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Abstract 

 

Background: New methods to identify bladder cancer progression are required. Gene-

expression microarrays can reveal insights into disease biology and identify novel 

biomarkers. However, these experiments produce large datasets that are hard to interpret.  

 

Objective: To develop a novel method of microarray analysis combining two forms of 

artificial intelligence (AI): NeuroFuzzy Modeling (NFM) and Artificial Neural Networks 

(ANN). To validate this in a bladder cancer cohort. 

 

Design, Setting, and Participants: We used AI and statistical analyses to identify 

progression-related genes in a microarray dataset (n=66 tumors, n=2,800 genes). The AI-

selected genes were then investigated in a second cohort (n=262 tumors) using 

immunohistochemistry. 

 

Measurements: We compared the accuracy of AI and statistical approaches to identify 

tumor progression. 

 

Results and limitations: AI identified 11 progression-associated genes (OR=0.70 (95% 

CI=0.56-0.87) p=0.0004) and these were more discriminate than genes chosen using 

statistical analyses (OR=1.24 (95% CI=0.96-1.60) p=0.09). The expression of 6 AI-

selected genes (LIG3, Fas, KRT18, ICAM1, DSG2 and BRCA2) was determined using 

commercial antibodies and successfully identified tumor progression (Concordance 
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Index=0.66, Logrank p=0.01). AI-selected genes were more discriminate than 

pathological criteria at determining progression (Cox multivariate analysis p=0.01). 

Limitations include the use of statistical correlation to identify 200 genes for AI analysis 

and that we did not compare regression identified genes with immunohistochemistry.  

 

Conclusions: AI and statistical analyses use different techniques of inference to 

determine gene-phenotype associations and identify distinct prognostic gene signatures 

that are equally valid. We have identified a prognostic gene signature, whose members 

reflect a variety of carcinogenic pathways, which could identify progression in non-

muscle invasive bladder cancers. 
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Introduction 

The care of patients with Urothelial Carcinoma of the bladder (UCC) could be 

significantly improved if their tumor behavior was accurately identified at diagnosis. 

Patients with non-progressive superficial disease could be spared endoscopic surveillance 

and BCG immunotherapy, whilst those at high progression risk could opt for early 

cystectomy. For invasive tumors the use of systemic chemotherapy could be rationalized 

to cases with highest progression risk. Tumor behavior can be hard to determine from 

histopathology alone. For example, the progression risk for non-muscle UCC varies 

between <1% and >50% [1, 2]. Furthermore, as stage and grade are often linked, when 

one is fixed (e.g. stage) the other performs poorly (e.g. grade) at identifying tumor 

progression. It is hoped that molecular knowledge will reveal an understanding of tumor 

biology that allows accurate phenotype identification.  

 

As current biomarkers are insufficiently robust for clinical practice, microarrays have 

been used to identify new candidates [3] [4]. Microarray experiments reveal great 

insights into tumor biology but the cost and magnitude of these experiments prohibit 

large sample size analyses. Thus, microarray datasets have high dimensionality (large 

imbalance between gene number and sample size) that leads to analytical difficulties [5] 

[6] [7]. Successful analysis requires the identification of genes related to tumor-class and 

the removal of non-contributing variables. Poor analysis leads to data over-fitting and 

irreproducible results [5]. Traditional analytical techniques, such as hierarchical 

clustering, assume biological linearity and use statistical proximity to infer class-gene 

relationships (so  called  ‘feature selection’). They perform poorly in datasets 
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contaminated with variable noise. Artificial intelligence (AI) is a machine learning 

approach without these prerequisites. Various AI techniques exist [8] and successful 

microarray analysis has been reported using artificial neural networks (ANN) [9] [10] and 

support vector machines (SVMs) [11, 12] in non-urothelial malignancies. However, the 

hidden working layer of an ANN prevents model understanding and hinders its 

acceptance by the scientific community [13], whilst SVMs still use proximity to infer 

class-gene associations and function poorly with respect to interpretability [14]. 

 

An alternative form of AI is the neurofuzzy model (NFM). This has a similar design to an 

ANN, but uses a transparent fuzzy logic internal structure [8]. This transparency allows 

model understanding, parameter interrogation and can facilitate the inclusion of priori 

qualitative knowledge. When used to identify tumor progression we have previously 

found that NFM is accurate, reproducible and appears superior to regression based 

classifications [15, 16]. We hypothesized that NFM could improve microarray analysis 

and identify prognostic gene panels that could accurately predict the behavior of UCC. 

To test this hypothesis we examined a previously reported non-muscle invasive UCC 

microarray dataset to find genes associated with progression to invasion. Genes 

associated with progression were then tested in a new larger UCC cohort using 

immunohistochemistry. 
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Materials and methods 

Patients and Tumors 

We studied two patient populations (Table 1). For microarray analysis we used 66 tumors 

from 34 patients, treated at the Ludwig Maximilian University, Germany (detailed in 

[17]). Progression to muscle invasion occurred in 10/34 patients (29%) and the median 

follow up was 43 months. For immunohistochemical analysis we studied 262 tumors 

from separate consecutive patients treated at the University of Regensburg, Germany. We 

created a tissue microarray (TMA) using paraffin embedded formalin fixed tissues with 2 

cores per cases (1.2mm) [18]. Progression information was available for 182/262 (69.5%) 

patients and muscle invasion or new metastases occurred in 49 patients (26.9%). The 

median follow up was 89 months (range 2-154). No patients were in both UCC 

populations. Normal urothelium from patients with benign prostatic hyperplasia (n=20) 

and co-existing UCC (n=15) was also analyzed. Institutional review board approval was 

obtained from both institutions prior to study commencement. 

 

RNA Extraction and Gene Expression Microarray Analysis 

The microarray (metg001A) contained 2,800 genes (6,117 probesets) annotated by the 

GoldenPath assembly. The microarray experiments and data processing are reported in 

detail elsewhere [17]. 

  

Artificial Intelligence F eature Selection  

To analyze the microarray data we used a ‘Committee  of  models’  approach that 

assimilated findings from each individual AI model (Figure 1), as we wanted to 
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determine gene-progression relationships that were not dependent upon one AI structure. 

We initially performed a dimension reduction using Pearson’s coefficient to identify the 

200 genes most associated with progression. These selected genes were then analyzed 

using iterative ANN and NFM models in two structures, which we  termed  ‘Selectivity’ 

and  ‘Averaging’ (Figure 1). These structures enable simultaneous analysis of all genes, 

rather than a ‘Leave-One-Out’ approach. ANNs were produced within Statistica (Version 

7, StatSoft Ltd, Bedford, UK). NFMs were produced within Matlab (Version 6.5 

www.mathworks.com) and progression predictions performed using an in-house software 

suite [19, 20]. The data were divided into 90% for training (60% was learning and 30% 

for validation) and 10% for testing. Ensembling and cross validation were used to 

maximize data [21].  

 

We ranked the 200 genes according to the size of model error induced by their alteration. 

Those with largest error were ranked highest, as alteration of their values produced the 

largest disturbance in the models accuracy. For each gene a ‘Committee’  ranking was 

produced from the average score of the individual AI models. A panel of progression 

related genes was produced from those with the highest ranking. This Committee panel 

was compared with the ‘Original’ gene panel selected using Pearson’s linear regression 

coefficient and GeneCluster 2.0 software [17]. This Original panel included 11 members 

(FABP4, GSTM4, SERPINA1, HDAC1, C20ORF1, DNLC2A, PTK6 UBC, MGMT, 

ITGB3BP and PAIP2). 

 

Immunohistochemistry 
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To evaluate the Committee approach we analyzed the expression of its highest ranking 

members using immunohistochemistry in a new UCC cohort [17, 22]. Commercially 

manufactured antibodies were available for six members: LIG3 (clone 6G9; Abcam, 

Cambridge, UK; dilution 1:50), BRCA2 (Abcam, Cambridge, UK; dilution 1:10), 

TNFRSF6 (Abcam, Cambridge, UK; dilution 1:25), KRT18 (clone CK2; Chemicon, 

Billerica, MA, USA; dilution 1:50), DSG2 (clone 3G132; Abcam, Cambridge, UK; 

dilution 1:10), and ICAM1 (clone 23G12; Lab Vision, Fremont, CA, USA; dilution 

1:10). For negative controls the primary antibody was omitted. Immunostained sections 

were scored independently for the percentage of positive tumor cells by uropathologists 

(PW, AH). The abnormal status for each protein was defined according to its cellular 

function, its contrast with normal urothelial expression and from previous reports. For 

ICAM1, a case was considered positive if > 30% of intra-tumoral blood vessels were 

stained. For LIG3, BRCA2, TNFRSF6, and DSG2 abnormal expression was defined as a 

loss or reduction of staining (0% or ≤30%  positively  stained  cells).  For  both,  normal 

urothelium had expression in >50% of cells. Abnormal KRT18 expression was defined as 

increased  immunostaining  (≥80%  cells  with  positive  staining)  with  respect  to  normal 

samples, which were negative in 90% of cases.  

 

Statistical Analysis 

All analyses were two tailed and carried out using SPSS (version 14, SPSS Inc). 

Categorical variables were compared using the 2 test and continuous variables with a T 

test. Disease progression was defined when a non-muscle invasive tumor became 

invasive or a muscle invasive tumor developed metastases. Progression-specific survival 
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probability following tumor resection was analyzed using the Kaplan-Meier method and 

Log rank test. Patients without progression were censored when they were last reviewed 

or when they died of other causes. The concordance index was calculated as reported 

[23]. A P value of <0.05 was interpreted as statistically significant. Cox regression 

multivariate analysis was used to compare the prognostic value of the various gene panels 

with clinicopathological parameters. 
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Results 

Dimension reduction 

We aimed to produce a prognostic gene panel of around 11 members to allow comparison 

with the Original panel chosen by statistical methods. Analysis of predictive ANN and 

NFM models with increments of 1 to 200 members revealed this was feasible (Figure 2). 

For NFM, the modeling error with 11 genes (RMS=0.135) was similar to that for more 

than 157 genes (both concordance index=1.0). For ANN the error did not change until 

more than 140 gene inputs were used (RMS = 0.37 for 11 genes), and was larger than the 

equivalent for NFM. 

  

Gene Ranking and Comparison of F eature Selection Panels 

We ranked the 200 genes according to their average score from the various AI models 

(Table 2) and selected the 11 highest ranked genes to compare with the Original panel. 

Using gene expression, dichotomized around the mean, both panels were able to stratify 

tumor progression, although the Committee panel appeared more discriminate. For 

example, the findings of the Committee panel are typical (Figure 3a): whilst individual 

members are associated with tumor progression (e.g. LIG3 p=0.01, KRT18 p=0.04, Log 

rank values), the best prediction of progression occurs when the members are used in 

combination (≥3/11 abnormal genes p=0.007, ≥4/11 p=0.0004, ≥5/11 p=0.002, Log rank 

values). In multivariate analysis the Committee panel (OR=0.70 (95% CI 0.56-0.87), 

Logrank p=0.0004) was better at identifying progression than grade (OR=0.38 (95% CI 

0.15-0.91, p=0.001) and stage (OR=0.65 (95% CI 0.1-4.31), p=0.03), and the Original 
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panel (OR=1.24 (95% CI 0.96-1.60), p=0.09). No members were shared between the 

Committee and Original panels. 

 

Analysis of the Committee panel in a second tumor cohort 

Six of the 11 members in the Committee panel (LIG3, BRCA2, TNFRSF6, KRT18, 

DSG2 and ICAM1, Figure 4a) have commercially manufactured antibodies with proven 

reproducible staining patterns in formalin fixed paraffin embedded tissue. Using these 

antibodies we performed immunohistochemistry on the 262 tumor TMA. When protein 

expression was analyzed with respect to tumor histology, various associations were seen. 

For example, LIG3 and ICAM1 were associated with tumor stage and grade (χ
2
 p<0.05) 

(Table 3), when compared to tumors with normal expression. However, when expression 

of individual proteins with respect to tumor behavior was analyzed, few significant 

relationships were present. Only abnormal TNFRSF6 expression was significantly 

associated with tumor progression (Log rank p=0.003).  

 

We then analyzed the 6 proteins together as a Committee panel using only superficial 

tumors (n=134). Each tumor was scored according to the number of proteins with 

abnormal staining and this was expressed as a percentage of the total number successfully 

immunostained for that sample. Only samples with ≥4 stained proteins were  evaluated. 

When progression was analyzed with respect to this score, significantly worse outcomes 

were present in tumors with higher than lower scores (Figure 4b). As with its use in the 

first tumor cohort, the panel’s discriminating ability was maximal at its mean content 

(Concordance index =0.66, Log rank p=0.02 for 40% and p=0.01 for 50%). In 
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multivariate analysis, the Committee panel was better at stratifying progression (Cox 

OR=1.2 (95% CI 1.1-1.3), p=0.014) than tumor stage (OR=1.44 (95% CI 0.82-2.53), 

p=0.2), grade (OR=0.93 (95% CI 0.53-1.66), p=0.8), the presence of CIS (OR=1.3 (95% 

CI 0.54-3.12), p=0.6), growth pattern (OR=0.74 (95% CI 0.26-2.12), p=0.6) and 

multifocality (OR=1.61 (95% CI 0.61-4.24), p=0.3).  
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Discussion 

Here we have used AI to examine the relationship between gene expression and 

progression. To evaluate this approach, rather than specific model designs, we used a 

Committee of models to merge gene rankings from individual models and structures. AI 

can identify complex relationships within non-linear data contaminated by variable noise 

and as such, can outperform statistical regression [8, 24]. AI modeling is a generic 

process and these methods could be applied to re-interrogate microarray datasets for 

prognostic and functional data.  

 

Our approach reduced 200 genes to 11 with minimal deterioration in progression 

identification. The highest ranked genes appeared better at predicting tumor outcome than 

those selected using traditional analysis and pathological criteria. The fuzzy logic layer of 

our Committee NFM is shown in Figure 3b. This rule-base consists of parallel rules in 

which the fuzzy logic component can be visualized. In rule 1 (top line), high KRT18 in 

combination with low DSG2 and TNFRSF6 expression leads to rapid tumor progression 

(final box). This supports known carcinogenic functions of these genes as KRT18 is an 

oncogene and the others are tumor suppressors [25]. One can also see that the 

discriminatory effects in TP53BP2 are less apparent than for other genes (TP53BP2 was 

ranked 11th, Table 2).  

 

The ability of AI to determine non-linear relationships is demonstrated in our results. Of 

the 11 genes that comprise the Committee panel, only TNFRSF6 was individually 

associated with tumor progression. However, the cumulative use of this panel allowed 
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accurate progression discrimination (Figure 4b). The members of the Committee panel 

represent various carcinogenic pathways. Their association with progression may be 

directly through carcinogenic roles or as bystanders associated with progression. Their 

diversity in roles suggests they may function as synergistic facilitators of progression. 

Apoptosis evasion is represented by reduced expression of Fas (TNFRSF6), TP53BP2 

and ARHE. Fas is important for apoptosis induction and decreased expression is 

associated with advanced bladder cancer stage, grade and progression [26]. TP53BP2 

(also ‘Apoptosis  stimulating  protein  of  p53  2’  (ASPP2))  plays a key role in apoptosis 

induction through the activation of p53. Reduced TP53BP2 expression abrogates the 

onset of apoptosis in cancer, but has not been reported in UCC. Tumor invasion is 

represented by reduced cellular adhesion (ICAM1 and DSG2) and cytoskeletal re-

organization through increased KRT18 and reduced ARHE expression. DSG2 is a 

cellular adhesion molecule whose loss reduces adhesion, increases invasion and speeds 

tumor progression [27]. ICAM1 is also an intercellular adhesion molecule and is 

frequently epigenetically silenced in UCC (>70%) [28]. KRT18 is a cytokeratin known to 

be expressed in the umbrella layer of urothelium whose expression increases with 

urothelial carcinogenesis [25].  ARHE  (also  ‘Rho  family  GTPase  3’  (RND3))  is  a  Rho 

signal transduction member with roles in many cellular processes (cytoskeleton 

organization, membrane trafficking, cell growth and apoptosis) [29], whose loss is 

reported in prostate cancer. Deranged DNA repair is represented by BRCA2 and LIG3 

[30].Whilst neither is directly linked with bladder carcinogenesis, it is possible that loss 

of both is required for carcinogenic alteration. BRCA2-deficient cells have reduced DNA 

ligation capacity which can be reversed by LIG3 administration [30]. 
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Conclusion 

AI can analyze microarray datasets in a complementary manner to statistical analyses. 

Both methods use different techniques of inference to determine gene-phenotype 

associations and thus identify distinct prognostic gene signatures that are equally valid. 

We have identified a new prognostic gene signature in UCC, whose members reflect a 

variety of carcinogenic pathways. This signature requires validation in new tumor cohorts 

to assess its ability to identify progression in non-muscle invasive bladder cancers. 
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F igure L egends 

 

Fig. 1. The Work flow for this report. Pearson coefficient was used to reduce the 2,800 

genes to the 200 most associated with progression. These genes were modelled by 

separate ANNs and NFMs. For each model 200 iterations were run. Each iteration 

studied a single gene and consisted of training/validation/testing of the model. The 

model’s error was the score that determined the significance of the gene being tested in 

that iteration. In the Selectivity approach, we changed all 200 gene values to their mean 

and then individually maximized (largest value seen) and minimized single genes. 

Following model testing the analysed gene was returned to average before starting the 

next iteration. This approach hoped to find genes whose extreme presence caused most 

disruption to the model. In the Averaging approach, all 200 genes were left unchanged 

whilst single individual genes were averaged for their model iteration. This model aimed 

to find those genes whose loss of profile resulted in most disruption to the model. Gene 

rankings from these models were then averaged to generate the Committee of models 

ranking. The highest ranking members were then compared with the Original panel 

identified by Wild et al [17] by predicting progression in the same UCC cohort. Six 

members had commercial antibodies and their expression was tested in a new cohort of 

UCC. 

 

Fig. 2. Performance of the AI models during dimension reduction. (a). The model error 

for 1-200 genes is shown (RMS value). In general, NFM has a lower error than ANN. A 

panel with 11 genes has a similar error to that with 158 genes (NFM) or 140 genes 
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(ANN). (b) Correct progression classifications (percentage) with NFM or ANN using 

models with n
1-200

 genes. 

 

Fig. 3. The Committee panel for Superficial UCC progression prediction. (a). Tumour 

progression stratified by pathological grade, the Original and Committee panels. (b). 

NFM rule base for the Committee panel. Probe values are coloured according to value 

around mean (reduced = red, increased = blue and mean = black).  

 

Fig. 4. Tumor progression using immunohistochemistry for members of the Committee 

panel. (a) Abnormal expression of panel members in UCC (Insert boxes show expression 

in normal urothelium: strong membranous TNFRSF6 staining; KRT18 confined to 

umbrella cells; strong nuclear LIG3 and BRCA2 staining; weak membranous DSG2 

staining; very weak ICAM1 staining of urothelium and strong staining within the 

endothelium of capillaries). (b). Tumor progression stratified by grade and the Committee 

panel in the second superficial UCC population (n=134). A bad signature is defined as 

≥50% proteins with abnormal expression. 
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 Table 1. The two UCC cohorts studied in this report  

 

    i. Gene array tumors ii. TMA tumors 

    n % n % 

Gender Male 29 85.3% 194 73.8% 

 Female 5 14.7% 68 25.9% 

Stage TNM 1998 Normal 8 100.0%   

 pTis 3 4.5%   

 pTa 46 69.7% 149 56.7% 

 pT1 10 15.2% 49 18.6% 

 pT2 7 10.6% 59 22.4% 

 pT3   2 0.8% 

 pT4   3 1.1% 

Stage TNM 2004 PUNLMP 1 1.5% 22 8.4% 

 pTis 3 4.5%   

 pTa 45 68.2% 127 48.3% 

 pT1 10 15.2% 49 18.6% 

 pT2 7 10.6% 59 22.4% 

 pT3   2 0.8% 

 pT4   3 1.1% 

Grade Grade 1 27 40.9% 83 31.6% 

 Grade 2 24 36.4% 69 26.2% 

 Grade 3 15 22.7% 110 41.8% 

Growth pattern Papillary 55 83.3% 210 79.8% 

 Solid 11 16.7% 51 19.4% 

 Unknown   1 0.4% 

Multiplicity Unifocal 29 43.9% 54 20.5% 

 Multifocal 37 56.1% 208 79.1% 

Carcinoma in situ No pTis 62 93.9% 227 86.3% 

 pTis 4 6.1% 35 13.3% 

Tumor Metastasis   2 0.8% 

 Primary UCC 25 37.9% 255 97.0% 

 Recurrent UCC 41 62.1% 5 1.9% 

Progression rate 10/34* 29.4% 36/134*** 26.9% 

Median (range) time to progression 21 (0-60) months 23 (1-154) months 

Overall survival unknown  167/198 84.3% 

Median (range) overall survival time** 43 (0-109) months 90 (24-154) months 

  Total UCC 66 100.0% 262 100.0% 

* in the 34 individual patients     

** in non-progressing patients 

*** in 134 primary superficial tumors with available follow up information 
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Table 2. The Committee gene panel selected according to ranking frequency from AI models 
 
 

  Symbol Gene name Function 
1 PP Pyrophosphatase (inorganic) Phosphate metabolism / metabolism 
2 TN F RSF6 TNF receptor family member 6 (CD95) Apoptosis / immune response / signal transduction 
3 LIG3 DNA Ligase III Cytokinesis / DNA replication & repair / meiosis 

4 BRCA2 Breast cancer type 2 susceptibility gene Cell cycle control / double-strand break repair / DNA 
replication / chromatin architecture / apoptosis 

5 ICAM1 Intercellular adhesion molecule 1 (CD54) Cell-cell adhesion 
6 ARHE Ras homolog gene family, member E  Cell adhesion / signal transduction / cytoskeleton organization 
7 NACA nascent-polypeptide-associated complex α Protein biosynthesis / nascent polypeptide association 
8 DSG2 Desmoglein 2 Cell adhesion / homophilic cell adhesion 
9 KRT18 Keratin 18 Embryogenesis and morphogenesis 

10 FLJ14146 Uncharacterized protein C1orf115 Unknown function 
11 TP53BP2 p53 binding protein 2 (ASPP2) Cell cycle/ apoptosis regulation / signal transduction 

Genes shown in bold were analysed by immunohistochemistry 
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Table 3. Immunohistochemical analysis of 263 bladder tumors for LIG3, BRCA2, TNFRSF6, KRT18, DSG2 and ICAM1 

 

    

 

Grade  

1 16/69 28% 42/66 64% 46/61 75% 35/67 52% 23/69 33% 29/61 48%

2 15/65 23% 44/66 67% 41/62 66% 37/65 57% 22/66 33% 30/60 50%

3 13/93 14% 0.093 33/95 35% 0.0001 40/93 43% 0.0001 63/93 68% 0.119 40/95 42% 0.398 46/88 52% 0.850

Stage

PUNLMP 7/19 37% 10/18 56% 11/16 69% 12/18 67% 5/18 28% 7/16 44%

pTa 28/112 25% 70/110 64% 72/103 70% 55/109 51% 37/113 33% 51/100 51%

pT1 6/42 14% 17/43 40% 26/44 59% 31/43 72% 18/42 43% 21/41 51%

pT2 6/49 12% 21/51 41% 18/48 38% 34/50 68% 23/52 24/48 50%

pT3 0/2 0% 0/2 0% 0/2 0% 1/2 50% 0/2 0% 2/2 100%

pT4 0/3 0% 0.119 1/3 33% 0.018 0/3 0% 0.001 2/3 66% 0.128 2/3 67% 0.344 0/2 0% 0.506

CIS

Absent 42/200 21% 110/198 69% 115/189 61% 117/169 60% 75/201 37% 90/182 50%

Present 5/27 19% 0.765 9/29 31% 0.014 12/27 44% 0.105 18/29 62% 0.807 10/29 35% 0.768 15/27 56% 0.554

Growth

Papillary 42/187 23% 99/185 53% 115/177 63% 103/184 56% 69/187 37% 88/170 52%

Solid 4/39 10% 0.085 20/41 49% 0.583 14/38 37% 0.003 31/40 78% 0.012 15/42 36% 0.886 17/38 45% 0.433

Progression free survival*

Progression 12/34 35% 0.003 21/33 64% 0.566 17/31 55% 0.155 23/33 70% 0.081 13/33 40% 0.802 17/30 57% 0.458

No 10/84 12% 48/83 58% 54/78 69% 42/81 52% 31/84 37% 35/72 49%

* Only superficial tumors were analyzed for this outcome

NOTE. For each variable the numerator is the number of abnormally immunostained tumours and the denominator is the number succesfully analyzed for 

that protein

Abnormal / Total   χ2 Abnormal / Total   χ2

TNFRSF6 LIG3 ICAM1 DSG2 BRCA2 KRT18

Abnormal / Total   χ2 Abnormal / Total   χ2  Abnormal / Total   χ2 Abnormal / Total   χ2
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