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ABSTRACT

A map is a tiling of a finite region of the plane with unit
squares such that some tiles have been removed. The
optimal x x y-Tile Salvage Problem is: Given a map, find the
maximum number of non-overlapping x x y tiled rectangles.
A polynomial lime algorithm is given for the 1 x 2 case, Le.,
adjacent pairs. It is shown that the problem is NP-complete
for the 2 x 2 case. A polynomial time algorithm is presented
for finding 2 x 2 groups that is no worse than one half
optimal. The problem is motivated by a technique for
increasing the size of very large scale integrated (VLSI) cir
cuit chips.

The research described herein is part of the Blue CHiP Project. Funding
is provided in part by the Offtce of Naval Research under Contract No.
N00014-BO·I{-OB16 and Contract No. N00014-Bl-K-03BO, Special Research
Opportunities Program. Task SRQ-100.
•Additional support from National Science Foundation Grant MCS-BO
05387.



Optimal Tile Salvage

F'rancine Berman

Purdue University

F'Tank Thomson Leighton

Massachusetts Institute of Technology

Lawrence Snyder

Purdue University

Introduction

In very large scale integrated (VLSI) circuit technology, theTe is a

continuing effort to place more transistors on a chip. Although this is

often accomplished by making the devices denser with more sophisti

cated processing technology, the necessary equipment is complex and

expensive, and the procedures are very exacting. Anot.her approach is to

make the chips larger. But for a fixed fabrication process this causes a

reduction in yield, Le., a reduction in the average number of error-free

chips per process run [1, 2]. An alt.ernative method of increasing the

number of transistors per chip is to use configurability [3. 4].

Recall that chips are regions of a larger unit called a "wafer." Ordi

narily after fabrication a wafer is tested and faulty chips are marked;

then the wafer is diced using scribing corridors prOVided for t.he purpose,

the faulty chips are discarded, and the functional chips are packaged. To

use configurability, this process is changed somewhat. Special circuitry

is added in the scribing corridors that enables adjacent chips to be con

nected. Then, after the wafer is tested, adjacent functional chips are

connected inlo a group and the entire group is used as a single enlarged

chip.
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For example, a large circuit can be divided into two parts, A and B I

and the wafer can be laid Qut in a checkerboard pattern of alternating A

and B die types. After testing, adjacent functional A, B pairs can be

located. Each pair can be diced as a unit and configured to yield a double

chip that implements the large circuit.

Notice that in the checkerboard pattern, there are four adjacent B's

with which each A could be paired. Choosing a particular B could

inftuence which B's are available to pair with other A's. The problem is to

find the maximum number of adjacent A, B pairs given a map of the

erroTRfree dice on the wafer. The purpose of this paper is to show that

this problem can be solved in polynomial time, that important generaliza

tions of this problem are NP-complete, and that there is a linear-time

algorithm for approximating the NP-complete problem.

Preliminaries

A map is an n* X n"- region of the plane tiled with unit squares some

of which have been removed. The tiles represent functional chips and the

interstices represent faulty chips (see Figure 1). The optimal z. y Tile

Salvage Problem is to find the maximum number of non-overlapping x x y

tiled rectangles. The orientation of the rectangles does not malter. For

example, the selection of A. B pairs mentioned above is an instance of the

1 x 2 Tile Salvage Problem. The intended semantics, that each group con

tain an A and a B. is accomplished by patterning the wafer in an A, B

checkerboard.
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Figure 1. A map; n = 16.

Related problems have been studied. In the context of the Tile Sal

vage Problem, Fowler. Paterson and Tanimoto [7J show that the 3 x 3 case

is NP-complete. (They left open the question for smaller rectangles.)

They also found closely related covering problems NP-complete as has

Masek [8]. Partitioning problems have also been considered and these

have shown a remarkable variety [9-11]. See also Johnson [12].

The 1 x 2 Case

The selection of the maximum number of adjacent pairs of tiles. Le.,

the 1 x 2 Tile Salvage Problem, can be accomplished in polynomial time.

To prove this, label the tiles in a checkerboard pattern of alternate A's

and B's. By interpreting the problem as an instance of the "marriage"

problem (2-dimensional matching), we can obtain a polynomial solution

[5]. In parlicular, let the A tiles in the map correspond to "girls" and the

B Liles correspond to "boys" in the 2-dimensional matching problem. The

maximum set of girl-boy pairs gives the maximum set of mutually non

intersecting 1 x 2 rectangles. See Figure 2.

The 2 x 2 Case

The complexity of the problem changes dramatically ii we consider

circuiLs which can be divided into four mutually adjacent tiles. Consider
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Figure 2. An optimal selection fOT the 1 x 2 Tile Salvage Problem.

maps with alternating rows of two types: one type with alternating A and

B dice and one type with alternating C and D dice. See Figure 3.

....
A B A ::~:r~

.......•.
c D C ~:~::::::.........
A :.:.:.:.: A B.:.:.:.:

C D C D

Figure 3. Checkerboard Pattern with A, B. C, D Die Types.

Each die can participate as a component in four different 2 x 2 tiles.

The problem, as before, is to find the maximum number of non

overlapping 2 x 2 tiled rectangles given a map. In this sec Lion we show

that the 2 x 2 Tile Salvage Problem is NP-complete. It is interesling to

notice that in both the 1 x 2 case and the 2 x 2 case the number of reetan-

gles a single die can participate in is the same, although the complexity

of the two prohlems is quite different.

Let the Tile Salvage Predicate be defined as the statement

"Given a map and an integer z. are there at least z nanw

overlapping 2 x 2 tiled rectangles in the map?"

Clearly the problem is in NP. To complete the argument, OUT strategy
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will be to show that the NP-complete problem Planar 3-SAT [6] can be

reduced to the Tile Salvage Predicate in polynomial time.

Planar 3-SAT can be defined as follows: Let B be a formula with

clauses Gl' ... , c"" and variables VI. "'I 'Un- Assume that B is in conjunctive

normal form with at most 3 literals per clause. Define G(B) to be the

undirected graph with vertices V and edges E where

V;:;: Iv}. ,.. , 'Un! U Je i •... , eml

E = IIv" v, • .! I 1" i < nj U Ilvn , viii u

llef. vjl I if vi or -Vj occurs incd·

Lichtenstein defines Planar 3w SAT to be the statement

"Given a formula B in conjunctive normal form with at most :3

literals per clause and for which G(B) is planar, is there an

assignment of values to variables for which B has the value

true?"

Lichtenstein has shown that Planar 3-SAT is NP-Complete [6].

It will be convenient to adopt. a new representalion for maps and new

vocabulary. For the remainder of the paper, a map will be a graph

formed by placing a vertex at the center of each (1 x 1) tile and connect

ing it to any verLices that are a unit distance away (see Figure 4). It is

easy to see that the 2 x 2 Tile Salvage Problem on the graph form of the

map is simply that of selecting the maximum number of non-intersecting

unit square regions. For brevity, we will hereafter call t.hese unit. squares

"tiles," and understand that they actually represent 2 x 2 rectangles.
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Figure 4. Alternate map representation based on Figure 3.

Theorem: The 2 x 2 Tile Salvage Problem is NP-complete.

Prool: It is easy to show that the 2 x 2 Tile Salvage Problem is in NP. For

the reduction, we will lake an arbitrary instance B of Planar 3-SAT and

show that there is a satisfying assignment of truth values t.o B if and only

if there are at least z non-int.ersecting 2 x 2 rectangles on a map Co - The

map Co and parameter z will depend upon the structure of B.

By definition, G(E) is planar and of a special form: There are nodes

representing both variables and clauses, edges linking variables, and

edges linking variables and clauses. We will represent the variables in

G(E) by constructs called generators, the clauses in G(B) by constructs

called receptors, and edges in G(B) by constructs called transmission

lines in the map CB.

To construct the generator for a node Vi. consider the graph G(B). Vi

has edges to Vi_I' Vi+! and to some set of clauses Gil' .. ,. Gil:. Construct the

following generator to represent Vi in f!B: The ring of the generator is a

rectangular structure without corners of 2gi tiles. Adjacent transmission

liues should be separated by at least two tiles. The transmission lines

corresponding to consecutive positive or consecutive negative

occurrences of Vi should be separated by an odd number of tiles. The

transmission lines corresponding to consecutive complementary

occurrences (a positive occurrence and a negative occurrence) should be
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separated by an even number of tiles. The transmission lines linking the

generaLor for Vi with the generators for '11'-1 and Vi+l should· each have an

odd Ilumber of Liles. Sec P'igure 5.

H
H
~1

L

L-

r:-:=-rrm

to c.
'1

to c.
'2

to c.
'3

Figure 5. Generator for Vi Transmission Lines.

To construct the receptor for the clause Ci> we observe that in G(B).

the node representing c,: has degree between 1 and 3. Let lIi l , 'U'2' 'lJ'3 be

the hLerals in clause Ci- Construct the following receptor to represent. C,;_

+
Figure 6. Receptor for Ci without transmission lines.

The transmission lines from Vit' V~2' 'U'3 each fit into a corner of the

receptor (in no particular order) as follows:



to v.
'1

to v.
'3

- B -

,..--
1 :

to v.
'2

Figure 7. Receptor with Transmission Lines to Vi!, Vie' Vis'

The edges connecting the variables and linking the variables and

clauses in G(B) will be represented by transmission lines in the map. A

horizontal transmission line is essentially a row of tiles. These lines may

be bent vertically or diagonally on the lattice as shown in Figure 8.

Horizontal Transmission Line Non-Horizontal Transmission Line

Figure 8.

We define the length of a transmission line to be the number of tiles

which compose the transmission line. We will always COl.Ult the tiles on a

t.ransmission line from the innermost tile emanating from the generator.

This completes the translation of the components of the graph G(B)

to portions of the map Cn. Cn can now be constructed from the above

specifications with the following additional requirements:

1) Transmission lines between generators should be composed of an

odd number of tiles.

2) Transmission lines between generators and receptors should be
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generator for v.

0
>

0
0
0

generator for v.+l
>

Figure 9. Transmission Line (Highlighted) Between the Generators for Vi

and VH1-

Figure 10. Transmission Line (Highlighted) from a Generator to a Recep
tor with 10 Tiles.

composed of an even number of tiles. This does not include the

tile incident to the middle node of the receptor.

3) Non-intersecting components of the map should always be

separaLed by alleasl two tiles.

4) The conslruc.Llon can proceed without regard Lo parity con

straints. Once the diagram has been constructed, the parity of
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any line segment can be sel by first refining the grid, say by a

factor of 10. If the line segment has the right parity, we are

done. Otherwise, by the dilation, there is a straighlline segment

of length at least seven Liles that can be replaced by the

sequence given in Figure 11. This changes the parity of the

number of tiles and because of the dilation, preserves the tile

separation constraints.

=

Figure 11. Dilation to Change the Parity of a Line.

As an example of

(VI +V2+VS)(-Vl +V4+ V ::;).

Figure 12.

our construction. let B be the formula

One way of constructing G(B) is shown in

Figure 12. G(E).

Clearly G(E) is planar. Figure 13 shows the map CB produced using

the preceding construction. Note the parity fix used in the transmission

line Irom the generator for 'Us to the receptor for C I_
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,,

C- l- I- '- -
1- - - - , - . C- I-- :- v, -, I

,
". generator, , - , , I--
I

,
II II I' I, , , ,,- c- , , , I-, I

,

:-
, , c , receptor ,,

'f-- l-
I 'I I I -v2

, - --
:~- - ,

generator , ,
I:1-- - , - ,

,,, - - - - -------
:1-- -

-- , ------ I-, , ,
, , ,

I-, ,
I

, ,, ,
I-, , , ,- - -- --- - , parity

l-
I - , -, , fix

I- , , -
- - - -- - . ------

, I ,, , I-, I , -- - ", l- I-

:1-- l- I- I--
'l- I-, v3 I I I II I:1-- I-
:1-- generator

l- I--
'l- I- I-,, I-,

I ,, , I--,
, , , - -- - - - - I

l- I--

I I I 1-' TI '1 __' I I I JTI,'!-

Figure 13_ The map Cn for G(B)_
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Let CB be the map composed of the generators, receptors and

transmission lines which represent the nodes and edges of G(B). Clearly

the construction of Co from G(B) can be accomplished in polynomial

time. To determine the parameter z, let Iv 10 ••• , 'Un I be the variables

occurring in B and lei' .... emj be the clauses. By construction, for eachi,

the ring of the generator for v, is composed of 291. tiles. Let 2tl, + 1 be the

number of tiles in the transmission line linking the generator for Vi with•
the generator for 'lJi:+1 (2tn + 1 will be the nwnher of tiles in the line

between the 'Un generator and the VI generator). Similarly, let 2t

represent the total number of tiles in all transmission lines linking a gen

erator and a receptor. Say there are y of these.

Given the parameters described above, we let

n n
Z :;:; L: 9i + L: t, + t + m - y. Recall that if 2g~ gives the number of tiles

t,,'1 1=1

which are in the generator for Vi and 2t gives the number of tiles in all

t.ransmission lines between generators and receptors, then subtracting y

ensures that we do not count twice the tiles which are both in a lransmis-

sian line and on the ring of some generator. Recall also that m is the

number of receptors (clauses) each of which will contribute one tile if and

only if B is satisfiable. For example, for the formula B with map Cn given

in Figure 13, z =120. An assignment of non-overlapping tiles to Cs is

shown in Figure 14.

To review, given formula B in 3CNF and planar G(E), we have shown

how to construct the map CD and determine the parameter z in polyno

mial Lime. To complete our reduction, we must show that there are at

least z non-in tersecting tiles in CD iff there is a satisfying assignment of

truth values to Iv I •...• V nJ in B.
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lUI I[JI JOLlLll n I[J llLLOLD..L1T.~
!>= 0

0 DI DI iDI 10 U !

0
P P P0 0

b h=;'=
l[I 01 P0

0
01 In'=

I P0 I 10 10 Ib'
'=

0 OL0 10
0 0 0'= 0

'= to
0 01 P'i 0 I'='

P '=
0 01

D iF; P'i ~

i'"' Ibd bd b 1'=

0 DI to 0 F b
0 iDI 0 10 01

f"=

b 0 bt==' 10 DliDI b i'"'

D iF 0 0 .JDF Ib'

b 1'= 0 b
0 10

F

0Fi 0 '=

I=! 10 0
0 01 P

'=

p 0
b b '=

F
10 DiDIO D

0
'=

0 P'i'=

PD
'=

10 0 bF
D b

JOUC'LJ[JI iDI 101 I[l1-'J1 iOI n.J

Figure 14. Non-Intersecting Tiles on the Map Co.
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For the first direction. assume that there are z non-intersecting Liles

in the map Ce. Then by construction, for each j, the receptor for Cj con

tains a transmission line whose assignment of non-intersecting Liles

includes a tile incident to the middle node of Cj.

to Vi

o

Figure 15. Receptor for Cj in S.

Let Vi be the variable generator from which this transmission line

emanates. Then assign the literal corresponding to Vi in Cj with the value

true.

Do this for every receptor (clause). Note that if there is an assign

ment of values to lVI .... , 'Un I consistent with this assignment then B will

be satisfiable. We will show that we can find alleast z non-intersecting

tiles only if it is impossible for literals Vi. and -Vi. both to be assigned the

value true by the given procedure.

Assume without loss of generality t.hat v, appears in eland -v,

appears in C2' Then the v, generator has the form given in Figure 16

where the ring has 29i tiles. Assume towards a contradiction thai. there

are z non-intersecting tiles in CB with the corresponding assignment of

true to both Vi and -Vi. Then the assignment of non-intersecting tiles to

both the transmission lines to c 1 and C2 are incident to t.he middle nodes

of those receptors. Hence without loss of generality, the generator for Vi

can be assigned non-intersecting tiles as in Figure 17.
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I I I I

f-

1 I I I I I

'-

I I I I I I

:-
'----

Figure 16. The Generator for Vt.

IDI 101
P

10 1 /01 IC
-

10 oriOlC

0

Figure 17. Assignment of Tiles to the Vi generator.

If the transmission lines are completely assigned with non

intersecting tiles, the generator ring can be assigned with at most g1. - 3

non-inlersecting tiles. Note that if all other transmission lines and recep

lars are completely assigned with non-intersecting tiles, we can still only

achieve a count of z - 1 tiles contradicting our hypothesis. In particular,

unless we shift. the non-intersecting tiles towards their receptor three

places on one of the transmission lines and their receptor can preserve
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its contribution of one tile (incident to the middle node but from another

transmission line), we will not be able to achieve an assignment of z non- .

inLersccLing tiles in the map. Hence if there is an assignment of z .non

intersecting tiles in Cn. we can construct a consistent assignment of

values to variables so that B will be satisfiable.

F'oT the other direction, assume that the formula B is satisfiable.

Then there is an assignment of values to variables so that in each clause.

there is al least one literal with the value true. Consider the generator

for variable Vi- Assume without loss of generality that Vi has been

assigned the value lrue by the satisfying assignment. (The argument is

analogous if -Vi is assigned t.he value true). Mark t.he innermost tile of

each transmission line in the Vt generator which corresponds to Vt· For

the complementary literal -Vi. mark the first tile incident to the inner

mosl three tiles of each transmission line in the Vt generator. In addi

tion. mark the tiles in the generator ring adjacent to all transmission

lines corresponding to the literal-v1' See Figure 18.

10 [jT i/jr

b
t I I I

Assignment for a True Literal

I I I I
I;=;

I 101 1C
CJ

Assignment for a False Literal

I"igurc 18.

Propagate this assignment of non-intersecting tiles around the gen

erator ring until the ring is filled as completely as possible. Since com

plementary occurrences of the variable are separated by an even number
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of tiles and same-value occurrences of the variable are separated by an

odd number of liles. this assignment will contribute gt - x tiles where x is

the number of lransmission lines corresponding to a true literal. Next,

fill the transmission lines from the generator as completely as possible to

the receptor with an assignment of non-intersecting tiles. Leave

unmarked all tiles in each receptor incident to the middle node.

DI 10

0 0== I 10110
tJ 0F

DI 10

Figure 19. Assignment of Tiles to Generator and Transmission Lines for a
false literal.

Assign tiles to the transmission lines linking the generators as com

pletely as possible.

o generator

o
o

generator

Figure 20. Assignment of Tiles to Lines Between Generators.
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The assignment is now complete except for the receptors. Since we

were given a satisfying assignment to the formula B, there is at least one

lileral v" in each clause Ci which has been assigned the value true. By

construction, the transmission line for v" has an assignment of non

intersecting tiles which has been propagated from the innermost tile of

its generator to the receptor Ior Gi' Since the length of v"'s transmission

line Irom the innermosL Lile to the receptor (not including the tile in the

receptor incident to the middle node) is even, the last tile in the

transmission line is unmarked. Hence we can mark the tile in the recep

lor incident to both the middle node and the transmission line for v"

adding one tile from c;: to the assignment of non-intersecting tiles on the

map. Do so [or every receptor (clause).

Receptor AssignmentTrue Transmission Line and Receptor

Figure 21.

By construction, we have created an assignment of z non

intersecting tiles in Cs from the satisfying assignment of values to vari

ables in B. Hence the 2 x 2 Tile Salvage Problem is NP-Complete. •

An Approxim.ation Algorilhm

In this section we show that a greedy algoriLhm serves as a linear

lime apprOXimation algorithm for the 2 x 2 Tile Salvage Problem. (N.B.

We continue La use our "map" and "tile" nolions.)
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Given a map, the algorithm Is simply st.ated: Repeatedly select the

leftmost, uppermost tile, and remove it and its incident edges from the

map. See Figure 22. The algorithm terminates when the map is empty or

has become a collection of disconnected line segments. and obviously

requires only a linear amount of time.

In order to assess the algorithm's effectiveness, let OPTlI be the solu-

tion for a given map M of the 2 x 2 Tile Salvage problem.

Theorem.: For a given map M I the algorithm finds a solution that is at

least YzOPTli .

Proof: Let M be a map and apply the algorithm. The algorithm induces a

partitioning of the tiles of the map as follows: Each subset of tiles con-

Lains a selected tile and those tiles haVing as a side one of the removed

incident edges. (See Figure 23.)

I
\ ,

- ~

D \

I,
- - -

o
Figure 22. Application of one step of the algorithm.

By the leftmost, uppermost condition, selections will be performed in

neighborhoods that are subgraphs of Figure 23(a), although there may

also be some extraneous edges. Thus each subset of the partitioning will

contain at most five tiles.

Consider an optimal solution for M of the 2 x 2 Tile Salvage Problem

and mark a satisfying set of OPT/J tiles. Because of the number and

configuration of tiles in each subset from the partitioning induced by the
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I
\

-, ,

0
,
I
I

, , --

Figure 23. Subset induced by a tile selection.

algorithm, no subset contains more than t.wo marked tiles. Since the

greedy algorithm selected one tile each subset, its result can be no worse

than *,OPTJJ • •

East gate suburb, Chengtu, Szechwan. 1875 A.D.
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