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ABSTRACT 

The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A 

third scale model of a generic football (with seams) was used as well as a ‘mini-football’. As the wind 

speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar 

to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and 

it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on 

spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of 

Reynolds numbers and Magnus effects were inconsistent, but generally showed reverse Magnus 

behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks 

demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping 

slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the 

goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a 

smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the 

opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage 

turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional 

football, compared to a smooth ball. 
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NOTATION  

a, b, c and d Magnus curve fit coefficients  
A  projected area of sphere 
Cd   drag coefficient 
Cm  Magnus coefficient 
Fd   drag force 
Fm   force due to Magnus effects 
Re  Reynolds number 
Sp  spin parameter 
v  relative velocity of the air 
veq   equatorial velocity of the ball surface, relative to its centre  
ρ   density of the air  
ω  ball spin 
 
 
 
1. INTRODUCTION 

The aim of this study was to gain a full understanding of the aerodynamics of an association football 

during its flight after a controlled kicking situation (e.g. a free kick). The behaviour of a spinning ball in 

flight is largely determined by the transition of the boundary layer from laminar to turbulent and 

boundary layer separation, both of which have led to considerable research activity and are well-

understood phenomena [1, 2]. Previous studies on ball aerodynamics include that by Bearman and Harvey 

[3] who found that dimples on a golf ball serve to reduce the critical Reynolds number indicating that 

surface geometry can have a significant effect on ball flight. Studies related to other sports including 

cricket [1], tennis [4], baseball [5], volleyball [6] have measured the drag and Magnus forces experienced 

by a ball during flight for varying velocity and spin conditions and examined the effect on transition and 

boundary layer separation. This work built on ground-breaking research by Achenbach [7, 8] on the 

aerodynamics of smooth and rough spheres, which showed that increased surface roughness encourages 

transition to occur at low values of Reynolds number. These issues are well described in a comprehensive 

review of sports ball aerodynamics by Mehta [1]. However, little work has been published on footballs, 

which differ from other sports balls due the presence and orientation of seams. Therefore, wind tunnel 

measurements were taken from stationary and spinning scale models of footballs, in order to calculate 

drag and Magnus coefficients. A previous study on the interaction between the foot and ball by Asai et al. 

[9] provided a range of launch conditions (speed and spin) for a free kick situation, based on a foot impact 

velocity of 25 m/s. Aerodynamic data can then be used to simulate the flight of a football for various 



launch conditions and compare the behaviour with that of a smooth ball. A summary of the launch 

condition data is shown in Table 1 and indicates a trade-off between speed and spin, depending on the 

impact location of the foot. If the ball is struck centrally, it will be launched with high velocity and 

relatively little spin, but if the impact location is moved towards the edge of the ball, spin is now applied, 

but the launch velocity is reduced. This effect is non-symmetrical due to the geometry of the foot.  

 

 

2. STUDY OF THE AERODYNAMICS 

There are two main approaches to measuring forces on sports balls during flight. The first approach is to 

take measurements from controlled football trajectories using high speed video footage [10]. Although 

this is a well-recognised method that undoubtedly examines what actually happens as a ball travels 

through the air, it is susceptible to errors. The trajectory must be measured very accurately, as the effect 

of drag and Magnus force is determined by analyzing the subtle changes in the shape of the trajectory. 

Monitoring the change in drag due to velocity is further complicated by the fact that the velocity changes 

during flight. Other effects such as turbulence, camera misalignment and inaccurate velocity 

measurement can all lead to further inaccuracies, although these errors can be reduced by employing 

more cameras. 

 

The second approach is to use a wind tunnel, with the sports ball being held in place whilst air is blown 

around it. This method has the advantage that the speed of the air can be accurately controlled and kept 

constant and the forces acting on the ball can be measured by attaching the ball to a force balance 

arrangement. 

 

3. THE EFFECT OF VELOCITY ON DRAG 

All experiments were carried out using an open circuit wind tunnel (provided by the International Tennis 

Federation, Roehampton, UK and supplied by Aerotech ATE Ltd.).  A slotted wall test section had been 

fitted to reduce blockage effects normally associated with closed wall test sections.  The test section (305 

mm x 355 mm) was fitted with 30% open area ratio walls, based upon the technology developed for 

automotive wind tunnels (Waudby-Smith and Rainbird [11], Macha et al. [12]).  A honeycomb section 



settling chamber with a contraction ratio of 10:1 and two screens were also included in the tunnel to 

produce a high quality flow.   

The velocity variation along the entire test section was ± 0.25%, across the entire test section was ± 0.3% 

and the turbulence intensity in the test section was 0.3%.    

Due to the limiting size of the working section, a scale plastic model of a football was created using rapid 

prototyping (66 mm in diameter compared to 218 mm for a full size football). The model had a generic 

seam pattern, commonly used by many football manufacturers, which consisted of 20 hexagonal and 12 

pentagonal patches (see Figure 1). After the rapid protyping process the ball model was sanded and 

polished to create a smooth surface, as would be found for a real ball. This resulted in a test section 

blockage of only about 4 % (based on cross-sectional area) which is negligible for a 30 % open area 

slotted working section (Macha et al. [12]), and therefore blockage corrections were not applied. 

The effect of velocity on the drag of a non-spinning ball was first measured by mounting the ball on an 

‘L’-shaped sting that was attached to a three-component balance manufactured by TEM Engineering Ltd. 

The force balance had a resolution of 0.018 N and was capable of measuring up to 10 N. A shroud was 

mounted in front of the sting in an attempt to reduce the drag force due to the sting itself (see Figure 1).  

 

The air speed in the working section of the wind tunnel was varied from 20 m/s (the minimum consistent 

speed achievable) up to 70 m/s and back down again. The drag and lift forces experienced by the ball-

sting arrangement were measured using the force balance at regular intervals and three runs of tests were 

carried out, with the ball model mounted in three different orientations (the ball being rotated 90° about 

the sting between each run of tests). 

 

When this testing was complete, the drag acting solely on the sting, the ‘tare’ drag, was measured. This 

was done by mounting a 66 mm diameter sphere with a hole larger than the diameter of the sting, in the 

same place as the football model had been, using supports from the side. It was mounted so that no 

contact was made between the sphere and the sting and the tests were run again to measure the tare drag 

experienced by the sting alone. The tare drag was found to be quite high, accounting for almost half the 

total drag measured on the ball-sting arrangement and although this amount of tare drag was unexpected, 

it was thought to be due to the relatively large cross-section of the sting, which had been designed to be 



sturdy and prevent any unwanted vibrations in the ball-sting arrangement. Work on tennis ball 

aerodynamics, since this research was carried out, reduced the tare drag slightly by redesigning the 

shrouding of the sting [13]. 

The measured drag forces were adjusted for tare drag and can be seen in Figure 2. Generally, the drag 

force increases with air flow speed, as one would expect. However, there is a small fluctuation in the drag 

force at low speeds due to transition. The data were based on mean values from around 300 force 

measurements sampled over 10 s for each test, which led to an average standard error of 1.3 %. There was 

found to be no major effect on the drag due to ball orientation as each run of tests gave very similar 

results. A mini-football was also mounted in the wind tunnel and tests repeated in three orientations. The 

football used was a smaller version of the Adidas Fernova design with the same generic seam pattern as 

the rapid prototyped ball and was 140 mm in diameter (compared to 218 mm for a full size ball). The data 

were again adjusted for tare drag and the resulting drag force on the ball was found to vary with the 

square of the air flow speed. No major effect was observed due to the orientation of the ball.  

 

To predict the drag forces that a full size football would experience during flight, the drag data from the 

scale model and the mini football were converted to drag coefficient data using equation 1 and plotted 

against Reynolds number (see Figure 3).  

      2
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1F ρ=                    (1) 

(where, Fd is the drag force, ρ is density of the air, A is projected area of the ball, Cd

 

 is the drag 

coefficient, v is the velocity of the air). 

In a real match situation a football has a velocity range of around 5 m/s (11 mph) to 32 m/s (70 mph), 

which in normal atmospheric conditions equates to a range in Reynolds number of approximately 70,000 

to 500,000. The data in Figure 3 show a sharp drop in drag coefficient from about 0.5 to 0.2 over a range 

in Reynolds number from about 90,000 to 130,000 and then a slight increase over the rest of the range. 

This sharp drop is due to a transition in the behaviour of the air in the boundary layer, surrounding the 

ball. At low Reynolds number (and therefore, low speeds) the boundary layer is laminar. An example of 

this situation can be seen in Figure 4a, which shows a jet of smoke travelling around the ball model when 

the Reynolds number is 90,000 (equivalent to 6.1 m/s for a full size football). The boundary layer 



separates quite early and there is a large wake behind the ball and consequently, a large drag coefficient. 

As the speed of the air is increased, the flow in the boundary layer becomes turbulent and mixing occurs 

with the surrounding air. This gives the boundary layer sufficient energy to travel further round the ball 

and separate later. This effect can be seen in Figure 4b, which shows a jet of smoke travelling around the 

ball model for a Reynolds number of 130,000 (equivalent to 9.1 m/s for a full size football). There is less 

wake behind the ball and the drag coefficient is reduced. 

 
Also shown on Figure 3 are the results of other aerodynamic studies on spheres; dimpled ball data from 

Bearman and Harvey [3] and smooth sphere data from Achenbach [7]. Achenbach [8] found that an 

increase in surface roughness had the effect of moving the transition from laminar to turbulent behaviour 

to a lower Reynolds number. A similar effect has been found for sports balls that have surface roughness 

[6]. It is well known that dimples on golf balls help to reduce drag by moving the transition point to lower 

Reynolds number so that the flow around a golf ball is turbulent for more of its flight. Judging by Figure 

3, the seam pattern on a football, seems to have a similar effect, but not to such a great extent. If a football 

were completely smooth, according to Achenbach’s data, it would have a higher drag coefficient for most 

of the range of Reynolds numbers, seen in play. 

 

4. MAGNUS FORCE MEASUREMENTS 

In order to measure Magnus forces for footballs, the third scale football model was mounted in the wind 

tunnel, by horizontal stings from both sides, as shown in Figure 5, in order to allow spin to be applied. 

The stings had a stepped profile to reduce the interference around the ball whilst maximising the strength 

of the sting and minimising the vibration of the ball.  Each sting had a diameter of 3.5 mm and extended 

up to 35 mm away from each side of the ball.  Preliminary testing showed that this is the critical area in 

which the interference of the air flow over the ball must be minimised.  A further 85 mm of the sting was 

shrouded by a elliptical shroud with a height and width of 20 mm and 35 mm respectively, to reduce the 

load acting on the stings.  This resulted in a test section blockage of only about 6 % and as for the non-

spinning tests, blockage corrections were not applied. 

 

The horizontal supports allowed the ball to be spun at up to 3,000 rpm in both directions (top spin and 

back spin), the axles being driven by an electric motor some way out of the airflow. Force balances in the 



supports were used to measure the drag force acting on the ball-axle arrangement and the lift force 

generated by the Magnus effect. Each balance was mounted on vertical struts which were located outside 

the slotted wall test section and were bespoke units supplied by Aerotech ATE Ltd. Each channel of the 

two-component force balance was sampled and routed into dedicated sensor units which provided digital, 

high-resolution output data. The force balance had been previously calibrated by Aerotech and was 

checked prior to the commencement of each test. The magnitude of the uncertainty in the measurement of 

load was of the order of 10-4 N. Tests were carried out at a range of wind speeds from 20 m/s to 60 m/s 

and a range of spins ± 2,800 rpm (150 rad/s). The Magnus force data, Fm were based on averages from 50 

measurements sampled over 10 s and were found to have an average standard error of 0.007 N (2.1 %). 

The force data were converted to Magnus coefficients, Cm

 

, in a similar way to that used previously for the 

drag coefficients (see equation 1). Hence, the following equation was used with a sign convention of 

positive lift (and Magnus coefficient) for positive back spin. 

      
2

mm AvC
2
1F ρ=                    (2) 

 

Past studies of the Magnus effect of sports balls have found it convenient to plot Magnus coefficient 

against a spin parameter, veq/v, where veq

 

 is the equatorial velocity of the ball surface, relative to its centre 

(equal to rω, the radius multiplied by the spin) and v is the ball velocity relative to the air [5]. These data 

are shown in Figure 6, together with standard errors that varied with Reynolds number (on average, 

around 10 %). It can be seen that for high values of Reynolds number (Re = 210,000, Re = 170,000), the 

Magnus coefficient generally increased with the spin parameter. This was a similar relationship to that 

found by Watts and Ferrer [5] for baseballs (see Figure 6) and can be generally explained by the 

conventional Magnus effect. Here the separation of the boundary layer is enhanced on the advancing side 

of the ball, but delayed on the retreating side of the ball causing an asymmetric pressure distribution and a 

resultant force acting in the direction of the advancing side [1]. The faster the ball spins (relative to its 

speed), the greater the force and the Magnus coefficient increases. This effect happens at post-critical 

Reynolds numbers when the boundary layer on both sides of the ball is turbulent. 



However, a phenomenon known as Reverse Magnus effect can also be seen in Figure 6 for the football 

tests at lower Reynolds number (Re = 90,000). For low values of spin parameter, a negative Magnus 

coefficient was measured suggesting that a football travelling at low speed with a small amount of top 

spin would actually experience a slight upwards force. Reverse Magnus occurs when there is a difference 

in the type of boundary layer on either side of the ball. On the advancing side, the effective Reynolds 

number (relative to the ball surface) is high enough for turbulent behaviour and separation occurs 

relatively late. However, on the retreating side, the effective Reynolds number is somewhat lower 

allowing stable, laminar behaviour in the boundary layer. This separates early and the asymmetric 

pressure distribution now causes a resultant force to act in the direction of the retreating side [5]. The 

minimum value of Magnus coefficient was measured to be around –0.3. This effect is also found with 

smooth spheres, as shown by the Maccoll [14] data in Figure 5. Differences between the Magnus 

coefficient data for footballs and that for baseballs from Watts and Ferrer [5], at relatively low Reynolds 

numbers, can be explained by the difference in ball geometry (which may encourage transition more 

readily for baseballs, so that no reverse Magnus effects were measured). 

 

Mathematical fits were applied to the data to allow a Magnus coefficient for a generic football to be 

predicted for any Reynolds number and spin parameter. The equation used for this purpose was 

 

    ( ) ( )PP dS
p

bS
m ecSeaC −− −−−= 11                 (3) 

 

(where Sp is the spin parameter veq

The coefficients a, b, c and d all vary with Reynolds number as shown in Table 2 and the calculated fits 

for these data are shown using dotted lines in Figure 5. Note: some care should be taken if extrapolating 

these fits into regions far away from the values of Reynolds number and spin parameter tested (i.e., 

outside the ranges of 90,000 < Re < 290,000 and 0.0 < Sp < 0.5). 

/v). 

 

5. EFFECT OF SPIN ON DRAG 

The drag forces measured during the spinning ball tests were used to examine the effect of spin on drag. 

The drag force data were based on averages from 50 measurements and gave an average standard error of 



0.01 N (0.5 %). The measurements of drag force with zero spin were compared with data from the 

experiments that used a rear mounted sting (see earlier section) to calculate the effect of the tare drag, due 

to the side supports. All the data were adjusted for tare, and drag coefficients then calculated which can 

be seen in Figure 7, together with standard errors that varied with Reynolds number (on average, around 

1.7 %). The data suggests that for footballs, the main effect on drag is that due to Reynolds number, not 

spin parameter. The slight variation due to spin parameter was found to be of a similar order to that found 

for dimpled balls by Davies [15] and Bearman and Harvey [3], but of a different form, due to the differing 

geometry. 

 

6. AERODYNAMICS OF A SMOOTH SPHERE 

To examine the effects of seams being present on a football, the aerodynamics of a smooth sphere were 

considered, for comparison. The non-spinning and spinning ball experiments were repeated for a 66 mm 

diameter smooth sphere and drag and Magnus coefficients were calculated for a range of velocities and 

spin rates. 

 

The drag coefficient data for a non-spinning smooth sphere, according to our experiments using the rear 

mounted sting, were slightly higher than those of Achenbach [6] (see Figure 3) and for most of the 

Reynolds numbers typically found in play for football (Re = 70,000 to 500,000), they remained constant 

at around 0.53 (± 0.02). The high drag coefficient suggests that the flow regime here is sub-critical, which 

is in accordance with the Achenbach data. For the spinning smooth sphere tests (using side supports) the 

drag coefficient data was found to be, on average about 0.54 (± 0.04) for all test conditions (see example 

data in Figure 7). For tests using the side-support arrangement, but with zero spin, drag coefficients were 

found to be constant at around 0.53 (± 0.02) for all Reynolds numbers tested (Re = 90,000 to 260,000). 

The consistency in drag coefficient for a non-spinning ball, using both experimental arrangements, lends 

confidence to the methodology used, especially considering that previous studies have found that the 

support arrangement used can have an effect on the measured drag coefficient [13]. 

 

When the Magnus forces were measured for the spinning smooth spheres, great variation was found at 

low values of spin parameter veq/v. The data suggested that the forces experienced on the sphere for the 



same spin parameter were either positive or negative, depending on the history of spin applied (i.e. what 

would be expected due to conventional Magnus or reverse Magnus effects). Applying increasing spin was 

found to lead to transition and for a particular spin, the force experienced by the sphere was observed to 

‘flip’ and act in the opposite direction. However, when the spin was decreased again the force ‘flipped 

back’ at a different value of spin. It is thought that this lack of repeatability was due to inconsistency in 

the boundary layer separation of smooth spheres, which is well-recognised and was commented on by 

Achenbach [8]. This phenomenon will be investigated further in future studies, but what was clear was 

that at higher values of spin parameter (0.3 and above) and higher Reynolds number (170,000 and above), 

the behaviour became more consistent and reverse Magnus behaviour was always observed. At these 

higher values of Reynolds number, a Magnus coefficient of around –0.31 (± 0.02) was found to be 

relatively constant for different values of spin parameter, with any variation mainly due to Reynolds 

number (see Figure 6). 

 

 

7. KICK SIMULATIONS 

 

Now that a complete set of relationships had been found for the effect of velocity and spin on drag and 

Magnus force experienced by a football, a number of kicking situations could be simulated. This was 

achieved by using a three-dimensional trajectory simulation model that calculated the forces experienced 

by the ball at discrete time intervals during its flight using the equations 1 and 2 (a time step of 2.5 ms 

was used). The coefficients Cd and Cm

According to the Asai et al. [9] data in Table 1 a football struck in its centre would have a launch velocity 

of 26 m/s and a spin of 1.9 rev/s (12 rad/s), clockwise from above. According to the aerodynamic study of 

footballs, this would lead to an initial drag coefficient of 0.22 (for a Reynolds number of 390,000). For 

simplicity, the Magnus coefficient here was taken as 0.0 due to the relatively low value of spin which, 

combined with the relatively high launch velocity, led to a spin parameter of only 0.05. The three-

 were calculated at each time interval based on the mathematical 

fits of the wind tunnel data, as the velocity of the ball changed and consequently so did the Reynolds 

number and the spin parameter. The spin was assumed to remain in the horizontal plane throughout the 

flight with no significant degradation. 



dimensional trajectory model was used to simulate this kick if it was taken 18 m away from the goal, 6 m 

off-set to the right of the centre of the goal, with a goal being scored in the top left-hand corner (“Kick a”, 

Figure 8). The simulation showed that the flow around the ball was turbulent throughout so the drag 

coefficient remained relatively constant. 

If the foot impact location was off-set by 80 mm to the right (see Table 1), this would give a launch 

velocity of 18.5 m/s and a spin of 10.2 rev/s (64 rad/s), anti-clockwise from above. The initial drag and 

Magnus coefficients for this type of kick were calculated to be 0.22 and 0.32 respectively for a Reynolds 

number of 270,000 and a spin parameter of 0.43. This kick, “Kick b”, was simulated to score a goal in the 

top left-hand corner, from the same position as Kick a. The drag coefficient was again found to remain 

the same throughout and the Magnus coefficient also remained fairly constant due to the combined effect 

of reducing Reynolds number and increasing spin parameter. For this simulation, the value of spin was 

assumed to stay constant throughout. Spin degradation has not been examined in detail for footballs, but 

using data from a previous study relating to golf balls [16], a worst-case scenario calculation led to a 

decrease in spin of only 1 % during Kick b. 

 

In order for both free kicks to be successful, the launch angle had to be altered in the same way that a 

player would do instinctively for a choice of kick. The trajectory plots in Figure 8 show how Kick b 

curves to a much greater extent than Kick a, due to the sideways Magnus force. However, because the 

ball is travelling more slowly for Kick b (by approximately 30%), it must be launched higher into the air 

to reach the same point as Kick a. The total time required to score is 0.9 s for Kick a and 1.4 s for Kick b. 

This demonstrates the choice of strategy available to a player when taking such a kick. The ball can be 

struck centrally to gain as much velocity as possible or it can be struck off-set from the centre to put spin 

on the ball, thus allowing the ball to be bent round a defensive wall of players. It is thought that in an 

actual game situation, an experienced player would be able to strike the ball with sufficient force to gain 

high velocity and spin. 

 

To examine the effect of the seams, the curving kick, Kick b was simulated again using the aerodynamic 

coefficients found for a smooth sphere. It was assumed that as the Reynolds number at launch for this 

kick was 270,000 and the spin parameter was 0.43, the drag and Magnus coefficients would remain 



constant throughout flight at values of 0.53 and –0.33, respectively (based on the wind tunnel 

measurements). This kick, “Kick c”, is shown in Figure 9 and it is clear that a perfectly smooth football 

with no seams would behave in a completely different way to one that contains seams. Kick c experiences 

a reverse Magnus effect, which means that even though spin is applied in an anti-clockwise direction 

(when viewed from above), the ball curves to the right. Increased drag force due to laminar behaviour in 

the boundary layer throughout its flight, means that the smooth ball has not reached the goal, by the time 

the football has scored, (1.4 s after being launched with the same conditions). 

 

This demonstrates that the presence of seams on a football mean that for most dynamic conditions, the 

flow regime is super-critical and turbulent boundary layer behaviour reduces the drag on the ball. The 

increased roughness due to the seams also means that the Magnus forces experienced are generally 

consistent and a conventional Magnus effect is found for the majority of the dynamic conditions seen in 

play. A very smooth football would undoubtedly perform in a very strange way, often curving in the 

opposite direction to that expected by players. Further research is now required to investigate what effect 

the depth, number and pattern of seams has on the drag and Magnus forces experienced by spinning 

footballs, under various atmospheric conditions. This will aid the future design of balls for optimum 

playing performance. 

 

8. CONCLUSIONS 

Wind tunnel measurements of football shaped spheres showed the effect of a transition from laminar to 

turbulent behaviour in the boundary layer, causing a low drag coefficient at high Reynolds number. For 

spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were 

possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar 

behaviour lead to a high drag coefficient for a large range of Reynolds numbers and Magnus effects were 

inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin 

parameter. Some of these phenomena have been demonstrated successfully using Computational Fluid 

Dynamics [17] but further work in this area could be carried out to simulate the effects of the sting and 

axle arrangements in the wind tunnel experiments.  



Trajectory simulations demonstrated that a football that is struck in the centre will follow a near straight 

trajectory, dipping slightly before reaching the goal. A football that is struck off centre will bend before 

reaching the goal, but will have a significantly longer flight time. A smooth ball that is struck off centre 

will have a longer flight time still, due to increased drag and it will curve in the opposite direction, due to 

reverse Magnus effects. The presence of seams was found to encourage transition, resulting in reduced 

drag and a more predictable Magnus behaviour for a conventional football, compared to a smooth sphere. 

It is hoped that this understanding and methodology can be used to predict the behaviour of new designs 

of football, with different seam depths and patterns. 
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Table 1. Launch condition data adapted from Asai et al. [9]. 
 
Figure 1. Ball-sting arrangement used for the non-spinning tests, using scale model of a football 
(reproduced from Biomedical Engineering Principles in Sports, Chapter 13, Fig. 13.18 with kind 
permission of Springer Science and Business Media). 
 
Figure 2. Drag force plotted against air flow speed for non-spinning scale model of a football. 
 
Figure 3. Wind tunnel drag coefficient data plotted against Reynolds number, compared with data for 
other spheres. 
 
Figure 4. Smoke flow around the scale football model showing: (a) laminar flow at Re = 90,000; and (b) 
turbulent flow at Re = 130,000 (reproduced with the kind permission of the International Sports 
Engineering Association). 
 
Figure 5. Magnus coefficient data for spinning balls over a range of velocities (standard errors shown as 
error bars). 
 
Figure 6. Drag coefficient data for spinning balls over a range of velocities (standard errors shown as 
error bars). 
 
Table 2. Equations for the coefficients used to predict Magnus coefficient. 
 
Figure 7. Predictions for the flight of two free kicks based on varying foot impact location. 
 
Figure 8. Predictions for the flight of two curving free kicks based on type of ball. 
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Table 1. Launch condition data adapted from Asai et al. [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Impact location Ball launch speed (m/s) Launch spin (rev/s), anti-
clockwise, from above 

160 mm left of centre 6.2 -10.6 
120 mm left of centre 15.2 -11.0 
80 mm left of centre 20.5 -8.2 
40 mm left of centre 23.5 -3.5 
central 26.0 -1.9 
40 mm right of centre 23.1 4.0 
80 mm right of centre 18.5 10.5 
120 mm right of centre 11.2 16.2 
160 mm right of centre 0.0 0.0 
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Figure 1. Ball-sting arrangement used for the non-spinning tests, using scale model of a football 
(reproduced from Biomedical Engineering Principles in Sports, Chapter 13, Fig. 13.18 with kind 
permission of Springer Science and Business Media). 
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Figure 2. Drag force plotted against air flow speed for non-spinning scale model of a football. 
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Figure 3. Wind tunnel drag coefficient data plotted against Reynolds number, compared with data for 
other spheres. 
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Figure 4. Smoke flow around the scale football model showing: (a) laminar flow at Re = 90,000; and (b) 
turbulent flow at Re = 130,000 (reproduced with the kind permission of the International Sports 
Engineering Association). 
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Figure 5. Ball-sting arrangement used for the spinning tests (shown with smooth sphere). 
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Figure 6. Magnus coefficient data for spinning balls over a range of velocities (standard errors shown as 
error bars). 
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Table 2. Equations for the coefficients used to predict Magnus coefficient. 
 
 
 
 
 
 
 
 
 

Coefficient Equation 
a 0.35 
b Re * 0.0000239 
c 12150 * e(-0.0000822*Re) 

d Re * 0.000142 
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Figure 7. Drag coefficient data for spinning balls over a range of velocities (standard errors shown as 
error bars). 
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Figure 8. Predictions for the flight of two free kicks based on varying foot impact location. 
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Figure 9. Predictions for the flight of two curving free kicks based on type of ball. 
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