim to:

1. Show how cooperative relaying protocols perform under realistic scenario
and system assumptions.

2. Develop new, practical techniques to maintain cooperative gains in realistic
scenarios and to obtain benefits in new scenarios.

3. Demonstrate the feasibility and high performance of cooperative relaying in
reality by implementing a prototype and by field measurements.

We start with the general models and idealistic assumptionscommonly used in
analytical papers on cooperative relaying. Then, to achieve each of our three ob-
jectives, we gradually increase the “level of reality” by adding more and more
practical constraints. This is done until our prototype is implemented and mea-
sured in real scenarios.

Adding more and more practical constraints, naturally, limits the scope of our
studies. While the results of our theoretical studies and most of the proposed
techniques can be applied to a variety of systems, implementing a prototype re-
quires to focus on a particular technology. We integrate cooperative relaying into
aWireless Local Area Network (WLAN) transceiver that follows the IEEE 802.11g
standard [IEE03]. This technology is widely employed, a foundation of upcoming
wireless systems (e.g., IEEE 802.11n, IEEE 802.16e [Per08, IEE05]), and well-
understood for direct transmission. In terms of cooperation protocols, we focus
on the general approach ofselection relayingwhere the relay avoids error propa-
gation by deciding not to forward incorrect packets [LWT01]. Selection relaying
is the basis of many practical cooperation protocols such asSelection Decode-
and-Forward (SDF), Coded Cooperation (CC), and Opportunistic Relaying (OR)
[LWT04, HN02, BSW07]. Therefore, studying selection relaying and, in particu-
lar, the forwarding decision of the relay is highly relevantfor applying cooperative
relaying protocols.

Contributions to state of the art The first contribution in this thesis is the joint
analysis ofPath allocation-based Selection Relaying (PSR) andCombining-based
Selection Relaying (CSR) protocols. While previous work has studied these selec-
tion relaying protocols separately [LWT04, BSW07], we unify their analysis as-
suming ideal channel knowledge. Based on these idealistic assumptions we derive
two new approximations for theoutage capacity(i.e., the maximum transmission
rate at a required error rate) which are valid for any networktopology, match
simulation results closely, and clearly show how the required error rate and the
employed links degrade the capacity of an ideal multi-antenna system.
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These outage capacity approximations enable us to study ourfirst practical
constraints:limited channel knowledgeand limited network connectivity. Both
constraints were not studied by previous work. Limited channel knowledge sig-
nificantly degrades the outage capacity forPSRprotocols but not forCSR; for
limited network connectivity the situation reverses. Thereby each of these selec-
tion relaying protocols performs best in different settings. We provide lookup
tables to choose between these protocols according to the SNR region and error
rate. Further selection relaying protocols or scenarios can be analyzed with the
presented methods; they are easy to use and general.

The third practical constraint that we focus on is the statistical model of the
time-selective fading channel. So far, the research community focused on so-
calledblock fadingchannels to analyze cooperative relaying protocols. By assum-
ing the channel states to be uncorrelated but static per packet time, this model rep-
resents the ideal case for selection relaying. By taking thesecond order statistics
(i.e., the autocorrelation) of the fading process into account, we study selection
relaying protocols in a more general fading scenario. Our analysis points out that
selection relaying protocols perform poorly when fades occur during the packet
time. By not deciding frequently “enough”, the relay ignoresa significant amount
of correctly received symbols and performance drops. Our so-calledPartial For-
warding (PF) approach generalizes selection relaying from an optimization in the
value domain (find SNR threshold to decide if a packet is correct) to an optimiza-
tion in the valueand time domain (find SNR thresholdandblock length to decide
if a block is correct). We describe a practical system that employs soft output
decoding[BCJR74] for a frequent forwarding decision, imposes only low calcu-
lation complexity, and reaches a performance close to the theoretical ideal case
even with autocorrelated fading.

Our fourth contribution demonstrates two beneficial applications of selection
relaying in systems with resource allocation. First, we proposeTraffic-Aware Co-
operation Diversity (TACD) – an extension of selection relaying to provide higher
diversity gains to more relevant parts of a video stream. This extension substan-
tially improves the video quality of a cooperative transmission and can be im-
plemented without communication overhead. Our second scheme is calledCo-
operative Feedback (CFB) and strengthens the feedback channels ofMultiuser
Diversity (MUD) systems by cooperation. Thereby,CFBavoids scheduling errors
and improves the error rate and sum capacity ofMUD systems. TACD and CFB
are simple, can be applied in various systems, and provide tremendous gains if
combined with resource allocation.

To demonstrate a further beneficial application of selection relaying we im-
plement a transceiver prototype forcooperativeWLANs. This requires several
contributions. Since previousMedium Access Control (MAC) protocols for co-
operative relaying [LTN+07, TWT08, SZW09] perform poorly witherroneous
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control frames, we develop theCooperative Signaling (CSIG) protocol that effi-
ciently copes with this practical constraint. Further, we study a combining scheme
that reaches a performance close to the ideal scheme but substantially simplifies
the transceiver design. Our design of a cooperative IEEE 802.11g transceiver is
lightweight, transparent, and includes standard IEEE 802.11g operation as legacy
mode. Implementing this design results in a WLAN transceiverthat performs
selection relaying at the high transmission rates of IEEE 802.11g. Until now,
such high rates are not reached by any other prototype for cooperative networks
[BL06b, KNBP06, LTN+07, ZJZ09, KKEP09]. Based on several prototypes we
establish a cooperative WLAN in an indoor and vehicular scenario (using a train
to move the cooperating nodes) and perform extensive field measurements. Our
measurement results not only demonstrate the feasibility and high performance
of our cooperative IEEE 802.11g extensions but also that selection relaying is a
promising approach for future WLAN generations.

Thesis organization Chapter2 introduces the basic terminology, quantities,
channel models, and assumptions that are used throughout this thesis. Note that
in the remaining chapters related work is discussed when needed.

In Chapter3, we start with the basic principles of cooperation diversity. We
classify the cooperative relaying protocols from literature into Path allocation-
based Selection Relaying (PSR) and Combining-based Selection Relaying (CSR)
and jointly analyze both protocol classes under idealisticassumptions. Account-
ing for the practical constraints, we study how the performance of these protocols
degrades with limited channel knowledge and limited network connectivity.

In Chapter4 we validate the performance of selection relaying for autocor-
related fading channels. We propose Partial Forwarding (PF) and analyze this
approach under idealistic assumptions. The closed-form results are summarized
in AppendixA. Then, we integratePF into IEEE 802.11 and study the resulting
practical system by simulation.

Chapter5 applies selection relaying to resource allocation. As efficient ex-
amples,TACD andCFB are proposed. We describe both cooperation schemes in
detail, studyTACD in terms of outage probability and video quality, and analyze
the outage probability and sum capacity ofCFB in a multiuser system.

Chapter6 details our development of the cooperativeWLAN prototype. In
particular, a simplified combing scheme is studied, the cooperative CSIG protocol
and a cooperative IEEE 802.11g transceiver are specified, and the results of our
field measurements are presented. Details on the experimental setup, studies of
the scenarios, and an overview of the testbed are provided inAppendix B. In
Chapter7 this thesis is concluded and promising future research is summarized.
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Chapter 2

Fading and diversity

This chapter introduces the basic terminology, models, andassumptions in this
work. First, fundamental models and performance metrics for fading channels are
described. Then, we focus on diversity as an approach to copewith fading and
describe conventional diversity modes on which cooperative relaying is based.
Finally, we summarize the main system assumptions and resource constraints.

2.1 Fading channels

With multipath propagation, multiple reflected signals interfere at the receiver
antenna. This superposition causes rapid fluctuations of the received signal at a
small time scale – an effect calledsmall scale fadingor, briefly,fading.

In this thesis we focus on multipath propagation environments with mobility
where fading is frequency-flat but time-selective.Frequency-flat fadingcorre-
sponds to scenarios where (1) the delay spread – measuring the difference be-
tween the path echos – is much smaller than the symbol time or (2) when tech-
niques are used to flatten the spectrum of the received signal, e.g., Orthogonal
Frequency Division Multiplexing (OFDM) and/or power allocation (Section5.2).
Time-selective fadingresults from mobility in a multipath propagation environ-
ment, which (1) changes the position of the receiver antennaand, thus, the super-
position of the path signals and (2) induces a frequency shift of the received signal
due to the Doppler effect.

2.1.1 Basic channel model and terminology

To describe the employed channel model, let us focus ondirect transmission.
Figure2.1 illustrates this basic scenario. Here, nodei transmits signalxi via a
wireless channel in order to establish the unidirectionallink (i, j) to nodej.

7
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x ji i,j(i,j)
yi

Figure 2.1: Direct transmission from nodei to node j via a wireless channel to
establish the unidirectional link(i, j).

Baseband model and noise The signal vectoryi, j received at nodej is given by
the classic discrete baseband channel model as

yi, j = hi, jxi +ni, j (2.1)

where all variables are time-discrete complex amplitudes and specific to an ar-
bitrary link (i, j). The signal vectorxi is transmitted at anaverage transmis-
sion powerof PWatts using asignal bandwidthof W Hz. At the receiverj,
the noise vectorni, j adds toxi. With the standard Additive White Gaussian
Noise (AWGN) model,ni, j is a zero-mean, circularly symmetric, complex ran-
dom sequence where the real and imaginary components are independently iden-
tically distributed (i.i.d.) Gaussians with varianceN0/2. N0 is the Power Spectral
Density (PSD) of the received, band-passed noise andN0/2 is thePSD of the
white Gaussian noise [Pro00, (4.1-56)].

Channel gain and path loss Thechannel coefficient hi, j models the multiplica-
tive effect of both path loss and fading. Fading causes a random variation of the
channel coefficient, which is detailed below. In power, the magnitude of this ran-
dom variable is given by thechannel gain|hi, j |2 with meanΓi, j .1 We assume
that themean channel gainΓi, j is only given by the distance-dependent path loss.
Hence, we define

Γi, j = E{|hi, j |2} :=

(
Di, j

D0

)−α
(2.2)

using the common power law model for path loss [Rap02, (4.67)] where the dis-
tanceDi, j between the nodesi and j is normalized by a reference distanceD0.
The path loss exponentα depends on the propagation scenario and is typically
between 2 and 5.

SNRs Throughout this thesis several expressions for theSignal-to-Noise Ratio
(SNR) are used. As common in theoretical studies [LWT04, Her05, AT07], we
account for noise and average transmission power by areference SNR

Γ :=
P

N0W
(2.3)

1In the literature,Γi, j is also referred to asσ2
i, j .
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and express channel-related effects as scaling factors to this reference. While this
example is given for a single system-wide transmission power P, we will similarly
define other reference SNRs for different transmission powers. With reference
(2.3), themeanSNRreceived atj is

γ̄i, j = Γi, jΓ (2.4)

whereΓi, j is used as a scaling factor to incorporate path loss. Theinstantaneous
SNRat j is then

γi, j = |hi, j |2Γ (2.5)

where path loss is captured by the the mean of|hi, j |2 and its random variation
captures fading that nodej experiences per discrete time interval. Let us take a
closer look on the fading assumptions and models.

2.1.2 Fading models

Two basic models for time-selective fading are common in theliterature and also
used in this thesis. The first, so-calledi.i.d. Rayleigh fading modelaccounts forun-
correlated fadingwhere all channel coefficientsh are i.i.d. random variables. The
second, so-calledClarke’s modelcapturesautocorrelated fadingand is a more-
complex generalization of the first model. We will now discuss both models in
detail.

Modeling uncorrelated fading

The i.i.d. Rayleigh fading model is widely employed, e.g., [LWT04, Her05, AT07]
and extensively described in the literature, e.g., [TV05, Section 2.4.2], [SA04,
Section 2.2.1]. Let us focus on the basic properties and implications of this model.

Probability Density Function (PDF) This model uses an uncorrelated complex
Gaussian process to capture the effect of fading on the amplitude and phase ofyi, j .
In particular, the channel coefficienthi, j is a random sequence with i.i.d. Gaussian
real and imaginary components, zero mean, and a varianceΓi, j . Such a complex
random variable is calledcircularly symmetric complex Gaussianand denoted by
hi, j ∼ CN(0,Γi, j). The magnitudes|hi, j | are i.i.d. Rayleigh distributed and the
channel gains|hi, j |2 follow an exponential distribution where meanΓi, j accounts
for path loss as described above. With (2.5), this leads to i.i.d. instantaneous SNRs
with thePDF

pγi, j (γi, j) =
1

γ̄i, j
exp

(

−γi, j

γ̄i, j

)

(2.6)

around the mean SNR̄γi, j .
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Figure 2.2: Channel gain|h|2 vs. time with the block fading model and block time
Tb = 2 ms.

Block fading channels This channel type is a common implementation of the
above i.i.d. fading model. An exemplary channel gain is illustrated in Figure
2.2. For each discrete time interval, a single fading coefficient is independently
generated and is assumed to hold until the next interval begins. Each interval is
called afading blockand we denote its duration by thefading block time Tb.

This discrete model is based on the assumption thatTb is equal to theco-
herence time Tc, i.e., the time over which the channel gain stays approximately
constant. Beside assumingTb = Tc, each fading block is seen as an independent
coherence period. We will see in Section2.1.3how both assumptions depend on
the channel’s autocorrelation and when block fading can be reasonably applied.

Model premises Modeling fading as a Gaussian process relies on a large num-
ber of independently reflected signals. This requires a scenario with many small
reflectors and no dominating signal paths. Consequently, thei.i.d. Rayleigh fading
model is usually employed for Non-Line Of Sight (NLOS) situations in urban and
indoor scenarios [TV05, Section 2.4.2].

The i.i.d. property implies that the modeled fading channels are (1) non-reci-
procal, i.e.,hi, j 6= h j,i, (2) independent in space, and (3) independent in time. Each
of these properties is highly relevant for the following chapters.

First, without reciprocal channels, the transmitter cannot observe the channel
state of link(i, j) from the received signaly j,i (e.g., from a packet readily received
with bidirectional communication). If the transmitter wants to adapt to link(i, j),
some form of explicitChannel State Information (CSI) feedbackfrom receiverj
to i is required. As feedback imposes signaling overhead, errors, and delay, it is an
important criterion to classify and analyze cooperation protocols (Chapter3) and
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allows significant performance gains with improved feedback strategies (Section
5.2).

Second, throughout this thesis we will assume spatially independent fading
channels. This is justified by the fact that the separation distance between cooper-
ating nodes is typically much larger than the coherence distance [PNG03, Section
2.2.2]. This significant benefit of cooperative relaying above multiple antenna
systems (where multiple antennas have to be packed on a single device) is further
discussed in Section3.1.1.

Third, by neglecting autocorrelation, the i.i.d. Rayleigh fading model does not
describe how the channel gain varies in time. This neglects the Doppler effect and,
as we will discuss in Section2.1.3, limits the application of this model to specific
mobility cases. Let us now describe a more general model for autocorrelated
fading which accounts for the Doppler effect as well.

Modeling autocorrelated fading

So far, we modeled fading only by first-order statistics, i.e., thePDF, of the Gaus-
sian process. We can generalize this model by using the fact that a Gaussian
process can be completely characterized by its second-order statistics, namely, its
Autocorrelation Function (ACF) [Ros96, Chapter 8]. The resulting model keeps
the abovePDFs of Rayleigh fading but additionally expresses autocorrelation due
to the Doppler shift. In the literature, this basic model forautocorrelated fad-
ing is known asClarke’s model[TV05, Section 2.4.3],Jakes-like model[Cav00,
Section 5], orland mobile model[SA04, Section 2.1.2]. We describe its basic
properties only briefly and focus on the underlying assumptions that are relevant
for this work.

Doppler frequency/shift/spread A general autocorrelated fading model accoun-
ts for each individual reflected path. In this case the channel coefficienth depends
on the Doppler shift∆ f = fd cosτ of each reflected path whereτ is the angle of
arrival of a path with respect to the direction of motion. TheDoppler frequency
is calculated byfd = fcv/c with carrier frequencyfc, speed of lightc, and the
relative velocityv between transmitter and receiver. The quantityfd also denotes
themaximum Doppler shiftwhen the reflected path comes directly from the direc-
tion of motion (or− fd if directly from behind). Hence, the Doppler effect shifts
the carrier frequency in∆ f ∈ [− fd, fd] and theDoppler spread2 fd denotes the
maximum range of this shift.

Autocorrelation Function (ACF) Clarke’s model now simplifies the general
autocorrelated fading model by placing many reflectors on a ring around the om-
nidirectional receive antenna. This isotropic scenario results in equal amplitudes
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Figure 2.3: Effect of the Doppler frequencyfd (rows) on the channel gain|h|2 vs.
time (left column) and on the ACF (2.7) vs. lag time (right column). Shown for a
vertical grid of 2 ms.

and uniformly distributed phase shifts across all anglesτ (cp. [Cav00, Section
5.1] for a detailed derivation). In this case, the Central Limit Theorem allows to
model the contribution of all individual paths as Gaussian process. The lag-time
dependentACF is then given by

R0 = Γi, j ·J0(2π fdτ) (2.7)

using the mean channel gainΓi, j as a scaling factor to the zeroth-order Bessel
function of the first kind

J0(x) :=
1
π

∫ π

0
exp(ιxcosτ)dτ (2.8)

with the imaginary unitι . Transforming (2.7) to the frequency domain provides
theDoppler spectrumas the well-known U-shapedPSD(“bathtub curve”) as in-
troduced by Jakes in [Jak62, Chapter 1].

In (2.7), Γi, j accounts for the magnitude of the channel gain (i.e., path loss)
while the temporal stability of the fading process is definedby the Doppler fre-
quencyfd. The effect of this parameter on the channel gain and onR0 is illustrated
in Figure2.3. For increasingfd the channel gain decorrelates in time and theACF
narrows until the characteristic form of J0 is clearly shown. Thus, a largefd ac-
counts for scenarios with high speed where the channel gain changes frequently.
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c found at threshold 0.05R0(0) andTc approximated by (2.9).

Model premises As stated above, Clarke’s model is based on an isotropic an-
tenna gain pattern with a circular placement of many scatterers. This leads to a
Gaussian process which, again, provides Rayleigh distributed magnitudes|hi, j |
and exponentially distributed channel gains|hi, j |2 with meanΓi, j for an NLOS
situation. However, unlike in the above i.i.d. Rayleigh fading model, the channel
gains are now correlated in time. Clarke’s model is very popular for mobile urban
and indoor scenarios [TV05, Section 2.4.3] and is often used as a reference even
if more accurate channel models for specific vehicular scenarios and frequencies
ranges are employed [AMI07, HKK+07].

Unlike block fading, the autocorrelated fading model accounts for the fact that
a fading channel can change at any time. Even after a long stable period, an instant
deep fade can occur (e.g., Figure2.3, fd = 350 Hz). To this end, autocorrelated
fading has to be studied at significantly smaller time scalesthan block fading
channels.

2.1.3 Coherence time: Slow versus fast fading

Definition and approximation As stated above, thecoherence time Tc is the
time over which the channel gain stays approximately constant. More formally,
the coherence time is often defined as theminimal lag time T′c until theACF R0 de-
cays below a given threshold [TV05, Section 2.4.3]. We illustrate this relationship
between the coherence time andR0 in Figure2.4 using 5 % of the ACF’s initial
value as a threshold. With this common threshold, we findT ′

c as the smallest lag
time such thatR0(T ′

c) = 0.05R0(0). However, significant correlation is still found
for lag times larger thanT ′

c due to the slowly decreasing envelope of the Bessel
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function. Hence, the time over which the channel gain decorrelates is typically
much larger thanT ′

c making the coherence time only a very rough estimate for
decorrelation [Cav00, Section 5.1].

Moreover, it depends on the scenario (and is to some extent subjective) below
which level one can ignore autocorrelation. Although the above 5 % threshold is
often used [TV05, (2.61)], various other approximations of the coherence time
are given in literature. All of them are reciprocal to the Doppler frequency which
scalesR0 on the time axis (cp. Figure2.3) but differ in an empirical factor. In this
work, we use

Tc ≈
1

8 fd
(2.9)

[TV05, (2.44)]. Depending onfd, this approximation is three to four times smaller
than the aboveT ′

c (cp. Figure2.4) and, thus, serves well as a pessimistic estimate
of the coherence time. Other approximations ofTc in standard literature are either
between (2.9) andT ′

c [Rap02, (5.40.b)] or even larger thanT ′
c [Cav00, (5.1.17)].

Slow versus fast fading The coherence time is often used to distinguish be-
tweenslow fadingandfast fadingchannels but there is little consensus on these
terms. In this thesis we will use a terminology similar to [TV05, Section 2.3.1].
We call a fading channelfastwhenTc is much shorter than the packet timeTp and
slowwhenTc is longer thanTp.

Choosing the fading model In principle, the ACF (2.7) sufficiently character-
izes Rayleigh fading for any value ofTc andTp. However, slow and fast fading
represent asymptotic cases for which autocorrelation is often neglected.

For a fast fading channel, i.e.,Tc ≪ Tp, each packet (usually a single code-
word) spans a very large number of coherence times. Such a decorrelated situ-
ation occurs when the mobility is high (i.e., highfd, low Tc) with respect to the
packet time and allows to assume i.i.d. channel gains among the blocks [TV05,
Section 5.4.5]. Figure2.3 ( fd = 2.4 MHz) illustrates such rapid fluctuations with
respect to a typical packet time ofTp = 2 ms (marked by the vertical grid lines in
the figure).

If fading is slow, i.e.,Tc ≫ Tp, the channel can be considered static over the
packet time and deep fades occur only occasionally. This quasi-static situation
is found when the mobility is low (i.e., very lowfd, high Tc) with respect to
Tp. An example is illustrated in Figure2.3 ( fd = 17.34 Hz). Although for this
continuous observation the channel gain is strongly correlated in time, many stud-
ies assume that the channel coefficients of consecutive blocks are uncorrelated
[LWT04, AT07, BSW07, OAF+08]. This assumption can be justified when a
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long time is spent between channel uses or when the channel gain is decorrelated
by other methods (e.g., interleaving or coding over many packet times).

To sum up: By focusing on the extreme cases of slow and fast fading, many
studies ignore the second order statistics (i.e.,ACF) of the fading process and
model only itsPDF. In this case the simple block fading model is used.

We will frequently use block fading in the following chapters but also justify
our results for autocorrelated fading when needed. We do so in Chapter4 and
Section6.2 where we focus on theTc ≈ Tp case. In such intermediate situation
neither the fast nor the slow fading assumption clearly holds. Figure2.3 ( fd =
350 Hz) shows an example.

2.1.4 Performance metrics

In this thesis we use the following performance metrics.

Outage probability The outage probability provides an information-theoretic
measure of error rate for fading channels. A transmission isin outage, if the
instantaneousSNRat the receiverγ falls below a specifiedSNRthresholdγ̂. We
can compute the probability of thisoutage event– the so-calledoutage probability
Pout – as the Cumulative Distribution Function (CDF) of γ evaluated atγ = γ̂. With
thePDFof γ, we can write this general definition as

Pout :=
∫ γ̂

0
pγ(γ)dγ (2.10)

giving the outage probability for arbitrary links and fading channels.
This metric can be easily illustrated for direct transmission and block fading

by treating each block as anAWGN channel [TV05, Section 5.4.1]. The capacity
of this channel – formally the maximum mutual information between input and
output of the band-limited AWGN channel – is well known asShannonor AWGN
capacity[Sha49]. For an arbitrary fading block of the direct link(i, j), the AWGN
capacity isC(γi, j) = log2(1+γi, j)bits/s/Hz and only depends on the instantaneous
SNRγi, j .

Assuming that the transmitter selects a data rate ofRtx bits/s (given by the
spectral efficiency R:= Rtx/W in bits/s/Hz), at least an SNR of

log2(1+ γ̂) = R⇔ γ̂ = 2R−1

is required to communicate reliably over such block. Otherwise an outage occurs
and – as a direct consequence of the Shannon-Hartley theorem– no code can lead
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to an arbitrary small error rate. Consequently, the outage probability of direct
transmission with block fading is

Pout
DIR = P{γi, j < γ̂}= P{C(γi, j)< R}

and depends onγi, j and on the specifiedR. By inserting threshold̂γ and the
exponentialPDF(2.6) into (2.10) we obtain

Pout
DIR =

1
γ̄i, j

∫ 2R−1

0
exp

(

−γi, j

γ̄i, j

)

dγi, j = 1−exp

(

−2R−1
γ̄i, j

)

(2.11)

as explicit outage probability of direct transmission via an i.i.d. Rayleigh fading
channel. Writing the mean SNR as̄γi, j = Γi, jΓ we approximate

Pout
DIR ≈ 1

Γi, j

2R−1
Γ

(2.12)

for asymptotically high SNR, i.e.,Γ → ∞. Note that in this approximation the
link-dependent factorΓi, j can be well separated from the system-wide parameters
RandΓ. We will extensively use this property in Chapter3 when we approximate
Pout for large cooperative networks.

Outage capacity The outage capacityCout is defined as the highest data rate
such that a givenoutage probability constraintε is not exceeded [TV05, 5.4.1].
We can obtain

Cout := max(R) s.t. Pout(R)≤ ε (2.13)

by solvingPout(R) = ε for R.
Practically speaking,Cout measures the maximum data rate guaranteed for at

least(1− ε) ·100 % of the time. Such target error rates are an important design
parameter of many wireless systems, e.g., the IEEE 802.11 standard specifies a
maximum Packet Error Rate (PER) of 10 % [IEE99]. Especially in multi-hop
systems and under strict delay constraints (e.g., with voice transmission) high
error rates can significantly decrease the performance. Forsuch scenarios,Cout

is often seen as a more functional performance metric than the ergodic capacity
C̄ := E{C} which, in fact, implies an error rate close to zero [ASH+08].

Other performance metrics In addition to these fading-specific metrics we will
study performance in terms of data rate, ergodic capacityC̄, Bit Error Rate (BER),
and Packet Error Rate (PER). We will detail these metrics when they are used.
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2.2 Diversity systems

Unlike for an AWGN channel, the error rate of a fading channel decays only
linearly if the SNR increases. An effective approach to copewith this poor per-
formance is calleddiversity. By transmitting redundancy via independently faded
channel representations, the slope of the error rate can be significantly improved.
After discussing the basics and terminology in the field of diversity, we will focus
oncombiningas a fundamental scheme to realize this approach.

2.2.1 Diversity order and gain

In Section2.1.4we used the error event{γi, j < γ̂} to derive the outage probabil-
ity for direct transmission with block fading. In this example a single deep fade
suffices for the overall transmission to be in outage. The result is an outage proba-
bility (2.12) that decays only linearly if the SNR increases. This poor performance
of fading channels is well known, can be shown for an arbitrary error rate metric
Pe, and is not found for AWGN channels where the decay is exponential [TV05,
Section 3.1].

A diversity schemecan dramatically improvePe for fading channels by dis-
tributing a single codeword overL independently faded channel representations
(so-calleddiversity branches). In our above example, the diversity branches are
given byL i.i.d. fading blocks over which a single packet can be distributed sim-
ply by repeating it once per block (so-calledrepetition coding). In this case, all
L diversity branches have to besimultaneouslyaffected by a deep fade such that
the overall transmission is in outage. Since with increasing L this event becomes
less and less likely, the error rate substantially decreases for higherL. In fact,
Pe decays exponentially inL whenL i.i.d., Rayleigh-faded diversity branches are
employed [TV05, (3.41)]. The number of employed independent fading branches
L is called thediversity orderof the communication system and a scheme is said
to reachfull diversity if it exploits all available diversity branches of the channel.

IncreasingL substantially improves the slope ofPe. This improvement is
calleddiversity gainand illustrated in Figure2.5. Full diversity and, therefore, the
maximum diversity gain can be already reached by simple repetition coding but
more sophisticated coding shifts the error rate curve to theleft [TV05, (3.158)].
This offset is calledcoding gainand remains constant for increasing SNR while
the diversity gain improves with the SNR (Figure2.5). Mathematically, we can
state this behavior by

Pe ≈
(

1
Gcγ̄

)L

(2.14)

for asymptotically high SNR and i.i.d. Rayleigh fading blockfading. Here,Gc ≥ 1
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Figure 2.5: Outage probability vs. SNR comparing diversityand coding gain.
Numerical results for two diversity ordersL andR= 1/4 bits/s/Hz. Illustration
similar to [PNG03, Figure 5.2].

denotes the coding gain as a factor to the mean SNR while the large improvement
due to diversity is represented by the exponentL. This standard form for the error
rate will be found frequently when we analyze the coding and diversity gain of
cooperative relaying systems in the following chapters.

2.2.2 Used diversity modes

With fading channels diversity gains can be reached in multiple dimensions. The
diversity schemes studied in this thesis – cooperation diversity and Multiuser
Diversity (MUD) – combine the following basic diversity modes.

Temporal diversitydistributes a codeword over multiple coherence times. A
simple temporal diversity scheme was described in Section2.2.1. By repeating a
packet in each ofL fading blocks,L coherence times are used and a diversity order
of L is reached. More sophisticated temporal diversity schemesinterleave code
symbols over the coherence times and are, thus, often combined with Forward
Error Correction (FEC) coding. We will focus on the interaction of temporal and
cooperation diversity in Chapter4 and Section5.

Spatial diversityschemes employ multiple antennas which have to be placed
such that thecoherence distance(i.e., the antenna separation distance above which
the channel coefficients are assumed to be spatially uncorrelated) is exceeded. In
this case, independent diversity branches can be reached byrepeating the same
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symbol (or some form of redundancy) over multiple transmit antennas using only
a single antenna for reception. This multipoint-to-point approach is calledspa-
tial transmit diversityand is the fundament of all cooperation diversity protocols
discussed in the remaining chapters. On the other hand, if only a single transmit
antenna is used but multiple antennas receive independently faded signal paths,
spatial receive diversityis exploited. This point-to-multipoint approach is em-
ployed by theMUD schemes in Section5.2.

2.2.3 Combining

In many cases, the receiver reaches a diversity gain by combining multiple signals.
The following standard combining schemes perform this taskat signal level prior
to FECdecoding, are used in our system models in Chapter3, 4, and5, and are
the basis for the practical combining schemes described in Chapter6.

Assuming coherent reception, the signalsy1,d, . . . ,yL,d that a destinationd re-
ceives fromL transmitters are in phase and can be combined linearly by their
summation. In this case, the signal atd aftercombining is given by

yd =
L

∑
l=1

al yl ,d

where each received signal is weighted by its combining coefficienta1,d, . . . ,aL,d.
With Selection Combining (SC), the receiver selects only the “best” of theL

signals. Thus, SC definesak = 1 for channelk with the highest instantaneousSNR
γk, while all other weights are 0. In practice, this technique is usually simplified
by selecting the signals with the highest power instead of SNR [Bre03]. In this
case, no furtherCSI is required.

Maximum Ratio Combining (MRC) is a more sophisticated technique where
each weight is time-variant and proportional to the signal’s root mean square and
inversely proportional to the mean square noise. Hence, a weight value is given

by al =
√

y2
l ,d/n2

l ,d. If these coefficients are used to calculateyd as above, its in-
stantaneous SNRγ is equal to the sum of the instantaneous SNR of all combined
signals. Consequently,MRC obtains the highest SNR from all linear combining
schemes and, thus, reaches the bestBER performance [Bre03]. The SNR gain
of MRC compared to SC and direct transmission (L = 1) is listed in Table2.1
for several values ofL i.i.d. Rayleigh fading diversity branches. Nonetheless, to
reach these gains, MRC adds several restrictions to the system. First, accurate
knowledge of the noise and signal power is required which is not easily avail-
able in many receivers. Second, the combined signals have tobe transmitted at
equal modulation and code. This restricts the choices and, thus, performance of
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Table 2.1: SNR gains of MRC for i.i.d. Rayleigh fading [Bre03, Table 1].

L SNR gain of MRC [dB] compared to
SC Direct

2 1.25 3.01
3 2.14 4.77
4 2.83 6.02
. . . . . . . . .
∞ ∞ ∞

rate adaptation. We will get back to these aspects when we describe a practical
combining scheme in Chapter6.

2.3 Basic constraints

Throughout this thesis, we apply the following fundamentalresource and system
constraints to assure a fair comparison of the transmissionschemes.

Single antennas and bandwidth Each node employs only a single antenna. All
nodes operate in the same frequency band of signal bandwidthW and each node
usesW Hz per transmission.

Orthogonality constraint In this thesis, one node has to employ at least a single
orthogonal subchannel per transmission. Thisorthogonality constraintreflects
two restrictions of typical wireless systems. First, many single-antenna devices
are restricted tohalf duplexoperation and, thus, cannot transmit and receive at the
same time on the same frequency band. Overcoming this limitation would require
expensive transceiver hardware to decouple the transmit and receive process, e.g.,
by strict time/frequency synchronization [Rap02, Section 1.4]. Therefore, half
duplex is the typical operation mode for mobile handhelds,WLAN devices, and
wireless sensor nodes so far.

Second, the orthogonality constraint reflects that the performance of many
wireless networks isinterference limited[GK00]. This significant limitation re-
sults from the fact that most single-antenna receivers haveto treat interfering sig-
nals as additive noise [Rap02, Section 3.5] and that approaches to eliminate in-
terference from the received signal [GK08] are not practical so far. Instead, most
wireless networks avoid interference by multiplexing multiple transmissions onto
orthogonal subchannels and by using aMAC protocol to coordinate the use of
these subchannels.
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Medium Access Control (MAC ) and multiplexing loss For the sake of expla-
nation, we assume that duplexing andMAC realize orthogonal subchannels by
separate time slots. Assuming this, Time Division Duplexing (TDD) and Time
Division Multiple Access (TDMA) operation come at no loss of generality for the
results of our theoretical studies (Chapter3 to 5). In these chapters, we assume
perfectMAC operation but account forMAC errors and overhead in Chapter6.

As a result,K transmissions within a single propagation domain are multi-
plexed ontoK orthogonal subchannels. This completely avoids interference be-
tween these transmissions but significantly reduces the capacity by the so-called
multiplexing loss. Since per propagation domain each transmitter can use only
1/K of the channel resources, the overall capacity is divided byK. Note that this
ignores quasi-orthogonal subchannels and spatial reuse and is, thus, a very strict
interpretation of the orthogonality constraint.

Energy and power constraints The theoretical studies in Chapter3 to 5 are
made under the followingtotal energy constraint. Independent of the number
of transmitters, always the same number of Joules is injected into the channel
to transmit an information bit from the source to the destination. This is a very
conservative constraint which assures a fair comparison between relaying (where
multiple transmitters may inject energy) and direct transmission (with a single
transmitter) in terms of radiated energy.

The total energy constraint is relaxed to theper-node power constraintin our
practical studies in Section4.5 and Chapter6. Here, each transmitter spends
PWatts of average transmission power. As additional transmitters increase the
duration of a singleMAC cycleTcycle, the overall radiated energy increases with
the number of transmittersK. Although this constraint is less strict than the total
energy constraint, it reflects the practical operation inWLANs and other wireless
networks.

2.4 Summary of basic assumptions

In this thesis, we use the following general models and assumptions. More specific
assumptions are described when they are used.

Fading Based on the classic discrete baseband model with Additive White Gaus-
sian Noise (AWGN), we focus on time-selective, frequency-flat fading. The mag-
nitudes of the channel coefficients are assumed to be Rayleighdistributed which
leads to an exponentially distributed instantaneous SNR. Correlation in time is
modeled using Clarke’s model with an J0 Autocorrelation Function (ACF) but
also temporally uncorrelated fading blocks are used when appropriate. In space,
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received signals are assumed to be not correlated due to the typically large sepa-
ration distance of cooperating nodes.

Performance metrics In our theoretical studies the outage probabilityPout is
used to measure the error rate. This metric accounts for decoding errors due to
deep fades which are the typical error event at high SNR in fading channels. From
Pout, the outage capacityCout is derived as the highest data rate which can be
guaranteed at a specified outage probability levelε. Unlike ergodic capacity,Cout

explicitly accounts for non-zero error rates which are the usual case with practi-
cal transceivers, multi-hop communication, and delay constraints. Beside these
fading-specific metrics, we observe data rate, ergodic capacity, BER, andPER.

Diversity Diversity is a powerful approach to improve the error rate offading
channels. Even simple repetition coding reaches full diversity orderL and, thus,
improves the error rate exponentially inL. More sophisticated coding can further
improve the error rate by a coding gain. Cooperation diversity and Multiuser
Diversity (MUD) are based on the basic diversity modes temporal and spatial
diversity. One fundamental scheme to reach a diversity gainat the receiver is
combing. Coherent Maximum Ratio Combining (MRC) maximizes the SNR gain
and is assumed in the theoretical parts of this thesis; Selection Combining (SC) is
the basis of the practical combining scheme in Chapter6.

Constraints Several fundamental resource and system constraints assure a fair
comparison of the studied transmission schemes. In particular, each node uses
only a single antenna and requires at least an orthogonal subchannel for its trans-
mission. For simplicity, the transmissions are separated in time and each node
uses the full signal bandwidthW per transmission. While the theoretical studies
in Chapter3 to 5 are performed under the total energy constraint, the per-node
power constraint reflects practicalWLAN operation in Chapter6.

Confidence level and units To account for statistical significance, simulation
and measurement results are presented with 95 % confidence intervals.

Unless noted by dB, all constants and variables are defined in the linear do-
main.



Chapter 3

Cooperative relaying – Protocols
and theoretical performance

We described in Chapter2 that a source node exploits temporal diversity simply
by repeating its own information. Now we focus on wireless networks where the
source’s information is repeated by a relay node. Relaying isvery appealing in
wireless networks where

1. the broadcast medium allows a relay to overhear other nodes’ signals with-
out requiring additional channel resources;

2. it is likely that source and relay antennas are differently affected by fading
which can provide spatial diversity gains.

These properties of wireless channels have motivated the design of a variety of
relaying protocols that exploit spatial diversity. The basics of these so-calledco-
operative relaying protocolsare described in Section3.1. Then, we focus on
selection relayingas a class of many practical cooperation protocols such as Se-
lection Decode-and-Forward (SDF), Coded Cooperation (CC), and Opportunistic
Relaying (OR) [LWT04, HN02, BSW07]. We discuss these protocols in Section
3.2 and classify them into two fundamental types:Combining-based Selection
Relaying (CSR) andPath allocation-based Selection Relaying (PSR).

For a first insight, we jointly derive the outage probabilityand outage capac-
ity of both protocol types under idealistic assumptions in Section3.3. Based on
this unified analysis, we systematically study the effect oflimited Channel State
Information (CSI) and network connectivity on the outage capacity and outage
probability ofCSRandPSR(Section3.4). This allows a fair comparison ofCSR
andPSRprotocols according to their individual CSI and connectivity demands
and, finally, highlights in which cases either combining-based or path allocation-
based selection relaying should be used.

23
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Figure 3.1: Simple example of cooperative and non-cooperate relaying. Each
figure shows the packet flow from a sources via relay r to destinationd. The
transmission employs two orthogonal channels, e.g., time slots.

3.1 Background on cooperative relaying protocols

Many cooperative relaying protocols were developed to improve error rate, cov-
erage, or data rate. While each of these schemes has its specific benefits and
constraints, all these protocols are based on common principles of the channel,
coding, and medium access. These fundamentals are only briefly discussed in
this section. Extensive surveys on cooperative relaying protocols are provided in
[LSSK09, Part II] and [KMY06, VLK +07, VLK +09].

3.1.1 From relaying to cooperation diversity

In conventional wireless networks, a Medium Access Control (MAC) scheme
reinforces a point-to-point link for a transmission from source s to destination
d. The simplest relaying scenario for such unicast transmission is calledNon-
Cooperative Relaying (NCR) and illustrated in Figure3.1(a). Here, a single relay
r receives and forwards a packetX from s to d via the links(s, r) and(r,d). Even
this simplest scenario already includes two basic elementsof more complex co-
operative relaying systems.

Multiple access and node processing

The first element is themultiple access channel. Unlike direct transmission, the
end-to-end transmission ofX from s tod via relayr requires two nodes to transmit.
Each of the transmitterssandr demands an orthogonal subchannel (Section2.3).
These subchannels are realized by a Medium Access Control (MAC) scheme, e.g.,
by non-overlapping time slots. In the first slot, noder has to receive the packet
from the source (solid line in Figure3.1(a)). Then, in the second slot,r forwards
the source’s packet to the destination (dashed line).
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We call the second basic element of relayingnode processing. After recep-
tion, a relay mayregeneratethe bits of the source’s packetX by demodulation and
decoding. The relay may further store and process the regenerated bits, e.g., com-
bine these bits with different information and re-encode the result using a different
code than the source. Figure3.1(a)illustrates this operation by lettingr forward
a possibly modified version ofX that is denoted byX′. While node processing is
ignored in traditionalstore-and-forwardnetwork models [CLRS01, Chapter 26]
it is extensively used by cooperative relaying protocols. We will discuss specific
protocols below.

The relay channel

Despite these basic elements, the simple point-to-point scenario in Figure3.1(a)
ignores one inherent attribute of the radio channel – its broadcast nature. Including
this aspect extends point-to-point relaying to the point-to-multipoint scenario in
Figure 3.1(b). We call this most basic three-terminal cooperative network the
Cooperative Triangle (CTR). It was defined by van der Meulen in [vdM71] and
was later called therelay channel[CG79].

One important characteristic of the relay channel is that itcombines the multi-
ple access channel with the broadcast channel. While the multiple access channel
is already implied by two channel uses of conventional point-to-point relaying,
the broadcast arises naturally ifs sends its packetX via a wireless channel. Here,
X reachesr andd via a broadcast (Figure3.1(b)) before the relay conventionally
forwardsX′ to d. As opposed toNCR, the broadcast introduces a redundant trans-
mission ofX via the so-far unutilized(s,d) link but requires no additional channel
use to convey the packet to both nodesr andd. Finally, two versions of the source
packet are received atd which can improve the end-to-end performance by re-
dundancy and diversity. This is not achieved with point-to-point relaying whered
ignores the broadcast and receives only a single packet during the first slot.

Since van der Meulen’s early work [vdM71], the capacity of the relay chan-
nel is a classic problem in information theory. Cover and El Gamal [CG79]
showed that random binning [SW73] and block Markov superposition coding
[CT91, Chapter 8] achieve the capacity of the so-calleddegraded relay channel,
i.e., point-to-point relaying where link(s,d) is not considered. By generalizing
Block-Markov coding, Kramer, Gastpar, and Gupta provided fundamental coding
strategies which reach the capacity of specific relay channels with a broadcast and
with multiple sources inN terminal networks [KGG05]. Similar results were ob-
tained by Høst-Madsen and Zhang from the scope of power allocation [HMZ05].

However, despite this seminal work, the capacity of the general relay channel
with three terminals and without degradation is still not known [Kra06]. So far,
only an upper capacity bound can be given by the cut set theorem [CG79].
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Cooperation diversity

Instead of studying ergodic capacity for asymptotically long codewords, one can
study the performance of the relay channel from the perspective of outage prob-
ability and error rate. This perspective is important in wireless networks with
fading channels when the transmission delay is limited suchthat errors do not
average-out over long codewords.

One of the first studies in this field was performed by Sendonaris, Erkip, and
Aazhang [SEA98]. The authors observed that the links(s,d) and(r,d) in Figure
3.1(b)may experience a different channel state only due to the different position
of the source’s and relay’s transmit antennas. Consequently, cooperative relaying
introduces spatial transmit diversity which can significantly decrease the error
rate at the destination (Section2.2). The authors called this conceptcooperation
diversityand left open how cooperative nodes share their transmit antennas.

Even without a specific method for cooperation, cooperationdiversity already
points out important similarities and differences betweencooperative and multi-
antenna systems. Similar to Space-Time Coding (STC) systems, a cooperation
diversity system employs multiple transmit antennas to profit from spatial di-
versity. Therefore, cooperative networks are sometimes called “virtual Multiple-
Input Multiple-Output (MIMO)” or “distributed antenna arrays” [PWS+04]. Un-
like MIMO, cooperation does not rely on multiple antennas per node. Cooperative
relaying is possible even with single antenna devices but can also be combined
with MIMO techniques if multiple antennas per node are available. Furthermore,
in a cooperative network inter-antenna distances larger than the coherence dis-
tance are easily achieved. Cooperating nodes are further apart than several to tens
of wavelengths which assures spatially uncorrelated channels in many propaga-
tion environments [TV05, Section 3.3]. Achieving such distances is not straight-
forward withMIMO where the inter-antenna distance is constrained by the device
size. This makes the design of smallMIMO devices difficult and can dramatically
decrease the performance ofMIMO systems due to spatially correlated shadowing
[PNG03, Chapter 5].

Beside these benefits, a cooperative system connects the distributed transmit
antennas via a wireless link, e.g.,(s, r) in Figure3.1(b), which can introduce un-
predictable transmission errors and delay. This is a significant drawback compared
to MIMO where the inter-antenna link can be seen as an ideal out-of-band chan-
nel. Therefore, classic capacity results and coding techniques forMIMO systems,
e.g., STC [Ala98], cannot be directly applied to cooperative diversity systems.
Instead, a method is required to invoke, maintain, and synchronize a cooperative
transmission via error-prone wireless links. This is achieved by cooperative relay-
ing protocols whose fundamentals are described next.
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3.1.2 Fundamental cooperative relaying protocols

A cooperative relaying protocol defines how the cooperatingnodes exchange and
process information. A first approach for an asynchronous Code Division Multiple
Access (CDMA) system is provided in [SEA03a]. Results for non-ideal spread-
ing codes and receivers are given in [SEA03b] and significant gains in outage
probability are shown.

Without restricting their assumptions to a specific medium access technique,
Laneman, Wornell, and Tse provide an early systematic comparison of cooper-
ative relaying protocols in [LWT01]. The authors extended this paper to their
seminal work [LWT04]. Focusing on the scenario in Figure3.1(b), Laneman et
al. compare the fundamental relaying strategiesAmplify-and-Forward (AF) and
Decode-and-Forward (DF) from the perspective of diversity. Both strategies rep-
resent extreme cases of the generalCompress-and-Forward (CF) strategy [CG79]
where the relay forwards an arbitrarily coded signal to the destination. WithAF
(also called non-regenerative relaying) the relay simply amplifies and retransmits
both the source signal and noise in the analog domain. WithDF (also called re-
generative relaying), the relay decodes and re-encodes thesource signal in the
digital baseband before forwarding.

With either of these forwarding strategies, the destination combines the sig-
nals received froms andr usingMRC and obtains diversity gains if the channel
coefficients of(s,d) and(r,d) differ (cp. Section2.2). The authors show thatAF
achieves full diversity, i.e., a diversity orderL equal to the number of transmitters
in the cooperative network. Outage probability results forasymptotic high SNR
are provided showing that the outage probability decreasesexponentially in the
number of transmitters.

A further important result is that regenerative relaying only achieves full di-
versity if the relay perfectly avoids error propagation. Tothis end, Laneman et al.
introduce the concept ofselection relayingwhere the relay only forwards a packet
if it has decoded it reliably. The authors introduced theSDFprotocol where the re-
lay always forwards correct packets and theincremental relayingprotocol where
the destination requests a packet from the relay only if the direct transmission
fails.

Based on these fundamental approaches a variety of relaying protocols was
proposed to exploit cooperation diversity in the relay channel. Focusing on the
class of selection relaying protocols, we now describe and classify those protocols
which are relevant for this work.
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Figure 3.2: Operation of a general selection relaying protocol: After receiving and
regenerating the source packet, the relay decides whether to forward the packet
based on CSI.

3.2 Selection relaying protocols

In the basic Selection Decode-and-Forward (SDF) approach [LWT04], a relay fil-
ters out erroneous packets to reach full diversity. Therefore, a relay regenerates
and detects erroneously received packets, e.g., by performing a Cyclic Redun-
dancy Check (CRC). From this example, we can identify two basic properties
of a selection relaying protocol. First, the relay performs aforwarding decision.
With SDF it decides either to drop or to forward the received packet. Second,
this forwarding decision is based on some form ofCSI, e.g., on aCRC check-
sum extracted from the received packet. These two characteristics are the basis of
all previously developed cooperative relaying protocols that are compared in this
section. Note that under this definition evenNCR performs selection relaying if
the relay does not forward erroneous packets.

3.2.1 Generalization and protocol classification

Based on Laneman’s previous work [LWT04] we can generalize the basic op-
eration of a selection relaying protocol as in Figure3.2. The relay performs the
illustrated functions after receiving the source packet and prior to forwarding, e.g.,
between slot 1 and slot 2 in Figure3.1(b). As illustrated, the relay regenerates the
source packet and performs its forwarding decision. Unlikein the basic Selection
Decode-and-Forward (SDF) approach [LWT04], in general the relay has more
than two alternatives. For instance, the relay may decide toeither forward the
received packet, a modified variant of the received packet, or not to forward the
received packet.

This forwarding decision can be based on two types ofCSI: Either on so-
calledreceiverCSI(CSIrx) or on so-calledtransmitter CSI(CSItx). While the re-
lay locally extracts CSIrx from the received packet, CSItx refers to channel knowl-
edge from external sources. If the relay bases its forwarding decision on such
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Figure 3.3: Selection relaying protocols and their employed CSI: The protocols
either follow theCSRor thePSRapproach. The shaded protocols are relevant for
this thesis.NCR is included for comparison.

external CSI, this channel knowledge has to be available prior to transmission.
The termfull CSIdenotes that CSIrx as well as CSItx is available.

Combining-based Selection Relaying (CSR)

The employed CSI defines the further operation and performance of a selection
relaying protocol. If only CSIrx is used, a relay forwards irrespective of the state
of other parallel links in the cooperative network. For instance, in Figure3.1(b)
the relay even forwards if the destination has already correctly received the packet
via the (s,d) link. Without CSItx, this correct reception cannot be signaled to
r and the multiplexing loss due forwarding cannot be avoided.Especially with
multiple relays, such parallel transmissions decrease theeffective rate by a high
multiplexing loss. Without intermediate adaptation due toCSItx, this form of
relaying can exploit spatial diversity only by combining the received signals at
the destination. Therefore, we call this protocol typeCombining-based Selection
Relaying (CSR).

Various protocols in literature follow the CSR approach. A representative
selection is listed in Figure3.3. All these protocols employ only CSIrx. They
primarily differ in their coding scheme. While theSDF protocol uses repeti-
tion coding [LWT04], i.e., the forwarded codeword equals the received codeword,
Coded Cooperation (CC) [HN02] andDistributed Turbo Coded Diversity (DTC)
[ZV03, LVWD06] employ Rate-Compatible Punctured Convolutional (RCPC)
codes [Hag88] or turbo codes [HWR07], respectively. In addition to one of such
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FECcoding schemes, a CSR protocol may use network coding [CKL06, BL06a,
WVK07, WVK08] or even space-time coding [SE03, JHHN04] during the relay-
ing process.

In this thesis we will not study such combinations of variouscoding schemes.
Instead, our focus is on protocol aspects and on the effect oflimited CSI and
other practical constraints on the protocol’s performance. To this end, we limit
our scope to the fundamentalSDFprotocol and toCCas a practical example with
more-sophisticatedFECcoding. Since we focus only on the protocol operation,
our results apply to protocols that use different FEC codes or employ space-time or
network coding on top of a cooperation protocol. We will detail the CSR protocols
that are relevant for this thesis in Section3.2.2.

Path allocation-based Selection Relaying (PSR)

One method to overcome the high multiplexing loss of Combining-based Selec-
tion Relaying (CSR) protocols is to avoid unnecessary retransmissions. If a relay
knows the state of other links (i.e., CSItx is available) it can choose not to re-
transmit if direct transmission succeeds or if a different relay has a better channel
state towardsd. More general, if CSItx is available, only the nodes on the “best”
end-to-end network path froms to d need to transmit. Naturally, these nodes have
to be chosenbeforethey transmit, i.e., they have to be selecteda priori. We call
protocols that utilize CSItx to select the transmitters on the “best” network path a
priori Path allocation-based Selection Relaying (PSR) protocols.

Choosing the transmitters a priori is an important difference between PSR and
CSR. As discussed above, without CSItx a cooperation protocol can only reach
diversity gains by combining. This operation can be interpreted as choosing the
symbols from the “best” network patha posteriori, i.e., after the transmission
of all signals related to packetX has ended. With this operation, each node re-
quires only local channel knowledge, i.e., CSIrx. On the other hand, PSR proto-
cols choose the “best” path before the transmission tod has ended. Thisa priori
selection requires CSItx at the relays to inform them either about a centralized
choice or about the state of other links for a distributed choice of the network
path. With ideal CSItx, PSR protocols can choose the SNR-maximizing path and
achieve the same diversity order as CSR [BSW07].

In previous work, many PSR protocols were described. Figure3.3 lists the
most relevant. The protocols differ in the form of CSItx and how this CSItx is
fed back from the destination to the transmitters. Whileincremental relaying
[LWT04] and CoopMAC[LTP05] use explicit feedback fromd to s and r, op-
portunistic relaying/routingrely on implicit negotiation among the nodes atMAC
[BKRL06] or at routing level [BM05]. PSR protocols are also known under the
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Figure 3.4: Flow of data packets in a generalized SDF scenario.

namesnetwork path selection[BKRL06] andselection relaying[BA07].1

To study representative PSR protocols with explicit and implicit CSItx feed-
back, we focus on CoopMAC and Opportunistic Relaying (OR) in this thesis.
Both protocols are the basis of many derivative variants and,as prototyping at-
tempts have shown, are also practical. We describe related work and detail their
operation in Section3.2.3.

3.2.2 Combining-based protocols

In a CSR protocol, all N relays forward a correct packet and the destination
achieves spatial transmit diversity gains by combining thereceived signals. Only
local CSIrx is employed to perform an error test at the relay and for coherent de-
tection and weighted combining at the destination.

Selection Decode-and-Forward (SDF)

As described above, a basic CSR protocol isSDF [LWT04]. It exploits spatial
transmit diversity in the relay channel (Figure3.1(b)) but may employ more than
a single relay. A general network with the relaysr1, . . . , rN is illustrated in Figure
3.4. After the source broadcasts packetX in slot 1, each of theN relays decodes
and the received packet and performs an error test. Correctlyreceived packets
are re-encoded using the same code as the source – a procedureknown asrepe-
tition coding. Consequently, each of theN relays forwards either packetX′ = X
or does not forward in the subsequent slots. If each relay forwards,K = N+ 1
slots are required andN+1 signals are combined at the destination. With ideal
error detection and combining, finally, a diversity order ofL = N+1 is reached
[LWT04].

1As in [LWT04], we use the termselection relayingto denote the selection of the forwarded
packet during the relay’s local forwarding decision and notthe selection of the relay or the network
path. Hence, the terminology of [BA07] does not coincide with the one adopted here.



32 Chapter 3. Cooperative relaying – Protocols and theoretical performance

Slot 1
Slot 2

Xb

aX

a d

b

(a) Phase 1 of CC: Nodea andb act
as source

X’
Slot 1
Slot 2

bX’

a

a d

b

(b) Phase 2 of CC with symmetric
cooperation: Nodea forwards
the packet ofb and vice versa

Figure 3.5: Flow of data packets in the Coded Cooperation (CC) protocol with
N+1= 2 cooperating nodesa andb.

While this approach assumes that a relay employs aCRCor similar error de-
tecting code, in principle, any form of CSIrx can serve as an error detection metric.
Using SNR was proposed by Herhold, Zimmermann, and Fettweis[HZF04]. This
provides a more general forwarding decision model than the CRC-based SDF
protocol but introduces the problem of SNR-threshold selection. For uncoded
systems, the threshold minimizing the BER can be found analytically [OAF+07].
For coded systems, also theFEC decoder output can serve as an error detection
metric [VVA +08b]. We will discuss details of this approach in Chapter4.

Coded Cooperation (CC)

This CSR protocol was proposed by Hunter and Nosratinia [HN02]. The authors
proofed full diversityL=N+1 and approximated outage probability at high SNR
[HSN06]. Unlike SDF, CC supports multiple sources and the retransmission of
incremental redundancy. We employ this flexibility for our adaptiveCC protocol
in Section5.1.

CC differs from SDF in its coding process and protocol operation. With CC,
the nodes cooperatemutually, i.e., each transmitter may alternatively act as source
sand relayr. Figure3.5reflects this by the cooperating nodesa andb. As shown,
mutual cooperation splits theMAC cycle in two phases. In phase 1, allN+1 trans-
mitter act as sources. This initial data exchange requiresN+1 slots. Afterwards,
the nodes switch to relay mode and forward correct packets inthe second phase
usingN+1 slots. If each node forwards, the nodes cooperatesymmetrically(Fig-
ure3.5(b)). Asymmetric cooperationoccurs if a packet was not correctly received.
In this case a node employs its slot in phase 2 to retransmit its own information.
For instance, if nodeb does not correctly receive packetXa, it retransmits its own
packetX′

b even if nodea has already forwardedX′
b. Consequently, three versions

of Xb can be combined at the destination but only one version ofXa reachesd. In
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any case,K = 2(N+1) slots are used in total and transferring a single packet flow
requiresN+1 slots.

Unlike SDF, the CC protocol integrates the cooperation and combining pro-
cess intoFECcoding. Instead of repetition coding, CC is based onRCPC[Hag88]
which allows to retransmit incremental redundancy of a packet X in phase 2, i.e.,
X 6= X′. Although each cooperating node transmitsk information bits coded at
rateRc = k/n to n = n1+ n2 bits, the number of bitsn2 that are transmitted in
phase 2 may differ from the number of bitsn1 transmitted in phase 1. The values
n1 andn2 are defined by the free parametercooperation levelβ = n1/n and are
known at each node.

Figure3.6extends Figure3.5by the coding process at the nodes. At the begin-
ning of the transmission cycle, each node operates insource mode. As illustrated,
a node removesn2 bits fromn by puncturing and stores these bits. During phase
1, the nodes broadcast the remainingn1 bits tod and to a potential relay.

After phase 1, each node switches torelay modeand decodes and error tests
the k bits received from the partner. If the error test succeeds, the partner’s bits
are re-encoded ton bits and puncturing extractsn2 bits according toβ . These
regeneratedn2 bits are relayed tod. If a node in relay mode cannot correctly
decode its partner’sk bits, it transmits its ownn2 bits which were stored initially.
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After both phases,n1 andn2 bits may be available per node. In this cased
combines these bits by de-puncturing [Pro00, Section 8.2.6] which can introduce
a spatial transmit diversity gain. De-puncturing requiresmatching coded bits be-
tween the phase 1 and phase 2 packets which is provided withRCPCcodes.

3.2.3 Network path allocation-based protocols

In PSR protocols either only a single relay forwards correctpackets or the direct
link is chosen. Instead of choosing the “best” symbols a posteriori by combining,
PSC employs CSItx to allocate the “best” links prior to the transmission of the
relays. WithN alternatively transmitting relays this provides full diversity order
of N+1 [BSW07], costs only a single retransmission per MAC cycle but requires
CSItx at the relays. With non-reciprocal fading channels this channel knowledge
has to be obtained byCSI feedback via wireless channels which can reduce the
end-to-end performance by overhead and errors.

Opportunistic Relaying (OR)

This basic PSR protocol was introduced at the routing layer by Biswas and Morris
[BM05]. At high SNR, Bletsas, Khisti, Reed, and Lippmann provided outage
probability approximations, showed full diversity [BSW07], and showed thatOR
significantly improves the diversity-multiplexing tradeoff of CSR protocols by
reducing the number of retransmissions [BKRL06]. At low SNR, Beres and Adve
approximated outage probability [BA07] and Adinoyi, Fan, Yanikomeroglu, and
Poor provided closed-form solutions for the approximateBER[AFYP08]. All this
work shows thatOR significantly improves the error rate of direct transmission
under idealistic system andCSIassumptions.

Figure3.7 illustrates an example scenario forOR with N relays. In this two-
hop scenario, allocating the “best” end-to-end network path is equivalent with
choosing the best relay. ManyOR protocols aim for minimal end-to-end error
rate and, thus, choose the path which maximizes the SNR atd. If an OR protocol
aims to maximize throughput, even the direct link may be included.

To allocate this “best” path, CSItx has to be provided to either the source or the
relays. With non-reciprocal fading channels,d has to extract this channel knowl-
edge from a received packet and has to transfer it back to the transmitters. As
illustrated in Figure3.7(a)this so-calledCSI feedbackcan be efficiently realized
by a broadcast.

Where the feedback phase in Figure3.7(a) is placed in the protocol cycle
depends on when OR performs its path allocation. InproactiveOR protocols
[LTL+06, BSW07], the source chooses the path before its data transmission (Fig-
ure3.7(a)). Therefore, the feedback phase is typically performed directly before
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the broadcast in slot 1. Withreactiveprotocols the relays choose the path between
slot 1 and slot 2, e.g., by reacting to outstanding Acknowledgment (ACK) pack-
ets or to explicit Negative Acknowledgment (NACK) packets. To this end, many
reactive protocols [BM05, BSW07] transmit CSI feedback (e.g., as anACK or
NACK) between slot 1 and slot 2 of the data transfer phase in Figure3.7(b). Once
the “best” path is allocated, only the chosen relay forwardsthe packet using the
second slot of the data transfer phase. To this end, typically repetition coding is
assumed, i.e.,X′ = X.

As a matter of fact, current papers onORprotocols ignore the feedback phase
in Figure3.7(a). Either full CSI is assumed to be available at no cost [BKRL06,
BA08, AFYP08] or feedback procedures are given but assumed to operate at no
cost and without error [BM05, BSW07]. Neither of these assumptions is realistic
with non-reciprocal fading channels which are common in cooperative relaying
scenarios. In this case, the overhead and errors due to CSI feedback can highly
degrade throughput and error rate of OR protocols. Therefore, the constraints of
the feedback channel have to be included in the analysis of OR’s performance.
We do so in Section3.4.

CoopMAC

CoopMAC aims to increase the throughput in IEEE 802.11WLANs by the help
of a relay. Liu, Tao, and Panwar introduced this protocol [LTP05] and described
an extended version and a first implementation [LTN+07]. An extended prototype
is discussed in [KKEP09]. This practical PSR protocol is a relevant benchmark
for our prototype in Chapter6.

CoopMAC integrates PSR into the IEEE 802.11MAC sublayer [IEE99]. To
this end, it extends the IEEE 802.11 Request-To-Send (RTS)/Clear-To-Send (CTS)
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cycle by a so-calledHelper ready To Send (HTS) packet as illustrated in Figure
3.8. In CoopMAC the source overhears CSItx from ACK andCTS packets, es-
timates the end-to-end throughput, and maintains a list of these estimates for all
possible relays. Based on this list,s proactively chooses the relay which provides
the highest estimated throughput. To initialize the CoopMACcycle,s broadcasts
an extendedRTS packet to the chosen relay andd (Figure 3.8(a)). This RTS
packet includes the requested data rate and the relay only replies with anHTS
packet if its own estimation of the data rate matches. The source then broadcasts
its data packetX to the relay andd. If received correctly, the relay re-encodes and
modulates the packet at a potentially higher rate, i.e.,X′ 6= X, and retransmits this
packet tod. The destination performs no combining but selects the firstcorrectly
received packet from both paths and, finally, answers with anACK.

With the help of a relay the source can select a transmission rate larger than the
direct link supports. Nevertheless, this comes at the cost of a significant amount
of control transmissions andCSI feedback. The literature on CoopMAC [LTP05,
LTL+06, LTN+07, KKEP09] and its derivatives [TWT08, SZW09] shows two im-
portant aspects. First, none of these studies compares the effective rate of Coop-
MAC vs. the direct case at equal injected energy. Such a global energy constraint
is, however, crucial for a fair comparison (Section2.3). Second, CoopMAC im-
plies that the control packets are received at negligible error rate, e.g., by using a
robust modulation and code. This assumption may not hold with fading channels
where diversity gains are required to overcome deep fades and, thus, lost control
packets may significantly degrade throughput. We study bothaspects theoretically
in terms of outage capacity in Section3.4and practically by measuring throughput
and error rate in Chapter6.
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3.3 Performance analysis of selection relaying

We compare the performance ofPSRandCSRin two steps. First, we derive the
diversity order, outage probability, and outage capacity.We provide approxima-
tions for general cooperative networks at high SNR and illustrate these methods
for networks with one relay and with two relays. Idealistic assumptions allows us
to jointly analyze PSR and CSR.

This unified analysis is a starting point for the individual discussion of PSR
and CSR in the second step of our study. In Section3.4, the general performance
results of selection relaying are degraded according to theindividual constraints
of PSRandCSR. Although under ideal assumptions the results of both protocols
match,PSRandCSRhave different requirements onCSIand network connectiv-
ity. Accounting for each of these constraints separately leads to individual per-
formance results and provides a systematic comparison of both selection relaying
approaches.

3.3.1 Method and assumptions

Our study is based oncut set analysisknown as a useful method to derive the
outer capacity bound of a network from its graph [CT91, Section 14.10]. Before
we apply this graph-theoretical approach to approximate diversity order, outage
probability, and outage capacity for cooperative networks, let us define the basic
terminology and assumptions.

Channel and system assumptions

Our channel and system assumptions are widely used in theoretic studies of coop-
erative relaying protocols [LWT04, BFY04, SSL07, BSW07, OFYT08]. Assum-
ing the constraints from Section2.3, we compare direct transmission and cooper-
ative networks with multiple transmitters at equal energy,transmission time, and
bandwidth.

Fading channels are modeled using the block fading model from Section2.1.2
choosing a block time equal to the duration of a MAC cycle, i.e., Tb := Tcycle.
According to this model, the instantaneous SNRγi, j of an arbitrary link(i, j) is
an i.i.d. exponential random variable with the meanγ̄i, j = Γi, jΓ. As described in
Section2.1.1, Γ is the system-wide reference SNR (2.3) while Γi, j accounts for
the path loss of the individual link. We employ (2.2) as path loss model. For all
shown numerical results we assume a reference distance ofD0 = 1 and a path loss
exponent ofα = 2.4 with no loss of generality.

At system level, we assume that an idealMAC scheme provides an orthogonal
subchannel for each transmitter, perfectly avoiding interference among the stud-
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ied nodes (Section2.3). We denote the number of orthogonal subchannels byK.
We further assumecommon codebooks, i.e., all nodes employ the same channel
code. This implies repetition coding at the relays. As common in outage analysis
we assume deep fades to be the only error event. Other causes of decoding errors
are ignored by assuming ideal error correcting and error detecting codes. Assum-
ing ideal coherent signal detection and ideal Maximum Ratio Combining (MRC)
ignores power losses in imperfect receivers (Section2.2). This implies thatd
extracts ideal CSIrx from the received packets and is a common assumption for
analyzing coherent receivers [SA04, Section 3.1].

Besides these standard assumptions, we explicitly study theeffect of limited
channel knowledge on the performance of selection relayingprotocols. To this
end, we assume fullCSI in this section but limit CSItx in Section3.4 to account
for limited feedback. We study scenarios with multiple relays. In addition to the
general case withN relays, we study networks withN = 1 andN = 2 representing
the minimal scenarios forCSRandPSR, respectively.

Flow networks and cut sets

Our analysis is based on common graph-theoretical network models and defini-
tions [CLRS01, Section 26.1]. A cooperative or non-cooperative network is mod-
eled as aflow network, i.e., a finite directed graph where each link(i, j) is weighted
by its AWGN capacity. Only links with a positive capacity are included.

Each flow network includes a dedicated source nodea and destination noded.
We assume that any potential relay node betweena andd lies on somepath, i.e.,
for any noder there is a paths→ r → d. Unlike most graph-theoretical approaches
[CLRS01, Section 26.1], we do not requireflow conservation. Instead, the rate of
the information flow leaving a relay may be different from therate of the incoming
flow. This accounts for node processing, where a relay may drop packets or may
encode these packet at a different rate prior to forwarding.

Figure 3.9 shows an example of a flow network. Here the potential relays
b andc are located on the pathsa → b → d, a → c → d, anda → b → c → d
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between sourcea and destinationd. We call any path between the source and the
destination anend-to-end path. As discussed in Section2.1.4, the AWGN capacity
C(γi, j) = log2(1+ γi, j) of a link (i, j) only depends on the instantaneousSNRγi, j .
Hence, it suffices to weight each link only by the corresponding instantaneous
SNR(cp. Figure3.9).

The figure further includes threecuts illustrated as dashed lines. A cut sepa-
rates the network into disjoint subsets and acut set Sn includes all links crossing
this cut, e.g.,S1 = {(a,c),(a,b)} in Figure3.9. The number of links within a cut
setSn is given by thecardinality |Sn| of this cut set. For example,S1 in Figure3.9
includes two links and is, thus, of cardinality|S1| = 2. We denote allN cut sets
of a flow network by the supersetS with S := {S1, . . . ,Sn, . . . ,SN}. Note that only
unidirectional cut setsare defined in Figure3.9. That is, all links within a cut set
cross this set only in a single direction. This results from the fact that the capacity
C(Sn) of an arbitrary cut setSn is composed only of nonnegative flows [CLRS01,
Section 26.2]. Therefore, no cut set{(a,b),(b,c),(c,d)} is defined in Figure3.9,
as(b,c) would cause this set to be bidirectional.

3.3.2 Outage probability for arbitrary flow networks

In classic literature [HM02, LWT04] and many follow-up papers the outage prob-
ability and diversity order of cooperative relaying protocols is directly derived
from the outage events. This allows to analyze specific networks but cannot pro-
vide general results. To analyze arbitrary flow networks with any number of re-
lays we employcut set analysis[CT91, Section 14.10]. Boyer, Falconer, and
Yanikomeroglu extended this method to derive diversity order and outage proba-
bility for cooperative networks [BFY07]. We will now describe this method and
apply it to several network examples.

Diversity order

With cooperative relaying, multiple links are employed in parallel and these links
are included inN cut sets. Given all cut setsS, we can find the diversity orderL
by searching the cut sets

SM := {S∈ S | |S|= L} (3.1)

that include theminimumnumber of links

L = min
S∈S

(|S|). (3.2)

Hence, the diversity orderL of the flow network is the smallest cardinality over
all its cut sets.
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The rationale behind this definition is thatL represents the number of indepen-
dent links which at least have to fail to cause the end-to-endtransmission to be in
outage. Over all cut sets that a cooperative end-to-end transmission traverses, this
“bottleneck” is given by the cut set of smallest cardinality.

Outage probability

Deriving the end-to-end outage probability at the destination d for arbitrary flow
networks with selection relaying is given in [BFY07]. The resulting end-to-end
outage probability of selection relaying for common codebooks at high SNR is

Pout ≈ 1
L!

Θ
(

2KR−1
Γ

)L

(3.3)

and depends on the number of orthogonal channelsK, the spectral efficiencyR,
and the diversity orderL. Equation3.3further includes the link-dependent term

Θ = ∑
∀Sm∈SM

(

∏
∀(i, j)∈Sm

1
Γi, j

)

(3.4)

where we define theM cut setsSM ⊆ S of minimal cardinalityL as in (3.1).
The derivation in [BFY07] makes use of the fact that, given common code-

books, the end-to-end outage probability is upper bounded by the outage proba-
bility of the cut setsSM. Put less formally, no cut set with more thanL links can
decrease the overallPout below the outage probability given by this “bottleneck”.
Therefore, (3.4) accounts only for the links of those cut setsSM that define the
diversity orderL.

3.3.3 Outage probability for one and two relays

We will now apply the methods from Section3.3.2to derive diversity order and
outage probability of selection relaying for specific networks. Introducing the
methods for a single relay, we extend this basic scenario toN = 2 relays on two
alternative paths which represents the minimal scenario for manyPSRprotocols
[BM05, BSW07, BA07]. For this scenario, we classify the possible flow networks
and comparePSRand Combining-based Selection Relaying (CSR) at full CSI.
We further assumeideal connectivitywhich means that a given flow network can
always be established. Networks without these idealistic assumptions are studied
in Section3.4.
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Figure 3.10: Flow networks for a single relay either performing Non-Cooperative
Relaying (NCR) or CSRin the Cooperative Triangle (CTR). Each graph includes
all distinct directed cut setsS1,S2 and the instantaneous SNRγi, j for each em-
ployed link(i, j).

Single relay

We start our analysis with the single relay case. As discussed in Section3.1, this
can lead to the two networks in Figure3.10. With Non-Cooperative Relaying
(NCR) the nodes establish the point-to-point network in Figure3.10(a). With co-
operative relaying the point-to-multipoint flow network inFigure3.10(b)is estab-
lished. We call the latter network graph Cooperative Triangle (CTR) and assume
that a Combining-based Selection Relaying (CSR) protocol is employed. This
case is equivalent to the basicSDF protocol [LWT04] and allows a consistent
comparison of the results. Both flow networks in Figure3.10only differ in the
direct link (a,d) which is only included in theCTR as only theCSRprotocold
makes use of this link by combining.

In both protocolsK = 2 orthogonal subchannels are required per end-to-end
transmission froma to d. This splits theMAC cycle into two phases. In the first
phase, relayb overhears the signal froma. In the second phase,b may forward this
signal tod. Note that even withCTR, only K = 2 is required as noded overhears
the signal froma as a broadcast and, thus, requires no additional phase to receive
the first packet.

In the CTR network, we obtain the diversity order as in (3.2). Both cut sets
include two links, already at minimum cardinality|S1| = |S2| = 2. Hence, the
diversity order of the CTR isL = 2. The end-to-end outage probability of the
CTR is derived according to Section3.3.2. Applying (3.4) to both cut sets in
Figure3.10(b)provides the link-dependent termΘCTR = ΘT/Γa,d where

ΘT =
Γa,b+Γb,d

Γa,bΓb,d
(3.5)

includes all links other than(a,d). InsertingΘCTR and the above-derived values
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for K andL in (3.3) yields

Pout
CTR =

1
2Γa,d

ΘT

(
22R−1

Γ

)2

(3.6)

for the end-to-end outage probability of aCSR protocol operating in theCTR
network. Note that this result consistently matches the outage probability given in
[LWT04, (22)] that was approximated using a different method.

ForNCR, the derivation is similar to the cooperative case. Asd cannot exploit
channel(a,d), both cut sets in Figure3.10(a)include only a single link. This
means that even if only a single link in Figure3.10(a)is in outage, an outage
at d occurs. Consequently, the diversity order isL = 1 which is equal to direct
transmission. Applying (3.4) and (3.3) results in

Pout
NCR = ΘT

(
22R−1

Γ

)

(3.7)

for the end-to-end outage probability ofNCR. This result is similar to thePout

approximation for direct transmission in (2.12). Compared to direct transmission,
NCR still only achievesL = 1 but addsK = 2 as a factor toRsince now two slots
are required.

We will further discuss these analytic results and provide numerical examples
below. Let us first derive diversity order and outage probability for the two-relay
case.

Two relays

The diversity order and outage probability can be further improved by adding
more relays to theCTR. Besides employingCSR protocols likeSDF or CC,
multiple relays allow to usePSRprotocols such asOR or CoopMAC (Section
3.2). While with CSR, d combines the signals received from all relays and from
the direct link, aPSRprotocol aims to choose the relay which provides the best
path towardsd. Naturally, such relay selection is only possible with at leastN = 2
relays.

To systematically study the two-relay case, we account for all possible flow
networks. Therefore, we add nodec to theCTR which, like nodeb, performs
regenerative selection relaying tod. This leads to the four flow networks in Figure
3.11. As in [LVK +08], we call these networksdiamonds. Flow networks where
the direct link(a,d) is included are calledstrong; networks making use of the
inter-relay link(b,c) are calledfull. Networks without these links are calledweak
or sparse, respectively. In each of the resulting four diamonds, any of the nodes



3.3. Performance analysis of selection relaying 43

a,cγ

γb,d

S3 S4S2S1

γc,d

γa,b
b

c

da

(a) Weak Sparse Diamond
(WSD)

a,d

a,cγ

γb,d

S3 S4SS1

γc,d

2

γa,b

γ

b

c

da

(b) Strong Sparse Diamond
(SSD)

γ

γb,c γb,d

S3S2S1

γc,d

γa,b

a,c

b

c

da

(c) Weak Full Diamond
(WFD)

a,cγ

γb,c γb,d

S3SS1

γc,d

2

γa,b

γa,d

b

c

da

(d) Strong Full Diamond
(SFD)

Figure 3.11:Diamondflow networks in a four-node scenario with unidirectional
transmission froma to d: Instantaneous SNRγi, j for any link(i, j) and all distinct,
unidirectional cut setsS := {S1, . . . ,SN}.

a,b,c may transmit. If these nodes transmit,K = 3 orthogonal subchannels are
required.

For both sparse diamonds, we define the cut setsS := {S1, . . . ,S4} as illustrated
in Figure3.11(a)and3.11(b). For the full diamonds, defining a cut setS4 is not
defined as the inter-relay link(b,c) would causeS4 to be bidirectional. Hence,
for both full diamonds, only the cut setsS := {S1, . . . ,S3} are defined in Figure
3.11(c)and3.11(d).

Combining-based Selection Relaying (CSR) This protocol type can operate in
each flow network in Figure3.11. For each network, we obtain the diversity order
after combining atd as above. Searching theM cut setsSM ⊆ S with minimum
cardinality provides the diversity orderL as the number of links in these sets. If
CSRis employed in the sparse diamonds, we find the four setsSM := {S1, . . . ,S4}
while, for the full diamonds, only the two setsSM := {S1,S3} includeLM channels.
Counting the channels in these sets results in diversity order L = 2 for the weak
and inL = 3 for the strong diamonds.

Note that with full diamonds evenc can combine the two signals from(a,c)
and(b,c). This causes aCTR a−b− c to appearinsidethe diamond improving
diversity order at nodec. Naturally, the diversity order of thisCTR at nodec is
Lc= 2. Formally, this is derived as above handling nodecas a destination. Finding
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Table 3.1: Results of the outage analysis for CSR.

Flow network Outage probability at high
SNR,Pout ≈

Div. order,
L

Div. order
atc, Lc

# subchan.
K

Direct 1
Γa,d

2R−1
Γ 1 – 1

NCR ΘT

(
22R−1

Γ

)

1 1 2

CTR 1
2Γa,d

ΘT

(
22R−1

Γ

)2
2 1 2

WSD 1
2ΘS

(
23R−1

Γ

)2
2 1 3

WFD 1
2ΘF

(
23R−1

Γ

)2
2 2 3

SSD 1
6Γa,d

ΘS

(
23R−1

Γ

)3
3 1 3

SFD 1
6Γa,d

ΘF

(
23R−1

Γ

)3
3 2 3

Any 1
L! Θ

(
2KR−1

Γ

)L
|Sm| |Sc

m| N+1

all Sc
M cut sets of minimum cardinality at nodec and calculating the cardinality

for any of these setsSc
m ∈ S

c
M leads toLc = |Sc

m|= 2.
Using (3.3) and (3.4) provides the outage probability approximations for high

SNR as in Table3.1. The link-dependent terms are

ΘS=
Γa,bΓa,c+Γa,bΓc,d+Γa,cΓb,d+Γb,dΓc,d

Γa,bΓa,cΓb,dΓc,d
(3.8)

for the sparse diamonds and

ΘF =
Γa,bΓa,c+Γb,dΓc,d

Γa,bΓa,cΓb,dΓc,d
(3.9)

for the full diamonds. For the weak diamonds,ΘS andΘF directly result from
(3.4). For the strong diamonds,ΘS or ΘF occur if 1/Γa,d is factored out from the
result of (3.4).

We summarize the analytic results forCSRin the four diamond networks in
Table3.1. For comparison and to highlight the uniformity of thePout formulas, we
include direct transmission and the general approximationfor selection relaying
in any flow network.

Path allocation-based Selection Relaying (PSR) If path allocation is based on
full CSI, PSRprotocols can be treated similarly to combining-based protocols
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Table 3.2: Results of the outage analysis for PSR with full CSI.

Flow network Outage probability at high
SNR,Pout

Div. order,
L

Div. order
atc, Lc

# subchan.
K

WSD 1
2ΘS

(
22R−1

Γ

)2
2 1 2

SSD 1
6Γa,d

ΘS

(
22R−1

Γ

)3
3 1 2

Any 1
L! Θ

(
2KR−1

Γ

)L
|Sm| 1 {1,2}

(Section3.2). To minimizePout, any of the abovePSRprotocols would choose
one of the pathsa→ d, a→ b→ d, or a→ c→ d. As no combining is performed,
nodec cannot profit from links(c,b) or (b,c). Without combining, both links can
only increase the end-to-end outage probability atd and are, thus, not chosen by
PSR.

Consequently, PSR only operates in the sparse diamondsWSDandSSDmak-
ing (3.8) the relevant link-dependent term. Assuming ideal CSItx, PSR chooses
the best out of two paths in the WSD and the best out of three paths in the SSD.
Thereby, PSR reaches equal diversity orderL as CSR at the destination – a result
also shown by Bletsas et al. [BKRL06]. This leads toL = 2 for theWSD. For
theSSDand any denser configuration with four nodesL = 3 is reached. For any
number of relays,PSRreachesL at the cost of eitherK = 1 if the direct patha→ d
is chosen or atK = 2 if any relay is chosen.

These results forPSRwith full CSI are summarized in Table3.2. Although
the outage probability is derived equally forPSRandCSR, the obtainedPout func-
tions differ in their parametersK, L, andLc. We will now discuss the differences
between the two protocols in detail.

Discussion

Analytic results Let us first discuss the above analytic results forCSR(Table
3.1). Comparing the link-dependent terms for the sparse (3.8) and full diamonds
(3.9) shows thatΘS has a larger numerator thanΘF while the denominators are
equal. As the SNR scaling factorΓi, j can only take positive values, we obtain

ΘS> ΘF . (3.10)

This means that the outage probability of a CSR protocol can beimproved by
connecting the relays by an intermediate link, i.e., link(b,c) in our full diamond
configurations. This result holds for any network geometry (here expressed by
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the Γi, j values). The inter-relay link(b,c) provides this gain by causing aCTR
a−b−c to appear inside the diamond, improving diversity order at nodec to Lc =
2. Hence, even with theWFD where the direct link cannot be used, cooperation
within the diamond can improve overall outage performance for CSR.

Comparing the outage probabilities ofCSRfor the weak and strong diamonds
shows that using the direct link adds a factor 1/Γa,d and increases the diversity
order by one. Both significantly improves the outage probability for a strong
diamond if compared to the corresponding weak diamond.

The parameterK accounts for the number of orthogonal subchannels required
for a an end-to-end transmission froma to d. As the multiplexing loss increases
linearly in K, this parameter represents the cost for the additional transmissions
due to relaying. WithCSRprotocols the multiplexing loss depends on the number
of relays. As source and allN relays can transmit,K = N+1 orthogonal subchan-
nels are required. Comparing configurations of equalK shows thatNCR and the
weak diamonds make only inefficient use of the channel by spending K phases
for reaching a diversity orderL = K −1. In contrast, direct transmission,CTR,
and the strong diamonds reachL = K. While this difference has only a small ef-
fect on the outage probability, it highly affects the outagecapacity reached in a
configuration. We will further discuss this aspect in Section 3.3.4.

The outage probability ofPSRprotocols with fullCSI (Table3.2) is similar
to that ofCTR. The first difference result from the lack of combining. Without
combining,PSRcannot profit from the inter-relay links to increaseLc and, thus,
employs only the sparse diamonds. The second difference is that PSR can achieve
full diversity at the cost ofK = 1 or K = 2 orthogonal subchannels. This can be
beneficial in terms of outage capacity and is further discussed below.

Numerical results As an example for the above analytical results, Figure3.12
shows numerical results for the parameters from Section3.3.1and a symmetric
diamond geometry. Here, all node-to-node distances are 1 unit except for the
direct link where the diamond geometry requires a distance of Da,d =

√
2 units

between nodea andd. Figure3.12compares different flow networks as well as
different protocols.CSRprotocols operate in any diamond network from Figure
3.11and in theCTR. PSRprotocols operate only in the WSD and in the SSD.

Clearly, the diversity orderL has the largest effect on the outage probability.
Its exponential effect divides the results into three groups: The outage probability
that CSR and PSR reach in the strong diamonds (L = 3) is clearly below the
probability reached in theCTR and in the weak diamonds (L = 2). Naturally, the
worst outage probability is obtained with direct transmission andNCR (L = 1).

Within these groups defined byL, the link-dependent factorsΘ and 1/Γa,d

as well as factor 1/L! lead to outage probability offsets. These offsets are called
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coding gains (Section2.2.1) and have different origins. The coding gain of di-
rect transmission overNCR results from the fact that for NCR thePout of both
independent links adds up. This causes thePout for NCR to be significantly larger
than for direct transmission. Consequently,NCR reaches the worst outage proba-
bility of all studied systems. Comparing the outage probability that CSR reaches
with sparse and full diamonds shows a coding gain with the full diamonds. As
discussed above (3.10), this results from the intermediate link which improves the
outage probability with the full diamonds. Comparing PSR andCSR in the corre-
sponding configuration shows a significant coding gain for PSR. This gain results
from the fact that PSR utilizes, at worst,K = 2 orthogonal channels while CSR
employsK = 3 at high SNR.

From these analytic and numerical results, we suggest that exploiting as many
links as possible should be the major focus of a cooperation protocol if minimal
outage probability is desired. This includes even combining at intermediate nodes.

3.3.4 Outage capacity for arbitrary flow networks

Before studying specific cases, we extend the theoretical framework from Sec-
tion 3.3.2to theoutage capacity Cout for general flow networks at high SNR. As
described in Section2.1.2, Cout is the largest spectral efficiencyR such that the
outage probabilityPout(R) does not exceed theoutage probability constraintε.

Several studies approximatedCout for cooperative relaying and Rayleigh fad-
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ing. Without further constraints,Cout at high SNR forDF [HM02] and at low
SNR for DF andAF [AT07] were approximated. With practical constraints on
synchronization and duplexing, theCout of DF andCFwas studied [HMZ05]. All
these studies show significant gains for cooperative relaying at low and medium
SNR in terms ofCout but all of them are limited to theCTR network. Although
we will include this special case for comparison, ourCout results apply to general
flow networks withN relays.

First approximation for high SNR

As a first step, we approximate the outage capacity for high SNR. Defining cut sets
and applying (3.3) and (3.4) provides the high SNR end-to-end outage probability
Pout. As described in Section2.1.4, the outage capacity is now obtained by solving
Pout(R) = ε for R. This results in

Cout ≈ R=
1
K

log2

(

1+Γ L

√

L!ε
Θ

)

[bits/s/Hz] (3.11)

as the end-to-end outage capacity at high SNR for any given flow network. It
should be noted that for any feasible value ofε, L, andΘ, the term

Ψ :=
L!ε
Θ

(3.12)

in (3.3) is non-negative and, hence, a real-valued solution ofCout can be obtained.
The outage capacity is linearly reduced by the multiplexingloss 1/K. This

clearly expresses the costs of relaying via orthogonal subchannels (Section2.3).
With relaying, K > 1 nodes may transmit per end-to-end transmission and the
channel resources have to be split intoK orthogonal subcannels. At equal band-
width this, naturally, divides the end-to-end capacity byK.

Second approximation for high SNR and largeL

The outage capacity can be further characterized by simplifying (3.11) for high
SNR and largeL. At high SNR, we can approximate log2(1+ Γ) ≈ log2(Γ).
Applying this approximation to (3.11) leads to

Cout ≈ C̃out =
1
K
(log2Γ+ log2

L
√

Ψ) (3.13)

where we can write

log2
L
√

Ψ =
1
L
(log2(L!)+ log2ε − log2Θ). (3.14)



3.3. Performance analysis of selection relaying 49

Here, we can approximate for largeL [BS04]

log2(L!) =
L

∑
l=1

log2 l ≈
∫ L

1
log2x dx= L log2L−L. (3.15)

Inserting this approximation in (3.14) and the resulting term in (3.13) provides

C̃out =
1
K
( log2(LΓ)
︸ ︷︷ ︸

=CL

+
1
L

log2ε
︸ ︷︷ ︸

Fading

− 1
L

log2Θ
︸ ︷︷ ︸

Relaying

−1) [bits/s/Hz] (3.16)

as a simple approximation of the outage capacity (3.11).
Apart from the multiplexing loss, this approximation is dominated by three

terms: First, theAWGNcapacity at high SNR CL = log2(LΓ) for an L-fold re-
ception of the same signal. Second, theε-dependent term which significantly
reducesCL since, typically,ε ≪ 1 ⇔ logε ≪ 0. Third, theΘ-dependent term
which includes all link-dependent scaling factors according to the flow network
of the employed relaying protocol.

Discussion

Analytic results Due to theCL term in (3.16), the outage capacity increases
logarithmically with the SNRΓ and the diversity orderL. With the subtrahends in
the logarithmic domain, the outage capacity is only a small fraction of theAWGN
capacityCL. This reduction is independent on the SNR and does only depend
on the outage probability constraintε, on the link-dependent termΘ, and on the
diversity orderL.

The degradation ofCL due toε accounts for the overall effect of fading. This
degradation increases for smallerε and decreases for largerL. This result shows
that a stricter error rate constraint decreases the outage capacity and that this effect
can be mitigated by increasing the diversity order. Similarresults where found for
low SNR [AT07] that consistently matches to our approximation for high SNR.

In (3.16) the AWGN capacity is further degraded by theΘ-dependent term.
Again, this degradation is reduced ifL increases. Further, this degradation de-
pends onΘ which accounts for the SNR scaling factors, for the available relays,
and for which relays and links are employed by a relaying protocol. Hence, the
third term in (3.16) clearly captures the effect of the network geometry and of the
relaying protocol. Note that for general networks this effect is not characterized
in previous approximations of the outage capacity [HM02, HMZ05, AT07]

Numerical results We compare both outage capacity approximations to simu-
lation results in Figure3.13. As a simple example, we focus on theCTR where
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CSRachieves a diversity orderL = 2. Two levels ofε are studied; each account-
ing for different traffic requirements. For example, a lowε represents the strict
error rate constraint of real-time voice or video traffic. Such a transmission is very
vulnerable to fading and only a lowε is acceptable. On the other hand,ε can be
usually larger with non-real time traffic, e.g., file downloads or web pages.

For these parameters, Figure3.13(a)shows absolute outage capacity results.
In Figure 3.13(b)outage capacity is plotted as a fraction of the corresponding
AWGN capacity, i.e.,CL = log2(LΓ) with L= 2, isolating the impact of fading and
relaying. The figures show that, at high SNR, both approximations are tight. Even
at L = 2, the simple approximatioñCout (3.16) matches well with the simulation
results. As the accuracy of the approximation (3.15) improves inL, alsoC̃out

becomes more accurate ifL increases in larger cooperative setups.
For decreasing SNR, both approximations disperse and do not match to the

simulation results. This is expected as the underlyingPout approximation (3.3) is
only valid at high SNR. At low SNR, the approximationCout and the simulation
results become convex (Figure3.13(a)). This shape of the outage capacity for
Rayleigh fading is known [AT07] and shifts to higher SNR if the impact of fading
increases, i.e.,ε or L decrease. Vice versa, in scenarios with highε or highL (e.g.,
soft robustness constraints or many relays) both approximations are still accurate
in the medium SNR regime.

All in all, we can conclude that at high SNR both approximations of Cout

closely match the simulation results. At lowCout (e.g., due to low SNR or high
ε) both approximations become less accurate but the new approximation (3.16)
matches closer to the empirical results than (3.11).

3.3.5 Outage capacity for one and two relays

Let us now use the derivedCout approximation to rate the outage capacity of flow
networks withN = 1 andN = 2 relays. With this relatively low (but practical)
number of relays cooperation reaches at best a diversity order of L = 3. Hence,
we employ the first approximation (3.11) which holds even for lowL. Similar
to our Pout analysis we focus onCSR and PSRprotocols and ignore practical
constraints onCSIand network connectivity.

CSR with one and two relays

For general flow networks, the high SNR outage capacityCout is readily provided
by (3.11). For a particular flow network, we obtainCout by derivingΘ,L, andK as
above (or by using the values from Table3.1 if this network was already studied)
and by inserting into (3.11).
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For “weak” flow networks without the direct link (NCR, WSD, WFD), the
respectiveΘT , ΘS, ΘF from Table3.1 can be inserted directly. For the “strong”
networks, we factored out 1/Γa,d from Θ, which now needs to be re-included
before we can insert the values from Table3.1 in (3.11). This is simply done
by Θ = Θ′/Γa,d whereΘ′ represents one of the channel-dependentΘ-terms from
Table3.1.

For example, the outage capacity for the “strong”CTRis obtained by choosing
K = 2, L = 2, andΘ′ = ΘT from Table3.1. Therewith,Θ = ΘT/Γa,d and (3.11)
yield

Cout
T =

1
2

log2

(√

2εΓa,d

ΘT
·Γ+1

)

(3.17)

for this single-relay SDF case.

PSR with two relays and full CSI

With full CSI, PSR can employ perfect CSItx to choose the path that minimizes
Pout. This ideal case corresponds to the Opportunistic Relaying (OR) protocol
studied in [BSW07, BA07] and in Section3.3.3. Alternatively, a PSR protocol
may choose a path which maximizes outage capacity. Such protocols aim for
a beneficial tradeoff of diversity gains and multiplexing loss and would, thus,
choose the direct link even if it increasesPout but (due to the lowerK) improves
Cout. A practical example of such aCout-maximizing protocol was described as
CoopMAC [LTN+07]. Let us now analyze the outage capacity of both PSR strate-
gies.

Minimize outage probability For this min(Pout) strategy, the general outage
capacityCout

ORF is directly given by (3.11). For the studiedN = 2 network we insert
the values from Table3.2 into (3.11) and obtain

Cout
PSR,WSD=

1
2

log2

(√
2ε
ΘS

·Γ+1

)

(3.18)

as approximate outage capacity for the WSD at high SNR and

Cout
PSR,SSD=

1
2

log2

(

3

√

6εΓa,d

ΘS
·Γ+1

)

(3.19)

for the SSD.
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Maximize outage capacity Based on fullCSI, a max(Cout) protocol simply
selects the “best” network path assuring max(Cout) from all network paths. Al-
though direct transmission cannot achieve aPout smaller than the outage proba-
bilities in Table3.2, its outage capacityCout

DIR can exceed (3.18) and (3.19) since it
may meetε at lowerK.

Following this strategy, a max(Cout) PSRprotocol achieves outage capacity

Cout
PSR,M= max(Cout

PSR,C
out
DIR) (3.20)

with full CSI whereCout
PSRrepresents the outage capacity of the available configu-

ration.

Discussion

Numerical results for the most interesting configurations of the Pout study are
shown in Figure3.14. We use the parameters from Section3.3.1but study two
levels ofε. As in Figure3.13, a low and a high error rate constraint is chosen.
To highlight the effect of this constraint and of the capacity degradation due to
relaying, we plotCout as a fraction of the AWGN capacityCL. To this end, we
choose diversity orderL of the studied relaying scheme (Table3.1 or 3.2) and
divideCout by CL = log2(LΓ). Both figures show direct transmission,NCR, and
CSRandPSRprotocols.CSRis shown for the CTR and SFD configuration and
PSR is shown for the SSD. ForPSRboth optimization objectives (min(Pout) and
max(Cout)) are shown.

Figure3.14(a)illustrates the outage capacity of these cases forε = 10−3. With
this strict error rate constraint, direct transmission performs poorly. Due to (3.20),
this link is never chosen by PSR if it aims to maximizeCout. Thus, both PSR
strategies perform equal. At high SNR,PSRoutperformsCSR for all studied
flow networks until PSR reaches 24 % of the respective AWGN capacity. Conse-
quently, at high SNR and lowε, PSRis a better choice thanCSR. With decreasing
SNR the situation reverses. Here, CSR performs best if it can employ as many
links as possible (cp. Figure3.12), i.e, if an SFD can be established. TheCTR
cannot achieve this high performance due to its lower diversity order L. Conse-
quently, with strict error rate constraints and medium or low SNR, CSR protocols
in full networks (e.g., the SFD) are preferable.

Figure 3.14(b)with ε = 10−1 represents a typical error rate acceptable for
non-real time traffic inWLAN systems [OP99]. At this highε, even direct trans-
mission shows its benefits. For high SNR it achieves up to 50 % of the AWGN
capacity and, thus, outperforms any relaying scheme. To this end, at high SNR,
direct transmission is chosen byCout-maximizing PSR. This choice is represented
by the sharp bend of theCout function at 23 dB (Figure3.14(b)) which results
from (3.20). Compared to all other relaying cases and direct transmission, PSR
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max(Cout) achieves the highest outage capacity for all studied SNR levels. At
high SNR, it outperforms thePout-minimizing PSRand theCSRstrategies which
suffer from a high multiplexing loss due to relaying.

3.4 Performance analysis under practical
constraints

In our above analysis we compared the performance ofCSRandPSRprotocols
assuming fullCSI and ideal network connectivity. With full CSI, perfect channel
knowledge is available at all nodes at no cost. Assuming ideal network connec-
tivity implies that a flow network employed by a relaying protocol can be always
established. That is, relays always occur in the source’s propagation domain and
links are never shadowed by obstacles. These idealistic assumptions suit well for
a unified performance analysis but can only provide a starting point for practically
relevant studies.

Before studying realistic scenarios by simulation and field measurement (Chap-
ter 4 and6), we study outage probability and capacity under more practical as-
sumptions. To this end, we limitCSI and network connectivity which degrades
the above analytic results individually forCSRandPSR. The results highlight that
– despite the unified results for the ideal case – the performance ofCSRandPSR
significantly differs under practical constraints. This leads to different scenarios
where each of these protocols is beneficial.

3.4.1 Effect of limited CSI feedback

With full CSI, perfect channel knowledge is assumed to be available at alltrans-
mitters at no costs. Although thisCSI assumption is along the line with most
theoretic work on PSR [BSW07, BA07, AFYP08], it unfairly favorsPSRabove
CSR.

Unlike CSR, PSR protocols requiretransmitter CSI(CSItx) for their network
path allocation. This type of CSI is not required by CSR and is usually costly
to obtain. With non-reciprocal channels, CSItx has to be obtained by feedback.
The receiver measuresCSI and transmits it back to the transmitter via an error-
prone wireless channel. As this feedback channel is always limited,CSI feedback
introduces overhead, delay, and transmission errors. So far, the effect of limited
CSI feedback on PSR protocols is only rarely studied in literature. Lo, Heath,
and Vishwanath [LHV07] study throughput and error rate for distributed path al-
location under limited CSI feedback. However, the authors make very specific
assumptions on the employed codes and path allocation method and ignore feed-
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back errors imposed by fading channels. Both is not the case inthe following
outage probability and outage capacity analysis.

In addition to costly CSItx, PSRsystems requirereceiverCSI (CSIrx) for co-
herent detection. This type of CSI is also required by CSR for coherent detection
and combining. In most systems the receiver observes CSIrx from a short train-
ing sequence withing the received packets at low overhead.2 Since both protocol
types equally rely on CSIrx and obtain this channel knowledge at equal (typically
low) cost, we compare both protocols for perfect CSIrx. On the other hand, we
account for the specific CSItx demands of PSR by limiting this type of channel
knowledge.

Outage probability

For PSR’s diversity order and outage probability, the available CSItx (either at the
source or at all relays) is crucial. With ideal CSItx, a PSR protocol can always
choose thePout-minimal path, thus reaching full diversity order and idealoutage
probability. As we ignore CSIrx constraints, ideal CSItx is equivalent to fullCSI
and, naturally, the same results as in Section3.3are obtained. IfPSRoperates in
the SSD, it reaches full diversity orderL = 3 and thePout in Table3.2. We include
these results in Table3.3for comparison.

Assuming no CSItx allows a fair comparison ofPSRto CSRprotocols, which
only require CSIrx. Under thisCSI assumption,PSRcannot choose the best path
and reaches onlyL = 1 (Table3.3) [BSW07]. We treat suchPSRprotocol as
a special case ofNCR and, thus, include (3.7) in Table 3.3. Note that in the
symmetrical scenario the average gain provided by choosingrelay c is equal to
the gain of choosing relayb. Thus,ΘT suffices as link-dependent term.

The results for these two extreme cases are summarized in Table 3.3. With-
out CSItx, PSRonly reaches the poor outage probability ofNCR. On the other
hand, with CSItx, the minimal outage probability of theWSD with full diversity
is reached. This simple comparison clearly points out thatPSRprotocols heavily
rely on CSItx and thatPSRwithout feedback is no option. Let us now study how
obtaining CSItx via possibly erroneous feedback channels reduces outage capac-
ity.

Outage capacity

While perfect CSItx requires feedback at every channel change, even limited CSItx

occasionally employs feedback channels. At which transmitter this channel knowl-
edge is required depends on thePSRprotocol. ProactiveORprotocols and Coop-

2For instance, in IEEE 802.11a/g systems the first 16µs of a Physical layer (PHY) frame are
employed for training, i.e., only 1.6 % of a typical 1 ms frame.
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Table 3.3: Results of the outage analysis for PSR, SSD with limited CSI.

CSI Outage probability at high
SNR,Pout

Div. order,
L

Div. order
atc, Lc

# subchan.
K

Rx and Tx 1
6Γa,d

ΘS

(
22R−1

Γ

)3
3 1 2

Rx only ΘT

(
22R−1

Γ

)

1 1 2

MAC require CSItx at the source while reactiveOR protocols require CSItx at all
relays (Section3.2). In each of these cases, the most efficientCSI feedback in
terms ofK is a single broadcast fromd. Focusing only on this broadcast and ig-
noring that reactiveOR requires further coordination overhead, e.g., a contention
phase among the relays, provides an upper bound of the overhead-degradedCout

for proactive and reactive protocols.
In our two-relay scenario, the CSI broadcast ofd has to reach both relays

if a reactive protocol is employed. During the broadcast,d utilizes the links
{(d,b),(d,c)} for K = 1 phase. Applying (3.4), (3.3), and (3.11) as above yields
the capacity of this feedback channel as

Cout
FB := log2(εΓd,bΓd,cΓ+1). (3.21)

In a proactive protocol, only unidirectional feedback toa is required. In this case,
we employCout

FB := log2(εΓd,aΓ+1) instead of (3.21).
For proactive and reactivePSRprotocols, we assume thatbFB bits of CSI are

transferred once perfeedback periodof NT protocol cycles. Theshare of the
feedback channel’s outage capacitythat remains after this feedback is defined as

RFB(bFB,NT) :=

{
Cout

FB−bFB/NT

Cout
FB

; bFB/NT ≤Cout
FB

0 ; otherwise
(3.22)

and captures the feedback overhead (bFB), frequency (NT) as well as channel ca-
pacity and error constraints (Cout

FB).
With RFB andCout from (3.11), the end-to-end outage capacity of aPSRpro-

tocol degraded byCSI feedback overhead and errors is

Cout
PSR,FB=Cout

PSR·RFB(bFB,NT). (3.23)

The termCout
PSRdepends on thePSRobjective and configuration. IfPSRaims for

minimal Pout, (3.18) accounts for the WSD and (3.19) for the SSD configuration.
With the max(Cout) strategy, we insert (3.20).
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To simplify the above discussion, we assumed that aPSRprotocol gives up if
no transmission via the feedback channel is possible, i.e.,if bFB/NT > Cout

FB . In
this case, (3.22) and (3.23) are zero. Furthermore, we assumed that the outage
probability constraint for dataεData is equal to the outage probability constraint of
CSIfeedbackεFB. Due to the high relevance ofCSIfeedback usually,εFB ≤ εData.
Our assumptionε := εFB = εData is, therefore, optimistic. It leads to a higherCout

FB
than usual and is, thus, feasible for an upper bound ofCout

PSR,FB.

Number of CSI feedback bits Choosing the number of CSI feedback bitsbFB

depends on the required CSItx accuracy. Ifd reactively selects the “best” out of
N relays and the direct link,bFB = log2(N+ 1)bits have to be transferred. In
our two-relay example, this leads tobFB = log23 bits. Naturally,bFB increases
with more sophisticated forms of channel adaptation, e.g.,if d also assigns the
transmission rate to the relays.

Feedback period The destination transmitsbFB once everyNT cycles. Choos-
ing this feedback period depends on the coherence time of thefading channel. To
synchronize CSItx to a block fading channel,CSI feedback is required once per
fading block. As we assumed one block perMAC cycle, this case is expressed by
NT = 1, i.e., one feedback transmission per cycle.

The more practical case, however, is limited CSItx which requires only occa-
sional feedback. In this case,NT > 1 can be chosen if the channel’s coherence time
is larger thanTcycle. For instance, with typical IEEE 802.11aWLAN parameters
(i.e., 5.2 GHz carrier frequency, 1 ms transmission time per packet) an approxi-
mate channel coherence time of 57 ms can be assumed at a slow walking speed of
1 m/s. CSItx can be synchronized to this channel by updating feedback once per
coherence time, i.e., once everyNT = 57 protocol cycles withTcycle= 1 ms. Natu-
rally, more frequent feedback is required with faster nodesor if the coherence time
cannot be accurately approximated for the used fading channels (Section2.1.2).
Let us now useNT = 57 andbFB = log23 bits to study our two-relay networks by
numerical results.

Discussion

Feedback errors can substantially degrade the performanceof a PSRprotocol es-
pecially if it operates under strict error rate constraints. As such constraints are
typical for cooperative relaying protocols, it is interesting to study how the per-
formance ofPSRdegrades with erroneousCSI feedback.
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Analytic results Unlike the outage capacity of CSR protocols, the capacity of
PSR is reduced byCSI feedback. In (3.23), the feedback loss linearly reduces
PSR’s outage capacity and depends on the desired CSItx accuracy in time and
value. This loss increases with the feedback frequency 1/NT and is small if the
destination assigns the transmission to the “best” relay. More sophisticated chan-
nel adaptation or a contention phase among the relays will decrease the feedback-
degraded outage capacity ofPSR.

Moreover, the capacity of the feedback channel depends on the error rate con-
straintε. Decreasingε leads to a lower outage capacity of the feedback chan-
nel (3.21). This logarithmically degrades the end-to-end outage capacity of PSR
(3.23).

Numerical results In Figure3.15the outage capacity for PSR operating in the
SSD configuration with several degrees ofCSI is shown. We use the same param-
eters as above and include the results for direct transmission and forCSRin the
CTR configuration from Figure3.14for comparison.

PSRwithout CSItx and PSRwith full CSItx represent the lower and upper
bound, respectively. As a realistic case, PSR with limited CSItx obtained by feed-
back is studied. Figure3.14(a)illustrates the capacity for the different CSI degrees
under strict error constraints. As in Figure3.14(a), direct transmission performs
poorly and PSR without CSItx is no option. Even with only a single relay,CSR
reaches acceptable performance. It is only outperformed byPSR if full CSI is
assumed.

The outage capacity of this idealistic case is significantlydegraded if realistic
feedback is assumed. While at high SNR even with limited feedback aCout close
to the upper bound is reached, at decreasing SNRCout quickly drops to zero. This
is a result of using only a single broadcast transmission forfeedback. Such a
feedback channel cannot achieve a diversity order larger than L = 1 and would
require infeasible coding redundancy to meet a strict outage probability asε =
10−3 (Section2.2.1). Consequently, at medium and low SNR, the capacity (3.21)
of the broadcast channel is too low to transfer the fullbFB bits even if, as in this
example,bFB is very small.

The poor performance of PSR with limited CSI clearly shows that a single
feedback phase is not sufficient if PSR operates under stricterror constraints. In-
stead, additional protection, e.g., by cooperating even during the feedback phases,
is required. We will discuss the implementation of thiscooperative feedbacktech-
nique in Chapter5 and Chapter6.

Figure3.14(b)shows the above protocols and CSI degrees at a relaxed error
rate constraintε = 10−1. At such highε the full CSI case is only slightly degraded
by feedback errors. Here, a single broadcast channel provides sufficient capacity
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to transfer the feedback information. Consequently, even ifwe account for over-
head and feedback errors, CSR protocols are significantly outperformed by PSR
when the acceptable error rate is high.

Region of operation

The above results show that choosing the “best” relaying protocol to maximize
outage capacityCout highly depends on available CSI, the outage probability con-
straintε, and on the SNR regime. Depending on these parameters, theCout func-
tions intersect, making eitherPSRor a particularCSRa good choice. This pre-
ferred region of operationfor a specific protocol is summarized in Figure3.16.
For variousε, the figure shows the reference SNR valueΓ where the capacity
functionsCout

A andCout
B of the compared casesA andB intersect. IfΓ increases

above the plotted value,Cout
A exceedsCout

B . Hence, for an SNR above a shown line,
caseA is preferable while, below the line, caseB achieves higher capacity.

In Figure3.16, PSR is studied in the SSD configuration for full and limited
CSI. This protocol is compared to CSR which operates in the CTR and SFD.
Direct transmission always requires largest SNR and is, thus, not included. At a
low ε, PSRdemands a lower SNR than CTR to outperform the SFD if full CSI
is available. Taking limited CSI feedback into account, however, shows that OR
is only efficient for anε larger than 10−2. As discussed above, this results from
the direct feedback channel that represents a “bottleneck”if a smallε is chosen.
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Here,CTRandSFDreach significant SNR gains abovePSRif limited CSI has to
be obtained via feedback.

All in all, Figure 3.16allows to choose the relaying protocol and network that
maximizes the outage capacity at a given error rate constraint and an expected
mean SNR. During operation, it also can be employed as a lookuptable for an
adaptation scheme selecting the “best” relaying protocol according to the mea-
sured SNR.

3.4.2 Effect of limited network connectivity

So far we assumed that all links of a given flow network can be established. In this
model, deep fades cause short-time channel outages but on the average, all links
and relays that a protocol can employ are available. This assumption is unrealistic
in urban scenarios where only a limited number of relays may be available in
the source’s propagation domain or where obstacles shadow links for multiple
MAC cycles. In this case only subsets of the above flow networks are available,
limiting a cooperation protocol’s performance. AsPSRandCSRemploy different
flow networks, shadowed links degrade the performance of both protocol types
differently.

To comparePSRandCSRon a fair basis, we count how often the above two-
hop flow networks occur in large simulated networks. The resulting occurrence
probability Po is counted exclusively for each flow network in Figure3.10 and
3.11 and it is assumed that a cooperation protocol can employJ different net-
works. Expressing these networks by their link-dependent termsΘ1, . . . ,ΘJ al-
lows us to condition the outage capacity on the occurrence probabilities of those
networks the cooperation protocol employs. Mathematically speaking, we define
this occurrence-conditioned outage capacityas

Cout,o :=
J

∑
j=1

Po(Θ j) ·Cout(Θ j). (3.24)

This connectivity-degraded capacity metric accounts for the fact that even a coop-
eration protocol with superiorCout reaches only poor performance if it relies on
flow networks that almost never occur.

Counting triangles and diamonds

To obtainPo, we count the occurrence of the Cooperative Triangle (CTR) and of
the four diamond networks (Figure3.10) by simulation. We use the following
method, models, and parameters.
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(a) Unobstructed scenario (b) Manhattan grid scenario

Figure 3.17: Screen shot from the simulation software [VLK +08]: Example node
placement for both studied propagation scenarios. The network graph is shown
by black lines; counted diamonds are highlighted as subsetsof this graph.

Propagation scenarios We study the unobstructed and the Manhattan grid sce-
nario. An example for each of these basic propagation scenarios is shown in
Figure3.17. Without obstacles the signal propagates freely and is, at alarge time-
scale, only affected by path loss. The resulting network graph traverses the full
playground as in Figure3.17(a). Note that even in the unobstructed scenario deep
fades still occur as a result of many small scatterers in the propagation environ-
ment. However, in this scenario no large obstacle shadows all signal paths of a
link.

Placing such obstacles in a grid structure leads to the so-called Manhattan
grid scenario. The result is the simple chess-board structure inFigure3.17where
signals are assumed to propagate only in narrow streets. Thus, only on these
corridors a network graph can be established. This classic model is often used
to gain a first insight in urban environments with large buildings [CBD02]. The
model captures mobility by randomly re-placing the nodes over many iterations.

Node placement and connectivity checks Figure3.17also shows an example
for the node placement. Initially, all nodes are placed randomly on the playground.
Without obstacles the node locations are uniformly distributed. In the Manhattan
grid scenario the nodes are only placed on the streets. We ignore nodes on rooftops
and assume that each node may operate as source, relay, or destination. Thus,
this scenario represents a pure cooperative ad hoc network without a centralized
infrastructure or dedicated node positions.

Based on the initial node positions, the simulation establishes a network graph
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Figure 3.18: Base configuration and corresponding instantaneous SNR values.

and then splits this graph into flow networks that we want to count. An example of
these subgraphs is shown by the highlighted links in Figure3.17. The simulation
separates and counts the flow networks for all possible source/destination pairs.
After all pairs are evaluated, the nodes are randomly re-placed. This process is
repeated until the confidence intervals ofPo reach a specified size.

To count the flow networks for each source/destination pair the simulation has
to perform a large number of connectivity checks. We limit the complexity of
these checks by using two thresholds. If a signal’s SNR fallsbelow the so-called
decoding thresholdthD it is assumed to be not correctly decoded anymore. If the
SNR falls below thesensing thresholdthS it is assumed to be not coherently de-
tected anymore. Using threshold thS we model a building as anideal absorber,
i.e., γa,b ≪ thS if a building lies on the shortest path between a transmittera and
a receiverb. Further propagation effects, e.g., scattering or reflection, are ig-
nored. This model simplifies the connectivity check to only determining whether
the line segment representing the shortest path intersectswith any line segment
corresponding to a building wall.

Normalization and connectivity conditions To make the occurrence probabil-
ity independent on the playground size we obtainPo as follows. First, we count
all triangle and diamond networks along the two-hop patha → c → d. Second,
the occurrence of a so-calledbase configurationis counted. This base configu-
ration can constitute any of the counted flow networks and is shown in Figure
3.18. Nodes form this base configuration if (1) data can be transferred via path
a → c → d, i.e., (γa,c ≥ thD)∧ γc,d ≥ thD and if (2) the potential relay nodeb
successfully decodesa’s data, i.e.,γa,b ≥ thD.

Based on the occurrence of this base configuration, finally,Po of an arbitrary
flow networkΘ j is calculated by

Po(Θ j) :=
Number of foundΘ j

Number of found base configurations
.

Since the base configuration is included in the CTR and every diamond but cannot
alwaysbe extended to a triangle or diamond graph, this normalization assures
Po ≤ 1 and thatPo does not increase with the playground size.
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Table 3.4: Connectivity conditions for counting the occurrence of flow networks.

Comparison CTR WSD WFD SSD SFD

γa,c (< ; ≥) thD ≥ ≥
γa,d (< ; ≥) thS ≥ < < ≥ ≥
γb,c (< ; ≥) thS < ≥ < ≥

γa,d+ γc,d (< ; ≥) thD ≥
γa,c+ γb,c (< ; ≥) thD ≥ ≥
γb,d+ γc,d (< ; ≥) thD ≥ ≥ < <

γa,d+ γb,d+ γc,d (< ; ≥) thD ≥ ≥

The additional conditions that complement a base configuration to a diamond
are summarized in Table3.4. In place of(< ; ≥) either the operator< or ≥ is
used as defined in the table. Let us illustrate these conditions for the CTR which
simplifies a diamond due tob := c. To extend Figure3.18to the CTR, we require
γa,d ≥ thS, i.e., the destination must be able to detect the source signal. Further,
the conditionγa,d + γc,d ≥ thD must hold for a correct end-to-end transmission
to d (Table3.4) where the SNR sum accounts forMRC (Section2.2.3). If both
conditions and the conditions for the base configurations hold, a CTR is counted.
Note that a CTR may be included in a diamond but the four diamonds are mutually
exclusive (Figure3.10).

Parameters The size of the quadratic playground is 1000m2 in both scenarios.
For Manhattan grid each square obstacle is of size 78m2 and streets between these
obstacles are 20 m wide (Figure3.17(b)). This playground size sufficed for sta-
tistical significant results without effects at the playground margins. We vary the
number of nodes to studyPo for various node densities, i.e., the mean number of
neighbors in the propagation domain of the sender.

To account for path loss, we use the same model and parametersas in the
previous studies of this chapter (Section3.3.1). Rayleigh fading averages out over
time and is, thus, not modeled. For symmetry, we assume that all nodes transmit
at the same power. The SNR thresholds are thS= 4.5 dB and thD = 6 dB according
to a typical IEEE 802.11a/gWLAN transceiver specification [Ath07]. Here, the
chosen thD value corresponds to a transmission rate of 6 Mbits/s at 20 MHz signal
bandwidth.
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Discussion

Figure 3.19 shows the occurrence ratePo of the studied flow networks in the
unobstructed and Manhattan grid scenario.

The figures show the effect of a varying mean SNR onPo for a limited number
of nodes (i.e., fixed network density). For both scenarios, we observe thatPo

exponentially increases with the SNR until it saturates. Onthe other hand, the
occurrence probability of all other networks decreases forhigher SNR. This can
be explained by considering the limitΓ → ∞. In the unobstructed scenario (Figure
3.19(a)), any node can hear any other node at such high SNR. Since all nodes are
fully connected,Po

SFD → 1 and thePo of all sparser networks approaches zero.
Naturally, this is different in the Manhattan grid scenario(Figure3.19(b)). Here,
even at asymptotic high SNR paths will be still obstructed and full connection is
impossible. Consequently, at high SNR onlyPo

SFD < 1 is reached which makes
the results in Figure3.19(b)a “damped” variant of Figure3.19(a).

Summing up, at high SNR, theSFD is 97 % more likely than theCTR in an
unobstructed scenario (due to an absolute difference of twoorders of magnitude),
and only 52 % more likely in a Manhattan scenario.

3.4.3 Occurrence-conditioned outage capacity

We now summarize our above results on the outage capacity andoccurrence prob-
ability for the most interesting cases. To this end, we degrade the ideal outage
capacityCout of PSR and of CSR by the occurrence probabilityPo of all flow net-
works that a protocol can use (3.24). The resulting occurrence-conditioned outage
capacityCout,o takes into account that even a capacity-maximizing protocol is not
practical if it relies on flow networks which almost never occur. We further de-
grade the outage capacity of PSR as in (3.23) to account for limited CSI feedback.
We compare PSR and CSR for the two relay case and study all four node flow
networks that PSR and CSR can use (cp. Figure3.10and3.11).

Figure3.20includes plots for two levels ofε and two propagation scenarios.
Each figure showsCout as a solid line and the correspondingCout,o as a dashed line.
First, we compare the results for the unobstructed scenarioto the corresponding
Manhattan grid case at the sameε, i.e., Figure3.20(a)vs. 3.20(c)and Figure
3.20(b)vs. 3.20(d). This shows clearly that without obstruction all relaying pro-
tocols achieve higherCout,o than in Manhattan grid scenarios. Naturally, without
obstacles the connectivity increases with the SNR which, consequently, increases
Cout,o. This is not the case in the Manhattan grid where links are permanently
shadowed.

Second, we compare different values ofε in the same propagation scenario,
i.e., Figure3.20(a)vs. 3.20(b)and Figure3.20(c)vs. 3.20(b). In both scenarios
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Figure 3.19: Occurrence probabilityPo of studied flow networks vs. reference
SNR. Simulation results for 100 nodes in the unobstructed andManhattan grid
scenario. The results for the WFD and SSD are equal.
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Figure 3.20: Comparing theideal Cout (solid lines) to occurrence-conditioned
outage capacity Cout,o (dashed lines)for unobstructed and Manhattan-grid sce-
nario and two levels ofε. Outage capacitiesCout andCout,o shown as a fraction of
AWGN capacityCL vs. reference SNRΓ.
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ε has the same effect. At highε, PSRreaches higherCout,o thanCSR. At low ε
and medium or low SNR this situation reverses. Here,PSRsuffers from the low
outage capacity of the feedback channel and is outperformedby CSR. This is even
the case if the SFD cannot be always established, e.g., in a Manhattan scenario.

Interestingly, in Figure3.20(b), the outage capacity of PSR only slightly de-
grades for limited connectivity. Unlike CSR, PSR reaches its largest outage ca-
pacity in multiple flow networks making it less vulnerable tothe occurrence of a
particular flow network. This benefit of PSR is strongest at low ε and without ob-
stacles. In these cases, the outage capacity of PSR suffers less from the occurrence
condition than the capacity of CSR.

3.5 Summary of contributions and future work

Starting with an overview of cooperation diversity techniques, we discussed two
types of cooperative relaying protocols: Selection relaying with network path al-
location (PSR) and selection relaying with combining (CSR).

Contributions

Unified performance analysis For both protocol types, we derived the diversity
order and the outage probability in a unified manner using cutset analysis. By
extending this method, two approximations for the outage capacity were derived;
both matching well with simulation results at medium and high SNR.

The analytical performance results are useful for general cooperative networks
with any number of relays. The outage capacity approximation clearly shows how
(1) the error rate constraint and (2) the employed links degrade the capacity of an
ideal multi-antenna system. In effect, this analytic framework captures the re-
quired robustness (typically imposed by traffic demands) and how efficiently a
cooperative relaying protocol can use the available links under idealistic assump-
tions on Channel State Information (CSI) and network connectivity.

Degraded performance: Limited channel knowledge Without full CSI the
achievable outage probability and outage capacity of PSR protocols degrade. Ac-
counting for the fact that in many practical fading scenarios transmitter CSI (CSItx)
has to be obtained via wireless feedback channels, we provide the outage capacity
of PSRdegraded by feedback transmission errors and overhead. This allows a fair
comparison to CSR which only employs CSI at the receivers but not at the trans-
mitters. With CSI feedback, the outage capacity of the feedback channel limits
the end-to-end outage capacity of PSR if a low error rate is required. Here, PSR
performs poorly and CSR succeeds. This situation reverses under a relaxed error
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rate constraint and at high SNR. Here, feedback errors have only a slight effect
and PSR reaches higher outage capacity than CSR.

Degraded performance: Limited network connectivity Furthermore, we con-
dition the outage capacity of PSR and CSR protocols on the probability that the
flow networks that a protocol employs actually occur. This accounts for the fact
that, in practice, even a cooperation protocol with superior outage capacity per-
forms poorly if it relies on a network graph which can be established only rarely
(e.g., due to shadowed links or missing relays). Conditioning the outage capac-
ity on the occurrence probability shows a stronger degradation for CSR than for
PSR protocols. CSR relies on densely connected network graphs to reach high
capacity while PSR reaches its full performance in various sparser flow networks.
The degradation further highly depends on the propagation scenario. A substan-
tial degradation is shown in a Manhattan grid. Naturally, the degradation is lower
without large obstacles but still significant at low and medium SNR when relays
cannot be reliably reached by the initial broadcast.

Application With these results, a protocol engineer can now choose whether
CSR or PSR protocols are best suited in a specific scenario. Main factors are
SNR, the error rate constraint, and the network connectivity. Put briefly, CSR
would be chosen at low SNR or if a low error rate is required. Athigh SNR and
if a high error rate is acceptable, e.g., aPERof 10 % as in IEEE 802.11WLANs
[IEE99], PSR is a better choice.

We illustrated the above analytic and simulation-based framework only for
four nodes, two propagation environments, and for the basicCSR and PSR variant.
Nonetheless, the presented methods are general and can serve as a useful tool
to assess the performance of various CSR and PSR protocols in more complex
scenarios.

Future work

Join CSR and PSR – Adaptingn So far our analysis and most literature fo-
cused on three extreme approaches which can be separated by the numbern of
forwarding relays per hop:

• n= 0: No relay forwards, i.e., direct transmission

• n= 1: FromN available relays per hop, only a single relay forwards, i.e., a
PSR protocol with path allocation but no combining

• n = N: All N available relays forward per hop, i.e., a CSR protocol with
combining but no path allocation
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Our analysis shows that each of these approaches performs best under different
SNR, error rate, CSI, and connectivity constraints. Future protocols may join
these approaches by optimizingn∈ [0,N] to the current scenario conditions. An
early system concept joining PSR and CSR was analyzed recently [YK08]. It was
shown that full diversity can be reached for a single hop but neither a practical
single-hop protocol nor optimizingn for multiple hops was studied so far. Devel-
oping such protocols that adaptn may be an interesting field of future research.

Join CSR and PSR – Cooperative feedback Furthermore, the above results
show that the applicability of PSR protocols is seriously limited by their CSItx
demands. Especially, if the source or each relay obtains CSItx individually from
a single broadcast channel, feedback errors significantly decrease PSR’s outage
capacity. It seems promising to cope with feedback errors byemploying the
CSR approach only for feedback and control packets (while PSRmay be still
employed for data). We will develop suchcooperative feedbackschemes for spe-
cific networks in Section5.2and in Chapter6 of this work. Nevertheless, general
analyses of the interaction between the feedback scheme andthe capacity of the
feed-forward channel are rarely found in current literature and are considered as a
cornerstone for developing future networks [LHL+08].
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Chapter 4

Selection relaying with partial
forwarding

So far, we analyzed selection relaying protocols for block fading channels. By
assuming quasi-static fading on a per-packet level, we implied that the relay can
perfectly follow the channel’s variation by making only a single forwarding deci-
sion per packet. This quasi-static fading model with perfect adaptation frequency
is the leading assumption in theoretical studies on cooperative relaying protocols
[LWT04, KGG05, BSW07] and suits well if the channel varies slowly compared
to the packet time. However, when the coherence time tends towards the packet
time, a deep fade may onlypartially affect a packet. This separates a packet into
erroneous and correct parts. Conventional selection relaying protocols lose those
correct parts by dropping the complete packet and, consequently, reduce their per-
formance. To solve this problem of packet-wise selection relaying, we propose
to detect and forward these correct parts. We call this approachPartial Forward-
ing (PF), describe it in Section4.1and demonstrate its theoretical gains in Section
4.2. These substantial gains motivate the design of a practicalPFsystem (Section
4.3and Section4.4) which comes at feasible complexity and negligible signaling
overhead. Simulation results show that this system reachesa superior performance
that is close to the theoretical ideal case (Section4.5).

4.1 Partial forwarding

Let us first focus on the channel assumptions and problem leading to the Partial
Forwarding (PF) approach. When the channel coherence timeTc is not signifi-
cantly larger than the packet timeTp, block fading with a single channel coeffi-
cienth perTp (Figure4.1(a)) is not an appropriate model anymore [SA04, Section
2.1]. Instead, it becomes necessary to model the channel gain as an autocorrelated

73
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packet and diversity orderL at destination.

process using multiple channel coefficients per packet (Section 2.1.2).
The resulting problem for conventional selection relayingis illustrated in Fig-

ure4.1(b). With multiple channel coefficients per packet, a deep fade may occur
even during a short part of the packet time. The resulting burst errors separate
a packet into erroneous and correct parts. By dropping the complete packet, a
packet-wise forwarding decision discards even these correct parts. Thereby, such
conventional relaying unnecessarily reduces the number ofcombined symbols at
the destination which, finally, degrades the end-to-end Bit Error Rate (BERe2e)
between sources and destinationd (Section4.2).

Basic approach This problem of conventional selection relaying protocolsis
solved by detecting and forwarding the correct parts even iferrors occur in the
packet. Figure4.2 illustrates this basic approach ofPF. In this example, we focus
on theSDFprotocol (Section3.2.2) and assume that each packet is separated into
threedecision blocks. The duration of each decision blockTd is a fraction of the
packet timeTp and a multiple of the symbol timeTs. As illustrated, two packets
are received from SDF’s initial broadcast. The destinationd receives a packet
from link (s,d) where a deep fade duringTp causes an error in block 1. The relay
r receives a packet from(s, r) where block 2 is in error. A conventional SDF relay
would now drop this complete packet leaving only an incomplete packet (correct
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Figure 4.3: Coherence timeTc vs. Doppler frequencyfd for a J0 ACF. The hori-
zontal lines are multiples of the packet timeTp = 2 ms.

block 2 and 3) at the destination. As illustrated, aPFrelay identifies the erroneous
block 2 and still forwards the correct blocks 1 and 3 tod. This makes it likely that
d can correctly decode the complete packet based on one variant of block 1 and 2
and on two combined variants of block 3.

Region of operation As described in Section2.1.2, at a higher Doppler fre-
quency fd the channel coefficients decorrelate in time. Hence, for increasing
Doppler frequency it becomes more likely that deep fades affect only small parts
of a packet and that gains fromPF can be expected. Using the coherence time
Tc (2.9) as a rough estimate for theACF, we can illustrate when the duration of
a fade becomes smaller than the packet time in Figure4.3. The shownfd region
[8,350]Hz corresponds to a velocity ofv∈ [1,44]m/s when the carrier frequency
is fc = 2.4 GHz and tov∈ [0.5,20]m/s at fc = 5.2 GHz. We choose a packet time
of Tp = 2 ms which is needed when a IEEE 802.11a/g1 system transmits packets
with 1500 Byte payload at 6 Mbits/sPHY rate. The horizontal lines mark multi-
ples of this packet time.

There are two reasons to consider multiples ofTp. First, many empirical co-
herence time definitions tend to overestimateTc (Section2.1.3). Second, due to
the very slow descent of the J0 ACF a significant autocorrelation is still found for
lag times larger thanTc (cp. Figure2.4). Consequently, engineers often expect
fades inside packets even if the coherence time is below multiples of Tp [TV05,

1We use this shorthand as both IEEE 802.11a and IEEE 802.11g employ the same baseband
functions in theirOFDM PHY. Using the Direct Sequence Spread Spectrum (DSSS) PHY in IEEE
802.11g is not considered in this work.
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Section 5.4.5], e.g,Tc < 10Tp. To account for this fact, we use 5Tp as a pessimistic
prediction of PF’s region of operation.

As illustrated, the coherence time falls belowTp for fd ≥ 60 Hz corresponding
to v ≥ 7.5 m/s at fc = 2.4 GHz or tov ≥ 3.5 m/s at fc = 5.2 GHz. Naturally,
Tc < 5Tp is reached earlier atfd ≥ 13 Hz, matching to a velocity ofv ≥ 1.6 m/s
at fc = 2.4 GHz or ofv ≥ 0.75 m/s at fc = 5.2 GHz. Note that such speeds are
common in the propagation environment of cellular, vehicular, and even some
Wireless Local Area Networks (WLANs). Here, quasi-static fading per packet
cannot be assumed and gains fromPFcan be expected.

Related approaches Partial Forwarding is strongly related to temporal diversity
schemes, particularly to Hybrid Automatic Repeat Request (HARQ) [CC84] and
to rateless erasure codes, e.g., Luby’s Tornado codes [Lub02] or Raptor codes
[Sho06]. Like PF, these schemes retransmit blocks smaller than a packet but there
are two major differences. The first difference is obvious. While with HARQ
and rateless codes a single sources retransmits its own information, with relaying
a different noder forwards the information ofs. Due to this spatially separated
relay, both cases differ by the employed links and type of diversity. WhileHARQ
and rateless codes gain only from temporal diversity, cooperative relaying can
exploit spatial diversity as well [ZV05]. PFis one approach to leverage both types
of diversity.

The second major difference is feedback. UnlikeHARQ, PF and rateless
codes do not demand Channel State Information (CSI) feedback. While each ACK
of HARQ can be seen as a feedback of transmitterCSI (CSItx), a PFrelay bases
its forwarding decision only on local CSIrx. We compared CSIrx and CSItx-based
relaying in Chapter3 and showed in Section3.4.1that either of these approaches
succeeds in a different region of operation. LikePF, rateless codes do not require
CSI feedback. Instead, redundancy for a single message2 is transmitted until the
decoder signals the source to stop. Even such occasional feedback is not required
if PFis used withSDFprotocols where all communication is unidirectional.

System components PFadds several functions to conventional selection relay-
ing systems. At the relay, the erroneous blocks have to be identified. This requires
a metric to assess the error probability even for small blocks. To design such a
metric, we follow thesoft output decodingapproach that is widely used in itera-
tive decoders [HWR07]. We will describe and compare our metric to other soft
output decoders in Section4.4. Based on this metric, the relay uses a threshold to
decide which block to forward. Searching optimal and suboptimal (but practical)

2To simplify terminology we denote the FEC-uncoded information vector bymessage.
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thresholds is discussed in Section4.4.1. Further, PF extends the cooperation pro-
tocol. CombiningPF with SDF’s packet-wise forwarding decision is described
in Section4.4.2and efficiently signaling the dropped blocks to the destination is
covered in Section4.4.3.

4.2 Forwarding decision frequency

Before designing practical schemes for Partial Forwarding (PF), it is useful to as-
sess the potential gains of this approach. For a first analytic insight, we ignore
autocorrelation but use a generalized block fading model where deep fades may
affect only parts of a packet (autocorrelated fading is thenstudied in Section4.5).
Furthermore, we ignore that the practical accuracy of the forwarding decision is
limited in the time and in the value domain. Instead, we assume that the relay
perfectly knows the CSIrx value and can decide arbitrarily often. These idealis-
tic assumptions allow to derive the minimumBERe2e for PF. This performance
bound and the still highBERe2egains at less frequent forwarding decisions clearly
show that designing a practicalPFsystem is promising.

4.2.1 Block lengths and decision frequency

As we perform our analysis at symbol level, we define all blocklengths as multi-
ples of modulation symbols. Simply multiplying this lengthwith the symbol time
Ts results in the block durations from Figure4.2. We define each packet to beLp

symbols long. The length of adecision block, i.e., the number of symbols between
two relay decisions, is denoted byLd. For block fading channels, the number of
symbols per fading block is indicated byLb.

With these block lengths, we define theforwarding decision frequency Dof
the relay as

D :=
Lp

Ld

[
forwarding decisions

packet

]

(4.1)

which is equivalent to the number of decision blocks per packet. With PF,D > 1
and packet-wiseSDF is expressed byD = 1. Even with a highD, the actual
accuracy of the forwarding decision depends on channel coherence timeTc. Using
this rough estimate of temporal stability, we can state thatPF aims for at least one
decision per coherence time. This is reached when the decision block timeTd is
equal or shorter thanTc, i.e.,Tc/Td ≥ 1.

Using thisTc/Td ratio we can define the decision frequency more precisely
for block fading channels. As described in Section2.1.2, with such channels
the fading block timeTb is equivalent toTc, i.e., Tb = Lb · Ts = Tc. Choosing
Tp > Tb leads to multiple fading blocks per packet. The number of these blocks is
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Kb = Tp/Tb = Lp/Lb and also gives the number of fading states per packet. With
this explicit value forKb, we can analyze the performance loss when the relay
decides less frequently than the channel varies, i.e.,D < Kb. We can denote this
relationship betweenD andKb by thenumber of decision blocks per fading block
Db

Db :=
D
Kb

=
Lb

Ld

[
forwarding decisions

fading block

]

. (4.2)

With Kb > 1, packet-wiseSDFreaches onlyDb < 1 and PF aims to selectD such
thatDb ≥ 1.

4.2.2 Analysis for block fading channels

We analyze the end-to-end Bit Error Rate (BERe2e) of PFin two steps. First, we
derive the average number of symbols forwarded by the relay.From this number
and standardBERequations we, then, derive theBERe2e.

System assumptions and notation

For an arbitrary link(i, j) the instantaneous SNR per modulation symbol is de-
noted byγi, j . We use the i.i.d. Rayleigh block fading model from Section2.1.2
where the random variableγi, j follows the exponentialPDF pγ(γi, j) in (2.6). The
Symbol Error Rate (SER) for theAWGN channel is

Ps
AWGN(γi, j) = αMerfc

(√

βMγi, j

)

(4.3)

with the complementary error function erfc(·) and modulation-dependent parame-
tersαM,βM. This general expression for theSERholds for Quadrature Amplitude
Modulation (QAM) as well as for Binary Phase Shift Keying (BPSK) modulation
[Pro00, Section 5.2]. Taking the mean with respect to the exponentially distributed
random variableγi, j yields

Ps
Ray(γ̄i, j) = E{Ps

AWGN(γi, j)}=
∫ ∞

0
Ps

AWGN(γi, j)pγ(γi, j)dγi, j (4.4)

=
∫ ∞

0
αMerfc

(√

βM γi, j

)
1

γ̄i, j
exp

(

−γi, j

γ̄i, j

)

dγi, j

as theSERfor a single Rayleigh faded link with mean SNR̄γi, j . We will employ
a closed-form solution of (4.4) for a specific modulation in AppendixA.

Only a single relayr is used in theCTR network (Figure3.1(b)). PFextends
a conventionalSDFrelay by a block-wise forwarding decision withDb decisions
per fading block. To isolate the effect of the decision frequency, we assume that
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Figure 4.4: Example of the block lengths for Case 1 whereLd ≤ Lb.

the relay bases its decision on ideal CSIrx and, thus, can perfectly detect errors.
To this end, the relay perfectly knowsγs,r (i.e., perfect decision in the value do-
main) but may decide not frequently “enough” (i.e., imperfect decision in the time
domain) to follow the fading channel.

Case 1: DecideDb ≥ 1 times per fading block

First, we analyze the case illustrated in Figure4.4. Here, a decision block is
shorter than a fading block or has equal length, i.e.,Ld ≤ Lb ⇔ Db ≥ 1. In this
case, PF decides at least once per fading block and, thus, candetect each state
change of the block fading channel. The number of fading blocks per packet is
Lp/Lb and is assumed to be integer to assure i.i.d. blocks.

With at least one forwarding decision per fading block, the average number of
symbols forwarded per packet is equal to

Np,c1 = LpP{An arbitraryfadingblock is forwarded}
= Lp(1−P{An arbitraryfadingblock is not forwarded}).

Assuming perfect decision in the value domain, the relay does not forward afad-
ing block, if at least a single symbol in this fading block is in error. Thus,

Np,c1 = Lp(1−Ps
Ray(γ̄s,r)) (4.5)

wherePs
Ray(γ̄s,r) denotes theSERfor the Rayleigh-faded link(s, r) according to

(4.4) with mean SNRγ̄s,r . The fraction of symbols that arenot forwarded by the
relay is then

Fdrop,c1= 1− Np,c1

Lp
= Ps

Ray(γ̄s,r) (4.6)

and, hence, equivalent to theSERof link (s, r).

Case 2: DecideDb < 1 times per fading block

Second, we analyze the case illustrated in Figure4.5. Here, a decision block is
longer than a fading block, i.e.,Ld > Lb ⇔Db < 1. This case reflects conventional



80 Chapter 4. Selection relaying with partial forwarding

Decision block

d

Fading block

Packet

L

L

p

b

L

(a) Packet-wise SDF withLd = Lp

Fading block

d

Packet

Lp

Decision block

Lb

L

(b) Partial forwarding withLd < Lp

Figure 4.5: Two examples of the block lengths for Case 2 whereLd > Lb.

SDF with multiple fading blocks per packet (Figure4.5(a)) as well as PF with
multiple fading blocks per decision block (Figure4.5(b)). In either of these cases
the relay decides less frequently than fading occurs and cannot detect and adapt
to each state change of the fading channel. The number of fading blocks per
decision block is 1/Db = Ld/Lb > 1 and the number of decision blocks per packet
is D = Lp/Ld. Similar to Case 1, we assumeD and 1/Db to be integer to assure
i.i.d. blocks.

Deciding once perdecisionblock, the relay forwards

Np,c2 = LpP{An arbitrarydecisionblock is forwarded}
symbols on average. Unlike in Case 1, in this case erroneousfadingblocks may
occur within an arbitrary decision block. The relay cannot locate these erroneous
fading blocks and, hence, forwards an arbitrarydecisionblock only if all 1/Db

fading blocks within this decision block are error free. Putformally,

Np,c2 = LpP{All 1/Db fading blocks within an arbitrary decision block are error free}.
and, since the fading blocks are i.i.d.,

Np,c2 = LpP{An arbitraryfadingblock is error free}1/Db.

As for deriving (4.5), we use that an arbitraryfadingblock is in error, if at least a
single symbol in this fading block is in error. Thus,

Np,c2 = Lp(1−Ps
Ray(γ̄s,r))

1/Db. (4.7)

where, again, theSERPs
Ray(γ̄s,r) is given in (4.4). The fraction of symbols that are

not forwarded by the relay is then

Fdrop,c2= 1− Np,c2

Lp
= 1− (1−Ps

Ray(γ̄s,r))
1/Db (4.8)

which differs fromFdrop,c1by the exponent 1/Db. Note that atDb = 1 the results
for Case 2 are equal to Case 1, i.e.,Np,c1 = Np,c2 andFdrop,c1= Fdrop,c2. This
allows to expressDb ≤ 1 only by the results of Case 2 which summarizes the
practical relevant cases where the relay decides not more frequently than fading
occurs.
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End-to-end Bit Error Rate

Using the above results forFdrop, theBERe2efor both cases is given by

BERe2e= FdropBERs,d+(1−Fdrop)BERmrc. (4.9)

Here, BERs,d is theBER of the direct link(s,d) and BERmrc stands for theBER
after MRC was used to combine the symbols received from the source and the
relay. Both terms are further elaborated below and in Appendix A. Note thatFdrop
is incorporated into (4.9) as a factor and, thus, affects theBERe2eonly by a coding
gain but not in terms of diversity.

The rationale behind (4.9) is that the destination can only combine symbols
and, thereby, reaches only BERmrc, if the relay forwards. This is done with prob-
ability 1−Fdrop. Otherwise, merely symbols from the direct link are received,
resulting in BERs,d.

4.2.3 Discussion

Analytic results From the analytic results for Case 1 we can draw the following
conclusions. If the relay decides at least once per fading block, only the erroneous
symbols are dropped. AtDb = 1, the decision is ideal in the time domain and
(assuming ideal decision in the value domain) the number of forwarded symbols
is maximized.

In Case 2, the relay decides less frequently than fading occurs. Inserting
Db < 1 into (4.7) shows that in this case the number of forwarded symbols is
always lower than for Case 1, i.e.,Np,c2 < Np,c1. The more fading blocks occur
per decision block, the fewer symbols are forwarded (cp. (4.2) and (4.7)). Equiv-
alently, the shorter the decision block is with respect to the fading block, the more
symbols are dropped.

Numerical results For a numerical illustration we focus on uncodedBPSK
modulation, withMRC, and i.i.d. Rayleigh fading. For this relevant special case,
closed-form expressions for direct and combined links are given in standard lit-
erature [Pro00, (14.4-15)]. By inserting these expressions into (4.4) and (4.9) we
can easily derive theBERe2eandFdrop of our idealPFsystem in closed form. This
derivation and the results are presented in AppendixA.

Furthermore, we assume a symmetricCTR with the same reference SNRΓ
for all links. Since path loss is normalized to unity, i.e.,Γa,b = Γa,d = Γb,d = 1,
the mean SNR̄γ is equal for all links and equivalent toΓ (Section2.1.1). For
comparison, we include theBERe2eof direct transmission. All three nodes operate
under the total energy constraint (Section2.3). We choose a packet length ofLp =
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8192 symbols and studyKb = 16 fading blocks per packet. We vary the decision
block lengthLd to select a forwarding decision frequencyD. With D ∈ {1,2} we
study Case 2 where the relay decides less frequently than fading occurs. Ideal
decision is then studied withD ∈ {Kb,Lp} decisions per packet.

Inserting the above values and a varyingγ̄ into (A.4) to (A.7) provides the
results in Figure4.6. Figure4.6(a)shows the fraction of symbols not forwarded
by the relayFdrop for both cases. This number is highest with conventional packet-
wise SDF when only a single forwarding decision per packet is made, i.e., only
Db = 1/16 decisions per fading block. WithD = 2, the relay decides once every
eighth fading block. This decreasesFdrop,c2but is still far from the result of Case 1.
This ideal case is reached atD = 16 where making one decision per fading block
minimizes the number of dropped symbols. Since nowFdrop is independent on
Db (4.6), further increasing the decision frequency does not improve Fdrop. Note
thatFdrop,c1 is equal to the BER of link(s, r). This results from the fact that with
uncoded BPSK and Case 1 each symbol error corresponds to a dropped bit. This
illustrates once more that atDb ≥ 1, a PF relay drops only the erroneous bits.

The behavior ofFdrop directly translates to the BERe2e in Figure4.6(b). For
increasing decision frequency, the relay forwards a higherfraction of symbols
which reduces the BERe2e by an SNR-independent factor. This coding gain in-
creases withD until the relay decides once per fading block (D = 16). At this
decision frequency, theBERe2e of PF reaches its theoretical minimum for the
given fading block time and, once Case 1 is reached, no improvement is shown by
further increasing the decision frequency. This is a consequence of the block fad-
ing model where each fading state can be detected as soon asDb = 1 is reached,
i.e., once the decision block time matches the (perfectly known) coherence time
Tc. This is different if more-realistic autocorrelated fading is assumed whereTc

becomes a poor estimator of the channel stability (Section2.1.3). In this case,
deep fades may occur even withinTc and, thus, multiple forwarding decisions per
coherence time can still provide gains. We will demonstratethis in Section4.5and
discuss in Section4.3.4that such high decision frequencies are realistic even with
the constraints imposed by practicalCSImeasurement, coding, and signaling.

From these results, we can expect high BERe2e gains for PF above conven-
tional SDFwhen multiple fades per packet are likely. Therefore, it seems worth
to design practical schemes for PF. Such schemes – namely,CSI measurement,
protocol and signaling functions – are described next.

4.3 Forwarding decision metric

So far, we made the idealistic assumption that the relay perfectly knows the chan-
nel state even if a frequent forwarding decision is made. Designing a practical
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scheme to provide such frequent estimates at high accuracy is non-trivial. With
conventional CSIrx metrics – likeSNRor CRC– more frequent estimation reduces
the number of training symbols on which each estimate is based and, thereby, the
estimation accuracy. Compensating for this lack of traininginformation by ex-
tensive training would considerably decrease the data rate. After describing such
shortcomings of conventional metrics in Section4.3.1, we focus on a decoder-
based metric called Minimum Path Difference (MPD) in Section4.3.2. Similar
to soft outputdecoders [BCJR74, HH89], MPD provides frequent CSIrx estimates
by observing theFECdecoding process. This metric requires no further training
overhead, and, thus, allows frequent estimation without decreasing the data rate.
We describe an MPD-extended Viterbi decoding algorithm [Vit67] which imposes
significantly lower calculation complexity than other softoutput decoders (Section
4.3.3) but accurately expresses the true BER by MPD (Section4.3.4).

4.3.1 Related work and terminology

In current literature, a relay bases its forwarding decision either onCRC error
detecting codes, soft outputFECdecoders, or channel state measurements. Which
of these methods can be employed depends on the used code.

In uncoded systems, the relay can use channel state measurements. In [HZF04],
Herhold, Zimmermann, and Fettweis propose to use SNR as decision metric and
to perform a threshold-based forwarding decision at the relay. This SNR-based
approach provides a valuable theoretical framework to analyze the relay’s local
forwarding decision but cannot be directly applied toPF. Measuring SNR comes
at the cost of training symbols which reduces the data rate. Therefore, many sys-
tems measure SNR only once per packet using a short training sequence in the
packet’s preamble [OP99, Chapter 12]. Moreover, as measured prior to decoding,
SNR cannot accurately account for the coding gain in practical FEC decoders.
With these limitations, SNR cannot accurately identify erroneous parts within the
message and is, thus, not an ideal candidate forPF.

In many papers, the relay uses error detecting codes for its forwarding deci-
sion [SE04, LWT04, HSN06, LTN+07]. Typically, a single Cyclic Redundancy
Check (CRC) is used per packet which does not rely on a potentially subopti-
mal threshold. Per packet, such CRC-based forwarding decisionreliably prevents
error propagation and the overhead due to the added Frame Check Sequences
(FCS) is acceptable. However, this procedure becomes inefficient for short blocks
[Wil04]. First, block-wise error detection requires oneFECcodeword per block,
thereby reducing the length of the codeword andFECperformance. Second, de-
tecting burst errors requires a large FCS in many systems, e.g., 32 bit in IEEE
802.11 [OP99]. With small blocks such long FCS imposes high overhead. Con-
sequently, CRC-based decision is inefficient forPF.
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With FEC codes, the relay can estimate CSIrx following the soft output ap-
proach. In addition to the decoded bit – the so-calledhard decision– a soft output
decoder returns the probability of a correct decoding decision [Pro00, Section
8.2.7]. This CSIrx estimate is referred to assoft outputor, more precisely, asA
Posteriori Probability (APP). Here,a posterioridenotes that the decoder has al-
ready used all available information for its decoding decision. To produce such
soft output, two fundamental decoder designs are known in literature. Maximum
A Posteriori (MAP) decoders [BCJR74, RVH95] calculateAPPper decoded sym-
bol while the Soft Output Viterbi Algorithm (SOVA) algorithm [HH89] provides
APPper symbolsequence.

Soft output decoders are often used at an intermediate stagein iterative de-
coders (e.g., turbo decoders [HWR07]) and only few applications to cooperative
relaying are known. Sneessens and Vandendorpe described relaying as an iterative
decoding process where the relay forwards its soft output [SV05]. Protocols that
followed thissoft Decode-and-Forward (DF) approach either rely completely on
soft information [BL07, DM09] or exploit soft channel side information to refine
SDF’s hard decision [RF09]. Soft DF is similar to the fundamental Compress-
and-Forward (CF) protocol [CG79] but can profit from a coding gain at the relay.
Like CF, a softDF relay minimizesBERe2e by delegating the hard decision to
the destination where decoding can employ theCSI of all channels. On the other
hand,CFand most softDF approaches forward real-valuedCSI for each received
bit, whose overhead significantly decreases data rate.

In this section, we use a different approach thanCF and softDF. Instead of
forwarding soft output, we use soft information only at the relay to improve the
forwarding decision. Keeping the decoder’s soft output local limits overhead and
enables gains due to Partial Forwarding. Using soft output for this partial decision
has two benefits above other CSIrx metrics. First, soft output assesses the actual
coding gain. Second, a decoder returns soft output frequently per packet and
requires no more training information than the redundancy bits. Thus, even a high
forwarding decision frequency does not reduce the data rate. A drawback of the
soft output approach is the significant complexity ofSOVA andMAP decoding
algorithms [RVH95, Wu01].

To avoid an infeasible complexity increase at the relay, we use a simplified
soft output metric calledMPD. The calculation and complexity of this metric is
described next.

4.3.2 Calculating Minimum Path Difference

The MPD metric estimates theBER by comparing the decoding decision to the
received codeword. In essence, MPD expresses the distance between decoding
decision and the received symbols. For a large distance (i.e., a large MPD value) a
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Figure 4.7: Example decoding trellis for hard-decision decoding ofu= 3 symbols:
Each edge of the surviving minimum-weight pathVmin contains an MPD value.
Finally the metric vector mpds,r = [1,0,2].

high BER is assumed. This metric is based on the idea that the larger the distance
between decoding decision and the received symbols is, the more errors are cor-
rected by the FEC decoder, and the lower the decoder certainty for each corrected
bit. We now detail the calculation of MPD and provide a simpleexample.

MPD definition and example for hard decision Viterbi decoding

With the Viterbi Algorithm (VA), the decoding decision is made as soon as the
minimum-weight path Vmin through the decoding trellis is found [Pro00, Section
8.2.2]. Each edge ofVmin is associated to coded and uncoded symbols. A standard
Viterbi decoder returns the uncoded symbols during its traceback ofVmin, which
results in the decoded messageXs,r .

Additionally, an MPD-extended Viterbi Algorithm (MPD VA) returns the dis-
tance between (1) thecodedsymbols alongVmin and (2) the symbols in the re-
ceived codewordcs,r . During the traceback, this provides the MPD vector mpds,r .
More formally, we can define the MPD value for theith coded symbol as

mpds,r [i] = dist(cs,r [i],codesymbol(edge[i])) (4.10)

where edge[i] is the respective edge ofVmin and the function codesymbol() returns
the coded symbol at this edge.

The distance calculation in function dist() depends on the form of the sym-
bols incs,r . With hard decision decoding, all symbols incs,r are binary decision
variables. In this case, dist() computes the Hamming distance and mpds,r [i] rep-
resents the number of corrected errors for theith symbol. Figure4.7 illustrates
this case where one integer MPD value is returned for each edge of Vmin. With
soft decision decoding, the demodulator passes real-valued soft decision variables
(akasoft bits) to the decoder. To rate each of these soft bits by a real-valued MPD
index we extend theVA as follows.
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Figure 4.8: Basic functions of an MPD-extended Viterbi Algorithm (MPD VA).
The shaded parts illustrate extensions to the standardVA.

MPD-extended Viterbi algorithm

We will now generalize the above example to an MPD-extended Viterbi Algorithm
(MPD VA) which supports hard and soft decision decoding. Figure4.8 summa-
rizes the extensions to a standard Viterbi decoder. As shown, the demodulator
maps the coherent modulation symbols inYs,r to the two vectorscs,r andc̃s,r . The
codewordcs,r contains conventionally demodulated hard or soft bits and is used
for standard Viterbi decoding of messageXs,r . Additionally, vector ˜cs,r provides
CSI for calculating MPD. An example of constructing ˜cs,r for BPSKis described
on Page88. Based on ˜cs,r and on the edges of the minimum-weight pathVmin,
theMPD VA calculates the soft output vector mpds,r . This MPD vector contains
one real-valued CSIrx estimate per symbol and is, finally, smoothed by a statistical
filter, e.g., a moving average, which returnsmpds,r .

The decoding process is described more formally in Algorithm 1. To focus
on the extensions, the standard VA operation is abbreviated. In particular, we
summarize the VA’s path search by function findPath() in line 1, and omit standard
functions like weight calculation and quantization. A detailed description of the
full VA is provided in standard literature, e.g., [Pro00, Section 8.2.2].

The algorithm returns messageXs,r that was encoded at rateRc = k/n with n
coded bits perk (uncoded)message bits. In total, messageXs,r consists ofu= l/k
message symbolsor l message bits. This message is decoded from codewordcs,r ,
which consists ofu code symbolsor l/Rc coded bits. Based on theseu sym-
bols, standard Viterbi decoding is performed in three steps: First, the weights
are calculated for each branch and state of the trellis (not shown in Algorithm
1). Second, the pathVmin is searched which minimizes the accumulated weight
(function findPath() in line 1). Third, for allu edges of this path, a traceback
is performed (line 2–5) and one message symbol is returned per edge (function
messagesymbol() in line 3). Finally, the decoded messageXs,r is returned.

As discussed above, calculating mpds,r can be integrated into the traceback of
theVA. During this final step, the algorithm iterates over the complete pathVmin
and uses (4.10) to calculate MPD per code symbol (line 4). With hard decision
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Algorithm 1 : MPD-extended Viterbi Algorithm (MPD VA).
Input : Codewordcs,r with u code symbols:cs,r [1], . . . ,cs,r [u];

Codeword ˜cs,r with u code symbols: ˜cs,r [1], . . . , c̃s,r [u]
Output : MessageXs,r with u message symbols:xs,r [1], . . . ,xs,r [u];

Metric values mpds,r per code symbol: mpds,r [1], . . . ,mpds,r [u]

// Search minimum-weight path Vmin

edge[1, . . . ,u] = findPath(cs,r );1

// Traceback over Vmin

for i = u, . . . ,1 do2

xs,r [i] = messagesymbol(edge[i]);3

// MPD calculation adds line 4

mpds,r [i] = dist(c̃s,r [i],codesymbol(edge[i]));4

end5

return Xs,r ,mpds,r6

decoding, function dist() is given by the Hamming distance. In this case ˜cs,r = cs,r ,
i.e., no additionalCSI vector c̃s,r is required. With soft decision decoding dist()
uses the Euclidean distance as a standard function of many decoders. In particular,
dist() calculates

dist(a,b) := ||a−b||=
√

n

∑
j=1

(a j −b j)2 (4.11)

as the Euclidean distance in then-dimensional coding space. Here,a j stands
for one ofn soft bits in symbola of the CSI vector c̃s,r andb j corresponds to
one ofn soft bits in code symbolb from the trellis edge (as returned by function
codesymbol() in line 4). In this case the demodulator has to pass ˜cs,r with CSI to
the decoder (cp. Figure4.8).

Additional CSI with BPSK

The vector ˜cs,r provides additional CSI in terms of carrier phase mismatches. Al-
though we assume coherent detection, such synchronizationerrors are common in
practical receivers where limited CSIrx can inhibit perfect compensation of com-
plex fading and noise [SA04, Section 3.2].

As illustrated in Figure4.8, both vectorscs,r andc̃s,r originate from the same
symbol streamYs,r . The difference betweencs,r andc̃s,r is twofold. First, a soft bit
in codewordcs,r contains the real part of a complex modulation symbol inYs,r but
a soft bit inc̃s,r represents the angleϕ ∈ [−π,π[ of such a symbol. Ifϕ 6= 0, c̃s,r

expresses a carrier phase mismatch. The second difference is that soft bit values
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Figure 4.9: BPSK constellation example: Representing a received symbolYs,r [m]
by −ϕ[m] or ϕ[m] does not affect the distance betweenYs,r [m] and the reference
symbolsY0,Y1. Thus,|ϕ[m]| can be used to representYs,r [m].

in cs,r are unbounded but ˜cs,r ∈ [−1,1]. Limiting c̃s,r to this interval assures that
c̃s,r can be used as a norm for the channel quality.

Based onϕ we obtain the soft bits for anmth symbol by

c̃s,r [m] =
2|ϕ[m]|

π
−1. (4.12)

This mapsϕ ∈ [−π,π[→ c̃s,r ∈ [−1,1] and fulfills two properties. First, dividing
by π normalizes the values in ˜cs,r to unity. Second,|ϕ| treats both directions of
the synchronization error equally. This is sufficient withBPSK where the sign
of ϕ is not relevant to distinguish symbols in the angular domainand, thus, both
directions of the synchronization error equally affect thedistance to the reference
symbol (cp. Figure4.9).

Due to the two operations in (4.12), MPD can be simply used as an unsigned
real-valued index without having to account for signed special cases. With this
mapping, the minimum Euclidean distance between two soft bits is ||1−1|| = 0
and the maximum is||−1−1||= 2. Hence, MPD can take values mpd∈ [0,2].

Using the CSI vector ˜cs,r to account for synchronization errors leads to very
high estimation accuracy (Section4.3.4) but limits the application of MPD. So-
far only the above mapping for coherentBPSK is known. Mappings for higher
order modulation, where information symbols and synchronization errors blend
in the angular domain, are not obvious. To use MPD for higher order modulation,
either hard decision decoding (where high accuracy is also found without CSI
[VVA +08a]) or a different soft output method has to be used.

4.3.3 Decoder complexity and implementation remarks

Calculating MPD changes the standard Viterbi Algorithm (VA) only slightly. Un-
like theSOVA and theMAP algorithm, this adds only insignificant computational
complexity and no further constraints to decoder implementation.
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Table 4.1: Computational complexity of several soft output decoding algorithms.

Decoding Function of ExampleM = 6,Rc = 1/2
algorithm M andn [EA] [EA] Factor over VA

VA (4n+2)2M +6 646 1
MPD VA (4n+2)2M +15Mn−5M+12 802 1.24
Log-MAP (4n+50)2M −19 3693 5.71
SOVA (4n+9)2M +75M2+35M+5 4003 6.2

Computational complexity

Although the exact computational complexity highly depends on implementa-
tion details, MPD’s additional effort can be approximated by expressing and ag-
gregating the basic operations in terms ofEquivalent Additions (EAs) [Wu01,
CRWC07]. This approximation depends only on the basic coding parametersn,
memory order M, andtruncation depth. The memory order stands for the total
number of input symbols stored at the decoder and is also known asconstraint
length [Pro00, Section 8.2]. The truncation depth defines the size of the path
memory, i.e., the number of symbols the decoder looks back during its traceback.
Many practical Viterbi decoders truncate their path memoryto 5M symbols to
limit delay and complexity [Pro00, Section 8.2.8]. This value is also used in the
study below.

With these parameters we can now compare the complexity ofMPD VA and
the standardVA. With function codesymbol() in Algorithm 1, MPD calculation
adds 1 table lookup to the traceback of theVA. Per memory orderM, 1 additional
calculation of the Euclidean distance (4.11) is required. Each call of this function
adds 1 multiplication and 1 subtraction pern symbols as well as 1 addition per
n−1 symbols to theVA. As in [Wu01] we count 6EA per table lookup, 1EA per
multiplication, and 1EA per subtraction. This leads to

Complexity(MPD VA) = (4n+2)2M +6
︸ ︷︷ ︸

VA

+15Mn−5M+6
︸ ︷︷ ︸

MPD adds

[EA] (4.13)

for the computational complexity of theMPD VA.
Table4.1 compares this result forMPD VA to the computational complexity

of VA [Vit67], SOVA [HH89], and of the Log-MAP algorithm [RVH95] which
represents a feasible example of a MAP decoder. The results for these standard
decoding algorithms are given in [Wu01]. With respect toM, all complexity func-
tions have orderO{2M}. However, within this exponential regime two terms cause
large complexity differences between the algorithms.

First, compared to VA andMPD VA, Log-MAP and SOVA increase the factor
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in front of 2M. With Log-MAP, this results from several calls of the max() function
per path node to compute the soft output. Although Log-MAP computes this
function in the logarithmic domain, the complexity increase is still substantial.
SOVA increases the factor to 2M by generating the path metric difference between
survivor path and discarded path for each branch. This is notdone by any other of
the above decoding algorithms which consider only the surviving path.

Second, by taking even the discarded paths into account, SOVA performs an
extensive traceback which adds term 75M2 to the complexity function. Note that,
at the usually smalln and M, this quadratic term contributes more to SOVA’s
complexity than the 2M term. Based on these two terms, we can conclude that
the complexity of Log-MAP and SOVA grows substantially faster in M than the
complexity of VA andMPD VA.

Besides providing complexity as a function ofM and n, Table 4.1 shows
an example forM = 6 andRc = 1/n = 1/2. Both parameters match the com-
mong0 = 1338;g1 = 1718 code used in IEEE 802.11a/g WLAN systems [OP99].
While Log-MAP or SOVA are approximately 5.71 or 6.2 times as complex as the
VA, respectively, MPD adds only 24 % computational complexityto the VA. This
highlights the insignificant computational burden of MPD compared to SOVA and
feasible MAP algorithms.

Implementation remarks

Regarding the implementation of MPD-extended Viterbi Algorithm (MPD VA)
two observations can be made.

Parallel soft output MPD VA decodes and calculates MPD within a single iter-
ation of the standard VA traceback (cp. Algorithm1). This has two benefits over
SOVA and MAP. First, implementations ofMPD VA can decode and compute
soft output in parallel. Second, no trellis iterations are added to the VA. Hence,
calculating MPD adds only marginal decoder complexity and delay to the VA.

Pipelining A further important observation is thatMPD VA does not constrain
the stream processing of the standardVA. During the traceback, one MPD value
can be returned per symbol and can be continuously processedby the smoothing
filter and subsequent functions (Figure4.8). This allows to profit from pipelining
on a per-symbol basis, reducing decoder delay and memory demands.

Note that this unconstrained pipelining is a large benefit ofMPD VA over
SOVA and MAP decoders. To generate soft output, these algorithms have to take
the minimum (SOVA) or maximum (MAP) over a large number of branch metrics.
Computing and storing all these metrics beforehand, serializes the soft output
calculation and, thus, increases memory demands and delay.
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4.3.4 Accuracy study

A CSIrx estimation has not only to be feasible, it also has to be accurate. We now
study how accurately MPD estimates the true BER of a direct transmission and
compare this accuracy to other metrics. We focus on slow and fast autocorrelated
fading channels and use IEEE 802.11a/g standardPHY assumptions.

System model and parameters

To study the accuracy of MPD it suffices to focus on the direct link. We consider
direct transmission from the source nodes to the relay noder, i.e., link (s, r).
We assume thats transmits a constant message flow with 512 Bytes payload per
messageX. For the transmitter chain, we make standard IEEE 802.11a/gphysical
layer assumptions. In particular, we assume that messageX is FECencoded using
a convolutional code with generator polynomialg0 = 1338;g1 = 1718 and code
rate Rc = 1/2 [OP99, Chapter 12]. This results in codewordc of 8192 coded
bits which is then transmitted as a single packet.BPSK modulation leads to a
packet length ofLp = 8192 symbols which are then passed toOFDM multi-carrier
modulation. As in IEEE 802.11a/g,S= 48 modulation symbols are transmitted
per OFDM symbol time ofTs = 4µs which results in a packet time ofTp = Ts ·
Lp/S= 0.68 ms. In total 16×103 packets are transmitted per simulation.

Apart from MPD calculation, the receiver operates as in the standard IEEE
802.11a/gPHY. For eachPHY packet, the received signal is coherently detected
using the 16µs Physical Layer Convergence Procedure (PLCP) preamble [OP99,
Chapter 12]. Due to this limited CSIrx, complex channel coefficients may still
cause carrier phase mismatches. OFDM demodulation returnsthe symbol vector
Ys,r and BPSK demodulation maps each complex symbol value to a coded bit in
codewordcs,r . From this vector, finally, soft decision Viterbi decoding returns the
received messageXs,r .

Like the abovePHY functions the channel is modeled in the digital base-
band at symbol level as described in Section2.1. Per symbol timeTs, a single
frequency-flat channel gain|h|2 is calculated. Instead of assuming uncorrelated
block fading, we use the autocorrelated fading model from Section 2.1.2. From
the examples in Figure2.3, we study two cases of the Doppler frequencyfd. At
fd = 17.34 Hz the channel gains|h|2 are highly autocorrelated and the channel
can be considered asslowcompared to the packet time. This corresponds to low
mobility in the propagation environment, e.g., an indoorWLAN with carrier fre-
quency fc = 5.2 GHz and relative velocity ofv = 1 m/s betweens and r. With
this fd, the coherence time ofTc = 7.2 ms (2.9) is 11 times longer than the chosen
packet timeTp and, thus, deep fades in small parts are not very likely but may still
occur (cp. Figure4.3). The second case represents relativelyfast fading where
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fd = 350 Hz decorrelates the channel gains. Suchfd is typical at high mobility
and, e.g., corresponds to a vehicular scenario withv= 20 m/s atfc = 5.2 GHz. In
this case,Tp spans two coherence times.

Simulation results

We study two cases of MPD calculation. First, MPD is averagedover a complete
packet. This provides a single CSIrx estimate per packet and allows us to compare
MPD to conventional SNR-based estimation methods. Nonetheless,PF requires
multiple CSIrx estimates per packet. This is studied as a second case.

Single CSIrx estimate per packet To study how accurate a CSIrx metric es-
timates the BER of a packet we compare three metrics to the trueBER of the
received code wordcs,r . Our first metric reflects the unrealistic case where the
true value of the instantaneous SNRγs,r is known for each modulation symbol.
Based on all symbols, one SNR average is calculated per packet. Symbol-wise
SNR measurement requires to use each symbol for training and, thus, does not
allow any data transmission. We call this unrealistic metric ideal γs,r . Compared
to this idealistic channel assessment, the second metric iscloser to practical SNR
measurement. This so-calledrealisticγs,r is measured only over thePLCPpream-
ble [OP99, Chapter 12]. Thus, only the first 16µs of the packet are observed and
one realisticγs,r value is returned as a time average over all preamble symbols.
As third metric, we calculate MPD over all code symbols ofcs,r as described in
Section4.3.2. The resulting mpds,r vector is averaged over the complete packet,
finally, providing onempds,r value per packet.

To compare their accuracy, each of these metrics is shown as afunction of the
true BER of the corresponding packet which is, obviously, only available in simu-
lation. To study this function for a large region of the true BER, we vary the mean
SNR in γ̄s,r ∈ [0,30]dB. For each metric and each studied Doppler frequency, this
results in one scatter plot shown in Figure4.10and4.11. Each point represents a
metric/BER mapping for one packet and a line illustrates the metric’s mean over
all packets. An important indicator for a metric’s accuracyis the variance on the
x-axis. With an ideal metric, this variance would be zero such that all points fall
onto a single line expressing a distinct BER value only by a single distinct metric
value. Note that, in these scatter plots, the varied mean SNRis only implicitly
shown as the average true BER but that we explicitly study the effect of γ̄s,r in
Figure4.12.

The results for the SNR metrics are shown in Figure4.10. For both values
of fd, the idealγs,r values fall into a structure similar to a typical BER vs. SNR
curve. Although the variance ofγs,r increases for lower BER, still a close match
of idealγs,r to the true BER is shown. The accuracy increases when, due to higher
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Figure 4.10: Accuracy of realistic and ideal SNR measurement: Scatter plot
matching true BER ofcs,r to the corresponding SNR measurement. Shown for
two values of the Doppler frequencyfd. Each plot is based on 1000 packets.
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Figure 4.11: Accuracy of MPD: Scatter plot matching true BER of cs,r to the
corresponding MPD value averaged over all symbols ofcs,r . Shown for two values
of the Doppler frequencyfd. Each plot is based on 1000 packets.

fd, the channel gains decorrelate in time (Figure4.10(b)). This situation changes
completely with more realistic SNR measurement. In Figure4.10(c)and4.10(d)
the realisticγs,r metric shows no clear structure. For both values offd, the high
variance of the metric values impedes an accurate mapping tothe true BER. Con-
sequently, the realisticγs,r metric cannot serve as an accurate indicator for the
BER. This is different for MPD. The scatter plots in Figure4.11(a)and4.11(b)
fall into a very small region. As for idealγs,r , the variance improves withfd and
with the BER. This results in an injective mapping of the mean MPD to the true
BER.

While the scatter plots provide a first overview, we can quantify the accuracy
of the CSIrx metrics by taking the pairwisecorrelation coefficientρ between the
metric value and the true BER value of the corresponding packet. Precisely, we
take the Pearson product-moment correlation coefficientρ(X,Y) ∈ [−1,1] which
is a standard measure for the linear dependency between two random variablesX
andY. The results are shown in Figure4.12. A high absolute value ofρ stands for
a close linear expression of the true BER by the channel estimation metric. Vice
versa, a correlation coefficient close to zero stands for poor channel estimation.
The sign ofρ does not serve as a measure for metric accuracy. Naturally, the
SNR metrics and BER are negatively correlated since SNR∼ 1/BER while, due
to MPD∼ BER,ρ is positive for MPD.

Both plots in Figure4.12clearly demonstrate the high accuracy of the MPD
metric and the dependency on the mean SNR. With increasing mean SNR, all
metrics lose estimation accuracy since the number of deep fades per packet (and,
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thus, the number of measured error events) decreases. However, while this statistic
drawback highly affects the accuracy of ideal and realisticγs,r , MPD can take
full advantage of the decoding memory and is, thus, only marginally affected.
The accuracy of realisticγs,r is further decreased at higher Doppler frequency
fd (cp. Figure4.12(a)and Figure4.12(b)). With increasingfd, the channel gain
decorrelates in time and the probability of deep fades inside a packet’s payload
increases. By observing only the packet preamble, realisticγs,r cannot account
for these events. While this results in an unacceptable accuracy for realisticγs,r ,
decorrelation even slightly improves the CSI estimation of ideal γs,r and MPD.
This improvement is already known from the scatter plots in Figure4.10(b)and
Figure4.11(b), and highlights the benefit by observing all symbols per packet.

From these simulation results we can conclude that MPD is an excellent BER
estimator. Unlike realistic preamble-based SNR measurement, MPD takes all
code symbols within a packet into account which, first, leadsto a statistical bene-
fit. Second, unlike ideal (yet unrealistic) measurement of the instantaneous SNR,
MPD profits from the observation of the actual decoder certainty. Let us now
study MPD’s estimation accuracy if we compute this metric more frequently than
once per packet.

Multiple CSIrx estimates per packet Computing MPD more frequently re-
duces the number of symbols on which a single metric value is based. This sta-
tistical drawback reduces the metric’s accuracy but, on theother hand, allows to
adapt to the channel’s variation more often. This tradeoff between adaptation fre-
quency and accuracy is interesting for applying MPD to Partial Forwarding (PF).
Only if MPD allows the relay to decide frequently and accurately “enough”, this
metric is feasible forPF.

To quantify this tradeoff, Figure4.13 shows MPD values for various block
lengths. Each shown MPD value is averaged over allLd symbols of a deci-
sion block. As shown, the accuracy improves with the block length. If MPD
is averaged overLd = 8 symbols, no clear structure is shown. ChoosingLd =
2048 symbols already provides an accuracy that is similar tothe packet-wise MPD
in Figure4.11. With the above packet length ofLp = 8192 symbols, this block
length allowsD = 4 forwarding decisions per packet.

Selecting the decision block length If a higher decision frequency is desired,
Ld is decreased (4.1). We can define a practical minimum forLd based on the trun-
cation depth of the decoder. As mentioned in Section4.3.3, many practical Viterbi
decoders use a truncation depth of at least 5M input symbols or, equivalently, 5Mn
coded bits. It is a common rule of thumb that after this periodthe decoding de-
cision has stabilized such that the path memory can be truncated at negligible



98 Chapter 4. Selection relaying with partial forwarding

10
−2

10
−1

10
0

L
d
=8 symbols

B
E

R

L
d
=32 symbols L

d
=64 symbols

10
−1

10
010

−2

10
−1

10
0

L
d
=128 symbols

MPD

B
E

R

10
−1

10
0

L
d
=512 symbols

MPD
10

−1
10

0

L
d
=2048 symbols

MPD

Figure 4.13: Effect of block length on MPD accuracy: True BER of cs,r vs. MPD
averaged over an arbitrary block withincs,r . Shown for 6 block lengthsLd and
fd = 350 Hz. The axes of all plots are scaled equally. Each plot is based on 1000
packets.

performance loss [Pro00, Section 8.2.8], [Moo05, Section 12.3.3]. Hence, to ob-
serve MPD for a stable decoding decision, a block length ofLd ≥ 5Mn coded
bits is required. With the IEEE 802.11a/gFEC parametersM = 6 andn = 2,
this leads toLd ≥ 60 coded bits (equivalent to 60 BPSK symbols) and allows to
chooseLd = 64 symbols from the block lengths in Figure4.13. This block length
shows still a clear MPD-to-BER mapping while providingD = 128 forwarding
decisions per 8192 symbol packet or, equivalently, one decision per 4 Byte block
in a 512 Byte message.

4.4 Protocols for partial forwarding

Having discussed MPD’s feasibility and accuracy, we will now use this metric to
build a practicalPF system. We describe two extendedSDF protocols, discuss
how to choose an MPD threshold, and study necessary signaling functions.

4.4.1 Single forwarding decision

A simple integration ofPFinto SDFis illustrated in Figure4.14. Here, the relay’s
receiver chain from Figure4.8 is extended by a single decision stage based on
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an MPD threshold. For the current decision blocki in messageXs,r , the relay
simply compares the average MPD valuempds,r [i] to an MPD thresholdθ . If
mpds,r [i]< θ the relay forwards the current block. Otherwise, the block is passed
to the transmitter chain and forwarded. This forwarding decision is repeated for
each block.

Even this simple single-stage forwarding procedure already requires to select
two free parameters. First, in the time domain, the forwarding decision frequency
D (4.1) has to be defined by the window sizeLd of the smoothing filter. Here, we
employ a simple moving average to accurately capture deep fades that cross block
boundaries. Nonetheless, also other smoothing operations(e.g., low pass filters)
can be used. The block length can be chosen according to the truncation depth of
the decoder. We described this choice and provided typical values forLd andD
in Section4.3.4. The second free parameter – the MPD thresholdθ – affects the
forwarding decision in the value domain and has to be carefully selected to avoid
decision errors.

Forwarding decision errors

The error events for a threshold-based forwarding decisionare summarized in
Table4.2. EventE1 occurs when the current forwarding decision is too optimistic
and erroneous blocks are forwarded. In this case, errors from link (s, r) propagate

Table 4.2: Error eventsE for threshold-based forwarding decisions.

Block IS Block IS
erroneous correct

Threshold-based Correct E2 :={Drop
decision⇒ Erroneous decision correct block}
Threshold-based E1 :={Forward Correct
decision⇒ Correct erroneous block} decision
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to destinationd. At eventE2, the decision is too pessimistic and correct blocks
are dropped. Similar to packet-wise SDF this unnecessarilyreduces the number
of symbols thatd can combine.

When the optimal thresholdθopt is chosen, the probability that either of the
eventsE1 andE2 occurs is minimized. This optimal choice minimizes theBERe2e
which is shown in Figure4.15 for the symmetricCTR network and the IEEE
802.11a/g assumptions from Section4.3.4. If the chosen thresholdθ is equal to
θopt, a clearly shapedBERe2e “valley” is shown. Left and right fromθ = θopt

theBERe2e increases significantly. Atθ < θopt, E1 occurs and error propagation
increasesBERe2e by up to 1.5 orders of magnitude. Atθ > θopt, E2 has a less
degrading effect on theBERe2ethanE1. Hence, reducing the number of combined
symbols is less severe than forwarding errors tod.

Selecting the MPD threshold

From the results in Figure4.15we can draw three conclusions for selecting the
MPD thresholdθ . First, PF requires a careful threshold selection since choosing
θ 6= θopt has a large effect. Second, if a suboptimal threshold has to be chosen,
the pessimistic choiceθ > θopt is preferable. In this case the large drawback of
error propagation is avoided at the cost of dropping correctblocks. Third, the
optimum MPD threshold is a function of the mean SNRγ̄. As shown in Figure
4.15, θopt decreases with increasinḡγ. Thus,θopt has to be chosen for each̄γ which
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complicates the threshold choice. We denote this SNR dependency byθopt(γ̄).
On the other hand, the effect of an suboptimal threshold choice diminishes for
increasingγ̄. This effect can compensate for the dependency onγ̄ and is further
elaborated below.

So far, selecting the optimal forwarding threshold was onlystudied for packet-
wise SDF protocols with SNR thresholds [HZF04]. In [OAF+08] several approxi-
mations ofθopt either based on the mean SNR or on instantaneous SNR knowledge
were derived. However, these approximations are only validfor BPSK without
FEC coding and for block fading channels. For systems withFEC coding, au-
tocorrelated fading channels, or a combination of both, no analytic solution for
optimal SNR thresholds is known so far.

Unfortunately, this is also the case forMPD where soft decision decoding
further complicates analysis [HWR07]. Instead of deriving the theoretical optimal
threshold, we perform an empirical study. By transmitting many training packets
for different γ̄ andθ we establish a large set of MPD values. From this set, the
BERe2e-minimizing threshold is chosen which provides an empirical optimum
θopt(γ̄) for a given scenario.

The result of this threshold search is illustrated in Figure4.16which can be
seen as a 3D variant of Figure4.15. For a clear graphical presentation, the contour
lines show

BER∆
e2e= BERe2e−min

∀θ
(BERe2e)
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and the optimal thresholdθopt(γ̄) is chosen when BER∆e2e= 0. As expected from
Figure4.15, choosingθ = θopt(γ̄) causes a clearly shapedBERe2e “valley” and
the threshold value decreases for increasingγ̄.

Figure4.16 provides further insight in choosingsuboptimalthresholds. As
shown by the flattening contour lines, the “valley” aroundθopt(γ̄) becomes wider
if the SNR increases. At high SNR (here,γ̄ ≥ 15 dB), this allows to choose a large
set of different suboptimal thresholds without significantly degradingBERe2e.
Even if anγ̄-independent threshold is chosen, the wideningBERe2e“valley” only
negligibly decreases the performance (cp.θ = const. in Figure4.16). This simpli-
fies the practical threshold selection. Based on the approximate mean SNR (which
is easily obtained in many systems), a practical system can use Figure4.16as a
lookup table to selectθ for an γ̄ interval or even independent of̄γ. Neither accu-
rate knowledge of the mean SNR nor knowing the instantaneousSNR is required.

4.4.2 Two decision stages

In systems whereFECas well as error detecting codes are used, we can decrease
the probability ofE2 by combining MPD with error detection. The resulting, so-
called Two-stage SDF (2SDF) protocol extends the relay’s receiver chain from
Figure4.8by two decision stages (Figure4.17). After theMPD VA returns mes-
sage and MPD vector, theFCSis extracted and used in the first decision stage.
This stage tests the complete message by an error detecting code, e.g., aCRC.
If the message passes this test, it is considered to be correct and forwarded com-
pletely. If the message fails this test, packet-wiseSDFwould drop this message.
This is not the case with the 2SDF protocol. Here, in a second stage, an MPD
threshold-based decision is made for each message block as in Section4.4.1.
Hence, each block with an MPD sufficing the threshold is forwarded.

By combining packet and block-wise decision, 2SDF provides the following
benefits. By its first stage, 2SDF decreases the probability ofE2. Even if the
chosen threshold is too pessimistic, correct blocks are notdropped if the complete
message passes the CRC test. If the CRC test fails, MPD is used to inspect the
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Figure 4.18: Source encoding scheme reducing PF’s signaling overhead and ex-
ample vectors (shaded).

message at higher temporal resolution. In this second stage, an MPD threshold is
used to find and forward correct blocks. This keeps the benefits of Partial Forward-
ing (PF) but can outperform a single threshold-based decision withsuboptimal
thresholds. We will demonstrate these gains in Section4.5.

4.4.3 Transmitting control information

To not fragment the medium access, a PF relay does not forwardeach decision
block separately. Even if blocks are dropped, still one packet is forwarded per co-
operation cycle. This packet includes the remaining blocksand additional control
information to indicate the removed blocks to the destinationd. This indication is
crucial to assure thatd combines the remaining blocks with the appropriate blocks
from the direct link but, naturally, adds overhead. To avoidthat this overhead sub-
stantially decreases the data rate we use the following signaling scheme.

Per packet, the relay performsD binary forwarding decisions. Representing
each decision by a single bit leads to asignaling vector Su of D bits per packet.
Since with fading channels decoding errors usually result from burst errors, it
is likely that Su contains long runs of zeros and ones. Such data can be well
compressed by standard lossless source coding which is illustrated by the upper
branch in Figure4.18. First, preprocessing reduces the uniform distribution of
zeros and ones inSu. This improves the rate of the actual compression scheme
that is applied in the second step. We employdifferential coding[Pro00, Sec-
tion 3.5.1] for preprocessing and usearithmetic codingfor compression [CT91,
Section 5.10]. Although other schemes can be used, these standard schemes read-
ily support pipelining and arithmetic coding is efficient for small code alphabets
(such as the binary values inSu).

However, for a very large number of ones or zeros, compression can be less ef-
ficient than directly signaling the block indices. In this case, the signaling scheme
selects the lower branch in Figure4.18and sendsLsig,b= ⌈log2(D)⌉ bits per index
plus one additional bit stating if the signaled indices refer to forwarded or dropped
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blocks. Which of the branches in Figure4.18is chosen depends onD and on the
currentSu. By running both methods in parallel and choosing the shorteroutput
vector (Figure4.18), the more efficient signaling scheme is automatically selected.

We illustrate the resulting signaling overhead per block inFigure4.19. Again,
we assume the above IEEE 802.11a/g system withD = 128 blocks per packet,
each block isLd = 64 symbols long (Section4.3.4). Without compression, the
signaling overhead per block is 1 bit. As shown, source coding significantly re-
duces this overhead. The compression gain is higher for lower Doppler frequency
fd where the channel gains are highly autocorrelated and, thus, longer runs occur
in the signaling vector. Similarly, the run length increases at higher SNR where
a larger number of blocks can be forwarded. Consequently, only little signaling
overhead is required at high SNR and at lowfd.

Note thatD can be chosen such that PF’s signaling overhead does not de-
crease the data rate. Each dropped block “frees”LdRc uncoded bits per mes-
sage but requires at worstLsig,b bits of signaling information. In the above ex-
ample, aLdRc = 32 bits block requires only a maximum signaling information
of Lsig,b(D = 128) = 7 bits. Here, only up to 22 % of the block length is spent
for signaling. Generally speaking, ifD is chosen such thatLsig,b(D) ≤ LdRc, the
forwarded packet is never longer than the original packet. Since the signaling
overhead is shorter than the length of a dropped block, each removed block re-
duces the time spent for forwarding. This even increases theend-to-end data rate
of standard selection relaying.
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4.5 End-to-end performance study

Now all components of the Partial Forwarding (PF) system are described and we
can study its end-to-end performance. First, we study the effect of the decision
metric and threshold on theBERe2e. Second, we focus on theBERe2e and data
rate differences due to the above PF protocols. As expected from the theoretical
results (Section4.2), high gains are shown for theBERe2eof PF. Moreover, even
a practicalPF system closely reaches theBERe2e of the ideal case. In terms of
data rate, PF can significantly improve the rate of SDF at medium and low SNR
when relaying (under the orthogonality constraint) becomes relevant. These gains
are even reached if overhead is included and with suboptimalthresholds.

4.5.1 System model and parameters

To study PF’sBERe2e and data rate by simulation, we use the standard IEEE
802.11a/gPHY assumptions from Section4.3.4. Each message is 512 Bytes long,
which leads to a packet length ofLp = 8192 symbols. An includedFCSallows
oneCRCtest per message. Due to the very high error detection rate ofCRC-32
we assume this test to be ideal. Cooperative relaying is studied in the symmetrical
CTR network (Figure3.1(b)) with a single relay and equal mean SNR̄γ for all
links. Each node operates under the per-node power constraint that reflects IEEE
802.11 medium access (Section2.3). If the relay employsSDF (Section3.2.2),
either the complete packet (repetition coding) or no packetis forwarded. IfPF
is used, a block length ofLd = 64 symbols and, thus, a forwarding decision fre-
quency ofD = 128 is selected according to the truncation depth of typicalIEEE
802.11a/g decoders (Section4.3.4). Finally, the destination combines the received
signals usingMRC. A MAC scheme perfectly assures an orthogonal channel (e.g.,
a separate time slot) for each transmission.

As in Section4.3.4, we select a Doppler frequency offd = 17.34 Hz or fd =
350 Hz to study slow and fast autocorrelated frequency-flat fading, respectively.
The effect of this parameter on the employed fading model is described in Section
2.1.2. The Doppler frequency and, thus, the relative velocityv, is equal for all
transmitters and receivers. Correlation is modeled only in the time domain, i.e.,
the channel coefficients are frequency-flat and different links are statistically inde-
pendent. AllBERe2e results are shown prior to decoding which allows compari-
son to studies for uncoded cooperation systems, e.g., [LWT04, HZF04, OAF+08].
Each shown value for theBERe2eand for the mean data rate is based on 105 trans-
mitted packets, i.e., 8.192·108 modulation symbols.
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4.5.2 Effect of the decision metric

First, we study the effect of the forwarding decision metric, decision frequencyD,
and threshold selection on theBERe2eperformance ofSDFprotocols. In particu-
lar, we study the following cases.CRCandrealisticγs,r represent an ideal or inac-
curate CSIrx measurement once per packet (D = 1), respectively.Ideal γs,r allows
symbol-wise decision (D = 8192) but is a suboptimal metric in coded systems.
With MPD the relay decides per block using the above parameters (D = 128). All
these metrics are studied using the simple single-stageSDF protocol, i.e., con-
ventional SDF for CRC and threshold-based decision for SNR andMPD. The
SNR and MPD thresholds are selected by numerical search as described in Sec-
tion 4.4.1. For MPD, we study if choosing an SNR-dependent thresholdθ(γ̄) is
worth the effort by comparing it to the SNR-independent MPD thresholdθ .

Furthermore, we includeDirect transmission andGenieSDF in our study as an
upper and lowerBERe2ebound, respectively.Geniedenotes the ideal PF system
from Section4.2that is now studied for autocorrelated channels. In this idealistic
case, the relay knows and forwards only the correct symbols.As idealγs,r , Genie
uses highest decision frequency (D = 8192) but differs by the decision metric.
While Genie always makes a perfect local forwarding decision, the decision of
idealγs,r may be suboptimal since SNR-based decision neglects the gains ofFEC
decoding.

For all these cases, theBERe2eresults are shown in Figure4.20. Interestingly,
even for the slowly varying channel in Figure4.20(a), packet-wise decision leads
to poor performance compared to higherD. Even an ideal decision metric (CRC)
cannot compensate forD = 1 and the relay drops correct parts of a packet. This
results from the quasi-periodic nature of the J0 Autocorrelation Function (ACF)
where the channel decorrelates quickly afterTc (thus, changing channel state) but
then correlates again (Figure2.4). A further degradation results from the decision
metric itself. As SDF with realisticγs,r bases its decision only on a short part of the
packet, it achieves lower accuracy (cp. Figure4.10) and, thus, significantly higher
BERe2e than CRC and idealγs,r . Although idealγs,r decides most frequently, it is
outperformed by the MPD metric which accounts for the actualdecoder certainty.
Hence, from all studied metrics, MPD achieves aBERe2eclosest to the Genie case
although itsD is 64 times lower than with idealγs,r . This is even the case with
SNR-independent thresholds.

Similar results are obtained for a fast channel (Figure4.20(b)). Again, both
MPD cases reach best performance; the gain for SNR-dependentthreshold selec-
tion can be neglected. Compared to the slow channel, the results for realisticγs,r

and CRC are interesting. Realisticγs,r profits if the channel coefficients decor-
relate in time (Section4.10). This statistical benefit increases the accuracy of
this most inaccurate metric and, thereby, theBERe2e. The results for CRC-based
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Figure 4.20: Effect of forwarding decision metric on BERe2e: Shown vs. SNR for
two values of the Doppler frequencyfd.
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SDF clearly demonstrate the drawback of packet-wise decision at high Doppler
frequency. While for high SNR a large diversity gain is shown,the gain quickly
diminishes for lower SNR until, at 10 dB, merely the performance of direct trans-
mission is reached. In this case, the number of dropped packets is so high that
almost no symbols are forwarded anymore. That still a significant number of cor-
rect symbols can be forwarded is shown by the significant gains for idealγs,r and
MPD at low and medium SNR.

For slow and fast autocorrelated fading, MPD outperforms all studied feasible
metrics. Even with a practical decision frequency and SNR-independent thresh-
olds, MPD-basedPFclosely reaches theBERe2eof the ideal case. This shows that
PF’s highBERe2egains, promised by the theoretical results in Section4.2.2, can
actually be reached for autocorrelated fading and with practical methods.

4.5.3 Effect of the protocol and signaling functions

We now study how the Two-stage SDF (2SDF) protocol and the signaling scheme
affect the end-to-end Bit Error Rate (BERe2e) and the data rate.

Bit error rate

The BERe2e results for the slow and fast fading scenario are shown in Figure
4.21. All results other than for 2SDF are equivalent to Figure4.20and included
here for comparison. Conventional SDF with a single packet-wise decision (i.e.,
D = 1) is calledSDF, CRC. PF with a single block-wise decision (i.e.,D = 128
using an SNR-independent MPD threshold) is calledPF, MPD. 2SDF’s decision
frequency isD = 1 if the first packet-wise stage suffices but is increased toD =
128 if its second block-wise decision stage is required (Section 4.4.2). Note that
only this second MPD-based stage introduces decision errors since an ideal CRC
is assumed for stage one. Thus, 2SDF cannot have a largerBERe2e than a single
MPD threshold-based decision.

While 2SDF’s end-to-end Bit Error Rate (BERe2e) shows no significant im-
provement atfd = 17.34 Hz, at higher Doppler frequency a clear benefit over the
single-stage cooperation protocols is found. This gain demonstrates that 2SDF’s
first decision stage avoids that the relay pessimistically discards correct messages.
More formally, 2SDF’s CRC decision decreasesP{E2} for all blocks of a mes-
sage. As with increasing SNR correct messages occur more frequently and are,
thus, more likely to be dropped by an erroneous forwarding decision, theBERe2e
gain of 2SDF increases with the SNR. Nonetheless, the gain is comparably small
which indicates the high quality of the chosen MPD threshold. For larger thresh-
oldsP{E2} increases and a higher improvement can be expected from 2SDF.
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Figure 4.21: Effect of selection relaying protocol on BERe2e: Shown vs. SNR for
two values of the Doppler frequencyfd.
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Effective data rate

To account for all symbols which are (1) discarded at the relay, (2) lost due to
fading or noise, and (3) occupied by signaling overhead, we define

Re =
Total number of correctly received payload bits

Total number of transmitted bits
=

Ncorrect

Ns,d+Nr,d+Nsig
(4.14)

as theeffective data rate. Here,Ns,d and Nr,d denote the sum of uncoded bits
sent over the respective link andNcorrect stands for the sum of correctly received
payload bits. Note thatNcorrect≤ Ns,d and that for direct transmission the relay
forwardsNr,d = 0 bits. With relaying,Nr,d ∈ [0,Ns,d] captures different forwarding
decisions. Finally,Nsig represents the length of the signaling vectorSc (Section
4.4.3) accounting for the overhead due toPF. Overhead due to other protocol
functions is not considered in this study. From the MPD-based protocols we focus
only on SNR-independent thresholds and on the succeeding protocol 2SDF.

CountingNcorrect,Ns,d,Nr,d, andNsig during simulation results in the effective
data rate shown in Figure4.22. Independent offd, the multiplexing loss dom-
inatesRe at high SNR. While with increasing SNR the effective rate for direct
transmission tends to one,Re approaches only 1/2 for the relaying protocols. As
discussed in Section3.3.4, this multiplexing loss is a consequence of repetition
coding under the orthogonality constraint.

However,SDFprotocols can exceed this rate when (1) the relay forwards only
Nr,d < Ns,d bits but (2) the destination still receives anNcorrect high enough such
that Ncorrect> (Ns,d +Nr,d)/2. CRC-based SDF achieves this atγ̄ = 10 dB and
at γ̄ = 18 dB for low and highfd, respectively. However, in either of these cases
direct transmission succeeds and relaying is not needed. Due to its high number of
forwarded bits, MPD-based relaying does not achieveRe > 1/2 but improves its
BERe2e. While none of the relaying protocols can outperform direct transmission
at high SNR and lowfd, 2SDF substantially improves the data rate when deep
fades during the packet time become more likely. This is the case at highfd and
low to medium SNR and shown in Figure4.22(b). For instance, atfd = 350 Hz
and at 10 dB, 2SDF’sBERe2e gain suffices to reach a 2.6 times higher data rate
than conventional SDF. This is even the case when overhead istaken into account.
Consequently, instead of conventional SDF protocols, one would employ direct
transmission (at high SNR, lowfd) and 2SDF (at low to medium SNR, highfd)
to reach a high data rate.
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Figure 4.22: Effect of selection relaying protocol on mean effective data rate:
Shown vs. SNR for two values of the Doppler frequencyfd.
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4.6 Summary of contributions and future work

Contributions

Basic approach and analysis With Partial Forwarding the relay may decide to
forward parts of a packet. This approach generalizes the forwarding decision of
theSDFprotocol from an optimization in the value domain only to an optimization
in the valueand time domain. WithPF the relay has not only to find the best
threshold for its forwarding decision [HZF04, OAF+08] but also has to decide
frequently enough to follow the variation of the fading channel.

Due to their low forwarding decision frequency, evenSDFwith ideal thresh-
olds reaches poor end-to-end Bit Error Rate (BERe2e) if several fades per packet
occur. For this case, analysis shows substantial coding gains forPFover packet-
wiseSDFand provides a lower BERe2ebound. Simulation results for autocorre-
lated fading confirm that even at low mobility several fades per packet occur and
high gains for PF can be reached.

Frequent channel state estimation ImplementingPFrequires the relay to es-
timate the channel state for small parts of a packet. Following the soft output
approach, we described the decoding-based metric Minimum Path Difference
(MPD) as an extension of the Viterbi decoder.

The resulting MPD-extended Viterbi Algorithm (MPD VA) estimates the chan-
nel state for small blocks of a codeword. While this method reaches similar es-
timation accuracy as instantaneous SNR, it even captures thedecoder certainty.
Unlike other estimation schemes, no additional training symbols are needed and
the decoder complexity is only insignificantly increased.

Although this channel estimation method is completely independent of coop-
erative relaying, it can be efficiently employed in our practical PFsystem design.

System design and performance Employing soft information only for the re-
lay’s local forwarding decision but still forwarding hard bits is a new system con-
cept which stands between the classicSDF strategy (hard bit-based forwarding
decision at the relay, forwarding hard bits) and recent softDF approaches (no
decision at the relay, forwarding soft bits).

To profit from this new concept, a practicalPF system requires more exten-
sions toSDFthan channel state estimation. Starting with a simple threshold-based
forwarding decision, we show that MPD-basedPF pays only a marginal perfor-
mance penalty even if suboptimal, constant thresholds are selected. By combining
this threshold-based decision with conventional SDF, forwarding decision errors
for complete packets can be further avoided. Finally, an efficient source coding
scheme is introduced to compress the necessary signaling information.
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Altogether, these functions provide a feasiblePFsystem which is studied for
IEEE 802.11a/g system assumptions, practicalPFparameters, and with autocor-
related fading channels. Even under these realistic assumptions, thePF system
shows a performance that is close to the theoretical ideal case. These substantial
BERe2egains come at feasible complexity and negligible overhead.The data rate
is not decreased but even increased when fades during the packet time are likely.

Future work

Generalization to M-QAM Although the MPD metric is simple and efficient
it needs to be generalized for higher order modulation typesin addition to BPSK,
i.e., M-QAM. This is not straightforward since MPD exploitsthe angular domain
to assess carrier phase mismatches. Nevertheless,PFcan be already implemented
for M-QAM by using other soft output approaches which, however, significantly
increase the relay’s complexity.

Effect of interleaving Interleaving is not considered in the above studies and
system design. Nonetheless, the effect of interleaving canbe assessed by the
above results for high Doppler frequency. In both cases, thechannel decorrelates
in time decreasing the length of burst errors. The above results show that for such
lower autocorrelation the accuracy of MPD and, thus, the end-to-end performance
of the practicalPFsystem significantly improve. Nonetheless, performance stud-
ies for practical interleavers are still necessary.

Combination with temporal diversity schemes PF provides spatial diversity
gains even when the channel changes within a packet. It targets an intermediate
situation between slow and fast fading where diversity gains can be provided by
selection relaying as well as by temporal diversity schemes(e.g., interleaving,
HARQ, and rateless codes). These schemes andPFare not mutually exclusive but
perform best with different channel statistics and impose different constraints on
feedback and delay. CombiningPFwith temporal diversity schemes can point to
interesting tradeoffs and beneficial system designs that obtain high diversity gains
with slow, intermediate, and fast mobility.
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Chapter 5

Applying selection relaying to
resource allocation

We have seen that selection relaying can improve the performance of a single wire-
less transmission. Let us now focus on more complex communication systems
where multiple packet streams of different importance are transferred between the
nodes. Prioritizing these streams byresource allocationis a common approach to
improve the overall performance [BBKT96, WCLM99]. In this chapter, we will
focus on two promising approaches to improve resource allocation by cooperative
relaying. Both approaches use selection relaying to providediversity gains. By
providing these gains only for the highly relevant packets the overall performance
is improved but the multiplexing loss due to relaying is limited.

Our first approach, calledAsymmetric Cooperation Diversity (ACD), joins re-
source allocation and selection relaying at scheduling level. To improve the qual-
ity of media streaming, ACD prioritizes packets by asymmetrically allocating the
cooperation diversity branches among the users. In Section5.1 we describe this
prioritization approach, verify it by outage analysis and simulation, and demon-
strate substantial improvements of the video quality.

In our second approach, calledCooperative Feedback (CFB), resource alloca-
tion and cooperative relaying do not interact during scheduling. Instead, coopera-
tive relaying decreases the error rate forCSI feedback packets. This improves the
performance of a scheduled downlink since most resource allocation schedulers
perform poorly if accurateCSI is not available [PM07, KK08]. We demonstrate
the resulting error rate and sum capacity gains in Section5.2for a simple cellular
scenario with Multiuser Diversity (MUD).

All in all, we will demonstrate two beneficial schemes that apply selection
relaying to resource allocation. Let us now detail how relaying can be applied and
which performance gains can be expected.

115
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5.1 Asymmetric cooperation for media streaming

Transmitting media streams at high qualityand in real time is still a challenge for
many wireless systems. If the high error rate of fading channels meets the strict
delay constraints of media streams, even up-to-date error correction techniques,
e.g., Turbo codes andHARQ, may be pushed to their limits [ADF+09].

Improving diversity gain is a key approach to deal with such scenarios but
often requires additional redundancy. A diversity scheme,such as cooperative re-
laying, has to carefully invest this redundancy where it is needed to assure that
an improved error rate does not result in unacceptable delayor throughput. As
high streaming quality requires error rate, throughput, and delay to be in balance
[HTL+06], it is not sufficient to improve only the error rate. Although this objec-
tive differs significantly from the previous chapters it canbe still achieved with
selection relaying as follows.

5.1.1 Approach and scenario

Our basic approachdiversity branch allocationassigns a larger number of diver-
sity branches to the more important packets of a media stream. These branches
are provided by cooperation. In its simplest form, users cooperate only for the
most relevant packets and transmit all other packets directly.

Diversity branch allocation with selection relaying

At a first glance, this approach may look like a conventional traffic-aware resource
allocation scheme with cooperation on top of it. This is not the case. To support
different priorities, diversity branches are allocated and not channel resources.
Thus, two packet streams can receive different priorities even if the same share of
channel resources (but with different diversity order) is allocate to both streams.

Although diversity branches can be allocated with any diversity scheme, re-
alizing this approach with selection relaying has several benefits. First, after its
forwarding decision, a relay knows if it will retransmit thepacket that was re-
ceived from link(s, r). Thus, at an intermediate stage of a transmission, the relay
predicts the diversity order that is realized at the destination. This is not possible
with conventional diversity schemes (e.g., frequency or temporal diversity) where
only the source can assign diversity branches prior to transmission.

Second, knowing the state of link(s, r), a relay can use further stages of the
forwarding decision depending on the packet priority. If the current priority can be
extracted from the received packet, no further communication is required to make
this decision. This enables a distributed prioritization without communication
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Figure 5.1: Basic structure of the proposed traffic-aware diversity allocation sys-
tem. Shaded functions are described in this work.

overhead. Consequently, its forwarding decision makes selection relaying very
appealing to integrate prioritization by diversity branchallocation.

We separate our contribution in two functions called Asymmetric Cooperation
Diversity (ACD) and Traffic-Aware Cooperation Diversity (TACD), illustrated in
Figure5.1. Details of these functions are described in Section5.1.3and5.1.5.

ACD is a selection relaying protocol which asymmetrically allocates diversity
branches among the cooperating users to prioritize packets. ACD’s operation is
independent of the actual traffic type and can assign static priorities to the packets
of cooperating users. While such a permanent prioritizationmay be already useful
on its own, it can also be employed to dynamically adapt the diversity branches to
the current traffic demands. This is done byTACD, which is a control algorithm
to define ACD’s priorities.

TACD defines priorities according to the relevance of the currentmedia packet.
Unlike ACD, TACD is traffic-aware and many different traffic-specific variants
may be used (e.g., for various voice or video codecs). We willdescribe a variant
for MPEG-4 video streams below. TACD’s traffic-aware prioritization is com-
pletely distributed among the users, comes at no communication overhead, and
does not add delays, e.g., due to re-scheduling packets or sorting queues. All this
makes TACD most suitable forreal-timestreaming.

Assumed scenario and protocol

ACD generalizes the Coded Cooperation (CC) protocol that symmetrically allo-
cates the diversity branches among the cooperating nodes. We describedCC in
Section3.2 and now detail the parts whichACD manipulates as well as the sce-
nario assumptions.

An example ofCCwith two cooperating nodes is illustrated in Figure5.2. The
two nodesa andb are calledusersand may cooperate to reach the destinationd.
A cooperating user is calledpartnerand may act alternatively as source and relay.
As each partner transmits its own and forwards its partner’sdata, two users split
theMAC cycle into the four slotsA,B,C,D illustrated in Figure5.2(b). As in the
previous chapters, we assume that aMAC scheme which assures that these slots



118 Chapter 5. Applying selection relaying to resource allocation

a,bγb,aγ d

a,dγ

b,dγ
b,dγ ’

a,dγ ’

b

a

(a) Basic scenario for two cooper-
ating users.

B

A

C

D

a’s bits

b’s bits

1 2

T
ra

ns
m

itt
er

b

a

Phase

(b) MAC cycle of CC with 4
orthogonal channel uses.

Figure 5.2: Basic scenario and MAC cycle of Coded Cooperation (CC) if usera
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valuesγ for all transmissions during phase 1 (solid line) and phase 2(dashed line)
of the MAC cycle.

represent orthogonal subchannels. As common for selectionrelaying protocols,
CC separates each protocol cycle into a source phase (phase 1)and a relay phase
(phase 2). Between both phases the relay makes a forwarding decision. If both
users forward, usera transmits in slotsA,D and userb transmits inB,C.

Unlike other selection relaying protocols,CCintegrates cooperation intoFEC
coding and puncturing (Section3.2). We assume that both users employ ideal con-
volutionFECcodes which support various code rates, e.g., the well-known RCPC
codes [Hag88]. For generality, we express the code rate as spectral efficiencyR in
bits/s/Hz. For more specific systems, the transmission ratein bits/s can be easily
derived by multiplyingR with the modulation order and the signal bandwidth.

We assume the coding procedure described in Section3.2. Per cycle, each user
transmitsk information bits coded at rateR= k/n to n transmitted bits. Puncturing
removesn2 bits fromn which are saved for phase 2, while the remainingn1 bits
are transmitted in phase 1. After phase 2, for each usern= n1+n2 bits may be
available atd. In this cased, combines then1 andn2 bits by de-puncturing. If
d receive multiple phase 2 signals for a user,d employsMRC to combine these
signals prior to de-puncturing. As described in Section3.2, n1 and n2 can be
adjusted by choosing a puncturing matrix according to the cooperation levelβ =
n1/n. For simplicity, we assumeβ = 1/2 which sets both phases to equal length.
Consequently,n1 = n2 = n/2 leading to the code ratesR1 = R2 = 2R for both
phases.

The links (a,d) and (b,d) in Figure 5.2 towards the destination are called
uplinks. The links(a,b) and(b,a) between the users are calledinter-user links.
As CC is a selection relaying protocol, the states of the links(a,b) and (b,a)
define if a user relays its partner’sn2 bits. With two users this leads to four modes
of cooperation. In thesymmetricmodes, either both users can decode and forward
each other’s packets or or none of the users can forward. In theasymmetricmodes,



5.1. Asymmetric cooperation for media streaming 119

only one of both users can decode and forward and the other user transmits its own
packet.

For all links, i.i.d. Rayleigh block fading channels are modeled as described in
Section2.1.2. By choosing a fading block timeTb = Tp, we assume that a channel
may fade only once per packet timeTp. We denote the instantaneousSNRof the
inter-user links during phase 1 byγa,b andγb,a (Figure5.2). The instantaneous
SNRfor the uplinks is denoted byγa,d,γb,d for phase 1 andγ ′a,d,γ

′
b,d for phase 2.

We assume a symmetrical network geometry where both partners experience the
same mean SNR̄γu in the uplink, i.e.,γ̄u := γ̄a,d = γ̄b,d = γ̄ ′a,d = γ̄ ′b,d, and the same
mean SNRγ̄i during theinitial data exchange in phase 1, i.e.,γ̄i := γ̄a,b = γ̄b,a. As
in Chapter4 we normalize path loss to unity. Hence, the mean SNRγ̄ is equivalent
to the reference SNRΓ (Section2.1.1).

5.1.2 Related work

Unlike many media-aware cooperation protocols,ACD andTACD do not allocate
a higher source coding rate [GE04, XGEW05, KHL05] or more channel resources
[LCSK07, LSC07] to increase the priority of highly relevant parts of a media
stream. Instead, our approach allocates diversity branches which are provided by
a selection relaying protocol.

On top of our approach, resource allocation [LCSK07] or retransmission sche-
mes [LSC07], which are customized to cooperative media streaming, canbe still
applied. Some of these schemes rely on perfect feedback fromthe destination
which cannot be guaranteed in many systems. One example is [LSC07], where
the relay repeats a video packet if itsACK has not been received in time. If, with
erroneous feedback, even an ACK for acorrectly received packet may be lost,
source and relay waste channel capacity. This is not the casewith TACD which
does not rely on feedback from the destination and does not rely on any control
packets.

Exchanging control packets is also required if source coding is combined with
cooperation [GE04, XGEW05, KHL05]. As cooperating users have to negotiate
their code rates, such schemes are more vulnerable and less general than ACD
and TACD. Furthermore, unlike these schemes, our approach isnot limited to a
particular source codec and traffic type. ACD and TACD’s coordination scheme
can operate with any traffic type as long as a priority is givenor can be derived
from the packet.

5.1.3 Asymmetric diversity branch allocation (ACD)

We now describe how theACD protocol allocates diversity branches to the users’
transmissions. To realize priorities,ACD exploits the high effect of cooperation
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diversity on the end-to-end error rate. As true diversity orderL is only known after
a transmission,ACD bases its allocation on theestimated diversity order̃L ≈ L
that is known after the relay’s forwarding decision.

Based onL̃, ACD lets users asymmetrically allocate their diversity branches
to their current packet. Assuming uncorrelated fading channels in time and space,
one diversity branch is reached per slotA,B,C,D (Figure5.2(b)). Hence, diversity
branches can be allocated by slots.

Initially, slots A,B are fixed since each user transmits its own packet at least
once. Hence, only thẽL = 2 diversity branches in slotsC,D can be allocated
freely. Per user, this leaves ACD three possibilities of allocation and provides
three priorities. First, symmetrical CC can be used to allocate L̃ = 2 diversity
branches per user. In this case, usera receives the slotsA,C while userb receives
B,D. Since both users receive equalL̃, this case is calledequal priority. Second,
asymmetric CC can be used to assignL̃ = 3 to one user. This user (e.g.,a employ-
ing the slotsA,C,D) receiveshigh priority. Third, the partner of a high-priority
user can only employ a single phase 1 slot and, thus, receiveslow priority by
L̃ = 1. For instance, ifa receives high priority, userb can only employ slotB.

Nevertheless, the actually reachedL depends on the forwarding decision of
each user. WithACD, no spatial diversity is reached for a usera if its partner
b fails to decodea’s n1 bits. Due to this dependency,ACD allocates diversity
branches between phase 1 and 2 of the MAC cycle. Here, the result of the for-
warding decision is known and each user knows whichL̃ it can provide for its
partner.

If one or both users cannot cooperate, equal priority cannotbe provided by
cooperation. Instead,ACD still provides equal priority by falling back to direct
transmission. In this casea andb still receiveL̃ = 2 temporal diversity branches
in slotsA,D andB,C, respectively.

Direct transmission is also employed as a fallback option when the neighbor
of a high priority user cannot cooperate. Without a partner,high priority cannot
be provided and both users realize equal priority by direct transmission. We will
detail this discussion in the following outage analysis.

5.1.4 Outage probability and diversity order

ACD’s prioritization only works if its diversity branch allocation has a signifi-
cant effect on the error rate. We now confirm this large effectand detail ACD’s
description by outage probability and diversity order analysis.
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Method and assumptions

As discussed in Chapter3, deriving the exact outage probability for multi-channel
systems is not trivial. ForCC, an approximation is provided in [HSN06] assuming
high SNR and i.i.d. Rayleigh fading channels. Unlike in [HSN06] and in parts
of this work, we will not use numerical integration and Taylor approximation to
obtain the outage probabilityPout for asymptotically high SNR. Instead, we will
derive the conditional probability terms from the flow networks as in Section3.3
and provide results for high and low SNR by simulation.

While this method joins generality and exact results, it neither provides the
diversity orderL nor L̃. Instead,L has to be derived asymptotically (Section2.2).
We do so by applying cut set analysis in the high SNR regime. The applied method
is similar to the approach in Section3.2but now we separate the phases to account
for an asymmetric allocation of the phase 2 slots. Note that at high SNR and
without correlation, cut set analysis even provides the exact diversity orderL.
This quantity provides an upper bound for the practical estimateL̃.

To isolate the effect of ACD’s allocation we focus on a simple scenario with
static priorities and only two cooperating users (Figure5.2). Note that it suffices
to derivePout only for a single user. AlthoughACD is an asymmetric scheme, its
function depends only on the priority and not on the user. Hence, we study only
usera. For userb, identical expressions and cut sets are obtained with the roles of
both users reversed.

Outage and cut set analysis

We now apply these methods to direct transmission and to eachof ACD’s three
priorities. We start by decomposing Figure5.2(a)into one flow network for each
transmission mode of usera. For the resulting flow networks in Figure5.3, we
define allN unidirectional cut setsS1, . . . ,SN as described in Section3.3.1.
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Equal priority by direct transmission Let us start with direct transmission to
d as a simple example. Both users receive the same number of slots and diversity
branches. Usera utilizes slotsA,D for its own data and leavesB,C to b (Figure
5.2). During each slot the link fades independently in time, thus, the link has to
fail in both time slots to cause an outage. Consequently, a temporal diversity order
of L = 2 is reached.

In Figure 5.3(a), this result is reflected by the two edges in cut setS1. If
the instantaneous SNRγa,d as well asγ ′a,d of these two statistically independent
phases drop below the corresponding rate-dependent threshold γ̂1 = 2R1 −1 and
γ̂2 = 2R2 −1, direct transmission fails. Hence, the outage probability of this event
(5.1) depends on the code ratesR1 = k/n1 andR2 = k/n2 for both phases.

Pout
di = P{(γa,d < γ̂1) · (γ ′a,d < γ̂2)} (5.1)

Low priority With low priority usera employs only the single slotA. Hence,
only γa,d needs to fall below threshold̂γ1 to cause an outage. This reducesS1 to a
single link, i.e.,L = 1, and leads to

Pout
low = P{γa,d < γ̂1}. (5.2)

Note that (5.2) is always larger than (5.1) since with direct transmission each user
obtains a higherL and transmits at lower code rate than with low priority.

Equal priority by cooperation In this case both users cooperate to symmetri-
cally share their antennas during phase 2. This allows each user to distributen
bits over two antennas. In Figure5.3(c)both cut setsS1 andS2 contain two links.
Thus, the diversity orderL of this priority is two.

Such symmetric cooperation, however, only works ifeachuser correctly de-
codes the partner’sn1 bits. This is represented by the first case in (5.3). Here,γa,b

as well asγb,a exceedγ̂1, allowing both users to cooperate. In the three remaining
cases in (5.3), at least one user fails to cooperate and cannot provide spatial diver-
sity to its partner by cooperation. In each of these remaining cases, both users fall
back to direct transmission leading to aPout similar to (5.1).

Pout
eq = P{γa,b ≥ γ̂1} ·P{γb,a ≥ γ̂1} ·P{γa,d < γ̂1} ·P{γ ′b,d < γ̂2} (5.3)

+ P{γa,b < γ̂1} ·P{γb,a ≥ γ̂1} ·P{(γa,d < γ̂1) · (γ ′a,d < γ̂2)}
+ P{γa,b ≥ γ̂1} ·P{γb,a < γ̂1} ·P{(γa,d < γ̂1) · (γ ′a,d < γ̂2)}
+ P{γa,b < γ̂1} ·P{γb,a < γ̂1} ·P{(γa,d < γ̂1) · (γ ′a,d < γ̂2)}
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Table 5.1: Diversity order for two users.

Tx scheme/ Diversity orderL of user
Priority of usera a b

Direct 2 2
Low 1 3
Equal 2 2
High 3 1

High priority by cooperation If user a receives high priority it employs the
slots A,C,D. Consequently, the cut setsS1 and S2 include three links and the
diversity order for usera is three (Figure5.3(d)). In this case, userb obtains only
low priority by L = 1.

As a does not helpb, only b needs to decode correctly, i.e., transmission
(a,b) must not be in outage during phase 1. We incorporate this condition in
the first probability term of (5.4). The second term includes two events due to
de-puncturing, whereγ ′a,d + γ ′b,d representsMRC of the phase 2 signals (Section
2.2.3). If the first condition (5.4) fails, high priority cannot be provided fora,
direct transmission is used as fallback option, andPout is similar to (5.1).

Pout
hi = P{γa,b ≥ γ̂1} ·P{(γa,d < γ̂1) · (γ ′a,d + γ ′b,d < γ̂2)} (5.4)

+ P{γa,b < γ̂1} ·P{(γa,d < γ̂1) · (γ ′a,d < γ̂2)}

We summarize our diversity order results in Table5.1. The table lists the pri-
orities for usera and the according diversity orders for both users. Since thefour
slots in Figure5.2(b)are assumed to fade independently, both users can employ
a maximum of four diversity branches perMAC cycle. Since each user has to
transmit its packet at least once, no user can employ more than three branches.

Note that these diversity orders provide only a first, coarseoverview of the
order of magnitude ofPout. As described in Section2.2.1, error rates can further
differ by a coding gain or different results may be obtained at low SNR. Let us
now study such differences in detail.

Simulation results

Inserting the instantaneous SNR from simulation into the probability terms (5.1),
(5.2), (5.3), and (5.4) provides the results in Figure5.4(a). The figure showsPout

of usera for direct transmission as well as ACD’s three priorities.
In Figure5.4(a)we studyPout vs. themean uplink SNR̄γu for a highmean

inter-user SNR̄γi. This corresponds to a situation where the partners are close to
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each other. Figure5.4(b)emphasizes the effect of the inter-user links by varying
γ̄i at a fixed, medium̄γu.

In both figures, the results clearly separate into three priority groups – one for
each diversity orderL. In Figure5.4(a), a higherL results in a steeper exponential
decrease ofPout. At high SNR, this behavior is well known from the analysis
in Section3.3. However, even at lower SNR the diversity order groups differ
significantly. Based on this large difference, ACD can provideits three priorities
in the complete SNR region.

As expected, allocating high priority leads to the best performance. This is
shown by the steep slope in Figure5.4(a). Nevertheless, high priority for one user
always comes at the cost of low priority for the other user. Inthis case, onlyL = 1
and the highestPout is reached. Direct transmission employs both phases to reach
temporal diversity of orderL = 2. If equal priority is realized by cooperation,
it depends on the inter-user links and, thus, performs slightly worse than direct
transmission.

This dependency on the inter-user links is studied in Figure5.4(b). At low
γ̄i, both users can only seldom cooperate and realizing equal priority by CC is
inefficient. If γ̄i increases, successful cooperation becomes more likely andthe
performance of cooperative equal priority tends to the direct case. Also high pri-
ority depends on the inter-user links and, thus, improves with γ̄i. Low priority and
Direct transmission make no use of these links and, naturally, remain static. As in
Figure5.4(a), the diversity order clearly separates the priorities in Figure5.4(b).

From our analytic and simulation results we can conclude that ACD effec-
tively provides static priorities by diversity branch allocation. At low SNR, dif-
ferent priorities are realized by different coding gains. At medium and high SNR,
prioritization is provided by different diversity ordersL. The results show that the
allocated diversity branchesL̃ matches to the actually reached diversity order. For
high SNR, thisL̃ ≈ L was expected from the analytic results in Section3.3 and
5.1.4. But even at medium SNR, our simulation results show a clear separation of
the priorities in terms of outage probability. Let us now usethese priorities in the
TACD scheme to improve the quality of media streams.

5.1.5 Traffic-aware cooperation diversity

To efficiently improve the quality of real-time media streams with limited re-
sources, TACD increases the diversity order only for the mostrelevant packets
of the stream. This prioritization is dynamic, as it changesover time depending
on the current packet’s relevance, but can be integrated into cooperative relaying
without additional communication overhead. This efficient, distributed prioritiza-
tion scheme is described next.
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Figure 5.4: Outage probability forR= 1/4. Shown for direct transmission, Coded
Cooperation (CC), and ACD’s three priorities.
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Distributed priority selection

TACD chooses one ACD priority per packet. Similar to the2SDF protocol in
Section4.4, TACD uses multiple decision stages which are illustrated in Figure
5.5. Each user indepently follows this procedure between phase1 and 2.

In decision stage 1, each user tests if it has correctly decoded the partner’s
packet by performing aCRC. If this test fails, a user switches to direct transmis-
sion and sends its ownn2 bits tod. If the partner’s packet passes the CRC test, the
user can cooperate and, thus, is able to prioritize the partner’s packet.

In stage 2, a user compares its own packet relevance to the relevance of its
partner’s packet. Without further knowledge, both users perform a distributed
diversity branch allocation by following the decision stages in Figure5.5. If the
relevance of its own packet is higher than the relevance of the partner’s packet, a
user chooses to transfer its own packet at high ACD priority. If the partner can
cooperate, it uses the same decision cycle and, thus, makes the opposite decision.
Hence, it chooses low priority and provides its second phaseto the high priority
user. If the partner cannot cooperate, it transmits directly and does not provide its
second phase to the high priority user. In this case, even thehigh priority user can
only employ its own diversity branches, i.e., it can only transmit directly. With
this fallback to direct transmission both users assure thatno part of the second
phase is wasted.

While this scheme seems rather straightforward, a conflict occurs if both users
cooperate for packets of equal relevance. If both users choose high priority for
their packets, they request more than the maximum number of diversity branches.
If both users choose low priority, the second phase is wasted. Fortunately, this
conflict occurs only when both users are able to cooperate and, thus, can be easily
detected as follows. After phase 1, each user knows its ownand the partner’s
packet (if not, cooperation is not possible for this user anyway). In stage 3, each
user compares the relevance of these packets (Figure5.5). If the relevance of
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both packets is equal, the conflict is detected and solved by falling back to equal
priority.

As an example, consider that usera andb transmit a packet of the same rel-
evance. We denote the relevances of these packets asρa andρb. If both users
correctly decode the partner’s packet (stage 1), usera extractsρb from the packet
of userb and compares it to its own relevanceρa in stage 2 and 3. Sinceρa = ρb,
stage 3 detects the conflict anda falls back to equal priority. Extractingρa, userb
follows the same decision procedure and falls back toequal priorityas well.

Note that both users make the same decision without further coordination be-
tween them. By falling back to equal priority, both users assure that neither the
maximum number of diversity branches is exceeded nor that resources are wasted.
With this simple decision scheme, two cooperating users canagree on the mutu-
ally exclusive high and low priorities. Direct transmission and equal priority are
used as fallback options. All this is performed in a completely distributed manner,
without additional communication on top of the relaying process.

Choosing TACD priorities for MPEG-4 video streams

To allow such distributed prioritization without overhead, each cooperating user
has to know the relevance of its own and of the partner’s packet. In Variable Bit
Rate (VBR) source-coded voice or video streams the source coder has already
classified the parts of the stream. Here, the relevance can beextracted by inspect-
ing the header of the Real-Time Transport Protocol (RTP) protocol [The03] or
by using a packet classification scheme to inspect the payload [CK02, ZLE+05].
Based on the extracted relevance, users can agree on their priorities with TACD
as described above. We will now discuss how to customize TACD for MPEG-4
video streams as a simple example.

Let us briefly recapitulate MPEG-4 video encoding. With the MPEG-4 Ad-
vanced Video Coding (AVC) codec, video streams consist of at least two types of
video frames, the most relevantI-framesand the less relevantP-frames[ISO00].
While an I-frame contains a full picture, P-frames only include the so-calledmo-
tion vectorencoding differences between two subsequent I-frames. Hence, infor-
mation in P-frames is always based on the previous I-frame and source-decoding
errors within this I-frame would propagate through the shown video stream until
the next I-frame occurs.

Our MPEG-4 variant of TACD assigns ACD’s priorities accordingto this rel-
evance. High priority is provided for each I-frame-relatedpacket while for each
P-frame packet low ACD priority is assigned. Equal priority and direct transmis-
sion are used as fallback options as given in Section5.5.
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Table 5.2: Parameters of the video quality study.

Parameter Setting

Channel model i.i.d. Rayleigh block fadingTb = Tp

Mean uplink SNRγ̄u 7 dB
Mean inter-user SNR̄γi 20 dB
Maximum packet size 1500 Bytes
Test video sequences Mobile/Akiyo/Football (MAF) [Vid04]
Test sequence duration 23 s
Video/Color format CIF/YUV 4:2:0
Video codec MPEG-4AVC/H.264 [ISO00]
Mean video bitrate 256 Kbits/s after source encoding
Group Of Pictures (GoP) IPPPPPPPPPPP [ISO00]

5.1.6 Video quality study

We now study the effect of TACD’s traffic-aware prioritization and of static prior-
ities on the quality of a transmitted MPEG-4 video.

Scenario and test video sequence

We model the two-user scenario in Figure5.2 as described in Section5.1.1. The
most important settings are summarized in Table5.2. Similar to the outage prob-
ability study, we choose a scenario with low̄γu but highγ̄i where cooperative re-
laying is relevant. Our test video sequence, calledMobile/Akiyo/Football (MAF),
is based on three commonly used test sequences [Vid04]. For a representative
sample, we combined the low-motion test sequence Akiyo withtwo high-motion
sequences. The resultingMAF sequence is converted toCommon Intermediate
Format (CIF) format, i.e., 352×288 pixels at a frame rate of 25 Hz. As part of
the ITU standard H.261 [ITU93], CIF is widely used in video conferencing and
supported by many mobile terminals. Also the chosen MPEG-4 AVC codec is
common in such scenarios. Standardized in H.264, thisVBR video codec was
specifically designed for telecommunication [WSBL03]. We encoded theMAF
sequence using a typical 12 Group Of Pictures (GoP) defining the I and P-frame
placement in the stream [ISO00].

For the resulting MPEG-4 coded stream we simulate cooperative and non-
cooperative transmission using a typical maximum packet size (Table5.2). Within
this stream, 26 % of the packets refer to I-frames and 74 % to P-frames. To achieve
statistical significant results, each user continuously transmits the video stream
until the confidence intervals reach a specified size. In our experiments 434 video
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transmissions where necessary per user. Inserting a randomdelay before transmit-
ting the first stream assures that both users do not transmit their videos at exactly
the same time. The Evalvid framework [LK08] allows us to emulate erroneous
video transmission by inserting transmission errors from the simulation into the
video stream. These “received” videos are then decoded and compared to the
original, not transmitted video stream according to the video quality metric.

Video quality metrics

We measure thePERseparately for I and P-frame packets, to have a first objective
estimate of the video quality. Studying the subjective, i.e., perceived video quality
with computer-based metrics is challenging since human visual perception cannot
be easily formalized [ITU96, LK08, WP09]. We employ two different metrics,
each emphasizing different aspects of visual perception. First, we use the widely-
accepted Peak Signal-to-Noise Ratio (PSNR) metric to focus on instantaneous
quality changes [ITU96].

Our second metric, called Distortion In interVal (DIV) [GKKW04, LK08], ac-
counts for the fact that a viewer might average out very shortimpairments while
still perceiving longer quality impairments. DIV reflects this by counting the per-
centage of decoded video frames that are worse than the original ones within a
certain time interval. Similar to a moving average, this comparison slides over the
complete video stream until, finally, the maximum percentage is returned as DIV
value. Consequently, DIV represents the worst distortion over all intervals and is a
rather pessimistic metric. As interval length, we choose the standard value of 20 s
[GKKW04]. DIV is part of the Evalvid framework [LK08]; a detailed description
and examples are provided in [GKKW04].

In addition to these formal studies, readers can download our video results at
[Val09] and judge them according to their own visual impression.

Results

For a first illustration, we provide visual examples in Figure 5.6and5.7. In each
figure, we compare a video frame transmitted using eitherCC or TACD. Both
schemes are compared at equal channel states and reach equaldiversity order.
The only difference is that TACD prioritizes I-frame packetswhile CC does not.
In Figure 5.6 the first I-frame of theMAF sequence is shown. Here, the im-
pact of TACD’s prioritization is very clear. While no significant impairments are
shown with TACD, with CC the picture is almost completely destroyed due to
transmission errors in I-frame packets. Note that this intense impairment will
propagate through the video stream until the next I-frame isshown. Although the
visual quality difference in Figure5.7 is less significant, still a large impairment
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(a) CC (b) TACD

Figure 5.6: Frame 1 of theMAF video sequence; received at equal instantaneous
SNR usingCC or TACD.

(a) CC (b) TACD

Figure 5.7: Frame 139 of theMAF video sequence; received at equal instanta-
neous SNR usingCC or TACD.
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Figure 5.8: MeanPERfor I-frame and P-frame packets andDIV for the received
MAF video sequence. Shown for direct transmission,CC, static priorities, and
TACD.

is shown withCC. Unlike in Figure5.6, this impairment results from errors in
P-frame packets. This leads to an erroneous motion vector which can be observed
as a blur behind the running football players. In this example, such impairments
are not shown forTACD. Nevertheless, these visual examples are only a first
snapshot. Further examples are provided along with the video streams at [Val09]
and show similar high quality differences between CC and TACD.

We now complement these visual examples by statistically significant video
quality results observed during many transmissions of the video stream. First, we
showPERresults separately for I- and P-frame packets in Fig.5.8. In general, the
PER results for direct transmission and for the static priorities reflect the outage
probabilities in Figure5.4. Obviously, static high priority achieves the best per-
formance with PER of 0.13 % for both I-frame and P-frame packets. However,
the partner of the high priority user always receives low priority, leading to the
worst PERfor both packet types. The two temporal diversity branches used by
direct transmission lead to a PER of 1.77 % for both I-frame and P-frame packets.
CC increases this performance by symmetrically allocating spatial diversity. This
decreases thePERto 0.57 % for both packet types. Compared to CC, TACD’s
traffic-aware allocation pays off by leading to a PER of zero for the important I-
frames. For both usersno I-frame packet error occured over all 434 transmissions
of the MAF video. However, TACD can reach this benefit only by penalizing
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Figure 5.9: Occurrence of video frame types withMAF: Fraction ofMAC cycles
where the usersa andb transmit packets of equal or different video frame type.

P-frame packets. The resultingPERof 1.71 % is significantly larger than for CC.
Figure5.8 also includes results for theDIV metric. As expected, with high

priority only a slight distortion of 12 % occurs. However, inthis case the partner
receives low priority leading to an unacceptably high DIV of93 %. The further
results clearly demonstrate that TACD’s prioritization of I-frame packets achieves
higher video quality than CC, even if this penalizes P-frame packets. While TACD
achieves a DIV of 24 %, CC suffers from its symmetric allocation and achieves
merely 39 %. This performance of CC is not much better than direct transmission
with a mean DIV of 53 %.

To understand how often TACD chooses a particular priority, we counted how
often both users transmit a packet of equal or different video frame type perMAC
cycle. With two frame types and two users, four cases are possible. The results for
these cases are presented in Figure5.9. In 22.6 % of theMAC cycles, usera andb
transmitted a different frame type. Such an asymmetric caseoccurs if either user
a transmits an I-frame packet and userb a P-frame packet (a(I)∧b(P) in Figure
5.9) or vice versa. In these cases, TACD performs asymmetric prioritization as
described in Section5.1.5, i.e., the user transmitting an I-frame packet receives
high and the other user low priority.

In the symmetric cases both users transmit a packet of equal video frame type
in the sameMAC cycle. In Figure5.9 this is denoted bya(I)∧b(I) anda(P)∧
b(P). In 51.7 % of the cycles, both users transmitted a P-frame. Here, both users
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equally gain by receiving equal priority. On the other hand,if two I-frame packets
are transmitted per cycle, both packets lose their high priority and receive merely
equal priority. Fortunately, such collision happens only in 2.4 % of the cases due
to the smaller amount of I-frame packets in the stream. Therefore, I-frame packets
suffer significantly less often than P-frame packets gain from TACD’s fallback to
equal priority.

As an example, Figure5.10shows thePSNRof all video frames vs. the play-
out time for a single MAF sequence. Apart from an offset due tothe three video
parts of theMAF sequence, only slight PSNR changes occur in the low motion
Akiyo part. Due to the high quality that is reached by TACD, thePSNR curve of
the original video is hidden behind TACD’s PSNR results. Unlike TACD, con-
ventional cooperation with CC causes long impairments at thebeginning of both
high motion parts. These impairments result from I-frame errors that propagate
through the shown video and lead to a larger DIV for CC than for TACD. Hence,
the PSNR and DIV results clearly show that prioritizing the important I-frames
with TACD is beneficial in terms of visual quality.

All in all, the above results demonstrate thatTACD works as expected. As
each applied video quality metric shows substantial improvements reached by
neither direct nor conventional cooperative transmission, TACD is a promising
approach for media streaming in cooperative wireless networks.



134 Chapter 5. Applying selection relaying to resource allocation

5.2 Cooperative feedback for multiuser diversity
systems

Allocating channel resources according to the users’ channel states can signif-
icantly improve the performance of multiuser communication. With multiple
users, multiple fading channels are present and a schedulercan exploit their varia-
tion by resource allocation. This results in a so-calledMultiuser Diversity (MUD)
gain, typically achieved by a central scheduler to improve the capacity of a mul-
tiuser downlink (Section2.2). To perform its allocation, the scheduler requires
accurate channel knowledge that has to be available prior toallocation and prior
to transmission.

Providing such accurate and timely transmitter CSI (CSItx) without degrading
theMUD gain is a challenge. In most Frequency Division Duplexing (FDD) and
some currentTDD systems, e.g., IEEE 802.11n [LHL+08], reciprocal channels
cannot be assumed. Without reciprocity, the users have to measure theirCSI dur-
ing the downlink and transmit it to the scheduler during the uplink. SuchCSI
feedbackintroduces overhead and delay and, hence, is always limitedin terms of
accuracy and redundancy. Therefore, CSI feedback can be a significant source
of errors. Beside errors during CSI measurement and quantization, transmission
errors duringCSI feedback cause inaccurate CSItx. Using such erroneous CSItx

results in scheduling errors, an inefficient resource allocation, and, consequently,
decreases the downlink capacity [PM07, KK08, LHL+08, VK09].

Unfortunately, even protecting the importantCSI feedback by sophisticated
FEC codes or Automatic Repeat Request (ARQ) protocols is inefficient to as-
sure its reliable and timely transmission. Compared to the few, highly valuable
CSI bits, FECandARQ introduce significant overhead and delay. Furthermore,
FEC and ARQ rely on time diversity, exploiting that a channel improves during
a packet’s transmission or retransmission. Unfortunately, this is not very likely
for theCSI feedback inMUD systems. TypicalCSI packets are very short com-
pared to data packets. Only fading channels with a very shortcoherence time are
likely to improve during the transmission of such a short packet. But on the other
hand,MUD systems perform best in low mobility scenarios where long coherence
times assure that the probability of outdatedCSI is low. This combination of slow
channels and short CSI packets highly limits the time diversity gains needed to
realize robust feedback withFECandARQ. For feedback, FEC and ARQ work
best whereMUD does not and vice versa.

This problem is demonstrated by the first study in this section. Transmission
errors duringCSIfeedback substantially degrade downlink capacity and error rate
even if strongFECcodes are employed. To cope with this problem we do not rely
on time diversity gains. Instead we exploit spatial transmit diversity by selection
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relaying. We introduce theCooperative Feedback (CFB) approach where users
cooperate only for the importantCSI packets during the uplink. This decreases
the error rate of theCSI transmission, directly translates into more accurate CSItx

at the scheduler which, after allocation, improves the performance of the multiuser
downlink. AsCFB retransmits only smallCSI packets, the multiplexing loss is
acceptable for a wide range of system parameters and even significant capacity
gains can be provided.

We will now describe the assumed multiuser OFDM system, discuss related
work, describe theCFB protocol, and study the downlink performance with and
without feedback errors and overhead.

5.2.1 Multiuser diversity in OFDM systems

Exploiting multiuser diversity by resource allocation – sometimes referred to as
channel-state-dependent scheduling [BBKT96] or opportunistic communication
[VTL02] – is a well-known approach which has become practical in many sys-
tems. MultiuserMIMO [RJ08, GRTK08], multiuserOFDM [GWAC05, VFK08],
or even the combination of both [IEE09b, CLL+07, VHW+08] are well-known
examples of such systems.

From the variety of these systems, we focus on a simple multiuser OFDM
scenario where a single Base Station (BS) transmits toJ users during a point-to-
multipoint downlink and where all nodes use only single antennas. In this down-
link, OFDM [Cha66] separates the bandwidthW into Smutually exclusiveOFDM
subcarriers, each carrying a modulation symbol. As typicalfor OFDM systems,
the channel is frequency-selective over full bandwidthW but each subcarrier can
be considered as frequency flat [BSE04]. The result areS parallel subchannels,
each independently fading in time and frequency.

In point-to-multipoint downlinks, OFDM Multiple Access (OFDMA) signals
can be detected [MKP07] which allows theBS to allocate not only power and
transmission rate but alsoOFDM subcarriers to the users [WCLM99, RC00]. By
allocating these resources many schedulers aim to optimizethe sum throughput
over all users with respect to tight delay [LNDX04, VGKW05, GVKW05] or
fairness [LL06, VHW+08] constraints. A tutorial on the theory behind these
scheduling algorithms and on their design for practical systems is provided in
[SL05a, SL05b].

Nevertheless, to isolate the effect ofCSI feedback errors and cooperative re-
laying on theMUD downlink we have to exclude side-effects due to delay and
fairness constraints or due to suboptimal resource allocation. To this end, we
focus on the simplest optimal resource allocation for OFDM systems – power
allocation byiterative waterfilling[TH98].
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1/

0
N   / γ(s) P̂(1)=0

Subcarrier s

P(2)^
λ

1 2 ...

Figure 5.11: Example of waterfilling power allocation overSOFDM subcarriers.
Illustration similar to [TV05, Figure 5.11].

Waterfilling maximizes the capacityCS over all S subcarriers by solving the
optimization problem

CS(|h|2) = max
P[1],...,P[S]

S

∑
s=1

log2

(

1+
P[s]|h[s]|2

N0

)

[bits/s/Hz] (5.5)

subject to

S

∑
s=1

P[s] = Pd; P[s]≥ 0; s= 1, . . . ,S. (5.6)

wherePd denotes the global transmit power constraint for the downlink, P[s] the
transmit power at subcarriers, vectorh= h[1], . . . ,h[S] the channel coefficients at
these subcarriers in the downlink, and|h|2 the channel gain.

In power, the objective function (5.5) is concave and, thus, can be solved by
iterative waterfilling as illustrated in Figure5.11. The gray area illustrates the
power which is “poured” into the depicted function. No poweris allocated to
a subcarriers, if its N0/|h[s]|2 value is above the so-called waterline 1/λ . For
all other subcarriers, power is allocated until the optimalpower allocationP̂=
P̂[1], . . . , P̂[S] is reached. At this allocation the waterline is chosen such that the
power constraintPd is met.

To derive P̂ analytically we can solve (5.5) by Lagrangian methods as de-
scribed in standard literature [TV05, Section 5.3.3]. Using the operatorx+ :=
max(x,0), we can denote the optimal power allocation for subcarriers by

P̂[s] =

(
1
λ
− N0

|h[s]|2
)+

(5.7)

given that the Lagrange multiplierλ is chosen such thatPd is met. To findλ ,
the waterfilling algorithm iteratively allocates units of power to the subcarriers as
described for Figure5.11. This algorithm is discussed in detail in [YC06] and the
optimality of the waterfilling solution is proven in [LG01].
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Note that waterfilling is based on the channel gain|h|2 for each subcarrier.
Each user has to provide thisCSI to the central scheduler by feedback. Note
further that with waterfilling, erroneous values of|h[s]|2 will affect P̂[s] as well as
the power that is allocated to subcarriers other thans.

In our simple OFDM system, waterfilling is performed for allJ users. For each
of the resultingJ user-optimal power allocations, the sum capacity is calculated
and the usermwith the highest sum capacity receivesall subcarriers. Hence, only
the user with the “best”CSI transmits per cycle. Although this “best” userm
can change from cycle to cycle, this “the winner takes it all”subcarrier allocation
strategy is clearly not fair and may lead to unacceptable delays for other users than
m. Nevertheless, this simple power and subcarrier allocation strategy provides the
optimal solution in terms of ergodic sum capacity [LG01] and can be used as a
simple performance bound in our study.

5.2.2 Related work

Many current and upcoming communication systems require extensive CSItx and,
thus, perform limited feedback. Upcoming 4G standards, e.g., IEEE 802.16m,
will include adaptive feedback [LHL+08] and current standard drafts already in-
clude [PH09] or consider [ID08] cooperation diversity for data transmission. So
far, none of these systems exploits any form of cooperation for CSI feedback.

In particular, there is neither theoretical nor practical literature on employing
cooperative relaying to improveCSI feedback. Several papers study the downside
of imperfectCSImeasurement on generalMUD systems [PM07] and for particu-
lar OFDMA systems with suboptimal subcarrier and rate allocation [GVKW05].
For such a system, a concise characterization of theCSI estimation errors is pro-
vided in [KK08]. As only suboptimal rate allocation and no power allocation was
assumed, theSNRand throughput results are limited to a particular type of sub-
optimal scheduling. Unlike in this section, no performancebounds for optimal
resource allocation with feedback errors are provided. Although the above paper
takes feedback transmission errors into account, it ignores overhead.

In turn, other work accounts for overhead but ignores feedback errors. Many
schemes were proposed to reduce the feedback overhead in multiuser systems
either by source coding [NBKL04] or by OFDM subcarrier grouping [GGKW06,
CBH08]. Although all these papers mention the high effect of feedback errors,
none of them tackles this issue.

The only approach more closely related to our work usesSTC to strengthen
the feedback channels of aCDMA system by spatial transmit diversity [HW04].
Although our cooperative feedback approach can even work ontop of STC, CFB
does not require multiple antennas per user. Hence, cooperative feedback differs
from STCas follows: STC relies on multiple antennas per user and therefore does
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Figure 5.13:MAC cycle for direct and cooperative feedback. Illustration for the
example in Figure5.12where usera receives all subcarriers.

not need to repeat overheard packets to gain diversity. On the other hand, each of
STC’s antennas can employ only a fraction of the per-user-constrained transmis-
sion power and the antennas have to be sufficiently spaced apart to achieve spatial
diversity gains. As described in Section3.1, the large coherence distances typi-
cally make the design of small wireless devices difficult. This problem does not
occur with cooperative relaying where, naturally, source and relay are spatially
well separated.

To this end, we introducedCFBand presented a first analysis in [VK09]. Here,
we go beyond this paper by detailing the resource allocationstrategy and by pro-
viding further sum capacity results.

5.2.3 Cooperative feedback protocol

Figure5.12illustrates a simple cooperative feedback protocol in the studied sce-
nario. A singleBSservesJ wireless users. The MAC cycle is illustrated in Figure
5.13, lastsTcycle, and is separated in anOFDM downlink andTDMA uplink.

During the uplink the users transmit their data andCSIto theBSusing separate
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time slots. The transmission ofCSI is called feedback and can be either done
directly from each user to theBS(Figure5.12(a)) or with the help of a cooperating
user in an optional cooperation phase (Figure5.12(b)). Direct feedback employs
only slot F1 and leaves F2 to the OFDM downlink (Figure5.13). In F1, each user
is asourceof its ownCSIpacket. In F2, each user functions as arelay for the CSI
packet of another user. Sources are assigned to relays in thepreceding downlink
by theBS.

Note that this relaying protocol does not differentiate between dedicated Relay
Stations (RS) and cooperating users. In fact both relay types are equivalent at
capacity level, if equal wireless channels and transmission constraints are assumed
for both of them. This allows us to captureRSand cooperating users by the same
protocol and analysis.

Based on the relay assignment, our cooperative feedback scheme operates
as follows: First, the users transmit their ownCSI packets in distinct time slots
(TDMA) during F1. In this phase, each user overhears,FECdecodes, and error-
tests the feedback packet of its partner. If the packet is erroneous, the relay ignores
it and repeats its ownCSI packet during F2. If the packet is correct, the relay re-
encodes the source’s original packet and transmits it during F2. Finally, for each
user, theBS combines theCSI packets received during F1 and F2 using Maxi-
mum Ratio Combining [Bre03]. This simple cooperation protocol is known as
SDFwith repetition coding (Section3.2.2). In the best case, each CSI packet is
transmitted twice and a diversity order of two is reached foreachCSI packet. On
the other hand, if each CSI packet is retransmitted, the totalfeedback overhead
is doubled. Decreasing this overhead either by adapting thecooperation levelβ
according to the quality of a user’s feedback channel or by cooperating only for
“weak” users is obviously possible but is not considered here.

After the feedback phases, theBS uses the receivedCSI to allocate the re-
sources of the OFDM downlink as described above. In this example, all subcarri-
ers are allocated to the single “best” user (Figure5.12(c)and5.13).

5.2.4 Effects of feedback errors and overhead

We first define the ergodic sum capacity and outage probability of the multiuser
downlink for ideal CSI and, then, analyze the degrading effect of CSI feedback
errors and overhead.

Multiuser OFDM performance with ideal feedback

The ergodic sum capacitȳCsum denotes the maximum average throughput that is
achieved during the OFDM downlink over allJ users. To define this performance
bound, we assume that during resource allocation theBS perfectly knows the
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channel gains|hd,1|2, . . . , |hd, j |2, . . . , |hd,J|2 for the downlink fromd to each of the
J users. With OFDM each of these channel gains is a vector over all Ssubcarriers
whereSis typically large. Perfectly knowing all theseS×J channel gains neglects
error due to the feedback channel as well as errors due toCSI measurement and
quantization at the user-side. This is, again, theperfect transmitter CSI (CSItx)
assumption which we know from Chapter3.

Based on these assumptions, we can now define the instantaneous sum capac-
ity reached during a single OFDM downlink phase by insertingthe channel gain
|hd,m|2 towards the scheduled userm into (5.5). This yields

Csum
d,ideal(|hd,m|2) =

S

∑
s=1

log2

(

1+
P̂m[s]|hd,m[s]|2

N0

)

[bits/s/Hz]. (5.8)

Note that (5.8) already includes the optimal power allocationP̂m[s] found by wa-
terfilling (5.7) and implies a subcarrier allocation strategy whereonly the “best”
userm in the current downlink phase is scheduled. As discussed in Section5.2.1,
this is assumed to obtain the ergodic sum capacityC̄sum

d,idealas a benchmark for the
average data rate of the multiuser OFDM downlink with perfect CSItx.

We can simply obtain this performance boundC̄sum
d,idealreached with perfect CSI

by time-averaging (5.8), i.e.,

C̄sum
d,ideal= E{Csum

d,ideal}. (5.9)

Similarly, we can define the outage probability reached in the OFDM downlink
with perfect CSI by

Pout
d,ideal= P{Csum

d,ideal(|hd,m|2)< Rm(|hd,m|2)} (5.10)

whereRm denotes the spectral efficiency in bits/s/Hz that the BS assigns to userm
according to its CSI. Note that calculating the probabilityP{} requires no accu-
mulation of the subcarriers since this is already done in (5.8).

While Pout does not capture errors due to fading or noise, it provides the proba-
bility of transmission errors only resulting from the erroneous choice ofRm. This
so-called rate adaptation is perfect if theBS can employ|hd,m|2 for its decision
and this CSI value does not change during the cycle. With this idealCSI theBS
knowsCsum

d,ideal and can assignRm = Csum
d,ideal without rate adaptation errors, i.e., at

zero outage probability. But such perfect rate adaptation isindeed not likely with
erroneousCSI feedback which is discussed in the next section.

Multiuser OFDM performance with feedback errors

The effect ofCSI measurement and quantization errors on the performance of a
scheduled OFDM downlink was extensively studied [KK08]. Unlike this study,
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we isolate the effect of erroneous feedback channels by assuming that each userj
perfectly measures and quantizes its channel gains|hd, j |2.

We assume further that theBS perfectly detects feedback transmission errors
for each individual user. If feedback errors occur, theBSbases its allocation on the
latest correctly receivedCSIvalue for the respective user.1 We denote this (possi-
bly outdated) estimate of the true channel gain by|ĥd, j |2= |ĥd, j [1]|2, . . . , |ĥd, j [S]|2.

Exchanging|hd,m|2 by |ĥd,m|2 in (5.8) defines the sum capacityCsum
d (|ĥd,m|2)

for possibly erroneousCSI. With (5.10), the outage probability due to allocation
errors is given by

Pout
d = P{Csum

d,ideal(|hd,m|2)< Rm(|ĥd,m|2)} (5.11)

since now rate adaptation has to be based on the estimates in|ĥd,m|2 whereas the
obtained capacity obviously depends on the true channel gain |hd,m|2. Conse-
quently, ideal rate adaptation can only chooseRm(|ĥd,m|2) =Csum

d (|ĥd,m|2) which
is a wrong decision ifCsum

d,ideal(|hd,m|2) <Csum
d (|ĥd,m|2), i.e., the true channel gain

|hd,m|2 is smaller than its estimate. In this case, the channel is overestimated,
the downlink transmission is in outage, and the sum capacityCsum

d,ideal cannot be
reached.

Multiuser OFDM performance with feedback errors and overhead

The sum capacity is further degraded by the control overheadto transmitCSI
feedback in the uplink and to signal the allocation decisionto the users in the
downlink.

During the feedback phase, allJ users have to transmit theirCSI values for
each of theirSsubcarriers to theBS. Assuming that after quantization and source
encoding, each of theseS×J CSIvalues is expressed byNsig bits, in total

L f (J) = J ·S·Nsig (5.12)

bits of feedback information are transmitted per cycle. Further, the current re-
source allocation has to be signaled to the users. As with theabove allocation
strategy the best user receives all subcarriers, theBS has to broadcast only log2J
bits of addressing information to the users to signal its decision.

This uplink and downlink overhead degrades the ergodic sum capacity of the
multiuser OFDM to

C̄sum
d,f =

(

C̄sum
d − K ·L f (J)+ log2J

Rc ·W ·Tcycle

)+

[bits/s/Hz]. (5.13)

1Alternatively, using the newer but erroneously receivedCSI value may be preferable in faster
fading environments; this is not considered here.
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Figure 5.14: Percentage of total overhead on ergodic sum capacity (downlink) vs.
number of users for direct and cooperative feedback; with and without Huffman
coding;Nsig = 5 bitsCSIsignaling overhead per user per subcarrier.

Here,Rc accounts for the redundancy added byFEC coding, bandwidthW and
Tcycle express the fact that feedback is only transmitted once per cycle using full
bandwidth, andK accounts for the packets repeated by cooperative feedback.If
all users transmit theirCSI directly to theBS, K = 1; the amount of feedback
overhead is doubled if a single relay cooperates, i.e.,K = 2.

Due toL f (J) in (5.13), the control overhead scaleslinearly in J. On the other
hand, theMUD gain letsC̄sum

d increase onlylogarithmically in J ([TV05, Section
6.6]). Thus, in multiuser OFDM systems, the reduction ofC̄sum

d due to feedback
overhead is a serious problem ifJ, S, or K are large. However, overhead is accept-
able for an intermediate number of subcarriers and users perBS [GGKW06], and
if cooperative feedback employs only a single relay (K = 2). Note that with (5.12)
L f (J) represents the maximum number of feedback bits for the studied OFDM
system. It can be significantly compressed by lossless source coding [NBKL04]
and by adaptive feedback protocols obtainingK < 2 (on the average) by only
cooperating for “weak users”.

As an example, Figure5.14 shows the percentage of total overhead on the
ergodic sum capacity for the parameters and results in Section5.2.5. Additionally,
W = 20 MHz, Tcycle = 2 ms are assumed as in many IEEE 802.11/16 systems
[OP99, GWAC05] and each CSI value is quantized toNsig = 5 bits as with High
Speed Downlink Packet Access (HSDPA) [3GP01].

As shown, with direct feedback all 24 users are supported given that the feed-
back overhead should not reducēCsum

d by more than 10 %. This constraint is
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acceptable in many systems (Example 5.3 in [TV05]). It is even held by coopera-
tive feedback with a single relay and if the well-known Huffmann source coding
scheme compressesL f (J). Consequently, even static cooperative feedback sup-
ports a large number of users not increasing the overhead above 10 % of the sum
capacity.

5.2.5 Performance study

In this section, we compare the performance of a multiuser OFDM system with
cooperative feedback to systems which employ direct or ideal feedback. To this
end, we (1) discuss the used method and parameters, (2) describe how coopera-
tion reduces the error probability during feedback, and (3)how this improvement
translates into performance gains for the multiuser OFDM downlink.

Method and parameters

To rate the downlink performance, we focus on the ergodic sumcapacityC̄sum
d

and outage probabilityPout
d as defined in Section5.2.4. For ideal feedback, both

metrics can be directly calculated using the true channel gain. For erroneous feed-
back, we simulate the direct and cooperative transmission of CSI, assume that the
BS employs old channel gain values in case of an error, and use these estimates
|ĥd,1|2, . . . , |ĥd,J|2 for ideal power and rate allocation.

We use the following assumptions to clearly point out the consequences of er-
roneousCSIfeedback and potential benefits of cooperation: For the downlink, we
assume sum-capacity-optimal resource allocation as described above. A random
tie breaker is used and feedback transmission is the only source of errors. Perfor-
mance losses due toCSI quantization, fading, or noise are neglected. Therefore,
we assume that during the downlink, perfectFEC coding is used and model the
subcarriers asSparallel, independent block fading channels (Section2.1.2).

To focus only onMUD gains (and losses due to feedback errors), we fix the
reference SNR for the downlink toΓd = Pd/(N0W) = 0 dB. This ignores power
gains which would only result in a horizontal offset ofC̄sum

d andPout
d and simplifies

comparison to the literature. Note that a lowΓd has no negative effect onPout
d since

this metric only captures transmission errors resulting from erroneous resource
allocation.

In the uplink, all feedback schemes employ reference SNRΓu = Pu/(N0W)
and equalMAC timeTcycle and are, thus, compared at equal transmit energy (Sec-
tion 2.3). We model the non-ideal feedback transmission as a single frequency-flat
Rayleigh fading channel using the block fading model from Section 2.1.2. To ac-
count for transmission errors, we simulate the symbol-wisetransmission at digital
baseband level usingBPSKmodulation and a strong convolutionalFECcode with
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generator polynomial{1338;1718} and code rateRc = 1/2. This corresponds to
the most robust transmission mode in IEEE 802.11a/g and IEEE802.16a/d/e sys-
tems [OP99, GWAC05].

To sum up, with the above model, the following results show only performance
losses due to feedback errors and only gains resulting fromMUD and cooperation
diversity.

Improving feedback channels and CSI estimation

We now study the post-decodingBER of the feedback transmission. Further-
more, we study the accuracy of the scheduling decision as theMean Squared
Error (MSE)

MSE= E{(γ̂d,m̂− γd,m)
2} (5.14)

between (1) the SNR̂γd,m̂ reached for user ˆm that was scheduled using the CSI
estimate|ĥd,m|2 and (2) the SNR valueγd,m reached for the true best userm that
was scheduled using the true CSI|hd,m|2. This MSE compares the ideal valueγd,m

to the SNRγ̂d,m̂ that the scheduler reaches with limited CSI and, thus, precisely
shows how improved CSI affects the scheduler performance.

For MSE and BER, the uplink SNRΓu is an important factor as it shows
how efficient the feedback scheme can translate transmission power into estima-
tion accuracy and robustness. For this factor, Figure5.15shows how cooperative
relaying improves theBER of the feedback channels. Compared to direct trans-
mission, cooperative relaying leads to a significant steeper decrease of the error
rate for increasingΓu. As discussed in the previous chapters, this diversity gain
results from combining the spatially independent signals at theBS. Even with the
assumed robust modulation and strongFECcodes, cooperation can substantially
improve theBERof our feedback channels.

Figure5.16shows how these cooperation diversity gains increase the accuracy
of the feedback information. To rate the resulting improvement of the scheduling
decision, we use the MSE according to (5.14). This metric shows clear improve-
ments for cooperative feedback in Figure5.16. Decreasing theBER of the feed-
back channels by cooperation clearly improves theCSIat the scheduler and, thus,
its decision accuracy. Cooperative feedback provides this improvement where it
is needed most – at low and medium SNR whereFECalone becomes inefficient.

Improving the multiuser OFDM downlink

As improving theCSI estimation avoids allocation decision errors, it now seems
promising to study how the multiuser OFDM downlink profits from cooperative
feedback. In particular, we will look at the downlink’s ergodic sum capacitȳCsum

d
and outage probabilityPout

d as functions of the feedback channel’s SNRΓu and
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the number of usersJ. Finally, we derive operating regions for cooperative and
direct feedback depending onΓu and on an error rate constraintε.

For a medium number of users, the sum capacity of the downlinkis shown vs.
the uplink SNRΓu in Figure5.17. In Figure5.17(a)we neglect feedback overhead
and focus only on the effect of feedback transmission errors. These errors substan-
tially degrade the downlink sum capacity at lowΓu when the feedback channel
BER is large (Figure5.15). For increasingΓu, cooperative feedback reaches the
ideal sum capacity at 6 dB and direct feedback at 10 dB. Thus, direct transmission
requires 4 dB more than cooperative feedback to compensate the degrading effect
of feedback errors.

Accounting for overhead as in (5.13) leads to a constant offset for both realistic
feedback schemes (Figure5.17(b)). With overhead neither direct nor cooperative
feedback reaches the ideal sum capacity. Decreasing the feedback channelBER
by cooperation still slightly outperforms direct transmission for lowΓu. At 6 dB
the situation reverses as the gains of cooperative feedbackare exceeded by the
multiplexing loss due to relaying. Nevertheless, cooperative feedback forwards
only small packets which only slightly decreases the capacity.

This decrease in capacity may be still acceptable as cooperative feedback sig-
nificantly improves the downlink outage probability (Figure5.18). If Γu increases,
the downlink outage probability decreases significantly faster with cooperative
than with direct feedback. Consequently, cooperative feedback uses the uplink
SNR more efficiently to achieve a givenPout

d . For example, if an outage probabil-
ity constraint ofε = 0.01 should not be exceeded, cooperative feedback realizes
this atΓu = 9 dB while 19 dB are required with direct feedback. If its SNR can-
not be increased by other means, each user with direct feedback wastes 10 dB of
transmission power to reach this error rate.

Figure5.19provides further insight in this tradeoff between transmission power
and error rate constraintε. For cooperative and direct feedback, it shows the re-
gion of Γu that is required to reach full downlink capacity given that an outage
probability of ε is not exceeded. Below its region, a feedback scheme does not
allow the scheduler to reachε at C̄sum

d . For Γu within or above its region, a feed-
back scheme allows to reach full sum capacity while the errorrate constraintε is
held. This allows us to select the appropriate feedback scheme according toΓu

andε: In the lowest region, none of the feedback schemes can meet our ε con-
straint. In the medium SNR region, only cooperative feedback provides feedback
channels which are robust enough to meetε at such lowΓu. At higherΓu, even
direct feedback can be used.

As shown, for all studiedPout
d constraints, cooperative feedback requires a

lower Γu than direct transmission. This gain even grows for stricterε. For exam-
ple, while atε = 0.1 cooperative feedback requires 6 dB less than direct transmis-
sion, the difference increases to 14 dB atε = 10−3. These high SNR gains can
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and cooperative feedback;Γd = 0 dB,J = 8 users.
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be employed to save the mobile user’s transmit power, to increase coverage, or to
provide safety margins in channel environments with high mobility.

Finally, we study the ergodic sum capacity of the OFDM downlink for a vary-
ing number of usersJ (Figure5.20) and account for the degradation due to feed-
back overhead. To isolate the effect of feedback errors, Figure5.20(a)shows the
ergodic sum capacity which is degraded by feedback errors but not degraded by
feedback overhead. Both effects are included in Figure5.20(b)where the ergodic
sum capacity is degraded by the feedback errorsand the overhead as in (5.13). In
both figures, we compare cooperative and direct feedback to the ideal case which
includes neither feedback errors nor overhead; we assume a harsh feedback chan-
nel by choosingΓu = 4 dB.

For all cases in Figure5.20(a)and5.20(b)the sum capacity increases loga-
rithmically with J. This increase results fromMUD and is well known from the-
ory; cp. [TV05, Section 6.6 and Figure 6.13]). However, both realistic feedback
schemes significantly lose sum capacity due to feedback errors. A new observa-
tion is that this loss becomes less severe for risingJ (Figure5.20(a)). This reduces
the potential gains of cooperative (and other improved) feedback schemes and can
be explained by the following symmetry ofMUD gains: As for the downlink, a
higher number of users improves the probability that a user with a “good” feed-
back channel exists. Thus,MUD does not only improve downlink capacity but
also can compensate for erroneous feedback channels in the uplink.

Nevertheless, at a low and medium number of usersJ, cooperative relaying can
still significantly reduce the capacity loss caused by feedback errors. Compared
to direct feedback atJ = 4, cooperation improves the sum capacity by up to 14 %
(Figure5.20(a)and5.20(b)). Even with the additional overhead due to relaying
(Figure5.20(b)) significant gains can be provided for a low and medium number
of users. For increasingJ, the relaying overhead reduces the gain of cooperative
feedback until the sum capacity of both realistic feedback schemes converges.

From the above results, we can conclude thatMUD systems lose performance
due toCSI feedback errors. This is even the case if the feedback channels are
protected by robust modulation and strongFEC codes. Strengthening the feed-
back channels by cooperative relaying increases the resource allocation accuracy,
substantially improving the outage probability and sum capacity of the multiuser
OFDM downlink.

Alternatively, cooperative feedback significantly decreases the SNR required
at the feedback channels to operate the multiuser downlink at a given error rate.
Compared to the immediate improvements in sum capacity, these SNR gains are
very high (6 to 14 dB for the studied cases) and can be exploited in many ways,
e.g., to save the mobile users’ energy or to increase communication robustness.

Naturally, these sum capacity gains are reduced by relayingoverhead which
makesCFBbest suited for systems with limited feedback but poor feedback chan-
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(a) Ergodic sum capacity (downlink): Ideal and degraded by feedback
errors.
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(b) Ergodic sum capacity (downlink): Ideal and degraded by
feedback errors and overhead;Nsig = 5 bits CSI signaling
overhead per user per subcarrier.

Figure 5.20: Ergodic sum capacity (downlink) vs. number of users for ideal, di-
rect, and cooperative feedback;Γd = 0 dB,Γu = 4 dB.
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nels. IEEE 802.16e with mobile users [IEE05] or Long Term Evolution (LTE)
with single-bitHARQ [LLM +09] are just two relevant examples of such systems.

5.3 Summary of contributions and future work

Contributions

We presentedACD andCFB to improve the performance of resource allocation
by selection relaying. Unlike the protocols in the previouschapters, both ap-
proaches limit the overhead by retransmitting only highly relevant information.
CFBforwards only smallCSIpackets andACD only infrequently relays the most
relevant packets of media streams. This highly improves scheduling performance
but limits the multiplexing loss due to relaying.

Asymmetric Cooperation Diversity (ACD) ACD joins cooperative relaying
and resource allocation at scheduling level. The introduced selection relaying pro-
tocol prioritizes packets by asymmetrically allocating diversity branches among
the cooperating users. With the introduced traffic-aware control scheme, users ne-
gotiate their diversity branch allocations. Similar to ourPartial Forwarding (PF)
approach in Section4.4, this traffic-aware diversity scheme employs a forward-
ing decision with multiple stages and requires no centralized coordination. The
negotiation does neither add communication overhead nor queueing delays to co-
operative relaying.

The resulting system is well suited for real-time streaming. Substantial gains
of PERand video quality are shown for MPEG-4 video streams compared to direct
transmission and selection relaying without asymmetric cooperation.

Cooperative Feedback (CFB) With this approach, cooperation protectsCSI
feedback transmission that is crucial in systems with multiuser scheduling. Study-
ing a simple OFDM multiuser downlink has shown thatCFB highly improves
theCSI accuracy at the scheduler, thus, increasing resource allocation efficiency.
Consequently, the outage probability of a scheduled multiuser downlink is highly
improved. The resulting SNR gain can be employed for saving the mobile users’
energy or for increasing communication robustness. Alternatively, the sum capac-
ity of the downlink can be significantly improved if the multiplexing loss due to
relaying is limited. This is the case in multiuser OFDM systems with a medium
number of users or in systems with highly limited feedback, e.g., the single-bit
HARQ scheme ofLTE. As many upcoming communication systems employ feed-
back channels, theCFB approach is widely applicable.
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Future work

ACD andCFB profit from the fact that the amount of relayed information (and,
therefore, multiplexing loss and delay) is low but sufficient to improve the er-
ror rate of important packets. Focusing on such applications may provide fur-
ther promising use cases for cooperative relaying. While ourabove studies and
schemes provide first examples, further generalization andpractical schemes are
required.

Diversity-aware scheduling Using diversity branches as additional criterion to
rate an allocated resource is a new, general approach to improve the scheduling
efficiency. This has to be further studied. While early diversity-aware schedulers
may only compare the resources’ diversity orders for tie breaking, more sophisti-
cated schedulers may improve the overall performance by taking additional con-
straints into account (e.g., allocating resources with high diversity order to users
that demands for a low error rate).

Interaction of cooperative feedback and scheduling CFB was studied in a
simple multiuser OFDM scenario to isolate the effects of feedback errors and co-
operation. We ignored resource allocation constraints dueto OFDMA subcarrier
allocation, fairness, and delay. Depending on such constraints and on the schedul-
ing strategy, improved CSI feedback may be required or not. The interaction
between scheduler and CSI feedback scheme is not treated in current literature
and seems promising for future research.

Practical cooperative feedback We presentedCFB as a theoretical approach.
Further schemes are required to make it practical. First, the performance ofCFB
depends on the chosen relay. Especially if mobile users cooperate (instead of ded-
icatedRS), an accurate relay selection can be crucial. Already existing schemes
for relay selection [LES06, NH07, HKA08] should be integrated intoCFB and
the resulting system should be studied. Second, more sophisticatedCFB proto-
cols may reduce the multiplexing loss and delay by cooperating only for “weak”
users. Such protocols would provide the benefits ofCFB to further scenarios.

System integration It remains to integrate these so-far theoretical approaches
into upcoming relay-enabled wireless technologies, e.g.,IEEE 802.16j [PH09] or
LTE-advanced [ID08, ADF+09], and to study the performance of these system de-
signs. This requires to develop system-dependent functions, extensive simulation,
first prototypes, and to support the results presented here by actual experiments.



Chapter 6

Cooperative WLANs – A prototype

In the previous chapters, we studied the performance of cooperative relaying pro-
tocols in theory based on certain channel and system models.Although these
models and the assumptions behind them are widely accepted,we cannot be sure
whether – in reality – they apply to a given scenario or if important factors have
been overlooked. Moreover, it is not clear whether it is feasible to implement
the proposed functions, to which extent theoretically well-performing functions
have to be degraded to be implementable, or if optimal schemes can be efficiently
replaced by suboptimal but substantially simpler functions.

To answer these practical questions for selection relaying, we use an engi-
neering approach: We implement a transceiver prototype forcooperativeWLANs
and perform extensive field measurements. This experimental approach allows us
not only to justify our modeling assumptions from the previous chapters. It also
points to important issues that the literature has ignored so far (Section6.1). In
particular, we find that in many cases

1. Maximum Ratio Combining (MRC) can be replaced byPacket Selection
(PS). The resulting Physical layer (PHY) is less complex and more flexible
than MRC-based systems while, at low mobility, the performance loss is
negligible.

2. Cooperative relaying requires a more robust exchange of control informa-
tion than direct transmission. Such robust signaling may becostly and can
complicate the Medium Access Control (MAC) protocol design.

We justify our first observation and describePSin Section6.2. We focus on the
second problem in Section6.3and specify a newMAC protocol with a robust but
efficientcooperative signalingscheme. Finally, we implement a prototype (Sec-
tion 6.4) to reinforce our above observations by measurements and todemonstrate
the feasibility and high performance of our cooperativePHY andMAC schemes
in the field (Section6.5).

153
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6.1 Scope and related work

As stated above, our objective is a transceiver prototype that enables cooperative
relaying in real-worldWLANs. To accomplish this task we (1) choose a prototyp-
ing platform which allows to implement and study a realisticsystem in represen-
tative scenarios, (2) specify and implement a cooperativeMAC protocol for IEEE
802.11 standard WLANs, and (3) implement lightweight extensions to the IEEE
802.11a/gOFDM PHY. Let us now compare our basic approach in each of these
fields to the current literature.

Prototyping platform Current prototyping platforms for cooperative relaying
are either based on low-costSoftware Defined Radios (SDRs) [BL06b, KKEP09]
or on a combination of off-the-shelf IEEE 802.11 devices andopen-source drivers
[KNBP06, LTN+07, KKEP09]. Unfortunately, none of these low-cost solutions
suffices to fully integrate cooperative relaying into thePHY and Data Link Control
layer (DLC) of IEEE 802.11.

Low-costSDRs use a simple Radio Frequency (RF) frontend and general pur-
pose processors for signal processing [Mit95]. This platform allows to change
evenPHY functions in software and, thus, provides high programmingflexibility.
The problem of low-cost SDRs are their low computational power which suffices
for high-layer Path allocation-based Selection Relaying (PSR) protocols like Op-
portunistic Relaying [BL06b] or for testing isolatedPHY functions at low data
rate [KKEP09]. However, none of the current platforms such as GNU Radio or
WARP [GNU09, WAR09] is capable of performing a full IEEE 802.11 stack or
even larger parts of the IEEE 802.11b/a/gPHY in real time [VvMK06, KKEP09].

IEEE 802.11 operation is provided by combining off-the-shelf WLAN devices
with open-source drivers. Common examples are the HostAP driver [Hos09]
used with the IEEE 802.11b-compliant Prism 2/2.5/3 chipset[Int01b, Int01a]
or, as a more recent system, the MadWifi driver [Mad09] in combination with
the IEEE 802.11a/g-compliant Atheros AR5414 chipset [Ath07]. The problem
of this prototyping approach is its limited flexibility. Although MAC functions
can be modified at driver level, time-criticalDLC functions (e.g.,CRC, MAC
timers, ARQ) and all PHY functions are implemented in hardware and, thus,
cannot be changed. This allows only to implementPSRprotocols which, e.g.,
do not requirePHY combining or to changeMAC timers. But even the imple-
mentation of such high-level cooperation protocols is limited, since fundamen-
tal functions cannot be deactivated at driver level. For instance, all CoopMAC
prototypes [KNBP06, LTN+07, KKEP09] suffer fromACKs that are unnecessar-
ily transmitted by the relay. With the chosen Prism/HostAP platform this func-
tion cannot be deactivated and measurement results are significantly deteriorated
[LTN+07]. In addition to such artifacts of the prototyping platform, no results
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for IEEE 802.11a/g systems are published so far. Instead of using the Atheros/
MadWifi platform, current prototypes of cooperative relaying are either based on
IEEE 802.11b cards (driver-level implementation with HostAP) or are far from
WLAN operation (low-cost SDRs).

To prototype a cooperative IEEE 802.11a/g transceiver thatintegrates coop-
eration into all parts of thePHY andDLC, a platform is required that joins the
flexibility of SDRs with IEEE 802.11 operation. This is provided by the SOR-
BAS 101SDR[SDH+04] which is detailed in AppendixB. Based on a powerful
hard/software design, SORBAS runs a complete IEEE 802.11a/gstack in soft-
ware and in real time. Therefore, it reaches the full transmission rates of IEEE
802.11a/g but allows to modify all DLC andPHY baseband functions in software.
With this high programming flexibility a cooperative relaying protocol can be in-
tegrated intoall parts of IEEE 802.11a/g. This is not possible with any other of
the above prototyping platforms.

Scenario As in all previous chapters of this thesis, we focus on mobilesce-
narios with small-scale fading. Here, the direct link may fail frequently and
high cooperative diversity gains can be reached by Combining-based Selection
Relaying (CSR) (Section3.3). We perform our measurements in a standard office
environment with low mobility and in a vehicular scenario. Both scenarios are
detailed in Section6.5.1.

For such mobile scenarios, no measurements are published sofar in the context
of cooperative WLANs. Instead, literature has focused on static environments
wherePSRprotocols such asOR [BL06b] or CoopMAC [KNBP06, LTN+07,
KKEP09] exploit long-term differences among the direct and the relayed link.

Cooperative MAC protocol for IEEE 802.11 By focusing on mobile scenarios
with small-scale fading, our so-calledCooperative Signaling (CSIG) protocol has
two significant differences to CoopMAC [LTP05, LTN+07] and to similar proto-
cols, e.g., [SCTG05, IH07, TWT08, SZW09].

First, CoopMAC follows thePSRapproach while CSIG employsCSR. As
described in Section3.2.3, this PSR protocol utilizes only the “best” link towards
the destination while a CSR relay transmits each correctly received packet and,
thus, spends redundancy in advance. By combining these redundant packets at
the destination, CSIG can still reach high diversity gains inmobile scenarios with
small-scale fading. By choosing only the (single) link of highest transmission
rate, CoopMAC spends less redundancy and is, thus, limited toscenarios where
this link state remains static perMAC cycle.

A second important difference between CSIG and CoopMAC is the exchange
of control information (so-calledsignaling). Initiating and maintaining a coop-
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erative data transfer requires additional signaling between the related terminals.
This information exchange has to be efficient but it also needs to be more reliable
than with direct transmission. The reason is simple: Cooperative relaying per-
forms best when direct transmission only reaches a poor datarate, i.e., with fading
channels at lowSNR(cp. Figure3.14and Figure4.22). Obviously, when direct
transmission is weak, cooperation should not rely ondirectly transmitted control
frames. With suchdirect signalingthe high error rate of the control frames dom-
inates and conditions the end-to-end error rate of the cooperative transmission to
the error rate of the direct link. This is the case in CoopMAC which loses a sig-
nificant number of control frames in mobile scenarios and, thus, only inefficiently
improves direct transmission.

This problem of direct signaling is already known from our analysis in Section
3.4.1and Section5.2.5, and will be further elaborated below. We will describe
CSIG which solves this problem by transmitting even control frames coopera-
tively. By achieving the same diversity order for control anddata transmission,
this cooperative signaling process maintains high data rate even at low SNR. Effi-
ciently organizing this process is a challenge which is solved in Section6.3.

Cooperative PHY extensions To reach diversity gains, the CSIG protocol em-
ploys combining. In most theoretical literature (and up to this point also in this
thesis)MRC is assumed for this task.MRC is optimal in terms ofSNR but it
relies on accurate CSIrx measurements and does not allow to combine signals of
different code rates or modulation (Section2.2.3). This inflexibility highly lim-
its the Degree Of Freedom (DoF) and, thus, performance of rate adaptation. It
is solved by so-calledmulti-rateor code combiningschemes. These schemes al-
low to combine different modulation levels [SY08] and code rates [Cha85], reach
only slightly lower performance thanMRC, but significantly increase the system
complexity while still relying on accurate CSIrx.

To reduce the complexity of our prototype, we choose a simpler approach.
Instead of complex multi-rate combining, we simply select the first correctly de-
coded packet. We call this method Packet Selection (PS), describe it more for-
mally in the following section and show by analysis, simulation, and measure-
ments that the performance reduction is small and well justified by the simplified
transceiver design (Section6.5).

To sum up Unlike current literature, we integrate aCSR protocol into IEEE
802.11 to profit from cooperation diversity in mobile scenarios. This so-called
CSIGprotocol cooperates even for control frames and limits transceiver complex-
ity by a simple combining scheme. Using a powerful prototyping platform we
integrate CSIG into all layers of IEEE 802.11a/g. Unlike all other current cooper-
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ative relaying prototypes, our prototype reaches the full transmission rate of IEEE
802.11a/g in real time and is, thus, close to real cooperativeWLAN transceivers.

6.2 Combining versus packet selection

In this section, we describe Packet Selection (PS) as a simple method to combine
packets at the destination. We discuss thatPSprovides large practical benefits
above manyPHY combining schemes and show by analysis, simulation, and mea-
surement that replacingMRC by Packet Selection (PS) only negligibly increases
the error rate at low mobility.

6.2.1 Packet selection

PS simply selects the first correct packet afterFEC decoding. More formally,
from each ofL decoded packetsp1, . . . , pl , . . . , pL the first packetpl which passes
an error test, e.g., aCRC, is selected. Complexity can be limited by not decoding
all later received packetspl+1, . . . , pL.

By simply selecting the first correctly decoded packet,PSoperates similar to
Selection Combining (SC) and, thus, cannot reach the high performance ofMRC
(Section2.2.3). Nonetheless, it has the following practical advantages:

• ImplementingPS is almost trivial since it is based on functions that are
already available in the transceiver chain (Section6.4.1).

• PS considers the coding gain within its combining decision. This is not
the case withMRC, classicSC, and some multi-rate combining schemes
[SY08] which can weaken their performance [Cha85].

• Unlike MRC and related schemes, the performance ofPSdoes not directly
depend on channel estimation quality.

• Unlike MRC,PSdoes not requires andr to use the same modulation type.
Consequently,PSdoes not limit the choices and performance of adaptive
modulation.

Therefore,PS seems very appealing. It does not have the limitations of many
PHY combining schemes and, due to its simplicity, reduces implementation time
and costs. Nonetheless, PS is only acceptable if it achievesa performance similar
to conventionalPHY combining.

To show that this is indeed the case in low mobility scenarioswe compare
PSandMRC in three steps. First, we compare their outage probability for block
fading channels. To this end, we extend the outage analysis from the previous
chapters (e.g., Section3.3 and5.1.4) to selection combining. Second, we study
slow and fast autocorrelated fading under IEEE 802.11g system assumptions by



158 Chapter 6. Cooperative WLANs – A prototype

simulation. Third, after designing and implementing our transceiver prototype,
MRC andPSare compared by measurements in Section6.5.2.

6.2.2 Outage analysis

We compare the performance ofMRC andPSin terms of outage probability. We
study theCTR network with sources, a single relayr, and destinationd at high
SNR. The links between these three nodes are represented by their instantaneous
SNR γs,r , γs,d, andγr,d which are i.i.d. random variables according to the block
fading model from Section2.1.2. Note that in this idealistic model, PS is equiva-
lent toSC(Section2.2.3) since the channel state does not change within a packet
and ideal coding is assumed. Hence, we can write the overall outage event with
PSas

E
out
PS =

[
{γs,r ≥ γ̂}∧{max(γs,d,γr,d)< γ̂}

]
∨

[
{γs,r < γ̂}∧{γs,d < γ̂}

]
. (6.1)

where we use the SNR thresholdγ̂ := 22R−1 for a given spectral efficiencyRand
denote the logicalandandor operator by∧ and∨, respectively.

The second line in (6.1) shows the outage event at the destinationd when the
relay wrongly decodes the source’s packet, i.e.,{γs,r < γ̂}. Similarly, the first
line represents the case when the relay correctly receives the source’s packet, i.e.,
{γs,r ≥ γ̂}, and both packets may be combined atd. Here, packet selection is
represented by comparing the maximum of the random variables γs,d andγr,d to
the threshold̂γ. This maximum is beloŵγ if and only if both random variables
are belowγ̂. With the probability of this eventP{γs,d < γ̂}P{γr,d < γ̂} we obtain

Pout
PS = P{Eout

PS} = P{γs,r ≥ γ̂}P{γs,d < γ̂}P{γr,d < γ̂}
+ P{γs,r < γ̂}P{γs,d < γ̂} (6.2)

as the probability of outage eventEout
PS (6.1). Here, each probability term can be

solved individually by using the outage probability expression of the direct link
(2.11) with thresholdγ̂ := 22R−1 instead of 2R−1.

Figure6.1shows the numerical results for the outage probability of Combining-
based Selection Relaying (CSR). We study a symmetrical CTR network with
equal mean SNR for all links, i.e.,̄γ := γ̄s,r = γ̄s,d = γ̄r,d. Comparing the results
for both combining schemes to direct transmission shows that with MRC as well
as with PS a diversity order ofL = 2 is reached. Comparing the results of both
cooperative cases shows that MRC performs only slightly better than PS. This
minor difference (found here for ideal channel coding) matches to the results for
uncoded systems at low diversity orders in Table2.1.
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Figure 6.1: Comparing PS and MRC: Outage probability vs. mean SNR. Numeri-
cal results for direct transmission and Combining-based Selection Relaying (CSR)
for R= 1/4 bits/s/Hz.

6.2.3 Simulation results

To get closer to our measurement results, we compare thePERof PS and MRC
under IEEE 802.11g assumptions for autocorrelated fading.

Assumptions As for the numerical results in Figure6.1we studyCSRat equal
mean SNR for all links. Further models and parameters are chosen to correspond
to our measurement scenarios in Section6.5.1. At system level, we assume a
standard IEEE 802.11gPHY that is modeled in the digital baseband as described
in Section4.3.4. The symbol time is 4µs at a carrier frequency offc = 2.472 GHz
in 20 MHz bandwidth. The transmission rate is 18 Mbits/s using transmission
mode 4 of theOFDM PHY. In this mode, Quadrature Phase Shift Keying (QPSK)
modulation and code rateRc = 3/4 are employed.

Autocorrelated fading is modeled as described in Section2.1.2and two values
of the Doppler frequencyfd are studied. Whilefd = 40 Hz corresponds to the
speed of 5 m/s reached during our vehicular measurements,fd = 8 Hz reflects the
quasi-static fading situation in our indoor scenario (Section 6.5.1).

Results For these assumptions, Figure6.2 shows the end-to-endPERobtained
at the link layer of the destination. At low Doppler frequency, selection relaying
with both combining schemes behaves as expected. Similar toour theoretic re-
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Figure 6.2: Comparing PS and MRC: Packet Error Rate (PER) vs. mean
SNR. Simulation results for direct transmission and Combining-based Selection
Relaying (CSR) with autocorrelated fading, high and low Doppler frequency fd,
and IEEE 802.11g system assumptions.

sults (Figure6.1) a large diversity gain is shown and the difference betweenPS
and MRC is insignificant. Like in our outage analysis, this is aconsequence of
quasi-static fading. In this case, channel state changes during a packet time are
unlikely and, thus, symbol-wise combining only slightly outperforms packet-wise
combining. At higherfd, however, the channel gain decorrelates and the channel
may change several times per packet. In this case, the error rate of MRC improves
compared toPS. Comparing the PER in Figure6.2 shows that MRC benefits by
up to 2 dB at higher mobility.

From these simulation and theoretical results we can conclude that at low mo-
bility replacing MRC by PS comes at negligible performance loss. We will de-
scribe in Section6.5 how PS substantially simplifies the transceiver design and
compare both combining schemes by measurements in Section6.5.

6.3 Cooperative medium access

We introduce the Cooperative Signaling (CSIG) protocol that integrates cooper-
ative relaying into the IEEE 802.11MAC. Unlike the cooperative MAC proto-
cols discussed in Section6.1, CSIG employs combining and a cooperative signal-
ing scheme to reach diversity gains even in mobile scenarios. First, we compare
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CSIG’s basic operation to classic direct signaling and data transfer. Second, we
describe the protocol’s control frames, discuss its overhead, and specify its exten-
sions to the IEEE 802.11 MAC protocol automata.

6.3.1 Signaling for cooperative WLANs

In our CSIG protocol the source nodes initiates the cooperative data transfer once
perMAC cycle. This initiation requires

1. sources to send a request for a cooperative data transfer to destination d and
to potential relays,

2. a participating relayr to acknowledge the request ofs,
3. d to overhear this negotiation to be able to identify the data frames to com-

bine and to acknowledge the request ofs to sandr, and
4. nodes nearbys, r andd to overhear these messages for refraining from trans-

missions during the MAC cycle (i.e.,medium reservation).

To accomplish these tasks, the nodes have to exchange more control information
than the standard IEEE 802.11MAC protocol. This extended signaling process
has to be integrated into IEEE 802.11 in an efficient and robust manner.

RTS/CTS in IEEE 802.11

As a first step, we can integrate this additional signaling into theRTS/CTShand-
shake. This procedure is already employed in IEEE 802.11 andillustrated in
Figure6.3. In this standard MAC cycle for direct communication, IEEE 802.11
spends a Short Inter-Frame Space (SIFS) time slot to separate two frames; we
denote each transmitted frame by its sender index.

By transmitting an RTSs, nodes informs the destination and neighboring
nodes. An RTS includes the source and destination address aswell as the duration
of the transmission. By answering with CTSd, d negotiates the transmission and
retransmits the duration field of the originating RTSs. This standard procedure
avoids interference caused byhidden nodes[OP99, Chapter 3] since neighbors of
sandd overhear theduration fieldwithin RTSs or CTSd and remain silent for this
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Figure 6.4: MAC cycle for cooperative IEEE 802.11 transmission with direct
signaling. The arc marks redundant frames that provide a diversity gain atd.

duration. Each IEEE 802.11 node keeps track of such medium reservations in a
local data structure calledNetwork Allocation Vector (NAV).

Direct signaling, cooperative relaying

While RTS/CTS solves the fourth of the above tasks (medium reservation), so
far the relay is not included in the signaling procedure. This can be simply in-
corporated by adding the relay’s address to the standard RTSand to the standard
CTS. We call these extended framescooperative RTS (cRTS)andcooperative CTS
(cCTS)and specify their format in Section6.3.2.

A simple cooperative MAC cycle that employs one cRTS to initiate coopera-
tion is illustrated in Figure6.4. In addition to the standard RTS/CTS handshake,
all potential relays overhear cRTSs and the addressed relayr answers with an
cCTSr frame that includes its address. Based on this cCTS, relayr is known to
s andd, the destinationd answers with cCTSd, and the cooperative data transfer
starts. As with conventional selection relaying (Section3.2), r overhears frame
DATAs and, if correctly decoded, retransmits this frame within DATAr . After cor-
rect reception,d acknowledges the cooperative transmission and the nextMAC
cycle starts.

The arc in Figure6.4highlights the redundant transmission of the DATA frame
via two spatially independent links. Since both frames DATAs and DATAr have
to be in error such that the overall transmission fails,d reaches a diversity order
of L = 2 for the DATA frame (when either of the combining or packet selecting
schemes from Section6.2 are used). This is not the case for the cRTS, cCTS,
and ACK. Each of these control frames is received via a single direct link which
provides merelyL = 1. Even if two cCTS frames are overheard ats, the source
does not combine these frames. Since only a singledirect link has to be in error
such that the complete signaling process fails, we call thistype of control infor-
mation exchangedirect signaling. It is the current signaling approach in many
cooperative MAC protocols [SCTG05, LTN+07, IH07, TWT08, SZW09].
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Figure 6.5: RTS control frame error rate vs. transmission power: Measured for
direct and cooperative signaling withPS in the indoor scenario (Section6.5.1)
using the most robust IEEE 802.11gPHY mode (BPSK, code rateRc = 1/2).

The direct signaling problem

Due to its discrepancy in diversity orders, direct signaling cannot be efficiently
used to cooperate in fading channels. By providing a lower diversity order for
control than for data frames, signaling information is exchanged at substantially
higher error rate than payload. This mismatch is unacceptable for most MAC
protocols (e.g., IEEE 802.11) where correctly received control frames are essential
to exchange data.

We know this problem from analyzing the direct feedback channels ofPSR
protocols andMUD systems (Section3.4.1 and 5.2.5). We found that loosing
signaling information becomes crucial in the low power regime or at strict error
rate constraints where direct links fail frequently. Here,a diversity scheme would
reach superior gains but direct signaling inhibits a data transfer from even being
established – a contradiction which we call thedirect signaling problem.

That in fading channels this problem cannot be efficiently solved by robust
modulation and coding is known from theory (Section2.2.1) and illustrated by
measurement in Figure6.5. Choosing a more robust modulation and code only
introduces a coding gain which cannot cope with a deep fade incase of direct
transmission. As shown, even the most robust mode of the IEEE802.11gOFDM
PHY leads to a high error rate for RTS frames. With each lost RTS, adata transfer
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cannot be established, a full MAC cycle is lost, and spectralefficiency is reduced.
Nonetheless, Figure6.5also shows the high diversity gain reached by cooperating
for control frames. We will utilize this gain in ourCSIGprotocol.

CSIG: Cooperative signaling, cooperative relaying

To overcome the direct signaling problem, the Cooperative Signaling (CSIG) pro-
tocol exploits cooperation diversity not only for data, butalso for control frames.
Therefore, CSIG adds two extensions to the direct signaling cycle (Section6.4).

The first extension is illustrated by the arcs ford ands in Figure6.6. After
the relay correctly decoded cRTSs and ACKd, it repeats these two control frames
as cRTSr and ACKr . Collisions between all new frames are avoided since the
MAC cycle is fixed and known to all cooperative nodes. Moreover, repeating
cRTS silences the neighbors ofr and avoids interfering hidden nodes. With these
repeated frames, the destination combines cRTSs with cRTSr , and the source com-
bines cCTSd with cCTSr as well as ACKd with ACKr . To this end, any combining
scheme includingPScan be used. Consequently, adding cRTSr , ACKd, and com-
bining to direct signaling reaches diversity orderL = 2 atsandd. This is equal to
the diversity order of the data frames.

This diversity order is also reached at the relay by extension two. In Figure
6.6 this extension is marked by the arcs for noder but, unlike for nodes and
d, it is not based on combining equal control frames. Instead,the relay exploits
that the correct reception of some control frames is implicitly acknowledged by
other frames. In particular, the destination transmits cCTSd if and only if it has
correctly received the cRTS (which already origins from twocombined frames).
By overhearing either cRTSs or cCTSd, r knows that cooperation is initiated. This
information is onlynot transferred tor, if both frames (cRTSs as well as cCTSd)
are lost. Hence, a diversity order ofL = 2 is reached at the relay for initiating the
cooperative MAC cycle.

To confirm this initiation, the procedure is similar and marked by the right arc
for r in Figure6.6. The source transmits DATAs if and only if it has received the
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cCTS (which, again, is combined from two frames). By overhearing either cCTSd
or DATAs the relay knows thatd has confirmed cooperation and that it should
retransmit DATAs. Again two frames have to be in error such that sending the
confirmation tor fails and, thus,L = 2 is reached atr for this part of the signaling
process.

Note that with this procedure the relay increases its diversity order only by
overhearing already transmitted frames. No transmission of extra control frames is
required. This makesCSIGmore efficient than straightforward signaling schemes
that would repeat control frames even forr.

To sum up: At each of the participating nodess, r, andd, CSIGprovides the
same diversity order for control and data frames. Ats andd this is achieved by
combining; atr implicit acknowledgments through later frames are overheard at
no cost. Let us now specify the frames and MAC protocol for this operation.

6.3.2 CSIG control frames and overhead

TheMAC cycle of CSIG (Figure6.6) is based on extended RTS and CTS control
frames that are illustrated in Figure6.7. These new so-calledcooperative RTS
(cRTS)andcooperative CTS (cCTS)frames add the 6 Byte MAC address of the
relay to the IEEE 802.11 standard RTS and CTS [IEE99, Figure 15 to 17]. All
other frames used in CSIG keep their IEEE 802.11 format but areidentified by
the subtype field(0011)2. This value is not used in IEEE 802.11 which allows
to distinguish the frames of a cooperative MAC cycle from directly transmitted
frames at no additional overhead.

The lengths of the data frame and all related control frames are given in Table
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Table 6.1: Lengths of MAC frames used in IEEE 802.11 and CSIG.

Frame Length [Bytes] Description

RTS 20 Request To Send
CTS 14 Clear To Send
cRTS 26 cooperative Request To Send
cCTS 20 cooperative Clear To Send
ACK 14 Acknowledgment
DATA 1074 Data frame size for 1052 Bytes payload

Table 6.2: Example of DLC and PHY signaling overhead.

Protocol Overhead w.r.t. payload at
DLC [%] PHY [%]

IEEE 802.11, RTS/CTS 4.5 13.4
Coop. data, direct signaling 7.5 22.4
Coop. data, Coop. signaling (CSIG) 11.2 33.5

6.1. While the lengths of the control frames are fixed, the length of a data frame
may vary in IEEE 802.11 systems. As an example, we assume thatthe DLC
payload has a length of 1052 Bytes. This corresponds to a typical packet size
of 1024 Bytes payload plus User Datagram Protocol (UDP) and Internet Protocol
(IP) overhead. Based on these frame lengths we can simply count the DLC over-
head for the threeMAC cycles in Section6.3.1. For each cycle, we aggregate the
lengths of all control frames and then divide this sum by the length of a DATA
frame. Naturally, even with cooperative transmission onlya single DATA frame
is taken as a reference since both transmitted frames are combined at the end.

The DLC overhead with respect to a typical payload size of 1052 Bytes is
summarized in Table6.2. To transmit this payload, CSIG more than doubles the
DLC overhead of standard IEEE 802.11 with RTS/CTS. In terms oftransmission
time, the overhead is even worse when control frames are transmitted at the most
robustPHY mode and, thus, at lowest bit rate. This is typically done in IEEE
802.11g which corresponds to a transmission rate of 6 Mbits/s. Assuming that
DATA frames are transmitted at 18 Mbits/s leads to the listedPHY overhead.

This example for a typical payload size and typical transmission rates shows
that direct and cooperative signaling significantly reducethe spectral efficiency
of cooperative IEEE 802.11. Our measurement results in Section 6.5 will show
when cooperative diversity gains can compensate for these costs.
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6.3.3 CSIG protocol operation

Beside adding control frames,CSIG extends the procedure of the MAC proto-
col to incorporate the MAC cycle from Figure6.6. We will now describe these
extensions more formally in terms of protocol automata.

The flow charts in Figure6.8 illustrate how CSIG extends the sender and
receiver protocol automaton. In these charts, dashed lineshighlight changes to
the IEEE 802.11 specification [IEE99, Annex C], edges labeled with incoming
frames (e.g., “→ACK”) cause a transition when that frame is correctly received,
and outgoing frames (e.g., “ACK→”) indicate that a frame is sent upon transition.
Note that all changes to the standard MAC areadditive, i.e., direct IEEE 802.11
transmission with the standard RTS/CTS frames or without handshake is still sup-
ported. Furthermore, both automata run on each node in a cooperative network.
We allowanynode to take either the role ofs, r, or d by integrating the behavior
of s into the sender and ofr,d into the receiver automaton. Depending on its role,
a node operates as follows.

Source s role, Figure6.8(a): Upon a data request from the upper layer,s con-
tends according to the standard IEEE 802.11MAC but transmits its cRTS. The
cRTS contains the duration of the entire cooperative MAC cycle, so that nearby
nodes can set theirNAV accordingly. Next,s goes intoWait cCTSstate awaiting
either a timeout or a correctly received cCTS. Although this cCTS is based on the
two frames cCTSd and cCTSr , this is transparent to the MAC automaton since
thePHY provides only the combined cCTS. If the cCTS timer expires,s returns
to the idle state after a standard backoff. If a cCTS is received in time,s waits a
SIFS period and sends its DATA frame. Finally,ssets its ACK timer to perform a
backoff if it does not receive the ACK in time. Like the cCTS, this ACK is based
on two frames but only the combined variant of ACKd and ACKr is passed to the
MAC.

Relay r role, Figure 6.8(b): The relay role can be initiated either by cRTSs

or cCTSd. If the MAC address of a node doesnot match the relay address in the
cRTS or the cCTS (i.e., the node should not act as relay), the node sets its NAV and
returns to the idle state. If the MAC address of noder matches the relay address
in the cRTS or cCTS, a node acts as relay. The following operation depends on
the frame type that initiated the relay.

If cRTSs is received,r extracts the MAC address ofs andd and uses them to
identify the overheard frames. Afterwards,r waits a SIFS, retransmits the cRTS,
and sets a timer to wait either for cCTSd or DATAs. If cCTSd is received,r
repeats this cCTS after a SIFS and sets a timer to wait for DATAs. If cCTSd is not



168 Chapter 6. Cooperative WLANs – A prototype

Timeout

Wait cCTS

Timeout

yes

Wait ACK

Timeout

Timeout

Backoff

Backoff

Idle
Data request

no
DATA

cRTS

ACK

cCTS

Channel
free?

(a) Extended sender automaton

yes

Am I

Wait ACK

Wait cCTS Wait DATA

relay?
Am I

Timeout

no

no

yes

yes Timeout

no

Idle

NAV
Set RTS finished Wait DATA

Timeout

upper layer
Send DATA to

destination?
Am I

relay?
Timeout

DATA

DATA

cRTS

cRTS

ACK

cCTS

cCTS

ACK

cCTS

ACK

cCTS

DATA

(b) Extended receiver automaton

Figure 6.8: Flow chart for IEEE 802.11MAC protocol automata extended by
CSIG. Changes of the standard automata are indicated by the dashed lines.



6.4. A prototype for cooperative WLANs 169

received,r waits for DATAs. Thereby, the relay uses DATAs as a reference that
the cooperative data transfer has started, which providesL = 2 (cp. Page164).

If no cRTSs but a cCTSd initiates the relay,r cannot extract the address ofs
but only the address ofd. After extraction,r goes directly intoWait DATAstate
by setting a timer to wait for DATAs. As soon as DATAs is overheard, the relay
uses the frame control field and the address ofd to recognize this frame.

From theWait DATAstate onwards, it is irrelevant whether a cRTS or cCTS
initiated the relay. After having overheard DATAs, r cancels the previously set
timer, repeats this DATA frame after a SIFS, and returns toWait ACKstate. If the
wait-for-DATAs timer expires,r immediately returns to theWait ACKstate; now
ready to repeat ACKd. After repeating this ACK or if a timeout occurs,r returns
to the idle state and waits for the cRTS of the next cooperative MAC cycle.

Destination d role, Figure 6.8(b): In case of the destination, thePHY passes
a combined version of the cRTS to theMAC that is based on cRTSs and cRTSr .
If the destination address in this cRTS matches to noded, this node replies with
cCTSd. Then,d sets a timer to wait for the DATA frame. ThePHY combines
this frame from DATAs and DATAr . Upon reception of DATA,d checks if the
frame was received correctly. If not, it remains inWait DATAstate until the timer
expires. If DATA is correct,d sends the payload to the upper layer, waits a SIFS,
replies with ACKd, and returns to the idle state.

6.4 A prototype for cooperative WLANs

Having described thePHY andMAC extensions to incorporate cooperative relay-
ing into IEEE 802.11, we can join these functions in a practical transceiver for
cooperative WLANs. The result is a prototype that performs Combining-based
Selection Relaying (CSR) and cooperative signaling at the full transmission rate
of IEEE 802.11g. Designing and implementing this prototypeis described below.

6.4.1 Transceiver design

An overview of the cooperative IEEE 802.11g transceiver is given in Figure6.9.
The extensions to a conventional IEEE 802.11g system are marked by the dashed
lines.

At the Data Link Control layer (DLC), the sender (Tx) and receiver (Rx)
MAC automata are modified as in Figure6.8(a)and Figure6.8(b), respectively.
Each modified automaton still supports the standard RTS/CTS handshake by the
RTS/CTS block. The newcRTS/cCTS Rx blockinterprets the received cRTS and
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cCTS frames and the cRTS/cCTS Tx block constructs the extendedframes ac-
cording to the format in Figure6.7. In relay role, a node performs a forwarding
decision for the received DATA frames and for the control frames. So far, simple
SDF operation is assumed that forwards only frames with a correct CRC. Fig-
ure6.9shows this process (1) as a control line from the receiver CRC tothe new
Forwarding decision blockand (2) as a switch controlled by this block. Note that
this switch passes the forwarded frame directly to the Tx chain to avoid queueing
delays at the DLC.

In the current transceiver design, the forwarded frame is transmitted at the
sameFEC code, puncturing, and modulation as the original frame. This is de-
noted by theRepetition codingblock in the Tx chain of thePHY. This block
serves as placeholder and can be replaced by improved codingtechniques for the
retransmitted data.

To compare both combining techniques, Packet Selection (PS) as well as Max-
imum Ratio Combining (MRC) are added to the IEEE 802.11g Rx chain. The
blocks are used alternatively and each of these blocks can beswitched on or off
during an experiment. If theMRC blockis used, control or DATA frames are com-
bined prior to decoding. Thus, this block is placed between OFDM demodulation
and theFECdecoder. Alternatively, thePS blockis placed after theFECwhich
performs Packet Selection (PS) as described in Section6.2.1. In either case, com-
bining is completely transparent to theDLC functions. Let us now take a closer
look at the implementation of these blocks.

6.4.2 Implementing the prototype

The above transceiver design is implemented on the SORBAS 101prototyping
platform. Since SORBAS already provides the IEEE 802.11a/gOFDM PHY and
DLC in software, we can implement our prototype by extending this stack. We
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summarize this implementation below. An extensive description of our prototype
implementation is given in [BBF+07, BFK+08]. Details of the SORBAS 101
platform and implementation are provided in SectionB.1.

Combining

Both combining blocks are implemented in C and assembler and run on the mas-
ter Digital Signal Processor (DSP) of the SORBAS.MRC processes the complex
modulation symbol stream that is returned from the OFDM demodulation. For
each digital symbol, it performs the calculations described in Section2.2.3and
employs noise and power measurements from the radio frontend to calculate the
weights. Since these measurements are provided only once per PHY frame, the
weights remain equal for a complete frame. Although suboptimal, such imple-
mentation represents the typical case, as in most systems noise and power are
measured only once per frame preamble.

The MRC block needs to buffer all modulation symbols of the first received
PHY frame in order to combine it with the symbols of the consecutive frame(s).
With PS such additional buffering is not required. Here, only a single correct
frame passes the CRC and is, thus, selected. If the first received frame passes this
test, no delay is added to the Rx chain. Implementing PS is simple, since the CRC
block of the DLC can be re-used. Once a frame has passed the CRC, the link
layer signals the frame’s header to thePS blockvia a control line (cp. Figure6.9).
Then, the PS block drops all received frames with the same header. This operation
avoids duplicated frames at the DLC and is performed until the next MAC cycle
starts.

DLC extensions

All DLC protocol extensions run on the SMAC card of the SORBAS platform
(FigureB.2). Parsing and constructing the new cRTS/cCTS frames as well as the
forwarding decision is implemented in C. The MAC protocol automata are spec-
ified in theSpecification and Description Language (SDL) according to Figure
6.8; C code is automatically generated from this specification and compiled for
the SORBAS platform.

Beside implementing the CSIG protocol (Figure6.6), we implement the direct
signaling procedure (Figure6.4) for comparison. Furthermore, the handshake-free
direct and cooperative data transfer is implemented that ismarked by the shaded
phase in Figure6.3and Figure6.6. This allows us to isolate the additional cost of
signaling during the experiments.
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6.5 Measurement results

Based on our cooperative IEEE 802.11a/g prototype, we perform extensive mea-
surements in indoor and vehicular scenarios.

First, an overview of both scenarios is given in this section. SectionB.3 and
B.4 detail the parameters of these scenarios and study path loss, link budget, and
Signal-to-Interference plus Noise Ratio (SINR).

Second, we present Packet Error Rate (PER) and data rate results that show a
good match to theory and clearly demonstrate the high performance and operation
areas of Combining-based Selection Relaying (CSR) in cooperativeWLANs.

6.5.1 Experimental setup and scenarios

We used 3 SORBAS devices to form the Cooperative Triangle (CTR). In this
fundamental cooperation scenario (Figure3.1(b)), a single relayr assists source
s to transmit to destinationd. Each of these devices runs the cooperative IEEE
802.11a/g stack described in Section6.4.2. We choose IEEE 802.11g OFDM
mode. By selecting a carrier frequency of 2.472 GHz we operate at the upper end
of the 2.4 GHz ISM band. Each device employs a single omnidirectionalantenna
with 5 dBi gain. As common in IEEE 802.11g networks, control frames are sent in
the most robustPHY mode at 6 Mbits/s (BPSK modulation, code rateRc = 1/2),
whereas data frames are sent at 18 Mbits/s (QPSK,Rc = 3/4).

We study two mobile scenarios. The firstindoor scenariorepresents a typical
office situation with low mobility andNLOSlinks. The secondvehicularscenario
corresponds to a Line Of Sight (LOS) situation at medium mobility, e.g., WLAN
hotspots at urban crossroads or railway stations.

Indoor scenario

The node deployment for the indoor scenario is shown in Figure6.10. The devices
were placed relatively close to each other in an isosceles triangle with distances
Ds,r = 1.44 m between source and relay andDs,d = Dr,d = 2.7 m between each of
the transmitters and the destination. Larger distances areemulated by decreasing
the transmission power. The devices itself were not moved during the experi-
ments. Instead, slow mobility was emulated by placing a partially-shielded disc
in front of d. The disc rotates at 30 rpm. At the chosen carrier frequency,this
corresponds to a tangential velocity of 1 m/s and to a maximumDoppler shift of
8 Hz. By covering theLOSpath with the shielding material of the disc and by the
metal device cases, anNLOSsituation is achieved.

From our measurement results in (B.3), we obtain a path loss exponent of
α = 2.75. At distanceDs,d we obtain a reference path loss of−56.2 dB. The
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Figure 6.10: IndoorNLOSscenario with 3 SORBAS SDRs (orange) operating as
sources, relayr, destinationd, and a rotating disc in front ofd.

transmission powerPtx is varied between−18 and−6 dBm. With these values and
with our results from SectionB.3, we can expect a mean received power within
[−70.2,−58.2] dBm at theRFfrontend and the meanSINRto be in[5.3,17.3] dB.
Both are typical values in IEEE 802.11a/gWLANs [Ath07]. Further parameters
for the indoor scenario are summarized in TableB.3.

Vehicular scenario

This second scenario was constructed on the RailCab test track[Rai02]; an oval-
shaped railroad 600 m long. Figure6.11(a)illustrates the node deployment. The
destination was placed in the center of the track, e.g., representing an access point
in the vicinity of a train. The nodess andr are mounted on the RailCab vehicle
with Ds,r = 1.61 m distance to each other inLOSof d (Figure6.11(b)).

The RailCab carriessandr around the destination. During each turn, the oval
test track causes the distanceDs,d = Dr,d between the mobile nodes andd to vary
between 44 and 90 m. Due to RailCab’s linear motor design [Rai02], the nodes
always move atconstantlinear velocity of 5 m/s allowing to accurately repeat
the circulation along the test track oval during the measurements. At the chosen
carrier frequency, this velocity corresponds to a maximum Doppler shift of 40 Hz.

To predict path loss and link budget we assume an idealLOS situation with
path loss exponentα = 2. Ground reflection is ignored due to absorption from
high grass. The transmission power is variedPtx ∈ [−7,−1]dBm. With these
assumptions we can expect that the mean power received at theRFfrontend varies
between−82.4 dBm (atDs,d = Dr,d = 90 m andPtx = −7 dBm) and−70.2 dBm
(at Ds,d = Dr,d = 44 m andPtx =−1 dBm). For the meanSINR we expect values
between 14.6 dB and 20.6 dB which includes a safety margin in case of a too
optimistic path loss prediction. A more detailed discussion of the scenario and
link budget is provided in SectionB.3. Further parameters are summarized in
TableB.4.
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(a) Node deployment at the 600 m RailCab test track; picture from [Rai07]

(b) RailCab vehicle with 2 SORBAS SDRs (orange) operating assources
and relayr to reach destinationd in the center of the test track.

Figure 6.11: Vehicular measurement scenario: Node deployment, mobile nodess
andr, and fixed destinationd.
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Both scenarios: Metrics and studied cases

We measurePER and data rate atUDP level. By measuring end-to-end, i.e.,
between sources and destinationd, we include the complete overhead and the
effect of all links in our measurements. At application layer, a payload size of
1024 Bytes is selected which corresponds to 1052 BytesIP packets. This packet
size is a typical Maximum Transmission Unit (MTU) in WLANs. The packets are
passed to theDLC as a continuous flow with constant rate. To saturate the links,
the rate of this flow is chosen such that the Tx queue at the DLC (Figure6.9) is
always full.

All compared cooperative relaying protocols perform Combining-based Selec-
tion Relaying (CSR) with repetition coding (Section3.2.2). We compare the per-
formance of our CSIG protocol (CSR with cooperative signaling) to Combining-
based Selection Relaying (CSR) with direct signaling and to handshake-free coop-
eration. This handshake-free case allows to assess the effect of signaling overhead
and lost control frames. It can be seen as CSR with ideal out-of-band signaling
adding no overhead to data transmission and without errors for control frames.

For direct transmission froms to d, no signaling is considered. ThisDirect
case represents conventional IEEE 802.11g operation without RTS/CTS. It allows
to isolate the multiplexing loss and errors due to relaying from the effect of sig-
naling. All transmission schemes operate under the per-node power constraint
reflecting that inWLANs theMAC cycle is extended when additional nodes par-
ticipate (Section2.3). As in the previous chapters, confidence intervals are shown
for a level of 95 %.

6.5.2 Indoor scenario results

We start by comparing Packet Selection (PS) with Maximum Ratio Combining
(MRC) in Figure6.12. The figure shows thePERmeasured atUDP level versus
the configured transmission power (excluding antenna gains). The shape of these
results is expected from our theoretical results (Section6.2) as well as from our
simulation results for low speed (Figure6.2). The diversity gain of cooperation is
clearly shown for both combining schemes. Nevertheless, the performance gains
of both combining techniques are equal. No significant difference betweenPSand
MRC is shown by our prototype measurements.

SelectingPS, we now study the performance of cooperative relaying used for
data transfer and signaling. Figure6.13shows theUDPdata rate for the four cases
from Section6.5.1. Note that the instant data rate decrease at−13 and−12 dBm
for ideal and cooperative signaling is an experimental artifact. It results from a
mismatch between the configured transmission power and the actual power at the
SORBAS antenna port. We characterize this mismatch in Section B.2.
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Figure 6.14: End-to-end Packet Error Rate (PER) vs. transmission power: Com-
paring direct and cooperative signaling for the indoor scenario.

At high transmission power, direct transmission clearly outperforms any pro-
tocol that employs retransmission and, thus, causes multiplexing loss. At lev-
els below−11 dBm, however, the gains of cooperative relaying begin to show.
While for decreasing power the data rate of direct transmission quickly dimin-
ishes to zero, cooperation maintains a high data rate even atlow power. While
with ideal signaling up to 5 Mbits/s are reached, cooperative signaling obtains
3 Mbits/s. Comparing ideal and cooperative signaling at low power shows the
combined effect of control frame errors and signaling overhead. Isolating the ef-
fect of overhead is possible by comparing the results at hightransmission power
where the control frame error rate is low (cp. Figure6.5). At −6 dB the results are
similar to Table6.2. While the data rate of cooperative signaling is 37 % below
the ideal case, the costs of direct signaling are less significant.

Nonetheless, relying on directly transmitted control frames makes direct sig-
naling ineffective at low transmission power. In fact, thisprotocol cannot provide
any gains in terms of data rate. At high power this case is outperformed by direct
transmission, at low power the data rate is zero. This results from the high error
rate for control frames which are transmitted at the most robust PHY mode but
directly. Consequently, these measurements justify our above discussion and the-
oretical results for the direct signaling problem (Section6.3.1and Section3.4.1)
as well as our motivation to develop the CSIG protocol.

This finding is further supported by thePERresults in Figure6.14. With ideal
and cooperative signaling, cooperative relaying outperforms direct transmission
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Figure 6.15: End-to-end UDP data rate vs. transmission power: Comparing direct
and cooperative signaling for the vehicular scenario.

by at least one order of magnitude. Hence, the diversity order expected from the-
ory is reached (cp. Figure3.12). This is not the case with direct signaling. As
shown by the matching slope of theirPERcurves, cooperation with direct signal-
ing reaches the same diversity order as direct transmission. Hence, by transmitting
control frames directly, this cooperative MAC protocol cannot benefit from diver-
sity at all. The result is a highPERfor the overall transmission if direct signaling
is employed.

Naturally, also CSIG loses control frames. The effect of these errors is shown
by thePERoffset between cooperative and ideal signaling. However, compared
to direct signaling this increases the end-to-endPERonly slightly.

6.5.3 Vehicular scenario results

Due to the limited availability of the RailCab vehicle, only the most relevant cases
were measured. In particular, Figure6.15compares the UDP data rate of CSIG to
the measurement results for direct signaling and direct transmission.

As in the indoor scenario, direct transmission outperformscooperative relay-
ing at high transmission power. Again, this is a consequenceof the multiplexing
loss. At a transmission power below−4 dBm, direct communication is impossible
in this scenario. Here, cooperative relaying maintains a considerable data rate but
only until−6 dBm is reached. Hence, the power region in which cooperationsuc-
ceeds is significantly smaller than in the indoor scenario. We can hypothesize that
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this performance degradation results from the strongLOScomponent that leads to
Rician or Nakagami-like fading [TV05, Section 2.4.2]. In such fading scenarios,
the reachable diversity gain is substantially lower than under NLOS conditions
where Rayleigh fading can be expected [SA04, Section 9.7].

Comparing the data rate for direct and cooperative signalingat high power
shows a clear offset. As in the indoor scenario, this is caused by the overhead
added by cooperative signaling. At lower transmission power, the results are in-
teresting. At−4 dBm, even direct signaling provides a data rate gain. This is
caused by the varying distance between the moving nodes and the destination. If
the movings andr are close to the destination, even directly transmitted control
frames can be transferred at most robustPHY mode. In this case, cooperative
relaying can be established and improves the data rate in an intermediate power
region. If the power further decreases, even direct signaling is impossible and
cooperative signaling is required to maintain communication.

The limited availability of the RailCab vehicle made it necessary to obtain data
rate andPERon different days. This required to increase the transmission power
for thePERmeasurements (presumably due to increased air humidity and, thus,
higher attenuation). Unfortunately, only the PER for direct transmission and for
CSRwith ideal signaling could be obtained during the limited measurement time.

Nevertheless, even these basic cases clearly demonstrate the benefit of coop-
erative relaying in the vehicular scenario. As shown in Figure 6.16, cooperation
diversity substantially improves the slope of thePERand, thus, improves thePER
by up to one order of magnitude. ForCSRwith realistic signaling we expect a
behavior similar to Figure6.14with a slight improvement for direct signaling due
to the varying distance between the mobile nodes andd (cp. Figure6.15).

These measurement results for a practical cooperative WLAN clearly show
that the gains expected from theory can be reached in real wireless scenarios.

6.6 Summary of contributions and future work

Contributions

Prototyping a cooperative WLAN transceiver, we made the following contribu-
tions.

Simplified combining scheme Theoretical results, simulation, and measure-
ment have shown that complex combining schemes are not required in cooper-
ativeWLANs. With low to medium mobility,MRC (and all heuristics based on
this scheme) provide only insignificant gains compared to Packet Selection (PS).
PS simply selects the first correctly decoded packet, is almost trivial to implement,
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Figure 6.16: End-to-end UDPPERvs. transmission power: Comparing direct and
cooperative transmission for the vehicular scenario.

does not depend on accurate channel knowledge, and does not restrict the choices
of rate adaptation.

Cooperative signaling for WLANs From our theoretical results in Section3.4
and from the measurement results in this chapter we can conclude that cooperative
MAC protocols fail to provide diversity gains when control frames are transmitted
directly (so-calleddirect signaling). To overcome thisdirect signaling problem,
we design theCooperative Signaling (CSIG) protocol for the IEEE 802.11MAC
which protects control frames by cooperation diversity. The high performance of
CSIG is demonstrated by measurements in an indoor and vehicular scenario. Un-
like cooperation with direct signaling, CSIG maintains a high data rate even at low
transmission power and improves thePERby more than one order of magnitude.

Cooperative IEEE 802.11a/g transceiver We describe a transceiver design to
integratePSand CSIG into IEEE 802.11a/g. Our design is lightweight, clearly
separates the extensions from IEEE 802.11a/g functions and, thus, includes stan-
dard operation as a legacy mode.

Based on this design we implement a prototype that performs Combining-
based Selection Relaying (CSR) at the high data rates of IEEE 802.11a/g. This
prototype and our extensive field measurements clearly demonstrate thatcooper-
ative WLAN transceivers (1) are feasible even with today’s technology and (2)
reach the high gains promised by theory even in real scenarios.



6.6. Summary of contributions and future work 181

Future work

Rate/relay adaptation Cooperation under the orthogonality constraint reduces
the data rate if the wireless channel is in a “good” state. This multiplexing loss can
be avoided by dynamically choosing between direct transmission and cooperative
relaying according to the channel state. More generally, the transmitter jointly
adapts its rate and the number of employed relays (includingdirect transmission
as special case) to the channel. In IEEE 802.11 and many othersystems, rate
adaptation is already performed to which such jointrate/relay adaptationcan be
integrated by adding one dimension to the rate adaptation matrix. Based on the-
oretical work [LEG06, LVvM +09], such adaptation schemes have to be designed
from a practical point of view, implemented, and studied in field measurements.

Further studies Naturally, the scope of our above transceiver design and mea-
surements is limited. Further studies should widen this scope to more scenarios
and systems. In terms of scenarios, we limited our scope to a single indoor and to
a single vehicular situation. While the indoor scenario is typical for an office or
computer lab situation, the results of a vehicular scenariocan be only considered
as a guideline for studying other mobile environments. At system level, we fo-
cused on IEEE 802.11a/g with theOFDM PHY. Although this system is relevant
and a technical foundation of upcoming IEEE 802.11 and IEEE 802.16 systems
[Per08, PH09], different transceiver designs are required for communication at
higher mobility and at lower data rate. For such systems (e.g., in wireless sensor
or cellular networks) practical designs have to be proposedand studied in theory
and by measurements.
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Chapter 7

Conclusions and future research

In this thesis, we bridged substantial gaps between theoretical and practical re-
search on cooperative relaying. We studied how realistic assumptions degrade
the theoretical performance of selection relaying protocols, proposed practical
schemes to deal with these constraints, applied cooperation to improve resource
allocation, and, finally, demonstrated a prototype for cooperative Wireless Local
Area Networks (WLANs). Based on our analysis, simulation, and field measure-
ments, we draw the following conclusions.

Conclusions

Practical constraints and schemes Cooperative relaying’s performance that
was so far promised by theory, substantially degrades with limited Channel State
Information (CSI), erroneous control frames, limited network connectivity, and
autocorrelated fading channels. Each of these practical constraints has strong con-
sequences on the design of cooperative relaying protocols.

With limited CSI, Path allocation-based Selection Relaying (PSR) protocols
strongly suffer from feedback errors and overhead. Since this fact is often ignored
in the literature, it was necessary to revalidate these protocols. We found thatPSR
protocols perform poorly at low SNR and when high robustnessis required. In this
regime, the overall performance is restricted by the feedback channel’s capacity
and Combining-based Selection Relaying (CSR) protocols (not relying on feed-
back) prevail. At high SNR or low required robustness, this situation reverses and
PSRprotocols should be selected. By reaching their best performance in different
SNR and reliability regions, both protocol classes complement one another.

Like errors during CSI feedback,erroneous control frameslimit the perfor-
mance of a cooperation protocol. Many previous cooperationprotocol designs
ignore this fact and – as our measurements show – perform poorly in realistic
scenarios. OurCooperative Signaling (CSIG) protocol protects its control frames
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by cooperation, seamlessly integrates into the IEEE 802.11MAC, and maintains
high performance where other protocols fail.

Limited network connectivityis another practical constraint that was not con-
sistently studied so far. Especially in urban scenarios, links are frequently blocked
and the performance of a cooperative relaying protocol drops. We know now that
this loss is the higher the more a protocol relies on a specificnetwork configura-
tion. Thus, protocols have to be designed such that a high performance is reached
with many different configurations. This is not the case in many current designs.

Also the effect ofautocorrelated fadingon selection relaying was not studied
in previous work. Instead, the research community focused on the block fading
model which implies that the forwarding decision is always optimal in time. By
generalizing this model to autocorrelated fading we showedthat selection relay-
ing substantially loses performance if a relay does not decide frequently “enough”.
Hence, for general time-selective fading channels an optimization in the valueand
time domain is required. Our practicalPartial Forwarding (PF) system demon-
strates that such frequent forwarding decisions can be efficiently realized with
soft output decoding. Even with autocorrelated fading, a performance close to the
theoretically ideal case can be reached.

Cooperation and resource allocation Our analysis points out that cooperative
relaying and resource allocation interact beneficially. With resource allocation,
packets are prioritized and, by relaying only the most important packets, high
gains can be expected at small multiplexing loss.

We exploit this interaction in two new approaches. First,Traffic-Aware Co-
operation Diversity (TACD) allocates more cooperation diversity branches to the
more important parts of a video stream. This improves video quality and can be in-
tegrated into selection relaying protocols without overhead. Second,Cooperative
Feedback (CFB) strengthens the CSI feedback channels, avoids scheduling errors,
and improves the sum capacity of Multiuser Diversity (MUD) systems. This new
approach is promising for future WLANs, WMANs, and cellular networks that
will heavily rely on accurate CSI feedback [LHL+08].

Prototyping and field measurements From prototyping acooperativeIEEE
802.11gWLAN transceiver we conclude that cooperative relaying is not only
promising but already practical with today’s technology. We have described how
to simplify cooperative relaying protocols and combining schemes such that only
a slight modification of currentMAC andPHY designs is required but still high
performance is reached. Our field measurements demonstratethese high gains in
real scenarios and are, thus, a strong motivation to includecooperative relaying
into future standards and systems.
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Future research

Based on our above findings, we suggest the following fields of future research.

Join combining and path allocation So far, our analysis and the literature sep-
arates three extreme transmission schemes: Direct transmission (usen = 0 re-
lays), Path allocation-based Selection Relaying (PSR) (usen= 1 relay per hop),
and Combining-based Selection Relaying (CSR) (use alln = N available relays
per hop). Future cooperative relaying protocols may join these cases by adapt-
ing n∈ [0,N] according to the current channel situation. As a theoretical concept
to perform the diversity/multiplexing tradeoff [ZT03] over multiple hops, such
n-adaptive protocols may provide further insight in the capacity of cooperative
multi-hop networks.

Join cooperation and temporal diversity With our Partial Forwarding (PF)
approach, selection relaying can provide spatial diversity gains in fading scenar-
ios where also temporal diversity can be exploited. In this intermediate region
between slow and fast fading, it can be beneficial to joinPF with temporal di-
versity schemes (e.g., interleaving,HARQ, or rateless codes). Since cooperation
and temporal diversity perform best with different channelstatistics and impose
different constraints on feedback and delay, joining both approaches may lead to
interesting tradeoffs but also to practical schemes which cope well with varying
mobility.

Diversity-aware resource allocation By allocating cooperation diversity bran-
ches we substantially improved the video quality of a cooperative transmission.
This is only one example of a fundamental new resource allocation approach that
uses diversity order as a new criterion for resource allocation. By considering the
diversity order for each allocated resource portion the scheduler can improve the
performance and the complexity of its decision. This certainly demands further
studies.

Feedback errors To isolate the effect of feedback errors and cooperation we
studied Cooperative Feedback (CFB) only for a basic resource allocation scheme.
Many practical schedulers (e.g., in OFDMA downlinks) operate under multiple
resource/delay/fairness constraints and, thereby, may react differently to CSI feed-
back errors (and to methods avoiding them). The interactionbetween scheduler
and CSI feedback scheme is not treated in current literature and seems promising
for future research.
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More prototypes and measurements Prototyping and measuring cooperative
systems is only at its beginning. Although our cooperative WLAN transceiver
overcomes the performance and flexibility limitations of current prototypes, it is
restricted to IEEE 802.11g operation and was only studied intwo example scenar-
ios. Further transceiver designs, prototypes, and measurement campaigns have to
provide representative results for LTE and IEEE 802.16 systems. Here, coopera-
tive relaying promises high gains and should be strongly considered for standard-
ization.



Appendix A

BER of partial forwarding

The end-to-end Bit Error Rate (BERe2e) of partial forwarding is derived for a sin-
gle relay in theCTRnetwork (Figure3.1(b)), and i.i.d. Rayleigh fading channels.
As all cooperating nodes useBPSK, the modulation-dependent parameters in (4.3)
areαM = 1/2,βM = 1 [Pro00, (5.2-11)]. FEC coding is ignored and the source
employs Maximum Ratio Combining (MRC) with ideal coherent detection.

A.1 BER of uncoded BPSK

For the above assumptions, the closed-form expressions fortheBERof the direct
link and combined signal are known [Pro00, (14.4-15)]. The BER for an arbitrary
direct link(i, j) with i.i.d. Rayleigh fading,BPSKmodulation, and noFECcoding
is

BERi, j =
1−µi, j

2
(A.1)

where we define

µi, j :=

√

γ̄i, j

1+ γ̄i, j
. (A.2)

This expression also provides the closed-form solution forthe SERPs
Ray(γ̄i, j) in

(4.4).
In the CTR, d combines two signals. TheBER after this operation is also

given in closed-form by [Pro00, (14.4-15)] as

BERmrc =







1
2

(
1−µr,d

)2
(

1+
µr,d
2

)

; γ̄r,d = γ̄s,d

1
2

[

1− 1
γ̄s,d−γ̄r,d

(
γ̄s,dµs,d− γ̄r,dµr,d

)]

; otherwise
(A.3)

obtainingµr,d andµs,d as in (A.2).
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A.2 Fraction of symbols not forwarded

Since, with uncodedBPSK, BERandSERare equally expressed by (A.1), we can
use this expression to derive the number of symbols not forwarded by the relay
Fdrop. Inserting (A.1) for link (s, r) into (4.6) and (4.8) provides

Fdrop,c1= Ps
Ray(γ̄s,r) =

1−µs,r

2
(A.4)

for Case 1 when the relay decides at least once per fading block. Again, µs,r is
defined as in (A.2).

Inserting (A.1) for link (s, r) into (4.8) results in

Fdrop,c2= 1− (1−Ps
Ray(γ̄s,r))

1/Db = 1−
(

1+µs,r

2

)1/Db

(A.5)

for Case 2 when the relay decides less than once per fading block.

A.3 End-to-end BER of partial forwarding

For theCTR network we assume symmetrical mean SNR, i.e.,γ̄s,d = γ̄s,r = γ̄r,d

and use the corresponding case in (A.3). InsertingFdrop,c1 (A.4) and the BER
terms (A.1) and (A.3) into (4.9) provides the end-to-endBERfor Case 1

BERe2e,c1 = Ps
Ray(γ̄s,r)BERs,d+(1−Ps

Ray(γ̄s,r))BERmrc (A.6)

=
1
4

[

(1−µs,r)(1−µs,d)+(1+µs,r)(1−µr,d)
2
(

1+
µr,d

2

)]

.

InsertingFdrop,c2(A.5) and the BER terms (A.1) and (A.3) into (4.9) results in

BERe2e,c2 =
[

1− (1−Ps
Ray(γ̄s,r))

1/Db

]

BERs,d+(1−Ps
Ray(γ̄s,r))

1/DbBERmrc

=

[

1−
(

1+µs,r

2

)1/Db
]

1−µs,d

2

+
1
2

[(
1+µs,r

2

)1/Db

(1−µr,d)
2
(

1+
µr,d

2

)
]

(A.7)

as the end-to-endBERfor Case 2.
Note that atDb = 1 the end-to-endBER of both cases is equal, since (A.7)

reduces to (A.6).



Appendix B

Details on the measurement
platform and scenarios

To detail the scenario description in Section6.5, this appendix describes specifics
of the SORBAS devices and important scenario factors. First,we provide an in-
sight into the hardware and software of the SORBAS prototyping platform. Sec-
ond, we explain the outliers in Figure6.13by characterizing a mismatch between
the selected and the actual transmission power at the SORBAS antenna port. Fi-
nally, we take a closer look at the link budget for the indoor and for the vehicular
scenario. To this end, we measure the mean noise plus interference power and
characterize the mean path loss in both scenarios. For the indoor scenario, actual
path loss measurements allow to estimate the path loss exponent and offset. For
the vehicular scenario, these values are predicted by the familiar free space model.
Based on these estimations, the average power and the meanSINRat the receivers
is predicted.

B.1 SORBAS prototyping platform

The cooperative IEEE 802.11a/g transceiver described in Chapter 6 is imple-
mented on the SORBAS 101 prototyping platform. A brief description of the
components that are most relevant to this work is provided here. A more de-
tailed discussion of the platform design, features, and performance can be found
in [SDH+04, UU07, LVE+07].

SORBAS is a Software Defined Radio (SDR) [Mit95] that runs a complete
IEEE 802.11a/gPHY and DLC in software and in real time. All functions of
the DLC and the physical baseband run on off-the-shelfDSPs and Field Pro-
grammable Gate Arrays (FPGAs) and can, thus, be modified using standard pro-
gramming tools.
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Figure B.1: Front and rear view of a SORBAS 101 device.

B.1.1 Hardware overview

FigureB.1 shows a photo of the SORBAS 101 hardware platform. At the front
(left) one antenna port for the 5.2 GHz and one port for the 2.4GHz band is shown.
The rear view (right) shows the IEEE 1149.1 Joint Test ActionGroup (JTAG)
sockets at the SORBAS device. AJTAG adapter is used to connect the SORBAS
device to a host computer for debugging, memory inspection,and re-programming
the internal memory. During the experiments, Ethernet and UDP/IP is used to
exchange data and control commands between host PC and SORBASdevice.

SORBAS is a modular system that consists of the following maincomponents:

SRFC board: Contains one Infineon PMB8680RF chip set with D/A and A/D
converters,RF amplifier, Received Signal Strength Indication (RSSI) gen-
eration, and Clear Channel Assessment (CCA),

Two SDCxC boards: Each with one XilinxFPGAand one Analog Devices Tiger-
SHARC floating pointDSPfor PHY processing, and

SMAC board: One Analog Devices Blackfin fixed-pointDSPfor MAC process-
ing and interfacing to the host computer.

Due to the tremendous processing power required at thePHY, twoSDCxC boards
are necessary per SORBAS device. Each processor has its own memory and op-
erates in a chain with the other processors and FPGAs. The processing units are
interconnected at high speed via the so-calledlink port bus.

B.1.2 Software overview

FigureB.2 shows the connection of the processors andFPGAs and how particular
PHY andMAC functions are mapped to these hardware components [UU07].
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Figure B.2: Overview of the SORBAS 101 hardware and mapping of PHY and
DLC functions to hardware components.

Physical layer The PHY is divided into amasterpart on the SDCxC 2 board
and aslavepart on the SDCxC 1 board. The master performs scrambling/de-
scrambling, convolutional encoding/Viterbi decoding, and interleaving/de-inter-
leaving. While the Viterbi decoding is performed on the FPGA,all other compo-
nents are written in C and run on theDSP. SDCxC 1 contains the slave part which
focuses on mapping/de-mapping and the Fast Fourier Transform (FFT) and its
inverse. Since theFFT is performance-critical, it is written entirely in assembler.

The separated design of thePHY exploits parallelization through pipelining.
When the masterDSPreceives aMAC frame as a bitstream from the upper layer,
it performs scrambling, convolutional encoding, interleaving, and puncturing on
the bitstream and divides it into chunks. These chunks contain as many bits as are
to be mapped toOFDM symbols. Then, Direct Memory Access (DMA) is used
to transfer one or more chunks via link port to the slaveDSPfor mapping and
inverseFFT. As a consequence, the masterDSPcan continue with processing the
next sequence of bits while the slave simultaneously performs the mapping and
computes the inverseFFT.

Data link control layer TheMAC protocol is mainly implemented on the Black-
fin DSP. Time-critical functions, in particularCRCand timers, are performed at
the attachedFPGA. TheMAC protocol is implemented as an automaton in the
Specification and Description Language (SDL) [ITU02]. However, significant
parts of the SDL code were replaced by hand-optimized C code to meet real-time
requirements. TheMAC comprises the complete IEEE 802.11 standard except
for security components (that are not used in this thesis). The SORBAS MAC
and PHY service primitives are controlled from a host computer using theUDP
interface.
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Figure B.3: Programming languages and tools that are used to implement IEEE
802.11a/g functions on the SORBAS platform.

Programming aspects Its pipeline-based architecture makes SORBAS 101 a
hardware-efficient but also difficult platform forPHY programming. In particular,
the physical layer pipeline relies on carefully adjusted I/O rates among thePHY
functions. Each function has to keep a processing time (1) short enough such
that the overall latency is not increased above the frame time but (2) long enough
such that the input buffer of the subsequent function does not overflow. Keeping
this balance among the runtimes of thePHY functions makes implementingPHY
extensions on the SORBAS devices an error-prone and time-intense task.

PHY programming is done in C, assembler, and VHDL. TheMAC protocol
automaton is specified in SDL, translated into C code, and finally compiled for
the BlackfinDSP. FigureB.3summarizes the specification and programming lan-
guages that are used to prototype a wireless communication system on SORBAS.

B.1.3 Measurement and control software

The SORBAS devices are integrated into a toolchain for automatically controlling
and monitoring a large number of experiments. This control software was devel-
oped in the context of this thesis and consists of the following main components.

Linux driver A Linux kernel driver allows to use the SORBAS 101 devices like
a standardWLAN adapter. Furthermore, a /proc interface is provided to access
parameters on the SORBAS devices via a Unix file handle. This simplifies moni-
toring and controlling since now any user space program can access the SORBAS
device. The complete documentation of the Linux driver is given in [BEF+06].

Measurement framework Based on the Linux driver, a complete measurement
framework was developed. This framework configures the SORBAS devices ac-
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cording to the parameter tuple of the current experiment, conducts and monitors
the experiments, and captures error events. In case of an error or timeout, the af-
fected SORBAS device is automatically rebooted and the experiment is restarted.
In combination with remote control, this framework simplifies running a large
number of experiments for several days (the longest continuous measurement in
the context of this thesis lasted 8 days). The measurement framework is detailed
in [BBF+07] and [BFK+08].

B.2 Transmit power mismatch

For several protocols, Figure6.13shows an unexpectedly low data rate if a trans-
mission power of−13 or −12 dBm is selected. We will now show that these
outliers result from a transmit power mismatch in the SORBAS 101 RF frontend.
Due to this mismatch, in some cases the power at the antenna port is lower than
selected leading to an unexpected low data rate.

B.2.1 Experimental setup

The experimental setup is simple. Using an RG-174 cable, we directly connect the
2.4 GHz antenna port of the transmitting SORBAS 101 device to theinlet of an
HP8566B spectrum analyzer. As during all experiments in Section 6.5, we chose
the carrier frequency offc = 2.472 GHz. At this frequency, cable and connectors
add a loss ofLc =−5 dB to the transmission power at the antenna port.

B.2.2 Measurement results

We vary the selected transmission power inPtx ∈ [−20,−3]dBm and measure the
signal power at the spectrum analyzerPrx. Each meanPrx value is measured for
3000 transmittedPLCPframes; each frame lasts 2 ms. From the measuredPrx we
obtain the transmission power at the antenna portPtx,o by substracting the cable/
connector loss, more formally,Ptx,o = Prx −Lc. The resultingPtx to Ptx,o mapping
is shown in FigureB.5.

While at most levelsPtx,o matches well with the selected power, this is clearly
not the case atPtx ∈ [−13,−12]dBm. At Ptx = −13 dBm,Ptx,o is 1 dB less than
configured and atPtx =−12 dBm onlyPtx,o =−12.9 dBm are returned. In our ex-
periments in Section6.5, this mismatch leads to less power on air than configured
and, consequently, to a lower data rate than expected.
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Figure B.4: Setup to measure transmit power mismatch: The antenna port of the
transmitting SORBAS is directly connected to the spectrum analyzer.
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Figure B.5: Mismatch between selected transmission powerPtx and actual trans-
mission power at the antenna port of the SORBAS 101 devicePtx,o.
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Table B.1: Link budget: Constant power losses and gains atfc = 2.472 GHz.

Component Type Adds toPtx

Tx antenna λ/2 omni Gtx = 5 dBi
Tx feeder Ltx, f =−3 dB
Rx antenna λ/2 omni Grx = 5 dBi
Rx feeder Lrx, f =−3 dB
Rx cable RG-58 Lrx,c =−7 dB

B.3 Path loss and link budget

Before setting up an experiment, we can estimate the receivedpower and Signal-
to-Interference plus Noise Ratio (SINR) by a link budget analysis [Pro00, Section
5.5.2]. Although this approximation is rather rough, it allows to choose the inter-
esting transmit power region and serves as a sanity check forthe received values.
An important factor in link budget analysis is path loss, which we discuss first.

B.3.1 Indoor scenario

The propagation environment of the indoor scenario is equivalent to theNLOS
situation in Figure6.10. With ferroconcrete walls, closed metal window shutters,
computer cases, and monitors there is a large number of reflectors in the prop-
agation environment. TheLOS path is covered by the shielding material of the
rotating disc (rotation is switched off during path loss measurements) and by the
metal cases of the SORBAS devices (cp. Figure6.10).

In this scenario, we measure mean noise plus interference power and mean
path loss. Fitting the results of the common power law path loss model to our
measurements allows to estimate the path loss exponent.

Experimental setup

The setup differs from the indoor scenario in Section6.5.2only as follows. The
relay device is switched off and the destination device is replaced by an Rx an-
tenna bracket. This maintains the antenna position of the destination but allows to
measurePrx with an HP8566B spectrum analyzer. To this end, an additional Rx
cable connects the Rx antenna in the bracket to the spectrum analyzer. This ca-
ble and the connectors introduce additional power losses. TableB.1 summarizes
all components which add a constant power loss or gain to the link budget. The
feeder losses result from the antenna connectors at the SORBAS devices.
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Figure B.6: Path loss of the indoor scenario vs. source-destination separation dis-
tanceDs,d.

Per measuredPrx value, the source transmits 3000PLCPframes. Each frame
lasts 2 ms and is transmitted at a constant power ofPtx =−4 dBm.

Path loss

To obtain path loss, we measurePrx for a varying distance between the antenna of
the source and of the destination. This separation distanceDs,d is varied between
2.7 m and 4.5 m. Note thatDs,d = 2.7 m is the source-to-destination distance in
Section6.5.2which is, here, used as the reference distanceD0.

From the measuredPrx we obtain the mean path loss PL by substracting all
other gains and losses (TableB.1), i.e.,

PL(Ds,d) = Prx −Ptx−Ltx, f −Gtx−Grx −Lrx,c [dB]. (B.1)

Two specifics of (B.1) have to be noted. First,Lrx,c has to be included instead
of Lrx, f as now no SORBAS device but an additional cable is used to connect
the spectrum analyzer. Second, this standard method [Pro00, (5.5-13)] does not
separately account for shadowing. Thus, shadowing losses are included in PL.
The result of (B.1) is shown by the measured values in FigureB.6. At the reference
distance this leads to a mean path loss of PL(D0) =−56.2 dB.

Based on these measurement results we can approximate the path loss expo-
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nentα by using the power law model [Rap02, (4.68)]

PL(Ds,d) = PL(D0)−α ·10log10

(
Ds,d

D0

)

[dB]. (B.2)

Choosingα = 2 leads to the reference curve in FigureB.6 which corresponds to
free space adjusted by the reference path loss PL(D0). At α = 2.75, the Mean
Squared Error (MSE) between the results of model (B.2) and our measurements
is minimized to 2.14· 10−6. The resulting fitted curve is shown in FigureB.6.
Consequently, with the parametersα = 2.75 and PL(D0) = −56.2 dB the path
loss model (B.2) suitably reflects our indoor measurements.

Link budget

With the path loss and the constants from TableB.1, the received power in the
indoor scenario can be readily approximated by

Prx = Ptx+Ltx, f +Gtx+PL(Ds,d)+Grx +Lrx, f [dBm]. (B.3)

To account for the indoor scenario,Lrx,c is ignored butLrx, f is included. As
in Figure6.13, we assume that the transmission power is varied betweenPtx ∈
[−18,−6]dBm and thatDs,d = 2.7 m. With these parameters, we can expect a
received power withinPrx ∈ [−70.2,−58.2]dBm.

Mean noise plus interference power

The mean noise plus interference powerN0I is measured directly at the spectrum
analyzer using anλ/2 omnidirectional antenna. To limit interference from exter-
nal devices, all controllable radios in the neighborhood are switched off. Never-
theless, the indoor setup is close to a large campusWLAN. Monitoring showed
that during measurements approximately 20 to 30 neighboring IEEE 802.11g/b
legacy nodes transmitted in the 2.4 GHz band.

In a two days measurement campaign,N0I =−75.5 dBm was obtained within
40 MHz bandwidth around the used carrier frequency offc = 2.472 GHz. Dur-
ing this time, a maximum noise plus interference power ofN̂0I ≈ −63 dBm was
measured.

Signal-to-Interference plus Noise Ratio (SINR) and discussion

With the link budget and the measured mean noise plus interference powerN0I ,
we can conclude that a meanSINR between 5.3 dB and 17.3 dB can be expected
in the indoor scenario.
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This SINR matches to the full operation region of typical IEEE 802.11gre-
ceivers, e.g., [Ath07]. Nevertheless, our measurements indicate that neighboring
interferers can significantly reduce the meanSINR. We cope with this issue by
(1) measuring during the weekends (when less interferers are present), (2) scram-
bling the experimental matrix (which distributes all measurements for a single
factor over the measurement period), and (3) by measuring continuously until the
confidence intervals reach the desired size.

B.3.2 Vehicular scenario

The propagation environment of the vehicular scenario is illustrated in Figure
6.5.1. This scenario corresponds to aLOS situation in a rural propagation en-
vironment. There are no buildings or trees in the area aroundthe transmitters
{s, r} (both placed on the RailCab vehicle) and destinationd (placed in the center
of the elliptic track). The ground is covered with high grass. During thedata rate
measurement campaign, the weather conditions where clear.With a mean relative
humidity of 37 % the air was considerably dry.

Path loss

Due to dry air we can ignore atmospheric attenuation on theLOSpath. Assuming
high absorption from the grassy ground allows to ignore ground reflection. This
allows to assume single-ray free space propagation and to predict path loss by
Friis well-known equation [Rap02, (4.1)]

PL(D{s,r},d) = 20log10

(
λ

4πd

)

[dB] (B.4)

implying a path loss exponent ofα = 2. The separation distanceD{s,r},d :=Ds,d =
Dr,d between the transmitters{s, r} and destinationd varies between 44 m and
90 m. Depending on this distance, the path loss varies between PL(D{s,r},d) ∈
[−79.4,−73.2]dB.

In literature, only a few outdoor measurements in the 2.4 GHz band are de-
scribed [HXB99, BBCS02, LRD07]. These papers focus on scenarios in urban or
suburban environments with a large number of reflectors and scatterers compared
to the vehicular scenario in Figure6.5.1. This work is, therefore, not included in
further discussion.

Link budget

We can estimate the mean received powerPrx by inserting PL(D{s,r},d) in (B.3).
As theRFcabling in indoor and vehicular scenario was identical, thevalues from
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TableB.1 can be used as above. In addition to the varying separation distance, we
assume that the transmission power is selected betweenPtx ∈ [−7,−1]dBm. De-
pending on the chosenPtx the mean received power isPrx ∈ [−82.4,−76.4]dBm
at the maximum separation distance of 90 m and increases toPrx ∈ [−76.2,−70.2]
dBm at the minimum distance of 44 m. With these intervals, we expect that the
total studiedPrx region isPrx ∈ [−82.4,−70.2]dBm.

Mean noise plus interference power

During the one day measurement campaign a mean noise plus interference power
of N0I =−97 dBm was obtained.

Signal-to-Interference plus Noise Ratio (SINR) and discussion

With the link budget and the measured mean noise plus interference powerN0I ,
we can predict theSINR in the vehicular scenario. At maximum separation dis-
tance, anSINR between 14.6 dB and 20.6 dB can be expected according to the
selected transmission power. At minimum distance,SINR between 20.8 dB and
26.8 dB can be configured. Thus, we expect that the studied meanSINR is be-
tween 14.6 dB and 26.8 dB.

Note that theseSINR values are above the SINR required by typical IEEE
802.11g transceivers to operate at 18 Mbits/s transmissionrate, e.g., SINR≥
11 dB in [Ath07]. Thus, the chosenPtx range includes a safety margin if the above
path loss prediction (B.4) is too optimistic or if fading and shadowing further re-
duce the received power.

B.4 Summary of experimental setup and
parameters

This section summarizes the parameters and components employed during our
experiments.

TableB.2 lists the non-conventional hardware and software used in both sce-
narios. The table lists the SORBAS firmware that was provided by the vendors
and then modified to incorporate cooperative relaying (Section 6.4).

TableB.3 summarizes the relevant parameters and factors for the indoor sce-
nario. Most MAC and PHY parameters match to the IEEE 802.11 and IEEE
802.11g standards [IEE03, IEE99] and are, thus, not mentioned here.

TableB.4 lists the relevant parameters and factors for the vehicularscenario.
Note that only those parameters are listed that have changedwith respect to the
indoor scenario. Due to unknown but significant atmosphericattenuation,Prx
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Table B.2: Hardware and software used in the indoor and vehicular scenario.
Component (vendor) Type/Version Description

Antennas WL-IW151S λ/2 omnidirectional whip,
5 dBi gain

SORBAS devices (Signalion) 101 SDR platform (SectionB.1)

SORBAS firmware
FPGA (Signalion) 1.6 Baseband filter and

Viterbi decoding [UU07]
PHY (Signalion) 060929UPB IEEE 802.11a/g

OFDM PHY [UU07]
MAC (Signalion) 060929UPB IEEE 802.11 MAC [Ung05]
MAC automata (IHP) 04-Jan-2006 IEEE 802.11,

SDL specification [THL05]

Development software
SDT (Telelogic) 4.6 SDL specification/test suite
VisualDSP++ 4.0 ASM, C development
(Analog Devices) and compiler suite

and SINR are not listed for the PER measurement campaign. Nonetheless, from
the results in Figure6.16, we expect that the increasedPtx compensated for this
atmospheric loss such that thePrx and SINR during PER measurements is similar
to the values of the data rate measurement campaign.
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Table B.3: Parameters and factors for the indoor scenario.
Parameter/Factor Values

Carrier frequencyfc 2.472 GHz
Signal bandwidthW 20 MHz
Assumed propagation environment NLOS
Tangential velocity 1 m/s

UDP/IP packet length 1052 Bytes
PHY transmission rate, signaling (BPSK,Rc = 1/2) 6 Mbits/s
PHY transmission rate, data (QPSK,Rc = 3/4) 18 Mbits/s

DistanceDs,r 1.44 m
DistancesDs,d = Dr,d 2.7 m

Reference path loss atDs,d −56.2 dB
Path loss exponentα 2.75

Mean noise plus interference powerN0I −75.5 dBm
Transmission powerPtx [−18,−6]dBm
Estimated received powerPrx [−70.2,−58.2]dBm
Estimated mean SINR [5.3,22.3]dB

Table B.4: Parameters and factors for the vehicular scenario.
Parameter/Factor Values

Assumed propagation environment LOS, free space
Linear velocity 5 m/s

DistanceDs,r 1.61 m
DistancesDs,d = Dr,d [44,90]m

Path loss exponentα 2

Mean noise plus interference powerN0I −97 dBm
Transmission powerPtx (PER) [2,7]dBm
Transmission powerPtx (data rate) [−7,−1]dBm
Estimated received powerPrx (data rate) [−82.4,−70.2]dBm
Estimated mean SINR (data rate) [14.6,20.6]dB
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