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ABSTRACT
The effort for combating the COVID-19 pandemic around the world has resulted in a huge amount
of data, e.g., from testing, contact tracing, modelling, treatment, vaccine trials, and more. In addition
to numerous challenges in epidemiology, healthcare, biosciences, and social sciences, there has been
an urgent need to develop and provide visualisation and visual analytics (VIS) capacities to support
emergency responses under difficult operational conditions. In this paper, we report the experience
of a group of VIS volunteers who have been working in a large research and development consortium
and providing VIS support to various observational, analytical, model-developmental, and dissemi-
native tasks. In particular, we describe our approaches to the challenges that we have encountered
in requirements analysis, data acquisition, visual design, software design, system development, team
organisation, and resource planning. By reflecting on our experience, we propose a set of recommen-
dations as the first step towards a methodology for developing and providing rapid VIS capacities to
support emergency responses.

1. Introduction
Visualisation and visual analytics (abbreviated as VIS)

has been used extensively in many mission-critical applica-
tions and healthcare applications. Since the emergence of
COVID-19, data visualisation has been widely visible in tra-
ditional and online media for disseminating information re-
lated to COVID-19. Meanwhile what has not been obvious
to the public is the fact that VIS techniques can and should be
used to help healthcare scientists and experts in combating
COVID-19. In particular, since epidemiologists and mod-
elling scientists encounter a huge amount of collected data
and simulation data on a daily basis [84], it is not difficult
to infer that we need to provide epidemiological modelling
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workflows with as much VIS support as possible. However,
there have been some challenges for many epidemiologists
and modelling scientists to receive adequate VIS support.
These challenges include:

a. Epidemiologists and epidemiological modelling sci-
entists are not accustomed to receiving VIS support
systematically. In some disciplines, modelling scien-
tists have received VIS support systematically. For ex-
ample, in visualisation journals and conferences, there
are hundreds of research papers on VIS support for
computational fluid dynamics, includingmany surveys
(e.g., [64]). For the past a few years, the topic of
providing machine learning workflows with VIS sup-
port has been growing rapidly [82]. In contrast, VIS
papers on supporting epidemiological modelling are
very rare. This suggests that scientists in epidemiol-
ogy may not be used to the notions that they could vi-
sualise their data at their fingertips, could have visual-
isation experts to design visual representations specif-
ically for their models, and could monitor and analyse
the behaviours of their models and parameters dynam-
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ically.
b. Visualisation is widely mistaken only for information

or knowledge dissemination. In many modelling ap-
plications, VIS techniques are commonly used for sci-
entific and public dissemination, but seriously under-
used in all other stages of amodellingworkflow, which
typically consists of a set of iterative processes, such
as (a) data collection and observation; (b) hypothe-
sis formulation and causality analysis; (c) model de-
velopment, testing, validation, and comparison; and
(d) model deployment, monitoring, and improvement.
Ideally, modelling scientists and epidemiologists could
have a quick glance of dynamic data anytime when
there is a need (cf. stock brokers observing stock mar-
ket data), access effective overviews of spatiotempo-
ral patterns of the disease development and control
(cf., meteorologists observing satellite images, con-
tour maps, etc.), be provided with external memorisa-
tion of data to stimulate hypotheses and contemplate
various decisions (cf. a general pacing around in a
war room in front of many maps), and receive advice
from an ensemble of analytical algorithms and visual-
isations about similarity, anomalies, clusters, correla-
tion, causality, and association hidden in the data (cf.
a CEO consulting specialists).

c. There are not enough visualisation researchers around
to support epidemiologists and modelling scientists.
Mathematically, deriving an optimal model to fore-
cast the contagion patterns of COVID-19 in different
conditions (e.g., geographical, social, seasonal vari-
ation; different human intervention; etc.) is an in-
tractable problem. It is an absolutely vital strategy
to involve many modelling scientists and epidemiol-
ogists to develop different models because probabilis-
tically, many developed models can produce sensible
forecast under some conditions. The more modelling
scientists and epidemiologists can observe real-world
data, examine model behaviours in different condi-
tions, and compare the quality of different models, the
more likely they can gain a better understanding and
improve model performance in varying conditions. In
2020, there were some 100 university teams in the UK
working on different epidemiological models. In com-
parison, there are only around a dozen of VIS teams
in the UK. It is not feasible to pair a VIS team and a
modelling team individually.

d. There is a lack of a VIS infrastructure that can quickly
be adapted to support epidemiologists and modelling
scientists. The most cost-effective way to deliver VIS
support to many modelling scientists and epidemiolo-
gists would be to have a technical infrastructure, which
would host many applicable VIS techniques, and en-
able modelling scientists and epidemiologists to vi-
sualise any relevant data and analytical recommenda-
tions at their fingertips. Such an infrastructure could

potentially support many other operations for combat-
ing COVID-19. Of course, it is understandable that
we did not have such a VIS infrastructure ready in an-
ticipating the COVID-19 pandemic. Ideally one could
clone and re-purpose an existing VIS infrastructure,
and adapt existing VIS tools for analysing and visual-
ising epidemiological data. However, partly because
of (b), there has not been adequate investment in the
past for developing such a VIS infrastructure for any
application. Consequently, during the emergency, there
was not an existing infrastructure to clone, re-purpose,
or adapt.

Nevertheless, “complaining does not work as a strategy”
[75], and “every challenge [we] face todaymakes [us] stronger
tomorrow” [5]. RAMP VIS [78] is a group of VIS vol-
unteers, who answered a call to support the modelling sci-
entists and epidemiologists in the Scottish COVID-19 Re-
sponse Consortium (SCRC) [94]. The group was assembled
as part of the rapid responses organised by the Royal So-
ciety (UK) [93]. As a volunteering operation in an emer-
gency context, the VIS volunteers encountered many chal-
lenges. For example, the time urgency demanded rapid de-
velopment of usable VIS tools, the travel restriction and the
domain experts’ heavy workload hampered in-depth require-
ments analysis, and parallel developments of pandemicmod-
els and data infrastructure entailed delays in accessing data
to be visualised. In addition, there was a shortage of skilled
developers for designing and engineering a VIS system, and
a fair amount of uncertainty in organising and scheduling
volunteering resources.

The VIS volunteers made time urgency as their top pri-
ority, and were grouped into seven teams according to the
available VIS expertise as well as different VIS needs in
the SCRC modelling workflow. The grouping also enabled
each team to progress independently in terms of require-
ments analysis, visual design, and system engineering. To
our best knowledge, the experience of RAMP VIS volun-
teers is unprecedented in the VIS literature and epidemiol-
ogy literature. In this paper, we describe our effort during
2020 to address the challenges in providing VIS support to
epidemiologists and modelling scientists. By reporting and
reflecting on our experience, we highlight the need for for
developing and providing VIS capacities to support a data-
intensive emergency response.

2. Related Work
In this section, we review the application of VIS to emer-

gency response and healthcare and discuss the existingmethod-
ologies that may be used to developVIS in such applications.
VIS for Emergency Responses. Emergency response has
been a regular theme in VIS since 2005 [25]. Kwan and
Lee [54] incorporate geospatial visualisation into a real-time
3D emergency response system to support quick response to
terrorist attacks. Chittaro et al. [16] introduce VU-Flow, a
3D visual environment that provides navigation guidance to
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users during emergency simulations. Based on the data col-
lected from large community disaster events (e.g., 9/11 and
Hurricane Katrina), Campbell et al. [12] use visualisation-
based interactive simulation for training emergency response
teams. Natarajan and Ganz [72] introduce distributed visual
analytics for managing emergency response between geo-
graphically dispersed users. Waser et al. [101] incorporate
visual designs into simulation-based investigation of flood
disasters to recommend appropriate response strategies. Ma-
ciejewski et al. [61] introduce PanViz, a VIS toolkit pro-
viding decision support for simulated pandemic scenarios.
Ribicic et al. [79] develop a VIS interface to provide flood
simulations to non-expert users. Konev et al. [52] incor-
porate interactive visual designs into a simulation-based ap-
proach for flood protection planning. Gelernter et al. [33]
provide visualisations to guide first responders at a crisis
scene. Visualising social media data is commonly used to
support emergency responses for situational awareness [60],
resource allocation [48], critical infrastructure management
[97] and post-disaster analytics [45, 66, 73]. Whitlock et al.
[103] integrate VIS tools with mobile and immersive tech-
nologies to support critical operations during emergency re-
sponse.

VIS plays a critical role in mission-critical applications
such space missions. Abramyan et al. [2] develop an immer-
sive visualisation environment for controlling space robots
remotely on the Earth. Edell and Wortman [26] introduce
advanced visualisations to assist the diagnosis of operational
problems and failures for Van Allen Probes, a NASA space
mission.

Furthermore, the IEEE Conference on Visual Analyt-
ics Science and Technology (VAST) host an international
challenge workshop annually since 2006. Competition en-
tries demonstrated novel VIS solutions for epidemic spread
[40, 38], illicit activities [39, 22, 23], security streaming data
[19, 20, 21] and natural disasters [18].

Unlike most of the prior work generally carried out in
preparation for a future emergency, this work was conducted
during the period of an emergency response to the COVID-
19 pandemic.
VIS for Healthcare. The healthcare industry benefits from
the adoption of Visualisation and Visual Analytics. Rind et
al. [80] review VIS tools developed for the exploration of
electronic health records. Carroll et al. [13] review 88 arti-
cles on VIS tools for infectious disease. Gotz and Borland
[36] discuss challenges unique to the healthcare industry and
the critical role that VIS plays in the domain. McNabb and
Laramee [65] conduct an extensive survey of surveys includ-
ing the adoption of VIS in the healthcare sector. Preim and
Lawonn [77] survey the use of VIS for supporting decision
making in the public health sector.

The VIS techniques used in healthcare often incorporate
analytical techniques. For example, Event Sequence Sim-
plification is used to reduce visual complexity of sequen-
tial clinical events [105, 70, 37, 42], and support a more
efficient decision support process [4]. Natural Language

Processing is used to extract textual data from raw clini-
cal datasets [109, 34, 89]. Machine Learning help automat-
ing the processing of clinical data and providing guidance
to clinicians and researchers, including Active Learning [6],
Support Vector Machine [99], Topic Modelling [35] and Re-
current Neural Networks [55].

Themain difference between this work and the prior work
is that we had to develop multiple VIS capacities rapidly to
address different VIS needs concurrently.
Methodologies for VIS Applications. Design studymethod-
ology [83] builds on the nested model of design and valida-
tion [71] to provide guidelines, pitfalls, and a process that
help visualisation researchers design systems in applied con-
texts. Thismethodology uses themetaphor of “the Trenches”,
which is where we found ourselves, and so, just as others
have adapted its concepts and processes across varied set-
tings [56, 91], this paper reports our approach that adopts,
adapts and sometimes contradicts established guidance in
the context of rapid emergency response.

Workshops [49, 51] can speed up requirements gather-
ing. The five-design sheets methodology [81] can structure
the sketching process. Collaborative design methodologies
[59] can address issues due to travel restrictions, and assist
rapid visualisation design processes [24]. Some prior work
in VIS advocates different software engineering methodolo-
gies [11, 46]. The agile approach (Kanban boards, SCRUM,
etc.) is particularly suitable for developing VIS systems in
applications with changing characteristics of data, users, and
tasks. A recently-proposed method based on the cost-benefit
analysis can potentially be used to discover shortcomings in
aVISworkflow and explore potential solution systematically
[14]. We have drawn inspiration from these methodologies
in our work.

3. Formulating the RAMPVIS Approach
The Scottish COVID-19 Response Consortium (SCRC)

[94] was established in April 2020 by researchers in three
Scottish organisations in response to a call from the Royal
Society forRapid Assistance inModelling the Pandemic (RAMP)
[93]. The goal of the Consortium was to develop a more
robust and clearer understanding of potential medium- and
long-term strategies for controlling the COVID-19 epidemic
in Scotland and in the UK. The Consortium currently has
over 150 members from 36 organisations.

On 14 May, Dr. Richard Reeve, the SCRC modelling
coordinator, first met a VIS scientist. They discussed the
SCRC’s overall requirements for visualisation. As shown in
the first sketch in Figure 1(a), SCRC initially only required
assistance for visualising the results of modelling, reflecting
the widespread perception of visualisation as a tool only for
information or knowledge dissemination. The VIS scientist
described how different VIS techniques could enable domain
experts to observe data quickly, analyse data with the aid of
data mining algorithms, and improve their models through,
e.g., visualisation of ensemble data, parameter space, and
results from sensitivity or uncertainty analysis. Dr. Reeve
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(a) before discussion (b) after discussion

Figure 1: Two sketches illustrate the major change of the role of VIS in the SCRC modelling
workflow during the initial discussion. The symbols “V” in pink circles indicate the needs
for VIS. The discussion helped establish the need for visualisation capacities not only for
dissemination of modelling results but also, perhaps more importantly, for many processes
during model development and improvement.

embraced the idea of integrating VIS techniques throughout
the modelling workflow, and revised the original sketch soon
after (Figure 1(b)). The VIS scientist (referred to as VIS
coordinator hereinafter) indicated the need to enlist the help
from many VIS experts.

The following day (15 May), the VIS coordinator sent
an email call for VIS volunteers to many VIS scientists, re-
searchers, and developers in the UK, some of whom for-
warded the call to others. By June 1, 22 VIS volunteers
(including the VIS coordinator) answered the call. There
are 19 faculty members, two industrial researchers, and one
academic research officer. Among them, 14 indicated being
able to prototype VIS software, and seven indicated willing-
ness to engineer VIS systems. By June 2, the coordinator
held meetings with all 21 volunteers individually or in small
groups. The VIS volunteers had been using a diverse range
of programming platforms. The most common denominator
is D3.js [9]. Five VIS volunteers had experience of coding
in D3.js (one became unavailable a few weeks later).

At that time, several teams in the SCRCwere working on
six different epidemiological models and one team on infer-
ence and model validation, while substantial effort was de-
voted to the development of a data infrastructure for storing
modelling results as well as captured data related to COVID-
19 spread in Scotland. For the VIS volunteers, there were
many unknowns, such as what data might be available, how
it may be retrieved, what were the requirements of individual
domain experts and individual models, and so on.

While the agilemethodology in software engineering [57]
and the nested model [71] in visualisation advocate the ne-
cessity of iterative requirements analysis and software eval-
uation, they do not prescribe a full requirements analysis
and software evaluation within a single iteration. Otherwise,
they would be similar to the waterfall methodology. In the
VIS literature, many application papers indicate that it usu-

ally takes many months to acquire a meaningful set of re-
quirements (e.g., sixmonths in [1, 30] and 12 ormoremonths
in [58, 27]). To support an emergency response, a lengthy
delay due to requirements analysis would not be acceptable.
Hencewe had to complement user-centred requirements anal-
ysis with the existing knowledge documented in the VIS lit-
erature, and commenced the development as soon as we had
understood a partial set of requirements.

As reviewed in Section 2, many papers in the literature
reported VIS techniques and tools for supporting healthcare
applications, model development, and mission-critical oper-
ations. If one can identify the data types, user tasks, and
user knowledge in an application, one can relate them to
the requirements in previously reported applications that fea-
tured similar characteristics of data, tasks, and users. During
the two weeks when we were recruiting VIS volunteers, we
gained our understanding of:

• Datatypes — Based on several briefs from the SCRC
modelling teams, we quickly learned that there would
be a huge amount of time series data, and some ge-
ographical data (e.g., maps), network data (e.g., con-
tact tracing), and multivariate data (e.g., demographic
data). Building on our knowledge of VIS literature,
we anticipated that some other types of data that might
result from analytical algorithms, such as similarity
matrices.

• User tasks—Building on our knowledge of other VIS
applications, we quickly established that there would
be a need for viewing time series in different ways
for observation and comparison, in order to evaluate a
model run against captured data, other runs, and other
models. We anticipated that some analytical taskswould
benefit from data mining algorithms, and at a later
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Figure 2: Visualisation tasks can be categorised into four levels
according to the complexity of their search spaces. The work-
flows for epidemiological modelling, especially during an emer-
gency, can benefit significantly from observational, analytical,
and model-developmental visualisation in addition to dissem-
inative visualisation. While visualisation can significantly re-
duce the time required for information acquisition, it can also
enable experts to reason with the data in conjunction with
their knowledge about, for instance, related facts and events
in the reality, shortcomings in data collection and processing,
and scientific understanding about the models concerned.

stage, domain experts would become interested in en-
semble data visualisation and parameter optimisation.

• User knowledge—Building on our experience work-
ing with other domain experts, we anticipated that (i)
domain experts were highly knowledgeable about their
own models, but could not avoid frequent observation
of captured data and model results; and (ii) they were
familiar with themajor geographical locations in Scot-
land, but would need to incorporate map-based visu-
alisation for smaller regions in Scotland and other UK
regions.

Meanwhile, we also consulted the abstracted theories and
methodologies in the VIS literature. We observed that there
was a need for all four levels of visualisation [15]. Figure
2 is an abstract representation of the workflow in Figure 1.
Although disseminative visualisationwas the initial require-

ment, from Figure 2, we can easily anticipate the needs for
performing other types of visualisation tasks:

• Observational Visualisation. During an epidemiolog-
ical emergency, many epidemiologists and modelling
scientists need to observe a huge amount of data rou-
tinely, such as viewing daily updates in different re-
gions, simulation results of different models or differ-
ent versions of a model, and previously captured or
simulated data (to aid memory recollection). For ex-
ample, one of the commonly encountered data types
is time series. Given a time series with m data values,
observing these values in a time series plot is much
quicker than reading m values. Hence, for K domain
experts to observe N time series routinely, enabling
them to perform observational tasks at their finger-
tips can collectively save a huge amount of time at the
scale of KN .
Our initial requirement analysis did not identify the
existence of any efficient and systematic support for
such observational tasks. It would mean that domain
experts either had to spend a lot of valuable time and
cognitive resource to fiddle with spreadsheets or other
tools to create visualisation plots or had difficulties to
see enough data or view data frequently enough.

• Analytical Visualisation. Many visualisation tasks are
about identifying or determining the relations among
the data objects being depicted without explicit visual
confirmation of such relations. As the number of pos-
sible relations or grouping patterns is a combinato-
rial function of the number of data objects, such an-
alytical tasks are usually more complex and time con-
suming when there are many data objects in visualisa-
tion imagery. For example, givenN time series (each
with m data points) representing situations in N re-
gions, visually determining the similarity among these
time series or grouping them according to their simi-
larity is more complex than observing each time series
independently. In terms of the space complexity in
computer science, the search space has a polynomial
growth in relation to mN . Hence, when mN is a big
value, it is highly desirable to use algorithms to reduce
the search space by for instance, ranking the similarity
or recommending clusters. Such algorithmic sugges-
tions can be conveyed to the domain experts through
various types of visual illustration, such as connect-
ing, ordering, highlighting, etc.
Meanwhile, it is necessary for the domain experts to
be aware that different algorithms may yield different
algorithmic suggestions and algorithms may not have
considered all variables necessary for correct sugges-
tions. In an emergency scenario, it is typically un-
certain about the best algorithm or missing variables.
Hence, VIS tools should try to offer different algo-
rithms and empower domain experts to judge the qual-
ity of algorithmic suggestions. In general, a reason-
able algorithm is expected to reduce the search space
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significantly even if it may not result in an absolutely
correct suggestion.

• Model-Developmental Visualisation. Developing epi-
demiological models is a mission-critical operation in
combating COVID-19 [62]. There is a diverse range
of models in terms of their epidemiological concep-
tualisation, mathematical specification and computa-
tional structure. Each model typically has many pa-
rameters, and different parameter combinations effec-
tuate different model behaviours. Hence, the search
space for an optimal model is usually intractable. For
example, given n parameters, eachwith k possible val-
ues, there are kn combinations of parameter values.
Somemodels have over 100 parameters, and many pa-
rameters are real numbers. Hence, it is unlikely that
one can explore all kn combinations.
It is crucial to empower model developers to use their
knowledge to explore the search space intelligently,
effectively, and efficiently. In some disciplines, such
as computational fluid dynamics and machine learn-
ing, VIS researchers commonly design and develop
model-specific VIS tools to enable model-developers
to explore their search space effectively and efficiently
(e.g., [64, 82]). Such effort requires close collabora-
tion between VIS researchers and model-developers
as it takes time for VIS researchers to gain adequate
understanding about amodel and amodel-developmental
workflow, and formodel-developers to appreciate how
VIS techniques may help without the intelligence and
knowledge similar to model developers.

We therefore concluded that although disseminative visu-
alisation was the initial requirement, the above considera-
tions about data, tasks and users confirmed that the prior-
ity should be given to observational, analytical, and model-
developmental visualisation [15]. We also anticipated that
the increasing complexity from observational to analytical
and to model-developmental visualisation compels increas-
ing depth of collaboration, time needed for requirement anal-
ysis, creativity in visual designs, and effort for iterative de-
sign evaluation and optimisation. Meanwhile, we could not
and should not delay the infrastructural development, which
demanded rather-scarce skills and experience of designing
and engineering deployable VIS systems.

TheVIS volunteers were thus organised into several teams,
including a generic supporting team (focusing on observa-
tional visualisation), an analytical support team, four mod-
elling support teams, and a disseminative visualisation team.
We placed all D3.js developers into the generic support team,
and distributed other VIS volunteers according to their ex-
pertise and time capacity. In the following four sections, we
report the activities of these teams, including further require-
ment analysis conducted by each team.

4. Generic Support and RAMP VIS
Infrastructure

Infrastructure Setup. The generic support team consists
of mainly VIS volunteers who can program in D3.js and have
developed and deployedVIS systems. Our requirement anal-
ysis indicated that domain experts were not able to observe
data regularly. Using the recently-proposed method for op-
timising VIS workflows [14], we quickly identified that this
was caused by the cost of reading and visualising data using
spreadsheets, and a solution is to develop a VIS infrastruc-
ture closely coupled with the SCRC data infrastructure that
was being developed. The goal of the team was to enable
observational visualisation for every piece of data held by
the data infrastructure.

The development of the SCRC data infrastructure started
several weeks before VIS volunteers joined SCRC. A group
of professional research software engineers (also volunteers)
have carried out the design and implementation since. The
goal is to capture the provenance of models and their results,
enabling all contributing elements traceable from results to
models and the conclusions drawn. Transparency is thus a
key principle. All models and core software components
are open-source [95]. Hence the VIS infrastructure has also
been developed in the open.

TheUKScience and Technology Facilities Council (STFC)
provides the data and VIS infrastructure featuring virtual
machines on the STFC cloud service, including a chat plat-
form for collaboration and a data registry for web applica-
tions. The readiness of STFC for emergency responses en-
abled the hardware for the VIS infrastructure to be available
within 24 hours after our request.

As emergency responses, the SCRC data infrastructure,
VIS infrastructure, and six epidemiological models were de-
veloped in parallel. While the generic support team was
waiting for the measured data, we had access to some Scot-
land data in three spreadsheets, which contained over 300
time series and a few data tables. We anticipated that there
would be at least thousands of time series when data from
other regions and model runs became available. Such scale
would be a challenge to the domain experts as well as the
VIS developers. Users would need to assess the relevant
plots quickly, while developers would need to adapt each vi-
sualisation program (referred to as a VIS function) to other
applicable data with minimal development effort.
User Interface. To address the need of the domain expert
users, the RAMPVIS server provides the following facilities
(Figure 3):

• A user interface (UI) with a side bar for accessing vi-
sualisations organised in categories;

• A multi-keyword search facility;
• A personal portal for storing frequently-used visuali-

sations;
• Because each visualisation is given a unique URL,
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Figure 3: The RAMP VIS server (vis.scrc.uk) provides users with a user interface (with
search facility, personal portal, etc.), a collection of dashboards (with clickable visual
and data objects), and various plots for visualising the data hosted by the SCRC data
infrastructure.
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Figure 4: The architecture of the RAMP VIS server, featuring its ontology, agents, and ser-
vices, and their relationships with the UI, web pages (dashboards and plots), VIS functions
(programs and test data), fetched and derived data streams, and SCRC data infrastructure.

users can also tag frequently-used visualisations on a
web browser;

• A collection of dashboards, each providing links to
other dashboards and visualisation plots.

On the RAMP VIS server [74], there are broadly two
types of visualisations, dashboards and plots. Each dash-
board is designed to show key indicators and/or summary
plots that some domain experts need to view frequently. For
example, it may show the daily data of a region or a summary
of a model run (Figure 3(b)). Some information may serve
as overviews while others serve as detailed views. The data
objects, visual widgets, or summary plots on a dashboard are
all clickable, providing a gateway to fuller or more detailed
visualisations or other dashboards when required. In addi-
tion to a set of pre-defined dashboards, the generic support
team provides a service to SCRC domain experts for con-
structing new dashboard whenever needed.

The team have developed a variety of visualisation plots.
As shown in Figure 3(c), some plots feature interactive capa-
bilities, some compare multiple data streams, some convey
the analytical results produced by data mining algorithms,
and some display modelling results with estimated uncer-
tainty.

Architecture andOntology. To address the aforementioned
second need for propagating eachVIS function (either a dash-
board or a plot) to other applicable data, the team has de-
signed and developed an ontology- and agent-based archi-
tecture for the RAMP VIS server [50]. When a VIS devel-
oper fetches a task of writing a VIS function in D3.js, an
infrastructure manager creates a program template with one
or more example data streams. The binding of the VIS func-
tion and the given data streams results in a unique web page.
Once the development completes, the VIS function can be
reused by replacing the sample data stream with other appli-
cable data streams. Through a simple UI, the infrastructure
manager queries a Search Service to find all suitable candi-
date data streams, finalises a collection of data streams for
propagation, and calls a Propagation Agent to create new
bindings (and web pages) for these data streams automati-
cally.

As illustrated in Figure 4, in the VIS infrastructure, an
ontology provides the vital support to the search facilities
that enable users to find desired dashboards and plots and
the infrastructure manager to find applicable data streams
for propagation. The ontology is a graph data structure that
stores the relationships among all VIS functions, all data
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streams, and all data-VIS bindings (and the resulting web
pages). Because we modelled the ontology using a docu-
ment data model [17], we implemented the ontology using
three MongoDB database collections, which are:

• OntoVis for defining and keeping the records of all
VIS functions and their metadata;

• OntoData for storing the records of all data streams
and their metadata;

• OntoPage for maintaining the binding points between
VIS functions and data streams, there metadata and
the URLs of the corresponding web pages.

As shown in Figure 4, in addition to the aforementioned
Search Service and Propagation Agent, there are:

• ADownloaderAgent for fetching data from dynamically-
changing data automatically from the SCRC data in-
frastructure;

• A set of Analytical Agents, each applies an analyti-
cal function or data mining algorithm to a predefined
collection of data streams and generates derived data
to be rendered, e.g., a similarity matrix of a collection
of time series (see also Section 5);

• An IndexingAgent that periodically scans the database
operation logs and updates various textual descriptions
in the ontology, which may be used in search or dis-
played by VIS functions;

• A Thumbnail Agent for creating and updating the
thumbnails of dashboards and plots that may change
due to the dynamic change of the underlying data.

• ABookmark Service formanaging bookmarks in users’
portals;

• An Authentication Service for approving a user’s lo-
gin action;

• AnAuthorization Service for distinguishing ordinary
or administrative users.

The RAMP VIS server was implemented with backend
microservices using two state-of-the-art REST-API frame-
works: JavaScript-based NodeJS and Python-based Flask.
The I/O-intensive operations (e.g., database or file-system
access) are performed asynchronously and are implemented
with a NodeJS microservice. The CPU intensive operations
(e.g., running Analytics Agents) are implemented with a
Flask microservice. The Flask framework also providesAn-
alytics Agents with some off-the-shelf analytical libraries,
e.g., NumPy, SciPy, scikit-learn. The SCRC data infrastruc-
ture provides the Downloader Agent with Python APIs to
fetch H5 data.

5. Analytical Support
As exemplified by numerous visual analytics papers, VIS

applications with a large data repository are expected to em-
ploy both data analysis algorithms and visualisation tech-
niques. For example, analytical tasks have been critical for
assessing model performance and uncertainty (e.g., com-
paring predictions to observations and comparing multiple
model runs) [53], and for exploring epidemiological data
(e.g., identifying areas, time periods, or demographic groups
exhibiting similar trends in outbreak progression) [7]. With
the huge number of time series to be hosted by SCRC data
infrastructure, we anticipated that simply relying on obser-
vational visualisation might not be efficient or effective. We
thus grouped several VIS volunteers with strong data mining
experience into the analytical support team.

After several attempts to acquire detailed requirements
for analytical visualisation capacity, we learned a high-level
requirement from somemodelling scientists, i.e., “cross-model
validation” would be needed at some stage. With their ex-
pertise and initiatives, the team members anticipated that
comparing time series would be an unavoidable analytical
need because of the sheer volume of dynamically expanding
time-series data. The initial data available to the team con-
tained hundreds of time series for different regions of Scot-
land, different indicators (e.g., test, case, hospitalised, and
fatality), different genders and age groups, and so on. While
waiting for modelling data to be prepared for comparative
analysis, the team started to develop visual analytics tech-
niques for summarising, simplifying, and comparing time
series and for searching and visualising patterns and struc-
tures in the data. Building on the VIS literature on time-
series [3], we anticipated the following analytical tasks: (i)
discovering recurring trends, (ii) looking for outliers, (iii)
identifying clusters, and (iv) measuring similarities accord-
ing to one or more characteristics (e.g., scale, gradient, time
lag, etc.). The team’s anticipation was confirmed whenmore
data and specific requirements arrived several months later.

Guided primarily by these tasks, we experimented with
a number of analytical visualisations in conjunction with an
analytical toolbox that consists of different metrics and algo-
rithms for quantifying the characteristics of individual time
series, computing pairwise similarities, and transforming the
time series to feature spaces that enable their similarities and
clustering to be visualised.
Analytical Toolbox. We started developing the analytical
toolbox by creating a library of low-level analytical filters
that treat time series as 1-D signals. Since time series may
contain noise, various types of filters (e.g., flat, Hanning,
Hamming, Bartlett, and Blackman windows) can be used to
smooth time series when required. We then added a com-
prehensive library of analytical metrics for measuring the
distance, difference, similarity, or error between two time
series (e.g. mean square error and many of its variations,
Pearson correlation coefficient, structural similarity index
measure, mutual entropy, Spearman correlation coefficient,
Kendall’s tau, peak signal-to-noise ratio, F -test, and so on).
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Figure 5: The analytical support team develops and experiments with different analytical
algorithms and visual representations (top left) and selects some designs to be deployed on
the VIS infrastructure by the generic support team (top right). The lower part of the figure
shows examples of analytical visualisations for time series analysis, including time-lag plot,
force-directed graph, scatter plot, and heatmap matrix.

We further included algorithms such as dynamic time warp-
ing (DTW) and dimensionality reduction methods such as
principal component analysis (PCA) and multi-dimensional
scaling (MDS).
Analytical Visualisations. We also experimented with a
number of visual representations, focusing on comparingN
time series with T data points. If one needs to determine any
group of k segments of time series that may be similar, the
number of possible groups to be observed would be at the
level of O(NkT k), hence using analytical algorithms to nar-
row down the search space is highly beneficial [15]. How-
ever, relying on metrics alone is not sufficient since time se-
ries could be similar/dissimilar due to factors not encoded in
the data (e.g., differences in terms of demography and inter-
vention). In that respect visualisation provides ways for do-
main experts to incorporate their knowledge when analysing
and comparing different time-series. Figure 5 shows one set
of our experiments for analysing the time series associated
with the 14 regional health boards in Scotland.

• A time-lag visualisation two compares time series by
registering them using a cross-correlation that com-
putes the displacement of one time series relative to
the other. A viewer can foresee what the future may
look like in one board if it follows the same trends as
another board, but with a delay.

• A heatmap matrix shows pairwise similarity scores
among all N time series reported by different health
boards. Row or column headers can be accompanied
by time-series profiles for detailed observations. This
is especially important when the similarity/difference
measures are difficult for viewers to interpret.

• A force-directed graph produces a layout where theN
nodes representN time series, and the length of each
edge encodes the similarity/difference (short/long) be-
tween a pair of nodes. This visual representation is

particularly useful for users to discover clusters of sim-
ilar time series and outliers.

• A chord diagram, which is shown in Figure 3, places
N time series as segments/nodes along a circle, and
uses the thickness or color of each chord to encode
the similarity/difference measures.

• A scatter plot comparesN time series in their feature
space. Typically, two most important features (e.g.,
principal components computed using PCA) are se-
lected as the axes of a 2-D space, and each time series
is positioned as glyphs in the space according its fea-
ture coordinates.

When the analytical support team examined these exper-
iment results with the domain experts, one domain expert
commented “These give us a lot to think about. It is not that
we do not require these. We just overwhelmed by what vi-
sualisation can do.”
Infrastructural Support. As shown on the right of Figure
5, following the experiments, the analytical support team
selects analytical algorithms and visual representations to
be integrated into the VIS infrastructure maintained by the
generic support team. Each analytical algorithm becomes an
analytical agent, while each visual representation becomes
a plot. Because many data streams in the infrastructure are
updated dynamically, each analytical agent is scheduled to
recompute various measures and generate derived data au-
tomatically. In this way, when an analytical plot is called,
it always displays the analytical results based on the latest
data.

6. Modelling Support
Mathematically, finding an optimal model to forecast the

contagion patterns of COVID-19 in different conditions (e.g.,
geographical, social, seasonal variations, different human
interventions, etc.) is an intractable problem. Nevertheless
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Figure 6: Model output showing proportion of population by
COVID-affected category for the whole of Scotland (left) and
more detail in SE Scotland (right). Top: glyphs show change
in proportion of COVID-affected population (top-bottom) from
day 0 (left) to day 60 (right). Bottom: proportion of COVID-
affected population (left to right) for different age groups
(young-old; top-bottom).

the effort to develop better models and improve existing ones
is both necessary and desirable [62]. When VIS volunteers
were first gathered together, we anticipated that supporting
the model development in SCRC would be the most chal-
lenging undertaking, because VIS would have to support the
search for better models in an NP space (i.e., the EXPSPACE
class) [15]. We therefore organised some 10 VIS volunteers
into fourmodelling support teams (referred to as TeamsMA,
MB , MC , and MD below), providing opportunities for each
team to focus on supporting one or two SCRC modelling
teams through close collaboration.
6.1. Team MA: Supporting 1-km2 Spatial

Simulation
Model Simulation.jl [43] simulates the spread of COVID-

19 based on spatial proximity and its effect on the local pop-
ulation according to its demographic structure, over time.
The inputs are population counts in 10-year age-bands in
1×1km2 to 10×10km2 grid cells across Scotland. Given an

initial set of “seed” locations on day 0, the model outputs the
number of people in different COVID-affected categories for
each subsequent day by age group in the same grid cell. Fig-
ure 6 shows a set of simulation results.

We met the domain experts as the first version of the
model was being created. There was an urgent need to visu-
ally inspect the relative proportions of COVID-affected in-
dividuals in different categories over time and space. When
discussing the high-resolution model outputs and strategies
one might use to summarise them to validate model out-
puts and (later) to compare different modelling scenarios,
the need to freely explore these prior to establishing fixed
tabular summaries became apparent. As this need was so
urgent, we quickly established two VIS requirements: to en-
able (i) studying the relative proportions of COVID-affected
individuals in different categories over space and time, and
(ii) exploring the results at different scales from Scotland-
wide to 1-km2 neighbourhoods.

Our solution to these challenges was to use interactive
“tilemaps” [87] (also known as “glyphmaps” [104] and “em-
bedded plots” [41]) with (a) glyphs representing multiple as-
pects of the modelled output together and (b) on-the-fly in-
teractive gridding of the output at a suitable resolution in
response to zoom/pan user interaction. The technical chal-
lenge was to make interaction, with this very high-resolution
data quick and responsive enough to facilitate, rather than
impede, exploration.

On the left of Figure 6, data at a coarse spatial resolution
is superimposed on a map of Scotland. The glyphs in the
top, left image show the aggregated temporal trend as the
population moves through the COVID-affected categories,
with significantly lower proportions of affected populations
in the lower populated areas of NW Scotland. The image be-
low this is a snapshot on day 32, showing the different rates
at which the virus is affecting the population. The right col-
umn is a more detailed view of SE Scotland, as a result of
zooming/panning. The snapshot on day 32 (bottom right)
shows that the virus is affecting different age groups differ-
ently. This is largely due to differences in resident popula-
tion structure. Domain experts with knowledge of popula-
tion density can see that low-density areas seem to act as
“firebreaks”. Although this is the inner working of the spa-
tial spreading algorithm, its appearance in the visualisation
started a debate among the domain experts, influencing the
next stage of model development – to investigate the impor-
tance of population density on speed of disease spread. The
interactive tilemaps with glyphs have provided a basis for the
ongoing work for evaluating the relative importance of dif-
ferent factors in the modelling and comparison of different
lockdown scenarios.
6.2. Team MB: Supporting Simple Network

Simulation
The Simple Network Simulation (SNS) [28] is a disease

state progression model that computes numbers of people in
a series of states for specified age bands, for different geo-
graphic units, over time. The inputs are population counts in
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Informed iterative redesign to explore key questions regarding inputs to Simple Network Simulation disease state progression model through visualization
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Figure 7: Original origin destination (OD) matrices - travel to work between local au-
thorities in Scotland (top) and those in employment sectors likely to be operating under
lockdown (bottom). Asymmetric flow map - all travel to work between local authorities
shown in the spatial context, with line widths representing number of daily flows. Flow grid
map - all travel to work, shows major flows and has the space to show internal flows. OD
grid map - shows differences between travel to work flows in the ‘All’ and ‘Likely Operating’
employment sectors. Mini maps show incoming (and internal) flows for each local author-
ity. Blues are negative (lower proportions of workers), reds are positive (higher proportions
of commuting). Darker colours show larger differences. Differences are predominantly
local at this scale with strong spatial patterns revealed.

each of the age bands, spatial units, social contact data cap-
turing interactions between age groups and a spatial interac-
tion matrix that determines the extent of the likely flows of
people, and thus transmission, between each pair of spatial
units. The model calculates the number of people in differ-
ent states of the disease for each age group for each spatial
unit on a daily basis. These outputs varying according to a
number of model parameter settings.

When we connected with the SNS team, they were con-
sidering generating a lockdown spatial interaction matrix by
grouping daily travel-to-work flows for those in different em-
ployment sectors according to the likely effects on their jobs
of the “work from home” edict of April 2020. Their graphi-
cal approach used origin-destinationmatrices of data recorded
in the UK Census of Population. However, flow quantities,
group differences, and any geographic variations or effects
of scale were difficult to see (Figure 7). The effects of this
or other model inputs on models outputs were unknown.

We collectively identified the opportunity to apply estab-
lished VIS principles to ongoing efforts to visually explore
two specific domain questions: (a) which types of workers
should we include in the input network (and what difference
does this make to outputs)? (b) what do model outputs look
like (and how do they vary over time and by age-group)?

These gave plenty of scope for using judicious visual de-
sign and interactive methods for filtering, highlighting and
selection to develop elegant answers to challenging ques-
tions. Further questions that we hoped to address at a higher
level were: (c) how do the answers vary with scale and ge-
ography? (d) is visualisation effective in answering these
questions (in this context)?

Our solutions were developed as data sketches [58] em-
bedded in structured documents for discourse around data
and design [107] and engaged in regular video conferences
and online discussion in a series of tight redesign loops [63].
The discourse resulted in some preliminary answers to these
questions. For instance, for questions (a, c), the nature of
the input network has an effect on outputs, with distinct spa-
tial variation and greater effect at smaller scales. We re-
designed graphics, allowing us to identify the areas most
affected by the employment sector selection (our naive mod-
elling of lockdown), areas with high out-of-area epidemio-
logical importance, and the sources of those who visit them
(Figure 7). These views were informative but do not dic-
tate the scale or nature of the network we should use. We
began by looking at NHS boards, but increased resolution
to local authorities and then the higher resolution ‘Middle
Layer Super Output Areas’ (MSOA) for selected areas as
our answers, our knowledge of the kinds and scales of effect
and their likely geographies developed. The application of
VIS principles was informative and effective, and included
guidelines and designs known to, used by, and sometimes
developed by, the VIS team, for example:

GridMaps [29, 67] to add spatial information to origin-
destination matrices and address the occlusion that occurs
when flows are shown between variously sized geographic
units using standard projections ODMaps [106] to show the
geographic variation of the effects of the different input net-
works

Animated transitions [88] between alternative layouts to
relate spatial and semi-spatial geographic projections Inter-
active selection and filtering - to vary view parameters and
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Figure 8: Some of the largest infection chains visualised – with asymptomatic transmissions
highlighted (left), and with index nodes and locations of infections expressed along with
a visual indication of the sizes of the chains (right). The visual analysis was also enriched
with extracted graph-theoretic metrics (left-bottom).

support explorationAsymmetric link curves [31, 108] to clearly
show bi-directionality and asymmetry in the spatial interac-
tions.

For (b) and (c), initial model outputs were not particu-
larly varied by space, time or attribute, but we do have plau-
sible candidate methods that will allow such variation to be
detected and assessed when the SNS models are finalized.
Importantly, the visualization work resulted in better knowl-
edge of the input network and its lockdown characteristics,
and an emphasis on smaller scale “data zones”. The collab-
oration therefore enables us to be more confident about in-
jecting visualisation into the modelling process (d), to shine
light on the models as they are developed, tested, and param-
eterised, in ways that had not been considered by the mod-
ellers (Figure 1), and perhaps at fine scale.
6.3. Team MC : Supporting Contact Tracing

Modelling
By the time VIS volunteers joined the SCRC, the con-

tact tracing model [69] was already in development. The
model simulates the spread of COVID-19 through a dynamic
network that encodes the potential contacts among millions
of individuals. These simulations result in some very large
temporal networks [44].

We immediately established bi-weeklymeetingswith the
modelling scientists. It quickly became clear that the domain
experts did not have access to bespoke network visualisation
tools, and were primarily relying standard plots to view sim-
ulation results as disease progression curves and some sum-

mary metrics such as R. They were also comparing differ-
ent intervention policies through such plots. We noticed that
the temporal networks, which were used to derive the sum-
mary information, were never visualised. Hence, the first
urgent requirement for VIS was to enable domain experts
to observe such networks in order to gain an intuitive un-
derstanding about the temporal and topological behaviours
of the model. The visualisation would also assist domain
experts in communicating modelling results and informing
policy making.

We addressed the requirement by using existing network
visualisation tools to minimise the delay due to software de-
velopment. This allowed us to build familiarity with the
model and the data, while providing example visualisations
to stimulate our discussions with the domain experts. We
then progressed to more advanced VIS techniques, e.g., em-
ploying scalable graph-drawing techniques [85, 86], geographic-
inspired metaphors [32], and graph-theoretic analysis for de-
rived metrics to complement network visualisation (Figure
8).

With bi-weekly collaboration meetings providing con-
tinuous feedback and ideas, we improved our prototypes it-
eratively through a web-based “project diary” and an open
software repository [100]. As the collaborationmatured over
the period, we observed a trend that both domain experts
and VIS volunteers actively contributed to the discussions
on model building and visual design together. It became dif-
ficult to label whether a discussion was about visualisation
or the model itself, and there were more discussions on gen-
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Figure 9: A prototype system for analysing and visualising ensemble data. The parallel
coordinate plot (right) allows one to filter input parameters, select a subset of time series
to be aggregated, and display the aggregated curves (left).

erating insight than on producing software.
6.4. Team MD: Supporting Inference and Model

Assessment
One group of SCRC modelling scientists have been fo-

cused on quantifying epidemic characteristics, effect of in-
tervention, model performance, result uncertainty, and pa-
rameter sensitivity [90]. From the onset, the VIS volunteers
for supporting these modelling activities anticipated the use
of ensemble and uncertainty visualisation. During an ini-
tial collaboration meeting, domain experts also confirmed
the need for visualising the sensitivity of model parameters.
The domain experts were working on their models in par-
allel, thus VIS volunteers were not able to obtain multi-run
simulation data in the early months of the collaboration. VIS
Team MD took initiatives to study two COVID-19 models
in the public domain, attempting to generate multi-run sim-
ulation data. Before this attempt could yield useful output,
one SCRC model, ABC-smc [76] produced multi-run simu-
lation data for uncertainty visualisation and parameter space
analysis. By attending modelling scientists’ meetings, the
team were able to observe the interactions between the per-
spectives of modelling and uncertainty quantification, and
established a set of requirements.

Similar tomostmulti-run simulation problems, VIS needed
to support the analysis of many sets of model parameters
and outputs. In this case, each dataset consists of some 200
time series and their corresponding parameter sets. One ob-
vious requirement is to visualise the uncertainty featured in
the set of time series. As this is a common requirement for
all models with time series outputs, we passed the require-
ment to the generic support team (see Figure 3). The team
focused on the more complex tasks, i.e., (i) to identify in-
put/output relationships, (ii) to determine key curve features
such as maximum or largest slope, and (iii) to compare out-
puts from a number of different model runs. Immediately
after the requirements analysis, we started to develop a VIS

system iteratively, with increasing facilities for analytics, vi-
sualisation, and interaction.

Figure 9 shows the current prototype after several iter-
ations. We used the design approach of coordinated multi-
ple views [10], the visual analytics approach for computing
a set of curve features [92], a parallel coordinate plot [47]
for viewing and filtering multi-dimensional parameter sets
and curve features, and aggregated curves summarising the
outputs of the selected parameter sets. We are in the pro-
cess of introducing new facilities, such as slicing the multi-
dimensional parameter space [98], using functional box plots
[102, 68] to summarize many curves, and the contribution-
to-the sample-mean plot [8] to show the sensitivity of out-
puts to input parameters.

7. Disseminative Visualisation
While most VIS volunteers were distributed among the

aforementioned six teams, we also created a small team for
disseminative visualisation since public information dissem-
ination was the original overall requirement. One epidemiol-
ogy researcher with interest in data visualisation also joined
the team. The team explored the prevailing approaches, in
the UK and internationally, in public-facing visualisations
related to the pandemic. This ranged from those produced
by a number of governments (e.g., the four home nations
in the UK), organisations (e.g., WHO, UK ONS), universi-
ties (e.g., Johns Hopkins dashboards), media outlets (e.g.,
FT Coronavirus tracker), and non-commercial web services
(e.g., Worldometers).

The team concluded that we should complement, but not
duplicate, the existing effort, and defined our goal as to in-
form the public about activities of SCRC through storytelling
visualisation. We identified the following requirements: (i)
to maintain scientific rigour, (ii) to retain scientific language,
and (iii) to abstract visualisation output. For example, one of
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Figure 10: Storytelling visualisation creation process. (a) Initial concepts and ideas were
explored using a combination of the five-design sheets [81] method. (b) Following the
progress of the modelling activities, these were transformed to animated presentations and
infographics, which incorporated visualisations from other teams (in this example, from
Team MA).

our initial designs used football result prediction andweather
forecasting metaphors. Our rigorous consideration indicated
that the former might be associated with gambling, whereas
the latter could be perceived as inaccurate, and they could
have negative connotations to how epidemiologicalmodelling
would be perceived.

Figure 10 illustrates our process for creating storytelling
visualisation. It started with an ideation phase where we
elaborated preliminary concepts and ideas. This was done
using a combination of the five-design sheets [81] method-
ology (Figure 10(a)), animated PowerPoint mock-ups, and
web-based prototyping. These sparked off other explana-
tory forms, e.g., infographics and slide packs, such as in Fig-
ure 10(b), which were used to describe each epidemiological
model and the corresponding visualisations. As it would be
difficult to apply a unified narrative to every model, we opted
for allowing each story to be developed independently.

Current storytelling visualisations have been implemented
as: (a) web-based presentations using the Reveal.js frame-
work, with SVG-based animations and the potential for di-
rectly feeding into them visualisations created by other teams,
(b) as video outputs of animated presentations, and (c) as in-
fographics, created using graphics editors and creative de-
sign tools. We are in the process of creating a public web
server for hosting these storytelling visualisations.

8. Reflections and Recommendations
In this section, we reflect on our experience of develop-

ing VIS capacities for emergency response, and translate our
reflections to a set of recommendations as a step towards a
new methodology.
Reflection on general perception of VIS as a dissemi-
nation tool. Expert users often see visualisation as “for in-
forming others” rather than “for helping myself”. This can

be a big stumbling block during requirement analysis. As
illustrated in Figure 1, Dr. Reeve’s response during the first
meeting helped overcome this stumbling block, shortening
the delay in requirements analysis by months. Meanwhile,
to the disseminative visualisation team, creating such visual-
isation has not been an easy journey, especially without the
advice from an expert on public engagement.
Reflection on requirements analysis. During the pandemic,
domain experts were extremely busy. Different teams did
not follow the same formula for requirement analysis. Mod-
elling support teamsMB andMC followed the recommended
method for user-centred requirement analysis, and benefited
from frequent engagement. The generic support team and
team MA identified urgent requirements quickly and began
their development without much delay. The analytical sup-
port team, team MD, and disseminative visualisation team
had to use their knowledge to anticipate and analyse the po-
tential requirements. In emergency responses, all of these
are valid methods. Several teams had positive experience in
using quickly-produced visualisations to stimulate require-
ment analysis. Team MB made good use of several com-
munication mechanisms, including searchable threaded chat
streams, structured feedback, and design exposition. A few
VIS volunteers also found it rewarding to attend domain ex-
perts’ meetings that at first appeared irrelevant.
Reflection on team organisation. The categorisation of
visualisation tasks based on the complexity of the search
space of the possible solutions is relatively new [15]. It in-
forms us that model optimisation is an NP process in general,
and it requires all three levels of visualisation, i.e., obser-
vational, analytical, and model-developmental visualisation,
which correspond to solution spaces of complexity O(n),
O(nk), and EXPSPACE (an NP class). The complexity is
likely to impinge on the effort for identifying VIS require-
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ments. Hence, having a VIS team working with each mod-
elling team was necessary for establishing such understand-
ing. All teams quickly identified and addressed the observa-
tional requirements related to individual models, and some
have started to address the requirements for model analysis
and model optimisation. Meanwhile, the generic support
team progressed to the development stage quickly because
of not only the necessity but also the less complex search
space.
Reflection on VIS resources. Using volunteer effort is not
an ideal solution for emergency responses. It would be more
efficient if we could utilise an existing technical and knowl-
edge infrastructure for such an emergency response, if such
an infrastructure had existed for other operations and had
an advanced VIS server and a team of VIS developers who
were knowledgeable about different levels of visualisation
tasks. Our volunteering effort was a make-shift solution,
which benefited strongly from the academic knowledge in-
frastructure in the UK. Its progress could be more rapid if
there weremore development resources. The organisation of
VIS volunteers partly reflects the need to concentrate most
development resources in the generic support team. Never-
theless, the outcomes delivered by the VIS volunteers be-
tween June and December 2020 without any funding are un-
precedented. This demonstrates the importance of VIS as
well as volunteering effort in emergency responses.
Recommendation. Our approaches, experience, and reflec-
tions may be translated to the following recommendations
for future VIS applications in emergency responses:

• InDecember 2014, US President BarackObama spoke
to theNational Institutes of Health (USA): “Theremay
and likely will come a time in which we have both an
airborne disease that is deadly. And in order for us
to deal with that effectively, we have to put in place
an infrastructure” [96]. Shadbolt et al. outlined the
future need for a data ecosystem [84]. VIS should
be part of any data ecosystem, and be closely cou-
pled with or integrated into data infrastructures. The
“readiness” of VIS technical and knowledge infras-
tructures will make a difference. While it may not be
feasible to build an infrastructure for every type of po-
tential emergency, we can benefit significantly to have
a few VIS infrastructures that are ready to be cloned,
re-purposed, and adapted for different emergency re-
sponses.

• We need to make a serious effort to redress the com-
monmisconception that visualisation is only a dissem-
ination tool. In particular, we need to help modelling
scientists to become accustomed to useVIS techniques
throughout their workflows. Perhaps the best way to
broaden the uses of VIS in modelling workflows is to
enable more collaborative research between VIS sci-
entists andmodelling scientists in different disciplines.

• While the agile principle [71] fits well with VIS de-

velopment for supporting emergency responses, one
should be open-minded about different approaches. The
diverse approaches taken by different VIS teams in
the RAMP VIS effort indicated that standard practice
might not always be applicable. VIS development in
emergency responses can benefit tremendously from
the existing VIS knowledge, in the form of theories,
methodologies, literature, and personal experience. The
VIS community should improve its “readiness” by ad-
vancing abstract VIS knowledge in the form of theo-
ries and methodologies.

9. Conclusions
In this paper, we have reported the work carried out by a

group of VIS volunteers to support modelling scientists and
epidemiologists in combating COVID-19. Our approaches
to the challenges that we have encountered are rare and valu-
able contributions to the first step towards a methodology
for developing and providing VIS capacity to support emer-
gency response. In November 2020, the UK Research and
Innovation awarded funding to the group, transforming the
volunteering effort to a more structured VIS operation in
2021. This allows us to develop a VIS infrastructure that
can be deployed to support some ongoing modelling effort
as well as be served as a major example to influence VIS in-
frastructure. Meanwhile, we continue to strengthen the col-
laboration between VIS researchers and epidemiological ex-
perts, developing more domain-specific VIS techniques for
supporting epidemiological modelling workflows.
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