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Hubbard model as an approximation to the entanglement in nanostructures

J. P. Coé,* V. V. Franc&,” and |. D’Amico'?
1 Department of Physics, University of York, York YO10 5DDitéghKingdom.
2 Physikalisches Institut, Albert-Ludwigs-Universitiétiermann-Herder-StraRe 3, D-79104 Freiburg, Germany.

We investigate how well the one-dimensional Hubbard modstdbes the entanglement of particles trapped
in a string of quantum wells. We calculate the average sisjeentanglement for two particles interacting via
a contact interaction and consider the effect of varyingititeraction strength and the interwell distance. We
compare the results with the ones obtained within the omesdsional Hubbard model with on-site interaction.
We suggest an upper bound for the average single-site dataegt for two electrons id/ wells and discuss
analytical limits for very large repulsive and attractivedractions. We investigate how the interplay between
interaction and potential shape in the quantum well systetatés the position and size of the entanglement
maxima and the agreement with the theoretical limits. Bnak calculate the spatial entanglement for the
guantum well system and compare it to its average singéeesitanglement.

PACS numbers: 03.65.Ud, 71.10.Fd, 73.21.La, 73.21.Fg

I. INTRODUCTION repulsive (electron-electron) and attractive interawtioand
calculate the corresponding entanglement when the strengt

Entanglement is considered one of the main resources ifif € interaction, the chain length, and the interwell dis-
quantum information and a reason why quantum computerg’_‘nce are changed. We compare these results with the average
may be used for computing feats that could not be achievedndle-site entanglement calculated from the Hubbard ode
with traditional processors [1]. In this context quantunisdo [N doing this we infer information on the accuracy of using
are thought of as a viable possibility in the quest to comstru "esults from the Hubbard model to approximate the average
scalable quantum processors [2-9]. With this in mind, figdin Single-site entanglement of the quantum well system. If the
accurate ways to calculate the entanglement betweenatsctr €ntanglement of electrons in quantum wells can be described
in quantum dots becomes important for quantum informatiortSing the Hubbard model, then, by using the powerful LDA
processing. However modeling these many-body quamunﬁprmahsm developed in [ZQ], we could in principle chCleIat
systems often necessitates the employment of approxinsatio the entanglement presentin quantum well systems with a larg
For example, one-dimensional wells may be used in the studjumber of interacting ele_ctrons. This would be a non-ttivia
of spherically symmetric quantum dots and aid understandinfesult as a direct calculation of the entanglement for aesgst
of trends in more general quantum dot systems [10]. with a large number of interacting electrons becomes compu-

The Hubbard model [11] allows interacting many-body Sys_tatlonally proh|b.|t|ve as the number pf part.|cles increase
tems to be simulated by mapping them onto a lattice model In Sec. Il we introduce the one-dimensional quantum well
with (usually) on-site interactions only. Despite its tela ~ Systém and discuss how we numerically calculate the single-
simplicity it still captures a significant amount of physics Sité entanglement. In Sec. Il we compare the results from
for example, in strongly correlated fermionic systems i ha the one-dimensional Hubbard model with the ones from the
been used to model particles trapped in an optical lattizg [1 duantum well system for different interwell distances, ioha
highT,, superconductivity [13], and the metal-insulator transi- '€ngth, and Coulomb interaction strength. We also investig
tion [14]. The one-dimensional homogeneous Hubbard moddloW the interaction strength affects the electronic dgnaitd
(HM) also benefits from the existence of an exact solution infts €ffect on the matching between the Hubbard and quantum
the thermodynamic limit [15]. Recently the use of the Hub-Well system. In Sec.IV we propose an upper bound for the
bard model as an approximation to the exchange couplingverage single-site entanglement of the quantum well syste
in quantum-dot nanostructures has been investigated [16fNd discuss the large Coqlomb interaction limit. We investi
The entanglement of the one-dimensional Hubbard model ha@ate how close our numerical results come to these andlytica
been investigated in Refs. [17-19]. A local-density approx €Xpressions. In Sec. V we compare attractive and repulsive
imation (LDA) to the entanglement has been proposed irParticle-particle interaction, as well as discussing tagye
Ref. [20] and applied to inhomogeneous systems. |ntgrpart|cle attraction limit. Sec. Vlis devoted to thenu:p

In this paper we compare the Hubbard model prediction®2/iS0n between the average single-site entanglementhveith
to results from a system of two interacting fermions trappecSPatial entanglement for the quantum well system and finally

within a chain of square well potentials. Here each well cor->€c. VIl contains our conclusions.
responds to one of the Hubbard model sites. We consider both

Il. THE QUANTUM WELL TWO-ELECTRON SYSTEM

*Electronic addresg:pc503@or k. ac. uk . . . . . . .
tElectronic addresszi vi an. f r anca@hysi k. uni - f rei bur g. de The Hamiltonian, in atomic units, for the one-dimensional

Electronic address: da500@or k. ac. uk system of two electrons confined within an array of quantum



wells (QWSs) is given by We calculate the ground-state wave-function, for an even
) numberM of wells, and from that obtain the occupation prob-
1d ili
H— Z ( " U(Ii)) 4 Cuflzr —2a]). (L) abilities. We calculate the probability that both elecs@me

A\ 2da? in the same left-most\(th) well as

b b
The potentiab(x;) models a string of regularly spaced, iden- Py (1)) = / / |z/1(x1,x2)|2da:1da:2, (5)
tical square wells, symmetric around the origin, and defined —re J—re
by the quantities) the number of wellsyw the width of each
well, d the barrier width between two consecutive wells, and
vo the depth of each well. We s¢{z) = §(z) to model a
contact Coulomb repulsion and defigg, as the interaction
strength. Cy will allow us to compare the system with the
Hubbard model.

We solve the time independent Schrodinger equation corre- b e
sponding to Eq. (1) by using ‘exact’ diagonalization; thecel Py (1) =Pu(l) = / / |Y(x1, x0)|*dr1dzy.  (6)
tronic ground state is a singlet thereby satisfying theusdip —re Jb
tion of zero magnetization. We calculate the spatial pattief
many-body wavefunction using the firdt eigenfunctions of
the potentialy(z) as single-particle basis functions. We em-
ploy these to produce a basis of symmetric two-particle wave b b
functions which means we only need to consityéiV + 1)/2 Piinmse(Tl) = / / |(z1, 20) |Pday ds, @
functions. The form of the Hamiltonian is conducive to this a Ja
method as by varying the interaction strength indepengentl g
we do not need to recalculate the basis, or any integral in-

wherer, is the (numerical) integration cut-off point and=
—(M/2 —1)(w+ d) the mid point between the left-most well
and the next well.

The probability that only one spin up (or spin down by sym-
metry) electron is in this well is

Py (0) may then be deduced, as the probabilities sum to
For the other wells the occupation probabilities are

volved in the diagonalization, as could be the case if weedari p. (1) = bopa o ) 2dard (®)
the well geometry directly. In this respect we note that a sys geMA) = TP, B2 A aen

tem withCy = K, depthug, well width w and barrier width b are

d is equivalent to a system withy, = 1, depthuy /K2, well +/ / |Y(21, 22)2de1des, 9)
width Kw, and barrier widthi{d. a Jb

with a = —j(w +d) andb = —j(w + d) + d + w,

1 <j < (M/2-1). As we only consider an even number
of wells distributed symmetrically about the origin, thep¥
ability values for wellsM/ /2 to 1 are known by symmetry.

A. Averagesingle-site entanglement

We wish to calculate the average single-site (or local)renta
glement of the system ground state. This type of entanglemen
is relevant for systems of indistinguishable fermions [Z1id 1. COMPARISON WITH THE HUBBARD MODEL
this aim we divide our QW system in contiguous ‘sites’, each
site centered around a single well.

The entanglement entrogyof the system is given by The Hubbard model [11] is described by the Hamiltonian

1M Hym = —tz (CZT,UCHLU + CI.,.LUCi,a)

=37 2% (2) ) A

i +U iy, (10)
with g
wherei runs over thel/ sites andr =1, |. Heret is the hop-
ping parameter and@ is the interaction strengthc;rp (¢io)
the i-site von Neumann entropy of the reduced density maCreates (destroys) a particle of spinat site: while 7; , =

trix pr.qi. The von Neumann entropy is considered as one’i,»Ci.o IS the particle number operator. We solve Eg. (10)
of the definitive measures of entanglement for a pure bijgarti Py exact diagonalization in the single-site occupationisas

system. By dividing the system into sites and movingto asite{|T1) ;1) [}, [0)}. We apply open boundary conditions and
occupation basis the reduced density magix; ; becomes a  consider an average particle densityot n| +ny = 2/M,

Si - _Trp'red,i 10g2 Pred,i (3)

4 x 4 diagonal matrix [21, 22], with n,, the average density of thespin component. Again
we calculate the average single-site entanglement EqL{2) [
pred,i = diag[Pi(11), Pi(1), Pi(1), Fi(0)] (4)  19]. Usually the hopping parameteiis used to rescalé&/,
giving the dimensionless interaction strength= U /t.
with P;(y) the probability of double{ =1]), single & =1 or To compare results, we need to calculate the equivalent of

1), or zero ¢ = 0) electronic occupation at sitg19]. andU for the QW system discussed in Sec. II. In the Hubbard



model the hopping parameter is the expectation value of the 06 p P ‘
single-particle operators in the Hamiltonian with respiect 05-
the single-particle wave functions localized at adjacéess -
When the hopping parameteiis independent of the sites it © o4
may be written as g 0.3}
1 8 0.2
(= (o) (<57 V) ) o). )
where ¢; is the wavefunction at any siteand V' (r) is the 03(—;15 ~10
single-particle confining potential. ' ‘
Following this definition, we estimate the hopping parame- 03r
ter for our quantum well model as T 025
1 >
b= ton@ (~57m +o@) lon@h, 12§ o
0 o1f
whereé gy has the shape of the single-particle ground state 0,051
of the finite single square well potential,, but centered in A
the left (1) or right (pr) well. Herewv(z) is the potential de- 9% -5
fined in Eq. (1), with the zero of energy chosen such thia} x (@)

has zero as its lowest value thereby ensuring that the pakent . _ .
contribution is always positive and an increase in the depth /G- 1: éJ[?pfrgagel. _elz(e)c(;:)c;)r;jens%i?r: ? (C’i = ﬁ) (dtasT_e?
the well causes the hopping parameter to decrease. The phd§) a1dU = 40 (Cu = 0. ) (solid line) for a4 well potentia

. ", andw = 2 ao, d = 2 ap andvo = 10 Hartree. Lower Panel: as for
of ¢, and¢g is chosen to make, real and positive.

o . . . __the upper panel but for a system&ivells.
The on-site interaction in the Hubbard model [11] is defined PPErP y

by
1 1 line). For eight wells and/ = 0 the inner wells are again
U =5 (¢i(r2)| (¢i(r1)] T —ral |¢i(r1)) [$i(r2)) . (13)  preferentially occupied while there is very little densitythe
! 2 outermost wells (Fig. 1, lower panel, dashed line). When the
The Corresponding parameter in oD model with a delta interaction is ‘switched on’ t&/ = 40 the two central wells
function interaction is then have a lower peak density than the nearby wells to compen-
sate for the Coulomb repulsion, but the outermost well$ stil
U, = ‘v /(bi(iﬂ)diﬂ- (14) plisplay, by_compa_rison, a much lower (_Jlensity. S!milar behav
2 iors of the interacting and non-interacting densities arenfl
. when the distance between wells is reduced by an order of
We may now estimaté’ for our model as magnitude § = 0.2 ag). However in this case the density is
o considerably different from zero in the barrier region (F2g.
U~ -2, (15) These results seemingly show that, apart from accidental
tw compensation, the electron density in the different wedls ¢
not be made equal by applying an unmodulated Coulomb in-

For systems of wells characterized by the parametetsd = i
teraction.

2 ag, Whereqy is the (effective) Bohr radius, ang = 10 (ef-
fective) Hartree, we find/ = 12344Cy; when the interwell
distance is reduced tb= 0.2 ag we obtainU = 3.14Cy, and
U = 1.27Cy for the limiting casel = 0. B. Comparison of entanglement results

In Fig. 3 we compare the average single-site entanglement
A. Effect of many-body interactionson theelectronicdensity  for the Hubbard model with that of the QW electron systems
characterized by = 2, d = 0.2, and the limiting casé = 0.
Next we explore how the electron density alters to maxi-The latter corresponds to the arbitrary partition of a stngéll
mize its exposure to the attractive confining potential sthil of width M w into M equal regions.
attempting to minimize the interaction between the eletdro Ford = 2 ay and two wells (upper panel) we see that the
For two wells the density profile is clearly symmetric so we entanglement decreases similarly to the Hubbard modgl as
do not discuss it further. A non-interacting four well syste increases but the entanglement in the QW system is slightly
(upper panel of Fig. 1, dashed line) displays a density llear higher. When we consider four wells (middle panel), in both
higher in the inner wells. However fd¥ = 40, due to the cases the entanglement increases up to a maximum and then
electron repulsion, the difference between the electran de decreases, the maximum occurring at slightly differentgal
sity in the inner and outer wells becomes much smaller (solidf U. For eight wells (lower panel) the entanglement in the
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FIG. 2: Upper panel: electron density for = 0 (Cy = 0) (dashed
line) andU = 40 (Cy = 12.75) (solid line) for a4 well potential L/ Eight wells/sites
with w = 2 ag, d = 0.2 ap andvg = 10 Hartree. Lower Panel: as / QW Electron system d=2— |

for the upper panel but for a system&ivells. 0.99f QW Electron system d=0.2 — |
| QW Electron system d=0---
- Hubbard - - - - 4

. . .. . 0.97 L L L S
two systems is almost indistinguishable. 0 5 10 15 20 25

Ford = 0.2 ag, two wells, andJ < 8 the Hubbard model v
is fairly accurate in reproducing the average sirgjte en-
tanglement, while, for stronger interactiorjs, _resultsﬁrmg the QW electron system With — U /fw, w = 2 a0, d = 2 ao,
Hubbard model reproduce only the qualitative tren_d (Fig.3,5 — 02 a0 or d = 0, andv, — 10 Hartree. Upper pane sites
upper panel). Fol/ 2 8 the entanglement values are interme- ith », = 1 45 and2 wells. Center panelt sites withn = 0.5 ag "
diate between the Hubbard model and the limiting ecase0:  and4 wells. Lower panel8 sites withn. = 0.25 a5 ' and8 wells.
in this respect we note that fdr= 0.2 ay even when the re-
pulsive interaction is as high d$ = 40 (Cy = 12.75) the
electron density in the QW system does not become localizeghent of a QW electron system when wells are far enough apart
within the wells (see Fig. 2). to prevent significant electron density in the interwellrigr

When four wells are considered, the Hubbard model reproregion (see Fig. 1); it is less good, although it gives the-gen
duces the entanglement trend qualitatively and is lessateu eral trend, when the wells become closer, as the densitygrofi
when the interaction is low (Fig. 3, middle panel). The max-displays less well-defined ‘sites’ (see Fig. 2) . Surprifing
imum entanglement is lower fat = 0.2 ao and in general though, when considering a large number of wells, the Hub-
the entanglement trend is intermediate between the Hubbatwhrd model reproduces the entanglement within few per¢ent a
model and the limiting casé = 0. For four wells the differ-  all interaction strengths, even when compared to the miti
ence between the maximum values of the entanglement cazase scenarid = 0 (Fig.3, lower panel). This results sug-
not be removed by rescaling (see discussion in next sec- gests that here the Hubbard model sites could be interpreted
tion). as a fine enough mesh discretization of the continuous $patia

For eight wells the Hubbard model reproduces the qualitavariable.
tive behavior but the entanglement is lower at all value& of
and intermediate with respect to the resultsdet 0. y

It should be noted however that, even tbe= 0.2 aq, the C. Rescaling Uy /tw
percentage error for the entanglement as estimated using th
Hubbard model will be relatively small for the eight and four  We now investigate whether, fat = 2 ag, the small dis-
well systems{ 1%), while more substantial for the two-well crepancy between the Hubbard model and the QW system re-
case and/ = 8 (~ 20%). sults for the entanglement may be removed by choosing an

Our results show that the average single-site entanglemerd hoc’ value ofUy, / (., Cv ).
of the Hubbard model is a very good match for the entangle- We find that withU,,/ (Cyt,,) = 11500 the entanglement

FIG. 3: Average single-site entanglement for the Hubbardehand
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for the QW system is almost identical to the results from thewe then have a constraint from conserving the particle numbe
Hubbard model for all the systems considered (Fig. 4).
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FIG. 4: Average singlsite entanglemen$ for the Hubbard model

and the QW electron system with = 11500Cy, w = 2 ap, d = 2

ao, andvy = 10 Hartree. Upper Pane? sites withn = 1 a5 * and
2 wells. Center Panelt sites withn = 0.5 a; ' and4 wells. Lower

panel:8 sites withn = 0.25 a; ' and8 wells.

This suggests that although the calculafegi/tw gives a
good estimate for the parametérto be used in the Hub-

M
¢:Z<Pim>+a<¢>>—f\/:o, (16)

and constraints from the requirement that occupation proba
bilities for any well/site must sum to one

Yi = Pi(11) + 2Pi(1) + Pi(0) =1 = 0. (17)

We use Lagrange multipliers to maximigesubject to these
constraints, i.e.

o M

— | S—Xp— ;i | =0 18
with v =T, 71/,0. Eliminating A and x; from the resulting
equations give

Pi(11)Pi(0) = (Pi(1)). (19)

Eq. (19) relates occupation probabilities within each, ste
we can find a local maximum of the entanglement where
all the wells/sites are equivalent, i.e?(y) = P(y). Im-
posing this condition on Egs. (16), (17) and (19) gives
P(1)=N/M — (N/M)?* and P(1]) = (N'/M)?. We note
that it is only the ratioV/ /M that matters for the probabilities
and hence the entanglement. For 2 particles, the largest-ent
glement occurs for two well/sites (Fig. 3); this suggests th
N/M = 1/2 (half-filling) may be the condition to obtain the
largest maximum for the entanglement.

We now continue withAN° = 1 and note that
P(1)=1/M —1/M? andP(1|) = 1/M? correspond to the
condition of no preferred well and two uncorrelated paeticl
of opposite spin.

Reduced density matrices with eigenvalues equal /i@

g the number of degrees of freedom, would correspond to
maximal entanglement. However, under the stipulation of
preserving the particle number together with the request th
>, Pi(y) = 1, this state cannot be achieved except for
M = 2. We could think of moving closer to this by attempt-
ing to achieve reduced density matrices with more homogene-
ity within the eigenvalues, i.e., achievidg)(v) ~ P;(y'), at

bard model, we may improve the entanglement accuracy bigast within certain wells. We implement this by relaxing th
fitting U,,/(Cut.) and thereby compensate for some of thecondition that the wells are equivalent and moving part ef th
differences between the models. The extent of the scalingarticle density from one site to another. We redif ) and
confirms that—at least for parameters for which there is nol’ (1) by ¢ while increasingP;(T1) at sitej # i by g, with
significant electron density in the barrier regions—the ose the empty occupation probabilities adjusted accordingét-

a single square well wave-function is a good approximatiorfing dS/dq = 0 givesg = 0 suggesting that the maximum
in the calculation of7,, /t,, as the result is very close to the entanglement occurs when all wells are equivalent.

scaled value.

IV. UPPER BOUND FOR THE ENTANGLEMENT AND
STRONG COULOMB INTERACTION LIMIT

Let us consider the case of zero magnetization R.g.) =
P(|)and2\ particles wheréV is an integer. With\/ wells,

Under this condition, the average single-site entanglemen
is given by Eq. (3), and simplifies to

St (M) = 2logy (M) + 2 (% — 1) log, (M —1). (20)

This maximum average single-site entanglement decreases a

the number of wells increase (see Table 1) and, for two parti-

cles, st = 0. In the Hubbard model picture, this would



Srl’rrmlax
2
1.623(1.550
1.300(1.234

1.087

Smax
2

M
2
4
6
8

1.033

TABLE I: Table showing the maximum theoretical average &ing
site entanglement Eq. (20), and the maximum entanglemesat as
lated for the QW electron system fdr= 2 a, and different numbers
of wells.

correspond to the limit of the number of sites going to infin-
ity and the average particle density going to zero. Thistlimi
would in fact be expected to have no entanglementas itis e
sentially a product state of empty occupations.

Ford = 2 ag, S, is reached fol/ = 0 and two wells,
similarly to the Hubbard model; however, faf > 2, some

S oo
1
15
1.252

1.061

Su=450
1.000
1.500
1.226
1.032

Svu=40
1.030
1.503
1.226
1.032

M
2
4
6
8

TABLE IlI: Table showing the limiting value for the averagmgle-
site entanglement entropy Eq. (21), and the results frortiveelec-
tron system withl = 40 andU = 450 for d = 2 a, and different
numbers of wells.

well as a large inhomogeneity between well occupation prob-
abilities| Py () — P»(v)| for any~. These account for the fact
$hat this system presents a lower maximum for the entangle-
ment in respect to the system with= 2 ay.

We may calculate the theoretical limit for the entanglement
of two electrons and/ wells whenU — oo and all wells are

interaction is required to balance the propensity of the-nonequally favorable. Using a similar procedure to section ¥ b

interacting wave-function to favor inner wells. Turning the

with P(1]) = 0andP(T) = P(|) = 1/M, we obtain

repulsion between electrons will tend to reduce the discrep

ancies between the electron density peaks in differentswell

(see e.g. the upper panel of Fig. 1); however this will also
tend to decrease the double occupation probability andrin pa

ticular the already too low value aP;(,)(T]) at the outer
wells. Therefore, due to the open boundary conditions her

considered, it may not be possible for the system to reach th
theoretical maximum for the entanglement by simply varying

U, as a perfect balance between occupation probabilities i

different wells may not be achieved without, for example, a

spatial modulation of the particle-particle interaction.

d(ao)|  Pi(1) | Po(1) | Pi(1)
0.2 0.157 0.277 | 0.1875
2 0.164 0.265 | 0.1875
d(ao)| Pi(1) |Pa(11)|Prax(1])
0.2 [5.62 x 1072[0.0595| 0.0625
2 18.58 x 1072]0.0626| 0.0625
d (ao) P1(0) P2(0) | Pha(0)
0.2 0.681 0.386 | 0.5625
2 0.663 0.408 | 0.5625

TABLE II: Occupation probabilities fol/ = 4, interwell distances
d = 0.2 ap andd = 2 ao, and interaction valu&s,, .. correspond-
ing to the entanglement maximum. Theoretical values as used
Eq. (20)

In Table Il we compare the occupation probabilities
P (v) corresponding to the maximum theoretical entangle-
ment ST to the occupation probabilities calculated for the
maximum value of the entanglement for thé = 4 system
and interwell distanceg = 2 andd = 0.2. We note that the
largest discrepancy with the theoretical values is obskfwe
the double occupation probability, with; (1) < P (1]).
This is greatly responsible for the fact th&a.x < S, for
both interwell distances. Thé = 0.2 system also presents
the largest discrepancieg; () — P ()| for any~ andi, as

max

2
SO o0 = i log, (M) +
2 2

e see in Table Il that Eq. (21) describes the lakgd&mit
of the QW system fairly well, with a percentage error of at
ost 3%. ForM = 6 andM = 8 the entanglement of the
W system saturates & ~ 40 and remains slightly below
the theoretical limiting value as in this case the assumpifo
equivalent wells does not hold even for very strong interac-
tions (Fig. 1, lower panel).

d (ao) Pi(1) P(1) [ P"(D)
0 0.196 0.284 0.25
0.2 0.228 0.268 0.25
2 0.249 0.251 0.25
[Hubbard 0249 | 0251 | 025 |
d(a0) | Pi(11) P(1) |[P™(1])
0 ]2.04x107%/1.81x1072| 0
0.2 [212x107%[346 x1073| 0
2 [6.80x1077(5.87x107°%| 0
[Hubbard4.94 x 10-7[4.43 x 10°°] 0 |
d (ao) P1(0) P(0) P(0)
0 0.608 0.414 0.5
0.2 0.544 0.461 0.5
2 0.501 0.499 0.5
[Hubbard  0.501 0499 | 05 |

TABLE IV: Occupation probabilities fod/ = 4, interwell distances
d=0,d=0.2a0andd = 2 ap, andU = 450. The correspond-

ng values for the Hubbard model are reported as well. Thmale

values as used for Eq. 21.

In Table IV we explore the differences between the theo-



™ QW system 4 wells—
P Hubbard 4 sites------ |

" QW system 2 wells-----
1.6- QW system 8 wells- - - - |

retical limiting results and thé/ = 4 system. We consider
d=0,d =0.2ag,d= 2 ag, and the results from the Hub
bard model. Table IV shows that the occupation probakslitie
for d = 2 a¢ are almost identical to the Hubbard model and
extremely close to the theoretical limiting values. Eoce 0.2
instead, no matter how strong the Coulomb repulsion between
particles is madel{ = 450 in the table), the very narrow in-
terwell barriers fail to counteract the effect of the bouryda
conditions, which favor occupation in the central wells. In RO

general the inhomogeneity between well occupation prdbabi 0.4,5 T 0 50 4

ities | P (y) — P2(v)| increases for decreasinmly underlining u

the fact that the definition of 'sites’ become more arbitrary

However the substantially larger double occupancy prdbabi FIG- 5: Average single-site entanglement of the 4-sites Hduth
ity encountered forl < 2 increases the available degrees of M0del and of the QW system with, 4, and8 wells vsU, U =
freedom and hence the entanglement. This confirms the ef/fw: @ = 2 a0, w = 2 ao, andvo = 10 Hartree.

tanglement trend observed in Fig. 3, center panel.

1.2

0.8

Average single site entanglement (S

5371 0 5372 0| Su=—10
1 1 1.030
0.5 0.811 | 0.706

0.333 | 0.65 0.585
0.25 | 0.544 | 0.497

V. ATTRACTIVE VERSUSREPULSIVE
PARTICLE-PARTICLE INTERACTION

w|o|n v |

We wish to discuss how the entanglement pattern is modi-

fied when we compare attractive’, U < 0) with repulsive  TABLE V: Table showing the theoretical limits for the aveeag
particle-particle interaction. In the following we will esider  single-site entanglement aibd < 0 for different numbers of wells.
the QW system withi = 2 ag and the Hubbard model. In Results from the QW system witlh = 2 ap andU = —40 are
Fig. 5 we show the change in the average single-site entamresented as well.

glement withU for different numbers of wells. From our

calculationsSpmax always occurs fot/ > 0 and corresponds

to U = 0 for two, U = 2.1 for four, while U = 4.8 for  wells would be empty. This would lead to an average single-
eight wells. As expected from Eq. (20), the maximum aver-Site entanglement of

age single-site entanglemesit,.x decreases with increasing hi

number of wells and our conjectured theoretical maximum Strz<o=2/M. (22)
entanglemens!. . is indeed an upper bound, to which the )

actual system comes reasonably close (Table I).)or 2, e see in Table Vthat the QW system does not get very close
due to the non-periodic nature of the system, an unmodulate@ this limit except forM = 2. The form of the confining po-

interaction strength drives the system towards havingwequi €ntia! is such that all the wells will always contain some-de
alent wells only in the very largél/| limit. However, as sity for the finite interaction strengths consideréd¥ —40).

particle-particle interaction would naturally introducerre- At these interaction strengths the system is better detrib
lations, any spatial modulation &f should probably be non by assuming that all wells are equivalent but that there is no

trivial in order to mimic the uncorrelated electrons’ ocewp SiNgle occupation. This gives

tion probabilities corresponding to the maximum theowdtic

entanglement Eq. (20). ho 1 1 1
ForU < 0 the entanglement decreases monotonically for Siyz <o = i logy (M) — (1 - M) log, <1 - M) - (23)

increasingU|. This is due to a disproportionate increase of

tf;f‘ d‘?[_UbE C;CCUD?_“?” _P;Obatii_"tieserr\:hiﬁh a_ltfe IﬁVOfedH?/t Fig. 5 srr:ows that trrl]e entanglement remains intermediate be-
attractive interparticle interaction. is limits the ass to th,1 th,2 i imi
other degrees gf freedom which might contribute to the entangv;lifg iﬁgﬁf};ﬁ;j}%?&g’cﬁgﬁ f:%;c]r;eizdreerleag?/ely imited effect
glement, and consequently the entanglement is reduced.

Our calculations show that the Hubbard model reproduces
well the average single-site entanglement of a QW system  v|. SPATIAL VERSUSAVERAGE SINGLE-SITE
with relatively wide interwell barriers. The comparisorr fo ENTANGLEMENT

M = 4is shown in Fig. 5.

In this section we consider a different type of entangle-
ment contained within the QW system, the spatial entangle-
A. Largeinter-particleattraction limit ment between the two trapped particles. This represents the
particle-particle entanglement spanning from the mangybo
ForU << 0 the two center wells could have equal proba-wave-function spatial degrees of freedom. Once more we cal-
bilities of double occupation and emptiness whilstallttteeo  culate the entanglement using the von Neumann entropy of



. . . 2 T T
the reduced density matri$,, = —T"7pred,splogs Pred,sp With > wells

pred,spCalculated from the spatial degrees of freedom as [23] Average single site—
150 patial ----- i

Pred,sg 1, T2) :/‘I’*(%,%)‘I’(I%%)dﬂ?s- (24)

This expression is diagonalized with respect to the basis se
employed. Also in this case we allow for attractive as well as
repulsive interaction between the patrticles.

Notice that in the present case the spatial entanglement is 0

zero when there is no interaction as the wéawection fac- ~ ek
torizes into spatial and spin components and the impligi co @ i Average sinclcvels
. .. . . .. A ge single site—

relations arising from the Pauli exclusion principle—ahd t 2 12 Spatial - ]
related entanglement—are accounted for within the spin de- g e
grees of freedom. 5 os 1

For two wells (Fig. 6, upper panel) we see that the spatial g L v i
entanglement is a mirrorimage of the site entanglementwhen = 04l i
reflected along the lin¢, S,, = 1. For larger numbers of | L |
wells the relationship is more complicated. In most regions ol
when the spatial entanglement increases the site entaagtem s T T T T
decreases and vice versa; however the spatial entanglement ~ 8wells
does not have a minimum exactly where the average single- 2t o PerasesgoR e
site entanglement has a maximum. This is because the spatial s

entanglement’s minimum always occurdat= 0 when there
is no correlation between the particles’ positions.
An intuitive explanation for the almost opposite behavibr o
these two types of entanglement is that&br> 0 increasing
U increases the repulsion and the correlation between parti-  ;
cles. Hence one electron’s position reveals more about the =% 1o 0 10 20
other electron while the number of spatial degrees of free-
dom is not dramatically limited, so the spatial entanglemen
increases. However the probability of double occupation isiG. 6: Average single-site entanglemehand spatial entanglement
reduced by a large positive interaction so less is learned by, for the QW electron system withi = U, /., d = 2 ao, w = 2
measurement with respect to wells/sites even though tlece eleq,, v = 10 Hartree an@ wells (upper panel) wells (center panel),
tron affects the other’s position more. Therefore the site e and8 wells (lower panel)
tanglement decreases once it has reached its maximum but,
for M > 2, much less strongly than the spatial entanglement’s
increase. reproduced, with a generally good quantitative agreement,
ForU < 0 the reduction in the probability of single occu- when comparing with a Hubbard model characterize@by
pation causes the average single-site entanglement teasecr U, /t,, whereU,, and¢,, were calculated from the quantum
markedly whenU| increases. The increase in spatial entan-well system. This was not entirely expected as even a contact
glement with increasingf/| here comes from the system ap- interaction still has contributions beyond on-site intti@n
proaching the situation where measurement of one elestronespecially for relatively small but finite barrier widths the
position reveals the other electron to be in the same regionatter case the Hubbard model reproduces at least the quali-
This results in large entanglement and we find that the spaative trend, with a maximum discrepancy of20% for the
tial entanglement fot/' < 0 increases as the number of wells parameters considered. We have compared the results from
where the electron can be found increases. the Hubbard model also with the limiting case when no bar-
rier exists between sites and a single QW is arbitrarilydir
into M equal sectors, each sector corresponding to one ‘site’.
VII. CONCLUSION Surprisingly, when enough ‘wells’ are considered, the Hub-
bard model reproduces the entanglement within few percent.
In this paper we examined the average single-site and sp&Ve interpreted this as the Hubbard model sites being a fine
tial entanglement of two particles confined in a string ofmua enough mesh discretization of the continuous spatial blia
tum wells and interacting via a contact interaction. The re- We conjectured a theoretical maximum value for the aver-
sults for average single-site entanglement were compared fage single-site entanglement of two-particle trappediwidid
those of the one-dimensional Hubbard model with on-site inwells. We saw that the maximum value was not reached ex-
teraction, to investigate when this model is a good approxicept in the case df wells. We argued that fok/ > 2 some
mation to the two-particle system. For repulsive (Coulomb)spatially modulated particle-particle interaction is dee to
interaction, we found that the trend of the entanglement waseach the maximum average single-site entanglement as to
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counteract the propensity of the particles to occupy thelinn tween the quantum well system and the Hubbard model re-
wells. ~ sults.

Despite the calculated values bf, andt,, appearing to We also considered an attractive interactidor 0 and rel-
give very good results for relatively wide interwell bande  atively wide interwell barriers. In this case the averagg k-
we found that an even better match between the Hubbarsite entanglement of the quantum well system was well ap-
model and the electron system could be achieved by rescalingroximated by the Hubbard model.
the value ofU,, /(Cyt,,). This suggests that there were some Finally we have considered a different type of
small contributions to the interaction beyond thesite repul-  entanglement—the spatial entanglement—for the quantum
sion for the chosen well parameters, but that the main approxwell system. Our results showed that the spatial entangleme
mation used—hopping parameters and interaction strength i tends to display in most parameter regions an opposite trend
dependent of the site and estimated from the ground state @fi respect to the average single-site entanglement.
a single finite quantum well—remains valid. However, as the Future work includes considering long range Coulomb in-
interwell barrier width decreases, these approximatiails f  teractions, and how this affects comparison with the result
and no rescaling o¥/,,/(Cyt,,) could improve the match be- from the Hubbard model.
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