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ABSTRACT 

CAROLINA DOMINGUEZ SHEEDER 

PREDICTING TOTAL STUDENT CREDIT HOURS PRODUCTION 

BY COHORT STRATIFICATION 

AUGUST 2013 

 

The objective of this study is to develop predictive models of total student credit 

hours (SCH) prior to the fall semester of interest by using preregistration data from Texas 

Woman’s University (TWU). We developed two different approaches to predict SCH for 

undergraduate and SCH for graduate students separately.  Our first approach is based on 

the patterns of weekly counts of SCH observed over time. For our second approach, we 

developed a model that relies on an average of SCH and a total headcount. This research 

presents a self-contained procedure to predict headcount and includes a criterion to select 

a prediction model for the average of SCH. After explaining the development of each of 

our SCH prediction models, we compare the results and discuss their strengths and 

weaknesses. 
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CHAPTER I 

INTRODUCTION 

 

The Texas Higher Education Coordinating Board is charged with developing 

recommendations for improvements regarding state funded institutions of higher 

education to the governor and state legislatures. In carrying out its duties, the 

Coordinating Board reviews and recommends changes in formula funding that provide 

the allocation of state funds to public institutions and ensures an effective and efficient 

system of higher education. They do this by controlling costly duplication of academic 

programs and unnecessary construction projects. The report submitted in January 2011to 

the 82nd Texas Legislature by this Coordinating Board explains how nearly 54 percent of 

state appropriations for general academic institutions are allocated via two funding 

formulas and two supplements: the Instruction and Operations Formula, the Infrastructure 

Formula, the Teaching Experience Supplement, and the Small Institution Supplement 

(Legislative Primer, 2011). 

 

For an institution of higher education to make appropriate budgeting decisions for 

each academic year, it is important to understand the underlying mechanism by which 

formula funding is provided by the state. For example, the Instruction and Operations 
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Formula funding mechanism created by the state relies on semester credit hours (SCH) 

production generated by institutions.   Thus, budget planning at an institution of higher 

education can be greatly facilitated, if the institution has a viable way of predicting the 

semester credit hours they will have prior to their fiscal year.   Interestingly, however, the 

literature reveals few articles dealing with semester credited hour projections.  Winona 

State University (Ed Callahan, 2011), the University of Florida (“Overview of a Detailed 

Enrollment Prediction Model”, 2011), and the University of Baltimore (“Headcount and 

Student Credit Hour Projections in support of the Master Facility Plan 2008-2018”) 

address SCH projection using current enrollment numbers, predicted retention, 

advancement rates by class, and credit hour averages but do not expand on the predictive 

accuracy of their modeling technique.  On the other hand, the literature reveals many 

articles about enrollment projection models (Guo, 2002; Nandeshwar and Chaudhari, 

2009; Armstrong and Wenckowski, 1981). Although enrollment is positively correlated 

with semester credit hour production, the aforementioned models do not make such a 

connection.  Other aspects of enrollment such as influential factors that increase or 

decrease the enrollment or retention (Cameron and McLaughlin (2008); Gao, Hughes, 

O'Rear, and Fendley, (2002); Luo, Williams, and Vieweg (2007)) are also commonly 

explored in the literature.  

 

The objective of this study is to develop predictive models of total student credit 

hours (SCH) prior to the fall semester of interest by using preregistration data from Texas 

Woman’s University (TWU).  To predict total SCH at any time t, where t represents 
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some point in time within 23 weeks prior to the start of the semester of interest, we will 

use prior fall historical patterns of preregistration. The assumption is that the historical 

preregistration data at time t relative to the respective prior fall semesters will provide 

relevant patterns for predicting total SCH for the semester of interest.  In this research, 

we will test the predictive accuracy of our models by using cross-validation.  

 

The idea of a preregistered student and preregistered SCH begins with 

understanding that the student accesses the TWU website to preregister for a class or 

classes within a period of 23 weeks before the beginning of the semester of interest or the 

official census day, which is referred to as the 12th day. If a student then completes their 

payment and is enrolled on the 12th day, the student now becomes part of the official 

headcount.  In addition the number of SCH the student has on the 12th day become part 

of the official total SCH on 12th day. The total SCH on 12th day is 

 

 
P

k k

k

T i x


   Equation Chapter 1 Section 1(1.1) 

 

where x
k
 = SCH of individual k  P = {1, 2, …, N} such that P represents the index of 

individuals  who preregister for the semester of interest.  The magnitude of the set P is 

represented by the following notation |P| =N, where || is the magnitude (i.e., the number 

of elements) of a set.  In this case, N is the total number of preregistered students during 
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the 23 week period prior to the census day (i.e., 12th day). Furthermore, associated with 

each unit k  P is the value i
k
 defined as  

 

ik=  
0   if a  reregistered student does not com lete the registration  rocess

  1   if a  reregistered student com letes the registration  rocess                   
 , 

 

where the registration process is assumed complete if a student completes payment  for 

their SCH. 

 

When we use Equation 1.1 at any time t during the 23 week time period prior to 

the census day, we will have observed only those students who preregistered up to that 

time period, but there are also preregistered students we expect to observe after time t. 

Notationally, we will let t, which is read as t complement, represent the time period after 

t.  For this study, we will partition the time interval into weekly periods such that each 

time t represents one of the 23 weeks prior to the semester of interest. Using 23 weeks 

prior to the start of any fall semester has the predictions for the SCH starting around the 

month of April.  To visualize the partition of the time interval by making a prediction at 

time t, see Figure 1.1 below.  
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Figure 1.1: Time partition for cumulative parallel patterns  

 

At any time t, prior to the 12th day of the fall semester of interest, we only 

observe part of the total number of preregistered students.  Let tn  represent the total 

number of preregistered students at time t, then there are still tn

 = N  tn  students that 

will preregistered after time t. Thus,  

 

  = t tP P P   (1.2) 

 

where t t P P , Pt is the set of labels for the tn  students that preregistered before 

time t, and tP   is the set of labels for the tn

 students that preregistered after time t.  

Thus, grouping the right hand components of Equation 1.1 according to Equation 1.2, we 

can rewrite Equation 1.1 as 

 

 t tT T T    . (1.3) 

Cumulative Preregistered 

SCH at time t 

Expected Cumulative 

Preregistered SCH after time t 

Beginning of 

preregistration period 

Week 0 or t = 0 

 

Fall 12th day 

Week 23 or t = 23 Time t 
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The typical undergraduate SCH load will differ from the typical graduate SCH 

load since a full-time undergraduate student takes at least 12 hours, whereas a full-time 

graduate student takes at least 9 hours.  Considering that the requirement for a full-time 

graduate student differs from the full-time requirement of an undergraduate student, we 

will develop separate predictive models for undergraduate SCH versus graduate SCH.  It 

is also important to note that the funding of an undergraduate SCH differs from the 

funding of a graduate SCH.  Accordingly, we will let U represent the set of 

undergraduate students that preregister prior to the semester of interest and G represents 

the set of graduate students that preregister prior to the semester of interest.   

 

Considering that predictions are made at some time t, we can define  

 

 t tt U G
 P P P  and ' '' t tt U G

P P P   

 

Thus, we can rewrite Equation 1.2 as 

 

  

 

' 

( )

( )

t t t t

t t t t

t t

U G U G

U U G G

 

 



  

 









P P P

P P P P

P P P P

   (1.4) 

 

Now, the components of Equations 1.3 are defined as t tU U
P P P  and 

t tG G
P P P  for each time t during the 23-week preregistration period.   Accordingly, 

Equation 1.1 can be rewritten as  
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    U GT T T    (1.5) 

 

where 

 

 
t tU U

U k k k k

k k

T i x i x
 

  
P P ´

  (1.6) 

 

and 

 

 
t tG G

G k k k k

k k

T i x i x
 

  
P P ´

  (1.7) 

 

In Chapter-2 of the Thesis, we will expand our literature review and discuss the 

different approaches to predicting Equation 1.1. 

 

In Chapter-3 and Chapter-4, we will develop two different approaches to predict 

Equation 1.6 and Equation 1.7.  Our first approach to predict Total SCH uses an 

enrollment model framework presented by Dr. Mark Hamner and Preet Ahluwalia in their 

 resentation at the 2007 TAIR Conference “Predicting Real-Time Percent Enrollment 

Increase”. In this  resentation, the objective was to predict student enrollment at time t 

using applicant data, where t is defined as the time when the prediction is made, and t (t 

complement) is defined as the time between the projection and the final actual count. They 

found that the graphs of weekly counts of applicants year to year have the same slope, so 

they could assume that the counts of applicants after time t would behave similarly to the 



 

8 

 

counts of applicants before time t. Our first modeling technique will model these types of 

patterns but not for headcount. Instead, this technique will use SCH cumulative patterns.  

This model was the first of its kind for enrollment then and has not been used to predict 

SCH until now. We will then compare the results to our second approach. 

 

Our second approach to predict Total SCH will be our own modified version of 

the model that the University of Baltimore  resents in their  a er (“Headcount and 

Student Credit Hour Projections in support of the Master Facility Plan 2008-2018”). This 

model predicts student credit hours through 2018 by modeling the weighted average of 

credit hours and multiplying its output by a headcount predicted through the model 

created by Maryland Higher Education Commission.   In our second approach to 

modeling Equations 1.6 and 1.7, we will use our own version of their approach to predict 

SCH. Their technique requires a headcount total, but they do not address headcount 

prediction. Instead, they borrowed enrollment projections of total headcount. In our 

research, we will develop a self-contained procedure for predicting headcount. Since the 

weights of the weighted average were not used explicitly in their model, we will use a 

regular average instead of a weighted average of credit hours for TWU data and include a 

criterion to select a prediction model for such average. 

 

After explaining the development of each of our SCH prediction models, we will 

compare the results and discuss their strengths and weaknesses.  
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CHAPTER II 

LITERATURE REVIEW 

 

The literature shows that universities have been actively pursuing models that can 

predict enrollment and retention. However, in the state of Texas, having a model that can 

 redict semester credit hours will be  articularly hel ful to administrator’s trying to create 

an accurate budget.  One of the biggest benefits of having a good model to predict 

enrollment is the ability to plan and administrate resources for the upcoming semester and 

anticipate future needs.  

 

The objective of our research is to construct a model to predict the total count of 

credit hours. In the process of constructing this model, we will consider the advantages 

and disadvantages of models demonstrated in previous studies. There is a long list of 

works dedicated to enrollment modeling, and in this chapter we intend to discuss some 

these works and make a comparison between them and the present research paper. We will 

also include references that discuss the retention of students. This topic is often associated 

with headcount modeling, and it is a precedent for the topic of this paper. 

 

We realize that the average amount of credit hours per semester is different 

between undergraduates and graduate students. Thus, to improve our prediction, we will 
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only specify strata of students as undergraduates and graduate students; and we will not 

distinguish between new students, transfers, or continuing students; nor do we 

differentiate between part-time and full-time students.  

 

Stratification of the data is a common factor among several sources that discuss 

models to project enrollment or retention. The usual stratification consists in students that 

are in college for the first time (First Time In College or FTIC), transfers, continuing; and 

between undergraduates and graduates.  The reason behind this separation is that each of 

these groups behaves in different ways as enrollment and retention is concerned. 

 

Gao, Hughes, O’Rear, and Fendley (2002) approached some of these differences 

in their article.  In this paper, they used Structural Equation Models to identify factors 

linked to high graduation or retention rates distinguishing between native students (first-

time freshmen) and transferred students. They concluded that the number of hours 

transferred in is a strong predictor of transfer student graduation, and first year 

performance is obviously linked to graduation and retention rates. 

 

Colleges with higher retention rates for first-year students tend to have higher 

graduation rates. For this reason, there is a large amount of literature about mathematical 

models to predict the behavior of freshman students. Cameron and McLaughlin (2008) 

used decision trees to recognize primary influences in the success of freshmen transfer 

students. They defined success as retention in their article “Modeling Success of 
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Freshmen Transfer Students.” They used decision trees to analyze academic 

characteristics of this cohort and followed the bracket with higher retention rates. 

Students that returned after the first quarter were first divided into the group that passed 

47% of their classes or more and the complement of this group. The subgroup that passed 

47% of their classes or more had a higher retention rate and was then split between full 

time and part time students. The full time subgroup had a higher retention rate and was 

then divided between students that transferred in with more than 12 hours and its 

complement. The group with greater number of transferred in hours had the highest 

retention rate. They ended the tree by analyzing the ACT English scores of this last group 

and concluded that the subgroup who passed 47% of their classes or more, considered 

full time, transferred in with more than 12 hours, and an ACT English score greater than 

29 was the subgroup with the highest retention rate. 

 

Luo, Williams, Vieweg (2007) also wrote about first year retention in their article. 

They used sequential sets of logistic regression analyses on blocks of variables applied to 

student groups of different transfer status to analyze patterns of interactive factors that 

influence transfer student’s first-year retention. 

 

The studies mentioned previously were focused on explaining and predicting 

retention rates of students that are FTIC. These studies and our study share the same 

motivation, which is the anticipation of resources needed by a university to efficiently 
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serve their students. The afore mentioned studies addressed this objective by projecting 

student headcount only, while this research is centered on the projection of student credit 

hours using two different models.  

 

Our first approach, which will be referred as Model-1, follows a similar 

methodology to the enrollment model presented by Dr. Mark Hamner and Preet 

Ahluwalia in their presentation at the 2007 TAIR Conference “Predicting Real-Time 

Percent Enrollment Increase”. In their presentation, they defined Total Enrollment is 

equal to the Enrollment as of time t plus the Enrollment after time t, where time t is the 

time of prediction. This model was the first of its kind to predict headcount. In this 

research, we will borrow their enrollment model framework to predict total SCH in a 

particular semester of interest. 

 

A different framework to predict total SCH is illustrated by North Carolina 

General Assembly in their Final Report to the Joint Legislative Program Evaluation 

Oversight Committee (2010). In this report, they exemplified the model to predict SCH 

used by the University of North Carolina (UNC). This article, besides discussing a 

different approach to model total SCH, is also a reference for the impact an accurate or 

inaccurate SCH projection has on the funding. In this report, the North Carolina General 

Assembly also discussed the relevance of the total SCH in the context of their funding 

formula. 
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Their funding formula to calculate enrollment growth has three components. First, 

the number of credit hours that will be taken at each institution is projected based on 

enrollment data from the fall semester. Second, the number of additional instructors 

needed to serve the projected enrollment is estimated based on various ratios of credit 

hours per instructor. Finally, the funds needed to cover the additional salaries, academic 

costs; library services and general institutional support are calculated. The SCH model 

works as follows. Credit hours offered at each university are classified into one of 12 

categories reflective of the area of instruction (four possible categories) and level of 

instruction (undergraduate, master’s and doctoral). Projections for the number of credit 

hours that will be taken in each category are then developed. These are estimated for each 

cell in the matrix and are expressed as an increase or decrease in the number of student 

credit hours from the prior year.  

 

Below is a hypothetical example of the projected SCH for a campus presented by 

North Carolina General Assembly, 2010. In this example, the campus estimates 4,700 

additional SCH for the next academic year. 

 

Hypothetical Example of the Projected SCH for a Campus of UNC 

 Instructional Level 

Instructional Category Undergraduate Master’s Doctoral 

Category I 1,000 200 100 

Category II 1,000 200 -100 

Category III 1,000 200 50 

Category IV 1,000 50 0 
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 Instructional Level 

 Undergraduate Master’s Doctoral 

Total by level 4,000 650 50 

  Institution Total 4,700 

 

The second approach we will use to build a predictive model for total count of 

SCH, which will be referred to as Model-2, combines a model that predicts headcount 

and a model that predicts the average of SCH.  The headcount projection and average 

SCH projections are multiplied by each other to obtain an estimate of total SCH. Ed 

Callahan (2011) of Winona State University presented a projection model for Student-

Credit Hour load in his article. This model also used an estimated average credit load and 

an estimated headcount to predict total Student-Credit Hour load. The estimated count 

uses current enrollment numbers, predicted retention, and advancement rates by class 

(freshmen, sophomore, juniors, and seniors). 

 

The University of Central Florida (UCF) also uses a headcount model to predict 

student credit hours. UCF  osted on their website the “Overview of a Detailed 

Enrollment Prediction Model” that estimates headcount (HC) and student credit hours. 

The headcount model takes the Spring and Summer enrollment and multiplies it by the 

 revious year’s semester transition fraction, built with retention or returning rates for 

undergraduates and graduates from the previous ten years and two years, respectively. 

They then added the estimated number of new students. Because the retention and 

transition parameters can vary, the model uses a set of multiplicative adjustment 
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parameters computed so that the model, based on the  revious year’s data, “fits” the 

actual enrollment from the previous year perfectly. The resulting model with the 

adjustment parameters is then used with current year enrollment and the expected new 

students to predict the following year enrollment by classification. The predicted 

headcounts are used to estimate the fundable student credit hours by semester and the 

annual SCH are used to estimate the fundable full-time equivalent students by level. 

 

The idea of using an average SCH was also used by Campbell and Doan (1982) in 

their article. They did two regressions to predict total SCH, one between headcount and 

the number of credit hours; and the second between headcount and student average load. 

The difference in the results between the two regressions was due to the fact that the 

average (credit hours/total of students) decreases as the total headcount increases because 

the number of credit hours has an upper limit.  They later found out that the average of 

the results from the two predictions resulted in a value that was closer to the actual 

observed total SCH.  

 

The modeling process we will use to calculate the average of SCH in Chapter-2 

was presented by the Office of the Provost Institutional Research at the University of 

Baltimore in their draft “Headcount and Student Credit Hour Projections in su  ort of the 

Master Facility Plan 2008-2018.”  The model that the University of Baltimore presents in 

their paper predicts student credit hours through 2018 by modeling the weighted average 

http://www.eric.ed.gov/ERICWebPortal/search/simpleSearch.jsp;jsessionid=SQOz32l4-6jOMZKVlpHNAA__.ericsrv003?_pageLabel=ERICSearchResult&_urlType=action&newSearch=true&ERICExtSearch_SearchType_0=au&ERICExtSearch_SearchValue_0=%22Campbell+William+E.%22
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of credit hours and multiplying its output by a headcount borrowed from the Maryland 

Higher Education Commission’s Enrolment  rojections. The article discusses the 

importance and relevance of both, and Enrollment Projection model and the Projection of 

student credit hour loads. Their projection of student credit hour separates students by 

colleges and level.  To model the weighted average of each cohort, they used polynomial, 

exponential, logarithmic regressions, and the curve of the cumulative distribution of a 

Weibull variable to fit their historic data and a reasonable prediction of a weighted 

average of SCH for future years, considering a limit on credit hour loads based on 

historically high trends or values. However, the University of Baltimore did not provide 

the criterion used to select the models used to fit the pattern of historic data of weighted 

averages of SCH and to predict weighted averages of SCH in future years. In this study, 

we will discuss a criterion that will be used to select the prediction models for the 

averages of SCH in future years. Once we obtain a predicted average of SCH, we will 

develop a prediction model for headcount.  This headcount model is based on the 

enrollment model presented by Dr. Mark Hamner and Preet Ahluwalia in their 

presentation at the 2007 TAIR Conference and also used as the framework in the 

approach under our Model-1. The combination of the predicted average SCH and the 

predicted total headcount will result in our unique version of the University of 

Baltimore’s SCH  rediction model.  

 



 

17 

 

Data mining has been a popular approach to develop headcount or enrollment 

projection models by analyzing data from different perspectives and summarizing it into 

useful information. Nandeshwar and Chaudhari (2009) used data mining to build models 

to predict enrollment using the student admissions data, evaluate the models using cross-

validation, win-loss tables and quartile charts.  These authors also discuss previous 

applications of data mining such as Enrollment management, Graduation, Academic 

performance, and Retention. 

 

Both approaches in our study will be limited to one input variable, time. In the 

attempt to offer an accurate representation of the population being studied, other models 

used many characteristics of freshman students, such as SAT scores, GPA, age, and many 

other variables that seem to influence the decision of whether or not to enroll, continuing 

in the same degree, or changing colleges. In the work of Guo (2002), three different 

enrollment projection models and their application in six Community Colleges are 

compared. Guo also lists a set of factors that need to be considered in forecasting, such as 

time frame, cost, the availability of data, data patterns, and the ease of operation and 

understanding. The conclusion was that a complex model may not be necessarily better 

than a simpler model.  

 

Armstrong and Wenckowski Nunley (1981) also compared two Enrollment 

Projection models. One model was based on Curve fitting, the other one was based on 
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Yield from population components.  They emphasized the importance of direct 

involvement of key administrators in discussing the reasonableness of the assumptions 

associated with the projections.   

 

Another way to determine the reasonableness of a prediction model is to test the 

predictive accuracy of such a model. To test Model-1 and Model-2 developed in Chapter-

3 and Chapter-4 of this study, we will predict the total count of SCH in 2011 using 

preregistration data from 2008 through 2010 and compare the predicted count of SCH 

with the actual count obtained from the actual fall data of 2011. Then, we will predict the 

total count of SCH in 2012 using preregistration data from 2009 through 2011 and 

compare the predicted count of SCH with the actual count obtained from the actual fall 

data of 2012. A similar test is used by Tsui, Murdock, and Mayer (1997). They examined 

whether the use of trend analysis combined with analysis of persistence variables can be 

used to establish a model to forecast the first-year persistence of college freshmen. This 

paper uses linear regression, hypothesis testing, and confidence intervals. A linear model 

was created using data on 2,603 first-time freshmen at a moderate-sized comprehensive 

university from fall 1989 through fall 1993. To test the accuracy of the model, they used 

linear regression for both scales of  ercent and a number of cam us residents’ first-year 

persistence from fall 1989 to fall 1993. They then used hypothesis testing at 0.01 level, 

and both forecast equations were statistically significant. The forecast equations were 

also tested by predicting the first-year persistence rate for freshmen newly enrolled in fall 
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1994 and both models came to have the same significance level but different accuracy of 

forecast, both within 4%. The study concluded that trend analysis is an effective method 

to discover a relationshi  between students’ retention and categorical factors. 

Furthermore, the methodology of combining trend analysis and significant persistent 

variables provides a potentially more accurate method to predict continuous enrollment. 
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CHAPTER III 

NOTATION AND PREDICTIVE MODEL 1 

 

In this chapter, we will introduce additional notation and extend on the notation 

presented in Chapter-1. This notation is necessary to present the first modeling method, 

which we will refer to as Model-1, which we used to predict the total count of SCH on 

12th day defined in Equation 1.1.  

 

The first model we will develop to predict T is similar to the model framework 

presented by Hamner and Ahluwalia (2007).  In their presentation, they showed that the 

graphs of weekly counts of applicants year to year have the same slope, which is visually 

represented by parallel lines over time.  Given this pattern, they could assume that the 

counts of applicants after time t would behave similarly to the counts of applicants before 

time t. Our Model-1 is based on these types of patterns but not for headcount. Instead, 

this technique will use SCH cumulative patterns over time. 

 

This modeling approach requires a partition of the time interval into weekly 

periods, such that each time period tw is time in terms of the number of weeks from the 

beginning of the prediction period, which starts 23 weeks prior to the semester of interest.  

At the end of each time period tw, there is an aggregate total of observed SCH, wt
T . 
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However, since preregistration is still ongoing, we know there are students who will 

preregister after time tw. Define wt  to be the time after time tw, such that tw + wt  = 23.  

Accordingly, the cumulative SCH observed after time tw is represented by wt
T  .  Using 

this notation, we can rewrite Equation 1.3 as 

 

 w wt t
T T T    .  Equation Chapter 3 Section 1(3.1) 

 

  To visualize the partition of the time interval, see Figure 3.1 below. This figure 

illustrates the partitioning of time if we wanted to make a prediction at week 11, t11 =11. 

Since the prediction period lasts 23 weeks, there are still 12 weeks until the start of the 

semester of interest or 11t   = 12.   

 

 

Figure 3.1: Time partition for Model-1 

 

For the reasons mentioned in Chapter-1, the preregistered data for undergraduates 

and graduates is stratified to predict TU and TG.  Using Equation 3.1, for any time tw, we 

rewrite Equations 1.6 and 1.7 as 

Cumulative Preregistered 

SCH at week 11 11tT   

Cumulative Preregistered 

SCH after week 11 11tT

 

Beginning of 

prediction period 

Week 0 or t0 = 0 

 

Fall 12th day 

Week 23 or t0 = 23 
Time t11 
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tw

wt
U U UT T T



    (3.2) 

 

 
tw

wt
G G GT T T



   . (3.3) 

 

Figure 3.2 below illustrates a graph of the points  , wt
w Gt T for 2009 and 2010 

graduate strata. Included is this graph is the observed total count SCH, GT , represented 

by the horizontal lines.   

 

 

Figure 3.2: Weekly sum of graduate preregistered SCH 

 

To predict fall 2011 SCH, we noted that the historical patterns of the two preceding 

years, see figure 3.2, follow a similar pattern.  The viability of the modeling approach 

assumes these types of patterns will hold for the subsequent years. In fact, with any 
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predictive modeling approach there is an implicit assumption that the data used to build the 

model, particularly the parameters that define the model, would be similar to the parameter 

values we would generate with the unobserved data over the period being predicted. Given 

the consistency of the pattern over the last two years, the assumption of consistent patterns 

in the future is viable, particularly if all the other factors that affect enrollment remain 

unchanged for the upcoming predicted year.  For example, if the institution made 

significant changes to the cost of tuition, then the future pattern of SCH could be altered 

from the previous year. 

 

We now introduce some fundamental notation in order to distinguish between an 

estimated or predicted value, and an actual or observed value. For example, wt
T , the first 

component of Equation 3.1, represents the actual cumulative sum of SCH obtained from 

the pre-registration data observed as of time tw. It is worth noting that the first 

component, wtT , is known at the time of prediction.  However, we need to develop a 

modeling process that will predict the second component of Equation 3.1, wt
T  , which is 

unknown at the time of prediction.  The prediction of wtT   will be denoted by ˆ
wtT  . The 

framework to predict wt
T  for a particular year will be based on modeling past patterns of 

wt
T  . Solving for wt

T  in Equation 3.1, we obtain the following equation  

 

 w wt t
T T T  

.
  (3.4) 
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The value of Equation 3.4 can be thought of as the prediction error associated 

with the cumulative SCH, wt
T , at time tw as an estimate of T. This error concept is 

illustrated in Figure 3.3 below. In figure 3.3, you can see that the error at time t8 = 8 is 

represented by 
8

8
t t

G G GT T T


  .  In general, at each time tw = 0, 1, 2, …, 23 there is a 

corresponding error for wt
T .  

 

 

Figure 3.3: Weekly sum of preregistered SCH 2009 

 

In order to predict Equation 3.4 values for the semester of interest, we will use the 

error patterns of the most recently observed SCH for the cohort and semester of interest. 

For example, if we were trying to predict wtT  for fall 2013 during the spring semester of 

2013, then the most recent data for which the pattern of wtT  is complete and observed is 
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fall 2012 wtT  .  By using the most recently observed data for wtT  , which comes from the 

SCH  attern of the  rior year, we are assuming that last year’s data is more closely 

related to the pattern we would expect for the current pattern.  If extraneous factors exists 

that would alter the pattern of the current year from the patterns from previous years, we 

ex ect these changes would occur slowly so that the current year’s  attern is going to 

have the least amount of variation to the SCH pattern observed most recently. Notice in 

Figures 3.2 that the pattern from 2009 to 2010 changes lightly, and we would expect a 

small variation as well between 2011 and 2012.  

 

To illustrate how we model Equation 3.4 for say, the fall 2010 undergraduate 

cohort, we will model the wtT 
 patterns for undergraduates for fall 2009 (see Figure 3.4).  

In Figure 3.4, we graphed these 23 error values, wt
T  , for 2009 then fit a polynomial trend 

line to fit this error pattern. This polynomial model 

 
4 3 2 3.5468  189.32  3579.7  32293  1205ˆ ) ( 5( ) 3w

w w w w
t

w wf t t tT t tt      
 

 

will be used as the estimator, ˆ wt
T   , for fall 2010 wtT  and is a function with respect to 

time.  Accordingly,  ˆ wt
T can be used to predict fall 2010 wtT   during any time of the 

prediction period.  For example, suppose we wanted to predict the fall 2010 error, wtT  , at 

week 2 2t  . Then, using the Equation above the predicted error is,    
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4 3 2ˆ (2) (2) (2) ( 3.5468  189.32  352) (2)79.7  32293  1202) 5( 53wtT f      
 

 

 

Figure 3.4: Model of 2009 SCH errors for undergraduates 

 

With this error approach to predicting wtT   , we now have a methodology to 

predict total SCH, denoted as T in Equation 1.1. Using the ˆ wtT   as our estimate for wtT  , 

our weekly estimate for Equation 3.1 becomes 

 

 ˆ ˆw w

w

t t

tT T T    . (3.5) 

 

To illustrate how well this predictive methodology works, Table 3.1 shows the 

results of predicting Equation 3.1 for fall 2012 SCH using the error patterns for fall 2011. 

Notice how well this prediction method predicted the actual SCH, T, which would not be 
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known at the time of prediction.  In retrospect, you can see that the predicted value, 

Equation 3.5, was within 2% or less of the actual total SCH, T, 16 out of the 23 weeks of 

the prediction period or 70 % of the time; and 44% of the time the prediction method was 

within 1% or less of the actual total SCH. Similar results can be seen for 2011 and 2012 

prediction of undergraduate and graduate SCH totals.   

 

Table 3.1 

Projection of Total SCH for Fall 2012 Graduate Students under Model-1 

Week 

Sum 
wt

T  

Predicted Diff 

ˆ wt
T   

Predicted 

T̂  

Actual 

T  

Off 

T̂  – T  

% Off 

from T 

0 9087 26913.00 36000.00 35987 13.00 0% 

1 12361 23482.67 35843.67 35987 -143.33 0% 

2 14374 21057.46 35431.46 35987 -555.54 -2% 

3 15916 19381.06 35297.06 35987 -689.94 -2% 

4 17753 18224.58 35977.58 35987 -9.42 0% 

5 19220 17386.63 36606.63 35987 619.63 2% 

6 20339 16693.22 37032.22 35987 1045.22 3% 

7 21084 15997.88 37081.88 35987 1094.88 3% 

8 22542 15181.54 37723.54 35987 1736.54 5% 

9 23393 14152.63 37545.63 35987 1558.63 4% 

10 24196 12847.00 37043.00 35987 1056.00 3% 

11 24979 11227.98 36206.98 35987 219.98 1% 

12 26885 9286.34 36171.34 35987 184.34 1% 

13 29250 7040.33 36290.33 35987 303.33 1% 

14 31323 4535.62 35858.62 35987 -128.38 0% 

15 33337 1845.38 35182.38 35987 -804.63 -2% 

16 37754 -929.82 36824.18 35987 837.18 2% 

17 40397 -3661.89 36735.11 35987 748.11 2% 

18 42697 -6195.34 36501.66 35987 514.66 1% 

19 44359 -8347.18 36011.82 35987 24.82 0% 

20 44588 -9907.00 34681.00 35987 -1306.00 -4% 

21 44612 -10636.91 33975.09 35987 -2011.91 -6% 
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Week 

Sum 
wt

T  

Predicted Diff 

ˆ wt
T   

Predicted 

T̂  

Actual 

T  

Off 

T̂  – T  

% Off 

from T 

22 44615 -10271.58 34343.42 35987 -1643.58 -5% 

23 44627 -8518.20 36108.80 35987 121.80 0% 

 

The projections for undergraduate students for each week of 2011 and 2012, as 

well as the projections for graduate student for each week of 2011, can be found in 

Appendix A. 
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CHAPTER IV 

NOTATION AND PREDICTIVE MODEL 2  

 

In this chapter, we will introduce additional notation and extend on the notation 

presented in Chapter-1. This notation is necessary to present the second modeling 

method, which we will refer to as Model-2, developed in this chapter to predict the total 

SCH, Equation 1.1.  

 

The second model we will develop is our own modified version of the modeling 

process introduced by the University of Baltimore (UB).  The modeling process used by 

UB relies on a weighted average and a total headcount; however, they did not use the 

weights explicitly. Our modified version of this model will use a regular average instead, 

and total head count in order to predict Equation 1.1. Their approach relied on using 

Maryland Higher Education Commission’s (MHEC) enrollment projections of total 

headcount. In our research, however, we will use an alternative method to predict 

headcount, since that methodology was not developed sufficiently or discussed in detail 

in their research.  The University of Baltimore simply provides a link to the MHEC 

projections (Headcount and Student Credit Hour Projections, p.1), which simply provides 

calculated numbers of enrollment for the prediction years. Our study requires projections 

for Texas institutions. Accordingly, we will develop and discuss a self-contained 



 

30 

forecasting methodology for headcount that eliminates the reliance on MHEC 

forecasting.  

 

The University of Baltimore did not provide the criterion applied to select the 

models used to fit the pattern of historic data of weighted averages of SCH and to predict 

weighted averages of SCH in future years. In this study, we will discuss a criterion that 

will be used to select the prediction models for the averages of SCH in future years. 

 

Conceptually, the Model-2 approach is derived from a simple idea stemming from 

the equation of an average.  For example, let µ represent the average SCH of the total 

number of preregistered students, N.  By definition, this average can be written as  

 

 1

N

k k

k

i x

N
 


 . Equation Chapter 4 Section 1(4.1) 

 

Using Equation 1.1, we can rewrite Equation 4.1 as 

 

 1

N

k k

k

i x
T

N N
  


 . (4.2) 

 

Therefore, the total SCH can be obtained by multiplying Equation 4.2 by N to obtain 

 

 
T

N N
N

    . 
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Solving for T in the equation above, we obtain the following formula for total SCH 

 

 T N  . (4.3) 

 

Accordingly, to predict the total SCH, T, we need to predict the right hand components of 

Equation 4.3.  

 

To predict T in Equation 4.3, we begin by stratifying the indexes of P into 

graduates and undergraduates, since each group has different criteria for classification as 

a full-time student.  Recall from Chapter-1, the total SCH can be written as 

 

T = TU + TG,  

 

Using Equation 4.3 for each strata, we can rewrite Equations 1.6 and 1.7 as 

 

 U U UT N    (4.4) 

 

 G G GT N    (4.5) 

 

where NU = |PU | and NG = |PG |. Recalling from Chapter-1, P = PU  PG, where PU is the 

set of indices for preregistered undergraduates and PG the set of indices for preregistered 

graduates. 

 



 

32 

 

In order to formulate a prediction for either Equation 4.4 or Equation 4.5, we 

require an estimate of the components of the right hand side of the equations.  In general, 

this method will use an average to predict µ for the particular stratification of interest.  In 

addition, we will develop a prediction method for the total headcount, N, which we will 

discuss later in this chapter.  

 

Using the same notation from Chapter-3 to distinguish between an estimated or 

predicted value and an actual or observed value, we let µ represent the actual average of 

SCH obtained from all data after pre-registration data has been completed for a semester 

prior to the semester of interest, and the predicted value or estimated value will be 

denoted as ̂ , the estimated average of SCH for the future semester of interest.  Similarly, 

N represents the actual total headcount for a particular stratification and N̂ represents the 

predicted total headcount. Finally, to predict actual total SCH, T, we will use estimates in 

Equations 4.4 and 4.5 

 

 ˆ ˆˆ
U U UT N    (4.6) 

 

 ˆ ˆˆ
G G GT N    (4.7) 

 

To predict  , with ̂ , we explored the patterns of the observed µ three years 

prior to the semester of interest. Next, we superimposed a trend line that fit the graphed 

pattern. Using the equation of the fitted graph, we can then predict ̂  for the year of the 
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semester of interest. In particular 2011̂ , which is read as the predicted average of the SCH 

for 2011, was derived from calculating and graphing 2008  , 2009 , and 2010 . Figure 4.1 

below graphs the observed pattern of the weighted SCH for 2008-2010.  This is simply a 

graph of the following three points: (1,
 2008 ), (2,

 2009 ), (3,
 2010 ) . Accordingly, the 

idea is to find an appropriate model that fits this three year pattern.   

 

 

Figure 4.1: Average SCH pattern 

 

Table 4.1 shows the observed  for each undergraduate and graduate strata for each 

fall semester from 2008 through 2010.  
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Table 4.1 

Average SCH 2008-2010 

 
Fall 

Average SCH 2008 2009 2010 

U  11.803 11.605 11.611 

G  6.808 6.971 6.359 

 

In order to predict  for say fall 20ll, we need to select a model that fits the pattern 

of the graphed points in figure 4.1. We will explore the fit of a power, an exponential, and 

a natural logarithmic trend over the graphed points. We then will evaluate the fit of the 

pattern and select one from these three possible models to predict the average of SCH for 

2011 using a set of criteria described later in this chapter. In the following discussion, we 

will develop notation to represent a time component in the model specification.  

 

This modeling approach requires the time to be measured in years.  Accordingly, 

let ty represents the time in years.  The next four figures below show  as a function of ty. 
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Figure 4.2: 2008-2010 Undergraduate average SCH pattern 

 

 

Figure 4.3: 2008-2010 Graduate average SCH pattern 
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We used each of the equations in Figure 4.2 and 4.3 to predict the average of SCH 

for 2011, and we obtained the averages shown below. The highlighted rows indicated the 

selected model used in order to predict the actual average SCH.   In the tables below, you 

can see the difference between the predicted and the actual value.  However, it is worth 

noting that a prediction happens before realizing the actual value. Thus, having a selection 

criterion for selecting a prediction model is an important discussion we will address later in 

this chapter.  In the meantime, Tables 4.2-Tables 4.5 highlight the selected models we 

would have used at the time of the prediction.  

 

Table 4.2 

Fall 2011 Undergraduates Model Fit Average of SCH 

 

Fall 2011 Undergraduates 

Model fit average of SCH 

Predicted 

̂    
Observed  

   

Difference 

̂    

Exponential 11.49230 11.63785 -0.14555 

Power 11.52550 11.63785 -0.11235 

Logarithmic 11.52476 11.63785 -0.11308 

 

Table 4.3 

Fall 2011 Graduates Model Fit Average of SCH 

Fall 2011 Graduates 

Model fit average of SCH 

Predicted 

̂    
Observed  

   

Difference 

̂    

Exponential 6.26780 6.35879 -0.09100 

Power 6.43666 6.35879 0.07787 

Logarithmic 6.44505 6.35879 0.08625 
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We then graphed  from each fall from 2009 through 2011 and fit a power, an 

exponential, and a natural logarithmic trend line to predict the average of SCH for 2012. 

 

 

Figure 4.4: 2009-2011 Undergraduate average SCH pattern 
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Figure 4.5: 2009-2011 Undergraduate average SCH pattern 

 

We used each of the equations shown in figure 4.4 and 4.5 to predict the average of 

SCH for 2012, and we obtained the predictions shown below. 

 

Table 4.4 

Fall 2012 Undergraduates Model Fit Average of SCH 

 

Fall 2012 Undergraduates 

Model fit average of SCH 

Predicted 

̂    
Observed  

   

Difference 

̂    

Exponential 11.65006 11.59451 0.05554 

Power 11.63966 11.59451 0.04515 

Logarithmic 11.56260 11.59451 -0.03191 
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Table 4.5 

Fall 2012 Graduates Model Fit Average of SCH 

 

Fall 2012 Undergraduates 

Model fit average of SCH 

Predicted 

̂    
Observed  

   

Difference 

̂    

Exponential 5.98012 6.31683 -0.33671 

Power 6.11192 6.31683 -0.20492 

Logarithmic 6.09483 6.31683 -0.22201 

 

In our previous discussion, we developed several competing models for predicting 

the parameter µ in Tables 4.2-Tables 4.5.  As with any prediction modeling process, at the 

time you make the prediction you have only observed part of the data and therefore you do 

not have the luxury of knowing which competing model will actually provide a prediction 

closest to the actual value of the parameter.  In the following discussion, we will specify the 

selection criterion and the decision making process we used to select the highlighted model 

to predict µ. Our decision making process is going to involve two factors.  

 

The first factor involves evaluating how well the models fit the general pattern.  In 

each case, we are fitting a model on three years of data.  Considering the fact that we are 

only trying to model the average SCH over a three year period, we could theoretically 

always find a polynomial model that would have perfect fit (i.e., go through all three 

points).  Accordingly, fitting a polynomial would generate a coefficient of determination, 

R
2
, equal to 1.   In general, the coefficient of determination provides the proportion of the 

total variation that is explained by the fitted model.  For a more detailed explanation of the 
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coefficient of determination, see Ranney and Thigpen (1981).  Although a polynomial 

model would generate a R
2
 = 1 or would explain 100% of the total variation, for such few 

data points the polynomial model would bring about a problem well known in statistics  

referred to as overfitting (Vaughan and Ormerod, 2005). A model that overfits the data 

produces a curve that fits a particular data well but does not model the underlying trend 

well. For this reason, we did not consider a polynomial model as an option to predict  .  

For the other non-polynomial models, we want to consider models that have the highest R
2
 

value.  Although the R
2
 value is not the sole criteria for model selection, we specify how to 

judge this criterion in the following discussion.   

 

In statistics, the correlation is categorized as weak, moderate, or strong using the 

boundaries shown in Table 4.6. Using these values and their corresponding range for R
2
, 

we will evaluate how well the three possible models capture the 3-year pattern of averages 

of SCH. 

 

Table 4.6 

Boundaries for Correlation Values 

 
Correlation description r R

2
 

Weak 0 – 0.39 0 – 0.16 

Moderate 0.4 – 0.69 0.16 – 0.49 

Strong 0.7 – 1 0.49 – 1 
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When two or more competing models fall into the highest R
2
 grouping as specified 

in Table 4.6, then we will use a second factor in order to facilitate a decision on which 

model to choose.  

 

The second factor to consider when selecting a model for estimating µ involves an 

intuitive notion that comes with financial planning.  That is, when planning a budget you 

want to make sure that you have the necessary finances or money to pay for the expenses 

you will incur.  For planning purposes, this means you should not spend more money than 

you will generate.  Thus, the second factor we consider when selecting an appropriate 

model is to select the model that will predict more conservatively.   

 

With the assumption that university administrators prefer a conservative projection, 

we will choose the model that has the least rate of at the last observed year of data, which is 

year three.  Conceptually, this means that we want the prediction to stay as flat as possible 

from the average SCH in year three to the average SCH of the predicted year or year four. 

In a mathematical context, the least rate of change translates to consider selecting the 

model for µ with the first derivative, evaluated at ty = 3, closest to zero. Without loss of 

generality, suppose we have three models for estimating µ:  1
ˆ

yt  ,  2
ˆ

yt ,and  3
ˆ

yt . 

Then, the selected model with the least rate of change is 

 

       1 2 3
ˆ ˆ ˆmin 3 , 3 , , 3       (4.8) 
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where  ˆ 3 represents the first derivative of the respective model evaluated at ty = 3. 

 

Criterion 4.8 can be illustrated for the three Undergraduate competing models of µ 

in Figure 4.2. Using this criterion, we selected the logarithmic model to predict  for 

Undergraduates in 2011 using the 2008-2010 pattern. The R
2
 value of both, the logarithmic 

equation (R
2
 = 0.8481) and the power equation (R

2
 = 0.8479), fall in the strong category 

according to Table 4.6. Because they both had the same rate of change ˆ (3) = – 0.062 at 

2010, we made our decision purely based on the greater R
2
 value, which is larger for the 

logarithmic model. Similarly, the logarithmic model fit to the 2009-2011 Undergraduate 

pattern was selected to predict  for fall 2012, see figure 4.4. The R
2
 value of both, the 

logarithmic equation (R
2
 = 0.7694) and the power equation (R

2
 = 0.7696) in figure 4.4, fall 

in the strong category. Therefore, we considered the second factor of the criterion: the 

logarithmic model had a lesser rate of change ( ˆ (3) = 0.0092) than the power model 

ˆ( (3) 0.0093)  , indicating that the projection under the logarithmic model is more 

conservative. 

 

In a similar way, we applied the criterion above for each model for Graduate 

students and decided that the exponential model was the best fit to predict  for 2011 using 

the 2008-2010 pattern, see Figure 4.3. In Figure 4.3, the R
2
 value of the exponential 
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equation (R
2
 = 0.5103) was the only model in the strong category, according to Table 4.6, 

so we selected the exponential model without considering criterion specified in 4.8.  To 

predict  for Graduates in 2012 using the 2009-2011 pattern, as shown in Figure 4.5, we 

selected the power model. In Figure 4.5, the R
2
 value of both the logarithmic equation (R

2
 

= 0.7694) and the power equation (R
2
 = 0.7696) fall in the strong category. Therefore we 

considered the second criterion specified in Equation 4.8.  Using this additional criterion, 

the power model had a lesser rate of change ( ˆ (3) = –0.186) than the logarithmic model (

ˆ (3) = –0.198), indicating that the projection under the power model is more conservative 

and hence the desired model for predicting µ. The derivative calculations of the criterion in 

Equation 4.8 can be found in Appendix-B for the examples mentioned above. 

 

Equations 4.9 and 4.10 show the equations of the logarithmic trend lines used to 

predict   for undergraduates in Figures 4.2 and 4.4, respectively.  The input for these 

equations is ty.  Since figure 4.2 is a pattern of 2008-2010 undergraduate average SCH 

patterns used to predict µ for fall 2011, the subscript of the estimator ̂   in Equation 4.9, in 

this case U-2011, indicates the cohort of interest and the predicted year.  Thus, 2011
ˆ

U  , is 

used to predict the average SCH, µ, for fall 2011 by evaluating this function at  ty = 4.  

Similarly, 2012
ˆ

U   evaluated at ty = 4 provides the predicted average SCH for 2012.  

 

 2011
ˆ  –  0.187* 11.78( ) 4U ytln      (4.9) 



 

44 

 

 

 2012
ˆ  –  0.0277* 11.60( ) 1U ytln      (4.10) 

 

Equations 4.11 and 4.12 show the equations of the exponential and power trend 

lines used to project µ for graduate students in 2011 and 2012 respectively.  

 

 
( 0.034 )

2011
ˆ 7.1809 yt

G e


    (4.11) 

 
( 0.089)

2012
ˆ 6.9145*G yt 

   . (4.12) 

 

Now that we have described a method to predict µ in Equation 4.3, we now focus on 

developing a model to predict N in Equation 4.3.   To develop a model to predict N, which 

is total headcount, we will use a similar framework to the one described in Chapter-3 for 

our Model-1to predict the total count of SCH.  

 

The modeling technique to predict N, requires a partition of the time interval into 

weekly periods tw, as described in detail in Chapter -3.  In this case, at the end of each 

time period tw, there is cumulative headcount of preregistered students  wtn  known before 

time tw . However, since preregistration is still ongoing, we know that there are students 

who will preregister after time tw.  Let 
tw

n


 represent the expected cumulative headcount 

of students that will preregistered after time tw. Using this notation, we can define N, the 

first component of Equation 4.3 as 
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tw

wt
N n n



   . (4.13) 

 

For the reasons mentioned in Chapter-1, the preregistered data is stratified for 

undergraduates and graduates to predict NU and NG.  Accordingly, NU and NG can be 

written as  

 

 
tw

wt
U U UN n n



      

 

 
tw

wt
G G GN n n



   .  

 

Figure 4.6 illustrates a graph of the points  , wt
w Ut n for 2009 and 2010 

undergraduate strata. Included in these graphs is the observed total headcount, UN , 

represented by the horizontal line. 
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Figure 4.6: Weekly cumulative headcount 

 

To predict fall 2011 headcount, we noted that the historical patterns of the two 

preceding years follow a similar pattern. Therefore, we assumed that the counts of 

preregistered students after time t would behave similar to the counts of preregistered 

students after time t of the prior year, if all the other factors that affect enrollment remain 

unchanged for the upcoming predicted year (see Figure 4.6). 

 

While the first, 
tw

n , component of Equation 4.13 is known at the time of 

prediction tw, the second component, 
tw

n


, is unknown at the time of prediction tw. 
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Therefore, in order to predict N, we first need to develop a model to predict 
tw

n


. The 

prediction of 
tw

n


will be denoted by ˆ
tw

n


. The framework to predict 
tw

n


 for a particular 

year will be based on modeling past patterns of 
tw

n


. Solving for 
tw

n


in Equations 4.13, 

we obtain the following equation  

 

 
tw

wt
n N n



   . (4.14) 

 

The value of Equation 4.14 can be thought of as the prediction error associated 

with the cumulative headcount of preregistered students, 
tw

n , at time tw as an estimate of 

N.  In general, at each time tw = 0,1, 2, …, 23 there is a corres onding error for 
tw

n .  

 

To illustrate how we model Equation 4.14 for say, the fall 2010 graduate cohort, 

we will model the 
tw

n


patterns for graduates for fall 2009 (see Figure 4.7).  In Figure 4.7, 

we graphed these 23 error values, 
tw

n


, for 2009 then fit a polynomial trend line to fit this 

error pattern. This polynomial model 

 

4 3 2  0.1389  6.5809  93.022  602.1ˆ ( ) ( 4   ) 5354.8
tw

w w w w w wt f t t t tn t


       
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will be used as the estimator, ˆ
tw

n


 , for fall 2010 
tw

n


and is a function with respect to 

time.  Accordingly,  ˆ
tw

n


can be used to predict fall 2010
tw

n


 during any time of the 

prediction period. 

 

 

Figure 4.7: Model of 2009 headcount errors for graduates 

 

Using Equation 4.13, we defined an estimate for N̂  as 

 

 ˆ ˆ
tw

wt
N n n



  . (4.15) 

 

Similar to the idea presented in Figure 4.7, we used the pattern of errors in 2011 

to predict the errors in 2012, ˆ
tw

n


. Table 4.7 illustrates Equation 4.15 for graduate 

f (tw ) = 0.1389x4 - 6.5809x3 + 93.022x2 - 602.14x + 5354.8 

R² = 0.9958 
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students for each preregistration week of 2012. Using this methodology, the predicted 

headcount N̂ is within 2% or better of the actual headcount N 57% of the time.   

 

Table 4.7 

 

Headcount Projection for Fall 2012 Graduate Students 

 

Week 

 

tw 

Sum 

 

wt
n  

Actual 

 

N 

Predicted 

Difference 

ˆ
tw

n


 

Predicted 

Headcount 

N̂  

Off by 

 

N̂ – N 

Off 

by 

% 

0 1053 5697 4686.90 5739.90 42.90 1% 

1 1436 5697 4280.36 5716.36 19.36 0% 

2 1664 5697 3995.84 5659.84 -37.16 -1% 

3 1860 5697 3802.29 5662.29 -34.71 -1% 

4 2085 5697 3671.91 5756.91 59.91 1% 

5 2266 5697 3580.16 5846.16 149.16 3% 

6 2397 5697 3505.81 5902.81 205.81 4% 

7 2484 5697 3430.86 5914.86 217.86 4% 

8 2661 5697 3340.61 6001.61 304.61 5% 

9 2752 5697 3223.61 5975.61 278.61 5% 

10 2847 5697 3071.70 5918.70 221.70 4% 

11 2944 5697 2879.98 5823.98 126.98 2% 

12 3180 5697 2646.83 5826.83 129.83 2% 

13 3474 5697 2373.88 5847.88 150.88 3% 

14 3731 5697 2066.07 5797.07 100.07 2% 

15 4001 5697 1731.56 5732.56 35.56 1% 

16 4526 5697 1381.83 5907.83 210.83 4% 

17 4872 5697 1031.60 5903.60 206.60 4% 

18 5213 5697 698.88 5911.88 214.88 4% 

19 5499 5697 404.93 5903.93 206.93 4% 

20 5551 5697 174.30 5725.30 28.30 0% 
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Week 

 

tw 

Sum 

 

wt
n  

Actual 

 

N 

Predicted 

Difference 

ˆ
tw

n


 

Predicted 

Headcount 

N̂  

Off by 

 

N̂ – N 

Off 

by 

% 

21 5557 5697 34.81 5591.81 -105.19 -2% 

22 5558 5697 17.53 5575.53 -121.47 -2% 

23 5560 5697 156.84 5716.84 19.84 0% 

 

The modeling equations used to predict total headcount in 2011 and 2012 for 

undergraduate and graduate students are shown in Appendix-C. 

 

Finally, multiplying our estimators ̂  and N̂ , we provide the estimate to predict 

total SCH T, by rewriting Equation 4.3 as 

 

 ˆ ˆ ˆ
w wt tT N     (4.16) 

 

where ˆ
wt

T  is the weekly estimate of total SCH, T; ˆ
wt

N  is the weekly estimate of total 

headcount, N; and ̂  is the estimate of the average SCH,  for the year of interest. With 

this approach, we define and alternative equation to find the total SCH, T, in Equation 

1.1. 

 

Table 4.8 below illustrates this alternative approach to predict 2012 graduate 

student total SCH, Equation 4.7, for each week of 2012. Using this methodology, the 

predicted total SCH, T̂  is within 2% or better of the actual SCH, T, 65% of the time.   
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Table 4.8 

 

Projection of Total SCH for Fall 2012 Graduate Students under Model-2 

 

Week ˆ
GN  ˆ

G  ˆ
GT  GT   

Off 
ˆ
G GT T  

Off 

% 

0 5739.90 6.11192 35081.79 35987 905.21 3% 

1 5716.36 6.11192 34937.90 35987 1049.10 3% 

2 5659.84 6.11192 34592.50 35987 1394.50 4% 

3 5662.29 6.11192 34607.46 35987 1379.54 4% 

4 5756.91 6.11192 35185.73 35987 801.27 2% 

5 5846.16 6.11192 35731.26 35987 255.74 1% 

6 5902.81 6.11192 36077.47 35987 -90.47 0% 

7 5914.86 6.11192 36151.12 35987 -164.12 0% 

8 6001.61 6.11192 36681.31 35987 -694.31 -2% 

9 5975.61 6.11192 36522.43 35987 -535.43 -1% 

10 5918.70 6.11192 36174.60 35987 -187.60 -1% 

11 5823.98 6.11192 35595.69 35987 391.31 1% 

12 5826.83 6.11192 35613.09 35987 373.91 1% 

13 5847.88 6.11192 35741.78 35987 245.22 1% 

14 5797.07 6.11192 35431.19 35987 555.81 2% 

15 5732.56 6.11192 35036.95 35987 950.05 3% 

16 5907.83 6.11192 36108.17 35987 -121.17 0% 

17 5903.60 6.11192 36082.33 35987 -95.33 0% 

18 5911.88 6.11192 36132.90 35987 -145.90 0% 

19 5903.93 6.11192 36084.32 35987 -97.32 0% 

20 5725.30 6.11192 34992.56 35987 994.44 3% 

21 5591.81 6.11192 34176.65 35987 1810.35 5% 

22 5575.53 6.11192 34077.19 35987 1909.81 5% 

23 5716.84 6.11192 34940.83 35987 1046.17 3% 
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The projections for undergraduate students for each preregistration week of 2011 

and 2012, as well as the projections for graduate students for each preregistration week of 

2011, can be found in Appendix-D.   
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CHAPTER V 

RESULTS AND FUTURE RESEARCH 

 

In this research, we developed two modeling approaches to predict total SCH, T, 

in Equation 1.1. These modeling approaches were used to predict total SCH by 

undergraduates and graduate stratification.  In Chapter-3, we illustrated the predictive 

accuracy of Model-1, whereas in Chapter-4 we illustrated the predictive accuracy of 

Model-2.  In both Chapter-3 and Chapter-4, however, we only illustrated the predictive 

accuracy using the respective models on the graduate student cohort.  In this chapter, we 

will extend this discussion by comparing the predictive accuracy of the two modeling 

approaches we developed for both the undergraduate and graduate strata.  In addition, we 

will discuss the strengths and weaknesses of using each modeling approach.  Finally, we 

will discuss future research regarding the development of alternative modeling techniques 

for predicting total SCH, T.   

 

One of the major contributions of this research is the development of two 

modeling approaches to predict total SCH by relying on parallel patterns of cumulative 

preregistration data. Using preregistration data for both modeling approaches provides a 

viable approach to predict total SCH, since this type of data should be readily available to 

all institutions of higher education.   This is in contrast to the University of Baltimore’s 
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SCH model; their model relied on enrollment projections from MHEC, a source not 

available to institutions outside of Maryland.    

 

An advantage of using the Model-1 approach to predict total SCH, is that it only 

requires using one year of historical data, although you can certainly use multiple years 

of data, in order to predict total SCH. In addition, the Model-1 approach relies solely on 

using a simple pattern of the following points  , wt
wt T  , over weekly periods of time, 

with the fixed historical value of T. 

 

The model developed in Chapter-4, Model-2, relies on estimating the average 

SCH, µ, and total headcount, N, to predict T. The model to predict total headcount relied 

on using a simple error technique, developed for Model-1, but on cumulative parallel 

patterns of preregistered headcount instead of cumulative parallel patterns of SCH.  In 

addition, Model-2 relied on modeling historical average SCH patterns over multiple 

years.  In our research, we used three years of data for the projection of the average SCH 

due to the limited number of years of data that we had available at the start of this 

research.  Modeling historical patterns of µ over a longer period may add more accuracy 

to this prediction method.  Another major contribution of this research, is the inclusion of 

a decision making process to select a predictive model for the average SCH, which was 

not addressed in the modeling approach by the University of Baltimore.  
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To compare the predictive accuracy of the two modeling approaches presented in 

Chapter-3 and Chapter-4, we will look at the deviation of the weekly predicted total SCH,

T̂ , with the actual total SCH, T, over the 23 weeks period.  Using notation from 

Equations 3.5 and 4.16 this deviation is defined as  

 

 ˆ
w tw

tdev T T   for 1 2 23, , ,t t t . 

 

In addition, we are interested in the weekly percent deviation which is defined as  

 

% 100%w

w

t

t

dev
dev

T

 
  
 

. 

 

To judge the models predictive accuracy we will compare the following two 

statistics: 

 

 

23

1

23

wt

w

dev

dev

 


. Equation Chapter 5 Section 1(5.1) 

and  

 

23

1

%

%

23

wt

w

dev

dev

 


  (5.2) 

 

Using Equations 5.1 and 5.2, Tables 5.1 and 5.2 show the comparative predictive 

results of each modeling approach on undergraduates and graduates total SCH for fall 

2011 and fall 2012. In general Model-2 outperforms Model-1 in predicting total SCH for 
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each stratum. Yet, we can see that both models are within 4.5% of the actual total SCH 

for each year of prediction and corresponding cohort. To put the predictive accuracy of 

these models in perspective, we will focus on the greatest value of 
dev

  for 2012 

undergraduates, which is 4791.28. This means that on average the SCH weekly 

predictions for 2012 were 4791.28 hours off from the actual total SCH for 2012 

undergraduates; this is equivalent to about 400 full-time equivalent (FTE) students, 

assuming 12 SCH for a full-time undergraduate. Although this model was our most 

inaccurate, it was only off on average 4.38% SCH, as defined by Equation 5.2, from the 

actual total SCH over the 23 week prediction period. However, over the two year 

prediction of total undergraduate SCH our most accurate prediction, by Model-2, was 

only off on average 1.55% SCH from the actual total SCH over the 23 week prediction 

period.  

 

Table 5.1 

Comparison of the Results of Model-1 and Model-2 for Undergraduates 

 
2011 2012 

dev
   %dev

   dev
  %dev

  

Model 1 2041.32 1.95% 4791.28 4.38% 

Model 2 1621.26 1.55% 3425.23 3.13% 

 

 

 



 

57 

 

Table 5.2 

Comparison of the Results of Model-1 and Model-2 for Graduates 

 
2011 2012 

dev
   %dev

   dev
  %dev

  

Model 1 1474.69 4.06% 723.78 2.01% 

Model 2 851.44 2.35% 674.75 1.87% 

 

The actual value of interest is a prediction of total SCH,T in Equation 1.1, which 

requires a combination of the predictions by stratum.  Therefore we rewrite Equation 1.5 

as 

 

 ˆ ˆ ˆ
U GT T T    (5.3) 

 

In Table 5.3 below, we show how far off Equation 5.3 is from the actual total 

SCH, T, for each modeling approach using Equations 5.1 and 5.2. 

 

Table 5.3 

Comparison of the Results of Model-1 and Model-2 for the Total Population 

 
2011 2012 

dev
   %dev

   dev
  %dev

  

Model 1 2765.32 1.96% 4926.29 3.39% 

Model 2 1614.44 1.14% 3665.14 2.52% 
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Table 5.3 shows the comparative predictive results of each modeling approach on 

the total population, combining undergraduates and graduates total SCH, for fall 2011 

and fall 2012.  Both modeling approaches predict fairly accurately and over a two year 

period, no model prediction is off by more than 3.5%.   In general Model-2 outperforms 

Model-1 in predicting total SCH.   

 

We are also interested in whether the prediction method has a tendency to over 

predict versus under predict total SCH, T.  Assuming that Equation 5.1 and 5.2 are low 

for each modeling method, then we would likely favor the method that has a tendency to 

under predict.  The following indicator function allows us to determine if a method under 

predicts. 

 

 
wt

f dev  =  
               

                   
                 

 
 

 

Thus, to determine the number of times a method undercounts during the 23 week 

period we use the following sum 

 

  
23

0
wt

w

undercounts f dev


   (5.4) 
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Table 5.4 

Undercounts of Model-1 and Model-2 

 
Undergraduates Graduates 

2011 2012 2011 2012 

Model 1 9 17 3 9 

Model 2 16 15 13 15 

 

Table 5.4 above illustrates Equation 5.4 for undergraduates and graduates for each 

of the predicted years. As we can observe, Model-2 has a higher tendency to under 

predict in every example, which would make it the most conservative model as well as 

the most accurate. 

 

To see the details of the weekly projections of total SCH over a 23 week period 

for fall 2011 graduate, 2011 undergraduate, and 2012 undergraduate students  see 

Appendix A (projections under Model-1) and Appendix C (projections under Model-2). 

 

Future Research 

 

We noticed that the University of Baltimore developed the concept of a weighted 

average SCH but did not use it in their projections of total SCH. One of the differences 

between the model that the University of Baltimore developed and our own version of 

this approach, is that we used a regular average of SCH, instead of a weighted average 

SCH. In the following discussion, we will develop a notation for this kind of weighted 
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average SCH and introduce an implicit application of a weighted average SCH for 

predicting a weighted average SCH that can be developed in future research. 

 

Let µ represent the weighted average SCH of the total number of students. To 

calculate µ, we started by gathering observed data. Let x represent the sum of the SCH 

each student completed in a particular semester. For example, suppose student A took a 

three-hour course, a one-hour course, and a four-hour course, then for student A, x = 8.  

However, another student, student B, may only take a one-hour course in a particular 

semester so x = 1 for student B.  In our exploratory analysis, we found that x = 1, 2… 24. 

Thus, we define the sample space of x, the set of all possible values for x, as Sx = {1, 2, 

…, 24}. In other words, for any semester of interest, you can find a student whose course 

load is anywhere from 1 to 24 SCH.  In the discussion that follows, we will develop 

notation to represent the number of students in a semester that take 1 to 24 SCH in a 

semester.   

 

Let cx represent the number of students taking x amount of SCH for a particular 

semester of interest. Table 5.5 illustrates the x and cx values for fall 2009. As can be seen 

in Table 5.5, these values of x and cx, are stratified by undergraduates (U) and graduate 

students (G) since the enrollment patterns of these two strata differ. Using our notation, c1 

= 17 under the cx column for undergraduates, indicates there were 17 undergraduate 
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students who earned 1 SCH in the fall of 2009. The total number of students for each level 

in 2009 were NU = 7,825, and NG = 5,497 for graduate students.  

 

Table 5.5 

Counts and Weights for Each Number of SCH (x) for Undergraduate Students 

Number of 

SCH (x) 

cx for 2009 

Undergraduates 

dx for 2009 

Undergraduates 

cx for 2010 

Undergraduates 

dx for 2010 

Undergraduates 

0 0 0.00000 6 0.00071 

1 17 0.00217 13 0.00153 

2 10 0.00128 6 0.00071 

3 357 0.04562 373 0.04399 

4 109 0.01393 115 0.01356 

5 33 0.00422 21 0.00248 

6 673 0.08601 716 0.08444 

7 217 0.02773 206 0.02430 

8 110 0.01406 125 0.01474 

9 578 0.07387 636 0.07501 

10 251 0.03208 289 0.03408 

11 143 0.01827 164 0.01934 

12 1672 0.21367 1822 0.21488 

13 1187 0.15169 1381 0.16287 

14 661 0.08447 779 0.09187 

15 918 0.11732 978 0.11534 

16 511 0.06530 506 0.05968 

17 183 0.02339 161 0.01899 

18 143 0.01827 134 0.01580 

19 48 0.00613 42 0.00495 

20 2 0.00026 4 0.00047 

21 0 0.00000 2 0.00024 

22 1 0.00013 0 0.00000 

23 1 0.00013 0 0.00000 

Total NU =7825 

 
NU =8479 

  

Let xd represent the weight of each x which is defined as 
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   x
x

c
d

N
   (5.5) 

where 0 ≤ xd ≤ 1 and  

 
1

x

x

x S

d



. 

 

Equation 5.5 can be thought of as the probability of a student taking x SCH. For 

example, for an undergraduate taking 12 hours in fall 2009, Equation 3.8 becomes

12
12

1672
  0.21

7825U

c
d

N
   . Thus, if you randomly select an undergraduate from fall 2009, 

the probability they would take 12 SCH is 0.22 (or 22%).  

 

Figures 5.1 and 5.2 below show the distribution of dx for 2009 and 2010 

respectively from Table 5.5.  

 

 

Figure 5.1: Distribution of dx for 2009 undergraduates 
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Figure 5.2: Distribution of dx for 2010 undergraduates 

 

The weight calculations for each number of SCH (x), for 2009 and 2010 graduate students 

can be found in Appendix-E. 

 

Using Equation 5.5, we can rewrite Equation 4.1 as 

 

 
24

1

   x

x

x d


  . (5.6) 

 

Equation 5.6 represents the weighted average of the random variable x where the 

weight of each x is represented by dx. Below, we illustrate formula 5.6 for the 

undergraduate group in Table 5.5 as 
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Thus, the observed average semester credit hour taken by undergraduates in fall 

2009 was 11.605 hours.   

 

Figure 5.1 and Figure 5.2 show that the distributions of semester credit hours are 

consistent from one year to the next.  Given this consistency we can use this probability 

distribution of X, represented by the patterns of dx, to formulate an alternative approach to 

predict µ by using the observed sample mean, X , during the weekly prediction period.  

From the Central Limit Theorem we know that the sampling distribution of the sample 

mean is centered at the  of interest.  This means that the weekly sample mean values we 

observe, can be used to make an inference about . 
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APPENDIX A 

Total SCH Calculations under Model-1 
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Total SCH Calculation under Model-1 

 

 
 

Figure A.1: Model of 2010 SCH for undergraduate students 

 

Figure A.2: Model of 2011 SCH errors for undergraduate students 
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Figure A.3: Model of 2010 SCH errors for graduate students 

 

 

Figure A.4: Model of 2011 SCH errors for graduate students 
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Table A.1 

 

Total SCH for Undergraduate Students for Each Week of 2011 

 

Week 

Sum 
wt

T  

Predicted Diff 

ˆ wt
T   

Predicted 

T̂  

Actual 

T  

Off 

T̂  – T  
off% 

0 4558 100694.00 105252.00 104857 395.00 0% 

1 33024 74573.03 107597.03 104857 2740.03 3% 

2 57416 54539.13 111955.13 104857 7098.13 7% 

3 73911 39445.13 113356.13 104857 8499.13 8% 

4 82941 28252.21 111193.21 104857 6336.21 6% 

5 87311 20029.94 107340.94 104857 2483.94 2% 

6 90774 13956.25 104730.25 104857 -126.75 0% 

7 93206 9317.45 102523.45 104857 -2333.55 -2% 

8 97306 5508.21 102814.21 104857 -2042.79 -2% 

9 101689 2031.59 103720.59 104857 -1136.41 -1% 

10 107627 -1501.00 106126.00 104857 1269.00 1% 

11 110031 -5369.75 104661.25 104857 -195.75 0% 

12 113315 -9746.51 103568.49 104857 -1288.51 -1% 

13 119789 -14694.73 105094.27 104857 237.27 0% 

14 126669 -20169.51 106499.49 104857 1642.49 2% 

15 129222 -26017.56 103204.44 104857 -1652.56 -2% 

16 140233 -31977.23 108255.77 104857 3398.77 3% 

17 142891 -37678.49 105212.51 104857 355.51 0% 

18 147238 -42642.95 104595.05 104857 -261.95 0% 

19 151300 -46283.83 105016.17 104857 159.17 0% 

20 152632 -47906.00 104726.00 104857 -131.00 0% 

21 152688 -46705.93 105982.07 104857 1125.07 1% 
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Table A.2 

 

Total SCH for Undergraduate Students for Each Week of 2012 

 

Week 

Sum 
wt

T  

Predicted Diff 

ˆ wt
T   

Predicted 

T̂  

Actual 

T  

Off 

T̂  – T  
off% 

0 5056 98701.00 103757.00 109487 -5730.00 -5% 

1 19492 70629.65 90121.65 109487 -19365.35 -18% 

2 44337 49732.08 94069.08 109487 -15417.92 -14% 

3 61594 34591.17 96185.17 109487 -13301.83 -12% 

4 81967 23927.40 105894.40 109487 -3592.60 -3% 

5 87806 16598.81 104404.81 109487 -5082.19 -5% 

6 91745 11601.04 103346.04 109487 -6140.96 -6% 

7 94176.34 8067.29 102243.63 109487 -7243.37 -7% 

8 99734.34 5268.36 105002.70 109487 -4484.30 -4% 

9 106785.34 2612.61 109397.95 109487 -89.05 0% 

10 113431.34 -354.00 113077.34 109487 3590.34 3% 

11 115530.34 -3947.95 111582.39 109487 2095.39 2% 

12 118190.34 -8348.12 109842.22 109487 355.22 0% 

13 120925.34 -13595.83 107329.51 109487 -2157.49 -2% 

14 131345.34 -19594.80 111750.54 109487 2263.54 2% 

15 135426.34 -26111.19 109315.15 109487 -171.85 0% 

16 142939.34 -32773.56 110165.78 109487 678.78 1% 

17 146285.34 -39072.91 107212.43 109487 -2274.57 -2% 

18 149979.34 -44362.64 105616.70 109487 -3870.30 -4% 

19 154039.34 -47858.59 106180.75 109487 -3306.25 -3% 

20 154525.34 -48639.00 105886.34 109487 -3600.66 -3% 

21 154535.34 -45644.55 108890.79 109487 -596.21 -1% 
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Table A.3 

 

Total SCH for Graduate Students for Each Week of 2011 

 

Week 

Sum 
wt

T  

Predicted Diff 

ˆ wt
T   

Predicted 

T̂  

Actual 

T  

Off 

T̂  – T  
off% 

0 10274 36296 29281.00 39555.00 3259.00 9% 

1 12666 36296 25538.32 38204.32 1908.32 5% 

2 14534 36296 22919.52 37453.52 1157.52 3% 

3 15864 36296 21141.64 37005.64 709.64 2% 

4 17487 36296 19951.48 37438.48 1142.48 3% 

5 18988 36296 19125.69 38113.69 1817.69 5% 

6 20312 36296 18470.68 38782.68 2486.68 7% 

7 21117 36296 17822.67 38939.67 2643.67 7% 

8 22031 36296 17047.71 39078.71 2782.71 8% 

9 22793 36296 16041.61 38834.61 2538.61 7% 

10 23582 36296 14730.00 38312.00 2016.00 6% 

11 24715 36296 13068.32 37783.32 1487.32 4% 

12 26160 36296 11041.79 37201.79 905.79 2% 

13 28823 36296 8665.44 37488.44 1192.44 3% 

14 31127 36296 5984.12 37111.12 815.12 2% 

15 33522 36296 3072.44 36594.44 298.44 1% 

16 37273 36296 34.84 37307.84 1011.84 3% 

17 40578 36296 -2994.43 37583.57 1287.57 4% 

18 43049 36296 -5851.36 37197.64 901.64 2% 

19 45577 36296 -8342.09 37234.91 938.91 3% 

20 46277 36296 -10243.00 36034.00 -262.00 -1% 

21 46379 36296 -11300.65 35078.35 -1217.65 -3% 

22 46391 36296 -11231.79 35159.21 -1136.79 -3% 

 

  



 

75 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 

Details of the Criterion to Select a Model  

to Predict the Average SCH 
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Details of the Criterion to Select a Model to Predict the Average SCH 

 

1. Undergraduate 2008-2010 pattern 
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2. Undergraduate 2009-2011 pattern 
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3. Graduate 2008-2010 pattern 
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4. Graduate 2009-2011 pattern 
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APPENDIX C 

Total Headcount Projections for 2011 and 2012 

  



 

79 

 

Total Headcount Projections for 2011 and 2012 

 

 

Figure C.1: Model of errors in 2010 to predict errors in 2011 for undergraduates 

 

 

Figure C.2: Model of errors in 2011 to predict errors in 2012 for undergraduates 
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Figure C.3: Model of errors in 2010 to predict errors in 2011 for graduates 

 

 

Figure C.4: Model of errors in 2011 to predict errors in 2012 for graduates 
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Table C.1 

Headcount Projection for Fall 2011 Undergraduate Students 

Week 

 

tw 

Sum 

 

wt
n  

Actual 

 

N 

Predicted 

Difference 

ˆ
tw

n


 

Predicted 

Headcount 

N̂  

Off by 

 

N̂ – N 

Off by 

% 

0 251 9010 8539.90 8790.90 -219.10 -2% 

1 2017 9010 7093.50 9110.50 100.50 1% 

2 3316 9010 5975.70 9291.70 281.70 3% 

3 4247 9010 5125.03 9372.03 362.03 4% 

4 4798 9010 4485.67 9283.67 273.67 3% 

5 5067 9010 4007.46 9074.46 64.46 1% 

6 5284 9010 3645.87 8929.87 -80.13 -1% 

7 5445 9010 3362.03 8807.03 -202.97 -2% 

8 5718 9010 3122.70 8840.70 -169.30 -2% 

9 5980 9010 2900.30 8880.30 -129.70 -1% 

10 6341 9010 2672.90 9013.90 3.90 0% 

11 6510 9010 2424.21 8934.21 -75.79 -1% 

12 6740 9010 2143.59 8883.59 -126.41 -1% 

13 7166 9010 1826.05 8992.05 -17.95 0% 

14 7625 9010 1472.24 9097.24 87.24 1% 

15 7820 9010 1088.46 8908.46 -101.54 -1% 

16 8569 9010 686.66 9255.66 245.66 3% 

17 8791 9010 284.44 9075.44 65.44 1% 

18 9254 9010 -94.96 9159.04 149.04 2% 

19 9616 9010 -422.65 9193.35 183.35 2% 

20 9746 9010 -664.10 9081.90 71.90 1% 

21 9753 9010 -779.12 8973.88 -36.12 0% 

22 9754 9010 -721.87 9032.13 22.13 0% 
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Table C.2 

Headcount Projection for Fall 2012 Undergraduate Students 

Week 

 

tw 

Sum 

 

wt
n  

Actual 

 

N 

Predicted 

Difference 

ˆ
tw

n


 

Predicted 

Headcount 

N̂  

Off by 

 

N̂ – N 

Off by 

% 

0 289 9443 8616.40 8905.40 -537.60 -6% 

1 1279 9443 7013.81 8292.81 -1150.19 -12% 

2 2725 9443 5815.88 8540.88 -902.12 -10% 

3 3736 9443 4942.60 8678.60 -764.40 -8% 

4 4920 9443 4321.59 9241.59 -201.41 -2% 

5 5288 9443 3888.09 9176.09 -266.91 -3% 

6 5543 9443 3584.96 9127.96 -315.04 -3% 

7 5709 9443 3362.70 9071.70 -371.30 -4% 

8 6068 9443 3179.43 9247.43 -195.57 -2% 

9 6503 9443 3000.87 9503.87 60.87 1% 

10 6938 9443 2800.40 9738.40 295.40 3% 

11 7096 9443 2559.00 9655.00 212.00 2% 

12 7284 9443 2265.30 9549.30 106.30 1% 

13 7493 9443 1915.52 9408.52 -34.48 0% 

14 8176 9443 1513.54 9689.54 246.54 3% 

15 8476 9443 1070.84 9546.84 103.84 1% 

16 9033 9443 606.53 9639.53 196.53 2% 

17 9304 9443 147.36 9451.36 8.36 0% 

18 9710 9443 -272.32 9437.68 -5.32 0% 

19 10070 9443 -610.51 9459.49 16.49 0% 

20 10126 9443 -817.60 9308.40 -134.60 -1% 

21 10128 9443 -836.36 9291.64 -151.36 -2% 

22 10128 9443 -601.92 9526.08 83.08 1% 

23 10128 9443 -41.79 10086.21 643.21 7% 
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Table C.3 

Headcount Projection for Fall 2011 Graduate Students 

Week 

 

tw 

Sum 

 

wt
n  

Actual 

 

N 

Predicted 

Difference 

ˆ
tw

n


 

Predicted 

Headcount 

N̂  

Off by 

 

N̂ – N 

Off by 

% 

Week 

 

tw 

0 1132 5708 4576 4924.30 6056.30 348.30 6% 

1 1414 5708 4294 4479.16 5893.16 185.16 3% 

2 1633 5708 4075 4170.28 5803.28 95.28 2% 

3 1775 5708 3933 3962.98 5737.98 29.98 1% 

4 1955 5708 3753 3826.21 5781.21 73.21 1% 

5 2126 5708 3582 3732.56 5858.56 150.56 3% 

6 2267 5708 3441 3658.27 5925.27 217.27 4% 

7 2365 5708 3343 3583.20 5948.20 240.20 4% 

8 2490 5708 3218 3490.86 5980.86 272.86 5% 

9 2590 5708 3118 3368.40 5958.40 250.40 4% 

10 2683 5708 3025 3206.60 5889.60 181.60 3% 

11 2802 5708 2906 2999.89 5801.89 93.89 2% 

12 2978 5708 2730 2746.32 5724.32 16.32 0% 

13 3269 5708 2439 2447.60 5716.60 8.60 0% 

14 3539 5708 2169 2109.06 5648.06 -59.94 -1% 

15 3831 5708 1877 1739.69 5570.69 -137.31 -2% 

16 4310 5708 1398 1352.09 5662.09 -45.91 -1% 

17 4724 5708 984 962.52 5686.52 -21.48 0% 

18 5065 5708 643 590.87 5655.87 -52.13 -1% 

19 5441 5708 267 260.68 5701.68 -6.32 0% 

20 5600 5708 108 -0.90 5599.10 -108.90 -2% 

21 5616 5708 92 -163.05 5452.95 -255.05 -4% 

22 5618 5708 90 -191.32 5426.68 -281.32 -5% 
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APPENDIX D 

Total SCH Projections for 2011 and 2012 

under Model-2 
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Total SCH Projections for 2011 and 2012 under Model-2 

 

Table D.1 

 

Total SCH for Undergraduate Students for each Preregistration Week of 2011 

Week N̂  ̂  T̂  T Off 

T̂  – T  

Off 

% 

0 8790.90 11.52476 101313.04 104857 3543.96 3% 

1 9110.50 11.52476 104996.34 104857 -139.34 0% 

2 9291.70 11.52476 107084.60 104857 -2227.60 -2% 

3 9372.03 11.52476 108010.39 104857 -3153.39 -3% 

4 9283.67 11.52476 106992.13 104857 -2135.13 -2% 

5 9074.46 11.52476 104581.03 104857 275.97 0% 

6 8929.87 11.52476 102914.67 104857 1942.33 2% 

7 8807.03 11.52476 101498.90 104857 3358.10 3% 

8 8840.70 11.52476 101886.93 104857 2970.07 3% 

9 8880.30 11.52476 102343.34 104857 2513.66 2% 

10 9013.90 11.52476 103883.06 104857 973.94 1% 

11 8934.21 11.52476 102964.67 104857 1892.33 2% 

12 8883.59 11.52476 102381.30 104857 2475.70 2% 

13 8992.05 11.52476 103631.26 104857 1225.74 1% 

14 9097.24 11.52476 104843.54 104857 13.46 0% 

15 8908.46 11.52476 102667.92 104857 2189.08 2% 

16 9255.66 11.52476 106669.34 104857 -1812.34 -2% 

17 9075.44 11.52476 104592.33 104857 264.67 0% 

18 9159.04 11.52476 105555.77 104857 -698.77 -1% 

19 9193.35 11.52476 105951.15 104857 -1094.15 -1% 

20 9081.90 11.52476 104666.74 104857 190.26 0% 

21 8973.88 11.52476 103421.88 104857 1435.12 1% 

22 9032.13 11.52476 104093.14 104857 763.86 1% 
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Table D.2  

 

Total SCH for Undergraduate Students for each Preregistration Week of 2012 

Week N̂  ̂  T̂  T 
Off 

T̂  – T  

Off 

% 

0 8905.40 11.56260 102969.57 109487 6517.43 6% 

1 8292.81 11.56260 95886.40 109487 13600.60 12% 

2 8540.88 11.56260 98754.72 109487 10732.28 10% 

3 8678.60 11.56260 100347.14 109487 9139.86 8% 

4 9241.59 11.56260 106856.77 109487 2630.23 2% 

5 9176.09 11.56260 106099.43 109487 3387.57 3% 

6 9127.96 11.56260 105542.98 109487 3944.02 4% 

7 9071.70 11.56260 104892.49 109487 4594.51 4% 

8 9247.43 11.56260 106924.30 109487 2562.70 2% 

9 9503.87 11.56260 109889.45 109487 -402.45 0% 

10 9738.40 11.56260 112601.22 109487 -3114.22 -3% 

11 9655.00 11.56260 111636.95 109487 -2149.95 -2% 

12 9549.30 11.56260 110414.72 109487 -927.72 -1% 

13 9408.52 11.56260 108786.98 109487 700.02 1% 

14 9689.54 11.56260 112036.26 109487 -2549.26 -2% 

15 9546.84 11.56260 110386.26 109487 -899.26 -1% 

16 9639.53 11.56260 111458.04 109487 -1971.04 -2% 

17 9451.36 11.56260 109282.28 109487 204.72 0% 

18 9437.68 11.56260 109124.15 109487 362.85 0% 

19 9459.49 11.56260 109376.33 109487 110.67 0% 

20 9308.40 11.56260 107629.30 109487 1857.70 2% 

21 9291.64 11.56260 107435.54 109487 2051.46 2% 

22 9526.08 11.56260 110146.29 109487 -659.29 -1% 

23 10086.21 11.56260 116622.79 109487 -7135.79 -7% 
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Table D.3 

 

Total SCH for Graduate Students for each Preregistration Week of 2011 

Week N̂  
̂  T̂  T 

Off 

T̂ T  

Off 

% 

0 6056.30 6.26780 37959.65 36296 -1663.65 -5% 

1 5893.16 6.26780 36937.13 36296 -641.13 -2% 

2 5803.28 6.26780 36373.79 36296 -77.79 0% 

3 5737.98 6.26780 35964.50 36296 331.50 1% 

4 5781.21 6.26780 36235.45 36296 60.55 0% 

5 5858.56 6.26780 36720.27 36296 -424.27 -1% 

6 5925.27 6.26780 37138.37 36296 -842.37 -2% 

7 5948.20 6.26780 37282.09 36296 -986.09 -3% 

8 5980.86 6.26780 37486.81 36296 -1190.81 -3% 

9 5958.40 6.26780 37346.03 36296 -1050.03 -3% 

10 5889.60 6.26780 36914.81 36296 -618.81 -2% 

11 5801.89 6.26780 36365.04 36296 -69.04 0% 

12 5724.32 6.26780 35878.86 36296 417.14 1% 

13 5716.60 6.26780 35830.47 36296 465.53 1% 

14 5648.06 6.26780 35400.90 36296 895.10 2% 

15 5570.69 6.26780 34915.93 36296 1380.07 4% 

16 5662.09 6.26780 35488.82 36296 807.18 2% 

17 5686.52 6.26780 35641.94 36296 654.06 2% 

18 5655.87 6.26780 35449.85 36296 846.15 2% 

19 5701.68 6.26780 35736.94 36296 559.06 2% 

20 5599.10 6.26780 35094.01 36296 1201.99 3% 

21 5452.95 6.26780 34177.98 36296 2118.02 6% 

22 5426.68 6.26780 34013.29 36296 2282.71 6% 

 

 

  



 

88 

 

 

 

 

 

 

 

 

 

 

APPENDIX E 

Weight Calculations for x Number of SCH for Graduate Students 
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Weight Calculations for x Number of SCH for Graduate Students 

Table E.1 

 

Counts and Weights for Each Number of SCH (x) for Graduate Students 

 

Number of 

SCH (x) 

cx for 2009 

Graduates 

dx for 2009 

Graduates 

cx for 2010 

Graduates 

dx for 2010 

Graduates 

0 1 0.00018 5 0.00088 

1 18 0.00327 38 0.00667 

2 13 0.00236 17 0.00298 

3 1367 0.24868 1951 0.34252 

4 93 0.01692 86 0.01510 

5 65 0.01182 84 0.01475 

6 1563 0.28434 1547 0.27159 

7 151 0.02747 221 0.03880 

8 107 0.01947 126 0.02212 

9 1253 0.22794 737 0.12939 

10 136 0.02474 167 0.02932 

11 89 0.01619 111 0.01949 

12 278 0.05057 247 0.04336 

13 43 0.00782 40 0.00702 

14 171 0.03111 163 0.02862 

15 126 0.02292 109 0.01914 

16 6 0.00109 34 0.00597 

17 13 0.00236 10 0.00176 

18 2 0.00036 3 0.00053 

19 0 0.00000 0 0.00000 

20 2 0.00036 0 0.00000 

21 0 0.00000 0 0.00000 

22 0 0.00000 0 0.00000 

23 0 0.00000 0 0.00000 

Total NU =5497   NU =5696   
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Figure E.1: Distribution of dx for 2009 graduates 

 

 

Figure E.2: Distribution of dx for 2010 graduates 
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