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ABSTRACT 
 
Screw compressors are mature products used broadly in industrial applications.  Similar technology is applied for 
industrial expanders, pumps, vacuum pumps… Mathematical models of various complexities have been developed 
through decades. Computational Fluid Dynamics (CFD) is regarded the most modern technique which proved 
suitable for fundamental and applied research of these machines. This paper is review of the work in this area. Case 
studies show the scope and applicability of CFD in screw machines. Examples include prediction of flow generated 
noise in screw machines, cavitation modelling in gear pumps, and flow in multiphase oil and gas pumps. 
Additionally, test programme carried out with Laser Dopler Velocimetry to measure velocity distribution in screw 
compressor flow domains is presented. It provided data for verification of CFD predictions and suggested areas of 
research including evaluation of turbulence modelling can provide more accurate and faster CFD calculations.  
 

1. INTRODUCTION 
 
Early designs of screw compressors were based on the assumption of an ideal gas in a leak proof working chamber 
undergoing a compression process which could reasonably be approximated in terms of pressure-volume changes by 
the choice of a suitable value of the exponent “n” in the relationship pVn = Constant. 
The advent of digital computing made it possible to model the compression process more accurately and, with the 
passage of time, ever more detailed models of the internal flow processes have been developed, based on the 
assumption of one-dimensional non-steady bulk fluid flow and steady one dimensional leakage flow through the 
working chamber. Together with suitable flow coefficients through the passages, and an equation of state for the 
working fluid, it was thus possible to develop a set of non-linear differential equations which describe the 
instantaneous rates of heat and fluid flow and work across the boundaries of the compressor system.  These 
equations can be solved numerically to estimate pressure-volume changes through the suction, compression and 
delivery stages and hence determine the net torque, power input and fluid flow, together with the isentropic and 
volumetric efficiencies in a compressor.  In addition, the effects of oil injection on performance can be assessed by 
assuming that any oil passes through the machine as a uniformly distributed spray with an assumed mean droplet 
diameter.  Such models have been refined by comparing performance predictions, derived from them, with 
experimentally derived data. A typical result of such modelling is the suite of computer programs described by 
Stosic et al, 2005. Similar work was also carried out by many other authors such as Fleming and Tang 1998 and 
Sauls, 1998. Despite the speed and relatively accurate results, these models neglect some important flow effects 
mainly in the suction and discharge ports which could influence compressor performance.  
Screw compressor performance can be estimated more precisely by a three dimensional Computational Fluid 
Dynamics (CFD). Nonetheless there are few publications available that describe its successful application in this 
field. Kovacevic et al published a number of papers between 1999 and 2005 which described 3D numerical analysis 
of the entire machine domain.  These were followed by a monograph on CFD applied to screw machines by
Kovacevic et al, 2006, which gives a comprehensive overview of the methods and tools used for the analysis of flow 
in these machines. 
A number of commercial CFD software packages are currently available which can both analyse the flow through 
screw machines and easily integrate the results with CAD systems. However the moving, stretching and sliding 
mesh required for mapping the working chamber cannot be produced within their grid generator packages.  
Additionally, the time required for calculation of the flow through the entire machine by use of these codes is 
excessively long. Therefore development of the grid generation method proved to be the key for success for 
application of CFD in analysis of screw machines. 
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A prerequisite for success in the highly competitive market of screw machines is the ability to design, analyse and 
produce machines quickly. These activities need to be automated for use by design engineers in industry. A 
management suite like that elaborated in Kovacevic et al, 2006 was developed to integrate tools for the design and 
manufacture of screw machine components in a user friendly environment suitable for industrial use. It manages 
both geometric and non geometric information transfer between several software components and has been given the 
name DISCO (Design Integration for Screw Compressors). This suite provided the platform for integration of CAD 
and CFD of screw machines. There is still need to reduce computational time and increase accuracy of results which 
requires specific procedures for such calculations to be developed. 
 

2. PRINCIPLES OF 3D CFD CALCULATION IN SCREW COMPRESSORS 
 
Initially, many attempts to model screw machines by CFD methods were unsuccessful due to inability to generate an 
appropriate numerical grid for complex moving domains. The breakthrough was made when an analytical transfinite 
interpolation method with adaptive meshing was used to establish an automatic numerical mapping method for 
arbitrary screw compressor geometry. It is explained in detail by Kovacevic, 2003. This method follows the 
procedure for rotor generation, fully elaborated in detail in Stosic, 1997, and was later regularly used for grid 
generation in analysis of the processes in screw compressors. The interface grid generation program is called 
SCORG - Screw COmpressor Rotor Geometry Grid generator. This software suite enables numerical mapping of 
both, moving and stationary parts of the machine and direct integration in commercial CFD or CCM codes. Thus, 
authors published a number of papers between 1999 and 2008 presenting feasible 3-D numerical analysis of fluid 
flow and stress analysis in screw compressors by use of computational Continuum Mechanics (CCM). A monograph 
on CFD in screw machines (Kovacevic, 2006), gives a more comprehensive overview of the methods and tools used. 
These are applicable to the majority of commercial CFD software packages and can accommodate use of a variety 
of CAD systems. A typical arrangement of a numerical mesh for the CFD calculation of screw compressors is 
shown in Figure 1. The moving parts of the flow domain are mapped with a hexahedral block structured numerical 
mesh while the remaining stationary parts are modelled by an unstructured polyhedral mesh, produced directly from 
a CAD system , by the proprietary commercial grid generators suitable for non moving geometries. Although mainly 
used for CFD in screw machines, the same concept may be utilized for a variety of other applications, for example, 
in the grid generation of the flow paths in a rotary heat exchanger (Alagic et all, 2005) 
 

 
Figure 1 Numerical mesh for CFD calculation of screw compressor – left 

The comparison of measured and calculated pressures - right 

The first experimental verification of the numerical results was obtained in 2002 and reported in Kovacevic,2003. 
This study was performed on an oil injected screw compressor of a 5/6 lobe configuration with a male rotor outer 
diameter of 128 mm of ‘N’ type profile. The numerical mesh used, contained just over half a million grid cells, of 
which about 200,000 were used to map the moving parts of the grid, the rotors and space between them. A 
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converged solution was obtained on an office PC after 120 time steps each requiring approximately 15 minutes of 
computing time.  
The results were compared with measurements obtained from a laboratory air screw compressor. Four piezo-
resistive transducers were positioned in the housing to measure pressure fluctuations across the compressor. The 
numerical and experimental results were compared for discharge pressures of 6, 7, 8 and 9 bar. Good agreement was 
obtained both for the integral performance parameters, as well as for the instantaneous pressure values, as shown in 
Figure 1. The report by Kovacevic et all, 2004 also discussed the effects of various factors that influenced the 
calculation accuracy. These included variations in the mesh size, different turbulence models and differencing 
schemes. It was concluded that these variations did not affect the overall calculation accuracy significantly. 
Therefore the method was recommended as a reliable procedure for performance calculations in industry. 
However it was also shown that use of different differencing schemes and turbulence methods significantly 
influences predictions for local velocity and pressure values in certain machine regions. Although these differences 
have a low impact upon the overall performance, their influence upon flow development needs further investigation. 
Very few authors have analysed local effects in screw compressors.  Examples are the work of Vimmr, 2006, 
following Kauder et al , 2000, who analysed the flow of a single leakage path through a static mesh at the male rotor 
tip to conclude that the rotor relative velocity does not affect flow velocities significantly and that none of the 
turbulence models used change the modelling outcome significantly. This agreed with the findings of (Kovacevic et 
al, 2006), but also confirmed that further validation of full 3-D CFD calculation results could not be obtained by the 
use of simplified numerical or experimental methods. For this, a full understanding of the local velocities in the 
machine suction, compression and discharge chambers was needed. 
 

3. LASER DOPPLER VELOCIMETRY IN SCREW COMPRESSOR 
 
In order to measure flow velocities inside a screw compressor, an experiment, using Laser Doppler Velocimetry 
(Durst, 2000, Albrecht 2003, Drain, 1986), was set up at City University and an extensive study was performed to 
measure velocities in the compression domain and in the discharge chamber of an air screw compressor, as reported 
by Guerrato et al, 2007. 
 

      
Figure 2  Optical compressor (left), LDV optical set for discharge chamber (right) 

A transparent window for optical access into the rotor chamber of the test compressor was machined from acrylic to 
the exact internal profile of the rotor casing and was positioned on the pressure side of the compressor near the 
discharge port, as shown in Figure 2. After machining, the internal and external surfaces of the window were fully 
polished to allow optical access. Optical access to the discharge chamber was arranged through a transparent plate, 
20 mm thick, installed on the upper part of the exhaust pipe.  The optical compressor was then installed in a standard 
laboratory air compressor test rig, modified to accommodate the transmission of a laser beam and its traverses, as 
shown to the right of Figure 2. The laser Doppler Velocimeter operated in a dual-beam near backscatter mode. It 
comprised a 700 mW argon-ion laser, a diffraction-grating unit, to divide the light beam into two and provide 
frequency shift, and collimating and focusing lenses to form the control volume. A Fibre optic cable was used to 
direct the laser beam from the laser to the transmitting optical system, and a mirror was used to direct the beams 
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from the transmitting optics into the compressor through one of the transparent windows. The collecting optics were 
positioned around 25° of the rotor chamber and 15° of the discharge chamber to the full backscatter position and 
comprised collimating and focusing lenses, a 100 μm pin hole and a photomultiplier equipped with an amplifier. 
The signal from the photomultiplier was processed by a processor interfaced to a PC and led to angle-averaged 
values of the mean and RMS velocities.  
 
Flow measurements within the compression chamber 
Two coordinate systems were defined within the rotor chamber of the compressor, one for the male and the other for 
the female rotor. The female rotor coordinate system is shown in Figure 3.  Each of them was applied to one of the 
rotors where p and Rp are, respectively, the angular and radial position of the control volume and Hp is the distance 
from the discharge port centre. Taking the appropriate coordinate system, measurements were obtained at Rp=48, 56, 
63.2mm, p=27º and Hp=20 mm for the male rotor, and at Rp=42, 46, 50 mm, p=27º and Hp=20 for the female rotor. 
 

 
Figure 3 (a) Coordinate system and the window; (b) Axial plane view, (c) LDV measurements 

Typical velocity values measured in the working chamber are shown in Figure 3. Three zones were identified in the 
working chamber near the discharge port. Zone (1) covers most of the main trapped working domain with fairly 
uniform velocities. Zone (2) is associated with the opening of the discharge port. The velocities and turbulence in 
this zone are much higher then in Zone (1). In this zone the flow is driven by the pressure difference between rotors 
and the discharge chamber, which is especially visible in this case as the pressure in the discharge system was 
maintained at practically atmospheric conditions. Zone (3) is associated with the leakage flows between the rotors 
and the casing, where velocities increase to values higher then in Zone (1) but are not as chaotic as in Zone (2). 
Conclusions derived from the measurements are explained in more detail in Guerrato, 2007, and are summarised as 
follows: (1) Chamber-to-chamber velocity variations were up to 10% more pronounced near the leading edge of the 
rotor. (2) The mean axial flow within the working chamber decreases from the trailing to the leading edge with 
velocity values up to 1.75 times larger than the rotor surface velocity near the trailing edge region (3). The effect on 
velocities of the opening of the discharge port is significant near the leading edge of the rotors and causes a complex 
and unstable flow with very steep velocity gradients. The highest impact of the port opening on the flow is 
experienced near the tip of the rotor with values decreasing towards the rotor root.  
 
Flow measurements within the discharge chamber 
Figure 4 (a) shows a schematic arrangement of the discharge chamber divided into the discharge port domain and 
the discharge cavity. The coordinate system, drawn in all the sketches in Figure 4, identifies the location of the 
measured CV. Measurements were made at Xp=5.5mm, Zp =13mm and Yp = -8 to 13mm. 
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Figure 4: Measurement points in the discharge chamber (a)  

LDV measured axial velocity component inside the discharge chamber (b)  

Typical measured results obtained by LDV in the discharge chamber are shown in Figure 4. The axial mean flow 
velocities are obtained at a rotational speed of 1000 rpm and a pressure ratio of 1.0. The most important findings are 
as follows. (1) Velocities are higher than in the compression chamber due to fluid expansion in the port between 
sections W and V. (2) The axial velocity distribution within the discharge chamber is strongly related to the rotor 
angular position since the rotors periodically cover and expose the discharge port through which, at some point, 
more then one working chamber is connected. (3) The jet flows create velocity peaks making the flow in that region 
highly turbulent.  
 

4. VALIDATION OF CFD RESULTS BY LDV MEASUREMENTS 
 
CFD calculations are obtained on the numerical mesh shown in Figure 1. For the purpose of obtaining the grid 
independent solution, three different meshes were generated, the smallest consisting of 600000 numerical cells, the 
mid sized mesh consisting of 935000 numerical cells and the largest with 2.7 million cells. Results used for 
comparison with LDV measurements in this paper are obtained on the mid sized mesh. One full rotation of the male 
rotor that consisting of 300 time steps was sufficient to obtain a converged solution. Each time step took 
approximately 25 minutes to calculate on standard PC. 
 

 
Figure 5 Comparison of the LDV and CFD axial velocities in the compression domain  
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Figure 5 shows a comparison of the axial mean velocities in the compression chamber close to the discharge port. 
This figure shows a very good agreement throughout Zone (1) and Zone (2), as specified in Error! Reference 
source not found.. In Zone (3), both the measured and calculated velocities increase but the increase in calculated 
velocities is larger than in the measured ones. It is believed that this difference is due to the inability of the k-e 
turbulence model to cope with near wall flows in the large numerical cells. Such a configuration of the numerical 
mesh is a consequence of the methodology used for the generation and mesh movement which is in detail explained 
in (Kovacevic et all, 2006) [0].  
 
Figure 6 shows a comparison of the axial velocities in the discharge port. The differences appear to be rather large 
but trends and mean values are very similar. Calculations confirmed that the highest values of axial velocity are in 
the middle section through the discharge port, which corresponds to the period of time when only one working 
chamber is connected to the discharge chamber. 
 

   
Figure 6 Comparison of the measured and calculated axial velocities in the discharge chamber 

The measurements suggest that turbulence plays significant role in the discharge port where narrow passages 
connect the compression chamber and the discharge domain. The inability of the existing turbulence model to cope 
with near wall velocities properly seems to be the main reason for differences in the CFD results and measurements. 
Therefore further research into turbulence models for internal flow in compressor ports is necessary.  
 

5. CASE STUDIES 
 
Four case studies are presented to demonstrate flexibility of the method, namely 1) Estimation of pressure 
oscillations for noise prediction in a screw compressor discharge port, 2) Investigation of cavitation in a helical gear 
pump, 3) CFD modelling of a multiphase screw pump. 
In all cases a numerical mesh was obtained by the in-house grid generator described earlier in this paper. However, 
the CFD calculations were performed by a different CFD numerical solver for each of presented cases.  
 
CFD for Noise Prediction 
Identification of sources of noise and noise attenuation has become an important issue for the majority of screw 
compressor applications. Pressure fluctuations in the discharge port not only generate aero acoustics in that domain 
but also induce mechanical noise due to rotor rattling. It was confirmed in previous studies that adequate porting can 
decrease the noise level and improve the machine performance. A thermodynamic model was set up to estimate 
pressure oscillations as a function of the discharge port shape and the cross sectional area of the connecting flange. 
These predictions are convenient for the estimation of the main noise harmonics. However, this model does not take 
into account the shape of the discharge chamber which probably plays an important role in the generation of higher 
harmonics. Therefore further steps were undertaken to analyse pressure fluctuations in the discharge port by use of a 
full 3-D CFD code, Figure 7. 
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Figure 7 Pressure oscillations in the 3d CFD model of the discharge chamber 

The results obtained by the 3-D model agree very well with measurements (Mujic et all, 2008) but the model 
appears to be too computation intensive for everyday industrial use. Therefore an integrated model was developed 
which combines the accuracy of the full 3D model and the speed of a thermodynamic chamber model (Kovacevic et 
all, 2007).  A comparison of the Chamber mode, full CFD, integrated CFD and measurements is presented in Figure 
7. More details are given in Stosic, 1989 and Mujic et all, 2009. 
 
Cavitation in gear pumps 
Gear pumps are often used in the automotive and aero industries to supply fuel to an engine. A fuel gear pump 
geometry  is very similar to that of a screw compressor. It has two rotors with either straight or helical lobes which 
are contained in a housing and connected to other flow paths of the system through the suction and discharge 
chambers. The left side of Figure 8 shows a numerical mesh of such a gear pump. The hexahedral numerical mesh 
of rotors and flow around them was generated by SCORG, while the stationary parts were meshed by ANSYS CFX 
and ICEM tools into a tetrahedral mesh. These two domains were connected through transient sliding interfaces, 
readily available in the CFX solver.  
Erosion damage, caused by cavitation, was noticed on the running pump at the rotor shafts and within the gaps. The 
results presented here have been previously given in (Steinman, 2006). The authors demonstrated the capability to 
generate the numerical mesh in such machines by the use of the SCORG software. The CFD calculation showed that 
cavitation occurred in the flow through the interlobe gaps in the direction towards the suction chamber. It was 
outlined in [0] that the main challenge for a successful computation is a relatively complex geometry of the moving 
and deforming grids, as well as the transient interface. This was fully overcome by use of the SCORG software. 

    
Figure 8 Numerical mesh of the gear pump and the occurrence of cavitation  
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CFD analysis of a multiphase screw pump 
Multiphase screw pumps are regularly used in the oil and gas industry. A CFD analysis of the leakage flow and 
pressure distribution in these pumps has been calculated by Star CCM+. As an example, the pressure distribution on 
the first layer of cells of the 3/3 lobe combination rotors of a down hole pump passage flows for 1-10 bar pressure 
rise is presented in Figure 9. The leakage flow through the clearances and blow hole area is shown in the same 
figure. 

.   
Figure 9 Pressure distribution in various multiphase down-hole pumps 

   The numerical grid was generated by the SCORG grid generator, developed for screw compressors. In addition to 
the standard twin-screw arrangements, this grid generation software can generate multi-rotor arrangements as shown 
in Figure 9. The pressure distribution for the multi-rotor applications was calculated by StarCCM+. The machine 
with three female rotors shown in Figure 9achieves a smaller pressure drop between its interlobes then in the pump 
with two female rotors. This means that lower leakage flows are achieved in the machine with more female rotors. 
The integration of pressure force over the rotor surfaces shows that the load on the female rotors is more or less 
independent of their number.  
 

6. CONCLUSIONS 
 
Computational Fluid dynamics in screw compressors is advanced method used regularly for research and 
development purposes. Measurements of velocity field within screw compressor flow domains obtained by Laser 
Doppler Velocimetry confirmed validity of CFD results. 3D numerical modelling is therefore established as a means 
of calculating both local and bulk velocities within twin screw machines.  It has been shown that the modelling 
accuracy may be further improved by local improvements in CFD modelling, including use of turbulence models 
suitable for complex pressure driven internal flows.  
It has also been shown that CFD modelling can be used not only to estimate performance of screw compressors, but 
also for research in phenomena which could not be analysed by any other simplified models. Case studies confirm 
that a number of available CFD and CCM software packages can be used for this purpose if combined with the 
SCORG mesh generator. Such methods can further be used for predicting multiphase flows in screw and gear 
pumps, even in configurations that differ from classical twin screw arrangements.  
 

REFERENCES 
 
Alagic S., Stosic N., Kovacevic A., Buljubasic I, A Numerical Analysis of Heat Transfer and Fluid Flow in Rotary 

Regenerative Air Pre-Heaters, Strojniski Vestnik, Journal of Mechanical Engineering, Vol 51, 7-8, pp 411-417, 
2005  

Albrecht, H.-E., M. Borys, N. Damaschke and C. Tropea, eds. Laser Doppler and Phase Doppler Measurement 
Techniques. 2003, Springer. 

Durst, F., Fluid mechanism developement and advancements in the 20th century, in 10th International Symposium 
on Applications of Laser Techniques to Fluid Mechanics. 2000: Lisbona. 

Demirdži  I, Muzaferija S, 1995: Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis 
Using Unstructured Moving Mesh with Cells of Arbitrary Topology, Comp. Methods Appl. Mech Eng, Vol.125 
235-255 

Drain, L.E., ed. The laser Doppler technique. 1986, John Wiley: New York. 



 
 1158, Page 9 

 

International Compressor Engineering Conference at Purdue, July 12-15, 2010 

Ferziger J H, Peri , M, 1996: Computational Methods for Fluid Dynamics, Springer, Berlin  
Guerrato D, Nouri J.M, Stosic N., Arcoumanis, C., Smith I.K., 2007, Flow Development in the  Discharge Chamber 

of a Screw Compressor. Int. Conf. on Compressors and their Systems, IMEchE, September 2007, London. 
Kauder K., de Araújo-Rudolph L., Sachs R.: Experimental and numerical investigation of the gas flow using a plane 

model of male rotor-housing gap in a screw-type machine. Schraubenmaschinen 8, Dortmund 2000  
Kova evi  A, Stoši  N, Smith I. K, 2003: Three Dimensional Numerical Analysis of Screw Compressor 

Performance, Journal of Computational Methods in Sciences and Engineering, vol. 3, no. 2, pp. 259- 284 
Kova evi  A, Stoši  N, Smith I. K, 2004: A Numerical Study of Fluid-Solid Interaction in Screw Compressors, 

International Journal of Computer Applications in Technology (IJCAT), Vol. 21, No. 4, 2004, pp. 148-158 
Kova evi  A 2005: Boundary Adaptation in Grid Generation for CFD Analysis of Screw Compressors, International 

Journal for Numerical Methods in Engineering (IJNME), vol. 63, 2005 
Kova evi  A., Stoši  N, Smith I.K, 2006: Screw Compressors Three Dimensional Computational Fluid Dynamics 

and Solid Fluid Interaction, ISBN-10: 3-540-36302-5 , Springer Berlin Heidelberg New York 
Kova evi  A.,  Mujic E., Stoši  N, Smith I.K, An integrated model for the performance calculation of Screw 

Machines, Proceedings of International Conference on Compressors and their Systems, IMechE London, 
September 2007  

Kova evi  A., Stoši  N, Smith I.K, E. Mujic, 2007, CFD Integrated Design of Screw Compressors, Engineering 
Applications of Computational Fluid Mechanics Vol. 1, No. 2, pp. 96–108  

Nouri J.M, Guerrato D, Stoši  N, Kova evi  A, 2006: Cycle Resolved Velocity Measurements Within a Screw 
Compressor, 18th International Compressor Engineering Conference at Purdue, Lafayette, Indiana, USA 

Mujic E, Kovacevic A, Stosic N, Smith IK, The influence of port shape on gas pulsations in a screw compressor 
discharge chamber, Proceedings of the Institution of Mechanical Engineers, Part E, Journal of Process 
Mechanical Engineering, 2008 

Mujic E, A Numerical and Experimental Investigation of Pulsation Induced Noise n Screw Compressors, PhD 
Thesis, City University London, 2009 

Peric M.: Flow simulation using control volumes of arbitrary polyhedral shape, ERCOFTAC Bulletin, No. 62, 
September 2004 

Steinman A, 2006: Numerical Simulation of Fluid Flow in Screw Machines with Moving Mesh Techniques in 
ANSYS CFX,” Schraubenmaschinentagung 2006”, Dortmund VDI Berichte 

Stosic N, 1998: On Gearing of Helical Screw Compressor Rotors, Proceedings of IMechEng, Journal of Mechanical 
Engineering Science, Vol 213 (Part C): p. 587-594. 

Stoši  N, Smith I.K, Kova evi  A., 2005: Screw Compressors Mathematical Modelling and Performance 
Calculation, ISBN-10 3-540-24275-9, Springer Berlin Heidelberg New York 

Vimmr J, Ondrey F, 2006, Numerical Simulation of Leakage Flow Between Moving Rotor and Housing of Screw 
Compressor, Proceedings of the Conference Modelowanyie Inzynierskie, ISNN 1896-771X, 32, s. 461-468, 
Gliwice 2006 

 


	Purdue University
	Purdue e-Pubs
	2010

	Advances in Numerical Modelling of Helical Screw Machines
	Ahmed Kovacevic
	Nikola Stosic
	Ian Keneth Smith
	Elvedin Mujic

	Microsoft Word - CFD_Purdue_2010-1158.doc

